xref: /linux/arch/x86/kvm/svm/svm.c (revision 63eb28bb1402891b1ad2be02a530f29a9dd7f1cd)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "smm.h"
10 #include "cpuid.h"
11 #include "pmu.h"
12 
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/kernel.h>
16 #include <linux/vmalloc.h>
17 #include <linux/highmem.h>
18 #include <linux/amd-iommu.h>
19 #include <linux/sched.h>
20 #include <linux/trace_events.h>
21 #include <linux/slab.h>
22 #include <linux/hashtable.h>
23 #include <linux/objtool.h>
24 #include <linux/psp-sev.h>
25 #include <linux/file.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/rwsem.h>
29 #include <linux/cc_platform.h>
30 #include <linux/smp.h>
31 #include <linux/string_choices.h>
32 #include <linux/mutex.h>
33 
34 #include <asm/apic.h>
35 #include <asm/msr.h>
36 #include <asm/perf_event.h>
37 #include <asm/tlbflush.h>
38 #include <asm/desc.h>
39 #include <asm/debugreg.h>
40 #include <asm/kvm_para.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/spec-ctrl.h>
43 #include <asm/cpu_device_id.h>
44 #include <asm/traps.h>
45 #include <asm/reboot.h>
46 #include <asm/fpu/api.h>
47 
48 #include <trace/events/ipi.h>
49 
50 #include "trace.h"
51 
52 #include "svm.h"
53 #include "svm_ops.h"
54 
55 #include "kvm_onhyperv.h"
56 #include "svm_onhyperv.h"
57 
58 MODULE_AUTHOR("Qumranet");
59 MODULE_DESCRIPTION("KVM support for SVM (AMD-V) extensions");
60 MODULE_LICENSE("GPL");
61 
62 #ifdef MODULE
63 static const struct x86_cpu_id svm_cpu_id[] = {
64 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
65 	{}
66 };
67 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
68 #endif
69 
70 #define SEG_TYPE_LDT 2
71 #define SEG_TYPE_BUSY_TSS16 3
72 
73 static bool erratum_383_found __read_mostly;
74 
75 /*
76  * Set osvw_len to higher value when updated Revision Guides
77  * are published and we know what the new status bits are
78  */
79 static uint64_t osvw_len = 4, osvw_status;
80 
81 static DEFINE_PER_CPU(u64, current_tsc_ratio);
82 
83 /*
84  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
85  * pause_filter_count: On processors that support Pause filtering(indicated
86  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
87  *	count value. On VMRUN this value is loaded into an internal counter.
88  *	Each time a pause instruction is executed, this counter is decremented
89  *	until it reaches zero at which time a #VMEXIT is generated if pause
90  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
91  *	Intercept Filtering for more details.
92  *	This also indicate if ple logic enabled.
93  *
94  * pause_filter_thresh: In addition, some processor families support advanced
95  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
96  *	the amount of time a guest is allowed to execute in a pause loop.
97  *	In this mode, a 16-bit pause filter threshold field is added in the
98  *	VMCB. The threshold value is a cycle count that is used to reset the
99  *	pause counter. As with simple pause filtering, VMRUN loads the pause
100  *	count value from VMCB into an internal counter. Then, on each pause
101  *	instruction the hardware checks the elapsed number of cycles since
102  *	the most recent pause instruction against the pause filter threshold.
103  *	If the elapsed cycle count is greater than the pause filter threshold,
104  *	then the internal pause count is reloaded from the VMCB and execution
105  *	continues. If the elapsed cycle count is less than the pause filter
106  *	threshold, then the internal pause count is decremented. If the count
107  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
108  *	triggered. If advanced pause filtering is supported and pause filter
109  *	threshold field is set to zero, the filter will operate in the simpler,
110  *	count only mode.
111  */
112 
113 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
114 module_param(pause_filter_thresh, ushort, 0444);
115 
116 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
117 module_param(pause_filter_count, ushort, 0444);
118 
119 /* Default doubles per-vcpu window every exit. */
120 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
121 module_param(pause_filter_count_grow, ushort, 0444);
122 
123 /* Default resets per-vcpu window every exit to pause_filter_count. */
124 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
125 module_param(pause_filter_count_shrink, ushort, 0444);
126 
127 /* Default is to compute the maximum so we can never overflow. */
128 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
129 module_param(pause_filter_count_max, ushort, 0444);
130 
131 /*
132  * Use nested page tables by default.  Note, NPT may get forced off by
133  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
134  */
135 bool npt_enabled = true;
136 module_param_named(npt, npt_enabled, bool, 0444);
137 
138 /* allow nested virtualization in KVM/SVM */
139 static int nested = true;
140 module_param(nested, int, 0444);
141 
142 /* enable/disable Next RIP Save */
143 int nrips = true;
144 module_param(nrips, int, 0444);
145 
146 /* enable/disable Virtual VMLOAD VMSAVE */
147 static int vls = true;
148 module_param(vls, int, 0444);
149 
150 /* enable/disable Virtual GIF */
151 int vgif = true;
152 module_param(vgif, int, 0444);
153 
154 /* enable/disable LBR virtualization */
155 int lbrv = true;
156 module_param(lbrv, int, 0444);
157 
158 static int tsc_scaling = true;
159 module_param(tsc_scaling, int, 0444);
160 
161 /*
162  * enable / disable AVIC.  Because the defaults differ for APICv
163  * support between VMX and SVM we cannot use module_param_named.
164  */
165 static bool avic;
166 module_param(avic, bool, 0444);
167 module_param(enable_ipiv, bool, 0444);
168 
169 module_param(enable_device_posted_irqs, bool, 0444);
170 
171 bool __read_mostly dump_invalid_vmcb;
172 module_param(dump_invalid_vmcb, bool, 0644);
173 
174 
175 bool intercept_smi = true;
176 module_param(intercept_smi, bool, 0444);
177 
178 bool vnmi = true;
179 module_param(vnmi, bool, 0444);
180 
181 static bool svm_gp_erratum_intercept = true;
182 
183 static u8 rsm_ins_bytes[] = "\x0f\xaa";
184 
185 static unsigned long iopm_base;
186 
187 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
188 
189 static DEFINE_MUTEX(vmcb_dump_mutex);
190 
191 /*
192  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
193  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
194  *
195  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
196  * defer the restoration of TSC_AUX until the CPU returns to userspace.
197  */
198 static int tsc_aux_uret_slot __read_mostly = -1;
199 
get_npt_level(void)200 static int get_npt_level(void)
201 {
202 #ifdef CONFIG_X86_64
203 	return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
204 #else
205 	return PT32E_ROOT_LEVEL;
206 #endif
207 }
208 
svm_set_efer(struct kvm_vcpu * vcpu,u64 efer)209 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
210 {
211 	struct vcpu_svm *svm = to_svm(vcpu);
212 	u64 old_efer = vcpu->arch.efer;
213 	vcpu->arch.efer = efer;
214 
215 	if (!npt_enabled) {
216 		/* Shadow paging assumes NX to be available.  */
217 		efer |= EFER_NX;
218 
219 		if (!(efer & EFER_LMA))
220 			efer &= ~EFER_LME;
221 	}
222 
223 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
224 		if (!(efer & EFER_SVME)) {
225 			svm_leave_nested(vcpu);
226 			svm_set_gif(svm, true);
227 			/* #GP intercept is still needed for vmware backdoor */
228 			if (!enable_vmware_backdoor)
229 				clr_exception_intercept(svm, GP_VECTOR);
230 
231 			/*
232 			 * Free the nested guest state, unless we are in SMM.
233 			 * In this case we will return to the nested guest
234 			 * as soon as we leave SMM.
235 			 */
236 			if (!is_smm(vcpu))
237 				svm_free_nested(svm);
238 
239 		} else {
240 			int ret = svm_allocate_nested(svm);
241 
242 			if (ret) {
243 				vcpu->arch.efer = old_efer;
244 				return ret;
245 			}
246 
247 			/*
248 			 * Never intercept #GP for SEV guests, KVM can't
249 			 * decrypt guest memory to workaround the erratum.
250 			 */
251 			if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
252 				set_exception_intercept(svm, GP_VECTOR);
253 		}
254 	}
255 
256 	svm->vmcb->save.efer = efer | EFER_SVME;
257 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
258 	return 0;
259 }
260 
svm_get_interrupt_shadow(struct kvm_vcpu * vcpu)261 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
262 {
263 	struct vcpu_svm *svm = to_svm(vcpu);
264 	u32 ret = 0;
265 
266 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
267 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
268 	return ret;
269 }
270 
svm_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)271 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
272 {
273 	struct vcpu_svm *svm = to_svm(vcpu);
274 
275 	if (mask == 0)
276 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
277 	else
278 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
279 
280 }
281 
__svm_skip_emulated_instruction(struct kvm_vcpu * vcpu,bool commit_side_effects)282 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
283 					   bool commit_side_effects)
284 {
285 	struct vcpu_svm *svm = to_svm(vcpu);
286 	unsigned long old_rflags;
287 
288 	/*
289 	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
290 	 * the type of exit and the #VC handler in the guest.
291 	 */
292 	if (sev_es_guest(vcpu->kvm))
293 		goto done;
294 
295 	if (nrips && svm->vmcb->control.next_rip != 0) {
296 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
297 		svm->next_rip = svm->vmcb->control.next_rip;
298 	}
299 
300 	if (!svm->next_rip) {
301 		if (unlikely(!commit_side_effects))
302 			old_rflags = svm->vmcb->save.rflags;
303 
304 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
305 			return 0;
306 
307 		if (unlikely(!commit_side_effects))
308 			svm->vmcb->save.rflags = old_rflags;
309 	} else {
310 		kvm_rip_write(vcpu, svm->next_rip);
311 	}
312 
313 done:
314 	if (likely(commit_side_effects))
315 		svm_set_interrupt_shadow(vcpu, 0);
316 
317 	return 1;
318 }
319 
svm_skip_emulated_instruction(struct kvm_vcpu * vcpu)320 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
321 {
322 	return __svm_skip_emulated_instruction(vcpu, true);
323 }
324 
svm_update_soft_interrupt_rip(struct kvm_vcpu * vcpu)325 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
326 {
327 	unsigned long rip, old_rip = kvm_rip_read(vcpu);
328 	struct vcpu_svm *svm = to_svm(vcpu);
329 
330 	/*
331 	 * Due to architectural shortcomings, the CPU doesn't always provide
332 	 * NextRIP, e.g. if KVM intercepted an exception that occurred while
333 	 * the CPU was vectoring an INTO/INT3 in the guest.  Temporarily skip
334 	 * the instruction even if NextRIP is supported to acquire the next
335 	 * RIP so that it can be shoved into the NextRIP field, otherwise
336 	 * hardware will fail to advance guest RIP during event injection.
337 	 * Drop the exception/interrupt if emulation fails and effectively
338 	 * retry the instruction, it's the least awful option.  If NRIPS is
339 	 * in use, the skip must not commit any side effects such as clearing
340 	 * the interrupt shadow or RFLAGS.RF.
341 	 */
342 	if (!__svm_skip_emulated_instruction(vcpu, !nrips))
343 		return -EIO;
344 
345 	rip = kvm_rip_read(vcpu);
346 
347 	/*
348 	 * Save the injection information, even when using next_rip, as the
349 	 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
350 	 * doesn't complete due to a VM-Exit occurring while the CPU is
351 	 * vectoring the event.   Decoding the instruction isn't guaranteed to
352 	 * work as there may be no backing instruction, e.g. if the event is
353 	 * being injected by L1 for L2, or if the guest is patching INT3 into
354 	 * a different instruction.
355 	 */
356 	svm->soft_int_injected = true;
357 	svm->soft_int_csbase = svm->vmcb->save.cs.base;
358 	svm->soft_int_old_rip = old_rip;
359 	svm->soft_int_next_rip = rip;
360 
361 	if (nrips)
362 		kvm_rip_write(vcpu, old_rip);
363 
364 	if (static_cpu_has(X86_FEATURE_NRIPS))
365 		svm->vmcb->control.next_rip = rip;
366 
367 	return 0;
368 }
369 
svm_inject_exception(struct kvm_vcpu * vcpu)370 static void svm_inject_exception(struct kvm_vcpu *vcpu)
371 {
372 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
373 	struct vcpu_svm *svm = to_svm(vcpu);
374 
375 	kvm_deliver_exception_payload(vcpu, ex);
376 
377 	if (kvm_exception_is_soft(ex->vector) &&
378 	    svm_update_soft_interrupt_rip(vcpu))
379 		return;
380 
381 	svm->vmcb->control.event_inj = ex->vector
382 		| SVM_EVTINJ_VALID
383 		| (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
384 		| SVM_EVTINJ_TYPE_EXEPT;
385 	svm->vmcb->control.event_inj_err = ex->error_code;
386 }
387 
svm_init_erratum_383(void)388 static void svm_init_erratum_383(void)
389 {
390 	u64 val;
391 
392 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
393 		return;
394 
395 	/* Use _safe variants to not break nested virtualization */
396 	if (native_read_msr_safe(MSR_AMD64_DC_CFG, &val))
397 		return;
398 
399 	val |= (1ULL << 47);
400 
401 	native_write_msr_safe(MSR_AMD64_DC_CFG, val);
402 
403 	erratum_383_found = true;
404 }
405 
svm_init_osvw(struct kvm_vcpu * vcpu)406 static void svm_init_osvw(struct kvm_vcpu *vcpu)
407 {
408 	/*
409 	 * Guests should see errata 400 and 415 as fixed (assuming that
410 	 * HLT and IO instructions are intercepted).
411 	 */
412 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
413 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
414 
415 	/*
416 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
417 	 * all osvw.status bits inside that length, including bit 0 (which is
418 	 * reserved for erratum 298), are valid. However, if host processor's
419 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
420 	 * be conservative here and therefore we tell the guest that erratum 298
421 	 * is present (because we really don't know).
422 	 */
423 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
424 		vcpu->arch.osvw.status |= 1;
425 }
426 
__kvm_is_svm_supported(void)427 static bool __kvm_is_svm_supported(void)
428 {
429 	int cpu = smp_processor_id();
430 	struct cpuinfo_x86 *c = &cpu_data(cpu);
431 
432 	if (c->x86_vendor != X86_VENDOR_AMD &&
433 	    c->x86_vendor != X86_VENDOR_HYGON) {
434 		pr_err("CPU %d isn't AMD or Hygon\n", cpu);
435 		return false;
436 	}
437 
438 	if (!cpu_has(c, X86_FEATURE_SVM)) {
439 		pr_err("SVM not supported by CPU %d\n", cpu);
440 		return false;
441 	}
442 
443 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
444 		pr_info("KVM is unsupported when running as an SEV guest\n");
445 		return false;
446 	}
447 
448 	return true;
449 }
450 
kvm_is_svm_supported(void)451 static bool kvm_is_svm_supported(void)
452 {
453 	bool supported;
454 
455 	migrate_disable();
456 	supported = __kvm_is_svm_supported();
457 	migrate_enable();
458 
459 	return supported;
460 }
461 
svm_check_processor_compat(void)462 static int svm_check_processor_compat(void)
463 {
464 	if (!__kvm_is_svm_supported())
465 		return -EIO;
466 
467 	return 0;
468 }
469 
__svm_write_tsc_multiplier(u64 multiplier)470 static void __svm_write_tsc_multiplier(u64 multiplier)
471 {
472 	if (multiplier == __this_cpu_read(current_tsc_ratio))
473 		return;
474 
475 	wrmsrq(MSR_AMD64_TSC_RATIO, multiplier);
476 	__this_cpu_write(current_tsc_ratio, multiplier);
477 }
478 
sev_es_host_save_area(struct svm_cpu_data * sd)479 static __always_inline struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd)
480 {
481 	return &sd->save_area->host_sev_es_save;
482 }
483 
kvm_cpu_svm_disable(void)484 static inline void kvm_cpu_svm_disable(void)
485 {
486 	uint64_t efer;
487 
488 	wrmsrq(MSR_VM_HSAVE_PA, 0);
489 	rdmsrq(MSR_EFER, efer);
490 	if (efer & EFER_SVME) {
491 		/*
492 		 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
493 		 * NMI aren't blocked.
494 		 */
495 		stgi();
496 		wrmsrq(MSR_EFER, efer & ~EFER_SVME);
497 	}
498 }
499 
svm_emergency_disable_virtualization_cpu(void)500 static void svm_emergency_disable_virtualization_cpu(void)
501 {
502 	kvm_rebooting = true;
503 
504 	kvm_cpu_svm_disable();
505 }
506 
svm_disable_virtualization_cpu(void)507 static void svm_disable_virtualization_cpu(void)
508 {
509 	/* Make sure we clean up behind us */
510 	if (tsc_scaling)
511 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
512 
513 	kvm_cpu_svm_disable();
514 
515 	amd_pmu_disable_virt();
516 }
517 
svm_enable_virtualization_cpu(void)518 static int svm_enable_virtualization_cpu(void)
519 {
520 
521 	struct svm_cpu_data *sd;
522 	uint64_t efer;
523 	int me = raw_smp_processor_id();
524 
525 	rdmsrq(MSR_EFER, efer);
526 	if (efer & EFER_SVME)
527 		return -EBUSY;
528 
529 	sd = per_cpu_ptr(&svm_data, me);
530 	sd->asid_generation = 1;
531 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
532 	sd->next_asid = sd->max_asid + 1;
533 	sd->min_asid = max_sev_asid + 1;
534 
535 	wrmsrq(MSR_EFER, efer | EFER_SVME);
536 
537 	wrmsrq(MSR_VM_HSAVE_PA, sd->save_area_pa);
538 
539 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
540 		/*
541 		 * Set the default value, even if we don't use TSC scaling
542 		 * to avoid having stale value in the msr
543 		 */
544 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
545 	}
546 
547 
548 	/*
549 	 * Get OSVW bits.
550 	 *
551 	 * Note that it is possible to have a system with mixed processor
552 	 * revisions and therefore different OSVW bits. If bits are not the same
553 	 * on different processors then choose the worst case (i.e. if erratum
554 	 * is present on one processor and not on another then assume that the
555 	 * erratum is present everywhere).
556 	 */
557 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
558 		u64 len, status = 0;
559 		int err;
560 
561 		err = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &len);
562 		if (!err)
563 			err = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, &status);
564 
565 		if (err)
566 			osvw_status = osvw_len = 0;
567 		else {
568 			if (len < osvw_len)
569 				osvw_len = len;
570 			osvw_status |= status;
571 			osvw_status &= (1ULL << osvw_len) - 1;
572 		}
573 	} else
574 		osvw_status = osvw_len = 0;
575 
576 	svm_init_erratum_383();
577 
578 	amd_pmu_enable_virt();
579 
580 	/*
581 	 * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type
582 	 * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests.
583 	 * Since Linux does not change the value of TSC_AUX once set, prime the
584 	 * TSC_AUX field now to avoid a RDMSR on every vCPU run.
585 	 */
586 	if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
587 		u32 __maybe_unused msr_hi;
588 
589 		rdmsr(MSR_TSC_AUX, sev_es_host_save_area(sd)->tsc_aux, msr_hi);
590 	}
591 
592 	return 0;
593 }
594 
svm_cpu_uninit(int cpu)595 static void svm_cpu_uninit(int cpu)
596 {
597 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
598 
599 	if (!sd->save_area)
600 		return;
601 
602 	kfree(sd->sev_vmcbs);
603 	__free_page(__sme_pa_to_page(sd->save_area_pa));
604 	sd->save_area_pa = 0;
605 	sd->save_area = NULL;
606 }
607 
svm_cpu_init(int cpu)608 static int svm_cpu_init(int cpu)
609 {
610 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
611 	struct page *save_area_page;
612 	int ret = -ENOMEM;
613 
614 	memset(sd, 0, sizeof(struct svm_cpu_data));
615 	save_area_page = snp_safe_alloc_page_node(cpu_to_node(cpu), GFP_KERNEL);
616 	if (!save_area_page)
617 		return ret;
618 
619 	ret = sev_cpu_init(sd);
620 	if (ret)
621 		goto free_save_area;
622 
623 	sd->save_area = page_address(save_area_page);
624 	sd->save_area_pa = __sme_page_pa(save_area_page);
625 	return 0;
626 
627 free_save_area:
628 	__free_page(save_area_page);
629 	return ret;
630 
631 }
632 
set_dr_intercepts(struct vcpu_svm * svm)633 static void set_dr_intercepts(struct vcpu_svm *svm)
634 {
635 	struct vmcb *vmcb = svm->vmcb01.ptr;
636 
637 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
638 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
639 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
640 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
641 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
642 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
643 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
644 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
645 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
646 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
647 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
648 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
649 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
650 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
651 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
652 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
653 
654 	recalc_intercepts(svm);
655 }
656 
clr_dr_intercepts(struct vcpu_svm * svm)657 static void clr_dr_intercepts(struct vcpu_svm *svm)
658 {
659 	struct vmcb *vmcb = svm->vmcb01.ptr;
660 
661 	vmcb->control.intercepts[INTERCEPT_DR] = 0;
662 
663 	recalc_intercepts(svm);
664 }
665 
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)666 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
667 {
668 	/*
669 	 * For non-nested case:
670 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
671 	 * save it.
672 	 *
673 	 * For nested case:
674 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
675 	 * save it.
676 	 */
677 	void *msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm :
678 					    to_svm(vcpu)->msrpm;
679 
680 	return svm_test_msr_bitmap_write(msrpm, msr);
681 }
682 
svm_set_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type,bool set)683 void svm_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set)
684 {
685 	struct vcpu_svm *svm = to_svm(vcpu);
686 	void *msrpm = svm->msrpm;
687 
688 	/* Don't disable interception for MSRs userspace wants to handle. */
689 	if (type & MSR_TYPE_R) {
690 		if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
691 			svm_clear_msr_bitmap_read(msrpm, msr);
692 		else
693 			svm_set_msr_bitmap_read(msrpm, msr);
694 	}
695 
696 	if (type & MSR_TYPE_W) {
697 		if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
698 			svm_clear_msr_bitmap_write(msrpm, msr);
699 		else
700 			svm_set_msr_bitmap_write(msrpm, msr);
701 	}
702 
703 	svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
704 	svm->nested.force_msr_bitmap_recalc = true;
705 }
706 
svm_alloc_permissions_map(unsigned long size,gfp_t gfp_mask)707 void *svm_alloc_permissions_map(unsigned long size, gfp_t gfp_mask)
708 {
709 	unsigned int order = get_order(size);
710 	struct page *pages = alloc_pages(gfp_mask, order);
711 	void *pm;
712 
713 	if (!pages)
714 		return NULL;
715 
716 	/*
717 	 * Set all bits in the permissions map so that all MSR and I/O accesses
718 	 * are intercepted by default.
719 	 */
720 	pm = page_address(pages);
721 	memset(pm, 0xff, PAGE_SIZE * (1 << order));
722 
723 	return pm;
724 }
725 
svm_recalc_lbr_msr_intercepts(struct kvm_vcpu * vcpu)726 static void svm_recalc_lbr_msr_intercepts(struct kvm_vcpu *vcpu)
727 {
728 	bool intercept = !(to_svm(vcpu)->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK);
729 
730 	svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTBRANCHFROMIP, MSR_TYPE_RW, intercept);
731 	svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTBRANCHTOIP, MSR_TYPE_RW, intercept);
732 	svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTINTFROMIP, MSR_TYPE_RW, intercept);
733 	svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTINTTOIP, MSR_TYPE_RW, intercept);
734 
735 	if (sev_es_guest(vcpu->kvm))
736 		svm_set_intercept_for_msr(vcpu, MSR_IA32_DEBUGCTLMSR, MSR_TYPE_RW, intercept);
737 }
738 
svm_set_x2apic_msr_interception(struct vcpu_svm * svm,bool intercept)739 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
740 {
741 	static const u32 x2avic_passthrough_msrs[] = {
742 		X2APIC_MSR(APIC_ID),
743 		X2APIC_MSR(APIC_LVR),
744 		X2APIC_MSR(APIC_TASKPRI),
745 		X2APIC_MSR(APIC_ARBPRI),
746 		X2APIC_MSR(APIC_PROCPRI),
747 		X2APIC_MSR(APIC_EOI),
748 		X2APIC_MSR(APIC_RRR),
749 		X2APIC_MSR(APIC_LDR),
750 		X2APIC_MSR(APIC_DFR),
751 		X2APIC_MSR(APIC_SPIV),
752 		X2APIC_MSR(APIC_ISR),
753 		X2APIC_MSR(APIC_TMR),
754 		X2APIC_MSR(APIC_IRR),
755 		X2APIC_MSR(APIC_ESR),
756 		X2APIC_MSR(APIC_ICR),
757 		X2APIC_MSR(APIC_ICR2),
758 
759 		/*
760 		 * Note!  Always intercept LVTT, as TSC-deadline timer mode
761 		 * isn't virtualized by hardware, and the CPU will generate a
762 		 * #GP instead of a #VMEXIT.
763 		 */
764 		X2APIC_MSR(APIC_LVTTHMR),
765 		X2APIC_MSR(APIC_LVTPC),
766 		X2APIC_MSR(APIC_LVT0),
767 		X2APIC_MSR(APIC_LVT1),
768 		X2APIC_MSR(APIC_LVTERR),
769 		X2APIC_MSR(APIC_TMICT),
770 		X2APIC_MSR(APIC_TMCCT),
771 		X2APIC_MSR(APIC_TDCR),
772 	};
773 	int i;
774 
775 	if (intercept == svm->x2avic_msrs_intercepted)
776 		return;
777 
778 	if (!x2avic_enabled)
779 		return;
780 
781 	for (i = 0; i < ARRAY_SIZE(x2avic_passthrough_msrs); i++)
782 		svm_set_intercept_for_msr(&svm->vcpu, x2avic_passthrough_msrs[i],
783 					  MSR_TYPE_RW, intercept);
784 
785 	svm->x2avic_msrs_intercepted = intercept;
786 }
787 
svm_vcpu_free_msrpm(void * msrpm)788 void svm_vcpu_free_msrpm(void *msrpm)
789 {
790 	__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
791 }
792 
svm_recalc_msr_intercepts(struct kvm_vcpu * vcpu)793 static void svm_recalc_msr_intercepts(struct kvm_vcpu *vcpu)
794 {
795 	struct vcpu_svm *svm = to_svm(vcpu);
796 
797 	svm_disable_intercept_for_msr(vcpu, MSR_STAR, MSR_TYPE_RW);
798 	svm_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
799 
800 #ifdef CONFIG_X86_64
801 	svm_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
802 	svm_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
803 	svm_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
804 	svm_disable_intercept_for_msr(vcpu, MSR_LSTAR, MSR_TYPE_RW);
805 	svm_disable_intercept_for_msr(vcpu, MSR_CSTAR, MSR_TYPE_RW);
806 	svm_disable_intercept_for_msr(vcpu, MSR_SYSCALL_MASK, MSR_TYPE_RW);
807 #endif
808 
809 	if (lbrv)
810 		svm_recalc_lbr_msr_intercepts(vcpu);
811 
812 	if (cpu_feature_enabled(X86_FEATURE_IBPB))
813 		svm_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
814 					  !guest_has_pred_cmd_msr(vcpu));
815 
816 	if (cpu_feature_enabled(X86_FEATURE_FLUSH_L1D))
817 		svm_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
818 					  !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D));
819 
820 	/*
821 	 * Disable interception of SPEC_CTRL if KVM doesn't need to manually
822 	 * context switch the MSR (SPEC_CTRL is virtualized by the CPU), or if
823 	 * the guest has a non-zero SPEC_CTRL value, i.e. is likely actively
824 	 * using SPEC_CTRL.
825 	 */
826 	if (cpu_feature_enabled(X86_FEATURE_V_SPEC_CTRL))
827 		svm_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW,
828 					  !guest_has_spec_ctrl_msr(vcpu));
829 	else
830 		svm_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW,
831 					  !svm->spec_ctrl);
832 
833 	/*
834 	 * Intercept SYSENTER_EIP and SYSENTER_ESP when emulating an Intel CPU,
835 	 * as AMD hardware only store 32 bits, whereas Intel CPUs track 64 bits.
836 	 */
837 	svm_set_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW,
838 				  guest_cpuid_is_intel_compatible(vcpu));
839 	svm_set_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW,
840 				  guest_cpuid_is_intel_compatible(vcpu));
841 
842 	if (kvm_aperfmperf_in_guest(vcpu->kvm)) {
843 		svm_disable_intercept_for_msr(vcpu, MSR_IA32_APERF, MSR_TYPE_R);
844 		svm_disable_intercept_for_msr(vcpu, MSR_IA32_MPERF, MSR_TYPE_R);
845 	}
846 
847 	if (sev_es_guest(vcpu->kvm))
848 		sev_es_recalc_msr_intercepts(vcpu);
849 
850 	/*
851 	 * x2APIC intercepts are modified on-demand and cannot be filtered by
852 	 * userspace.
853 	 */
854 }
855 
svm_copy_lbrs(struct vmcb * to_vmcb,struct vmcb * from_vmcb)856 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
857 {
858 	to_vmcb->save.dbgctl		= from_vmcb->save.dbgctl;
859 	to_vmcb->save.br_from		= from_vmcb->save.br_from;
860 	to_vmcb->save.br_to		= from_vmcb->save.br_to;
861 	to_vmcb->save.last_excp_from	= from_vmcb->save.last_excp_from;
862 	to_vmcb->save.last_excp_to	= from_vmcb->save.last_excp_to;
863 
864 	vmcb_mark_dirty(to_vmcb, VMCB_LBR);
865 }
866 
svm_enable_lbrv(struct kvm_vcpu * vcpu)867 void svm_enable_lbrv(struct kvm_vcpu *vcpu)
868 {
869 	struct vcpu_svm *svm = to_svm(vcpu);
870 
871 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
872 	svm_recalc_lbr_msr_intercepts(vcpu);
873 
874 	/* Move the LBR msrs to the vmcb02 so that the guest can see them. */
875 	if (is_guest_mode(vcpu))
876 		svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
877 }
878 
svm_disable_lbrv(struct kvm_vcpu * vcpu)879 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
880 {
881 	struct vcpu_svm *svm = to_svm(vcpu);
882 
883 	KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm);
884 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
885 	svm_recalc_lbr_msr_intercepts(vcpu);
886 
887 	/*
888 	 * Move the LBR msrs back to the vmcb01 to avoid copying them
889 	 * on nested guest entries.
890 	 */
891 	if (is_guest_mode(vcpu))
892 		svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
893 }
894 
svm_get_lbr_vmcb(struct vcpu_svm * svm)895 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm)
896 {
897 	/*
898 	 * If LBR virtualization is disabled, the LBR MSRs are always kept in
899 	 * vmcb01.  If LBR virtualization is enabled and L1 is running VMs of
900 	 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed.
901 	 */
902 	return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb :
903 								   svm->vmcb01.ptr;
904 }
905 
svm_update_lbrv(struct kvm_vcpu * vcpu)906 void svm_update_lbrv(struct kvm_vcpu *vcpu)
907 {
908 	struct vcpu_svm *svm = to_svm(vcpu);
909 	bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
910 	bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) ||
911 			    (is_guest_mode(vcpu) && guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) &&
912 			    (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));
913 
914 	if (enable_lbrv == current_enable_lbrv)
915 		return;
916 
917 	if (enable_lbrv)
918 		svm_enable_lbrv(vcpu);
919 	else
920 		svm_disable_lbrv(vcpu);
921 }
922 
disable_nmi_singlestep(struct vcpu_svm * svm)923 void disable_nmi_singlestep(struct vcpu_svm *svm)
924 {
925 	svm->nmi_singlestep = false;
926 
927 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
928 		/* Clear our flags if they were not set by the guest */
929 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
930 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
931 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
932 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
933 	}
934 }
935 
grow_ple_window(struct kvm_vcpu * vcpu)936 static void grow_ple_window(struct kvm_vcpu *vcpu)
937 {
938 	struct vcpu_svm *svm = to_svm(vcpu);
939 	struct vmcb_control_area *control = &svm->vmcb->control;
940 	int old = control->pause_filter_count;
941 
942 	if (kvm_pause_in_guest(vcpu->kvm))
943 		return;
944 
945 	control->pause_filter_count = __grow_ple_window(old,
946 							pause_filter_count,
947 							pause_filter_count_grow,
948 							pause_filter_count_max);
949 
950 	if (control->pause_filter_count != old) {
951 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
952 		trace_kvm_ple_window_update(vcpu->vcpu_id,
953 					    control->pause_filter_count, old);
954 	}
955 }
956 
shrink_ple_window(struct kvm_vcpu * vcpu)957 static void shrink_ple_window(struct kvm_vcpu *vcpu)
958 {
959 	struct vcpu_svm *svm = to_svm(vcpu);
960 	struct vmcb_control_area *control = &svm->vmcb->control;
961 	int old = control->pause_filter_count;
962 
963 	if (kvm_pause_in_guest(vcpu->kvm))
964 		return;
965 
966 	control->pause_filter_count =
967 				__shrink_ple_window(old,
968 						    pause_filter_count,
969 						    pause_filter_count_shrink,
970 						    pause_filter_count);
971 	if (control->pause_filter_count != old) {
972 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
973 		trace_kvm_ple_window_update(vcpu->vcpu_id,
974 					    control->pause_filter_count, old);
975 	}
976 }
977 
svm_hardware_unsetup(void)978 static void svm_hardware_unsetup(void)
979 {
980 	int cpu;
981 
982 	sev_hardware_unsetup();
983 
984 	for_each_possible_cpu(cpu)
985 		svm_cpu_uninit(cpu);
986 
987 	__free_pages(__sme_pa_to_page(iopm_base), get_order(IOPM_SIZE));
988 	iopm_base = 0;
989 }
990 
init_seg(struct vmcb_seg * seg)991 static void init_seg(struct vmcb_seg *seg)
992 {
993 	seg->selector = 0;
994 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
995 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
996 	seg->limit = 0xffff;
997 	seg->base = 0;
998 }
999 
init_sys_seg(struct vmcb_seg * seg,uint32_t type)1000 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1001 {
1002 	seg->selector = 0;
1003 	seg->attrib = SVM_SELECTOR_P_MASK | type;
1004 	seg->limit = 0xffff;
1005 	seg->base = 0;
1006 }
1007 
svm_get_l2_tsc_offset(struct kvm_vcpu * vcpu)1008 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1009 {
1010 	struct vcpu_svm *svm = to_svm(vcpu);
1011 
1012 	return svm->nested.ctl.tsc_offset;
1013 }
1014 
svm_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)1015 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1016 {
1017 	struct vcpu_svm *svm = to_svm(vcpu);
1018 
1019 	return svm->tsc_ratio_msr;
1020 }
1021 
svm_write_tsc_offset(struct kvm_vcpu * vcpu)1022 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
1023 {
1024 	struct vcpu_svm *svm = to_svm(vcpu);
1025 
1026 	svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1027 	svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset;
1028 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1029 }
1030 
svm_write_tsc_multiplier(struct kvm_vcpu * vcpu)1031 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1032 {
1033 	preempt_disable();
1034 	if (to_svm(vcpu)->guest_state_loaded)
1035 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1036 	preempt_enable();
1037 }
1038 
1039 /* Evaluate instruction intercepts that depend on guest CPUID features. */
svm_recalc_instruction_intercepts(struct kvm_vcpu * vcpu)1040 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu)
1041 {
1042 	struct vcpu_svm *svm = to_svm(vcpu);
1043 
1044 	/*
1045 	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1046 	 * roots, or if INVPCID is disabled in the guest to inject #UD.
1047 	 */
1048 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1049 		if (!npt_enabled ||
1050 		    !guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_INVPCID))
1051 			svm_set_intercept(svm, INTERCEPT_INVPCID);
1052 		else
1053 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
1054 	}
1055 
1056 	if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1057 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP))
1058 			svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1059 		else
1060 			svm_set_intercept(svm, INTERCEPT_RDTSCP);
1061 	}
1062 
1063 	if (guest_cpuid_is_intel_compatible(vcpu)) {
1064 		svm_set_intercept(svm, INTERCEPT_VMLOAD);
1065 		svm_set_intercept(svm, INTERCEPT_VMSAVE);
1066 		svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1067 	} else {
1068 		/*
1069 		 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1070 		 * in VMCB and clear intercepts to avoid #VMEXIT.
1071 		 */
1072 		if (vls) {
1073 			svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1074 			svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1075 			svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1076 		}
1077 	}
1078 }
1079 
svm_recalc_intercepts_after_set_cpuid(struct kvm_vcpu * vcpu)1080 static void svm_recalc_intercepts_after_set_cpuid(struct kvm_vcpu *vcpu)
1081 {
1082 	svm_recalc_instruction_intercepts(vcpu);
1083 	svm_recalc_msr_intercepts(vcpu);
1084 }
1085 
init_vmcb(struct kvm_vcpu * vcpu)1086 static void init_vmcb(struct kvm_vcpu *vcpu)
1087 {
1088 	struct vcpu_svm *svm = to_svm(vcpu);
1089 	struct vmcb *vmcb = svm->vmcb01.ptr;
1090 	struct vmcb_control_area *control = &vmcb->control;
1091 	struct vmcb_save_area *save = &vmcb->save;
1092 
1093 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1094 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1095 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1096 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1097 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1098 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1099 	if (!kvm_vcpu_apicv_active(vcpu))
1100 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1101 
1102 	set_dr_intercepts(svm);
1103 
1104 	set_exception_intercept(svm, PF_VECTOR);
1105 	set_exception_intercept(svm, UD_VECTOR);
1106 	set_exception_intercept(svm, MC_VECTOR);
1107 	set_exception_intercept(svm, AC_VECTOR);
1108 	set_exception_intercept(svm, DB_VECTOR);
1109 	/*
1110 	 * Guest access to VMware backdoor ports could legitimately
1111 	 * trigger #GP because of TSS I/O permission bitmap.
1112 	 * We intercept those #GP and allow access to them anyway
1113 	 * as VMware does.
1114 	 */
1115 	if (enable_vmware_backdoor)
1116 		set_exception_intercept(svm, GP_VECTOR);
1117 
1118 	svm_set_intercept(svm, INTERCEPT_INTR);
1119 	svm_set_intercept(svm, INTERCEPT_NMI);
1120 
1121 	if (intercept_smi)
1122 		svm_set_intercept(svm, INTERCEPT_SMI);
1123 
1124 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1125 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1126 	svm_set_intercept(svm, INTERCEPT_CPUID);
1127 	svm_set_intercept(svm, INTERCEPT_INVD);
1128 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1129 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1130 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1131 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1132 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1133 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1134 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1135 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1136 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1137 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1138 	svm_set_intercept(svm, INTERCEPT_STGI);
1139 	svm_set_intercept(svm, INTERCEPT_CLGI);
1140 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1141 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1142 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1143 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1144 	svm_set_intercept(svm, INTERCEPT_RSM);
1145 
1146 	if (!kvm_mwait_in_guest(vcpu->kvm)) {
1147 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1148 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1149 	}
1150 
1151 	if (!kvm_hlt_in_guest(vcpu->kvm)) {
1152 		if (cpu_feature_enabled(X86_FEATURE_IDLE_HLT))
1153 			svm_set_intercept(svm, INTERCEPT_IDLE_HLT);
1154 		else
1155 			svm_set_intercept(svm, INTERCEPT_HLT);
1156 	}
1157 
1158 	control->iopm_base_pa = iopm_base;
1159 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1160 	control->int_ctl = V_INTR_MASKING_MASK;
1161 
1162 	init_seg(&save->es);
1163 	init_seg(&save->ss);
1164 	init_seg(&save->ds);
1165 	init_seg(&save->fs);
1166 	init_seg(&save->gs);
1167 
1168 	save->cs.selector = 0xf000;
1169 	save->cs.base = 0xffff0000;
1170 	/* Executable/Readable Code Segment */
1171 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1172 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1173 	save->cs.limit = 0xffff;
1174 
1175 	save->gdtr.base = 0;
1176 	save->gdtr.limit = 0xffff;
1177 	save->idtr.base = 0;
1178 	save->idtr.limit = 0xffff;
1179 
1180 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1181 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1182 
1183 	if (npt_enabled) {
1184 		/* Setup VMCB for Nested Paging */
1185 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1186 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1187 		clr_exception_intercept(svm, PF_VECTOR);
1188 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1189 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1190 		save->g_pat = vcpu->arch.pat;
1191 		save->cr3 = 0;
1192 	}
1193 	svm->current_vmcb->asid_generation = 0;
1194 	svm->asid = 0;
1195 
1196 	svm->nested.vmcb12_gpa = INVALID_GPA;
1197 	svm->nested.last_vmcb12_gpa = INVALID_GPA;
1198 
1199 	if (!kvm_pause_in_guest(vcpu->kvm)) {
1200 		control->pause_filter_count = pause_filter_count;
1201 		if (pause_filter_thresh)
1202 			control->pause_filter_thresh = pause_filter_thresh;
1203 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1204 	} else {
1205 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1206 	}
1207 
1208 	if (kvm_vcpu_apicv_active(vcpu))
1209 		avic_init_vmcb(svm, vmcb);
1210 
1211 	if (vnmi)
1212 		svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
1213 
1214 	if (vgif) {
1215 		svm_clr_intercept(svm, INTERCEPT_STGI);
1216 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1217 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1218 	}
1219 
1220 	if (vcpu->kvm->arch.bus_lock_detection_enabled)
1221 		svm_set_intercept(svm, INTERCEPT_BUSLOCK);
1222 
1223 	if (sev_guest(vcpu->kvm))
1224 		sev_init_vmcb(svm);
1225 
1226 	svm_hv_init_vmcb(vmcb);
1227 
1228 	svm_recalc_intercepts_after_set_cpuid(vcpu);
1229 
1230 	vmcb_mark_all_dirty(vmcb);
1231 
1232 	enable_gif(svm);
1233 }
1234 
__svm_vcpu_reset(struct kvm_vcpu * vcpu)1235 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1236 {
1237 	struct vcpu_svm *svm = to_svm(vcpu);
1238 
1239 	svm_init_osvw(vcpu);
1240 
1241 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
1242 		vcpu->arch.microcode_version = 0x01000065;
1243 	svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1244 
1245 	svm->nmi_masked = false;
1246 	svm->awaiting_iret_completion = false;
1247 
1248 	if (sev_es_guest(vcpu->kvm))
1249 		sev_es_vcpu_reset(svm);
1250 }
1251 
svm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)1252 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1253 {
1254 	struct vcpu_svm *svm = to_svm(vcpu);
1255 
1256 	svm->spec_ctrl = 0;
1257 	svm->virt_spec_ctrl = 0;
1258 
1259 	if (init_event)
1260 		sev_snp_init_protected_guest_state(vcpu);
1261 
1262 	init_vmcb(vcpu);
1263 
1264 	if (!init_event)
1265 		__svm_vcpu_reset(vcpu);
1266 }
1267 
svm_switch_vmcb(struct vcpu_svm * svm,struct kvm_vmcb_info * target_vmcb)1268 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1269 {
1270 	svm->current_vmcb = target_vmcb;
1271 	svm->vmcb = target_vmcb->ptr;
1272 }
1273 
svm_vcpu_create(struct kvm_vcpu * vcpu)1274 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1275 {
1276 	struct vcpu_svm *svm;
1277 	struct page *vmcb01_page;
1278 	struct page *vmsa_page = NULL;
1279 	int err;
1280 
1281 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1282 	svm = to_svm(vcpu);
1283 
1284 	err = -ENOMEM;
1285 	vmcb01_page = snp_safe_alloc_page();
1286 	if (!vmcb01_page)
1287 		goto out;
1288 
1289 	if (sev_es_guest(vcpu->kvm)) {
1290 		/*
1291 		 * SEV-ES guests require a separate VMSA page used to contain
1292 		 * the encrypted register state of the guest.
1293 		 */
1294 		vmsa_page = snp_safe_alloc_page();
1295 		if (!vmsa_page)
1296 			goto error_free_vmcb_page;
1297 	}
1298 
1299 	err = avic_init_vcpu(svm);
1300 	if (err)
1301 		goto error_free_vmsa_page;
1302 
1303 	svm->msrpm = svm_vcpu_alloc_msrpm();
1304 	if (!svm->msrpm) {
1305 		err = -ENOMEM;
1306 		goto error_free_vmsa_page;
1307 	}
1308 
1309 	svm->x2avic_msrs_intercepted = true;
1310 
1311 	svm->vmcb01.ptr = page_address(vmcb01_page);
1312 	svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1313 	svm_switch_vmcb(svm, &svm->vmcb01);
1314 
1315 	if (vmsa_page)
1316 		svm->sev_es.vmsa = page_address(vmsa_page);
1317 
1318 	svm->guest_state_loaded = false;
1319 
1320 	return 0;
1321 
1322 error_free_vmsa_page:
1323 	if (vmsa_page)
1324 		__free_page(vmsa_page);
1325 error_free_vmcb_page:
1326 	__free_page(vmcb01_page);
1327 out:
1328 	return err;
1329 }
1330 
svm_vcpu_free(struct kvm_vcpu * vcpu)1331 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1332 {
1333 	struct vcpu_svm *svm = to_svm(vcpu);
1334 
1335 	WARN_ON_ONCE(!list_empty(&svm->ir_list));
1336 
1337 	svm_leave_nested(vcpu);
1338 	svm_free_nested(svm);
1339 
1340 	sev_free_vcpu(vcpu);
1341 
1342 	__free_page(__sme_pa_to_page(svm->vmcb01.pa));
1343 	svm_vcpu_free_msrpm(svm->msrpm);
1344 }
1345 
1346 #ifdef CONFIG_CPU_MITIGATIONS
1347 static DEFINE_SPINLOCK(srso_lock);
1348 static atomic_t srso_nr_vms;
1349 
svm_srso_clear_bp_spec_reduce(void * ign)1350 static void svm_srso_clear_bp_spec_reduce(void *ign)
1351 {
1352 	struct svm_cpu_data *sd = this_cpu_ptr(&svm_data);
1353 
1354 	if (!sd->bp_spec_reduce_set)
1355 		return;
1356 
1357 	msr_clear_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT);
1358 	sd->bp_spec_reduce_set = false;
1359 }
1360 
svm_srso_vm_destroy(void)1361 static void svm_srso_vm_destroy(void)
1362 {
1363 	if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE))
1364 		return;
1365 
1366 	if (atomic_dec_return(&srso_nr_vms))
1367 		return;
1368 
1369 	guard(spinlock)(&srso_lock);
1370 
1371 	/*
1372 	 * Verify a new VM didn't come along, acquire the lock, and increment
1373 	 * the count before this task acquired the lock.
1374 	 */
1375 	if (atomic_read(&srso_nr_vms))
1376 		return;
1377 
1378 	on_each_cpu(svm_srso_clear_bp_spec_reduce, NULL, 1);
1379 }
1380 
svm_srso_vm_init(void)1381 static void svm_srso_vm_init(void)
1382 {
1383 	if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE))
1384 		return;
1385 
1386 	/*
1387 	 * Acquire the lock on 0 => 1 transitions to ensure a potential 1 => 0
1388 	 * transition, i.e. destroying the last VM, is fully complete, e.g. so
1389 	 * that a delayed IPI doesn't clear BP_SPEC_REDUCE after a vCPU runs.
1390 	 */
1391 	if (atomic_inc_not_zero(&srso_nr_vms))
1392 		return;
1393 
1394 	guard(spinlock)(&srso_lock);
1395 
1396 	atomic_inc(&srso_nr_vms);
1397 }
1398 #else
svm_srso_vm_init(void)1399 static void svm_srso_vm_init(void) { }
svm_srso_vm_destroy(void)1400 static void svm_srso_vm_destroy(void) { }
1401 #endif
1402 
svm_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1403 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1404 {
1405 	struct vcpu_svm *svm = to_svm(vcpu);
1406 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1407 
1408 	if (sev_es_guest(vcpu->kvm))
1409 		sev_es_unmap_ghcb(svm);
1410 
1411 	if (svm->guest_state_loaded)
1412 		return;
1413 
1414 	/*
1415 	 * Save additional host state that will be restored on VMEXIT (sev-es)
1416 	 * or subsequent vmload of host save area.
1417 	 */
1418 	vmsave(sd->save_area_pa);
1419 	if (sev_es_guest(vcpu->kvm))
1420 		sev_es_prepare_switch_to_guest(svm, sev_es_host_save_area(sd));
1421 
1422 	if (tsc_scaling)
1423 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1424 
1425 	/*
1426 	 * TSC_AUX is always virtualized for SEV-ES guests when the feature is
1427 	 * available. The user return MSR support is not required in this case
1428 	 * because TSC_AUX is restored on #VMEXIT from the host save area
1429 	 * (which has been initialized in svm_enable_virtualization_cpu()).
1430 	 */
1431 	if (likely(tsc_aux_uret_slot >= 0) &&
1432 	    (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm)))
1433 		kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1434 
1435 	if (cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE) &&
1436 	    !sd->bp_spec_reduce_set) {
1437 		sd->bp_spec_reduce_set = true;
1438 		msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT);
1439 	}
1440 	svm->guest_state_loaded = true;
1441 }
1442 
svm_prepare_host_switch(struct kvm_vcpu * vcpu)1443 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1444 {
1445 	to_svm(vcpu)->guest_state_loaded = false;
1446 }
1447 
svm_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1448 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1449 {
1450 	if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1451 		shrink_ple_window(vcpu);
1452 
1453 	if (kvm_vcpu_apicv_active(vcpu))
1454 		avic_vcpu_load(vcpu, cpu);
1455 }
1456 
svm_vcpu_put(struct kvm_vcpu * vcpu)1457 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1458 {
1459 	if (kvm_vcpu_apicv_active(vcpu))
1460 		avic_vcpu_put(vcpu);
1461 
1462 	svm_prepare_host_switch(vcpu);
1463 
1464 	++vcpu->stat.host_state_reload;
1465 }
1466 
svm_get_rflags(struct kvm_vcpu * vcpu)1467 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1468 {
1469 	struct vcpu_svm *svm = to_svm(vcpu);
1470 	unsigned long rflags = svm->vmcb->save.rflags;
1471 
1472 	if (svm->nmi_singlestep) {
1473 		/* Hide our flags if they were not set by the guest */
1474 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1475 			rflags &= ~X86_EFLAGS_TF;
1476 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1477 			rflags &= ~X86_EFLAGS_RF;
1478 	}
1479 	return rflags;
1480 }
1481 
svm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1482 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1483 {
1484 	if (to_svm(vcpu)->nmi_singlestep)
1485 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1486 
1487        /*
1488         * Any change of EFLAGS.VM is accompanied by a reload of SS
1489         * (caused by either a task switch or an inter-privilege IRET),
1490         * so we do not need to update the CPL here.
1491         */
1492 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1493 }
1494 
svm_get_if_flag(struct kvm_vcpu * vcpu)1495 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1496 {
1497 	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1498 
1499 	return sev_es_guest(vcpu->kvm)
1500 		? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1501 		: kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1502 }
1503 
svm_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)1504 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1505 {
1506 	kvm_register_mark_available(vcpu, reg);
1507 
1508 	switch (reg) {
1509 	case VCPU_EXREG_PDPTR:
1510 		/*
1511 		 * When !npt_enabled, mmu->pdptrs[] is already available since
1512 		 * it is always updated per SDM when moving to CRs.
1513 		 */
1514 		if (npt_enabled)
1515 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1516 		break;
1517 	default:
1518 		KVM_BUG_ON(1, vcpu->kvm);
1519 	}
1520 }
1521 
svm_set_vintr(struct vcpu_svm * svm)1522 static void svm_set_vintr(struct vcpu_svm *svm)
1523 {
1524 	struct vmcb_control_area *control;
1525 
1526 	/*
1527 	 * The following fields are ignored when AVIC is enabled
1528 	 */
1529 	WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1530 
1531 	svm_set_intercept(svm, INTERCEPT_VINTR);
1532 
1533 	/*
1534 	 * Recalculating intercepts may have cleared the VINTR intercept.  If
1535 	 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
1536 	 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
1537 	 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
1538 	 * interrupts will never be unblocked while L2 is running.
1539 	 */
1540 	if (!svm_is_intercept(svm, INTERCEPT_VINTR))
1541 		return;
1542 
1543 	/*
1544 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1545 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1546 	 */
1547 	control = &svm->vmcb->control;
1548 	control->int_vector = 0x0;
1549 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1550 	control->int_ctl |= V_IRQ_MASK |
1551 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1552 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1553 }
1554 
svm_clear_vintr(struct vcpu_svm * svm)1555 static void svm_clear_vintr(struct vcpu_svm *svm)
1556 {
1557 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1558 
1559 	/* Drop int_ctl fields related to VINTR injection.  */
1560 	svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1561 	if (is_guest_mode(&svm->vcpu)) {
1562 		svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1563 
1564 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1565 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1566 
1567 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1568 			V_IRQ_INJECTION_BITS_MASK;
1569 
1570 		svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1571 	}
1572 
1573 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1574 }
1575 
svm_seg(struct kvm_vcpu * vcpu,int seg)1576 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1577 {
1578 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1579 	struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1580 
1581 	switch (seg) {
1582 	case VCPU_SREG_CS: return &save->cs;
1583 	case VCPU_SREG_DS: return &save->ds;
1584 	case VCPU_SREG_ES: return &save->es;
1585 	case VCPU_SREG_FS: return &save01->fs;
1586 	case VCPU_SREG_GS: return &save01->gs;
1587 	case VCPU_SREG_SS: return &save->ss;
1588 	case VCPU_SREG_TR: return &save01->tr;
1589 	case VCPU_SREG_LDTR: return &save01->ldtr;
1590 	}
1591 	BUG();
1592 	return NULL;
1593 }
1594 
svm_get_segment_base(struct kvm_vcpu * vcpu,int seg)1595 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1596 {
1597 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1598 
1599 	return s->base;
1600 }
1601 
svm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1602 static void svm_get_segment(struct kvm_vcpu *vcpu,
1603 			    struct kvm_segment *var, int seg)
1604 {
1605 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1606 
1607 	var->base = s->base;
1608 	var->limit = s->limit;
1609 	var->selector = s->selector;
1610 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1611 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1612 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1613 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1614 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1615 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1616 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1617 
1618 	/*
1619 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1620 	 * However, the SVM spec states that the G bit is not observed by the
1621 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1622 	 * So let's synthesize a legal G bit for all segments, this helps
1623 	 * running KVM nested. It also helps cross-vendor migration, because
1624 	 * Intel's vmentry has a check on the 'G' bit.
1625 	 */
1626 	var->g = s->limit > 0xfffff;
1627 
1628 	/*
1629 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1630 	 * for cross vendor migration purposes by "not present"
1631 	 */
1632 	var->unusable = !var->present;
1633 
1634 	switch (seg) {
1635 	case VCPU_SREG_TR:
1636 		/*
1637 		 * Work around a bug where the busy flag in the tr selector
1638 		 * isn't exposed
1639 		 */
1640 		var->type |= 0x2;
1641 		break;
1642 	case VCPU_SREG_DS:
1643 	case VCPU_SREG_ES:
1644 	case VCPU_SREG_FS:
1645 	case VCPU_SREG_GS:
1646 		/*
1647 		 * The accessed bit must always be set in the segment
1648 		 * descriptor cache, although it can be cleared in the
1649 		 * descriptor, the cached bit always remains at 1. Since
1650 		 * Intel has a check on this, set it here to support
1651 		 * cross-vendor migration.
1652 		 */
1653 		if (!var->unusable)
1654 			var->type |= 0x1;
1655 		break;
1656 	case VCPU_SREG_SS:
1657 		/*
1658 		 * On AMD CPUs sometimes the DB bit in the segment
1659 		 * descriptor is left as 1, although the whole segment has
1660 		 * been made unusable. Clear it here to pass an Intel VMX
1661 		 * entry check when cross vendor migrating.
1662 		 */
1663 		if (var->unusable)
1664 			var->db = 0;
1665 		/* This is symmetric with svm_set_segment() */
1666 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1667 		break;
1668 	}
1669 }
1670 
svm_get_cpl(struct kvm_vcpu * vcpu)1671 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1672 {
1673 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1674 
1675 	return save->cpl;
1676 }
1677 
svm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)1678 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1679 {
1680 	struct kvm_segment cs;
1681 
1682 	svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1683 	*db = cs.db;
1684 	*l = cs.l;
1685 }
1686 
svm_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1687 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1688 {
1689 	struct vcpu_svm *svm = to_svm(vcpu);
1690 
1691 	dt->size = svm->vmcb->save.idtr.limit;
1692 	dt->address = svm->vmcb->save.idtr.base;
1693 }
1694 
svm_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1695 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1696 {
1697 	struct vcpu_svm *svm = to_svm(vcpu);
1698 
1699 	svm->vmcb->save.idtr.limit = dt->size;
1700 	svm->vmcb->save.idtr.base = dt->address ;
1701 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1702 }
1703 
svm_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1704 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1705 {
1706 	struct vcpu_svm *svm = to_svm(vcpu);
1707 
1708 	dt->size = svm->vmcb->save.gdtr.limit;
1709 	dt->address = svm->vmcb->save.gdtr.base;
1710 }
1711 
svm_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1712 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1713 {
1714 	struct vcpu_svm *svm = to_svm(vcpu);
1715 
1716 	svm->vmcb->save.gdtr.limit = dt->size;
1717 	svm->vmcb->save.gdtr.base = dt->address ;
1718 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1719 }
1720 
sev_post_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1721 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1722 {
1723 	struct vcpu_svm *svm = to_svm(vcpu);
1724 
1725 	/*
1726 	 * For guests that don't set guest_state_protected, the cr3 update is
1727 	 * handled via kvm_mmu_load() while entering the guest. For guests
1728 	 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1729 	 * VMCB save area now, since the save area will become the initial
1730 	 * contents of the VMSA, and future VMCB save area updates won't be
1731 	 * seen.
1732 	 */
1733 	if (sev_es_guest(vcpu->kvm)) {
1734 		svm->vmcb->save.cr3 = cr3;
1735 		vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1736 	}
1737 }
1738 
svm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1739 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1740 {
1741 	return true;
1742 }
1743 
svm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1744 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1745 {
1746 	struct vcpu_svm *svm = to_svm(vcpu);
1747 	u64 hcr0 = cr0;
1748 	bool old_paging = is_paging(vcpu);
1749 
1750 #ifdef CONFIG_X86_64
1751 	if (vcpu->arch.efer & EFER_LME) {
1752 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1753 			vcpu->arch.efer |= EFER_LMA;
1754 			if (!vcpu->arch.guest_state_protected)
1755 				svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1756 		}
1757 
1758 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1759 			vcpu->arch.efer &= ~EFER_LMA;
1760 			if (!vcpu->arch.guest_state_protected)
1761 				svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1762 		}
1763 	}
1764 #endif
1765 	vcpu->arch.cr0 = cr0;
1766 
1767 	if (!npt_enabled) {
1768 		hcr0 |= X86_CR0_PG | X86_CR0_WP;
1769 		if (old_paging != is_paging(vcpu))
1770 			svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1771 	}
1772 
1773 	/*
1774 	 * re-enable caching here because the QEMU bios
1775 	 * does not do it - this results in some delay at
1776 	 * reboot
1777 	 */
1778 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1779 		hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1780 
1781 	svm->vmcb->save.cr0 = hcr0;
1782 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1783 
1784 	/*
1785 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
1786 	 * tracking is done using the CR write traps.
1787 	 */
1788 	if (sev_es_guest(vcpu->kvm))
1789 		return;
1790 
1791 	if (hcr0 == cr0) {
1792 		/* Selective CR0 write remains on.  */
1793 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1794 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1795 	} else {
1796 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1797 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1798 	}
1799 }
1800 
svm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1801 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1802 {
1803 	return true;
1804 }
1805 
svm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1806 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1807 {
1808 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1809 	unsigned long old_cr4 = vcpu->arch.cr4;
1810 
1811 	vcpu->arch.cr4 = cr4;
1812 	if (!npt_enabled) {
1813 		cr4 |= X86_CR4_PAE;
1814 
1815 		if (!is_paging(vcpu))
1816 			cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1817 	}
1818 	cr4 |= host_cr4_mce;
1819 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1820 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1821 
1822 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1823 		vcpu->arch.cpuid_dynamic_bits_dirty = true;
1824 }
1825 
svm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1826 static void svm_set_segment(struct kvm_vcpu *vcpu,
1827 			    struct kvm_segment *var, int seg)
1828 {
1829 	struct vcpu_svm *svm = to_svm(vcpu);
1830 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1831 
1832 	s->base = var->base;
1833 	s->limit = var->limit;
1834 	s->selector = var->selector;
1835 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1836 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1837 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1838 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1839 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1840 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1841 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1842 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1843 
1844 	/*
1845 	 * This is always accurate, except if SYSRET returned to a segment
1846 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1847 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1848 	 * would entail passing the CPL to userspace and back.
1849 	 */
1850 	if (seg == VCPU_SREG_SS)
1851 		/* This is symmetric with svm_get_segment() */
1852 		svm->vmcb->save.cpl = (var->dpl & 3);
1853 
1854 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1855 }
1856 
svm_update_exception_bitmap(struct kvm_vcpu * vcpu)1857 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1858 {
1859 	struct vcpu_svm *svm = to_svm(vcpu);
1860 
1861 	clr_exception_intercept(svm, BP_VECTOR);
1862 
1863 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1864 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1865 			set_exception_intercept(svm, BP_VECTOR);
1866 	}
1867 }
1868 
new_asid(struct vcpu_svm * svm,struct svm_cpu_data * sd)1869 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1870 {
1871 	if (sd->next_asid > sd->max_asid) {
1872 		++sd->asid_generation;
1873 		sd->next_asid = sd->min_asid;
1874 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1875 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1876 	}
1877 
1878 	svm->current_vmcb->asid_generation = sd->asid_generation;
1879 	svm->asid = sd->next_asid++;
1880 }
1881 
svm_set_dr6(struct kvm_vcpu * vcpu,unsigned long value)1882 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1883 {
1884 	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1885 
1886 	if (vcpu->arch.guest_state_protected)
1887 		return;
1888 
1889 	if (unlikely(value != vmcb->save.dr6)) {
1890 		vmcb->save.dr6 = value;
1891 		vmcb_mark_dirty(vmcb, VMCB_DR);
1892 	}
1893 }
1894 
svm_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)1895 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1896 {
1897 	struct vcpu_svm *svm = to_svm(vcpu);
1898 
1899 	if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm)))
1900 		return;
1901 
1902 	get_debugreg(vcpu->arch.db[0], 0);
1903 	get_debugreg(vcpu->arch.db[1], 1);
1904 	get_debugreg(vcpu->arch.db[2], 2);
1905 	get_debugreg(vcpu->arch.db[3], 3);
1906 	/*
1907 	 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1908 	 * because db_interception might need it.  We can do it before vmentry.
1909 	 */
1910 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
1911 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1912 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1913 	set_dr_intercepts(svm);
1914 }
1915 
svm_set_dr7(struct kvm_vcpu * vcpu,unsigned long value)1916 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1917 {
1918 	struct vcpu_svm *svm = to_svm(vcpu);
1919 
1920 	if (vcpu->arch.guest_state_protected)
1921 		return;
1922 
1923 	svm->vmcb->save.dr7 = value;
1924 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1925 }
1926 
pf_interception(struct kvm_vcpu * vcpu)1927 static int pf_interception(struct kvm_vcpu *vcpu)
1928 {
1929 	struct vcpu_svm *svm = to_svm(vcpu);
1930 
1931 	u64 fault_address = svm->vmcb->control.exit_info_2;
1932 	u64 error_code = svm->vmcb->control.exit_info_1;
1933 
1934 	return kvm_handle_page_fault(vcpu, error_code, fault_address,
1935 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1936 			svm->vmcb->control.insn_bytes : NULL,
1937 			svm->vmcb->control.insn_len);
1938 }
1939 
npf_interception(struct kvm_vcpu * vcpu)1940 static int npf_interception(struct kvm_vcpu *vcpu)
1941 {
1942 	struct vcpu_svm *svm = to_svm(vcpu);
1943 	int rc;
1944 
1945 	u64 fault_address = svm->vmcb->control.exit_info_2;
1946 	u64 error_code = svm->vmcb->control.exit_info_1;
1947 
1948 	/*
1949 	 * WARN if hardware generates a fault with an error code that collides
1950 	 * with KVM-defined sythentic flags.  Clear the flags and continue on,
1951 	 * i.e. don't terminate the VM, as KVM can't possibly be relying on a
1952 	 * flag that KVM doesn't know about.
1953 	 */
1954 	if (WARN_ON_ONCE(error_code & PFERR_SYNTHETIC_MASK))
1955 		error_code &= ~PFERR_SYNTHETIC_MASK;
1956 
1957 	if (sev_snp_guest(vcpu->kvm) && (error_code & PFERR_GUEST_ENC_MASK))
1958 		error_code |= PFERR_PRIVATE_ACCESS;
1959 
1960 	trace_kvm_page_fault(vcpu, fault_address, error_code);
1961 	rc = kvm_mmu_page_fault(vcpu, fault_address, error_code,
1962 				static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1963 				svm->vmcb->control.insn_bytes : NULL,
1964 				svm->vmcb->control.insn_len);
1965 
1966 	if (rc > 0 && error_code & PFERR_GUEST_RMP_MASK)
1967 		sev_handle_rmp_fault(vcpu, fault_address, error_code);
1968 
1969 	return rc;
1970 }
1971 
db_interception(struct kvm_vcpu * vcpu)1972 static int db_interception(struct kvm_vcpu *vcpu)
1973 {
1974 	struct kvm_run *kvm_run = vcpu->run;
1975 	struct vcpu_svm *svm = to_svm(vcpu);
1976 
1977 	if (!(vcpu->guest_debug &
1978 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1979 		!svm->nmi_singlestep) {
1980 		u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1981 		kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
1982 		return 1;
1983 	}
1984 
1985 	if (svm->nmi_singlestep) {
1986 		disable_nmi_singlestep(svm);
1987 		/* Make sure we check for pending NMIs upon entry */
1988 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1989 	}
1990 
1991 	if (vcpu->guest_debug &
1992 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1993 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
1994 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1995 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1996 		kvm_run->debug.arch.pc =
1997 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1998 		kvm_run->debug.arch.exception = DB_VECTOR;
1999 		return 0;
2000 	}
2001 
2002 	return 1;
2003 }
2004 
bp_interception(struct kvm_vcpu * vcpu)2005 static int bp_interception(struct kvm_vcpu *vcpu)
2006 {
2007 	struct vcpu_svm *svm = to_svm(vcpu);
2008 	struct kvm_run *kvm_run = vcpu->run;
2009 
2010 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
2011 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2012 	kvm_run->debug.arch.exception = BP_VECTOR;
2013 	return 0;
2014 }
2015 
ud_interception(struct kvm_vcpu * vcpu)2016 static int ud_interception(struct kvm_vcpu *vcpu)
2017 {
2018 	return handle_ud(vcpu);
2019 }
2020 
ac_interception(struct kvm_vcpu * vcpu)2021 static int ac_interception(struct kvm_vcpu *vcpu)
2022 {
2023 	kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2024 	return 1;
2025 }
2026 
is_erratum_383(void)2027 static bool is_erratum_383(void)
2028 {
2029 	int i;
2030 	u64 value;
2031 
2032 	if (!erratum_383_found)
2033 		return false;
2034 
2035 	if (native_read_msr_safe(MSR_IA32_MC0_STATUS, &value))
2036 		return false;
2037 
2038 	/* Bit 62 may or may not be set for this mce */
2039 	value &= ~(1ULL << 62);
2040 
2041 	if (value != 0xb600000000010015ULL)
2042 		return false;
2043 
2044 	/* Clear MCi_STATUS registers */
2045 	for (i = 0; i < 6; ++i)
2046 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0);
2047 
2048 	if (!native_read_msr_safe(MSR_IA32_MCG_STATUS, &value)) {
2049 		value &= ~(1ULL << 2);
2050 		native_write_msr_safe(MSR_IA32_MCG_STATUS, value);
2051 	}
2052 
2053 	/* Flush tlb to evict multi-match entries */
2054 	__flush_tlb_all();
2055 
2056 	return true;
2057 }
2058 
svm_handle_mce(struct kvm_vcpu * vcpu)2059 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2060 {
2061 	if (is_erratum_383()) {
2062 		/*
2063 		 * Erratum 383 triggered. Guest state is corrupt so kill the
2064 		 * guest.
2065 		 */
2066 		pr_err("Guest triggered AMD Erratum 383\n");
2067 
2068 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2069 
2070 		return;
2071 	}
2072 
2073 	/*
2074 	 * On an #MC intercept the MCE handler is not called automatically in
2075 	 * the host. So do it by hand here.
2076 	 */
2077 	kvm_machine_check();
2078 }
2079 
mc_interception(struct kvm_vcpu * vcpu)2080 static int mc_interception(struct kvm_vcpu *vcpu)
2081 {
2082 	return 1;
2083 }
2084 
shutdown_interception(struct kvm_vcpu * vcpu)2085 static int shutdown_interception(struct kvm_vcpu *vcpu)
2086 {
2087 	struct kvm_run *kvm_run = vcpu->run;
2088 	struct vcpu_svm *svm = to_svm(vcpu);
2089 
2090 
2091 	/*
2092 	 * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2093 	 * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2094 	 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2095 	 * userspace.  At a platform view, INIT is acceptable behavior as
2096 	 * there exist bare metal platforms that automatically INIT the CPU
2097 	 * in response to shutdown.
2098 	 *
2099 	 * The VM save area for SEV-ES guests has already been encrypted so it
2100 	 * cannot be reinitialized, i.e. synthesizing INIT is futile.
2101 	 */
2102 	if (!sev_es_guest(vcpu->kvm)) {
2103 		clear_page(svm->vmcb);
2104 #ifdef CONFIG_KVM_SMM
2105 		if (is_smm(vcpu))
2106 			kvm_smm_changed(vcpu, false);
2107 #endif
2108 		kvm_vcpu_reset(vcpu, true);
2109 	}
2110 
2111 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2112 	return 0;
2113 }
2114 
io_interception(struct kvm_vcpu * vcpu)2115 static int io_interception(struct kvm_vcpu *vcpu)
2116 {
2117 	struct vcpu_svm *svm = to_svm(vcpu);
2118 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2119 	int size, in, string;
2120 	unsigned port;
2121 
2122 	++vcpu->stat.io_exits;
2123 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2124 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2125 	port = io_info >> 16;
2126 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2127 
2128 	if (string) {
2129 		if (sev_es_guest(vcpu->kvm))
2130 			return sev_es_string_io(svm, size, port, in);
2131 		else
2132 			return kvm_emulate_instruction(vcpu, 0);
2133 	}
2134 
2135 	svm->next_rip = svm->vmcb->control.exit_info_2;
2136 
2137 	return kvm_fast_pio(vcpu, size, port, in);
2138 }
2139 
nmi_interception(struct kvm_vcpu * vcpu)2140 static int nmi_interception(struct kvm_vcpu *vcpu)
2141 {
2142 	return 1;
2143 }
2144 
smi_interception(struct kvm_vcpu * vcpu)2145 static int smi_interception(struct kvm_vcpu *vcpu)
2146 {
2147 	return 1;
2148 }
2149 
intr_interception(struct kvm_vcpu * vcpu)2150 static int intr_interception(struct kvm_vcpu *vcpu)
2151 {
2152 	++vcpu->stat.irq_exits;
2153 	return 1;
2154 }
2155 
vmload_vmsave_interception(struct kvm_vcpu * vcpu,bool vmload)2156 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2157 {
2158 	struct vcpu_svm *svm = to_svm(vcpu);
2159 	struct vmcb *vmcb12;
2160 	struct kvm_host_map map;
2161 	int ret;
2162 
2163 	if (nested_svm_check_permissions(vcpu))
2164 		return 1;
2165 
2166 	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2167 	if (ret) {
2168 		if (ret == -EINVAL)
2169 			kvm_inject_gp(vcpu, 0);
2170 		return 1;
2171 	}
2172 
2173 	vmcb12 = map.hva;
2174 
2175 	ret = kvm_skip_emulated_instruction(vcpu);
2176 
2177 	if (vmload) {
2178 		svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2179 		svm->sysenter_eip_hi = 0;
2180 		svm->sysenter_esp_hi = 0;
2181 	} else {
2182 		svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2183 	}
2184 
2185 	kvm_vcpu_unmap(vcpu, &map);
2186 
2187 	return ret;
2188 }
2189 
vmload_interception(struct kvm_vcpu * vcpu)2190 static int vmload_interception(struct kvm_vcpu *vcpu)
2191 {
2192 	return vmload_vmsave_interception(vcpu, true);
2193 }
2194 
vmsave_interception(struct kvm_vcpu * vcpu)2195 static int vmsave_interception(struct kvm_vcpu *vcpu)
2196 {
2197 	return vmload_vmsave_interception(vcpu, false);
2198 }
2199 
vmrun_interception(struct kvm_vcpu * vcpu)2200 static int vmrun_interception(struct kvm_vcpu *vcpu)
2201 {
2202 	if (nested_svm_check_permissions(vcpu))
2203 		return 1;
2204 
2205 	return nested_svm_vmrun(vcpu);
2206 }
2207 
2208 enum {
2209 	NONE_SVM_INSTR,
2210 	SVM_INSTR_VMRUN,
2211 	SVM_INSTR_VMLOAD,
2212 	SVM_INSTR_VMSAVE,
2213 };
2214 
2215 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
svm_instr_opcode(struct kvm_vcpu * vcpu)2216 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2217 {
2218 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2219 
2220 	if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2221 		return NONE_SVM_INSTR;
2222 
2223 	switch (ctxt->modrm) {
2224 	case 0xd8: /* VMRUN */
2225 		return SVM_INSTR_VMRUN;
2226 	case 0xda: /* VMLOAD */
2227 		return SVM_INSTR_VMLOAD;
2228 	case 0xdb: /* VMSAVE */
2229 		return SVM_INSTR_VMSAVE;
2230 	default:
2231 		break;
2232 	}
2233 
2234 	return NONE_SVM_INSTR;
2235 }
2236 
emulate_svm_instr(struct kvm_vcpu * vcpu,int opcode)2237 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2238 {
2239 	const int guest_mode_exit_codes[] = {
2240 		[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2241 		[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2242 		[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2243 	};
2244 	int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2245 		[SVM_INSTR_VMRUN] = vmrun_interception,
2246 		[SVM_INSTR_VMLOAD] = vmload_interception,
2247 		[SVM_INSTR_VMSAVE] = vmsave_interception,
2248 	};
2249 	struct vcpu_svm *svm = to_svm(vcpu);
2250 	int ret;
2251 
2252 	if (is_guest_mode(vcpu)) {
2253 		/* Returns '1' or -errno on failure, '0' on success. */
2254 		ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2255 		if (ret)
2256 			return ret;
2257 		return 1;
2258 	}
2259 	return svm_instr_handlers[opcode](vcpu);
2260 }
2261 
2262 /*
2263  * #GP handling code. Note that #GP can be triggered under the following two
2264  * cases:
2265  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2266  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2267  *      regions (e.g. SMM memory on host).
2268  *   2) VMware backdoor
2269  */
gp_interception(struct kvm_vcpu * vcpu)2270 static int gp_interception(struct kvm_vcpu *vcpu)
2271 {
2272 	struct vcpu_svm *svm = to_svm(vcpu);
2273 	u32 error_code = svm->vmcb->control.exit_info_1;
2274 	int opcode;
2275 
2276 	/* Both #GP cases have zero error_code */
2277 	if (error_code)
2278 		goto reinject;
2279 
2280 	/* Decode the instruction for usage later */
2281 	if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2282 		goto reinject;
2283 
2284 	opcode = svm_instr_opcode(vcpu);
2285 
2286 	if (opcode == NONE_SVM_INSTR) {
2287 		if (!enable_vmware_backdoor)
2288 			goto reinject;
2289 
2290 		/*
2291 		 * VMware backdoor emulation on #GP interception only handles
2292 		 * IN{S}, OUT{S}, and RDPMC.
2293 		 */
2294 		if (!is_guest_mode(vcpu))
2295 			return kvm_emulate_instruction(vcpu,
2296 				EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2297 	} else {
2298 		/* All SVM instructions expect page aligned RAX */
2299 		if (svm->vmcb->save.rax & ~PAGE_MASK)
2300 			goto reinject;
2301 
2302 		return emulate_svm_instr(vcpu, opcode);
2303 	}
2304 
2305 reinject:
2306 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2307 	return 1;
2308 }
2309 
svm_set_gif(struct vcpu_svm * svm,bool value)2310 void svm_set_gif(struct vcpu_svm *svm, bool value)
2311 {
2312 	if (value) {
2313 		/*
2314 		 * If VGIF is enabled, the STGI intercept is only added to
2315 		 * detect the opening of the SMI/NMI window; remove it now.
2316 		 * Likewise, clear the VINTR intercept, we will set it
2317 		 * again while processing KVM_REQ_EVENT if needed.
2318 		 */
2319 		if (vgif)
2320 			svm_clr_intercept(svm, INTERCEPT_STGI);
2321 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2322 			svm_clear_vintr(svm);
2323 
2324 		enable_gif(svm);
2325 		if (svm->vcpu.arch.smi_pending ||
2326 		    svm->vcpu.arch.nmi_pending ||
2327 		    kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2328 		    kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2329 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2330 	} else {
2331 		disable_gif(svm);
2332 
2333 		/*
2334 		 * After a CLGI no interrupts should come.  But if vGIF is
2335 		 * in use, we still rely on the VINTR intercept (rather than
2336 		 * STGI) to detect an open interrupt window.
2337 		*/
2338 		if (!vgif)
2339 			svm_clear_vintr(svm);
2340 	}
2341 }
2342 
stgi_interception(struct kvm_vcpu * vcpu)2343 static int stgi_interception(struct kvm_vcpu *vcpu)
2344 {
2345 	int ret;
2346 
2347 	if (nested_svm_check_permissions(vcpu))
2348 		return 1;
2349 
2350 	ret = kvm_skip_emulated_instruction(vcpu);
2351 	svm_set_gif(to_svm(vcpu), true);
2352 	return ret;
2353 }
2354 
clgi_interception(struct kvm_vcpu * vcpu)2355 static int clgi_interception(struct kvm_vcpu *vcpu)
2356 {
2357 	int ret;
2358 
2359 	if (nested_svm_check_permissions(vcpu))
2360 		return 1;
2361 
2362 	ret = kvm_skip_emulated_instruction(vcpu);
2363 	svm_set_gif(to_svm(vcpu), false);
2364 	return ret;
2365 }
2366 
invlpga_interception(struct kvm_vcpu * vcpu)2367 static int invlpga_interception(struct kvm_vcpu *vcpu)
2368 {
2369 	gva_t gva = kvm_rax_read(vcpu);
2370 	u32 asid = kvm_rcx_read(vcpu);
2371 
2372 	/* FIXME: Handle an address size prefix. */
2373 	if (!is_long_mode(vcpu))
2374 		gva = (u32)gva;
2375 
2376 	trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2377 
2378 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2379 	kvm_mmu_invlpg(vcpu, gva);
2380 
2381 	return kvm_skip_emulated_instruction(vcpu);
2382 }
2383 
skinit_interception(struct kvm_vcpu * vcpu)2384 static int skinit_interception(struct kvm_vcpu *vcpu)
2385 {
2386 	trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2387 
2388 	kvm_queue_exception(vcpu, UD_VECTOR);
2389 	return 1;
2390 }
2391 
task_switch_interception(struct kvm_vcpu * vcpu)2392 static int task_switch_interception(struct kvm_vcpu *vcpu)
2393 {
2394 	struct vcpu_svm *svm = to_svm(vcpu);
2395 	u16 tss_selector;
2396 	int reason;
2397 	int int_type = svm->vmcb->control.exit_int_info &
2398 		SVM_EXITINTINFO_TYPE_MASK;
2399 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2400 	uint32_t type =
2401 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2402 	uint32_t idt_v =
2403 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2404 	bool has_error_code = false;
2405 	u32 error_code = 0;
2406 
2407 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2408 
2409 	if (svm->vmcb->control.exit_info_2 &
2410 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2411 		reason = TASK_SWITCH_IRET;
2412 	else if (svm->vmcb->control.exit_info_2 &
2413 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2414 		reason = TASK_SWITCH_JMP;
2415 	else if (idt_v)
2416 		reason = TASK_SWITCH_GATE;
2417 	else
2418 		reason = TASK_SWITCH_CALL;
2419 
2420 	if (reason == TASK_SWITCH_GATE) {
2421 		switch (type) {
2422 		case SVM_EXITINTINFO_TYPE_NMI:
2423 			vcpu->arch.nmi_injected = false;
2424 			break;
2425 		case SVM_EXITINTINFO_TYPE_EXEPT:
2426 			if (svm->vmcb->control.exit_info_2 &
2427 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2428 				has_error_code = true;
2429 				error_code =
2430 					(u32)svm->vmcb->control.exit_info_2;
2431 			}
2432 			kvm_clear_exception_queue(vcpu);
2433 			break;
2434 		case SVM_EXITINTINFO_TYPE_INTR:
2435 		case SVM_EXITINTINFO_TYPE_SOFT:
2436 			kvm_clear_interrupt_queue(vcpu);
2437 			break;
2438 		default:
2439 			break;
2440 		}
2441 	}
2442 
2443 	if (reason != TASK_SWITCH_GATE ||
2444 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2445 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2446 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2447 		if (!svm_skip_emulated_instruction(vcpu))
2448 			return 0;
2449 	}
2450 
2451 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2452 		int_vec = -1;
2453 
2454 	return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2455 			       has_error_code, error_code);
2456 }
2457 
svm_clr_iret_intercept(struct vcpu_svm * svm)2458 static void svm_clr_iret_intercept(struct vcpu_svm *svm)
2459 {
2460 	if (!sev_es_guest(svm->vcpu.kvm))
2461 		svm_clr_intercept(svm, INTERCEPT_IRET);
2462 }
2463 
svm_set_iret_intercept(struct vcpu_svm * svm)2464 static void svm_set_iret_intercept(struct vcpu_svm *svm)
2465 {
2466 	if (!sev_es_guest(svm->vcpu.kvm))
2467 		svm_set_intercept(svm, INTERCEPT_IRET);
2468 }
2469 
iret_interception(struct kvm_vcpu * vcpu)2470 static int iret_interception(struct kvm_vcpu *vcpu)
2471 {
2472 	struct vcpu_svm *svm = to_svm(vcpu);
2473 
2474 	WARN_ON_ONCE(sev_es_guest(vcpu->kvm));
2475 
2476 	++vcpu->stat.nmi_window_exits;
2477 	svm->awaiting_iret_completion = true;
2478 
2479 	svm_clr_iret_intercept(svm);
2480 	svm->nmi_iret_rip = kvm_rip_read(vcpu);
2481 
2482 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2483 	return 1;
2484 }
2485 
invlpg_interception(struct kvm_vcpu * vcpu)2486 static int invlpg_interception(struct kvm_vcpu *vcpu)
2487 {
2488 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2489 		return kvm_emulate_instruction(vcpu, 0);
2490 
2491 	kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2492 	return kvm_skip_emulated_instruction(vcpu);
2493 }
2494 
emulate_on_interception(struct kvm_vcpu * vcpu)2495 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2496 {
2497 	return kvm_emulate_instruction(vcpu, 0);
2498 }
2499 
rsm_interception(struct kvm_vcpu * vcpu)2500 static int rsm_interception(struct kvm_vcpu *vcpu)
2501 {
2502 	return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2503 }
2504 
check_selective_cr0_intercepted(struct kvm_vcpu * vcpu,unsigned long val)2505 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2506 					    unsigned long val)
2507 {
2508 	struct vcpu_svm *svm = to_svm(vcpu);
2509 	unsigned long cr0 = vcpu->arch.cr0;
2510 	bool ret = false;
2511 
2512 	if (!is_guest_mode(vcpu) ||
2513 	    (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2514 		return false;
2515 
2516 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2517 	val &= ~SVM_CR0_SELECTIVE_MASK;
2518 
2519 	if (cr0 ^ val) {
2520 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2521 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2522 	}
2523 
2524 	return ret;
2525 }
2526 
2527 #define CR_VALID (1ULL << 63)
2528 
cr_interception(struct kvm_vcpu * vcpu)2529 static int cr_interception(struct kvm_vcpu *vcpu)
2530 {
2531 	struct vcpu_svm *svm = to_svm(vcpu);
2532 	int reg, cr;
2533 	unsigned long val;
2534 	int err;
2535 
2536 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2537 		return emulate_on_interception(vcpu);
2538 
2539 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2540 		return emulate_on_interception(vcpu);
2541 
2542 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2543 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2544 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2545 	else
2546 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2547 
2548 	err = 0;
2549 	if (cr >= 16) { /* mov to cr */
2550 		cr -= 16;
2551 		val = kvm_register_read(vcpu, reg);
2552 		trace_kvm_cr_write(cr, val);
2553 		switch (cr) {
2554 		case 0:
2555 			if (!check_selective_cr0_intercepted(vcpu, val))
2556 				err = kvm_set_cr0(vcpu, val);
2557 			else
2558 				return 1;
2559 
2560 			break;
2561 		case 3:
2562 			err = kvm_set_cr3(vcpu, val);
2563 			break;
2564 		case 4:
2565 			err = kvm_set_cr4(vcpu, val);
2566 			break;
2567 		case 8:
2568 			err = kvm_set_cr8(vcpu, val);
2569 			break;
2570 		default:
2571 			WARN(1, "unhandled write to CR%d", cr);
2572 			kvm_queue_exception(vcpu, UD_VECTOR);
2573 			return 1;
2574 		}
2575 	} else { /* mov from cr */
2576 		switch (cr) {
2577 		case 0:
2578 			val = kvm_read_cr0(vcpu);
2579 			break;
2580 		case 2:
2581 			val = vcpu->arch.cr2;
2582 			break;
2583 		case 3:
2584 			val = kvm_read_cr3(vcpu);
2585 			break;
2586 		case 4:
2587 			val = kvm_read_cr4(vcpu);
2588 			break;
2589 		case 8:
2590 			val = kvm_get_cr8(vcpu);
2591 			break;
2592 		default:
2593 			WARN(1, "unhandled read from CR%d", cr);
2594 			kvm_queue_exception(vcpu, UD_VECTOR);
2595 			return 1;
2596 		}
2597 		kvm_register_write(vcpu, reg, val);
2598 		trace_kvm_cr_read(cr, val);
2599 	}
2600 	return kvm_complete_insn_gp(vcpu, err);
2601 }
2602 
cr_trap(struct kvm_vcpu * vcpu)2603 static int cr_trap(struct kvm_vcpu *vcpu)
2604 {
2605 	struct vcpu_svm *svm = to_svm(vcpu);
2606 	unsigned long old_value, new_value;
2607 	unsigned int cr;
2608 	int ret = 0;
2609 
2610 	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2611 
2612 	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2613 	switch (cr) {
2614 	case 0:
2615 		old_value = kvm_read_cr0(vcpu);
2616 		svm_set_cr0(vcpu, new_value);
2617 
2618 		kvm_post_set_cr0(vcpu, old_value, new_value);
2619 		break;
2620 	case 4:
2621 		old_value = kvm_read_cr4(vcpu);
2622 		svm_set_cr4(vcpu, new_value);
2623 
2624 		kvm_post_set_cr4(vcpu, old_value, new_value);
2625 		break;
2626 	case 8:
2627 		ret = kvm_set_cr8(vcpu, new_value);
2628 		break;
2629 	default:
2630 		WARN(1, "unhandled CR%d write trap", cr);
2631 		kvm_queue_exception(vcpu, UD_VECTOR);
2632 		return 1;
2633 	}
2634 
2635 	return kvm_complete_insn_gp(vcpu, ret);
2636 }
2637 
dr_interception(struct kvm_vcpu * vcpu)2638 static int dr_interception(struct kvm_vcpu *vcpu)
2639 {
2640 	struct vcpu_svm *svm = to_svm(vcpu);
2641 	int reg, dr;
2642 	int err = 0;
2643 
2644 	/*
2645 	 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT
2646 	 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early.
2647 	 */
2648 	if (sev_es_guest(vcpu->kvm))
2649 		return 1;
2650 
2651 	if (vcpu->guest_debug == 0) {
2652 		/*
2653 		 * No more DR vmexits; force a reload of the debug registers
2654 		 * and reenter on this instruction.  The next vmexit will
2655 		 * retrieve the full state of the debug registers.
2656 		 */
2657 		clr_dr_intercepts(svm);
2658 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2659 		return 1;
2660 	}
2661 
2662 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2663 		return emulate_on_interception(vcpu);
2664 
2665 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2666 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2667 	if (dr >= 16) { /* mov to DRn  */
2668 		dr -= 16;
2669 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
2670 	} else {
2671 		kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
2672 	}
2673 
2674 	return kvm_complete_insn_gp(vcpu, err);
2675 }
2676 
cr8_write_interception(struct kvm_vcpu * vcpu)2677 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2678 {
2679 	int r;
2680 
2681 	u8 cr8_prev = kvm_get_cr8(vcpu);
2682 	/* instruction emulation calls kvm_set_cr8() */
2683 	r = cr_interception(vcpu);
2684 	if (lapic_in_kernel(vcpu))
2685 		return r;
2686 	if (cr8_prev <= kvm_get_cr8(vcpu))
2687 		return r;
2688 	vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2689 	return 0;
2690 }
2691 
efer_trap(struct kvm_vcpu * vcpu)2692 static int efer_trap(struct kvm_vcpu *vcpu)
2693 {
2694 	struct msr_data msr_info;
2695 	int ret;
2696 
2697 	/*
2698 	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2699 	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2700 	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2701 	 * the guest doesn't have X86_FEATURE_SVM.
2702 	 */
2703 	msr_info.host_initiated = false;
2704 	msr_info.index = MSR_EFER;
2705 	msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2706 	ret = kvm_set_msr_common(vcpu, &msr_info);
2707 
2708 	return kvm_complete_insn_gp(vcpu, ret);
2709 }
2710 
svm_get_feature_msr(u32 msr,u64 * data)2711 static int svm_get_feature_msr(u32 msr, u64 *data)
2712 {
2713 	*data = 0;
2714 
2715 	switch (msr) {
2716 	case MSR_AMD64_DE_CFG:
2717 		if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2718 			*data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2719 		break;
2720 	default:
2721 		return KVM_MSR_RET_UNSUPPORTED;
2722 	}
2723 
2724 	return 0;
2725 }
2726 
sev_es_prevent_msr_access(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2727 static bool sev_es_prevent_msr_access(struct kvm_vcpu *vcpu,
2728 				      struct msr_data *msr_info)
2729 {
2730 	return sev_es_guest(vcpu->kvm) &&
2731 	       vcpu->arch.guest_state_protected &&
2732 	       !msr_write_intercepted(vcpu, msr_info->index);
2733 }
2734 
svm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2735 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2736 {
2737 	struct vcpu_svm *svm = to_svm(vcpu);
2738 
2739 	if (sev_es_prevent_msr_access(vcpu, msr_info)) {
2740 		msr_info->data = 0;
2741 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
2742 	}
2743 
2744 	switch (msr_info->index) {
2745 	case MSR_AMD64_TSC_RATIO:
2746 		if (!msr_info->host_initiated &&
2747 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR))
2748 			return 1;
2749 		msr_info->data = svm->tsc_ratio_msr;
2750 		break;
2751 	case MSR_STAR:
2752 		msr_info->data = svm->vmcb01.ptr->save.star;
2753 		break;
2754 #ifdef CONFIG_X86_64
2755 	case MSR_LSTAR:
2756 		msr_info->data = svm->vmcb01.ptr->save.lstar;
2757 		break;
2758 	case MSR_CSTAR:
2759 		msr_info->data = svm->vmcb01.ptr->save.cstar;
2760 		break;
2761 	case MSR_GS_BASE:
2762 		msr_info->data = svm->vmcb01.ptr->save.gs.base;
2763 		break;
2764 	case MSR_FS_BASE:
2765 		msr_info->data = svm->vmcb01.ptr->save.fs.base;
2766 		break;
2767 	case MSR_KERNEL_GS_BASE:
2768 		msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2769 		break;
2770 	case MSR_SYSCALL_MASK:
2771 		msr_info->data = svm->vmcb01.ptr->save.sfmask;
2772 		break;
2773 #endif
2774 	case MSR_IA32_SYSENTER_CS:
2775 		msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2776 		break;
2777 	case MSR_IA32_SYSENTER_EIP:
2778 		msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2779 		if (guest_cpuid_is_intel_compatible(vcpu))
2780 			msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2781 		break;
2782 	case MSR_IA32_SYSENTER_ESP:
2783 		msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2784 		if (guest_cpuid_is_intel_compatible(vcpu))
2785 			msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2786 		break;
2787 	case MSR_TSC_AUX:
2788 		msr_info->data = svm->tsc_aux;
2789 		break;
2790 	case MSR_IA32_DEBUGCTLMSR:
2791 		msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl;
2792 		break;
2793 	case MSR_IA32_LASTBRANCHFROMIP:
2794 		msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from;
2795 		break;
2796 	case MSR_IA32_LASTBRANCHTOIP:
2797 		msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to;
2798 		break;
2799 	case MSR_IA32_LASTINTFROMIP:
2800 		msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from;
2801 		break;
2802 	case MSR_IA32_LASTINTTOIP:
2803 		msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to;
2804 		break;
2805 	case MSR_VM_HSAVE_PA:
2806 		msr_info->data = svm->nested.hsave_msr;
2807 		break;
2808 	case MSR_VM_CR:
2809 		msr_info->data = svm->nested.vm_cr_msr;
2810 		break;
2811 	case MSR_IA32_SPEC_CTRL:
2812 		if (!msr_info->host_initiated &&
2813 		    !guest_has_spec_ctrl_msr(vcpu))
2814 			return 1;
2815 
2816 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2817 			msr_info->data = svm->vmcb->save.spec_ctrl;
2818 		else
2819 			msr_info->data = svm->spec_ctrl;
2820 		break;
2821 	case MSR_AMD64_VIRT_SPEC_CTRL:
2822 		if (!msr_info->host_initiated &&
2823 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD))
2824 			return 1;
2825 
2826 		msr_info->data = svm->virt_spec_ctrl;
2827 		break;
2828 	case MSR_F15H_IC_CFG: {
2829 
2830 		int family, model;
2831 
2832 		family = guest_cpuid_family(vcpu);
2833 		model  = guest_cpuid_model(vcpu);
2834 
2835 		if (family < 0 || model < 0)
2836 			return kvm_get_msr_common(vcpu, msr_info);
2837 
2838 		msr_info->data = 0;
2839 
2840 		if (family == 0x15 &&
2841 		    (model >= 0x2 && model < 0x20))
2842 			msr_info->data = 0x1E;
2843 		}
2844 		break;
2845 	case MSR_AMD64_DE_CFG:
2846 		msr_info->data = svm->msr_decfg;
2847 		break;
2848 	default:
2849 		return kvm_get_msr_common(vcpu, msr_info);
2850 	}
2851 	return 0;
2852 }
2853 
svm_complete_emulated_msr(struct kvm_vcpu * vcpu,int err)2854 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2855 {
2856 	struct vcpu_svm *svm = to_svm(vcpu);
2857 	if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2858 		return kvm_complete_insn_gp(vcpu, err);
2859 
2860 	svm_vmgexit_inject_exception(svm, X86_TRAP_GP);
2861 	return 1;
2862 }
2863 
svm_set_vm_cr(struct kvm_vcpu * vcpu,u64 data)2864 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2865 {
2866 	struct vcpu_svm *svm = to_svm(vcpu);
2867 	int svm_dis, chg_mask;
2868 
2869 	if (data & ~SVM_VM_CR_VALID_MASK)
2870 		return 1;
2871 
2872 	chg_mask = SVM_VM_CR_VALID_MASK;
2873 
2874 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2875 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2876 
2877 	svm->nested.vm_cr_msr &= ~chg_mask;
2878 	svm->nested.vm_cr_msr |= (data & chg_mask);
2879 
2880 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2881 
2882 	/* check for svm_disable while efer.svme is set */
2883 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2884 		return 1;
2885 
2886 	return 0;
2887 }
2888 
svm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)2889 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2890 {
2891 	struct vcpu_svm *svm = to_svm(vcpu);
2892 	int ret = 0;
2893 
2894 	u32 ecx = msr->index;
2895 	u64 data = msr->data;
2896 
2897 	if (sev_es_prevent_msr_access(vcpu, msr))
2898 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
2899 
2900 	switch (ecx) {
2901 	case MSR_AMD64_TSC_RATIO:
2902 
2903 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) {
2904 
2905 			if (!msr->host_initiated)
2906 				return 1;
2907 			/*
2908 			 * In case TSC scaling is not enabled, always
2909 			 * leave this MSR at the default value.
2910 			 *
2911 			 * Due to bug in qemu 6.2.0, it would try to set
2912 			 * this msr to 0 if tsc scaling is not enabled.
2913 			 * Ignore this value as well.
2914 			 */
2915 			if (data != 0 && data != svm->tsc_ratio_msr)
2916 				return 1;
2917 			break;
2918 		}
2919 
2920 		if (data & SVM_TSC_RATIO_RSVD)
2921 			return 1;
2922 
2923 		svm->tsc_ratio_msr = data;
2924 
2925 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) &&
2926 		    is_guest_mode(vcpu))
2927 			nested_svm_update_tsc_ratio_msr(vcpu);
2928 
2929 		break;
2930 	case MSR_IA32_CR_PAT:
2931 		ret = kvm_set_msr_common(vcpu, msr);
2932 		if (ret)
2933 			break;
2934 
2935 		svm->vmcb01.ptr->save.g_pat = data;
2936 		if (is_guest_mode(vcpu))
2937 			nested_vmcb02_compute_g_pat(svm);
2938 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2939 		break;
2940 	case MSR_IA32_SPEC_CTRL:
2941 		if (!msr->host_initiated &&
2942 		    !guest_has_spec_ctrl_msr(vcpu))
2943 			return 1;
2944 
2945 		if (kvm_spec_ctrl_test_value(data))
2946 			return 1;
2947 
2948 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2949 			svm->vmcb->save.spec_ctrl = data;
2950 		else
2951 			svm->spec_ctrl = data;
2952 		if (!data)
2953 			break;
2954 
2955 		/*
2956 		 * For non-nested:
2957 		 * When it's written (to non-zero) for the first time, pass
2958 		 * it through.
2959 		 *
2960 		 * For nested:
2961 		 * The handling of the MSR bitmap for L2 guests is done in
2962 		 * nested_svm_merge_msrpm().
2963 		 * We update the L1 MSR bit as well since it will end up
2964 		 * touching the MSR anyway now.
2965 		 */
2966 		svm_disable_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
2967 		break;
2968 	case MSR_AMD64_VIRT_SPEC_CTRL:
2969 		if (!msr->host_initiated &&
2970 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD))
2971 			return 1;
2972 
2973 		if (data & ~SPEC_CTRL_SSBD)
2974 			return 1;
2975 
2976 		svm->virt_spec_ctrl = data;
2977 		break;
2978 	case MSR_STAR:
2979 		svm->vmcb01.ptr->save.star = data;
2980 		break;
2981 #ifdef CONFIG_X86_64
2982 	case MSR_LSTAR:
2983 		svm->vmcb01.ptr->save.lstar = data;
2984 		break;
2985 	case MSR_CSTAR:
2986 		svm->vmcb01.ptr->save.cstar = data;
2987 		break;
2988 	case MSR_GS_BASE:
2989 		svm->vmcb01.ptr->save.gs.base = data;
2990 		break;
2991 	case MSR_FS_BASE:
2992 		svm->vmcb01.ptr->save.fs.base = data;
2993 		break;
2994 	case MSR_KERNEL_GS_BASE:
2995 		svm->vmcb01.ptr->save.kernel_gs_base = data;
2996 		break;
2997 	case MSR_SYSCALL_MASK:
2998 		svm->vmcb01.ptr->save.sfmask = data;
2999 		break;
3000 #endif
3001 	case MSR_IA32_SYSENTER_CS:
3002 		svm->vmcb01.ptr->save.sysenter_cs = data;
3003 		break;
3004 	case MSR_IA32_SYSENTER_EIP:
3005 		svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
3006 		/*
3007 		 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
3008 		 * when we spoof an Intel vendor ID (for cross vendor migration).
3009 		 * In this case we use this intercept to track the high
3010 		 * 32 bit part of these msrs to support Intel's
3011 		 * implementation of SYSENTER/SYSEXIT.
3012 		 */
3013 		svm->sysenter_eip_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
3014 		break;
3015 	case MSR_IA32_SYSENTER_ESP:
3016 		svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
3017 		svm->sysenter_esp_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
3018 		break;
3019 	case MSR_TSC_AUX:
3020 		/*
3021 		 * TSC_AUX is always virtualized for SEV-ES guests when the
3022 		 * feature is available. The user return MSR support is not
3023 		 * required in this case because TSC_AUX is restored on #VMEXIT
3024 		 * from the host save area (which has been initialized in
3025 		 * svm_enable_virtualization_cpu()).
3026 		 */
3027 		if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm))
3028 			break;
3029 
3030 		/*
3031 		 * TSC_AUX is usually changed only during boot and never read
3032 		 * directly.  Intercept TSC_AUX and switch it via user return.
3033 		 */
3034 		preempt_disable();
3035 		ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
3036 		preempt_enable();
3037 		if (ret)
3038 			break;
3039 
3040 		svm->tsc_aux = data;
3041 		break;
3042 	case MSR_IA32_DEBUGCTLMSR:
3043 		if (!lbrv) {
3044 			kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3045 			break;
3046 		}
3047 
3048 		/*
3049 		 * Suppress BTF as KVM doesn't virtualize BTF, but there's no
3050 		 * way to communicate lack of support to the guest.
3051 		 */
3052 		if (data & DEBUGCTLMSR_BTF) {
3053 			kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data);
3054 			data &= ~DEBUGCTLMSR_BTF;
3055 		}
3056 
3057 		if (data & DEBUGCTL_RESERVED_BITS)
3058 			return 1;
3059 
3060 		svm_get_lbr_vmcb(svm)->save.dbgctl = data;
3061 		svm_update_lbrv(vcpu);
3062 		break;
3063 	case MSR_VM_HSAVE_PA:
3064 		/*
3065 		 * Old kernels did not validate the value written to
3066 		 * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
3067 		 * value to allow live migrating buggy or malicious guests
3068 		 * originating from those kernels.
3069 		 */
3070 		if (!msr->host_initiated && !page_address_valid(vcpu, data))
3071 			return 1;
3072 
3073 		svm->nested.hsave_msr = data & PAGE_MASK;
3074 		break;
3075 	case MSR_VM_CR:
3076 		return svm_set_vm_cr(vcpu, data);
3077 	case MSR_VM_IGNNE:
3078 		kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3079 		break;
3080 	case MSR_AMD64_DE_CFG: {
3081 		u64 supported_de_cfg;
3082 
3083 		if (svm_get_feature_msr(ecx, &supported_de_cfg))
3084 			return 1;
3085 
3086 		if (data & ~supported_de_cfg)
3087 			return 1;
3088 
3089 		svm->msr_decfg = data;
3090 		break;
3091 	}
3092 	default:
3093 		return kvm_set_msr_common(vcpu, msr);
3094 	}
3095 	return ret;
3096 }
3097 
msr_interception(struct kvm_vcpu * vcpu)3098 static int msr_interception(struct kvm_vcpu *vcpu)
3099 {
3100 	if (to_svm(vcpu)->vmcb->control.exit_info_1)
3101 		return kvm_emulate_wrmsr(vcpu);
3102 	else
3103 		return kvm_emulate_rdmsr(vcpu);
3104 }
3105 
interrupt_window_interception(struct kvm_vcpu * vcpu)3106 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3107 {
3108 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3109 	svm_clear_vintr(to_svm(vcpu));
3110 
3111 	/*
3112 	 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3113 	 * In this case AVIC was temporarily disabled for
3114 	 * requesting the IRQ window and we have to re-enable it.
3115 	 *
3116 	 * If running nested, still remove the VM wide AVIC inhibit to
3117 	 * support case in which the interrupt window was requested when the
3118 	 * vCPU was not running nested.
3119 
3120 	 * All vCPUs which run still run nested, will remain to have their
3121 	 * AVIC still inhibited due to per-cpu AVIC inhibition.
3122 	 */
3123 	kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3124 
3125 	++vcpu->stat.irq_window_exits;
3126 	return 1;
3127 }
3128 
pause_interception(struct kvm_vcpu * vcpu)3129 static int pause_interception(struct kvm_vcpu *vcpu)
3130 {
3131 	bool in_kernel;
3132 	/*
3133 	 * CPL is not made available for an SEV-ES guest, therefore
3134 	 * vcpu->arch.preempted_in_kernel can never be true.  Just
3135 	 * set in_kernel to false as well.
3136 	 */
3137 	in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3138 
3139 	grow_ple_window(vcpu);
3140 
3141 	kvm_vcpu_on_spin(vcpu, in_kernel);
3142 	return kvm_skip_emulated_instruction(vcpu);
3143 }
3144 
invpcid_interception(struct kvm_vcpu * vcpu)3145 static int invpcid_interception(struct kvm_vcpu *vcpu)
3146 {
3147 	struct vcpu_svm *svm = to_svm(vcpu);
3148 	unsigned long type;
3149 	gva_t gva;
3150 
3151 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) {
3152 		kvm_queue_exception(vcpu, UD_VECTOR);
3153 		return 1;
3154 	}
3155 
3156 	/*
3157 	 * For an INVPCID intercept:
3158 	 * EXITINFO1 provides the linear address of the memory operand.
3159 	 * EXITINFO2 provides the contents of the register operand.
3160 	 */
3161 	type = svm->vmcb->control.exit_info_2;
3162 	gva = svm->vmcb->control.exit_info_1;
3163 
3164 	/*
3165 	 * FIXME: Perform segment checks for 32-bit mode, and inject #SS if the
3166 	 *        stack segment is used.  The intercept takes priority over all
3167 	 *        #GP checks except CPL>0, but somehow still generates a linear
3168 	 *        address?  The APM is sorely lacking.
3169 	 */
3170 	if (is_noncanonical_address(gva, vcpu, 0)) {
3171 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3172 		return 1;
3173 	}
3174 
3175 	return kvm_handle_invpcid(vcpu, type, gva);
3176 }
3177 
complete_userspace_buslock(struct kvm_vcpu * vcpu)3178 static inline int complete_userspace_buslock(struct kvm_vcpu *vcpu)
3179 {
3180 	struct vcpu_svm *svm = to_svm(vcpu);
3181 
3182 	/*
3183 	 * If userspace has NOT changed RIP, then KVM's ABI is to let the guest
3184 	 * execute the bus-locking instruction.  Set the bus lock counter to '1'
3185 	 * to effectively step past the bus lock.
3186 	 */
3187 	if (kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))
3188 		svm->vmcb->control.bus_lock_counter = 1;
3189 
3190 	return 1;
3191 }
3192 
bus_lock_exit(struct kvm_vcpu * vcpu)3193 static int bus_lock_exit(struct kvm_vcpu *vcpu)
3194 {
3195 	struct vcpu_svm *svm = to_svm(vcpu);
3196 
3197 	vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
3198 	vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
3199 
3200 	vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu);
3201 	vcpu->arch.complete_userspace_io = complete_userspace_buslock;
3202 
3203 	if (is_guest_mode(vcpu))
3204 		svm->nested.ctl.bus_lock_rip = vcpu->arch.cui_linear_rip;
3205 
3206 	return 0;
3207 }
3208 
3209 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3210 	[SVM_EXIT_READ_CR0]			= cr_interception,
3211 	[SVM_EXIT_READ_CR3]			= cr_interception,
3212 	[SVM_EXIT_READ_CR4]			= cr_interception,
3213 	[SVM_EXIT_READ_CR8]			= cr_interception,
3214 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3215 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3216 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3217 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3218 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3219 	[SVM_EXIT_READ_DR0]			= dr_interception,
3220 	[SVM_EXIT_READ_DR1]			= dr_interception,
3221 	[SVM_EXIT_READ_DR2]			= dr_interception,
3222 	[SVM_EXIT_READ_DR3]			= dr_interception,
3223 	[SVM_EXIT_READ_DR4]			= dr_interception,
3224 	[SVM_EXIT_READ_DR5]			= dr_interception,
3225 	[SVM_EXIT_READ_DR6]			= dr_interception,
3226 	[SVM_EXIT_READ_DR7]			= dr_interception,
3227 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3228 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3229 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3230 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3231 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3232 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3233 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3234 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3235 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3236 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3237 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3238 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3239 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3240 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3241 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
3242 	[SVM_EXIT_INTR]				= intr_interception,
3243 	[SVM_EXIT_NMI]				= nmi_interception,
3244 	[SVM_EXIT_SMI]				= smi_interception,
3245 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3246 	[SVM_EXIT_RDPMC]			= kvm_emulate_rdpmc,
3247 	[SVM_EXIT_CPUID]			= kvm_emulate_cpuid,
3248 	[SVM_EXIT_IRET]                         = iret_interception,
3249 	[SVM_EXIT_INVD]                         = kvm_emulate_invd,
3250 	[SVM_EXIT_PAUSE]			= pause_interception,
3251 	[SVM_EXIT_HLT]				= kvm_emulate_halt,
3252 	[SVM_EXIT_INVLPG]			= invlpg_interception,
3253 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3254 	[SVM_EXIT_IOIO]				= io_interception,
3255 	[SVM_EXIT_MSR]				= msr_interception,
3256 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3257 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3258 	[SVM_EXIT_VMRUN]			= vmrun_interception,
3259 	[SVM_EXIT_VMMCALL]			= kvm_emulate_hypercall,
3260 	[SVM_EXIT_VMLOAD]			= vmload_interception,
3261 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3262 	[SVM_EXIT_STGI]				= stgi_interception,
3263 	[SVM_EXIT_CLGI]				= clgi_interception,
3264 	[SVM_EXIT_SKINIT]			= skinit_interception,
3265 	[SVM_EXIT_RDTSCP]			= kvm_handle_invalid_op,
3266 	[SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3267 	[SVM_EXIT_MONITOR]			= kvm_emulate_monitor,
3268 	[SVM_EXIT_MWAIT]			= kvm_emulate_mwait,
3269 	[SVM_EXIT_XSETBV]			= kvm_emulate_xsetbv,
3270 	[SVM_EXIT_RDPRU]			= kvm_handle_invalid_op,
3271 	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
3272 	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
3273 	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
3274 	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
3275 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
3276 	[SVM_EXIT_IDLE_HLT]			= kvm_emulate_halt,
3277 	[SVM_EXIT_NPF]				= npf_interception,
3278 	[SVM_EXIT_BUS_LOCK]			= bus_lock_exit,
3279 	[SVM_EXIT_RSM]                          = rsm_interception,
3280 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
3281 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3282 #ifdef CONFIG_KVM_AMD_SEV
3283 	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
3284 #endif
3285 };
3286 
dump_vmcb(struct kvm_vcpu * vcpu)3287 static void dump_vmcb(struct kvm_vcpu *vcpu)
3288 {
3289 	struct vcpu_svm *svm = to_svm(vcpu);
3290 	struct vmcb_control_area *control = &svm->vmcb->control;
3291 	struct vmcb_save_area *save = &svm->vmcb->save;
3292 	struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3293 	char *vm_type;
3294 
3295 	if (!dump_invalid_vmcb) {
3296 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3297 		return;
3298 	}
3299 
3300 	guard(mutex)(&vmcb_dump_mutex);
3301 
3302 	vm_type = sev_snp_guest(vcpu->kvm) ? "SEV-SNP" :
3303 		  sev_es_guest(vcpu->kvm) ? "SEV-ES" :
3304 		  sev_guest(vcpu->kvm) ? "SEV" : "SVM";
3305 
3306 	pr_err("%s vCPU%u VMCB %p, last attempted VMRUN on CPU %d\n",
3307 	       vm_type, vcpu->vcpu_id, svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3308 	pr_err("VMCB Control Area:\n");
3309 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3310 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3311 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3312 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3313 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3314 	pr_err("%-20s%08x %08x\n", "intercepts:",
3315               control->intercepts[INTERCEPT_WORD3],
3316 	       control->intercepts[INTERCEPT_WORD4]);
3317 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3318 	pr_err("%-20s%d\n", "pause filter threshold:",
3319 	       control->pause_filter_thresh);
3320 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3321 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3322 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3323 	pr_err("%-20s%d\n", "asid:", control->asid);
3324 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3325 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3326 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3327 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3328 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3329 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3330 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3331 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3332 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3333 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3334 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3335 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3336 	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3337 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3338 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3339 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3340 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3341 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3342 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3343 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3344 	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3345 	pr_err("%-20s%016llx\n", "allowed_sev_features:", control->allowed_sev_features);
3346 	pr_err("%-20s%016llx\n", "guest_sev_features:", control->guest_sev_features);
3347 
3348 	if (sev_es_guest(vcpu->kvm)) {
3349 		save = sev_decrypt_vmsa(vcpu);
3350 		if (!save)
3351 			goto no_vmsa;
3352 
3353 		save01 = save;
3354 	}
3355 
3356 	pr_err("VMCB State Save Area:\n");
3357 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3358 	       "es:",
3359 	       save->es.selector, save->es.attrib,
3360 	       save->es.limit, save->es.base);
3361 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3362 	       "cs:",
3363 	       save->cs.selector, save->cs.attrib,
3364 	       save->cs.limit, save->cs.base);
3365 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3366 	       "ss:",
3367 	       save->ss.selector, save->ss.attrib,
3368 	       save->ss.limit, save->ss.base);
3369 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3370 	       "ds:",
3371 	       save->ds.selector, save->ds.attrib,
3372 	       save->ds.limit, save->ds.base);
3373 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3374 	       "fs:",
3375 	       save01->fs.selector, save01->fs.attrib,
3376 	       save01->fs.limit, save01->fs.base);
3377 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3378 	       "gs:",
3379 	       save01->gs.selector, save01->gs.attrib,
3380 	       save01->gs.limit, save01->gs.base);
3381 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3382 	       "gdtr:",
3383 	       save->gdtr.selector, save->gdtr.attrib,
3384 	       save->gdtr.limit, save->gdtr.base);
3385 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3386 	       "ldtr:",
3387 	       save01->ldtr.selector, save01->ldtr.attrib,
3388 	       save01->ldtr.limit, save01->ldtr.base);
3389 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3390 	       "idtr:",
3391 	       save->idtr.selector, save->idtr.attrib,
3392 	       save->idtr.limit, save->idtr.base);
3393 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3394 	       "tr:",
3395 	       save01->tr.selector, save01->tr.attrib,
3396 	       save01->tr.limit, save01->tr.base);
3397 	pr_err("vmpl: %d   cpl:  %d               efer:          %016llx\n",
3398 	       save->vmpl, save->cpl, save->efer);
3399 	pr_err("%-15s %016llx %-13s %016llx\n",
3400 	       "cr0:", save->cr0, "cr2:", save->cr2);
3401 	pr_err("%-15s %016llx %-13s %016llx\n",
3402 	       "cr3:", save->cr3, "cr4:", save->cr4);
3403 	pr_err("%-15s %016llx %-13s %016llx\n",
3404 	       "dr6:", save->dr6, "dr7:", save->dr7);
3405 	pr_err("%-15s %016llx %-13s %016llx\n",
3406 	       "rip:", save->rip, "rflags:", save->rflags);
3407 	pr_err("%-15s %016llx %-13s %016llx\n",
3408 	       "rsp:", save->rsp, "rax:", save->rax);
3409 	pr_err("%-15s %016llx %-13s %016llx\n",
3410 	       "star:", save01->star, "lstar:", save01->lstar);
3411 	pr_err("%-15s %016llx %-13s %016llx\n",
3412 	       "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3413 	pr_err("%-15s %016llx %-13s %016llx\n",
3414 	       "kernel_gs_base:", save01->kernel_gs_base,
3415 	       "sysenter_cs:", save01->sysenter_cs);
3416 	pr_err("%-15s %016llx %-13s %016llx\n",
3417 	       "sysenter_esp:", save01->sysenter_esp,
3418 	       "sysenter_eip:", save01->sysenter_eip);
3419 	pr_err("%-15s %016llx %-13s %016llx\n",
3420 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3421 	pr_err("%-15s %016llx %-13s %016llx\n",
3422 	       "br_from:", save->br_from, "br_to:", save->br_to);
3423 	pr_err("%-15s %016llx %-13s %016llx\n",
3424 	       "excp_from:", save->last_excp_from,
3425 	       "excp_to:", save->last_excp_to);
3426 
3427 	if (sev_es_guest(vcpu->kvm)) {
3428 		struct sev_es_save_area *vmsa = (struct sev_es_save_area *)save;
3429 
3430 		pr_err("%-15s %016llx\n",
3431 		       "sev_features", vmsa->sev_features);
3432 
3433 		pr_err("%-15s %016llx %-13s %016llx\n",
3434 		       "rax:", vmsa->rax, "rbx:", vmsa->rbx);
3435 		pr_err("%-15s %016llx %-13s %016llx\n",
3436 		       "rcx:", vmsa->rcx, "rdx:", vmsa->rdx);
3437 		pr_err("%-15s %016llx %-13s %016llx\n",
3438 		       "rsi:", vmsa->rsi, "rdi:", vmsa->rdi);
3439 		pr_err("%-15s %016llx %-13s %016llx\n",
3440 		       "rbp:", vmsa->rbp, "rsp:", vmsa->rsp);
3441 		pr_err("%-15s %016llx %-13s %016llx\n",
3442 		       "r8:", vmsa->r8, "r9:", vmsa->r9);
3443 		pr_err("%-15s %016llx %-13s %016llx\n",
3444 		       "r10:", vmsa->r10, "r11:", vmsa->r11);
3445 		pr_err("%-15s %016llx %-13s %016llx\n",
3446 		       "r12:", vmsa->r12, "r13:", vmsa->r13);
3447 		pr_err("%-15s %016llx %-13s %016llx\n",
3448 		       "r14:", vmsa->r14, "r15:", vmsa->r15);
3449 		pr_err("%-15s %016llx %-13s %016llx\n",
3450 		       "xcr0:", vmsa->xcr0, "xss:", vmsa->xss);
3451 	} else {
3452 		pr_err("%-15s %016llx %-13s %016lx\n",
3453 		       "rax:", save->rax, "rbx:",
3454 		       vcpu->arch.regs[VCPU_REGS_RBX]);
3455 		pr_err("%-15s %016lx %-13s %016lx\n",
3456 		       "rcx:", vcpu->arch.regs[VCPU_REGS_RCX],
3457 		       "rdx:", vcpu->arch.regs[VCPU_REGS_RDX]);
3458 		pr_err("%-15s %016lx %-13s %016lx\n",
3459 		       "rsi:", vcpu->arch.regs[VCPU_REGS_RSI],
3460 		       "rdi:", vcpu->arch.regs[VCPU_REGS_RDI]);
3461 		pr_err("%-15s %016lx %-13s %016llx\n",
3462 		       "rbp:", vcpu->arch.regs[VCPU_REGS_RBP],
3463 		       "rsp:", save->rsp);
3464 #ifdef CONFIG_X86_64
3465 		pr_err("%-15s %016lx %-13s %016lx\n",
3466 		       "r8:", vcpu->arch.regs[VCPU_REGS_R8],
3467 		       "r9:", vcpu->arch.regs[VCPU_REGS_R9]);
3468 		pr_err("%-15s %016lx %-13s %016lx\n",
3469 		       "r10:", vcpu->arch.regs[VCPU_REGS_R10],
3470 		       "r11:", vcpu->arch.regs[VCPU_REGS_R11]);
3471 		pr_err("%-15s %016lx %-13s %016lx\n",
3472 		       "r12:", vcpu->arch.regs[VCPU_REGS_R12],
3473 		       "r13:", vcpu->arch.regs[VCPU_REGS_R13]);
3474 		pr_err("%-15s %016lx %-13s %016lx\n",
3475 		       "r14:", vcpu->arch.regs[VCPU_REGS_R14],
3476 		       "r15:", vcpu->arch.regs[VCPU_REGS_R15]);
3477 #endif
3478 	}
3479 
3480 no_vmsa:
3481 	if (sev_es_guest(vcpu->kvm))
3482 		sev_free_decrypted_vmsa(vcpu, save);
3483 }
3484 
svm_check_exit_valid(u64 exit_code)3485 static bool svm_check_exit_valid(u64 exit_code)
3486 {
3487 	return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3488 		svm_exit_handlers[exit_code]);
3489 }
3490 
svm_handle_invalid_exit(struct kvm_vcpu * vcpu,u64 exit_code)3491 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3492 {
3493 	vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3494 	dump_vmcb(vcpu);
3495 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3496 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3497 	vcpu->run->internal.ndata = 2;
3498 	vcpu->run->internal.data[0] = exit_code;
3499 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3500 	return 0;
3501 }
3502 
svm_invoke_exit_handler(struct kvm_vcpu * vcpu,u64 exit_code)3503 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3504 {
3505 	if (!svm_check_exit_valid(exit_code))
3506 		return svm_handle_invalid_exit(vcpu, exit_code);
3507 
3508 #ifdef CONFIG_MITIGATION_RETPOLINE
3509 	if (exit_code == SVM_EXIT_MSR)
3510 		return msr_interception(vcpu);
3511 	else if (exit_code == SVM_EXIT_VINTR)
3512 		return interrupt_window_interception(vcpu);
3513 	else if (exit_code == SVM_EXIT_INTR)
3514 		return intr_interception(vcpu);
3515 	else if (exit_code == SVM_EXIT_HLT || exit_code == SVM_EXIT_IDLE_HLT)
3516 		return kvm_emulate_halt(vcpu);
3517 	else if (exit_code == SVM_EXIT_NPF)
3518 		return npf_interception(vcpu);
3519 #ifdef CONFIG_KVM_AMD_SEV
3520 	else if (exit_code == SVM_EXIT_VMGEXIT)
3521 		return sev_handle_vmgexit(vcpu);
3522 #endif
3523 #endif
3524 	return svm_exit_handlers[exit_code](vcpu);
3525 }
3526 
svm_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)3527 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3528 			      u64 *info1, u64 *info2,
3529 			      u32 *intr_info, u32 *error_code)
3530 {
3531 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3532 
3533 	*reason = control->exit_code;
3534 	*info1 = control->exit_info_1;
3535 	*info2 = control->exit_info_2;
3536 	*intr_info = control->exit_int_info;
3537 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3538 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3539 		*error_code = control->exit_int_info_err;
3540 	else
3541 		*error_code = 0;
3542 }
3543 
svm_get_entry_info(struct kvm_vcpu * vcpu,u32 * intr_info,u32 * error_code)3544 static void svm_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info,
3545 			       u32 *error_code)
3546 {
3547 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3548 
3549 	*intr_info = control->event_inj;
3550 
3551 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3552 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3553 		*error_code = control->event_inj_err;
3554 	else
3555 		*error_code = 0;
3556 
3557 }
3558 
svm_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)3559 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3560 {
3561 	struct vcpu_svm *svm = to_svm(vcpu);
3562 	struct kvm_run *kvm_run = vcpu->run;
3563 	u32 exit_code = svm->vmcb->control.exit_code;
3564 
3565 	/* SEV-ES guests must use the CR write traps to track CR registers. */
3566 	if (!sev_es_guest(vcpu->kvm)) {
3567 		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3568 			vcpu->arch.cr0 = svm->vmcb->save.cr0;
3569 		if (npt_enabled)
3570 			vcpu->arch.cr3 = svm->vmcb->save.cr3;
3571 	}
3572 
3573 	if (is_guest_mode(vcpu)) {
3574 		int vmexit;
3575 
3576 		trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3577 
3578 		vmexit = nested_svm_exit_special(svm);
3579 
3580 		if (vmexit == NESTED_EXIT_CONTINUE)
3581 			vmexit = nested_svm_exit_handled(svm);
3582 
3583 		if (vmexit == NESTED_EXIT_DONE)
3584 			return 1;
3585 	}
3586 
3587 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3588 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3589 		kvm_run->fail_entry.hardware_entry_failure_reason
3590 			= svm->vmcb->control.exit_code;
3591 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3592 		dump_vmcb(vcpu);
3593 		return 0;
3594 	}
3595 
3596 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3597 		return 1;
3598 
3599 	return svm_invoke_exit_handler(vcpu, exit_code);
3600 }
3601 
pre_svm_run(struct kvm_vcpu * vcpu)3602 static int pre_svm_run(struct kvm_vcpu *vcpu)
3603 {
3604 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3605 	struct vcpu_svm *svm = to_svm(vcpu);
3606 
3607 	/*
3608 	 * If the previous vmrun of the vmcb occurred on a different physical
3609 	 * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3610 	 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3611 	 */
3612 	if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3613 		svm->current_vmcb->asid_generation = 0;
3614 		vmcb_mark_all_dirty(svm->vmcb);
3615 		svm->current_vmcb->cpu = vcpu->cpu;
3616         }
3617 
3618 	if (sev_guest(vcpu->kvm))
3619 		return pre_sev_run(svm, vcpu->cpu);
3620 
3621 	/* FIXME: handle wraparound of asid_generation */
3622 	if (svm->current_vmcb->asid_generation != sd->asid_generation)
3623 		new_asid(svm, sd);
3624 
3625 	return 0;
3626 }
3627 
svm_inject_nmi(struct kvm_vcpu * vcpu)3628 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3629 {
3630 	struct vcpu_svm *svm = to_svm(vcpu);
3631 
3632 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3633 
3634 	if (svm->nmi_l1_to_l2)
3635 		return;
3636 
3637 	/*
3638 	 * No need to manually track NMI masking when vNMI is enabled, hardware
3639 	 * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the
3640 	 * case where software directly injects an NMI.
3641 	 */
3642 	if (!is_vnmi_enabled(svm)) {
3643 		svm->nmi_masked = true;
3644 		svm_set_iret_intercept(svm);
3645 	}
3646 	++vcpu->stat.nmi_injections;
3647 }
3648 
svm_is_vnmi_pending(struct kvm_vcpu * vcpu)3649 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
3650 {
3651 	struct vcpu_svm *svm = to_svm(vcpu);
3652 
3653 	if (!is_vnmi_enabled(svm))
3654 		return false;
3655 
3656 	return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
3657 }
3658 
svm_set_vnmi_pending(struct kvm_vcpu * vcpu)3659 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
3660 {
3661 	struct vcpu_svm *svm = to_svm(vcpu);
3662 
3663 	if (!is_vnmi_enabled(svm))
3664 		return false;
3665 
3666 	if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
3667 		return false;
3668 
3669 	svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
3670 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
3671 
3672 	/*
3673 	 * Because the pending NMI is serviced by hardware, KVM can't know when
3674 	 * the NMI is "injected", but for all intents and purposes, passing the
3675 	 * NMI off to hardware counts as injection.
3676 	 */
3677 	++vcpu->stat.nmi_injections;
3678 
3679 	return true;
3680 }
3681 
svm_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)3682 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3683 {
3684 	struct vcpu_svm *svm = to_svm(vcpu);
3685 	u32 type;
3686 
3687 	if (vcpu->arch.interrupt.soft) {
3688 		if (svm_update_soft_interrupt_rip(vcpu))
3689 			return;
3690 
3691 		type = SVM_EVTINJ_TYPE_SOFT;
3692 	} else {
3693 		type = SVM_EVTINJ_TYPE_INTR;
3694 	}
3695 
3696 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3697 			   vcpu->arch.interrupt.soft, reinjected);
3698 	++vcpu->stat.irq_injections;
3699 
3700 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3701 				       SVM_EVTINJ_VALID | type;
3702 }
3703 
svm_complete_interrupt_delivery(struct kvm_vcpu * vcpu,int delivery_mode,int trig_mode,int vector)3704 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3705 				     int trig_mode, int vector)
3706 {
3707 	/*
3708 	 * apic->apicv_active must be read after vcpu->mode.
3709 	 * Pairs with smp_store_release in vcpu_enter_guest.
3710 	 */
3711 	bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3712 
3713 	/* Note, this is called iff the local APIC is in-kernel. */
3714 	if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3715 		/* Process the interrupt via kvm_check_and_inject_events(). */
3716 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3717 		kvm_vcpu_kick(vcpu);
3718 		return;
3719 	}
3720 
3721 	trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3722 	if (in_guest_mode) {
3723 		/*
3724 		 * Signal the doorbell to tell hardware to inject the IRQ.  If
3725 		 * the vCPU exits the guest before the doorbell chimes, hardware
3726 		 * will automatically process AVIC interrupts at the next VMRUN.
3727 		 */
3728 		avic_ring_doorbell(vcpu);
3729 	} else {
3730 		/*
3731 		 * Wake the vCPU if it was blocking.  KVM will then detect the
3732 		 * pending IRQ when checking if the vCPU has a wake event.
3733 		 */
3734 		kvm_vcpu_wake_up(vcpu);
3735 	}
3736 }
3737 
svm_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)3738 static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
3739 				  int trig_mode, int vector)
3740 {
3741 	kvm_lapic_set_irr(vector, apic);
3742 
3743 	/*
3744 	 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3745 	 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3746 	 * the read of guest_mode.  This guarantees that either VMRUN will see
3747 	 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3748 	 * will signal the doorbell if the CPU has already entered the guest.
3749 	 */
3750 	smp_mb__after_atomic();
3751 	svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3752 }
3753 
svm_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)3754 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3755 {
3756 	struct vcpu_svm *svm = to_svm(vcpu);
3757 
3758 	/*
3759 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
3760 	 * tracking is done using the CR write traps.
3761 	 */
3762 	if (sev_es_guest(vcpu->kvm))
3763 		return;
3764 
3765 	if (nested_svm_virtualize_tpr(vcpu))
3766 		return;
3767 
3768 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3769 
3770 	if (irr == -1)
3771 		return;
3772 
3773 	if (tpr >= irr)
3774 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3775 }
3776 
svm_get_nmi_mask(struct kvm_vcpu * vcpu)3777 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3778 {
3779 	struct vcpu_svm *svm = to_svm(vcpu);
3780 
3781 	if (is_vnmi_enabled(svm))
3782 		return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
3783 	else
3784 		return svm->nmi_masked;
3785 }
3786 
svm_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)3787 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3788 {
3789 	struct vcpu_svm *svm = to_svm(vcpu);
3790 
3791 	if (is_vnmi_enabled(svm)) {
3792 		if (masked)
3793 			svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
3794 		else
3795 			svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
3796 
3797 	} else {
3798 		svm->nmi_masked = masked;
3799 		if (masked)
3800 			svm_set_iret_intercept(svm);
3801 		else
3802 			svm_clr_iret_intercept(svm);
3803 	}
3804 }
3805 
svm_nmi_blocked(struct kvm_vcpu * vcpu)3806 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3807 {
3808 	struct vcpu_svm *svm = to_svm(vcpu);
3809 	struct vmcb *vmcb = svm->vmcb;
3810 
3811 	if (!gif_set(svm))
3812 		return true;
3813 
3814 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3815 		return false;
3816 
3817 	if (svm_get_nmi_mask(vcpu))
3818 		return true;
3819 
3820 	return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
3821 }
3822 
svm_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)3823 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3824 {
3825 	struct vcpu_svm *svm = to_svm(vcpu);
3826 	if (svm->nested.nested_run_pending)
3827 		return -EBUSY;
3828 
3829 	if (svm_nmi_blocked(vcpu))
3830 		return 0;
3831 
3832 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3833 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3834 		return -EBUSY;
3835 	return 1;
3836 }
3837 
svm_interrupt_blocked(struct kvm_vcpu * vcpu)3838 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3839 {
3840 	struct vcpu_svm *svm = to_svm(vcpu);
3841 	struct vmcb *vmcb = svm->vmcb;
3842 
3843 	if (!gif_set(svm))
3844 		return true;
3845 
3846 	if (is_guest_mode(vcpu)) {
3847 		/* As long as interrupts are being delivered...  */
3848 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3849 		    ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3850 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3851 			return true;
3852 
3853 		/* ... vmexits aren't blocked by the interrupt shadow  */
3854 		if (nested_exit_on_intr(svm))
3855 			return false;
3856 	} else {
3857 		if (!svm_get_if_flag(vcpu))
3858 			return true;
3859 	}
3860 
3861 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3862 }
3863 
svm_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)3864 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3865 {
3866 	struct vcpu_svm *svm = to_svm(vcpu);
3867 
3868 	if (svm->nested.nested_run_pending)
3869 		return -EBUSY;
3870 
3871 	if (svm_interrupt_blocked(vcpu))
3872 		return 0;
3873 
3874 	/*
3875 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3876 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3877 	 */
3878 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3879 		return -EBUSY;
3880 
3881 	return 1;
3882 }
3883 
svm_enable_irq_window(struct kvm_vcpu * vcpu)3884 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3885 {
3886 	struct vcpu_svm *svm = to_svm(vcpu);
3887 
3888 	/*
3889 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3890 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3891 	 * get that intercept, this function will be called again though and
3892 	 * we'll get the vintr intercept. However, if the vGIF feature is
3893 	 * enabled, the STGI interception will not occur. Enable the irq
3894 	 * window under the assumption that the hardware will set the GIF.
3895 	 */
3896 	if (vgif || gif_set(svm)) {
3897 		/*
3898 		 * IRQ window is not needed when AVIC is enabled,
3899 		 * unless we have pending ExtINT since it cannot be injected
3900 		 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3901 		 * and fallback to injecting IRQ via V_IRQ.
3902 		 *
3903 		 * If running nested, AVIC is already locally inhibited
3904 		 * on this vCPU, therefore there is no need to request
3905 		 * the VM wide AVIC inhibition.
3906 		 */
3907 		if (!is_guest_mode(vcpu))
3908 			kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3909 
3910 		svm_set_vintr(svm);
3911 	}
3912 }
3913 
svm_enable_nmi_window(struct kvm_vcpu * vcpu)3914 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3915 {
3916 	struct vcpu_svm *svm = to_svm(vcpu);
3917 
3918 	/*
3919 	 * If NMIs are outright masked, i.e. the vCPU is already handling an
3920 	 * NMI, and KVM has not yet intercepted an IRET, then there is nothing
3921 	 * more to do at this time as KVM has already enabled IRET intercepts.
3922 	 * If KVM has already intercepted IRET, then single-step over the IRET,
3923 	 * as NMIs aren't architecturally unmasked until the IRET completes.
3924 	 *
3925 	 * If vNMI is enabled, KVM should never request an NMI window if NMIs
3926 	 * are masked, as KVM allows at most one to-be-injected NMI and one
3927 	 * pending NMI.  If two NMIs arrive simultaneously, KVM will inject one
3928 	 * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are
3929 	 * unmasked.  KVM _will_ request an NMI window in some situations, e.g.
3930 	 * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately
3931 	 * inject the NMI.  In those situations, KVM needs to single-step over
3932 	 * the STI shadow or intercept STGI.
3933 	 */
3934 	if (svm_get_nmi_mask(vcpu)) {
3935 		WARN_ON_ONCE(is_vnmi_enabled(svm));
3936 
3937 		if (!svm->awaiting_iret_completion)
3938 			return; /* IRET will cause a vm exit */
3939 	}
3940 
3941 	/*
3942 	 * SEV-ES guests are responsible for signaling when a vCPU is ready to
3943 	 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e.
3944 	 * KVM can't intercept and single-step IRET to detect when NMIs are
3945 	 * unblocked (architecturally speaking).  See SVM_VMGEXIT_NMI_COMPLETE.
3946 	 *
3947 	 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware
3948 	 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not
3949 	 * supported NAEs in the GHCB protocol.
3950 	 */
3951 	if (sev_es_guest(vcpu->kvm))
3952 		return;
3953 
3954 	if (!gif_set(svm)) {
3955 		if (vgif)
3956 			svm_set_intercept(svm, INTERCEPT_STGI);
3957 		return; /* STGI will cause a vm exit */
3958 	}
3959 
3960 	/*
3961 	 * Something prevents NMI from been injected. Single step over possible
3962 	 * problem (IRET or exception injection or interrupt shadow)
3963 	 */
3964 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3965 	svm->nmi_singlestep = true;
3966 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3967 }
3968 
svm_flush_tlb_asid(struct kvm_vcpu * vcpu)3969 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
3970 {
3971 	struct vcpu_svm *svm = to_svm(vcpu);
3972 
3973 	/*
3974 	 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
3975 	 * A TLB flush for the current ASID flushes both "host" and "guest" TLB
3976 	 * entries, and thus is a superset of Hyper-V's fine grained flushing.
3977 	 */
3978 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3979 
3980 	/*
3981 	 * Flush only the current ASID even if the TLB flush was invoked via
3982 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3983 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3984 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3985 	 * VM-Exit (via kvm_mmu_reset_context()).
3986 	 */
3987 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3988 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3989 	else
3990 		svm->current_vmcb->asid_generation--;
3991 }
3992 
svm_flush_tlb_current(struct kvm_vcpu * vcpu)3993 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3994 {
3995 	hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
3996 
3997 	/*
3998 	 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
3999 	 * flush the NPT mappings via hypercall as flushing the ASID only
4000 	 * affects virtual to physical mappings, it does not invalidate guest
4001 	 * physical to host physical mappings.
4002 	 */
4003 	if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
4004 		hyperv_flush_guest_mapping(root_tdp);
4005 
4006 	svm_flush_tlb_asid(vcpu);
4007 }
4008 
svm_flush_tlb_all(struct kvm_vcpu * vcpu)4009 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
4010 {
4011 	/*
4012 	 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
4013 	 * flushes should be routed to hv_flush_remote_tlbs() without requesting
4014 	 * a "regular" remote flush.  Reaching this point means either there's
4015 	 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
4016 	 * which might be fatal to the guest.  Yell, but try to recover.
4017 	 */
4018 	if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
4019 		hv_flush_remote_tlbs(vcpu->kvm);
4020 
4021 	svm_flush_tlb_asid(vcpu);
4022 }
4023 
svm_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t gva)4024 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
4025 {
4026 	struct vcpu_svm *svm = to_svm(vcpu);
4027 
4028 	invlpga(gva, svm->vmcb->control.asid);
4029 }
4030 
sync_cr8_to_lapic(struct kvm_vcpu * vcpu)4031 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
4032 {
4033 	struct vcpu_svm *svm = to_svm(vcpu);
4034 
4035 	if (nested_svm_virtualize_tpr(vcpu))
4036 		return;
4037 
4038 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
4039 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4040 		kvm_set_cr8(vcpu, cr8);
4041 	}
4042 }
4043 
sync_lapic_to_cr8(struct kvm_vcpu * vcpu)4044 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4045 {
4046 	struct vcpu_svm *svm = to_svm(vcpu);
4047 	u64 cr8;
4048 
4049 	if (nested_svm_virtualize_tpr(vcpu) ||
4050 	    kvm_vcpu_apicv_active(vcpu))
4051 		return;
4052 
4053 	cr8 = kvm_get_cr8(vcpu);
4054 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4055 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4056 }
4057 
svm_complete_soft_interrupt(struct kvm_vcpu * vcpu,u8 vector,int type)4058 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
4059 					int type)
4060 {
4061 	bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
4062 	bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
4063 	struct vcpu_svm *svm = to_svm(vcpu);
4064 
4065 	/*
4066 	 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
4067 	 * associated with the original soft exception/interrupt.  next_rip is
4068 	 * cleared on all exits that can occur while vectoring an event, so KVM
4069 	 * needs to manually set next_rip for re-injection.  Unlike the !nrips
4070 	 * case below, this needs to be done if and only if KVM is re-injecting
4071 	 * the same event, i.e. if the event is a soft exception/interrupt,
4072 	 * otherwise next_rip is unused on VMRUN.
4073 	 */
4074 	if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
4075 	    kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
4076 		svm->vmcb->control.next_rip = svm->soft_int_next_rip;
4077 	/*
4078 	 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
4079 	 * injecting the soft exception/interrupt.  That advancement needs to
4080 	 * be unwound if vectoring didn't complete.  Note, the new event may
4081 	 * not be the injected event, e.g. if KVM injected an INTn, the INTn
4082 	 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
4083 	 * be the reported vectored event, but RIP still needs to be unwound.
4084 	 */
4085 	else if (!nrips && (is_soft || is_exception) &&
4086 		 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
4087 		kvm_rip_write(vcpu, svm->soft_int_old_rip);
4088 }
4089 
svm_complete_interrupts(struct kvm_vcpu * vcpu)4090 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
4091 {
4092 	struct vcpu_svm *svm = to_svm(vcpu);
4093 	u8 vector;
4094 	int type;
4095 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
4096 	bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
4097 	bool soft_int_injected = svm->soft_int_injected;
4098 
4099 	svm->nmi_l1_to_l2 = false;
4100 	svm->soft_int_injected = false;
4101 
4102 	/*
4103 	 * If we've made progress since setting awaiting_iret_completion, we've
4104 	 * executed an IRET and can allow NMI injection.
4105 	 */
4106 	if (svm->awaiting_iret_completion &&
4107 	    kvm_rip_read(vcpu) != svm->nmi_iret_rip) {
4108 		svm->awaiting_iret_completion = false;
4109 		svm->nmi_masked = false;
4110 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4111 	}
4112 
4113 	vcpu->arch.nmi_injected = false;
4114 	kvm_clear_exception_queue(vcpu);
4115 	kvm_clear_interrupt_queue(vcpu);
4116 
4117 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4118 		return;
4119 
4120 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4121 
4122 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4123 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4124 
4125 	if (soft_int_injected)
4126 		svm_complete_soft_interrupt(vcpu, vector, type);
4127 
4128 	switch (type) {
4129 	case SVM_EXITINTINFO_TYPE_NMI:
4130 		vcpu->arch.nmi_injected = true;
4131 		svm->nmi_l1_to_l2 = nmi_l1_to_l2;
4132 		break;
4133 	case SVM_EXITINTINFO_TYPE_EXEPT: {
4134 		u32 error_code = 0;
4135 
4136 		/*
4137 		 * Never re-inject a #VC exception.
4138 		 */
4139 		if (vector == X86_TRAP_VC)
4140 			break;
4141 
4142 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR)
4143 			error_code = svm->vmcb->control.exit_int_info_err;
4144 
4145 		kvm_requeue_exception(vcpu, vector,
4146 				      exitintinfo & SVM_EXITINTINFO_VALID_ERR,
4147 				      error_code);
4148 		break;
4149 	}
4150 	case SVM_EXITINTINFO_TYPE_INTR:
4151 		kvm_queue_interrupt(vcpu, vector, false);
4152 		break;
4153 	case SVM_EXITINTINFO_TYPE_SOFT:
4154 		kvm_queue_interrupt(vcpu, vector, true);
4155 		break;
4156 	default:
4157 		break;
4158 	}
4159 
4160 }
4161 
svm_cancel_injection(struct kvm_vcpu * vcpu)4162 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4163 {
4164 	struct vcpu_svm *svm = to_svm(vcpu);
4165 	struct vmcb_control_area *control = &svm->vmcb->control;
4166 
4167 	control->exit_int_info = control->event_inj;
4168 	control->exit_int_info_err = control->event_inj_err;
4169 	control->event_inj = 0;
4170 	svm_complete_interrupts(vcpu);
4171 }
4172 
svm_vcpu_pre_run(struct kvm_vcpu * vcpu)4173 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
4174 {
4175 	if (to_kvm_sev_info(vcpu->kvm)->need_init)
4176 		return -EINVAL;
4177 
4178 	return 1;
4179 }
4180 
svm_exit_handlers_fastpath(struct kvm_vcpu * vcpu)4181 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
4182 {
4183 	struct vcpu_svm *svm = to_svm(vcpu);
4184 
4185 	if (is_guest_mode(vcpu))
4186 		return EXIT_FASTPATH_NONE;
4187 
4188 	switch (svm->vmcb->control.exit_code) {
4189 	case SVM_EXIT_MSR:
4190 		if (!svm->vmcb->control.exit_info_1)
4191 			break;
4192 		return handle_fastpath_set_msr_irqoff(vcpu);
4193 	case SVM_EXIT_HLT:
4194 		return handle_fastpath_hlt(vcpu);
4195 	default:
4196 		break;
4197 	}
4198 
4199 	return EXIT_FASTPATH_NONE;
4200 }
4201 
svm_vcpu_enter_exit(struct kvm_vcpu * vcpu,bool spec_ctrl_intercepted)4202 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
4203 {
4204 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
4205 	struct vcpu_svm *svm = to_svm(vcpu);
4206 
4207 	guest_state_enter_irqoff();
4208 
4209 	/*
4210 	 * Set RFLAGS.IF prior to VMRUN, as the host's RFLAGS.IF at the time of
4211 	 * VMRUN controls whether or not physical IRQs are masked (KVM always
4212 	 * runs with V_INTR_MASKING_MASK).  Toggle RFLAGS.IF here to avoid the
4213 	 * temptation to do STI+VMRUN+CLI, as AMD CPUs bleed the STI shadow
4214 	 * into guest state if delivery of an event during VMRUN triggers a
4215 	 * #VMEXIT, and the guest_state transitions already tell lockdep that
4216 	 * IRQs are being enabled/disabled.  Note!  GIF=0 for the entirety of
4217 	 * this path, so IRQs aren't actually unmasked while running host code.
4218 	 */
4219 	raw_local_irq_enable();
4220 
4221 	amd_clear_divider();
4222 
4223 	if (sev_es_guest(vcpu->kvm))
4224 		__svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted,
4225 				      sev_es_host_save_area(sd));
4226 	else
4227 		__svm_vcpu_run(svm, spec_ctrl_intercepted);
4228 
4229 	raw_local_irq_disable();
4230 
4231 	guest_state_exit_irqoff();
4232 }
4233 
svm_vcpu_run(struct kvm_vcpu * vcpu,u64 run_flags)4234 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
4235 {
4236 	bool force_immediate_exit = run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT;
4237 	struct vcpu_svm *svm = to_svm(vcpu);
4238 	bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
4239 
4240 	trace_kvm_entry(vcpu, force_immediate_exit);
4241 
4242 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4243 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4244 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4245 
4246 	/*
4247 	 * Disable singlestep if we're injecting an interrupt/exception.
4248 	 * We don't want our modified rflags to be pushed on the stack where
4249 	 * we might not be able to easily reset them if we disabled NMI
4250 	 * singlestep later.
4251 	 */
4252 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4253 		/*
4254 		 * Event injection happens before external interrupts cause a
4255 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
4256 		 * is enough to force an immediate vmexit.
4257 		 */
4258 		disable_nmi_singlestep(svm);
4259 		force_immediate_exit = true;
4260 	}
4261 
4262 	if (force_immediate_exit)
4263 		smp_send_reschedule(vcpu->cpu);
4264 
4265 	if (pre_svm_run(vcpu)) {
4266 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4267 		vcpu->run->fail_entry.hardware_entry_failure_reason = SVM_EXIT_ERR;
4268 		vcpu->run->fail_entry.cpu = vcpu->cpu;
4269 		return EXIT_FASTPATH_EXIT_USERSPACE;
4270 	}
4271 
4272 	sync_lapic_to_cr8(vcpu);
4273 
4274 	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4275 		svm->vmcb->control.asid = svm->asid;
4276 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
4277 	}
4278 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
4279 
4280 	svm_hv_update_vp_id(svm->vmcb, vcpu);
4281 
4282 	/*
4283 	 * Run with all-zero DR6 unless the guest can write DR6 freely, so that
4284 	 * KVM can get the exact cause of a #DB.  Note, loading guest DR6 from
4285 	 * KVM's snapshot is only necessary when DR accesses won't exit.
4286 	 */
4287 	if (unlikely(run_flags & KVM_RUN_LOAD_GUEST_DR6))
4288 		svm_set_dr6(vcpu, vcpu->arch.dr6);
4289 	else if (likely(!(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)))
4290 		svm_set_dr6(vcpu, DR6_ACTIVE_LOW);
4291 
4292 	clgi();
4293 	kvm_load_guest_xsave_state(vcpu);
4294 
4295 	/*
4296 	 * Hardware only context switches DEBUGCTL if LBR virtualization is
4297 	 * enabled.  Manually load DEBUGCTL if necessary (and restore it after
4298 	 * VM-Exit), as running with the host's DEBUGCTL can negatively affect
4299 	 * guest state and can even be fatal, e.g. due to Bus Lock Detect.
4300 	 */
4301 	if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
4302 	    vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
4303 		update_debugctlmsr(svm->vmcb->save.dbgctl);
4304 
4305 	kvm_wait_lapic_expire(vcpu);
4306 
4307 	/*
4308 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
4309 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
4310 	 * is no need to worry about the conditional branch over the wrmsr
4311 	 * being speculatively taken.
4312 	 */
4313 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4314 		x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4315 
4316 	svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4317 
4318 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4319 		x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4320 
4321 	if (!sev_es_guest(vcpu->kvm)) {
4322 		vcpu->arch.cr2 = svm->vmcb->save.cr2;
4323 		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4324 		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4325 		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4326 	}
4327 	vcpu->arch.regs_dirty = 0;
4328 
4329 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4330 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4331 
4332 	if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
4333 	    vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
4334 		update_debugctlmsr(vcpu->arch.host_debugctl);
4335 
4336 	kvm_load_host_xsave_state(vcpu);
4337 	stgi();
4338 
4339 	/* Any pending NMI will happen here */
4340 
4341 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4342 		kvm_after_interrupt(vcpu);
4343 
4344 	sync_cr8_to_lapic(vcpu);
4345 
4346 	svm->next_rip = 0;
4347 	if (is_guest_mode(vcpu)) {
4348 		nested_sync_control_from_vmcb02(svm);
4349 
4350 		/* Track VMRUNs that have made past consistency checking */
4351 		if (svm->nested.nested_run_pending &&
4352 		    svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4353                         ++vcpu->stat.nested_run;
4354 
4355 		svm->nested.nested_run_pending = 0;
4356 	}
4357 
4358 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4359 	vmcb_mark_all_clean(svm->vmcb);
4360 
4361 	/* if exit due to PF check for async PF */
4362 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4363 		vcpu->arch.apf.host_apf_flags =
4364 			kvm_read_and_reset_apf_flags();
4365 
4366 	vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4367 
4368 	/*
4369 	 * We need to handle MC intercepts here before the vcpu has a chance to
4370 	 * change the physical cpu
4371 	 */
4372 	if (unlikely(svm->vmcb->control.exit_code ==
4373 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
4374 		svm_handle_mce(vcpu);
4375 
4376 	trace_kvm_exit(vcpu, KVM_ISA_SVM);
4377 
4378 	svm_complete_interrupts(vcpu);
4379 
4380 	return svm_exit_handlers_fastpath(vcpu);
4381 }
4382 
svm_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)4383 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4384 			     int root_level)
4385 {
4386 	struct vcpu_svm *svm = to_svm(vcpu);
4387 	unsigned long cr3;
4388 
4389 	if (npt_enabled) {
4390 		svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4391 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4392 
4393 		hv_track_root_tdp(vcpu, root_hpa);
4394 
4395 		cr3 = vcpu->arch.cr3;
4396 	} else if (root_level >= PT64_ROOT_4LEVEL) {
4397 		cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4398 	} else {
4399 		/* PCID in the guest should be impossible with a 32-bit MMU. */
4400 		WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4401 		cr3 = root_hpa;
4402 	}
4403 
4404 	svm->vmcb->save.cr3 = cr3;
4405 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4406 }
4407 
4408 static void
svm_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)4409 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4410 {
4411 	/*
4412 	 * Patch in the VMMCALL instruction:
4413 	 */
4414 	hypercall[0] = 0x0f;
4415 	hypercall[1] = 0x01;
4416 	hypercall[2] = 0xd9;
4417 }
4418 
4419 /*
4420  * The kvm parameter can be NULL (module initialization, or invocation before
4421  * VM creation). Be sure to check the kvm parameter before using it.
4422  */
svm_has_emulated_msr(struct kvm * kvm,u32 index)4423 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4424 {
4425 	switch (index) {
4426 	case MSR_IA32_MCG_EXT_CTL:
4427 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
4428 		return false;
4429 	case MSR_IA32_SMBASE:
4430 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4431 			return false;
4432 		/* SEV-ES guests do not support SMM, so report false */
4433 		if (kvm && sev_es_guest(kvm))
4434 			return false;
4435 		break;
4436 	default:
4437 		break;
4438 	}
4439 
4440 	return true;
4441 }
4442 
svm_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)4443 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4444 {
4445 	struct vcpu_svm *svm = to_svm(vcpu);
4446 
4447 	/*
4448 	 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM
4449 	 * can only disable all variants of by disallowing CR4.OSXSAVE from
4450 	 * being set.  As a result, if the host has XSAVE and XSAVES, and the
4451 	 * guest has XSAVE enabled, the guest can execute XSAVES without
4452 	 * faulting.  Treat XSAVES as enabled in this case regardless of
4453 	 * whether it's advertised to the guest so that KVM context switches
4454 	 * XSS on VM-Enter/VM-Exit.  Failure to do so would effectively give
4455 	 * the guest read/write access to the host's XSS.
4456 	 */
4457 	guest_cpu_cap_change(vcpu, X86_FEATURE_XSAVES,
4458 			     boot_cpu_has(X86_FEATURE_XSAVES) &&
4459 			     guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE));
4460 
4461 	/*
4462 	 * Intercept VMLOAD if the vCPU model is Intel in order to emulate that
4463 	 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
4464 	 * SVM on Intel is bonkers and extremely unlikely to work).
4465 	 */
4466 	if (guest_cpuid_is_intel_compatible(vcpu))
4467 		guest_cpu_cap_clear(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4468 
4469 	if (sev_guest(vcpu->kvm))
4470 		sev_vcpu_after_set_cpuid(svm);
4471 
4472 	svm_recalc_intercepts_after_set_cpuid(vcpu);
4473 }
4474 
svm_has_wbinvd_exit(void)4475 static bool svm_has_wbinvd_exit(void)
4476 {
4477 	return true;
4478 }
4479 
4480 #define PRE_EX(exit)  { .exit_code = (exit), \
4481 			.stage = X86_ICPT_PRE_EXCEPT, }
4482 #define POST_EX(exit) { .exit_code = (exit), \
4483 			.stage = X86_ICPT_POST_EXCEPT, }
4484 #define POST_MEM(exit) { .exit_code = (exit), \
4485 			.stage = X86_ICPT_POST_MEMACCESS, }
4486 
4487 static const struct __x86_intercept {
4488 	u32 exit_code;
4489 	enum x86_intercept_stage stage;
4490 } x86_intercept_map[] = {
4491 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4492 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4493 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4494 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4495 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4496 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4497 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4498 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4499 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4500 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4501 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4502 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4503 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4504 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4505 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4506 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4507 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4508 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4509 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4510 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4511 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4512 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4513 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4514 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4515 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4516 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4517 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4518 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4519 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4520 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4521 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4522 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4523 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4524 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4525 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4526 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4527 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4528 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4529 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4530 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4531 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4532 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4533 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4534 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4535 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4536 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4537 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
4538 };
4539 
4540 #undef PRE_EX
4541 #undef POST_EX
4542 #undef POST_MEM
4543 
svm_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)4544 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4545 			       struct x86_instruction_info *info,
4546 			       enum x86_intercept_stage stage,
4547 			       struct x86_exception *exception)
4548 {
4549 	struct vcpu_svm *svm = to_svm(vcpu);
4550 	int vmexit, ret = X86EMUL_CONTINUE;
4551 	struct __x86_intercept icpt_info;
4552 	struct vmcb *vmcb = svm->vmcb;
4553 
4554 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4555 		goto out;
4556 
4557 	icpt_info = x86_intercept_map[info->intercept];
4558 
4559 	if (stage != icpt_info.stage)
4560 		goto out;
4561 
4562 	switch (icpt_info.exit_code) {
4563 	case SVM_EXIT_READ_CR0:
4564 		if (info->intercept == x86_intercept_cr_read)
4565 			icpt_info.exit_code += info->modrm_reg;
4566 		break;
4567 	case SVM_EXIT_WRITE_CR0: {
4568 		unsigned long cr0, val;
4569 
4570 		if (info->intercept == x86_intercept_cr_write)
4571 			icpt_info.exit_code += info->modrm_reg;
4572 
4573 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4574 		    info->intercept == x86_intercept_clts)
4575 			break;
4576 
4577 		if (!(vmcb12_is_intercept(&svm->nested.ctl,
4578 					INTERCEPT_SELECTIVE_CR0)))
4579 			break;
4580 
4581 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4582 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4583 
4584 		if (info->intercept == x86_intercept_lmsw) {
4585 			cr0 &= 0xfUL;
4586 			val &= 0xfUL;
4587 			/* lmsw can't clear PE - catch this here */
4588 			if (cr0 & X86_CR0_PE)
4589 				val |= X86_CR0_PE;
4590 		}
4591 
4592 		if (cr0 ^ val)
4593 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4594 
4595 		break;
4596 	}
4597 	case SVM_EXIT_READ_DR0:
4598 	case SVM_EXIT_WRITE_DR0:
4599 		icpt_info.exit_code += info->modrm_reg;
4600 		break;
4601 	case SVM_EXIT_MSR:
4602 		if (info->intercept == x86_intercept_wrmsr)
4603 			vmcb->control.exit_info_1 = 1;
4604 		else
4605 			vmcb->control.exit_info_1 = 0;
4606 		break;
4607 	case SVM_EXIT_PAUSE:
4608 		/*
4609 		 * We get this for NOP only, but pause
4610 		 * is rep not, check this here
4611 		 */
4612 		if (info->rep_prefix != REPE_PREFIX)
4613 			goto out;
4614 		break;
4615 	case SVM_EXIT_IOIO: {
4616 		u64 exit_info;
4617 		u32 bytes;
4618 
4619 		if (info->intercept == x86_intercept_in ||
4620 		    info->intercept == x86_intercept_ins) {
4621 			exit_info = ((info->src_val & 0xffff) << 16) |
4622 				SVM_IOIO_TYPE_MASK;
4623 			bytes = info->dst_bytes;
4624 		} else {
4625 			exit_info = (info->dst_val & 0xffff) << 16;
4626 			bytes = info->src_bytes;
4627 		}
4628 
4629 		if (info->intercept == x86_intercept_outs ||
4630 		    info->intercept == x86_intercept_ins)
4631 			exit_info |= SVM_IOIO_STR_MASK;
4632 
4633 		if (info->rep_prefix)
4634 			exit_info |= SVM_IOIO_REP_MASK;
4635 
4636 		bytes = min(bytes, 4u);
4637 
4638 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4639 
4640 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4641 
4642 		vmcb->control.exit_info_1 = exit_info;
4643 		vmcb->control.exit_info_2 = info->next_rip;
4644 
4645 		break;
4646 	}
4647 	default:
4648 		break;
4649 	}
4650 
4651 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4652 	if (static_cpu_has(X86_FEATURE_NRIPS))
4653 		vmcb->control.next_rip  = info->next_rip;
4654 	vmcb->control.exit_code = icpt_info.exit_code;
4655 	vmexit = nested_svm_exit_handled(svm);
4656 
4657 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4658 					   : X86EMUL_CONTINUE;
4659 
4660 out:
4661 	return ret;
4662 }
4663 
svm_handle_exit_irqoff(struct kvm_vcpu * vcpu)4664 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4665 {
4666 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4667 		vcpu->arch.at_instruction_boundary = true;
4668 }
4669 
svm_setup_mce(struct kvm_vcpu * vcpu)4670 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4671 {
4672 	/* [63:9] are reserved. */
4673 	vcpu->arch.mcg_cap &= 0x1ff;
4674 }
4675 
4676 #ifdef CONFIG_KVM_SMM
svm_smi_blocked(struct kvm_vcpu * vcpu)4677 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4678 {
4679 	struct vcpu_svm *svm = to_svm(vcpu);
4680 
4681 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4682 	if (!gif_set(svm))
4683 		return true;
4684 
4685 	return is_smm(vcpu);
4686 }
4687 
svm_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4688 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4689 {
4690 	struct vcpu_svm *svm = to_svm(vcpu);
4691 	if (svm->nested.nested_run_pending)
4692 		return -EBUSY;
4693 
4694 	if (svm_smi_blocked(vcpu))
4695 		return 0;
4696 
4697 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4698 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4699 		return -EBUSY;
4700 
4701 	return 1;
4702 }
4703 
svm_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)4704 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4705 {
4706 	struct vcpu_svm *svm = to_svm(vcpu);
4707 	struct kvm_host_map map_save;
4708 	int ret;
4709 
4710 	if (!is_guest_mode(vcpu))
4711 		return 0;
4712 
4713 	/*
4714 	 * 32-bit SMRAM format doesn't preserve EFER and SVM state.  Userspace is
4715 	 * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4716 	 */
4717 
4718 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
4719 		return 1;
4720 
4721 	smram->smram64.svm_guest_flag = 1;
4722 	smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4723 
4724 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4725 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4726 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4727 
4728 	ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4729 	if (ret)
4730 		return ret;
4731 
4732 	/*
4733 	 * KVM uses VMCB01 to store L1 host state while L2 runs but
4734 	 * VMCB01 is going to be used during SMM and thus the state will
4735 	 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4736 	 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4737 	 * format of the area is identical to guest save area offsetted
4738 	 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4739 	 * within 'struct vmcb'). Note: HSAVE area may also be used by
4740 	 * L1 hypervisor to save additional host context (e.g. KVM does
4741 	 * that, see svm_prepare_switch_to_guest()) which must be
4742 	 * preserved.
4743 	 */
4744 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4745 		return 1;
4746 
4747 	BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4748 
4749 	svm_copy_vmrun_state(map_save.hva + 0x400,
4750 			     &svm->vmcb01.ptr->save);
4751 
4752 	kvm_vcpu_unmap(vcpu, &map_save);
4753 	return 0;
4754 }
4755 
svm_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)4756 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4757 {
4758 	struct vcpu_svm *svm = to_svm(vcpu);
4759 	struct kvm_host_map map, map_save;
4760 	struct vmcb *vmcb12;
4761 	int ret;
4762 
4763 	const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4764 
4765 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
4766 		return 0;
4767 
4768 	/* Non-zero if SMI arrived while vCPU was in guest mode. */
4769 	if (!smram64->svm_guest_flag)
4770 		return 0;
4771 
4772 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
4773 		return 1;
4774 
4775 	if (!(smram64->efer & EFER_SVME))
4776 		return 1;
4777 
4778 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4779 		return 1;
4780 
4781 	ret = 1;
4782 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4783 		goto unmap_map;
4784 
4785 	if (svm_allocate_nested(svm))
4786 		goto unmap_save;
4787 
4788 	/*
4789 	 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4790 	 * used during SMM (see svm_enter_smm())
4791 	 */
4792 
4793 	svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4794 
4795 	/*
4796 	 * Enter the nested guest now
4797 	 */
4798 
4799 	vmcb_mark_all_dirty(svm->vmcb01.ptr);
4800 
4801 	vmcb12 = map.hva;
4802 	nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4803 	nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4804 	ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4805 
4806 	if (ret)
4807 		goto unmap_save;
4808 
4809 	svm->nested.nested_run_pending = 1;
4810 
4811 unmap_save:
4812 	kvm_vcpu_unmap(vcpu, &map_save);
4813 unmap_map:
4814 	kvm_vcpu_unmap(vcpu, &map);
4815 	return ret;
4816 }
4817 
svm_enable_smi_window(struct kvm_vcpu * vcpu)4818 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4819 {
4820 	struct vcpu_svm *svm = to_svm(vcpu);
4821 
4822 	if (!gif_set(svm)) {
4823 		if (vgif)
4824 			svm_set_intercept(svm, INTERCEPT_STGI);
4825 		/* STGI will cause a vm exit */
4826 	} else {
4827 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4828 	}
4829 }
4830 #endif
4831 
svm_check_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)4832 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4833 					 void *insn, int insn_len)
4834 {
4835 	struct vcpu_svm *svm = to_svm(vcpu);
4836 	bool smep, smap, is_user;
4837 	u64 error_code;
4838 
4839 	/* Check that emulation is possible during event vectoring */
4840 	if ((svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK) &&
4841 	    !kvm_can_emulate_event_vectoring(emul_type))
4842 		return X86EMUL_UNHANDLEABLE_VECTORING;
4843 
4844 	/* Emulation is always possible when KVM has access to all guest state. */
4845 	if (!sev_guest(vcpu->kvm))
4846 		return X86EMUL_CONTINUE;
4847 
4848 	/* #UD and #GP should never be intercepted for SEV guests. */
4849 	WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4850 				  EMULTYPE_TRAP_UD_FORCED |
4851 				  EMULTYPE_VMWARE_GP));
4852 
4853 	/*
4854 	 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4855 	 * to guest register state.
4856 	 */
4857 	if (sev_es_guest(vcpu->kvm))
4858 		return X86EMUL_RETRY_INSTR;
4859 
4860 	/*
4861 	 * Emulation is possible if the instruction is already decoded, e.g.
4862 	 * when completing I/O after returning from userspace.
4863 	 */
4864 	if (emul_type & EMULTYPE_NO_DECODE)
4865 		return X86EMUL_CONTINUE;
4866 
4867 	/*
4868 	 * Emulation is possible for SEV guests if and only if a prefilled
4869 	 * buffer containing the bytes of the intercepted instruction is
4870 	 * available. SEV guest memory is encrypted with a guest specific key
4871 	 * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and
4872 	 * decode garbage.
4873 	 *
4874 	 * If KVM is NOT trying to simply skip an instruction, inject #UD if
4875 	 * KVM reached this point without an instruction buffer.  In practice,
4876 	 * this path should never be hit by a well-behaved guest, e.g. KVM
4877 	 * doesn't intercept #UD or #GP for SEV guests, but this path is still
4878 	 * theoretically reachable, e.g. via unaccelerated fault-like AVIC
4879 	 * access, and needs to be handled by KVM to avoid putting the guest
4880 	 * into an infinite loop.   Injecting #UD is somewhat arbitrary, but
4881 	 * its the least awful option given lack of insight into the guest.
4882 	 *
4883 	 * If KVM is trying to skip an instruction, simply resume the guest.
4884 	 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM
4885 	 * will attempt to re-inject the INT3/INTO and skip the instruction.
4886 	 * In that scenario, retrying the INT3/INTO and hoping the guest will
4887 	 * make forward progress is the only option that has a chance of
4888 	 * success (and in practice it will work the vast majority of the time).
4889 	 */
4890 	if (unlikely(!insn)) {
4891 		if (emul_type & EMULTYPE_SKIP)
4892 			return X86EMUL_UNHANDLEABLE;
4893 
4894 		kvm_queue_exception(vcpu, UD_VECTOR);
4895 		return X86EMUL_PROPAGATE_FAULT;
4896 	}
4897 
4898 	/*
4899 	 * Emulate for SEV guests if the insn buffer is not empty.  The buffer
4900 	 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4901 	 * the faulting instruction because the code fetch itself faulted, e.g.
4902 	 * the guest attempted to fetch from emulated MMIO or a guest page
4903 	 * table used to translate CS:RIP resides in emulated MMIO.
4904 	 */
4905 	if (likely(insn_len))
4906 		return X86EMUL_CONTINUE;
4907 
4908 	/*
4909 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4910 	 *
4911 	 * Errata:
4912 	 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4913 	 * possible that CPU microcode implementing DecodeAssist will fail to
4914 	 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4915 	 * be '0'.  This happens because microcode reads CS:RIP using a _data_
4916 	 * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
4917 	 * gives up and does not fill the instruction bytes buffer.
4918 	 *
4919 	 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4920 	 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4921 	 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4922 	 * GuestIntrBytes field of the VMCB.
4923 	 *
4924 	 * This does _not_ mean that the erratum has been encountered, as the
4925 	 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4926 	 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4927 	 * encountered a reserved/not-present #PF.
4928 	 *
4929 	 * To hit the erratum, the following conditions must be true:
4930 	 *    1. CR4.SMAP=1 (obviously).
4931 	 *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
4932 	 *       have been hit as the guest would have encountered a SMEP
4933 	 *       violation #PF, not a #NPF.
4934 	 *    3. The #NPF is not due to a code fetch, in which case failure to
4935 	 *       retrieve the instruction bytes is legitimate (see abvoe).
4936 	 *
4937 	 * In addition, don't apply the erratum workaround if the #NPF occurred
4938 	 * while translating guest page tables (see below).
4939 	 */
4940 	error_code = svm->vmcb->control.exit_info_1;
4941 	if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4942 		goto resume_guest;
4943 
4944 	smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
4945 	smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
4946 	is_user = svm_get_cpl(vcpu) == 3;
4947 	if (smap && (!smep || is_user)) {
4948 		pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
4949 
4950 		/*
4951 		 * If the fault occurred in userspace, arbitrarily inject #GP
4952 		 * to avoid killing the guest and to hopefully avoid confusing
4953 		 * the guest kernel too much, e.g. injecting #PF would not be
4954 		 * coherent with respect to the guest's page tables.  Request
4955 		 * triple fault if the fault occurred in the kernel as there's
4956 		 * no fault that KVM can inject without confusing the guest.
4957 		 * In practice, the triple fault is moot as no sane SEV kernel
4958 		 * will execute from user memory while also running with SMAP=1.
4959 		 */
4960 		if (is_user)
4961 			kvm_inject_gp(vcpu, 0);
4962 		else
4963 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4964 		return X86EMUL_PROPAGATE_FAULT;
4965 	}
4966 
4967 resume_guest:
4968 	/*
4969 	 * If the erratum was not hit, simply resume the guest and let it fault
4970 	 * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
4971 	 * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
4972 	 * userspace will kill the guest, and letting the emulator read garbage
4973 	 * will yield random behavior and potentially corrupt the guest.
4974 	 *
4975 	 * Simply resuming the guest is technically not a violation of the SEV
4976 	 * architecture.  AMD's APM states that all code fetches and page table
4977 	 * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
4978 	 * APM also states that encrypted accesses to MMIO are "ignored", but
4979 	 * doesn't explicitly define "ignored", i.e. doing nothing and letting
4980 	 * the guest spin is technically "ignoring" the access.
4981 	 */
4982 	return X86EMUL_RETRY_INSTR;
4983 }
4984 
svm_apic_init_signal_blocked(struct kvm_vcpu * vcpu)4985 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4986 {
4987 	struct vcpu_svm *svm = to_svm(vcpu);
4988 
4989 	return !gif_set(svm);
4990 }
4991 
svm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)4992 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4993 {
4994 	if (!sev_es_guest(vcpu->kvm))
4995 		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4996 
4997 	sev_vcpu_deliver_sipi_vector(vcpu, vector);
4998 }
4999 
svm_vm_destroy(struct kvm * kvm)5000 static void svm_vm_destroy(struct kvm *kvm)
5001 {
5002 	avic_vm_destroy(kvm);
5003 	sev_vm_destroy(kvm);
5004 
5005 	svm_srso_vm_destroy();
5006 }
5007 
svm_vm_init(struct kvm * kvm)5008 static int svm_vm_init(struct kvm *kvm)
5009 {
5010 	int type = kvm->arch.vm_type;
5011 
5012 	if (type != KVM_X86_DEFAULT_VM &&
5013 	    type != KVM_X86_SW_PROTECTED_VM) {
5014 		kvm->arch.has_protected_state =
5015 			(type == KVM_X86_SEV_ES_VM || type == KVM_X86_SNP_VM);
5016 		to_kvm_sev_info(kvm)->need_init = true;
5017 
5018 		kvm->arch.has_private_mem = (type == KVM_X86_SNP_VM);
5019 		kvm->arch.pre_fault_allowed = !kvm->arch.has_private_mem;
5020 	}
5021 
5022 	if (!pause_filter_count || !pause_filter_thresh)
5023 		kvm_disable_exits(kvm, KVM_X86_DISABLE_EXITS_PAUSE);
5024 
5025 	if (enable_apicv) {
5026 		int ret = avic_vm_init(kvm);
5027 		if (ret)
5028 			return ret;
5029 	}
5030 
5031 	svm_srso_vm_init();
5032 	return 0;
5033 }
5034 
svm_alloc_apic_backing_page(struct kvm_vcpu * vcpu)5035 static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu)
5036 {
5037 	struct page *page = snp_safe_alloc_page();
5038 
5039 	if (!page)
5040 		return NULL;
5041 
5042 	return page_address(page);
5043 }
5044 
5045 static struct kvm_x86_ops svm_x86_ops __initdata = {
5046 	.name = KBUILD_MODNAME,
5047 
5048 	.check_processor_compatibility = svm_check_processor_compat,
5049 
5050 	.hardware_unsetup = svm_hardware_unsetup,
5051 	.enable_virtualization_cpu = svm_enable_virtualization_cpu,
5052 	.disable_virtualization_cpu = svm_disable_virtualization_cpu,
5053 	.emergency_disable_virtualization_cpu = svm_emergency_disable_virtualization_cpu,
5054 	.has_emulated_msr = svm_has_emulated_msr,
5055 
5056 	.vcpu_create = svm_vcpu_create,
5057 	.vcpu_free = svm_vcpu_free,
5058 	.vcpu_reset = svm_vcpu_reset,
5059 
5060 	.vm_size = sizeof(struct kvm_svm),
5061 	.vm_init = svm_vm_init,
5062 	.vm_destroy = svm_vm_destroy,
5063 
5064 	.prepare_switch_to_guest = svm_prepare_switch_to_guest,
5065 	.vcpu_load = svm_vcpu_load,
5066 	.vcpu_put = svm_vcpu_put,
5067 	.vcpu_blocking = avic_vcpu_blocking,
5068 	.vcpu_unblocking = avic_vcpu_unblocking,
5069 
5070 	.update_exception_bitmap = svm_update_exception_bitmap,
5071 	.get_feature_msr = svm_get_feature_msr,
5072 	.get_msr = svm_get_msr,
5073 	.set_msr = svm_set_msr,
5074 	.get_segment_base = svm_get_segment_base,
5075 	.get_segment = svm_get_segment,
5076 	.set_segment = svm_set_segment,
5077 	.get_cpl = svm_get_cpl,
5078 	.get_cpl_no_cache = svm_get_cpl,
5079 	.get_cs_db_l_bits = svm_get_cs_db_l_bits,
5080 	.is_valid_cr0 = svm_is_valid_cr0,
5081 	.set_cr0 = svm_set_cr0,
5082 	.post_set_cr3 = sev_post_set_cr3,
5083 	.is_valid_cr4 = svm_is_valid_cr4,
5084 	.set_cr4 = svm_set_cr4,
5085 	.set_efer = svm_set_efer,
5086 	.get_idt = svm_get_idt,
5087 	.set_idt = svm_set_idt,
5088 	.get_gdt = svm_get_gdt,
5089 	.set_gdt = svm_set_gdt,
5090 	.set_dr7 = svm_set_dr7,
5091 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5092 	.cache_reg = svm_cache_reg,
5093 	.get_rflags = svm_get_rflags,
5094 	.set_rflags = svm_set_rflags,
5095 	.get_if_flag = svm_get_if_flag,
5096 
5097 	.flush_tlb_all = svm_flush_tlb_all,
5098 	.flush_tlb_current = svm_flush_tlb_current,
5099 	.flush_tlb_gva = svm_flush_tlb_gva,
5100 	.flush_tlb_guest = svm_flush_tlb_asid,
5101 
5102 	.vcpu_pre_run = svm_vcpu_pre_run,
5103 	.vcpu_run = svm_vcpu_run,
5104 	.handle_exit = svm_handle_exit,
5105 	.skip_emulated_instruction = svm_skip_emulated_instruction,
5106 	.update_emulated_instruction = NULL,
5107 	.set_interrupt_shadow = svm_set_interrupt_shadow,
5108 	.get_interrupt_shadow = svm_get_interrupt_shadow,
5109 	.patch_hypercall = svm_patch_hypercall,
5110 	.inject_irq = svm_inject_irq,
5111 	.inject_nmi = svm_inject_nmi,
5112 	.is_vnmi_pending = svm_is_vnmi_pending,
5113 	.set_vnmi_pending = svm_set_vnmi_pending,
5114 	.inject_exception = svm_inject_exception,
5115 	.cancel_injection = svm_cancel_injection,
5116 	.interrupt_allowed = svm_interrupt_allowed,
5117 	.nmi_allowed = svm_nmi_allowed,
5118 	.get_nmi_mask = svm_get_nmi_mask,
5119 	.set_nmi_mask = svm_set_nmi_mask,
5120 	.enable_nmi_window = svm_enable_nmi_window,
5121 	.enable_irq_window = svm_enable_irq_window,
5122 	.update_cr8_intercept = svm_update_cr8_intercept,
5123 
5124 	.x2apic_icr_is_split = true,
5125 	.set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
5126 	.refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
5127 	.apicv_post_state_restore = avic_apicv_post_state_restore,
5128 	.required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
5129 
5130 	.get_exit_info = svm_get_exit_info,
5131 	.get_entry_info = svm_get_entry_info,
5132 
5133 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
5134 
5135 	.has_wbinvd_exit = svm_has_wbinvd_exit,
5136 
5137 	.get_l2_tsc_offset = svm_get_l2_tsc_offset,
5138 	.get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
5139 	.write_tsc_offset = svm_write_tsc_offset,
5140 	.write_tsc_multiplier = svm_write_tsc_multiplier,
5141 
5142 	.load_mmu_pgd = svm_load_mmu_pgd,
5143 
5144 	.check_intercept = svm_check_intercept,
5145 	.handle_exit_irqoff = svm_handle_exit_irqoff,
5146 
5147 	.nested_ops = &svm_nested_ops,
5148 
5149 	.deliver_interrupt = svm_deliver_interrupt,
5150 	.pi_update_irte = avic_pi_update_irte,
5151 	.setup_mce = svm_setup_mce,
5152 
5153 #ifdef CONFIG_KVM_SMM
5154 	.smi_allowed = svm_smi_allowed,
5155 	.enter_smm = svm_enter_smm,
5156 	.leave_smm = svm_leave_smm,
5157 	.enable_smi_window = svm_enable_smi_window,
5158 #endif
5159 
5160 #ifdef CONFIG_KVM_AMD_SEV
5161 	.dev_get_attr = sev_dev_get_attr,
5162 	.mem_enc_ioctl = sev_mem_enc_ioctl,
5163 	.mem_enc_register_region = sev_mem_enc_register_region,
5164 	.mem_enc_unregister_region = sev_mem_enc_unregister_region,
5165 	.guest_memory_reclaimed = sev_guest_memory_reclaimed,
5166 
5167 	.vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
5168 	.vm_move_enc_context_from = sev_vm_move_enc_context_from,
5169 #endif
5170 	.check_emulate_instruction = svm_check_emulate_instruction,
5171 
5172 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
5173 
5174 	.recalc_msr_intercepts = svm_recalc_msr_intercepts,
5175 	.complete_emulated_msr = svm_complete_emulated_msr,
5176 
5177 	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
5178 	.vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
5179 	.alloc_apic_backing_page = svm_alloc_apic_backing_page,
5180 
5181 	.gmem_prepare = sev_gmem_prepare,
5182 	.gmem_invalidate = sev_gmem_invalidate,
5183 	.private_max_mapping_level = sev_private_max_mapping_level,
5184 };
5185 
5186 /*
5187  * The default MMIO mask is a single bit (excluding the present bit),
5188  * which could conflict with the memory encryption bit. Check for
5189  * memory encryption support and override the default MMIO mask if
5190  * memory encryption is enabled.
5191  */
svm_adjust_mmio_mask(void)5192 static __init void svm_adjust_mmio_mask(void)
5193 {
5194 	unsigned int enc_bit, mask_bit;
5195 	u64 msr, mask;
5196 
5197 	/* If there is no memory encryption support, use existing mask */
5198 	if (cpuid_eax(0x80000000) < 0x8000001f)
5199 		return;
5200 
5201 	/* If memory encryption is not enabled, use existing mask */
5202 	rdmsrq(MSR_AMD64_SYSCFG, msr);
5203 	if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
5204 		return;
5205 
5206 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
5207 	mask_bit = boot_cpu_data.x86_phys_bits;
5208 
5209 	/* Increment the mask bit if it is the same as the encryption bit */
5210 	if (enc_bit == mask_bit)
5211 		mask_bit++;
5212 
5213 	/*
5214 	 * If the mask bit location is below 52, then some bits above the
5215 	 * physical addressing limit will always be reserved, so use the
5216 	 * rsvd_bits() function to generate the mask. This mask, along with
5217 	 * the present bit, will be used to generate a page fault with
5218 	 * PFER.RSV = 1.
5219 	 *
5220 	 * If the mask bit location is 52 (or above), then clear the mask.
5221 	 */
5222 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
5223 
5224 	kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
5225 }
5226 
svm_set_cpu_caps(void)5227 static __init void svm_set_cpu_caps(void)
5228 {
5229 	kvm_set_cpu_caps();
5230 
5231 	kvm_caps.supported_perf_cap = 0;
5232 	kvm_caps.supported_xss = 0;
5233 
5234 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
5235 	if (nested) {
5236 		kvm_cpu_cap_set(X86_FEATURE_SVM);
5237 		kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
5238 
5239 		/*
5240 		 * KVM currently flushes TLBs on *every* nested SVM transition,
5241 		 * and so for all intents and purposes KVM supports flushing by
5242 		 * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush.
5243 		 */
5244 		kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID);
5245 
5246 		if (nrips)
5247 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
5248 
5249 		if (npt_enabled)
5250 			kvm_cpu_cap_set(X86_FEATURE_NPT);
5251 
5252 		if (tsc_scaling)
5253 			kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
5254 
5255 		if (vls)
5256 			kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
5257 		if (lbrv)
5258 			kvm_cpu_cap_set(X86_FEATURE_LBRV);
5259 
5260 		if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
5261 			kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
5262 
5263 		if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
5264 			kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
5265 
5266 		if (vgif)
5267 			kvm_cpu_cap_set(X86_FEATURE_VGIF);
5268 
5269 		if (vnmi)
5270 			kvm_cpu_cap_set(X86_FEATURE_VNMI);
5271 
5272 		/* Nested VM can receive #VMEXIT instead of triggering #GP */
5273 		kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
5274 	}
5275 
5276 	if (cpu_feature_enabled(X86_FEATURE_BUS_LOCK_THRESHOLD))
5277 		kvm_caps.has_bus_lock_exit = true;
5278 
5279 	/* CPUID 0x80000008 */
5280 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5281 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
5282 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
5283 
5284 	if (enable_pmu) {
5285 		/*
5286 		 * Enumerate support for PERFCTR_CORE if and only if KVM has
5287 		 * access to enough counters to virtualize "core" support,
5288 		 * otherwise limit vPMU support to the legacy number of counters.
5289 		 */
5290 		if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
5291 			kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
5292 							  kvm_pmu_cap.num_counters_gp);
5293 		else
5294 			kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
5295 
5296 		if (kvm_pmu_cap.version != 2 ||
5297 		    !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
5298 			kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
5299 	}
5300 
5301 	/* CPUID 0x8000001F (SME/SEV features) */
5302 	sev_set_cpu_caps();
5303 
5304 	/* Don't advertise Bus Lock Detect to guest if SVM support is absent */
5305 	kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT);
5306 }
5307 
svm_hardware_setup(void)5308 static __init int svm_hardware_setup(void)
5309 {
5310 	void *iopm_va;
5311 	int cpu, r;
5312 
5313 	/*
5314 	 * NX is required for shadow paging and for NPT if the NX huge pages
5315 	 * mitigation is enabled.
5316 	 */
5317 	if (!boot_cpu_has(X86_FEATURE_NX)) {
5318 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
5319 		return -EOPNOTSUPP;
5320 	}
5321 	kvm_enable_efer_bits(EFER_NX);
5322 
5323 	kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
5324 				     XFEATURE_MASK_BNDCSR);
5325 
5326 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
5327 		kvm_enable_efer_bits(EFER_FFXSR);
5328 
5329 	if (tsc_scaling) {
5330 		if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
5331 			tsc_scaling = false;
5332 		} else {
5333 			pr_info("TSC scaling supported\n");
5334 			kvm_caps.has_tsc_control = true;
5335 		}
5336 	}
5337 	kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5338 	kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5339 
5340 	tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5341 
5342 	if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5343 		kvm_enable_efer_bits(EFER_AUTOIBRS);
5344 
5345 	/* Check for pause filtering support */
5346 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5347 		pause_filter_count = 0;
5348 		pause_filter_thresh = 0;
5349 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5350 		pause_filter_thresh = 0;
5351 	}
5352 
5353 	if (nested) {
5354 		pr_info("Nested Virtualization enabled\n");
5355 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
5356 
5357 		r = nested_svm_init_msrpm_merge_offsets();
5358 		if (r)
5359 			return r;
5360 	}
5361 
5362 	/*
5363 	 * KVM's MMU doesn't support using 2-level paging for itself, and thus
5364 	 * NPT isn't supported if the host is using 2-level paging since host
5365 	 * CR4 is unchanged on VMRUN.
5366 	 */
5367 	if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5368 		npt_enabled = false;
5369 
5370 	if (!boot_cpu_has(X86_FEATURE_NPT))
5371 		npt_enabled = false;
5372 
5373 	/* Force VM NPT level equal to the host's paging level */
5374 	kvm_configure_mmu(npt_enabled, get_npt_level(),
5375 			  get_npt_level(), PG_LEVEL_1G);
5376 	pr_info("Nested Paging %s\n", str_enabled_disabled(npt_enabled));
5377 
5378 	/* Setup shadow_me_value and shadow_me_mask */
5379 	kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5380 
5381 	svm_adjust_mmio_mask();
5382 
5383 	nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS);
5384 
5385 	if (lbrv) {
5386 		if (!boot_cpu_has(X86_FEATURE_LBRV))
5387 			lbrv = false;
5388 		else
5389 			pr_info("LBR virtualization supported\n");
5390 	}
5391 
5392 	iopm_va = svm_alloc_permissions_map(IOPM_SIZE, GFP_KERNEL);
5393 	if (!iopm_va)
5394 		return -ENOMEM;
5395 
5396 	iopm_base = __sme_set(__pa(iopm_va));
5397 
5398 	/*
5399 	 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5400 	 * may be modified by svm_adjust_mmio_mask()), as well as nrips.
5401 	 */
5402 	sev_hardware_setup();
5403 
5404 	svm_hv_hardware_setup();
5405 
5406 	for_each_possible_cpu(cpu) {
5407 		r = svm_cpu_init(cpu);
5408 		if (r)
5409 			goto err;
5410 	}
5411 
5412 	enable_apicv = avic = avic && avic_hardware_setup();
5413 
5414 	if (!enable_apicv) {
5415 		enable_ipiv = false;
5416 		svm_x86_ops.vcpu_blocking = NULL;
5417 		svm_x86_ops.vcpu_unblocking = NULL;
5418 		svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5419 	} else if (!x2avic_enabled) {
5420 		svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true;
5421 	}
5422 
5423 	if (vls) {
5424 		if (!npt_enabled ||
5425 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5426 		    !IS_ENABLED(CONFIG_X86_64)) {
5427 			vls = false;
5428 		} else {
5429 			pr_info("Virtual VMLOAD VMSAVE supported\n");
5430 		}
5431 	}
5432 
5433 	if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5434 		svm_gp_erratum_intercept = false;
5435 
5436 	if (vgif) {
5437 		if (!boot_cpu_has(X86_FEATURE_VGIF))
5438 			vgif = false;
5439 		else
5440 			pr_info("Virtual GIF supported\n");
5441 	}
5442 
5443 	vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
5444 	if (vnmi)
5445 		pr_info("Virtual NMI enabled\n");
5446 
5447 	if (!vnmi) {
5448 		svm_x86_ops.is_vnmi_pending = NULL;
5449 		svm_x86_ops.set_vnmi_pending = NULL;
5450 	}
5451 
5452 	if (!enable_pmu)
5453 		pr_info("PMU virtualization is disabled\n");
5454 
5455 	svm_set_cpu_caps();
5456 
5457 	/*
5458 	 * It seems that on AMD processors PTE's accessed bit is
5459 	 * being set by the CPU hardware before the NPF vmexit.
5460 	 * This is not expected behaviour and our tests fail because
5461 	 * of it.
5462 	 * A workaround here is to disable support for
5463 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5464 	 * In this case userspace can know if there is support using
5465 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5466 	 * it
5467 	 * If future AMD CPU models change the behaviour described above,
5468 	 * this variable can be changed accordingly
5469 	 */
5470 	allow_smaller_maxphyaddr = !npt_enabled;
5471 
5472 	kvm_caps.inapplicable_quirks &= ~KVM_X86_QUIRK_CD_NW_CLEARED;
5473 	return 0;
5474 
5475 err:
5476 	svm_hardware_unsetup();
5477 	return r;
5478 }
5479 
5480 
5481 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5482 	.hardware_setup = svm_hardware_setup,
5483 
5484 	.runtime_ops = &svm_x86_ops,
5485 	.pmu_ops = &amd_pmu_ops,
5486 };
5487 
__svm_exit(void)5488 static void __svm_exit(void)
5489 {
5490 	kvm_x86_vendor_exit();
5491 }
5492 
svm_init(void)5493 static int __init svm_init(void)
5494 {
5495 	int r;
5496 
5497 	KVM_SANITY_CHECK_VM_STRUCT_SIZE(kvm_svm);
5498 
5499 	__unused_size_checks();
5500 
5501 	if (!kvm_is_svm_supported())
5502 		return -EOPNOTSUPP;
5503 
5504 	r = kvm_x86_vendor_init(&svm_init_ops);
5505 	if (r)
5506 		return r;
5507 
5508 	/*
5509 	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
5510 	 * exposed to userspace!
5511 	 */
5512 	r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5513 		     THIS_MODULE);
5514 	if (r)
5515 		goto err_kvm_init;
5516 
5517 	return 0;
5518 
5519 err_kvm_init:
5520 	__svm_exit();
5521 	return r;
5522 }
5523 
svm_exit(void)5524 static void __exit svm_exit(void)
5525 {
5526 	kvm_exit();
5527 	__svm_exit();
5528 }
5529 
5530 module_init(svm_init)
5531 module_exit(svm_exit)
5532