1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Routines for control of YMF724/740/744/754 chips 5 */ 6 7 #include <linux/delay.h> 8 #include <linux/firmware.h> 9 #include <linux/init.h> 10 #include <linux/interrupt.h> 11 #include <linux/pci.h> 12 #include <linux/sched.h> 13 #include <linux/slab.h> 14 #include <linux/mutex.h> 15 #include <linux/module.h> 16 #include <linux/io.h> 17 18 #include <sound/core.h> 19 #include <sound/control.h> 20 #include <sound/info.h> 21 #include <sound/tlv.h> 22 #include "ymfpci.h" 23 #include <sound/asoundef.h> 24 #include <sound/mpu401.h> 25 26 #include <asm/byteorder.h> 27 28 /* 29 * common I/O routines 30 */ 31 32 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip); 33 34 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val) 35 { 36 writeb(val, chip->reg_area_virt + offset); 37 } 38 39 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset) 40 { 41 return readw(chip->reg_area_virt + offset); 42 } 43 44 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val) 45 { 46 writew(val, chip->reg_area_virt + offset); 47 } 48 49 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset) 50 { 51 return readl(chip->reg_area_virt + offset); 52 } 53 54 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val) 55 { 56 writel(val, chip->reg_area_virt + offset); 57 } 58 59 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary) 60 { 61 unsigned long end_time; 62 u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR; 63 64 end_time = jiffies + msecs_to_jiffies(750); 65 do { 66 if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0) 67 return 0; 68 schedule_timeout_uninterruptible(1); 69 } while (time_before(jiffies, end_time)); 70 dev_err(chip->card->dev, 71 "codec_ready: codec %i is not ready [0x%x]\n", 72 secondary, snd_ymfpci_readw(chip, reg)); 73 return -EBUSY; 74 } 75 76 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val) 77 { 78 struct snd_ymfpci *chip = ac97->private_data; 79 u32 cmd; 80 81 snd_ymfpci_codec_ready(chip, 0); 82 cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val; 83 snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd); 84 } 85 86 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg) 87 { 88 struct snd_ymfpci *chip = ac97->private_data; 89 90 if (snd_ymfpci_codec_ready(chip, 0)) 91 return ~0; 92 snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg); 93 if (snd_ymfpci_codec_ready(chip, 0)) 94 return ~0; 95 if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) { 96 int i; 97 for (i = 0; i < 600; i++) 98 snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA); 99 } 100 return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA); 101 } 102 103 /* 104 * Misc routines 105 */ 106 107 static u32 snd_ymfpci_calc_delta(u32 rate) 108 { 109 switch (rate) { 110 case 8000: return 0x02aaab00; 111 case 11025: return 0x03accd00; 112 case 16000: return 0x05555500; 113 case 22050: return 0x07599a00; 114 case 32000: return 0x0aaaab00; 115 case 44100: return 0x0eb33300; 116 default: return ((rate << 16) / 375) << 5; 117 } 118 } 119 120 static const u32 def_rate[8] = { 121 100, 2000, 8000, 11025, 16000, 22050, 32000, 48000 122 }; 123 124 static u32 snd_ymfpci_calc_lpfK(u32 rate) 125 { 126 u32 i; 127 static const u32 val[8] = { 128 0x00570000, 0x06AA0000, 0x18B20000, 0x20930000, 129 0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000 130 }; 131 132 if (rate == 44100) 133 return 0x40000000; /* FIXME: What's the right value? */ 134 for (i = 0; i < 8; i++) 135 if (rate <= def_rate[i]) 136 return val[i]; 137 return val[0]; 138 } 139 140 static u32 snd_ymfpci_calc_lpfQ(u32 rate) 141 { 142 u32 i; 143 static const u32 val[8] = { 144 0x35280000, 0x34A70000, 0x32020000, 0x31770000, 145 0x31390000, 0x31C90000, 0x33D00000, 0x40000000 146 }; 147 148 if (rate == 44100) 149 return 0x370A0000; 150 for (i = 0; i < 8; i++) 151 if (rate <= def_rate[i]) 152 return val[i]; 153 return val[0]; 154 } 155 156 /* 157 * Hardware start management 158 */ 159 160 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip) 161 { 162 guard(spinlock_irqsave)(&chip->reg_lock); 163 if (chip->start_count++ > 0) 164 return; 165 snd_ymfpci_writel(chip, YDSXGR_MODE, 166 snd_ymfpci_readl(chip, YDSXGR_MODE) | 3); 167 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1; 168 } 169 170 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip) 171 { 172 long timeout = 1000; 173 174 guard(spinlock_irqsave)(&chip->reg_lock); 175 if (--chip->start_count > 0) 176 return; 177 snd_ymfpci_writel(chip, YDSXGR_MODE, 178 snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3); 179 while (timeout-- > 0) { 180 if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0) 181 break; 182 } 183 if (atomic_read(&chip->interrupt_sleep_count)) { 184 atomic_set(&chip->interrupt_sleep_count, 0); 185 wake_up(&chip->interrupt_sleep); 186 } 187 } 188 189 /* 190 * Playback voice management 191 */ 192 193 static int voice_alloc(struct snd_ymfpci *chip, 194 enum snd_ymfpci_voice_type type, int pair, 195 struct snd_ymfpci_voice **rvoice) 196 { 197 struct snd_ymfpci_voice *voice, *voice2; 198 int idx; 199 200 *rvoice = NULL; 201 for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) { 202 voice = &chip->voices[idx]; 203 voice2 = pair ? &chip->voices[idx+1] : NULL; 204 if (voice->use || (voice2 && voice2->use)) 205 continue; 206 voice->use = 1; 207 if (voice2) 208 voice2->use = 1; 209 switch (type) { 210 case YMFPCI_PCM: 211 voice->pcm = 1; 212 if (voice2) 213 voice2->pcm = 1; 214 break; 215 case YMFPCI_SYNTH: 216 voice->synth = 1; 217 break; 218 case YMFPCI_MIDI: 219 voice->midi = 1; 220 break; 221 } 222 snd_ymfpci_hw_start(chip); 223 if (voice2) 224 snd_ymfpci_hw_start(chip); 225 *rvoice = voice; 226 return 0; 227 } 228 return -ENOMEM; 229 } 230 231 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip, 232 enum snd_ymfpci_voice_type type, int pair, 233 struct snd_ymfpci_voice **rvoice) 234 { 235 int result; 236 237 if (snd_BUG_ON(!rvoice)) 238 return -EINVAL; 239 if (snd_BUG_ON(pair && type != YMFPCI_PCM)) 240 return -EINVAL; 241 242 guard(spinlock_irqsave)(&chip->voice_lock); 243 for (;;) { 244 result = voice_alloc(chip, type, pair, rvoice); 245 if (result == 0 || type != YMFPCI_PCM) 246 break; 247 /* TODO: synth/midi voice deallocation */ 248 break; 249 } 250 return result; 251 } 252 253 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice) 254 { 255 if (snd_BUG_ON(!pvoice)) 256 return -EINVAL; 257 snd_ymfpci_hw_stop(chip); 258 guard(spinlock_irqsave)(&chip->voice_lock); 259 if (pvoice->number == chip->src441_used) { 260 chip->src441_used = -1; 261 pvoice->ypcm->use_441_slot = 0; 262 } 263 pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0; 264 pvoice->ypcm = NULL; 265 pvoice->interrupt = NULL; 266 return 0; 267 } 268 269 /* 270 * PCM part 271 */ 272 273 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice) 274 { 275 struct snd_ymfpci_pcm *ypcm; 276 u32 pos, delta; 277 278 ypcm = voice->ypcm; 279 if (!ypcm) 280 return; 281 if (ypcm->substream == NULL) 282 return; 283 guard(spinlock)(&chip->reg_lock); 284 if (ypcm->running) { 285 pos = le32_to_cpu(voice->bank[chip->active_bank].start); 286 if (pos < ypcm->last_pos) 287 delta = pos + (ypcm->buffer_size - ypcm->last_pos); 288 else 289 delta = pos - ypcm->last_pos; 290 ypcm->period_pos += delta; 291 ypcm->last_pos = pos; 292 if (ypcm->period_pos >= ypcm->period_size) { 293 /* 294 dev_dbg(chip->card->dev, 295 "done - active_bank = 0x%x, start = 0x%x\n", 296 chip->active_bank, 297 voice->bank[chip->active_bank].start); 298 */ 299 ypcm->period_pos %= ypcm->period_size; 300 spin_unlock(&chip->reg_lock); 301 snd_pcm_period_elapsed(ypcm->substream); 302 spin_lock(&chip->reg_lock); 303 } 304 305 if (unlikely(ypcm->update_pcm_vol)) { 306 unsigned int subs = ypcm->substream->number; 307 unsigned int next_bank = 1 - chip->active_bank; 308 struct snd_ymfpci_playback_bank *bank; 309 __le32 volume; 310 311 bank = &voice->bank[next_bank]; 312 volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15); 313 bank->left_gain_end = volume; 314 if (ypcm->output_rear) 315 bank->eff2_gain_end = volume; 316 if (ypcm->voices[1]) 317 bank = &ypcm->voices[1]->bank[next_bank]; 318 volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15); 319 bank->right_gain_end = volume; 320 if (ypcm->output_rear) 321 bank->eff3_gain_end = volume; 322 ypcm->update_pcm_vol--; 323 } 324 } 325 } 326 327 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream) 328 { 329 struct snd_pcm_runtime *runtime = substream->runtime; 330 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 331 struct snd_ymfpci *chip = ypcm->chip; 332 u32 pos, delta; 333 334 guard(spinlock)(&chip->reg_lock); 335 if (ypcm->running) { 336 pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift; 337 if (pos < ypcm->last_pos) 338 delta = pos + (ypcm->buffer_size - ypcm->last_pos); 339 else 340 delta = pos - ypcm->last_pos; 341 ypcm->period_pos += delta; 342 ypcm->last_pos = pos; 343 if (ypcm->period_pos >= ypcm->period_size) { 344 ypcm->period_pos %= ypcm->period_size; 345 /* 346 dev_dbg(chip->card->dev, 347 "done - active_bank = 0x%x, start = 0x%x\n", 348 chip->active_bank, 349 voice->bank[chip->active_bank].start); 350 */ 351 spin_unlock(&chip->reg_lock); 352 snd_pcm_period_elapsed(substream); 353 spin_lock(&chip->reg_lock); 354 } 355 } 356 } 357 358 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream, 359 int cmd) 360 { 361 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 362 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 363 struct snd_kcontrol *kctl = NULL; 364 int result = 0; 365 366 guard(spinlock)(&chip->reg_lock); 367 if (ypcm->voices[0] == NULL) 368 return -EINVAL; 369 switch (cmd) { 370 case SNDRV_PCM_TRIGGER_START: 371 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 372 case SNDRV_PCM_TRIGGER_RESUME: 373 chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr); 374 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot) 375 chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr); 376 ypcm->running = 1; 377 break; 378 case SNDRV_PCM_TRIGGER_STOP: 379 if (substream->pcm == chip->pcm && !ypcm->use_441_slot) { 380 kctl = chip->pcm_mixer[substream->number].ctl; 381 kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 382 } 383 fallthrough; 384 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 385 case SNDRV_PCM_TRIGGER_SUSPEND: 386 chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0; 387 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot) 388 chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0; 389 ypcm->running = 0; 390 break; 391 default: 392 return -EINVAL; 393 } 394 if (kctl) 395 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id); 396 return result; 397 } 398 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream, 399 int cmd) 400 { 401 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 402 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 403 int result = 0; 404 u32 tmp; 405 406 guard(spinlock)(&chip->reg_lock); 407 switch (cmd) { 408 case SNDRV_PCM_TRIGGER_START: 409 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 410 case SNDRV_PCM_TRIGGER_RESUME: 411 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number); 412 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp); 413 ypcm->running = 1; 414 break; 415 case SNDRV_PCM_TRIGGER_STOP: 416 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 417 case SNDRV_PCM_TRIGGER_SUSPEND: 418 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number); 419 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp); 420 ypcm->running = 0; 421 break; 422 default: 423 result = -EINVAL; 424 break; 425 } 426 return result; 427 } 428 429 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices) 430 { 431 int err; 432 433 if (ypcm->voices[1] != NULL && voices < 2) { 434 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]); 435 ypcm->voices[1] = NULL; 436 } 437 if (voices == 1 && ypcm->voices[0] != NULL) 438 return 0; /* already allocated */ 439 if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL) 440 return 0; /* already allocated */ 441 if (voices > 1) { 442 if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) { 443 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]); 444 ypcm->voices[0] = NULL; 445 } 446 } 447 err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]); 448 if (err < 0) 449 return err; 450 ypcm->voices[0]->ypcm = ypcm; 451 ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt; 452 if (voices > 1) { 453 ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1]; 454 ypcm->voices[1]->ypcm = ypcm; 455 } 456 return 0; 457 } 458 459 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx, 460 struct snd_pcm_runtime *runtime, 461 int has_pcm_volume) 462 { 463 struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx]; 464 u32 format; 465 u32 delta = snd_ymfpci_calc_delta(runtime->rate); 466 u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate); 467 u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate); 468 struct snd_ymfpci_playback_bank *bank; 469 unsigned int nbank; 470 __le32 vol_left, vol_right; 471 u8 use_left, use_right; 472 473 if (snd_BUG_ON(!voice)) 474 return; 475 if (runtime->channels == 1) { 476 use_left = 1; 477 use_right = 1; 478 } else { 479 use_left = (voiceidx & 1) == 0; 480 use_right = !use_left; 481 } 482 if (has_pcm_volume) { 483 vol_left = cpu_to_le32(ypcm->chip->pcm_mixer 484 [ypcm->substream->number].left << 15); 485 vol_right = cpu_to_le32(ypcm->chip->pcm_mixer 486 [ypcm->substream->number].right << 15); 487 } else { 488 vol_left = cpu_to_le32(0x40000000); 489 vol_right = cpu_to_le32(0x40000000); 490 } 491 scoped_guard(spinlock_irqsave, &ypcm->chip->voice_lock) { 492 format = runtime->channels == 2 ? 0x00010000 : 0; 493 if (snd_pcm_format_width(runtime->format) == 8) 494 format |= 0x80000000; 495 else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 && 496 runtime->rate == 44100 && runtime->channels == 2 && 497 voiceidx == 0 && (ypcm->chip->src441_used == -1 || 498 ypcm->chip->src441_used == voice->number)) { 499 ypcm->chip->src441_used = voice->number; 500 ypcm->use_441_slot = 1; 501 format |= 0x10000000; 502 } 503 if (ypcm->chip->src441_used == voice->number && 504 (format & 0x10000000) == 0) { 505 ypcm->chip->src441_used = -1; 506 ypcm->use_441_slot = 0; 507 } 508 if (runtime->channels == 2 && (voiceidx & 1) != 0) 509 format |= 1; 510 } 511 for (nbank = 0; nbank < 2; nbank++) { 512 bank = &voice->bank[nbank]; 513 memset(bank, 0, sizeof(*bank)); 514 bank->format = cpu_to_le32(format); 515 bank->base = cpu_to_le32(runtime->dma_addr); 516 bank->loop_end = cpu_to_le32(ypcm->buffer_size); 517 bank->lpfQ = cpu_to_le32(lpfQ); 518 bank->delta = 519 bank->delta_end = cpu_to_le32(delta); 520 bank->lpfK = 521 bank->lpfK_end = cpu_to_le32(lpfK); 522 bank->eg_gain = 523 bank->eg_gain_end = cpu_to_le32(0x40000000); 524 525 if (ypcm->output_front) { 526 if (use_left) { 527 bank->left_gain = 528 bank->left_gain_end = vol_left; 529 } 530 if (use_right) { 531 bank->right_gain = 532 bank->right_gain_end = vol_right; 533 } 534 } 535 if (ypcm->output_rear) { 536 if (!ypcm->swap_rear) { 537 if (use_left) { 538 bank->eff2_gain = 539 bank->eff2_gain_end = vol_left; 540 } 541 if (use_right) { 542 bank->eff3_gain = 543 bank->eff3_gain_end = vol_right; 544 } 545 } else { 546 /* The SPDIF out channels seem to be swapped, so we have 547 * to swap them here, too. The rear analog out channels 548 * will be wrong, but otherwise AC3 would not work. 549 */ 550 if (use_left) { 551 bank->eff3_gain = 552 bank->eff3_gain_end = vol_left; 553 } 554 if (use_right) { 555 bank->eff2_gain = 556 bank->eff2_gain_end = vol_right; 557 } 558 } 559 } 560 } 561 } 562 563 static int snd_ymfpci_ac3_init(struct snd_ymfpci *chip) 564 { 565 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, &chip->pci->dev, 566 4096, &chip->ac3_tmp_base) < 0) 567 return -ENOMEM; 568 569 chip->bank_effect[3][0]->base = 570 chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr); 571 chip->bank_effect[3][0]->loop_end = 572 chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024); 573 chip->bank_effect[4][0]->base = 574 chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048); 575 chip->bank_effect[4][0]->loop_end = 576 chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024); 577 578 guard(spinlock_irq)(&chip->reg_lock); 579 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 580 snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3); 581 return 0; 582 } 583 584 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip) 585 { 586 scoped_guard(spinlock_irq, &chip->reg_lock) { 587 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 588 snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3)); 589 } 590 // snd_ymfpci_irq_wait(chip); 591 if (chip->ac3_tmp_base.area) { 592 snd_dma_free_pages(&chip->ac3_tmp_base); 593 chip->ac3_tmp_base.area = NULL; 594 } 595 return 0; 596 } 597 598 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream, 599 struct snd_pcm_hw_params *hw_params) 600 { 601 struct snd_pcm_runtime *runtime = substream->runtime; 602 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 603 int err; 604 605 err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params)); 606 if (err < 0) 607 return err; 608 return 0; 609 } 610 611 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream) 612 { 613 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 614 struct snd_pcm_runtime *runtime = substream->runtime; 615 struct snd_ymfpci_pcm *ypcm; 616 617 if (runtime->private_data == NULL) 618 return 0; 619 ypcm = runtime->private_data; 620 621 /* wait, until the PCI operations are not finished */ 622 snd_ymfpci_irq_wait(chip); 623 if (ypcm->voices[1]) { 624 snd_ymfpci_voice_free(chip, ypcm->voices[1]); 625 ypcm->voices[1] = NULL; 626 } 627 if (ypcm->voices[0]) { 628 snd_ymfpci_voice_free(chip, ypcm->voices[0]); 629 ypcm->voices[0] = NULL; 630 } 631 return 0; 632 } 633 634 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream) 635 { 636 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 637 struct snd_pcm_runtime *runtime = substream->runtime; 638 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 639 struct snd_kcontrol *kctl; 640 unsigned int nvoice; 641 642 ypcm->period_size = runtime->period_size; 643 ypcm->buffer_size = runtime->buffer_size; 644 ypcm->period_pos = 0; 645 ypcm->last_pos = 0; 646 for (nvoice = 0; nvoice < runtime->channels; nvoice++) 647 snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime, 648 substream->pcm == chip->pcm); 649 650 if (substream->pcm == chip->pcm && !ypcm->use_441_slot) { 651 kctl = chip->pcm_mixer[substream->number].ctl; 652 kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 653 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id); 654 } 655 return 0; 656 } 657 658 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream) 659 { 660 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 661 662 /* wait, until the PCI operations are not finished */ 663 snd_ymfpci_irq_wait(chip); 664 return 0; 665 } 666 667 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream) 668 { 669 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 670 struct snd_pcm_runtime *runtime = substream->runtime; 671 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 672 struct snd_ymfpci_capture_bank * bank; 673 int nbank; 674 u32 rate, format; 675 676 ypcm->period_size = runtime->period_size; 677 ypcm->buffer_size = runtime->buffer_size; 678 ypcm->period_pos = 0; 679 ypcm->last_pos = 0; 680 ypcm->shift = 0; 681 rate = ((48000 * 4096) / runtime->rate) - 1; 682 format = 0; 683 if (runtime->channels == 2) { 684 format |= 2; 685 ypcm->shift++; 686 } 687 if (snd_pcm_format_width(runtime->format) == 8) 688 format |= 1; 689 else 690 ypcm->shift++; 691 switch (ypcm->capture_bank_number) { 692 case 0: 693 snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format); 694 snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate); 695 break; 696 case 1: 697 snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format); 698 snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate); 699 break; 700 } 701 for (nbank = 0; nbank < 2; nbank++) { 702 bank = chip->bank_capture[ypcm->capture_bank_number][nbank]; 703 bank->base = cpu_to_le32(runtime->dma_addr); 704 bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift); 705 bank->start = 0; 706 bank->num_of_loops = 0; 707 } 708 return 0; 709 } 710 711 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream) 712 { 713 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 714 struct snd_pcm_runtime *runtime = substream->runtime; 715 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 716 struct snd_ymfpci_voice *voice = ypcm->voices[0]; 717 718 if (!(ypcm->running && voice)) 719 return 0; 720 return le32_to_cpu(voice->bank[chip->active_bank].start); 721 } 722 723 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream) 724 { 725 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 726 struct snd_pcm_runtime *runtime = substream->runtime; 727 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 728 729 if (!ypcm->running) 730 return 0; 731 return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift; 732 } 733 734 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip) 735 { 736 wait_queue_entry_t wait; 737 int loops = 4; 738 739 while (loops-- > 0) { 740 if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0) 741 continue; 742 init_waitqueue_entry(&wait, current); 743 add_wait_queue(&chip->interrupt_sleep, &wait); 744 atomic_inc(&chip->interrupt_sleep_count); 745 schedule_timeout_uninterruptible(msecs_to_jiffies(50)); 746 remove_wait_queue(&chip->interrupt_sleep, &wait); 747 } 748 } 749 750 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id) 751 { 752 struct snd_ymfpci *chip = dev_id; 753 u32 status, nvoice, mode; 754 struct snd_ymfpci_voice *voice; 755 756 status = snd_ymfpci_readl(chip, YDSXGR_STATUS); 757 if (status & 0x80000000) { 758 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1; 759 scoped_guard(spinlock, &chip->voice_lock) { 760 for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) { 761 voice = &chip->voices[nvoice]; 762 if (voice->interrupt) 763 voice->interrupt(chip, voice); 764 } 765 for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) { 766 if (chip->capture_substream[nvoice]) 767 snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]); 768 } 769 #if 0 770 for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) { 771 if (chip->effect_substream[nvoice]) 772 snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]); 773 } 774 #endif 775 } 776 scoped_guard(spinlock, &chip->reg_lock) { 777 snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000); 778 mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2; 779 snd_ymfpci_writel(chip, YDSXGR_MODE, mode); 780 } 781 782 if (atomic_read(&chip->interrupt_sleep_count)) { 783 atomic_set(&chip->interrupt_sleep_count, 0); 784 wake_up(&chip->interrupt_sleep); 785 } 786 } 787 788 status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG); 789 if (status & 1) { 790 if (chip->timer) 791 snd_timer_interrupt(chip->timer, chip->timer_ticks); 792 } 793 snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status); 794 795 if (chip->rawmidi) 796 snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data); 797 return IRQ_HANDLED; 798 } 799 800 static const struct snd_pcm_hardware snd_ymfpci_playback = 801 { 802 .info = (SNDRV_PCM_INFO_MMAP | 803 SNDRV_PCM_INFO_MMAP_VALID | 804 SNDRV_PCM_INFO_INTERLEAVED | 805 SNDRV_PCM_INFO_BLOCK_TRANSFER | 806 SNDRV_PCM_INFO_PAUSE | 807 SNDRV_PCM_INFO_RESUME), 808 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 809 .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, 810 .rate_min = 8000, 811 .rate_max = 48000, 812 .channels_min = 1, 813 .channels_max = 2, 814 .buffer_bytes_max = 256 * 1024, /* FIXME: enough? */ 815 .period_bytes_min = 64, 816 .period_bytes_max = 256 * 1024, /* FIXME: enough? */ 817 .periods_min = 3, 818 .periods_max = 1024, 819 .fifo_size = 0, 820 }; 821 822 static const struct snd_pcm_hardware snd_ymfpci_capture = 823 { 824 .info = (SNDRV_PCM_INFO_MMAP | 825 SNDRV_PCM_INFO_MMAP_VALID | 826 SNDRV_PCM_INFO_INTERLEAVED | 827 SNDRV_PCM_INFO_BLOCK_TRANSFER | 828 SNDRV_PCM_INFO_PAUSE | 829 SNDRV_PCM_INFO_RESUME), 830 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 831 .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, 832 .rate_min = 8000, 833 .rate_max = 48000, 834 .channels_min = 1, 835 .channels_max = 2, 836 .buffer_bytes_max = 256 * 1024, /* FIXME: enough? */ 837 .period_bytes_min = 64, 838 .period_bytes_max = 256 * 1024, /* FIXME: enough? */ 839 .periods_min = 3, 840 .periods_max = 1024, 841 .fifo_size = 0, 842 }; 843 844 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime) 845 { 846 kfree(runtime->private_data); 847 } 848 849 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream) 850 { 851 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 852 struct snd_pcm_runtime *runtime = substream->runtime; 853 struct snd_ymfpci_pcm *ypcm; 854 int err; 855 856 runtime->hw = snd_ymfpci_playback; 857 /* FIXME? True value is 256/48 = 5.33333 ms */ 858 err = snd_pcm_hw_constraint_minmax(runtime, 859 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 860 5334, UINT_MAX); 861 if (err < 0) 862 return err; 863 err = snd_pcm_hw_rule_noresample(runtime, 48000); 864 if (err < 0) 865 return err; 866 867 ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL); 868 if (ypcm == NULL) 869 return -ENOMEM; 870 ypcm->chip = chip; 871 ypcm->type = PLAYBACK_VOICE; 872 ypcm->substream = substream; 873 runtime->private_data = ypcm; 874 runtime->private_free = snd_ymfpci_pcm_free_substream; 875 return 0; 876 } 877 878 /* call with spinlock held */ 879 static void ymfpci_open_extension(struct snd_ymfpci *chip) 880 { 881 if (! chip->rear_opened) { 882 if (! chip->spdif_opened) /* set AC3 */ 883 snd_ymfpci_writel(chip, YDSXGR_MODE, 884 snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30)); 885 /* enable second codec (4CHEN) */ 886 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG, 887 (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010); 888 } 889 } 890 891 /* call with spinlock held */ 892 static void ymfpci_close_extension(struct snd_ymfpci *chip) 893 { 894 if (! chip->rear_opened) { 895 if (! chip->spdif_opened) 896 snd_ymfpci_writel(chip, YDSXGR_MODE, 897 snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30)); 898 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG, 899 (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010); 900 } 901 } 902 903 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream) 904 { 905 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 906 struct snd_pcm_runtime *runtime = substream->runtime; 907 struct snd_ymfpci_pcm *ypcm; 908 int err; 909 910 err = snd_ymfpci_playback_open_1(substream); 911 if (err < 0) 912 return err; 913 ypcm = runtime->private_data; 914 ypcm->output_front = 1; 915 ypcm->output_rear = chip->mode_dup4ch ? 1 : 0; 916 ypcm->swap_rear = 0; 917 guard(spinlock_irq)(&chip->reg_lock); 918 if (ypcm->output_rear) { 919 ymfpci_open_extension(chip); 920 chip->rear_opened++; 921 } 922 return 0; 923 } 924 925 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream) 926 { 927 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 928 struct snd_pcm_runtime *runtime = substream->runtime; 929 struct snd_ymfpci_pcm *ypcm; 930 int err; 931 932 err = snd_ymfpci_playback_open_1(substream); 933 if (err < 0) 934 return err; 935 ypcm = runtime->private_data; 936 ypcm->output_front = 0; 937 ypcm->output_rear = 1; 938 ypcm->swap_rear = 1; 939 scoped_guard(spinlock_irq, &chip->reg_lock) { 940 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 941 snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2); 942 ymfpci_open_extension(chip); 943 chip->spdif_pcm_bits = chip->spdif_bits; 944 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits); 945 chip->spdif_opened++; 946 } 947 948 chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 949 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE | 950 SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id); 951 return 0; 952 } 953 954 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream) 955 { 956 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 957 struct snd_pcm_runtime *runtime = substream->runtime; 958 struct snd_ymfpci_pcm *ypcm; 959 int err; 960 961 err = snd_ymfpci_playback_open_1(substream); 962 if (err < 0) 963 return err; 964 ypcm = runtime->private_data; 965 ypcm->output_front = 0; 966 ypcm->output_rear = 1; 967 ypcm->swap_rear = 0; 968 guard(spinlock_irq)(&chip->reg_lock); 969 ymfpci_open_extension(chip); 970 chip->rear_opened++; 971 return 0; 972 } 973 974 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream, 975 u32 capture_bank_number) 976 { 977 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 978 struct snd_pcm_runtime *runtime = substream->runtime; 979 struct snd_ymfpci_pcm *ypcm; 980 int err; 981 982 runtime->hw = snd_ymfpci_capture; 983 /* FIXME? True value is 256/48 = 5.33333 ms */ 984 err = snd_pcm_hw_constraint_minmax(runtime, 985 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 986 5334, UINT_MAX); 987 if (err < 0) 988 return err; 989 err = snd_pcm_hw_rule_noresample(runtime, 48000); 990 if (err < 0) 991 return err; 992 993 ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL); 994 if (ypcm == NULL) 995 return -ENOMEM; 996 ypcm->chip = chip; 997 ypcm->type = capture_bank_number + CAPTURE_REC; 998 ypcm->substream = substream; 999 ypcm->capture_bank_number = capture_bank_number; 1000 chip->capture_substream[capture_bank_number] = substream; 1001 runtime->private_data = ypcm; 1002 runtime->private_free = snd_ymfpci_pcm_free_substream; 1003 snd_ymfpci_hw_start(chip); 1004 return 0; 1005 } 1006 1007 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream) 1008 { 1009 return snd_ymfpci_capture_open(substream, 0); 1010 } 1011 1012 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream) 1013 { 1014 return snd_ymfpci_capture_open(substream, 1); 1015 } 1016 1017 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream) 1018 { 1019 return 0; 1020 } 1021 1022 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream) 1023 { 1024 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1025 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 1026 1027 scoped_guard(spinlock_irq, &chip->reg_lock) { 1028 if (ypcm->output_rear && chip->rear_opened > 0) { 1029 chip->rear_opened--; 1030 ymfpci_close_extension(chip); 1031 } 1032 } 1033 return snd_ymfpci_playback_close_1(substream); 1034 } 1035 1036 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream) 1037 { 1038 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1039 1040 scoped_guard(spinlock_irq, &chip->reg_lock) { 1041 chip->spdif_opened = 0; 1042 ymfpci_close_extension(chip); 1043 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 1044 snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2); 1045 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); 1046 } 1047 chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1048 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE | 1049 SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id); 1050 return snd_ymfpci_playback_close_1(substream); 1051 } 1052 1053 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream) 1054 { 1055 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1056 1057 scoped_guard(spinlock_irq, &chip->reg_lock) { 1058 if (chip->rear_opened > 0) { 1059 chip->rear_opened--; 1060 ymfpci_close_extension(chip); 1061 } 1062 } 1063 return snd_ymfpci_playback_close_1(substream); 1064 } 1065 1066 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream) 1067 { 1068 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1069 struct snd_pcm_runtime *runtime = substream->runtime; 1070 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 1071 1072 if (ypcm != NULL) { 1073 chip->capture_substream[ypcm->capture_bank_number] = NULL; 1074 snd_ymfpci_hw_stop(chip); 1075 } 1076 return 0; 1077 } 1078 1079 static const struct snd_pcm_ops snd_ymfpci_playback_ops = { 1080 .open = snd_ymfpci_playback_open, 1081 .close = snd_ymfpci_playback_close, 1082 .hw_params = snd_ymfpci_playback_hw_params, 1083 .hw_free = snd_ymfpci_playback_hw_free, 1084 .prepare = snd_ymfpci_playback_prepare, 1085 .trigger = snd_ymfpci_playback_trigger, 1086 .pointer = snd_ymfpci_playback_pointer, 1087 }; 1088 1089 static const struct snd_pcm_ops snd_ymfpci_capture_rec_ops = { 1090 .open = snd_ymfpci_capture_rec_open, 1091 .close = snd_ymfpci_capture_close, 1092 .hw_free = snd_ymfpci_capture_hw_free, 1093 .prepare = snd_ymfpci_capture_prepare, 1094 .trigger = snd_ymfpci_capture_trigger, 1095 .pointer = snd_ymfpci_capture_pointer, 1096 }; 1097 1098 int snd_ymfpci_pcm(struct snd_ymfpci *chip, int device) 1099 { 1100 struct snd_pcm *pcm; 1101 int err; 1102 1103 err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm); 1104 if (err < 0) 1105 return err; 1106 pcm->private_data = chip; 1107 1108 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops); 1109 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops); 1110 1111 /* global setup */ 1112 pcm->info_flags = 0; 1113 strscpy(pcm->name, "YMFPCI"); 1114 chip->pcm = pcm; 1115 1116 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 1117 &chip->pci->dev, 64*1024, 256*1024); 1118 1119 return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, 1120 snd_pcm_std_chmaps, 2, 0, NULL); 1121 } 1122 1123 static const struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = { 1124 .open = snd_ymfpci_capture_ac97_open, 1125 .close = snd_ymfpci_capture_close, 1126 .hw_free = snd_ymfpci_capture_hw_free, 1127 .prepare = snd_ymfpci_capture_prepare, 1128 .trigger = snd_ymfpci_capture_trigger, 1129 .pointer = snd_ymfpci_capture_pointer, 1130 }; 1131 1132 int snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device) 1133 { 1134 struct snd_pcm *pcm; 1135 int err; 1136 1137 err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm); 1138 if (err < 0) 1139 return err; 1140 pcm->private_data = chip; 1141 1142 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops); 1143 1144 /* global setup */ 1145 pcm->info_flags = 0; 1146 sprintf(pcm->name, "YMFPCI - %s", 1147 chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97"); 1148 chip->pcm2 = pcm; 1149 1150 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 1151 &chip->pci->dev, 64*1024, 256*1024); 1152 1153 return 0; 1154 } 1155 1156 static const struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = { 1157 .open = snd_ymfpci_playback_spdif_open, 1158 .close = snd_ymfpci_playback_spdif_close, 1159 .hw_params = snd_ymfpci_playback_hw_params, 1160 .hw_free = snd_ymfpci_playback_hw_free, 1161 .prepare = snd_ymfpci_playback_prepare, 1162 .trigger = snd_ymfpci_playback_trigger, 1163 .pointer = snd_ymfpci_playback_pointer, 1164 }; 1165 1166 int snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device) 1167 { 1168 struct snd_pcm *pcm; 1169 int err; 1170 1171 err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm); 1172 if (err < 0) 1173 return err; 1174 pcm->private_data = chip; 1175 1176 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops); 1177 1178 /* global setup */ 1179 pcm->info_flags = 0; 1180 strscpy(pcm->name, "YMFPCI - IEC958"); 1181 chip->pcm_spdif = pcm; 1182 1183 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 1184 &chip->pci->dev, 64*1024, 256*1024); 1185 1186 return 0; 1187 } 1188 1189 static const struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = { 1190 .open = snd_ymfpci_playback_4ch_open, 1191 .close = snd_ymfpci_playback_4ch_close, 1192 .hw_params = snd_ymfpci_playback_hw_params, 1193 .hw_free = snd_ymfpci_playback_hw_free, 1194 .prepare = snd_ymfpci_playback_prepare, 1195 .trigger = snd_ymfpci_playback_trigger, 1196 .pointer = snd_ymfpci_playback_pointer, 1197 }; 1198 1199 static const struct snd_pcm_chmap_elem surround_map[] = { 1200 { .channels = 1, 1201 .map = { SNDRV_CHMAP_MONO } }, 1202 { .channels = 2, 1203 .map = { SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 1204 { } 1205 }; 1206 1207 int snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device) 1208 { 1209 struct snd_pcm *pcm; 1210 int err; 1211 1212 err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm); 1213 if (err < 0) 1214 return err; 1215 pcm->private_data = chip; 1216 1217 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops); 1218 1219 /* global setup */ 1220 pcm->info_flags = 0; 1221 strscpy(pcm->name, "YMFPCI - Rear PCM"); 1222 chip->pcm_4ch = pcm; 1223 1224 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 1225 &chip->pci->dev, 64*1024, 256*1024); 1226 1227 return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, 1228 surround_map, 2, 0, NULL); 1229 } 1230 1231 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1232 { 1233 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1234 uinfo->count = 1; 1235 return 0; 1236 } 1237 1238 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol, 1239 struct snd_ctl_elem_value *ucontrol) 1240 { 1241 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1242 1243 guard(spinlock_irq)(&chip->reg_lock); 1244 ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff; 1245 ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff; 1246 ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; 1247 return 0; 1248 } 1249 1250 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol, 1251 struct snd_ctl_elem_value *ucontrol) 1252 { 1253 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1254 unsigned int val; 1255 int change; 1256 1257 val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) | 1258 (ucontrol->value.iec958.status[1] << 8); 1259 guard(spinlock_irq)(&chip->reg_lock); 1260 change = chip->spdif_bits != val; 1261 chip->spdif_bits = val; 1262 if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL) 1263 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); 1264 return change; 1265 } 1266 1267 static const struct snd_kcontrol_new snd_ymfpci_spdif_default = 1268 { 1269 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1270 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), 1271 .info = snd_ymfpci_spdif_default_info, 1272 .get = snd_ymfpci_spdif_default_get, 1273 .put = snd_ymfpci_spdif_default_put 1274 }; 1275 1276 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1277 { 1278 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1279 uinfo->count = 1; 1280 return 0; 1281 } 1282 1283 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol, 1284 struct snd_ctl_elem_value *ucontrol) 1285 { 1286 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1287 1288 guard(spinlock_irq)(&chip->reg_lock); 1289 ucontrol->value.iec958.status[0] = 0x3e; 1290 ucontrol->value.iec958.status[1] = 0xff; 1291 return 0; 1292 } 1293 1294 static const struct snd_kcontrol_new snd_ymfpci_spdif_mask = 1295 { 1296 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1297 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1298 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK), 1299 .info = snd_ymfpci_spdif_mask_info, 1300 .get = snd_ymfpci_spdif_mask_get, 1301 }; 1302 1303 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1304 { 1305 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1306 uinfo->count = 1; 1307 return 0; 1308 } 1309 1310 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol, 1311 struct snd_ctl_elem_value *ucontrol) 1312 { 1313 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1314 1315 guard(spinlock_irq)(&chip->reg_lock); 1316 ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff; 1317 ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff; 1318 ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; 1319 return 0; 1320 } 1321 1322 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol, 1323 struct snd_ctl_elem_value *ucontrol) 1324 { 1325 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1326 unsigned int val; 1327 int change; 1328 1329 val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) | 1330 (ucontrol->value.iec958.status[1] << 8); 1331 guard(spinlock_irq)(&chip->reg_lock); 1332 change = chip->spdif_pcm_bits != val; 1333 chip->spdif_pcm_bits = val; 1334 if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2)) 1335 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits); 1336 return change; 1337 } 1338 1339 static const struct snd_kcontrol_new snd_ymfpci_spdif_stream = 1340 { 1341 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1342 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1343 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM), 1344 .info = snd_ymfpci_spdif_stream_info, 1345 .get = snd_ymfpci_spdif_stream_get, 1346 .put = snd_ymfpci_spdif_stream_put 1347 }; 1348 1349 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info) 1350 { 1351 static const char *const texts[3] = {"AC'97", "IEC958", "ZV Port"}; 1352 1353 return snd_ctl_enum_info(info, 1, 3, texts); 1354 } 1355 1356 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) 1357 { 1358 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1359 u16 reg; 1360 1361 guard(spinlock_irq)(&chip->reg_lock); 1362 reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 1363 if (!(reg & 0x100)) 1364 value->value.enumerated.item[0] = 0; 1365 else 1366 value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0); 1367 return 0; 1368 } 1369 1370 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) 1371 { 1372 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1373 u16 reg, old_reg; 1374 1375 guard(spinlock_irq)(&chip->reg_lock); 1376 old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 1377 if (value->value.enumerated.item[0] == 0) 1378 reg = old_reg & ~0x100; 1379 else 1380 reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9); 1381 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg); 1382 return reg != old_reg; 1383 } 1384 1385 static const struct snd_kcontrol_new snd_ymfpci_drec_source = { 1386 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 1387 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1388 .name = "Direct Recording Source", 1389 .info = snd_ymfpci_drec_source_info, 1390 .get = snd_ymfpci_drec_source_get, 1391 .put = snd_ymfpci_drec_source_put 1392 }; 1393 1394 /* 1395 * Mixer controls 1396 */ 1397 1398 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \ 1399 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ 1400 .info = snd_ymfpci_info_single, \ 1401 .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \ 1402 .private_value = ((reg) | ((shift) << 16)) } 1403 1404 #define snd_ymfpci_info_single snd_ctl_boolean_mono_info 1405 1406 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol, 1407 struct snd_ctl_elem_value *ucontrol) 1408 { 1409 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1410 int reg = kcontrol->private_value & 0xffff; 1411 unsigned int shift = (kcontrol->private_value >> 16) & 0xff; 1412 unsigned int mask = 1; 1413 1414 switch (reg) { 1415 case YDSXGR_SPDIFOUTCTRL: break; 1416 case YDSXGR_SPDIFINCTRL: break; 1417 default: return -EINVAL; 1418 } 1419 ucontrol->value.integer.value[0] = 1420 (snd_ymfpci_readl(chip, reg) >> shift) & mask; 1421 return 0; 1422 } 1423 1424 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol, 1425 struct snd_ctl_elem_value *ucontrol) 1426 { 1427 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1428 int reg = kcontrol->private_value & 0xffff; 1429 unsigned int shift = (kcontrol->private_value >> 16) & 0xff; 1430 unsigned int mask = 1; 1431 int change; 1432 unsigned int val, oval; 1433 1434 switch (reg) { 1435 case YDSXGR_SPDIFOUTCTRL: break; 1436 case YDSXGR_SPDIFINCTRL: break; 1437 default: return -EINVAL; 1438 } 1439 val = (ucontrol->value.integer.value[0] & mask); 1440 val <<= shift; 1441 guard(spinlock_irq)(&chip->reg_lock); 1442 oval = snd_ymfpci_readl(chip, reg); 1443 val = (oval & ~(mask << shift)) | val; 1444 change = val != oval; 1445 snd_ymfpci_writel(chip, reg, val); 1446 return change; 1447 } 1448 1449 static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0); 1450 1451 #define YMFPCI_DOUBLE(xname, xindex, reg) \ 1452 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ 1453 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \ 1454 .info = snd_ymfpci_info_double, \ 1455 .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \ 1456 .private_value = reg, \ 1457 .tlv = { .p = db_scale_native } } 1458 1459 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1460 { 1461 unsigned int reg = kcontrol->private_value; 1462 1463 if (reg < 0x80 || reg >= 0xc0) 1464 return -EINVAL; 1465 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 1466 uinfo->count = 2; 1467 uinfo->value.integer.min = 0; 1468 uinfo->value.integer.max = 16383; 1469 return 0; 1470 } 1471 1472 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1473 { 1474 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1475 unsigned int reg = kcontrol->private_value; 1476 unsigned int shift_left = 0, shift_right = 16, mask = 16383; 1477 unsigned int val; 1478 1479 if (reg < 0x80 || reg >= 0xc0) 1480 return -EINVAL; 1481 guard(spinlock_irq)(&chip->reg_lock); 1482 val = snd_ymfpci_readl(chip, reg); 1483 ucontrol->value.integer.value[0] = (val >> shift_left) & mask; 1484 ucontrol->value.integer.value[1] = (val >> shift_right) & mask; 1485 return 0; 1486 } 1487 1488 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1489 { 1490 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1491 unsigned int reg = kcontrol->private_value; 1492 unsigned int shift_left = 0, shift_right = 16, mask = 16383; 1493 int change; 1494 unsigned int val1, val2, oval; 1495 1496 if (reg < 0x80 || reg >= 0xc0) 1497 return -EINVAL; 1498 val1 = ucontrol->value.integer.value[0] & mask; 1499 val2 = ucontrol->value.integer.value[1] & mask; 1500 val1 <<= shift_left; 1501 val2 <<= shift_right; 1502 guard(spinlock_irq)(&chip->reg_lock); 1503 oval = snd_ymfpci_readl(chip, reg); 1504 val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2; 1505 change = val1 != oval; 1506 snd_ymfpci_writel(chip, reg, val1); 1507 return change; 1508 } 1509 1510 static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol, 1511 struct snd_ctl_elem_value *ucontrol) 1512 { 1513 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1514 unsigned int reg = YDSXGR_NATIVEDACOUTVOL; 1515 unsigned int reg2 = YDSXGR_BUF441OUTVOL; 1516 int change; 1517 unsigned int value, oval; 1518 1519 value = ucontrol->value.integer.value[0] & 0x3fff; 1520 value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16; 1521 guard(spinlock_irq)(&chip->reg_lock); 1522 oval = snd_ymfpci_readl(chip, reg); 1523 change = value != oval; 1524 snd_ymfpci_writel(chip, reg, value); 1525 snd_ymfpci_writel(chip, reg2, value); 1526 return change; 1527 } 1528 1529 /* 1530 * 4ch duplication 1531 */ 1532 #define snd_ymfpci_info_dup4ch snd_ctl_boolean_mono_info 1533 1534 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1535 { 1536 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1537 ucontrol->value.integer.value[0] = chip->mode_dup4ch; 1538 return 0; 1539 } 1540 1541 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1542 { 1543 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1544 int change; 1545 change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch); 1546 if (change) 1547 chip->mode_dup4ch = !!ucontrol->value.integer.value[0]; 1548 return change; 1549 } 1550 1551 static const struct snd_kcontrol_new snd_ymfpci_dup4ch = { 1552 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1553 .name = "4ch Duplication", 1554 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 1555 .info = snd_ymfpci_info_dup4ch, 1556 .get = snd_ymfpci_get_dup4ch, 1557 .put = snd_ymfpci_put_dup4ch, 1558 }; 1559 1560 static const struct snd_kcontrol_new snd_ymfpci_controls[] = { 1561 { 1562 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1563 .name = "Wave Playback Volume", 1564 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | 1565 SNDRV_CTL_ELEM_ACCESS_TLV_READ, 1566 .info = snd_ymfpci_info_double, 1567 .get = snd_ymfpci_get_double, 1568 .put = snd_ymfpci_put_nativedacvol, 1569 .private_value = YDSXGR_NATIVEDACOUTVOL, 1570 .tlv = { .p = db_scale_native }, 1571 }, 1572 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL), 1573 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL), 1574 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL), 1575 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL), 1576 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL), 1577 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL), 1578 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL), 1579 YMFPCI_DOUBLE("FM Legacy Playback Volume", 0, YDSXGR_LEGACYOUTVOL), 1580 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL), 1581 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL), 1582 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL), 1583 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL), 1584 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0), 1585 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0), 1586 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4), 1587 }; 1588 1589 1590 /* 1591 * GPIO 1592 */ 1593 1594 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin) 1595 { 1596 u16 reg, mode; 1597 1598 guard(spinlock_irqsave)(&chip->reg_lock); 1599 reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE); 1600 reg &= ~(1 << (pin + 8)); 1601 reg |= (1 << pin); 1602 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg); 1603 /* set the level mode for input line */ 1604 mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG); 1605 mode &= ~(3 << (pin * 2)); 1606 snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode); 1607 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8))); 1608 mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS); 1609 return (mode >> pin) & 1; 1610 } 1611 1612 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable) 1613 { 1614 u16 reg; 1615 1616 guard(spinlock_irqsave)(&chip->reg_lock); 1617 reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE); 1618 reg &= ~(1 << pin); 1619 reg &= ~(1 << (pin + 8)); 1620 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg); 1621 snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin); 1622 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8))); 1623 1624 return 0; 1625 } 1626 1627 #define snd_ymfpci_gpio_sw_info snd_ctl_boolean_mono_info 1628 1629 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1630 { 1631 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1632 int pin = (int)kcontrol->private_value; 1633 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin); 1634 return 0; 1635 } 1636 1637 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1638 { 1639 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1640 int pin = (int)kcontrol->private_value; 1641 1642 if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) { 1643 snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]); 1644 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin); 1645 return 1; 1646 } 1647 return 0; 1648 } 1649 1650 static const struct snd_kcontrol_new snd_ymfpci_rear_shared = { 1651 .name = "Shared Rear/Line-In Switch", 1652 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1653 .info = snd_ymfpci_gpio_sw_info, 1654 .get = snd_ymfpci_gpio_sw_get, 1655 .put = snd_ymfpci_gpio_sw_put, 1656 .private_value = 2, 1657 }; 1658 1659 /* 1660 * PCM voice volume 1661 */ 1662 1663 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol, 1664 struct snd_ctl_elem_info *uinfo) 1665 { 1666 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 1667 uinfo->count = 2; 1668 uinfo->value.integer.min = 0; 1669 uinfo->value.integer.max = 0x8000; 1670 return 0; 1671 } 1672 1673 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol, 1674 struct snd_ctl_elem_value *ucontrol) 1675 { 1676 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1677 unsigned int subs = kcontrol->id.subdevice; 1678 1679 ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left; 1680 ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right; 1681 return 0; 1682 } 1683 1684 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol, 1685 struct snd_ctl_elem_value *ucontrol) 1686 { 1687 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1688 unsigned int subs = kcontrol->id.subdevice; 1689 struct snd_pcm_substream *substream; 1690 1691 if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left || 1692 ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) { 1693 chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0]; 1694 chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1]; 1695 if (chip->pcm_mixer[subs].left > 0x8000) 1696 chip->pcm_mixer[subs].left = 0x8000; 1697 if (chip->pcm_mixer[subs].right > 0x8000) 1698 chip->pcm_mixer[subs].right = 0x8000; 1699 1700 substream = (struct snd_pcm_substream *)kcontrol->private_value; 1701 guard(spinlock_irqsave)(&chip->voice_lock); 1702 if (substream->runtime && substream->runtime->private_data) { 1703 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 1704 if (!ypcm->use_441_slot) 1705 ypcm->update_pcm_vol = 2; 1706 } 1707 return 1; 1708 } 1709 return 0; 1710 } 1711 1712 static const struct snd_kcontrol_new snd_ymfpci_pcm_volume = { 1713 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1714 .name = "PCM Playback Volume", 1715 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | 1716 SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1717 .info = snd_ymfpci_pcm_vol_info, 1718 .get = snd_ymfpci_pcm_vol_get, 1719 .put = snd_ymfpci_pcm_vol_put, 1720 }; 1721 1722 1723 /* 1724 * Mixer routines 1725 */ 1726 1727 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus) 1728 { 1729 struct snd_ymfpci *chip = bus->private_data; 1730 chip->ac97_bus = NULL; 1731 } 1732 1733 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97) 1734 { 1735 struct snd_ymfpci *chip = ac97->private_data; 1736 chip->ac97 = NULL; 1737 } 1738 1739 int snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch) 1740 { 1741 struct snd_ac97_template ac97; 1742 struct snd_kcontrol *kctl; 1743 struct snd_pcm_substream *substream; 1744 unsigned int idx; 1745 int err; 1746 static const struct snd_ac97_bus_ops ops = { 1747 .write = snd_ymfpci_codec_write, 1748 .read = snd_ymfpci_codec_read, 1749 }; 1750 1751 err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus); 1752 if (err < 0) 1753 return err; 1754 chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus; 1755 chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */ 1756 1757 memset(&ac97, 0, sizeof(ac97)); 1758 ac97.private_data = chip; 1759 ac97.private_free = snd_ymfpci_mixer_free_ac97; 1760 err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97); 1761 if (err < 0) 1762 return err; 1763 1764 /* to be sure */ 1765 snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS, 1766 AC97_EA_VRA|AC97_EA_VRM, 0); 1767 1768 for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) { 1769 err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip)); 1770 if (err < 0) 1771 return err; 1772 } 1773 if (chip->ac97->ext_id & AC97_EI_SDAC) { 1774 kctl = snd_ctl_new1(&snd_ymfpci_dup4ch, chip); 1775 err = snd_ctl_add(chip->card, kctl); 1776 if (err < 0) 1777 return err; 1778 } 1779 1780 /* add S/PDIF control */ 1781 if (snd_BUG_ON(!chip->pcm_spdif)) 1782 return -ENXIO; 1783 kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip); 1784 kctl->id.device = chip->pcm_spdif->device; 1785 err = snd_ctl_add(chip->card, kctl); 1786 if (err < 0) 1787 return err; 1788 kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip); 1789 kctl->id.device = chip->pcm_spdif->device; 1790 err = snd_ctl_add(chip->card, kctl); 1791 if (err < 0) 1792 return err; 1793 kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip); 1794 kctl->id.device = chip->pcm_spdif->device; 1795 err = snd_ctl_add(chip->card, kctl); 1796 if (err < 0) 1797 return err; 1798 chip->spdif_pcm_ctl = kctl; 1799 1800 /* direct recording source */ 1801 if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754) { 1802 kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip); 1803 err = snd_ctl_add(chip->card, kctl); 1804 if (err < 0) 1805 return err; 1806 } 1807 1808 /* 1809 * shared rear/line-in 1810 */ 1811 if (rear_switch) { 1812 err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip)); 1813 if (err < 0) 1814 return err; 1815 } 1816 1817 /* per-voice volume */ 1818 substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream; 1819 for (idx = 0; idx < 32; ++idx) { 1820 kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip); 1821 if (!kctl) 1822 return -ENOMEM; 1823 kctl->id.device = chip->pcm->device; 1824 kctl->id.subdevice = idx; 1825 kctl->private_value = (unsigned long)substream; 1826 err = snd_ctl_add(chip->card, kctl); 1827 if (err < 0) 1828 return err; 1829 chip->pcm_mixer[idx].left = 0x8000; 1830 chip->pcm_mixer[idx].right = 0x8000; 1831 chip->pcm_mixer[idx].ctl = kctl; 1832 substream = substream->next; 1833 } 1834 1835 return 0; 1836 } 1837 1838 1839 /* 1840 * timer 1841 */ 1842 1843 static int snd_ymfpci_timer_start(struct snd_timer *timer) 1844 { 1845 struct snd_ymfpci *chip; 1846 unsigned int count; 1847 1848 chip = snd_timer_chip(timer); 1849 guard(spinlock_irqsave)(&chip->reg_lock); 1850 if (timer->sticks > 1) { 1851 chip->timer_ticks = timer->sticks; 1852 count = timer->sticks - 1; 1853 } else { 1854 /* 1855 * Divisor 1 is not allowed; fake it by using divisor 2 and 1856 * counting two ticks for each interrupt. 1857 */ 1858 chip->timer_ticks = 2; 1859 count = 2 - 1; 1860 } 1861 snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count); 1862 snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03); 1863 return 0; 1864 } 1865 1866 static int snd_ymfpci_timer_stop(struct snd_timer *timer) 1867 { 1868 struct snd_ymfpci *chip; 1869 1870 chip = snd_timer_chip(timer); 1871 guard(spinlock_irqsave)(&chip->reg_lock); 1872 snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00); 1873 return 0; 1874 } 1875 1876 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer, 1877 unsigned long *num, unsigned long *den) 1878 { 1879 *num = 1; 1880 *den = 96000; 1881 return 0; 1882 } 1883 1884 static const struct snd_timer_hardware snd_ymfpci_timer_hw = { 1885 .flags = SNDRV_TIMER_HW_AUTO, 1886 .resolution = 10417, /* 1 / 96 kHz = 10.41666...us */ 1887 .ticks = 0x10000, 1888 .start = snd_ymfpci_timer_start, 1889 .stop = snd_ymfpci_timer_stop, 1890 .precise_resolution = snd_ymfpci_timer_precise_resolution, 1891 }; 1892 1893 int snd_ymfpci_timer(struct snd_ymfpci *chip, int device) 1894 { 1895 struct snd_timer *timer = NULL; 1896 struct snd_timer_id tid; 1897 int err; 1898 1899 tid.dev_class = SNDRV_TIMER_CLASS_CARD; 1900 tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE; 1901 tid.card = chip->card->number; 1902 tid.device = device; 1903 tid.subdevice = 0; 1904 err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer); 1905 if (err >= 0) { 1906 strscpy(timer->name, "YMFPCI timer"); 1907 timer->private_data = chip; 1908 timer->hw = snd_ymfpci_timer_hw; 1909 } 1910 chip->timer = timer; 1911 return err; 1912 } 1913 1914 1915 /* 1916 * proc interface 1917 */ 1918 1919 static void snd_ymfpci_proc_read(struct snd_info_entry *entry, 1920 struct snd_info_buffer *buffer) 1921 { 1922 struct snd_ymfpci *chip = entry->private_data; 1923 int i; 1924 1925 snd_iprintf(buffer, "YMFPCI\n\n"); 1926 for (i = 0; i <= YDSXGR_WORKBASE; i += 4) 1927 snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i)); 1928 } 1929 1930 static int snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip) 1931 { 1932 return snd_card_ro_proc_new(card, "ymfpci", chip, snd_ymfpci_proc_read); 1933 } 1934 1935 /* 1936 * initialization routines 1937 */ 1938 1939 static void snd_ymfpci_aclink_reset(struct pci_dev * pci) 1940 { 1941 u8 cmd; 1942 1943 pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd); 1944 #if 0 // force to reset 1945 if (cmd & 0x03) { 1946 #endif 1947 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc); 1948 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03); 1949 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc); 1950 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0); 1951 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0); 1952 #if 0 1953 } 1954 #endif 1955 } 1956 1957 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip) 1958 { 1959 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001); 1960 } 1961 1962 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip) 1963 { 1964 u32 val; 1965 int timeout = 1000; 1966 1967 val = snd_ymfpci_readl(chip, YDSXGR_CONFIG); 1968 if (val) 1969 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000); 1970 while (timeout-- > 0) { 1971 val = snd_ymfpci_readl(chip, YDSXGR_STATUS); 1972 if ((val & 0x00000002) == 0) 1973 break; 1974 } 1975 } 1976 1977 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip) 1978 { 1979 int err, is_1e; 1980 const char *name; 1981 1982 err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw", 1983 &chip->pci->dev); 1984 if (err >= 0) { 1985 if (chip->dsp_microcode->size != YDSXG_DSPLENGTH) { 1986 dev_err(chip->card->dev, 1987 "DSP microcode has wrong size\n"); 1988 err = -EINVAL; 1989 } 1990 } 1991 if (err < 0) 1992 return err; 1993 is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F || 1994 chip->device_id == PCI_DEVICE_ID_YAMAHA_740C || 1995 chip->device_id == PCI_DEVICE_ID_YAMAHA_744 || 1996 chip->device_id == PCI_DEVICE_ID_YAMAHA_754; 1997 name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw"; 1998 err = request_firmware(&chip->controller_microcode, name, 1999 &chip->pci->dev); 2000 if (err >= 0) { 2001 if (chip->controller_microcode->size != YDSXG_CTRLLENGTH) { 2002 dev_err(chip->card->dev, 2003 "controller microcode has wrong size\n"); 2004 err = -EINVAL; 2005 } 2006 } 2007 if (err < 0) 2008 return err; 2009 return 0; 2010 } 2011 2012 MODULE_FIRMWARE("yamaha/ds1_dsp.fw"); 2013 MODULE_FIRMWARE("yamaha/ds1_ctrl.fw"); 2014 MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw"); 2015 2016 static void snd_ymfpci_download_image(struct snd_ymfpci *chip) 2017 { 2018 int i; 2019 u16 ctrl; 2020 const __le32 *inst; 2021 2022 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000); 2023 snd_ymfpci_disable_dsp(chip); 2024 snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000); 2025 snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000); 2026 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000); 2027 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000); 2028 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000); 2029 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000); 2030 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000); 2031 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 2032 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007); 2033 2034 /* setup DSP instruction code */ 2035 inst = (const __le32 *)chip->dsp_microcode->data; 2036 for (i = 0; i < YDSXG_DSPLENGTH / 4; i++) 2037 snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2), 2038 le32_to_cpu(inst[i])); 2039 2040 /* setup control instruction code */ 2041 inst = (const __le32 *)chip->controller_microcode->data; 2042 for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++) 2043 snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2), 2044 le32_to_cpu(inst[i])); 2045 2046 snd_ymfpci_enable_dsp(chip); 2047 } 2048 2049 static int snd_ymfpci_memalloc(struct snd_ymfpci *chip) 2050 { 2051 long size, playback_ctrl_size; 2052 int voice, bank, reg; 2053 u8 *ptr; 2054 dma_addr_t ptr_addr; 2055 2056 playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES; 2057 chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2; 2058 chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2; 2059 chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2; 2060 chip->work_size = YDSXG_DEFAULT_WORK_SIZE; 2061 2062 size = ALIGN(playback_ctrl_size, 0x100) + 2063 ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) + 2064 ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) + 2065 ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) + 2066 chip->work_size; 2067 /* work_ptr must be aligned to 256 bytes, but it's already 2068 covered with the kernel page allocation mechanism */ 2069 chip->work_ptr = snd_devm_alloc_pages(&chip->pci->dev, 2070 SNDRV_DMA_TYPE_DEV, size); 2071 if (!chip->work_ptr) 2072 return -ENOMEM; 2073 ptr = chip->work_ptr->area; 2074 ptr_addr = chip->work_ptr->addr; 2075 memset(ptr, 0, size); /* for sure */ 2076 2077 chip->bank_base_playback = ptr; 2078 chip->bank_base_playback_addr = ptr_addr; 2079 chip->ctrl_playback = (__le32 *)ptr; 2080 chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES); 2081 ptr += ALIGN(playback_ctrl_size, 0x100); 2082 ptr_addr += ALIGN(playback_ctrl_size, 0x100); 2083 for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) { 2084 chip->voices[voice].number = voice; 2085 chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr; 2086 chip->voices[voice].bank_addr = ptr_addr; 2087 for (bank = 0; bank < 2; bank++) { 2088 chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr; 2089 ptr += chip->bank_size_playback; 2090 ptr_addr += chip->bank_size_playback; 2091 } 2092 } 2093 ptr = (char *)ALIGN((unsigned long)ptr, 0x100); 2094 ptr_addr = ALIGN(ptr_addr, 0x100); 2095 chip->bank_base_capture = ptr; 2096 chip->bank_base_capture_addr = ptr_addr; 2097 for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++) 2098 for (bank = 0; bank < 2; bank++) { 2099 chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr; 2100 ptr += chip->bank_size_capture; 2101 ptr_addr += chip->bank_size_capture; 2102 } 2103 ptr = (char *)ALIGN((unsigned long)ptr, 0x100); 2104 ptr_addr = ALIGN(ptr_addr, 0x100); 2105 chip->bank_base_effect = ptr; 2106 chip->bank_base_effect_addr = ptr_addr; 2107 for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++) 2108 for (bank = 0; bank < 2; bank++) { 2109 chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr; 2110 ptr += chip->bank_size_effect; 2111 ptr_addr += chip->bank_size_effect; 2112 } 2113 ptr = (char *)ALIGN((unsigned long)ptr, 0x100); 2114 ptr_addr = ALIGN(ptr_addr, 0x100); 2115 chip->work_base = ptr; 2116 chip->work_base_addr = ptr_addr; 2117 2118 snd_BUG_ON(ptr + PAGE_ALIGN(chip->work_size) != 2119 chip->work_ptr->area + chip->work_ptr->bytes); 2120 2121 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr); 2122 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr); 2123 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr); 2124 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr); 2125 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2); 2126 2127 /* S/PDIF output initialization */ 2128 chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff; 2129 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0); 2130 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); 2131 2132 /* S/PDIF input initialization */ 2133 snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0); 2134 2135 /* digital mixer setup */ 2136 for (reg = 0x80; reg < 0xc0; reg += 4) 2137 snd_ymfpci_writel(chip, reg, 0); 2138 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff); 2139 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0x3fff3fff); 2140 snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff); 2141 snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff); 2142 snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff); 2143 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff); 2144 snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff); 2145 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff); 2146 2147 return 0; 2148 } 2149 2150 static void snd_ymfpci_free(struct snd_card *card) 2151 { 2152 struct snd_ymfpci *chip = card->private_data; 2153 u16 ctrl; 2154 2155 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0); 2156 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0); 2157 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0); 2158 snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0); 2159 snd_ymfpci_disable_dsp(chip); 2160 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0); 2161 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0); 2162 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0); 2163 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0); 2164 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0); 2165 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 2166 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007); 2167 2168 snd_ymfpci_ac3_done(chip); 2169 2170 snd_ymfpci_free_gameport(chip); 2171 2172 pci_write_config_word(chip->pci, PCIR_DSXG_LEGACY, chip->old_legacy_ctrl); 2173 2174 release_firmware(chip->dsp_microcode); 2175 release_firmware(chip->controller_microcode); 2176 } 2177 2178 static int snd_ymfpci_suspend(struct device *dev) 2179 { 2180 struct snd_card *card = dev_get_drvdata(dev); 2181 struct snd_ymfpci *chip = card->private_data; 2182 unsigned int i, legacy_reg_count = DSXG_PCI_NUM_SAVED_LEGACY_REGS; 2183 2184 if (chip->pci->device >= 0x0010) /* YMF 744/754 */ 2185 legacy_reg_count = DSXG_PCI_NUM_SAVED_REGS; 2186 2187 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 2188 snd_ac97_suspend(chip->ac97); 2189 2190 for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++) 2191 chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]); 2192 2193 chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE); 2194 2195 for (i = 0; i < legacy_reg_count; i++) 2196 pci_read_config_word(chip->pci, pci_saved_regs_index[i], 2197 chip->saved_dsxg_pci_regs + i); 2198 2199 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0); 2200 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0); 2201 snd_ymfpci_disable_dsp(chip); 2202 return 0; 2203 } 2204 2205 static int snd_ymfpci_resume(struct device *dev) 2206 { 2207 struct pci_dev *pci = to_pci_dev(dev); 2208 struct snd_card *card = dev_get_drvdata(dev); 2209 struct snd_ymfpci *chip = card->private_data; 2210 unsigned int i, legacy_reg_count = DSXG_PCI_NUM_SAVED_LEGACY_REGS; 2211 2212 if (chip->pci->device >= 0x0010) /* YMF 744/754 */ 2213 legacy_reg_count = DSXG_PCI_NUM_SAVED_REGS; 2214 2215 snd_ymfpci_aclink_reset(pci); 2216 snd_ymfpci_codec_ready(chip, 0); 2217 snd_ymfpci_download_image(chip); 2218 udelay(100); 2219 2220 for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++) 2221 snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]); 2222 2223 snd_ac97_resume(chip->ac97); 2224 2225 for (i = 0; i < legacy_reg_count; i++) 2226 pci_write_config_word(chip->pci, pci_saved_regs_index[i], 2227 chip->saved_dsxg_pci_regs[i]); 2228 2229 /* start hw again */ 2230 if (chip->start_count > 0) { 2231 guard(spinlock_irq)(&chip->reg_lock); 2232 snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode); 2233 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT); 2234 } 2235 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 2236 return 0; 2237 } 2238 2239 DEFINE_SIMPLE_DEV_PM_OPS(snd_ymfpci_pm, snd_ymfpci_suspend, snd_ymfpci_resume); 2240 2241 int snd_ymfpci_create(struct snd_card *card, 2242 struct pci_dev *pci, 2243 u16 old_legacy_ctrl) 2244 { 2245 struct snd_ymfpci *chip = card->private_data; 2246 int err; 2247 2248 /* enable PCI device */ 2249 err = pcim_enable_device(pci); 2250 if (err < 0) 2251 return err; 2252 2253 chip->old_legacy_ctrl = old_legacy_ctrl; 2254 spin_lock_init(&chip->reg_lock); 2255 spin_lock_init(&chip->voice_lock); 2256 init_waitqueue_head(&chip->interrupt_sleep); 2257 atomic_set(&chip->interrupt_sleep_count, 0); 2258 chip->card = card; 2259 chip->pci = pci; 2260 chip->irq = -1; 2261 chip->device_id = pci->device; 2262 chip->rev = pci->revision; 2263 2264 err = pcim_request_all_regions(pci, "YMFPCI"); 2265 if (err < 0) 2266 return err; 2267 2268 chip->reg_area_phys = pci_resource_start(pci, 0); 2269 chip->reg_area_virt = devm_ioremap(&pci->dev, chip->reg_area_phys, 0x8000); 2270 if (!chip->reg_area_virt) { 2271 dev_err(chip->card->dev, 2272 "unable to grab memory region 0x%lx-0x%lx\n", 2273 chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1); 2274 return -EBUSY; 2275 } 2276 pci_set_master(pci); 2277 chip->src441_used = -1; 2278 2279 if (devm_request_irq(&pci->dev, pci->irq, snd_ymfpci_interrupt, IRQF_SHARED, 2280 KBUILD_MODNAME, chip)) { 2281 dev_err(chip->card->dev, "unable to grab IRQ %d\n", pci->irq); 2282 return -EBUSY; 2283 } 2284 chip->irq = pci->irq; 2285 card->sync_irq = chip->irq; 2286 card->private_free = snd_ymfpci_free; 2287 2288 snd_ymfpci_aclink_reset(pci); 2289 if (snd_ymfpci_codec_ready(chip, 0) < 0) 2290 return -EIO; 2291 2292 err = snd_ymfpci_request_firmware(chip); 2293 if (err < 0) { 2294 dev_err(chip->card->dev, "firmware request failed: %d\n", err); 2295 return err; 2296 } 2297 snd_ymfpci_download_image(chip); 2298 2299 udelay(100); /* seems we need a delay after downloading image.. */ 2300 2301 if (snd_ymfpci_memalloc(chip) < 0) 2302 return -EIO; 2303 2304 err = snd_ymfpci_ac3_init(chip); 2305 if (err < 0) 2306 return err; 2307 2308 snd_ymfpci_proc_init(card, chip); 2309 2310 return 0; 2311 } 2312