xref: /linux/arch/x86/kvm/vmx/vmx.c (revision 6e9128ff9d8113ef208e5ec82573b96ead100072)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32 
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/fred.h>
42 #include <asm/idtentry.h>
43 #include <asm/io.h>
44 #include <asm/irq_remapping.h>
45 #include <asm/reboot.h>
46 #include <asm/perf_event.h>
47 #include <asm/mmu_context.h>
48 #include <asm/mshyperv.h>
49 #include <asm/msr.h>
50 #include <asm/mwait.h>
51 #include <asm/spec-ctrl.h>
52 #include <asm/vmx.h>
53 
54 #include <trace/events/ipi.h>
55 
56 #include "capabilities.h"
57 #include "common.h"
58 #include "cpuid.h"
59 #include "hyperv.h"
60 #include "kvm_onhyperv.h"
61 #include "irq.h"
62 #include "kvm_cache_regs.h"
63 #include "lapic.h"
64 #include "mmu.h"
65 #include "nested.h"
66 #include "pmu.h"
67 #include "sgx.h"
68 #include "trace.h"
69 #include "vmcs.h"
70 #include "vmcs12.h"
71 #include "vmx.h"
72 #include "x86.h"
73 #include "x86_ops.h"
74 #include "smm.h"
75 #include "vmx_onhyperv.h"
76 #include "posted_intr.h"
77 
78 MODULE_AUTHOR("Qumranet");
79 MODULE_DESCRIPTION("KVM support for VMX (Intel VT-x) extensions");
80 MODULE_LICENSE("GPL");
81 
82 #ifdef MODULE
83 static const struct x86_cpu_id vmx_cpu_id[] = {
84 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
85 	{}
86 };
87 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
88 #endif
89 
90 bool __read_mostly enable_vpid = 1;
91 module_param_named(vpid, enable_vpid, bool, 0444);
92 
93 static bool __read_mostly enable_vnmi = 1;
94 module_param_named(vnmi, enable_vnmi, bool, 0444);
95 
96 bool __read_mostly flexpriority_enabled = 1;
97 module_param_named(flexpriority, flexpriority_enabled, bool, 0444);
98 
99 bool __read_mostly enable_ept = 1;
100 module_param_named(ept, enable_ept, bool, 0444);
101 
102 bool __read_mostly enable_unrestricted_guest = 1;
103 module_param_named(unrestricted_guest,
104 			enable_unrestricted_guest, bool, 0444);
105 
106 bool __read_mostly enable_ept_ad_bits = 1;
107 module_param_named(eptad, enable_ept_ad_bits, bool, 0444);
108 
109 static bool __read_mostly emulate_invalid_guest_state = true;
110 module_param(emulate_invalid_guest_state, bool, 0444);
111 
112 static bool __read_mostly fasteoi = 1;
113 module_param(fasteoi, bool, 0444);
114 
115 module_param(enable_apicv, bool, 0444);
116 
117 bool __read_mostly enable_ipiv = true;
118 module_param(enable_ipiv, bool, 0444);
119 
120 module_param(enable_device_posted_irqs, bool, 0444);
121 
122 /*
123  * If nested=1, nested virtualization is supported, i.e., guests may use
124  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
125  * use VMX instructions.
126  */
127 static bool __read_mostly nested = 1;
128 module_param(nested, bool, 0444);
129 
130 bool __read_mostly enable_pml = 1;
131 module_param_named(pml, enable_pml, bool, 0444);
132 
133 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
134 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
135 
136 static bool __read_mostly dump_invalid_vmcs = 0;
137 module_param(dump_invalid_vmcs, bool, 0644);
138 
139 #define MSR_BITMAP_MODE_X2APIC		1
140 #define MSR_BITMAP_MODE_X2APIC_APICV	2
141 
142 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
143 
144 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
145 static int __read_mostly cpu_preemption_timer_multi;
146 static bool __read_mostly enable_preemption_timer = 1;
147 #ifdef CONFIG_X86_64
148 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
149 #endif
150 
151 extern bool __read_mostly allow_smaller_maxphyaddr;
152 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
153 
154 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
155 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
156 #define KVM_VM_CR0_ALWAYS_ON				\
157 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
158 
159 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
160 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
161 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
162 
163 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
164 
165 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
166 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
167 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
168 	RTIT_STATUS_BYTECNT))
169 
170 /*
171  * List of MSRs that can be directly passed to the guest.
172  * In addition to these x2apic, PT and LBR MSRs are handled specially.
173  */
174 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
175 	MSR_IA32_SPEC_CTRL,
176 	MSR_IA32_PRED_CMD,
177 	MSR_IA32_FLUSH_CMD,
178 	MSR_IA32_TSC,
179 #ifdef CONFIG_X86_64
180 	MSR_FS_BASE,
181 	MSR_GS_BASE,
182 	MSR_KERNEL_GS_BASE,
183 	MSR_IA32_XFD,
184 	MSR_IA32_XFD_ERR,
185 #endif
186 	MSR_IA32_SYSENTER_CS,
187 	MSR_IA32_SYSENTER_ESP,
188 	MSR_IA32_SYSENTER_EIP,
189 	MSR_CORE_C1_RES,
190 	MSR_CORE_C3_RESIDENCY,
191 	MSR_CORE_C6_RESIDENCY,
192 	MSR_CORE_C7_RESIDENCY,
193 };
194 
195 /*
196  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
197  * ple_gap:    upper bound on the amount of time between two successive
198  *             executions of PAUSE in a loop. Also indicate if ple enabled.
199  *             According to test, this time is usually smaller than 128 cycles.
200  * ple_window: upper bound on the amount of time a guest is allowed to execute
201  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
202  *             less than 2^12 cycles
203  * Time is measured based on a counter that runs at the same rate as the TSC,
204  * refer SDM volume 3b section 21.6.13 & 22.1.3.
205  */
206 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
207 module_param(ple_gap, uint, 0444);
208 
209 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
210 module_param(ple_window, uint, 0444);
211 
212 /* Default doubles per-vcpu window every exit. */
213 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
214 module_param(ple_window_grow, uint, 0444);
215 
216 /* Default resets per-vcpu window every exit to ple_window. */
217 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
218 module_param(ple_window_shrink, uint, 0444);
219 
220 /* Default is to compute the maximum so we can never overflow. */
221 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
222 module_param(ple_window_max, uint, 0444);
223 
224 /* Default is SYSTEM mode, 1 for host-guest mode (which is BROKEN) */
225 int __read_mostly pt_mode = PT_MODE_SYSTEM;
226 #ifdef CONFIG_BROKEN
227 module_param(pt_mode, int, S_IRUGO);
228 #endif
229 
230 struct x86_pmu_lbr __ro_after_init vmx_lbr_caps;
231 
232 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
233 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
234 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
235 
236 /* Storage for pre module init parameter parsing */
237 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
238 
239 static const struct {
240 	const char *option;
241 	bool for_parse;
242 } vmentry_l1d_param[] = {
243 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
244 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
245 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
246 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
247 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
248 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
249 };
250 
251 #define L1D_CACHE_ORDER 4
252 static void *vmx_l1d_flush_pages;
253 
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)254 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
255 {
256 	struct page *page;
257 	unsigned int i;
258 
259 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
260 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
261 		return 0;
262 	}
263 
264 	if (!enable_ept) {
265 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
266 		return 0;
267 	}
268 
269 	if (kvm_host.arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
270 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
271 		return 0;
272 	}
273 
274 	/* If set to auto use the default l1tf mitigation method */
275 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
276 		switch (l1tf_mitigation) {
277 		case L1TF_MITIGATION_OFF:
278 			l1tf = VMENTER_L1D_FLUSH_NEVER;
279 			break;
280 		case L1TF_MITIGATION_AUTO:
281 		case L1TF_MITIGATION_FLUSH_NOWARN:
282 		case L1TF_MITIGATION_FLUSH:
283 		case L1TF_MITIGATION_FLUSH_NOSMT:
284 			l1tf = VMENTER_L1D_FLUSH_COND;
285 			break;
286 		case L1TF_MITIGATION_FULL:
287 		case L1TF_MITIGATION_FULL_FORCE:
288 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
289 			break;
290 		}
291 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
292 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
293 	}
294 
295 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
296 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
297 		/*
298 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
299 		 * lifetime and so should not be charged to a memcg.
300 		 */
301 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
302 		if (!page)
303 			return -ENOMEM;
304 		vmx_l1d_flush_pages = page_address(page);
305 
306 		/*
307 		 * Initialize each page with a different pattern in
308 		 * order to protect against KSM in the nested
309 		 * virtualization case.
310 		 */
311 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
312 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
313 			       PAGE_SIZE);
314 		}
315 	}
316 
317 	l1tf_vmx_mitigation = l1tf;
318 
319 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
320 		static_branch_enable(&vmx_l1d_should_flush);
321 	else
322 		static_branch_disable(&vmx_l1d_should_flush);
323 
324 	if (l1tf == VMENTER_L1D_FLUSH_COND)
325 		static_branch_enable(&vmx_l1d_flush_cond);
326 	else
327 		static_branch_disable(&vmx_l1d_flush_cond);
328 	return 0;
329 }
330 
vmentry_l1d_flush_parse(const char * s)331 static int vmentry_l1d_flush_parse(const char *s)
332 {
333 	unsigned int i;
334 
335 	if (s) {
336 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
337 			if (vmentry_l1d_param[i].for_parse &&
338 			    sysfs_streq(s, vmentry_l1d_param[i].option))
339 				return i;
340 		}
341 	}
342 	return -EINVAL;
343 }
344 
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)345 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
346 {
347 	int l1tf, ret;
348 
349 	l1tf = vmentry_l1d_flush_parse(s);
350 	if (l1tf < 0)
351 		return l1tf;
352 
353 	if (!boot_cpu_has(X86_BUG_L1TF))
354 		return 0;
355 
356 	/*
357 	 * Has vmx_init() run already? If not then this is the pre init
358 	 * parameter parsing. In that case just store the value and let
359 	 * vmx_init() do the proper setup after enable_ept has been
360 	 * established.
361 	 */
362 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
363 		vmentry_l1d_flush_param = l1tf;
364 		return 0;
365 	}
366 
367 	mutex_lock(&vmx_l1d_flush_mutex);
368 	ret = vmx_setup_l1d_flush(l1tf);
369 	mutex_unlock(&vmx_l1d_flush_mutex);
370 	return ret;
371 }
372 
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)373 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
374 {
375 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
376 		return sysfs_emit(s, "???\n");
377 
378 	return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
379 }
380 
vmx_disable_fb_clear(struct vcpu_vmx * vmx)381 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
382 {
383 	u64 msr;
384 
385 	if (!vmx->disable_fb_clear)
386 		return;
387 
388 	msr = native_rdmsrq(MSR_IA32_MCU_OPT_CTRL);
389 	msr |= FB_CLEAR_DIS;
390 	native_wrmsrq(MSR_IA32_MCU_OPT_CTRL, msr);
391 	/* Cache the MSR value to avoid reading it later */
392 	vmx->msr_ia32_mcu_opt_ctrl = msr;
393 }
394 
vmx_enable_fb_clear(struct vcpu_vmx * vmx)395 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
396 {
397 	if (!vmx->disable_fb_clear)
398 		return;
399 
400 	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
401 	native_wrmsrq(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
402 }
403 
vmx_update_fb_clear_dis(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx)404 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
405 {
406 	/*
407 	 * Disable VERW's behavior of clearing CPU buffers for the guest if the
408 	 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
409 	 * the mitigation. Disabling the clearing behavior provides a
410 	 * performance boost for guests that aren't aware that manually clearing
411 	 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
412 	 * and VM-Exit.
413 	 */
414 	vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
415 				(kvm_host.arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
416 				!boot_cpu_has_bug(X86_BUG_MDS) &&
417 				!boot_cpu_has_bug(X86_BUG_TAA);
418 
419 	/*
420 	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
421 	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
422 	 * execute VERW.
423 	 */
424 	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
425 	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
426 	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
427 	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
428 	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
429 	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
430 		vmx->disable_fb_clear = false;
431 }
432 
433 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
434 	.set = vmentry_l1d_flush_set,
435 	.get = vmentry_l1d_flush_get,
436 };
437 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
438 
439 static u32 vmx_segment_access_rights(struct kvm_segment *var);
440 
441 void vmx_vmexit(void);
442 
443 #define vmx_insn_failed(fmt...)		\
444 do {					\
445 	WARN_ONCE(1, fmt);		\
446 	pr_warn_ratelimited(fmt);	\
447 } while (0)
448 
vmread_error(unsigned long field)449 noinline void vmread_error(unsigned long field)
450 {
451 	vmx_insn_failed("vmread failed: field=%lx\n", field);
452 }
453 
454 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
vmread_error_trampoline2(unsigned long field,bool fault)455 noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
456 {
457 	if (fault) {
458 		kvm_spurious_fault();
459 	} else {
460 		instrumentation_begin();
461 		vmread_error(field);
462 		instrumentation_end();
463 	}
464 }
465 #endif
466 
vmwrite_error(unsigned long field,unsigned long value)467 noinline void vmwrite_error(unsigned long field, unsigned long value)
468 {
469 	vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
470 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
471 }
472 
vmclear_error(struct vmcs * vmcs,u64 phys_addr)473 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
474 {
475 	vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
476 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
477 }
478 
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)479 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
480 {
481 	vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
482 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
483 }
484 
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)485 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
486 {
487 	vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
488 			ext, vpid, gva);
489 }
490 
invept_error(unsigned long ext,u64 eptp)491 noinline void invept_error(unsigned long ext, u64 eptp)
492 {
493 	vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx\n", ext, eptp);
494 }
495 
496 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
497 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
498 /*
499  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
500  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
501  */
502 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
503 
504 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
505 static DEFINE_SPINLOCK(vmx_vpid_lock);
506 
507 struct vmcs_config vmcs_config __ro_after_init;
508 struct vmx_capability vmx_capability __ro_after_init;
509 
510 #define VMX_SEGMENT_FIELD(seg)					\
511 	[VCPU_SREG_##seg] = {                                   \
512 		.selector = GUEST_##seg##_SELECTOR,		\
513 		.base = GUEST_##seg##_BASE,		   	\
514 		.limit = GUEST_##seg##_LIMIT,		   	\
515 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
516 	}
517 
518 static const struct kvm_vmx_segment_field {
519 	unsigned selector;
520 	unsigned base;
521 	unsigned limit;
522 	unsigned ar_bytes;
523 } kvm_vmx_segment_fields[] = {
524 	VMX_SEGMENT_FIELD(CS),
525 	VMX_SEGMENT_FIELD(DS),
526 	VMX_SEGMENT_FIELD(ES),
527 	VMX_SEGMENT_FIELD(FS),
528 	VMX_SEGMENT_FIELD(GS),
529 	VMX_SEGMENT_FIELD(SS),
530 	VMX_SEGMENT_FIELD(TR),
531 	VMX_SEGMENT_FIELD(LDTR),
532 };
533 
534 
535 static unsigned long host_idt_base;
536 
537 #if IS_ENABLED(CONFIG_HYPERV)
538 static bool __read_mostly enlightened_vmcs = true;
539 module_param(enlightened_vmcs, bool, 0444);
540 
hv_enable_l2_tlb_flush(struct kvm_vcpu * vcpu)541 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
542 {
543 	struct hv_enlightened_vmcs *evmcs;
544 	hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu);
545 
546 	if (partition_assist_page == INVALID_PAGE)
547 		return -ENOMEM;
548 
549 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
550 
551 	evmcs->partition_assist_page = partition_assist_page;
552 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
553 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
554 
555 	return 0;
556 }
557 
hv_init_evmcs(void)558 static __init void hv_init_evmcs(void)
559 {
560 	int cpu;
561 
562 	if (!enlightened_vmcs)
563 		return;
564 
565 	/*
566 	 * Enlightened VMCS usage should be recommended and the host needs
567 	 * to support eVMCS v1 or above.
568 	 */
569 	if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
570 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
571 	     KVM_EVMCS_VERSION) {
572 
573 		/* Check that we have assist pages on all online CPUs */
574 		for_each_online_cpu(cpu) {
575 			if (!hv_get_vp_assist_page(cpu)) {
576 				enlightened_vmcs = false;
577 				break;
578 			}
579 		}
580 
581 		if (enlightened_vmcs) {
582 			pr_info("Using Hyper-V Enlightened VMCS\n");
583 			static_branch_enable(&__kvm_is_using_evmcs);
584 		}
585 
586 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
587 			vt_x86_ops.enable_l2_tlb_flush
588 				= hv_enable_l2_tlb_flush;
589 	} else {
590 		enlightened_vmcs = false;
591 	}
592 }
593 
hv_reset_evmcs(void)594 static void hv_reset_evmcs(void)
595 {
596 	struct hv_vp_assist_page *vp_ap;
597 
598 	if (!kvm_is_using_evmcs())
599 		return;
600 
601 	/*
602 	 * KVM should enable eVMCS if and only if all CPUs have a VP assist
603 	 * page, and should reject CPU onlining if eVMCS is enabled the CPU
604 	 * doesn't have a VP assist page allocated.
605 	 */
606 	vp_ap = hv_get_vp_assist_page(smp_processor_id());
607 	if (WARN_ON_ONCE(!vp_ap))
608 		return;
609 
610 	/*
611 	 * Reset everything to support using non-enlightened VMCS access later
612 	 * (e.g. when we reload the module with enlightened_vmcs=0)
613 	 */
614 	vp_ap->nested_control.features.directhypercall = 0;
615 	vp_ap->current_nested_vmcs = 0;
616 	vp_ap->enlighten_vmentry = 0;
617 }
618 
619 #else /* IS_ENABLED(CONFIG_HYPERV) */
hv_init_evmcs(void)620 static void hv_init_evmcs(void) {}
hv_reset_evmcs(void)621 static void hv_reset_evmcs(void) {}
622 #endif /* IS_ENABLED(CONFIG_HYPERV) */
623 
624 /*
625  * Comment's format: document - errata name - stepping - processor name.
626  * Refer from
627  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
628  */
629 static u32 vmx_preemption_cpu_tfms[] = {
630 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
631 0x000206E6,
632 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
633 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
634 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
635 0x00020652,
636 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
637 0x00020655,
638 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
639 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
640 /*
641  * 320767.pdf - AAP86  - B1 -
642  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
643  */
644 0x000106E5,
645 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
646 0x000106A0,
647 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
648 0x000106A1,
649 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
650 0x000106A4,
651  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
652  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
653  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
654 0x000106A5,
655  /* Xeon E3-1220 V2 */
656 0x000306A8,
657 };
658 
cpu_has_broken_vmx_preemption_timer(void)659 static inline bool cpu_has_broken_vmx_preemption_timer(void)
660 {
661 	u32 eax = cpuid_eax(0x00000001), i;
662 
663 	/* Clear the reserved bits */
664 	eax &= ~(0x3U << 14 | 0xfU << 28);
665 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
666 		if (eax == vmx_preemption_cpu_tfms[i])
667 			return true;
668 
669 	return false;
670 }
671 
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)672 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
673 {
674 	return flexpriority_enabled && lapic_in_kernel(vcpu);
675 }
676 
vmx_get_passthrough_msr_slot(u32 msr)677 static int vmx_get_passthrough_msr_slot(u32 msr)
678 {
679 	int i;
680 
681 	switch (msr) {
682 	case 0x800 ... 0x8ff:
683 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
684 		return -ENOENT;
685 	case MSR_IA32_RTIT_STATUS:
686 	case MSR_IA32_RTIT_OUTPUT_BASE:
687 	case MSR_IA32_RTIT_OUTPUT_MASK:
688 	case MSR_IA32_RTIT_CR3_MATCH:
689 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
690 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
691 	case MSR_LBR_SELECT:
692 	case MSR_LBR_TOS:
693 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
694 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
695 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
696 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
697 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
698 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
699 		return -ENOENT;
700 	}
701 
702 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
703 		if (vmx_possible_passthrough_msrs[i] == msr)
704 			return i;
705 	}
706 
707 	WARN(1, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
708 	return -ENOENT;
709 }
710 
vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)711 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
712 {
713 	int i;
714 
715 	i = kvm_find_user_return_msr(msr);
716 	if (i >= 0)
717 		return &vmx->guest_uret_msrs[i];
718 	return NULL;
719 }
720 
vmx_set_guest_uret_msr(struct vcpu_vmx * vmx,struct vmx_uret_msr * msr,u64 data)721 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
722 				  struct vmx_uret_msr *msr, u64 data)
723 {
724 	unsigned int slot = msr - vmx->guest_uret_msrs;
725 	int ret = 0;
726 
727 	if (msr->load_into_hardware) {
728 		preempt_disable();
729 		ret = kvm_set_user_return_msr(slot, data, msr->mask);
730 		preempt_enable();
731 	}
732 	if (!ret)
733 		msr->data = data;
734 	return ret;
735 }
736 
737 /*
738  * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
739  *
740  * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
741  * atomically track post-VMXON state, e.g. this may be called in NMI context.
742  * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
743  * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
744  * magically in RM, VM86, compat mode, or at CPL>0.
745  */
kvm_cpu_vmxoff(void)746 static int kvm_cpu_vmxoff(void)
747 {
748 	asm goto("1: vmxoff\n\t"
749 			  _ASM_EXTABLE(1b, %l[fault])
750 			  ::: "cc", "memory" : fault);
751 
752 	cr4_clear_bits(X86_CR4_VMXE);
753 	return 0;
754 
755 fault:
756 	cr4_clear_bits(X86_CR4_VMXE);
757 	return -EIO;
758 }
759 
vmx_emergency_disable_virtualization_cpu(void)760 void vmx_emergency_disable_virtualization_cpu(void)
761 {
762 	int cpu = raw_smp_processor_id();
763 	struct loaded_vmcs *v;
764 
765 	kvm_rebooting = true;
766 
767 	/*
768 	 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
769 	 * set in task context.  If this races with VMX is disabled by an NMI,
770 	 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
771 	 * kvm_rebooting set.
772 	 */
773 	if (!(__read_cr4() & X86_CR4_VMXE))
774 		return;
775 
776 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
777 			    loaded_vmcss_on_cpu_link) {
778 		vmcs_clear(v->vmcs);
779 		if (v->shadow_vmcs)
780 			vmcs_clear(v->shadow_vmcs);
781 	}
782 
783 	kvm_cpu_vmxoff();
784 }
785 
__loaded_vmcs_clear(void * arg)786 static void __loaded_vmcs_clear(void *arg)
787 {
788 	struct loaded_vmcs *loaded_vmcs = arg;
789 	int cpu = raw_smp_processor_id();
790 
791 	if (loaded_vmcs->cpu != cpu)
792 		return; /* vcpu migration can race with cpu offline */
793 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
794 		per_cpu(current_vmcs, cpu) = NULL;
795 
796 	vmcs_clear(loaded_vmcs->vmcs);
797 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
798 		vmcs_clear(loaded_vmcs->shadow_vmcs);
799 
800 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
801 
802 	/*
803 	 * Ensure all writes to loaded_vmcs, including deleting it from its
804 	 * current percpu list, complete before setting loaded_vmcs->cpu to
805 	 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
806 	 * and add loaded_vmcs to its percpu list before it's deleted from this
807 	 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
808 	 */
809 	smp_wmb();
810 
811 	loaded_vmcs->cpu = -1;
812 	loaded_vmcs->launched = 0;
813 }
814 
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)815 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
816 {
817 	int cpu = loaded_vmcs->cpu;
818 
819 	if (cpu != -1)
820 		smp_call_function_single(cpu,
821 			 __loaded_vmcs_clear, loaded_vmcs, 1);
822 }
823 
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)824 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
825 				       unsigned field)
826 {
827 	bool ret;
828 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
829 
830 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
831 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
832 		vmx->segment_cache.bitmask = 0;
833 	}
834 	ret = vmx->segment_cache.bitmask & mask;
835 	vmx->segment_cache.bitmask |= mask;
836 	return ret;
837 }
838 
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)839 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
840 {
841 	u16 *p = &vmx->segment_cache.seg[seg].selector;
842 
843 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
844 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
845 	return *p;
846 }
847 
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)848 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
849 {
850 	ulong *p = &vmx->segment_cache.seg[seg].base;
851 
852 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
853 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
854 	return *p;
855 }
856 
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)857 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
858 {
859 	u32 *p = &vmx->segment_cache.seg[seg].limit;
860 
861 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
862 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
863 	return *p;
864 }
865 
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)866 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
867 {
868 	u32 *p = &vmx->segment_cache.seg[seg].ar;
869 
870 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
871 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
872 	return *p;
873 }
874 
vmx_update_exception_bitmap(struct kvm_vcpu * vcpu)875 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
876 {
877 	u32 eb;
878 
879 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
880 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
881 	/*
882 	 * #VE isn't used for VMX.  To test against unexpected changes
883 	 * related to #VE for VMX, intercept unexpected #VE and warn on it.
884 	 */
885 	if (IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
886 		eb |= 1u << VE_VECTOR;
887 	/*
888 	 * Guest access to VMware backdoor ports could legitimately
889 	 * trigger #GP because of TSS I/O permission bitmap.
890 	 * We intercept those #GP and allow access to them anyway
891 	 * as VMware does.
892 	 */
893 	if (enable_vmware_backdoor)
894 		eb |= (1u << GP_VECTOR);
895 	if ((vcpu->guest_debug &
896 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
897 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
898 		eb |= 1u << BP_VECTOR;
899 	if (to_vmx(vcpu)->rmode.vm86_active)
900 		eb = ~0;
901 	if (!vmx_need_pf_intercept(vcpu))
902 		eb &= ~(1u << PF_VECTOR);
903 
904 	/* When we are running a nested L2 guest and L1 specified for it a
905 	 * certain exception bitmap, we must trap the same exceptions and pass
906 	 * them to L1. When running L2, we will only handle the exceptions
907 	 * specified above if L1 did not want them.
908 	 */
909 	if (is_guest_mode(vcpu))
910 		eb |= get_vmcs12(vcpu)->exception_bitmap;
911 	else {
912 		int mask = 0, match = 0;
913 
914 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
915 			/*
916 			 * If EPT is enabled, #PF is currently only intercepted
917 			 * if MAXPHYADDR is smaller on the guest than on the
918 			 * host.  In that case we only care about present,
919 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
920 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
921 			 */
922 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
923 			match = PFERR_PRESENT_MASK;
924 		}
925 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
926 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
927 	}
928 
929 	/*
930 	 * Disabling xfd interception indicates that dynamic xfeatures
931 	 * might be used in the guest. Always trap #NM in this case
932 	 * to save guest xfd_err timely.
933 	 */
934 	if (vcpu->arch.xfd_no_write_intercept)
935 		eb |= (1u << NM_VECTOR);
936 
937 	vmcs_write32(EXCEPTION_BITMAP, eb);
938 }
939 
940 /*
941  * Check if MSR is intercepted for currently loaded MSR bitmap.
942  */
msr_write_intercepted(struct vcpu_vmx * vmx,u32 msr)943 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
944 {
945 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
946 		return true;
947 
948 	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
949 }
950 
__vmx_vcpu_run_flags(struct vcpu_vmx * vmx)951 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
952 {
953 	unsigned int flags = 0;
954 
955 	if (vmx->loaded_vmcs->launched)
956 		flags |= VMX_RUN_VMRESUME;
957 
958 	/*
959 	 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
960 	 * to change it directly without causing a vmexit.  In that case read
961 	 * it after vmexit and store it in vmx->spec_ctrl.
962 	 */
963 	if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
964 		flags |= VMX_RUN_SAVE_SPEC_CTRL;
965 
966 	return flags;
967 }
968 
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)969 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
970 		unsigned long entry, unsigned long exit)
971 {
972 	vm_entry_controls_clearbit(vmx, entry);
973 	vm_exit_controls_clearbit(vmx, exit);
974 }
975 
vmx_find_loadstore_msr_slot(struct vmx_msrs * m,u32 msr)976 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
977 {
978 	unsigned int i;
979 
980 	for (i = 0; i < m->nr; ++i) {
981 		if (m->val[i].index == msr)
982 			return i;
983 	}
984 	return -ENOENT;
985 }
986 
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)987 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
988 {
989 	int i;
990 	struct msr_autoload *m = &vmx->msr_autoload;
991 
992 	switch (msr) {
993 	case MSR_EFER:
994 		if (cpu_has_load_ia32_efer()) {
995 			clear_atomic_switch_msr_special(vmx,
996 					VM_ENTRY_LOAD_IA32_EFER,
997 					VM_EXIT_LOAD_IA32_EFER);
998 			return;
999 		}
1000 		break;
1001 	case MSR_CORE_PERF_GLOBAL_CTRL:
1002 		if (cpu_has_load_perf_global_ctrl()) {
1003 			clear_atomic_switch_msr_special(vmx,
1004 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1005 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1006 			return;
1007 		}
1008 		break;
1009 	}
1010 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1011 	if (i < 0)
1012 		goto skip_guest;
1013 	--m->guest.nr;
1014 	m->guest.val[i] = m->guest.val[m->guest.nr];
1015 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1016 
1017 skip_guest:
1018 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
1019 	if (i < 0)
1020 		return;
1021 
1022 	--m->host.nr;
1023 	m->host.val[i] = m->host.val[m->host.nr];
1024 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1025 }
1026 
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)1027 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1028 		unsigned long entry, unsigned long exit,
1029 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1030 		u64 guest_val, u64 host_val)
1031 {
1032 	vmcs_write64(guest_val_vmcs, guest_val);
1033 	if (host_val_vmcs != HOST_IA32_EFER)
1034 		vmcs_write64(host_val_vmcs, host_val);
1035 	vm_entry_controls_setbit(vmx, entry);
1036 	vm_exit_controls_setbit(vmx, exit);
1037 }
1038 
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)1039 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1040 				  u64 guest_val, u64 host_val, bool entry_only)
1041 {
1042 	int i, j = 0;
1043 	struct msr_autoload *m = &vmx->msr_autoload;
1044 
1045 	switch (msr) {
1046 	case MSR_EFER:
1047 		if (cpu_has_load_ia32_efer()) {
1048 			add_atomic_switch_msr_special(vmx,
1049 					VM_ENTRY_LOAD_IA32_EFER,
1050 					VM_EXIT_LOAD_IA32_EFER,
1051 					GUEST_IA32_EFER,
1052 					HOST_IA32_EFER,
1053 					guest_val, host_val);
1054 			return;
1055 		}
1056 		break;
1057 	case MSR_CORE_PERF_GLOBAL_CTRL:
1058 		if (cpu_has_load_perf_global_ctrl()) {
1059 			add_atomic_switch_msr_special(vmx,
1060 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1061 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1062 					GUEST_IA32_PERF_GLOBAL_CTRL,
1063 					HOST_IA32_PERF_GLOBAL_CTRL,
1064 					guest_val, host_val);
1065 			return;
1066 		}
1067 		break;
1068 	case MSR_IA32_PEBS_ENABLE:
1069 		/* PEBS needs a quiescent period after being disabled (to write
1070 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
1071 		 * provide that period, so a CPU could write host's record into
1072 		 * guest's memory.
1073 		 */
1074 		wrmsrq(MSR_IA32_PEBS_ENABLE, 0);
1075 	}
1076 
1077 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1078 	if (!entry_only)
1079 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
1080 
1081 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1082 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1083 		printk_once(KERN_WARNING "Not enough msr switch entries. "
1084 				"Can't add msr %x\n", msr);
1085 		return;
1086 	}
1087 	if (i < 0) {
1088 		i = m->guest.nr++;
1089 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1090 	}
1091 	m->guest.val[i].index = msr;
1092 	m->guest.val[i].value = guest_val;
1093 
1094 	if (entry_only)
1095 		return;
1096 
1097 	if (j < 0) {
1098 		j = m->host.nr++;
1099 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1100 	}
1101 	m->host.val[j].index = msr;
1102 	m->host.val[j].value = host_val;
1103 }
1104 
update_transition_efer(struct vcpu_vmx * vmx)1105 static bool update_transition_efer(struct vcpu_vmx *vmx)
1106 {
1107 	u64 guest_efer = vmx->vcpu.arch.efer;
1108 	u64 ignore_bits = 0;
1109 	int i;
1110 
1111 	/* Shadow paging assumes NX to be available.  */
1112 	if (!enable_ept)
1113 		guest_efer |= EFER_NX;
1114 
1115 	/*
1116 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1117 	 */
1118 	ignore_bits |= EFER_SCE;
1119 #ifdef CONFIG_X86_64
1120 	ignore_bits |= EFER_LMA | EFER_LME;
1121 	/* SCE is meaningful only in long mode on Intel */
1122 	if (guest_efer & EFER_LMA)
1123 		ignore_bits &= ~(u64)EFER_SCE;
1124 #endif
1125 
1126 	/*
1127 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1128 	 * On CPUs that support "load IA32_EFER", always switch EFER
1129 	 * atomically, since it's faster than switching it manually.
1130 	 */
1131 	if (cpu_has_load_ia32_efer() ||
1132 	    (enable_ept && ((vmx->vcpu.arch.efer ^ kvm_host.efer) & EFER_NX))) {
1133 		if (!(guest_efer & EFER_LMA))
1134 			guest_efer &= ~EFER_LME;
1135 		if (guest_efer != kvm_host.efer)
1136 			add_atomic_switch_msr(vmx, MSR_EFER,
1137 					      guest_efer, kvm_host.efer, false);
1138 		else
1139 			clear_atomic_switch_msr(vmx, MSR_EFER);
1140 		return false;
1141 	}
1142 
1143 	i = kvm_find_user_return_msr(MSR_EFER);
1144 	if (i < 0)
1145 		return false;
1146 
1147 	clear_atomic_switch_msr(vmx, MSR_EFER);
1148 
1149 	guest_efer &= ~ignore_bits;
1150 	guest_efer |= kvm_host.efer & ignore_bits;
1151 
1152 	vmx->guest_uret_msrs[i].data = guest_efer;
1153 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1154 
1155 	return true;
1156 }
1157 
1158 #ifdef CONFIG_X86_32
1159 /*
1160  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1161  * VMCS rather than the segment table.  KVM uses this helper to figure
1162  * out the current bases to poke them into the VMCS before entry.
1163  */
segment_base(u16 selector)1164 static unsigned long segment_base(u16 selector)
1165 {
1166 	struct desc_struct *table;
1167 	unsigned long v;
1168 
1169 	if (!(selector & ~SEGMENT_RPL_MASK))
1170 		return 0;
1171 
1172 	table = get_current_gdt_ro();
1173 
1174 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1175 		u16 ldt_selector = kvm_read_ldt();
1176 
1177 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1178 			return 0;
1179 
1180 		table = (struct desc_struct *)segment_base(ldt_selector);
1181 	}
1182 	v = get_desc_base(&table[selector >> 3]);
1183 	return v;
1184 }
1185 #endif
1186 
pt_can_write_msr(struct vcpu_vmx * vmx)1187 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1188 {
1189 	return vmx_pt_mode_is_host_guest() &&
1190 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1191 }
1192 
pt_output_base_valid(struct kvm_vcpu * vcpu,u64 base)1193 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1194 {
1195 	/* The base must be 128-byte aligned and a legal physical address. */
1196 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1197 }
1198 
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1199 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1200 {
1201 	u32 i;
1202 
1203 	wrmsrq(MSR_IA32_RTIT_STATUS, ctx->status);
1204 	wrmsrq(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1205 	wrmsrq(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1206 	wrmsrq(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1207 	for (i = 0; i < addr_range; i++) {
1208 		wrmsrq(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1209 		wrmsrq(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1210 	}
1211 }
1212 
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1213 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1214 {
1215 	u32 i;
1216 
1217 	rdmsrq(MSR_IA32_RTIT_STATUS, ctx->status);
1218 	rdmsrq(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1219 	rdmsrq(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1220 	rdmsrq(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1221 	for (i = 0; i < addr_range; i++) {
1222 		rdmsrq(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1223 		rdmsrq(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1224 	}
1225 }
1226 
pt_guest_enter(struct vcpu_vmx * vmx)1227 static void pt_guest_enter(struct vcpu_vmx *vmx)
1228 {
1229 	if (vmx_pt_mode_is_system())
1230 		return;
1231 
1232 	/*
1233 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1234 	 * Save host state before VM entry.
1235 	 */
1236 	rdmsrq(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1237 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1238 		wrmsrq(MSR_IA32_RTIT_CTL, 0);
1239 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1240 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1241 	}
1242 }
1243 
pt_guest_exit(struct vcpu_vmx * vmx)1244 static void pt_guest_exit(struct vcpu_vmx *vmx)
1245 {
1246 	if (vmx_pt_mode_is_system())
1247 		return;
1248 
1249 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1250 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1251 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1252 	}
1253 
1254 	/*
1255 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1256 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1257 	 */
1258 	if (vmx->pt_desc.host.ctl)
1259 		wrmsrq(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1260 }
1261 
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1262 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1263 			unsigned long fs_base, unsigned long gs_base)
1264 {
1265 	if (unlikely(fs_sel != host->fs_sel)) {
1266 		if (!(fs_sel & 7))
1267 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1268 		else
1269 			vmcs_write16(HOST_FS_SELECTOR, 0);
1270 		host->fs_sel = fs_sel;
1271 	}
1272 	if (unlikely(gs_sel != host->gs_sel)) {
1273 		if (!(gs_sel & 7))
1274 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1275 		else
1276 			vmcs_write16(HOST_GS_SELECTOR, 0);
1277 		host->gs_sel = gs_sel;
1278 	}
1279 	if (unlikely(fs_base != host->fs_base)) {
1280 		vmcs_writel(HOST_FS_BASE, fs_base);
1281 		host->fs_base = fs_base;
1282 	}
1283 	if (unlikely(gs_base != host->gs_base)) {
1284 		vmcs_writel(HOST_GS_BASE, gs_base);
1285 		host->gs_base = gs_base;
1286 	}
1287 }
1288 
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1289 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1290 {
1291 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1292 	struct vcpu_vt *vt = to_vt(vcpu);
1293 	struct vmcs_host_state *host_state;
1294 #ifdef CONFIG_X86_64
1295 	int cpu = raw_smp_processor_id();
1296 #endif
1297 	unsigned long fs_base, gs_base;
1298 	u16 fs_sel, gs_sel;
1299 	int i;
1300 
1301 	/*
1302 	 * Note that guest MSRs to be saved/restored can also be changed
1303 	 * when guest state is loaded. This happens when guest transitions
1304 	 * to/from long-mode by setting MSR_EFER.LMA.
1305 	 */
1306 	if (!vmx->guest_uret_msrs_loaded) {
1307 		vmx->guest_uret_msrs_loaded = true;
1308 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1309 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1310 				continue;
1311 
1312 			kvm_set_user_return_msr(i,
1313 						vmx->guest_uret_msrs[i].data,
1314 						vmx->guest_uret_msrs[i].mask);
1315 		}
1316 	}
1317 
1318 	if (vmx->nested.need_vmcs12_to_shadow_sync)
1319 		nested_sync_vmcs12_to_shadow(vcpu);
1320 
1321 	if (vt->guest_state_loaded)
1322 		return;
1323 
1324 	host_state = &vmx->loaded_vmcs->host_state;
1325 
1326 	/*
1327 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1328 	 * allow segment selectors with cpl > 0 or ti == 1.
1329 	 */
1330 	host_state->ldt_sel = kvm_read_ldt();
1331 
1332 #ifdef CONFIG_X86_64
1333 	savesegment(ds, host_state->ds_sel);
1334 	savesegment(es, host_state->es_sel);
1335 
1336 	gs_base = cpu_kernelmode_gs_base(cpu);
1337 	if (likely(is_64bit_mm(current->mm))) {
1338 		current_save_fsgs();
1339 		fs_sel = current->thread.fsindex;
1340 		gs_sel = current->thread.gsindex;
1341 		fs_base = current->thread.fsbase;
1342 		vt->msr_host_kernel_gs_base = current->thread.gsbase;
1343 	} else {
1344 		savesegment(fs, fs_sel);
1345 		savesegment(gs, gs_sel);
1346 		fs_base = read_msr(MSR_FS_BASE);
1347 		vt->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1348 	}
1349 
1350 	wrmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1351 #else
1352 	savesegment(fs, fs_sel);
1353 	savesegment(gs, gs_sel);
1354 	fs_base = segment_base(fs_sel);
1355 	gs_base = segment_base(gs_sel);
1356 #endif
1357 
1358 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1359 	vt->guest_state_loaded = true;
1360 }
1361 
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1362 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1363 {
1364 	struct vmcs_host_state *host_state;
1365 
1366 	if (!vmx->vt.guest_state_loaded)
1367 		return;
1368 
1369 	host_state = &vmx->loaded_vmcs->host_state;
1370 
1371 	++vmx->vcpu.stat.host_state_reload;
1372 
1373 #ifdef CONFIG_X86_64
1374 	rdmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1375 #endif
1376 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1377 		kvm_load_ldt(host_state->ldt_sel);
1378 #ifdef CONFIG_X86_64
1379 		load_gs_index(host_state->gs_sel);
1380 #else
1381 		loadsegment(gs, host_state->gs_sel);
1382 #endif
1383 	}
1384 	if (host_state->fs_sel & 7)
1385 		loadsegment(fs, host_state->fs_sel);
1386 #ifdef CONFIG_X86_64
1387 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1388 		loadsegment(ds, host_state->ds_sel);
1389 		loadsegment(es, host_state->es_sel);
1390 	}
1391 #endif
1392 	invalidate_tss_limit();
1393 #ifdef CONFIG_X86_64
1394 	wrmsrq(MSR_KERNEL_GS_BASE, vmx->vt.msr_host_kernel_gs_base);
1395 #endif
1396 	load_fixmap_gdt(raw_smp_processor_id());
1397 	vmx->vt.guest_state_loaded = false;
1398 	vmx->guest_uret_msrs_loaded = false;
1399 }
1400 
1401 #ifdef CONFIG_X86_64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1402 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1403 {
1404 	preempt_disable();
1405 	if (vmx->vt.guest_state_loaded)
1406 		rdmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1407 	preempt_enable();
1408 	return vmx->msr_guest_kernel_gs_base;
1409 }
1410 
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1411 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1412 {
1413 	preempt_disable();
1414 	if (vmx->vt.guest_state_loaded)
1415 		wrmsrq(MSR_KERNEL_GS_BASE, data);
1416 	preempt_enable();
1417 	vmx->msr_guest_kernel_gs_base = data;
1418 }
1419 #endif
1420 
grow_ple_window(struct kvm_vcpu * vcpu)1421 static void grow_ple_window(struct kvm_vcpu *vcpu)
1422 {
1423 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1424 	unsigned int old = vmx->ple_window;
1425 
1426 	vmx->ple_window = __grow_ple_window(old, ple_window,
1427 					    ple_window_grow,
1428 					    ple_window_max);
1429 
1430 	if (vmx->ple_window != old) {
1431 		vmx->ple_window_dirty = true;
1432 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1433 					    vmx->ple_window, old);
1434 	}
1435 }
1436 
shrink_ple_window(struct kvm_vcpu * vcpu)1437 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1438 {
1439 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1440 	unsigned int old = vmx->ple_window;
1441 
1442 	vmx->ple_window = __shrink_ple_window(old, ple_window,
1443 					      ple_window_shrink,
1444 					      ple_window);
1445 
1446 	if (vmx->ple_window != old) {
1447 		vmx->ple_window_dirty = true;
1448 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1449 					    vmx->ple_window, old);
1450 	}
1451 }
1452 
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu)1453 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1454 {
1455 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1456 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1457 	struct vmcs *prev;
1458 
1459 	if (!already_loaded) {
1460 		loaded_vmcs_clear(vmx->loaded_vmcs);
1461 		local_irq_disable();
1462 
1463 		/*
1464 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1465 		 * this cpu's percpu list, otherwise it may not yet be deleted
1466 		 * from its previous cpu's percpu list.  Pairs with the
1467 		 * smb_wmb() in __loaded_vmcs_clear().
1468 		 */
1469 		smp_rmb();
1470 
1471 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1472 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1473 		local_irq_enable();
1474 	}
1475 
1476 	prev = per_cpu(current_vmcs, cpu);
1477 	if (prev != vmx->loaded_vmcs->vmcs) {
1478 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1479 		vmcs_load(vmx->loaded_vmcs->vmcs);
1480 	}
1481 
1482 	if (!already_loaded) {
1483 		void *gdt = get_current_gdt_ro();
1484 
1485 		/*
1486 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1487 		 * TLB entries from its previous association with the vCPU.
1488 		 */
1489 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1490 
1491 		/*
1492 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1493 		 * processors.  See 22.2.4.
1494 		 */
1495 		vmcs_writel(HOST_TR_BASE,
1496 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1497 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1498 
1499 		if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1500 			/* 22.2.3 */
1501 			vmcs_writel(HOST_IA32_SYSENTER_ESP,
1502 				    (unsigned long)(cpu_entry_stack(cpu) + 1));
1503 		}
1504 
1505 		vmx->loaded_vmcs->cpu = cpu;
1506 	}
1507 }
1508 
1509 /*
1510  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1511  * vcpu mutex is already taken.
1512  */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1513 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1514 {
1515 	if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1516 		shrink_ple_window(vcpu);
1517 
1518 	vmx_vcpu_load_vmcs(vcpu, cpu);
1519 
1520 	vmx_vcpu_pi_load(vcpu, cpu);
1521 }
1522 
vmx_vcpu_put(struct kvm_vcpu * vcpu)1523 void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1524 {
1525 	vmx_vcpu_pi_put(vcpu);
1526 
1527 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1528 }
1529 
vmx_emulation_required(struct kvm_vcpu * vcpu)1530 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1531 {
1532 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1533 }
1534 
vmx_get_rflags(struct kvm_vcpu * vcpu)1535 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1536 {
1537 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1538 	unsigned long rflags, save_rflags;
1539 
1540 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1541 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1542 		rflags = vmcs_readl(GUEST_RFLAGS);
1543 		if (vmx->rmode.vm86_active) {
1544 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1545 			save_rflags = vmx->rmode.save_rflags;
1546 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1547 		}
1548 		vmx->rflags = rflags;
1549 	}
1550 	return vmx->rflags;
1551 }
1552 
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1553 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1554 {
1555 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1556 	unsigned long old_rflags;
1557 
1558 	/*
1559 	 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1560 	 * is an unrestricted guest in order to mark L2 as needing emulation
1561 	 * if L1 runs L2 as a restricted guest.
1562 	 */
1563 	if (is_unrestricted_guest(vcpu)) {
1564 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1565 		vmx->rflags = rflags;
1566 		vmcs_writel(GUEST_RFLAGS, rflags);
1567 		return;
1568 	}
1569 
1570 	old_rflags = vmx_get_rflags(vcpu);
1571 	vmx->rflags = rflags;
1572 	if (vmx->rmode.vm86_active) {
1573 		vmx->rmode.save_rflags = rflags;
1574 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1575 	}
1576 	vmcs_writel(GUEST_RFLAGS, rflags);
1577 
1578 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1579 		vmx->vt.emulation_required = vmx_emulation_required(vcpu);
1580 }
1581 
vmx_get_if_flag(struct kvm_vcpu * vcpu)1582 bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1583 {
1584 	return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1585 }
1586 
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1587 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1588 {
1589 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1590 	int ret = 0;
1591 
1592 	if (interruptibility & GUEST_INTR_STATE_STI)
1593 		ret |= KVM_X86_SHADOW_INT_STI;
1594 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1595 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1596 
1597 	return ret;
1598 }
1599 
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1600 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1601 {
1602 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1603 	u32 interruptibility = interruptibility_old;
1604 
1605 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1606 
1607 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1608 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1609 	else if (mask & KVM_X86_SHADOW_INT_STI)
1610 		interruptibility |= GUEST_INTR_STATE_STI;
1611 
1612 	if ((interruptibility != interruptibility_old))
1613 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1614 }
1615 
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1616 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1617 {
1618 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1619 	unsigned long value;
1620 
1621 	/*
1622 	 * Any MSR write that attempts to change bits marked reserved will
1623 	 * case a #GP fault.
1624 	 */
1625 	if (data & vmx->pt_desc.ctl_bitmask)
1626 		return 1;
1627 
1628 	/*
1629 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1630 	 * result in a #GP unless the same write also clears TraceEn.
1631 	 */
1632 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1633 	    (data & RTIT_CTL_TRACEEN) &&
1634 	    data != vmx->pt_desc.guest.ctl)
1635 		return 1;
1636 
1637 	/*
1638 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1639 	 * and FabricEn would cause #GP, if
1640 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1641 	 */
1642 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1643 		!(data & RTIT_CTL_FABRIC_EN) &&
1644 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1645 					PT_CAP_single_range_output))
1646 		return 1;
1647 
1648 	/*
1649 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1650 	 * utilize encodings marked reserved will cause a #GP fault.
1651 	 */
1652 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1653 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1654 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1655 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1656 		return 1;
1657 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1658 						PT_CAP_cycle_thresholds);
1659 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1660 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1661 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1662 		return 1;
1663 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1664 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1665 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1666 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1667 		return 1;
1668 
1669 	/*
1670 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1671 	 * cause a #GP fault.
1672 	 */
1673 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1674 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1675 		return 1;
1676 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1677 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1678 		return 1;
1679 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1680 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1681 		return 1;
1682 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1683 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1684 		return 1;
1685 
1686 	return 0;
1687 }
1688 
vmx_check_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)1689 int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1690 				  void *insn, int insn_len)
1691 {
1692 	/*
1693 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1694 	 * not point at the failing instruction, and even if it did, the code
1695 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1696 	 * so that guest userspace can't DoS the guest simply by triggering
1697 	 * emulation (enclaves are CPL3 only).
1698 	 */
1699 	if (vmx_get_exit_reason(vcpu).enclave_mode) {
1700 		kvm_queue_exception(vcpu, UD_VECTOR);
1701 		return X86EMUL_PROPAGATE_FAULT;
1702 	}
1703 
1704 	/* Check that emulation is possible during event vectoring */
1705 	if ((to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
1706 	    !kvm_can_emulate_event_vectoring(emul_type))
1707 		return X86EMUL_UNHANDLEABLE_VECTORING;
1708 
1709 	return X86EMUL_CONTINUE;
1710 }
1711 
skip_emulated_instruction(struct kvm_vcpu * vcpu)1712 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1713 {
1714 	union vmx_exit_reason exit_reason = vmx_get_exit_reason(vcpu);
1715 	unsigned long rip, orig_rip;
1716 	u32 instr_len;
1717 
1718 	/*
1719 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1720 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1721 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1722 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1723 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1724 	 * i.e. we end up advancing IP with some random value.
1725 	 */
1726 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1727 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1728 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1729 
1730 		/*
1731 		 * Emulating an enclave's instructions isn't supported as KVM
1732 		 * cannot access the enclave's memory or its true RIP, e.g. the
1733 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1734 		 * the RIP that actually triggered the VM-Exit.  But, because
1735 		 * most instructions that cause VM-Exit will #UD in an enclave,
1736 		 * most instruction-based VM-Exits simply do not occur.
1737 		 *
1738 		 * There are a few exceptions, notably the debug instructions
1739 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1740 		 * and generate #DB/#BP as expected, which KVM might intercept.
1741 		 * But again, the CPU does the dirty work and saves an instr
1742 		 * length of zero so VMMs don't shoot themselves in the foot.
1743 		 * WARN if KVM tries to skip a non-zero length instruction on
1744 		 * a VM-Exit from an enclave.
1745 		 */
1746 		if (!instr_len)
1747 			goto rip_updated;
1748 
1749 		WARN_ONCE(exit_reason.enclave_mode,
1750 			  "skipping instruction after SGX enclave VM-Exit");
1751 
1752 		orig_rip = kvm_rip_read(vcpu);
1753 		rip = orig_rip + instr_len;
1754 #ifdef CONFIG_X86_64
1755 		/*
1756 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1757 		 * mode, but just finding out that we are in 64-bit mode is
1758 		 * quite expensive.  Only do it if there was a carry.
1759 		 */
1760 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1761 			rip = (u32)rip;
1762 #endif
1763 		kvm_rip_write(vcpu, rip);
1764 	} else {
1765 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1766 			return 0;
1767 	}
1768 
1769 rip_updated:
1770 	/* skipping an emulated instruction also counts */
1771 	vmx_set_interrupt_shadow(vcpu, 0);
1772 
1773 	return 1;
1774 }
1775 
1776 /*
1777  * Recognizes a pending MTF VM-exit and records the nested state for later
1778  * delivery.
1779  */
vmx_update_emulated_instruction(struct kvm_vcpu * vcpu)1780 void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1781 {
1782 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1783 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1784 
1785 	if (!is_guest_mode(vcpu))
1786 		return;
1787 
1788 	/*
1789 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1790 	 * TSS T-bit traps and ICEBP (INT1).  KVM doesn't emulate T-bit traps
1791 	 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1792 	 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1793 	 * as ICEBP is higher priority than both.  As instruction emulation is
1794 	 * completed at this point (i.e. KVM is at the instruction boundary),
1795 	 * any #DB exception pending delivery must be a debug-trap of lower
1796 	 * priority than MTF.  Record the pending MTF state to be delivered in
1797 	 * vmx_check_nested_events().
1798 	 */
1799 	if (nested_cpu_has_mtf(vmcs12) &&
1800 	    (!vcpu->arch.exception.pending ||
1801 	     vcpu->arch.exception.vector == DB_VECTOR) &&
1802 	    (!vcpu->arch.exception_vmexit.pending ||
1803 	     vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1804 		vmx->nested.mtf_pending = true;
1805 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1806 	} else {
1807 		vmx->nested.mtf_pending = false;
1808 	}
1809 }
1810 
vmx_skip_emulated_instruction(struct kvm_vcpu * vcpu)1811 int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1812 {
1813 	vmx_update_emulated_instruction(vcpu);
1814 	return skip_emulated_instruction(vcpu);
1815 }
1816 
vmx_clear_hlt(struct kvm_vcpu * vcpu)1817 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1818 {
1819 	/*
1820 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1821 	 * explicitly skip the instruction because if the HLT state is set,
1822 	 * then the instruction is already executing and RIP has already been
1823 	 * advanced.
1824 	 */
1825 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1826 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1827 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1828 }
1829 
vmx_inject_exception(struct kvm_vcpu * vcpu)1830 void vmx_inject_exception(struct kvm_vcpu *vcpu)
1831 {
1832 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
1833 	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1834 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1835 
1836 	kvm_deliver_exception_payload(vcpu, ex);
1837 
1838 	if (ex->has_error_code) {
1839 		/*
1840 		 * Despite the error code being architecturally defined as 32
1841 		 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1842 		 * VMX don't actually supporting setting bits 31:16.  Hardware
1843 		 * will (should) never provide a bogus error code, but AMD CPUs
1844 		 * do generate error codes with bits 31:16 set, and so KVM's
1845 		 * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1846 		 * the upper bits to avoid VM-Fail, losing information that
1847 		 * doesn't really exist is preferable to killing the VM.
1848 		 */
1849 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1850 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1851 	}
1852 
1853 	if (vmx->rmode.vm86_active) {
1854 		int inc_eip = 0;
1855 		if (kvm_exception_is_soft(ex->vector))
1856 			inc_eip = vcpu->arch.event_exit_inst_len;
1857 		kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1858 		return;
1859 	}
1860 
1861 	WARN_ON_ONCE(vmx->vt.emulation_required);
1862 
1863 	if (kvm_exception_is_soft(ex->vector)) {
1864 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1865 			     vmx->vcpu.arch.event_exit_inst_len);
1866 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1867 	} else
1868 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1869 
1870 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1871 
1872 	vmx_clear_hlt(vcpu);
1873 }
1874 
vmx_setup_uret_msr(struct vcpu_vmx * vmx,unsigned int msr,bool load_into_hardware)1875 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1876 			       bool load_into_hardware)
1877 {
1878 	struct vmx_uret_msr *uret_msr;
1879 
1880 	uret_msr = vmx_find_uret_msr(vmx, msr);
1881 	if (!uret_msr)
1882 		return;
1883 
1884 	uret_msr->load_into_hardware = load_into_hardware;
1885 }
1886 
1887 /*
1888  * Configuring user return MSRs to automatically save, load, and restore MSRs
1889  * that need to be shoved into hardware when running the guest.  Note, omitting
1890  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1891  * loaded into hardware when running the guest.
1892  */
vmx_setup_uret_msrs(struct vcpu_vmx * vmx)1893 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1894 {
1895 #ifdef CONFIG_X86_64
1896 	bool load_syscall_msrs;
1897 
1898 	/*
1899 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1900 	 * when EFER.SCE is set.
1901 	 */
1902 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1903 			    (vmx->vcpu.arch.efer & EFER_SCE);
1904 
1905 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1906 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1907 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1908 #endif
1909 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1910 
1911 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1912 			   guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1913 			   guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDPID));
1914 
1915 	/*
1916 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1917 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1918 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1919 	 * so that TSX remains always disabled.
1920 	 */
1921 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1922 
1923 	/*
1924 	 * The set of MSRs to load may have changed, reload MSRs before the
1925 	 * next VM-Enter.
1926 	 */
1927 	vmx->guest_uret_msrs_loaded = false;
1928 }
1929 
vmx_get_l2_tsc_offset(struct kvm_vcpu * vcpu)1930 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1931 {
1932 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1933 
1934 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1935 		return vmcs12->tsc_offset;
1936 
1937 	return 0;
1938 }
1939 
vmx_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)1940 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1941 {
1942 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1943 
1944 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1945 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1946 		return vmcs12->tsc_multiplier;
1947 
1948 	return kvm_caps.default_tsc_scaling_ratio;
1949 }
1950 
vmx_write_tsc_offset(struct kvm_vcpu * vcpu)1951 void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1952 {
1953 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1954 }
1955 
vmx_write_tsc_multiplier(struct kvm_vcpu * vcpu)1956 void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1957 {
1958 	vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1959 }
1960 
1961 /*
1962  * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1963  * guest CPUID.  Note, KVM allows userspace to set "VMX in SMX" to maintain
1964  * backwards compatibility even though KVM doesn't support emulating SMX.  And
1965  * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1966  * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1967  */
1968 #define KVM_SUPPORTED_FEATURE_CONTROL  (FEAT_CTL_LOCKED			 | \
1969 					FEAT_CTL_VMX_ENABLED_INSIDE_SMX	 | \
1970 					FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1971 					FEAT_CTL_SGX_LC_ENABLED		 | \
1972 					FEAT_CTL_SGX_ENABLED		 | \
1973 					FEAT_CTL_LMCE_ENABLED)
1974 
is_vmx_feature_control_msr_valid(struct vcpu_vmx * vmx,struct msr_data * msr)1975 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1976 						    struct msr_data *msr)
1977 {
1978 	uint64_t valid_bits;
1979 
1980 	/*
1981 	 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1982 	 * exposed to the guest.
1983 	 */
1984 	WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1985 		     ~KVM_SUPPORTED_FEATURE_CONTROL);
1986 
1987 	if (!msr->host_initiated &&
1988 	    (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1989 		return false;
1990 
1991 	if (msr->host_initiated)
1992 		valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1993 	else
1994 		valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1995 
1996 	return !(msr->data & ~valid_bits);
1997 }
1998 
vmx_get_feature_msr(u32 msr,u64 * data)1999 int vmx_get_feature_msr(u32 msr, u64 *data)
2000 {
2001 	switch (msr) {
2002 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2003 		if (!nested)
2004 			return 1;
2005 		return vmx_get_vmx_msr(&vmcs_config.nested, msr, data);
2006 	default:
2007 		return KVM_MSR_RET_UNSUPPORTED;
2008 	}
2009 }
2010 
2011 /*
2012  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
2013  * Returns 0 on success, non-0 otherwise.
2014  * Assumes vcpu_load() was already called.
2015  */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2016 int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2017 {
2018 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2019 	struct vmx_uret_msr *msr;
2020 	u32 index;
2021 
2022 	switch (msr_info->index) {
2023 #ifdef CONFIG_X86_64
2024 	case MSR_FS_BASE:
2025 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
2026 		break;
2027 	case MSR_GS_BASE:
2028 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
2029 		break;
2030 	case MSR_KERNEL_GS_BASE:
2031 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
2032 		break;
2033 #endif
2034 	case MSR_EFER:
2035 		return kvm_get_msr_common(vcpu, msr_info);
2036 	case MSR_IA32_TSX_CTRL:
2037 		if (!msr_info->host_initiated &&
2038 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2039 			return 1;
2040 		goto find_uret_msr;
2041 	case MSR_IA32_UMWAIT_CONTROL:
2042 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2043 			return 1;
2044 
2045 		msr_info->data = vmx->msr_ia32_umwait_control;
2046 		break;
2047 	case MSR_IA32_SPEC_CTRL:
2048 		if (!msr_info->host_initiated &&
2049 		    !guest_has_spec_ctrl_msr(vcpu))
2050 			return 1;
2051 
2052 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
2053 		break;
2054 	case MSR_IA32_SYSENTER_CS:
2055 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2056 		break;
2057 	case MSR_IA32_SYSENTER_EIP:
2058 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2059 		break;
2060 	case MSR_IA32_SYSENTER_ESP:
2061 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2062 		break;
2063 	case MSR_IA32_BNDCFGS:
2064 		if (!kvm_mpx_supported() ||
2065 		    (!msr_info->host_initiated &&
2066 		     !guest_cpu_cap_has(vcpu, X86_FEATURE_MPX)))
2067 			return 1;
2068 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2069 		break;
2070 	case MSR_IA32_MCG_EXT_CTL:
2071 		if (!msr_info->host_initiated &&
2072 		    !(vmx->msr_ia32_feature_control &
2073 		      FEAT_CTL_LMCE_ENABLED))
2074 			return 1;
2075 		msr_info->data = vcpu->arch.mcg_ext_ctl;
2076 		break;
2077 	case MSR_IA32_FEAT_CTL:
2078 		msr_info->data = vmx->msr_ia32_feature_control;
2079 		break;
2080 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2081 		if (!msr_info->host_initiated &&
2082 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC))
2083 			return 1;
2084 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2085 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2086 		break;
2087 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2088 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
2089 			return 1;
2090 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2091 				    &msr_info->data))
2092 			return 1;
2093 #ifdef CONFIG_KVM_HYPERV
2094 		/*
2095 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2096 		 * instead of just ignoring the features, different Hyper-V
2097 		 * versions are either trying to use them and fail or do some
2098 		 * sanity checking and refuse to boot. Filter all unsupported
2099 		 * features out.
2100 		 */
2101 		if (!msr_info->host_initiated && guest_cpu_cap_has_evmcs(vcpu))
2102 			nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2103 							&msr_info->data);
2104 #endif
2105 		break;
2106 	case MSR_IA32_RTIT_CTL:
2107 		if (!vmx_pt_mode_is_host_guest())
2108 			return 1;
2109 		msr_info->data = vmx->pt_desc.guest.ctl;
2110 		break;
2111 	case MSR_IA32_RTIT_STATUS:
2112 		if (!vmx_pt_mode_is_host_guest())
2113 			return 1;
2114 		msr_info->data = vmx->pt_desc.guest.status;
2115 		break;
2116 	case MSR_IA32_RTIT_CR3_MATCH:
2117 		if (!vmx_pt_mode_is_host_guest() ||
2118 			!intel_pt_validate_cap(vmx->pt_desc.caps,
2119 						PT_CAP_cr3_filtering))
2120 			return 1;
2121 		msr_info->data = vmx->pt_desc.guest.cr3_match;
2122 		break;
2123 	case MSR_IA32_RTIT_OUTPUT_BASE:
2124 		if (!vmx_pt_mode_is_host_guest() ||
2125 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2126 					PT_CAP_topa_output) &&
2127 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2128 					PT_CAP_single_range_output)))
2129 			return 1;
2130 		msr_info->data = vmx->pt_desc.guest.output_base;
2131 		break;
2132 	case MSR_IA32_RTIT_OUTPUT_MASK:
2133 		if (!vmx_pt_mode_is_host_guest() ||
2134 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2135 					PT_CAP_topa_output) &&
2136 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2137 					PT_CAP_single_range_output)))
2138 			return 1;
2139 		msr_info->data = vmx->pt_desc.guest.output_mask;
2140 		break;
2141 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2142 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2143 		if (!vmx_pt_mode_is_host_guest() ||
2144 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
2145 			return 1;
2146 		if (index % 2)
2147 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2148 		else
2149 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2150 		break;
2151 	case MSR_IA32_DEBUGCTLMSR:
2152 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2153 		break;
2154 	default:
2155 	find_uret_msr:
2156 		msr = vmx_find_uret_msr(vmx, msr_info->index);
2157 		if (msr) {
2158 			msr_info->data = msr->data;
2159 			break;
2160 		}
2161 		return kvm_get_msr_common(vcpu, msr_info);
2162 	}
2163 
2164 	return 0;
2165 }
2166 
nested_vmx_truncate_sysenter_addr(struct kvm_vcpu * vcpu,u64 data)2167 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2168 						    u64 data)
2169 {
2170 #ifdef CONFIG_X86_64
2171 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
2172 		return (u32)data;
2173 #endif
2174 	return (unsigned long)data;
2175 }
2176 
vmx_get_supported_debugctl(struct kvm_vcpu * vcpu,bool host_initiated)2177 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2178 {
2179 	u64 debugctl = 0;
2180 
2181 	if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2182 	    (host_initiated || guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2183 		debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2184 
2185 	if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2186 	    (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2187 		debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2188 
2189 	return debugctl;
2190 }
2191 
2192 /*
2193  * Writes msr value into the appropriate "register".
2194  * Returns 0 on success, non-0 otherwise.
2195  * Assumes vcpu_load() was already called.
2196  */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2197 int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2198 {
2199 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2200 	struct vmx_uret_msr *msr;
2201 	int ret = 0;
2202 	u32 msr_index = msr_info->index;
2203 	u64 data = msr_info->data;
2204 	u32 index;
2205 
2206 	switch (msr_index) {
2207 	case MSR_EFER:
2208 		ret = kvm_set_msr_common(vcpu, msr_info);
2209 		break;
2210 #ifdef CONFIG_X86_64
2211 	case MSR_FS_BASE:
2212 		vmx_segment_cache_clear(vmx);
2213 		vmcs_writel(GUEST_FS_BASE, data);
2214 		break;
2215 	case MSR_GS_BASE:
2216 		vmx_segment_cache_clear(vmx);
2217 		vmcs_writel(GUEST_GS_BASE, data);
2218 		break;
2219 	case MSR_KERNEL_GS_BASE:
2220 		vmx_write_guest_kernel_gs_base(vmx, data);
2221 		break;
2222 	case MSR_IA32_XFD:
2223 		ret = kvm_set_msr_common(vcpu, msr_info);
2224 		/*
2225 		 * Always intercepting WRMSR could incur non-negligible
2226 		 * overhead given xfd might be changed frequently in
2227 		 * guest context switch. Disable write interception
2228 		 * upon the first write with a non-zero value (indicating
2229 		 * potential usage on dynamic xfeatures). Also update
2230 		 * exception bitmap to trap #NM for proper virtualization
2231 		 * of guest xfd_err.
2232 		 */
2233 		if (!ret && data) {
2234 			vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2235 						      MSR_TYPE_RW);
2236 			vcpu->arch.xfd_no_write_intercept = true;
2237 			vmx_update_exception_bitmap(vcpu);
2238 		}
2239 		break;
2240 #endif
2241 	case MSR_IA32_SYSENTER_CS:
2242 		if (is_guest_mode(vcpu))
2243 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2244 		vmcs_write32(GUEST_SYSENTER_CS, data);
2245 		break;
2246 	case MSR_IA32_SYSENTER_EIP:
2247 		if (is_guest_mode(vcpu)) {
2248 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2249 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2250 		}
2251 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2252 		break;
2253 	case MSR_IA32_SYSENTER_ESP:
2254 		if (is_guest_mode(vcpu)) {
2255 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2256 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2257 		}
2258 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2259 		break;
2260 	case MSR_IA32_DEBUGCTLMSR: {
2261 		u64 invalid;
2262 
2263 		invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2264 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2265 			kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2266 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2267 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2268 		}
2269 
2270 		if (invalid)
2271 			return 1;
2272 
2273 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2274 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2275 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2276 
2277 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2278 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2279 		    (data & DEBUGCTLMSR_LBR))
2280 			intel_pmu_create_guest_lbr_event(vcpu);
2281 		return 0;
2282 	}
2283 	case MSR_IA32_BNDCFGS:
2284 		if (!kvm_mpx_supported() ||
2285 		    (!msr_info->host_initiated &&
2286 		     !guest_cpu_cap_has(vcpu, X86_FEATURE_MPX)))
2287 			return 1;
2288 		if (is_noncanonical_msr_address(data & PAGE_MASK, vcpu) ||
2289 		    (data & MSR_IA32_BNDCFGS_RSVD))
2290 			return 1;
2291 
2292 		if (is_guest_mode(vcpu) &&
2293 		    ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2294 		     (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2295 			get_vmcs12(vcpu)->guest_bndcfgs = data;
2296 
2297 		vmcs_write64(GUEST_BNDCFGS, data);
2298 		break;
2299 	case MSR_IA32_UMWAIT_CONTROL:
2300 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2301 			return 1;
2302 
2303 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2304 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2305 			return 1;
2306 
2307 		vmx->msr_ia32_umwait_control = data;
2308 		break;
2309 	case MSR_IA32_SPEC_CTRL:
2310 		if (!msr_info->host_initiated &&
2311 		    !guest_has_spec_ctrl_msr(vcpu))
2312 			return 1;
2313 
2314 		if (kvm_spec_ctrl_test_value(data))
2315 			return 1;
2316 
2317 		vmx->spec_ctrl = data;
2318 		if (!data)
2319 			break;
2320 
2321 		/*
2322 		 * For non-nested:
2323 		 * When it's written (to non-zero) for the first time, pass
2324 		 * it through.
2325 		 *
2326 		 * For nested:
2327 		 * The handling of the MSR bitmap for L2 guests is done in
2328 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2329 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2330 		 * in the merging. We update the vmcs01 here for L1 as well
2331 		 * since it will end up touching the MSR anyway now.
2332 		 */
2333 		vmx_disable_intercept_for_msr(vcpu,
2334 					      MSR_IA32_SPEC_CTRL,
2335 					      MSR_TYPE_RW);
2336 		break;
2337 	case MSR_IA32_TSX_CTRL:
2338 		if (!msr_info->host_initiated &&
2339 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2340 			return 1;
2341 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2342 			return 1;
2343 		goto find_uret_msr;
2344 	case MSR_IA32_CR_PAT:
2345 		ret = kvm_set_msr_common(vcpu, msr_info);
2346 		if (ret)
2347 			break;
2348 
2349 		if (is_guest_mode(vcpu) &&
2350 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2351 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2352 
2353 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2354 			vmcs_write64(GUEST_IA32_PAT, data);
2355 		break;
2356 	case MSR_IA32_MCG_EXT_CTL:
2357 		if ((!msr_info->host_initiated &&
2358 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2359 		       FEAT_CTL_LMCE_ENABLED)) ||
2360 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2361 			return 1;
2362 		vcpu->arch.mcg_ext_ctl = data;
2363 		break;
2364 	case MSR_IA32_FEAT_CTL:
2365 		if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2366 			return 1;
2367 
2368 		vmx->msr_ia32_feature_control = data;
2369 		if (msr_info->host_initiated && data == 0)
2370 			vmx_leave_nested(vcpu);
2371 
2372 		/* SGX may be enabled/disabled by guest's firmware */
2373 		vmx_write_encls_bitmap(vcpu, NULL);
2374 		break;
2375 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2376 		/*
2377 		 * On real hardware, the LE hash MSRs are writable before
2378 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2379 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2380 		 * become writable.
2381 		 *
2382 		 * KVM does not emulate SGX activation for simplicity, so
2383 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2384 		 * is unlocked.  This is technically not architectural
2385 		 * behavior, but it's close enough.
2386 		 */
2387 		if (!msr_info->host_initiated &&
2388 		    (!guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC) ||
2389 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2390 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2391 			return 1;
2392 		vmx->msr_ia32_sgxlepubkeyhash
2393 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2394 		break;
2395 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2396 		if (!msr_info->host_initiated)
2397 			return 1; /* they are read-only */
2398 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
2399 			return 1;
2400 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2401 	case MSR_IA32_RTIT_CTL:
2402 		if (!vmx_pt_mode_is_host_guest() ||
2403 			vmx_rtit_ctl_check(vcpu, data) ||
2404 			vmx->nested.vmxon)
2405 			return 1;
2406 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2407 		vmx->pt_desc.guest.ctl = data;
2408 		pt_update_intercept_for_msr(vcpu);
2409 		break;
2410 	case MSR_IA32_RTIT_STATUS:
2411 		if (!pt_can_write_msr(vmx))
2412 			return 1;
2413 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2414 			return 1;
2415 		vmx->pt_desc.guest.status = data;
2416 		break;
2417 	case MSR_IA32_RTIT_CR3_MATCH:
2418 		if (!pt_can_write_msr(vmx))
2419 			return 1;
2420 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2421 					   PT_CAP_cr3_filtering))
2422 			return 1;
2423 		vmx->pt_desc.guest.cr3_match = data;
2424 		break;
2425 	case MSR_IA32_RTIT_OUTPUT_BASE:
2426 		if (!pt_can_write_msr(vmx))
2427 			return 1;
2428 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2429 					   PT_CAP_topa_output) &&
2430 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2431 					   PT_CAP_single_range_output))
2432 			return 1;
2433 		if (!pt_output_base_valid(vcpu, data))
2434 			return 1;
2435 		vmx->pt_desc.guest.output_base = data;
2436 		break;
2437 	case MSR_IA32_RTIT_OUTPUT_MASK:
2438 		if (!pt_can_write_msr(vmx))
2439 			return 1;
2440 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2441 					   PT_CAP_topa_output) &&
2442 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2443 					   PT_CAP_single_range_output))
2444 			return 1;
2445 		vmx->pt_desc.guest.output_mask = data;
2446 		break;
2447 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2448 		if (!pt_can_write_msr(vmx))
2449 			return 1;
2450 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2451 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2452 			return 1;
2453 		if (is_noncanonical_msr_address(data, vcpu))
2454 			return 1;
2455 		if (index % 2)
2456 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2457 		else
2458 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2459 		break;
2460 	case MSR_IA32_PERF_CAPABILITIES:
2461 		if (data & PMU_CAP_LBR_FMT) {
2462 			if ((data & PMU_CAP_LBR_FMT) !=
2463 			    (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2464 				return 1;
2465 			if (!cpuid_model_is_consistent(vcpu))
2466 				return 1;
2467 		}
2468 		if (data & PERF_CAP_PEBS_FORMAT) {
2469 			if ((data & PERF_CAP_PEBS_MASK) !=
2470 			    (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2471 				return 1;
2472 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DS))
2473 				return 1;
2474 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DTES64))
2475 				return 1;
2476 			if (!cpuid_model_is_consistent(vcpu))
2477 				return 1;
2478 		}
2479 		ret = kvm_set_msr_common(vcpu, msr_info);
2480 		break;
2481 
2482 	default:
2483 	find_uret_msr:
2484 		msr = vmx_find_uret_msr(vmx, msr_index);
2485 		if (msr)
2486 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2487 		else
2488 			ret = kvm_set_msr_common(vcpu, msr_info);
2489 	}
2490 
2491 	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2492 	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2493 		vmx_update_fb_clear_dis(vcpu, vmx);
2494 
2495 	return ret;
2496 }
2497 
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2498 void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2499 {
2500 	unsigned long guest_owned_bits;
2501 
2502 	kvm_register_mark_available(vcpu, reg);
2503 
2504 	switch (reg) {
2505 	case VCPU_REGS_RSP:
2506 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2507 		break;
2508 	case VCPU_REGS_RIP:
2509 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2510 		break;
2511 	case VCPU_EXREG_PDPTR:
2512 		if (enable_ept)
2513 			ept_save_pdptrs(vcpu);
2514 		break;
2515 	case VCPU_EXREG_CR0:
2516 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2517 
2518 		vcpu->arch.cr0 &= ~guest_owned_bits;
2519 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2520 		break;
2521 	case VCPU_EXREG_CR3:
2522 		/*
2523 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2524 		 * CR3 is loaded into hardware, not the guest's CR3.
2525 		 */
2526 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2527 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2528 		break;
2529 	case VCPU_EXREG_CR4:
2530 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2531 
2532 		vcpu->arch.cr4 &= ~guest_owned_bits;
2533 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2534 		break;
2535 	default:
2536 		KVM_BUG_ON(1, vcpu->kvm);
2537 		break;
2538 	}
2539 }
2540 
2541 /*
2542  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2543  * directly instead of going through cpu_has(), to ensure KVM is trapping
2544  * ENCLS whenever it's supported in hardware.  It does not matter whether
2545  * the host OS supports or has enabled SGX.
2546  */
cpu_has_sgx(void)2547 static bool cpu_has_sgx(void)
2548 {
2549 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2550 }
2551 
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2552 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2553 {
2554 	u32 vmx_msr_low, vmx_msr_high;
2555 	u32 ctl = ctl_min | ctl_opt;
2556 
2557 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2558 
2559 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2560 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2561 
2562 	/* Ensure minimum (required) set of control bits are supported. */
2563 	if (ctl_min & ~ctl)
2564 		return -EIO;
2565 
2566 	*result = ctl;
2567 	return 0;
2568 }
2569 
adjust_vmx_controls64(u64 ctl_opt,u32 msr)2570 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2571 {
2572 	u64 allowed;
2573 
2574 	rdmsrq(msr, allowed);
2575 
2576 	return  ctl_opt & allowed;
2577 }
2578 
2579 #define vmx_check_entry_exit_pairs(pairs, entry_controls, exit_controls)	\
2580 ({										\
2581 	int i, r = 0;								\
2582 										\
2583 	BUILD_BUG_ON(sizeof(pairs[0].entry_control) != sizeof(entry_controls));	\
2584 	BUILD_BUG_ON(sizeof(pairs[0].exit_control)  != sizeof(exit_controls));	\
2585 										\
2586 	for (i = 0; i < ARRAY_SIZE(pairs); i++) {				\
2587 		typeof(entry_controls) n_ctrl = pairs[i].entry_control;		\
2588 		typeof(exit_controls) x_ctrl = pairs[i].exit_control;		\
2589 										\
2590 		if (!(entry_controls & n_ctrl) == !(exit_controls & x_ctrl))	\
2591 			continue;						\
2592 										\
2593 		pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, "		\
2594 			     "entry = %llx (%llx), exit = %llx (%llx)\n",	\
2595 			     (u64)(entry_controls & n_ctrl), (u64)n_ctrl,	\
2596 			     (u64)(exit_controls & x_ctrl), (u64)x_ctrl);	\
2597 										\
2598 		if (error_on_inconsistent_vmcs_config)				\
2599 			r = -EIO;						\
2600 										\
2601 		entry_controls &= ~n_ctrl;					\
2602 		exit_controls &= ~x_ctrl;					\
2603 	}									\
2604 	r;									\
2605 })
2606 
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2607 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2608 			     struct vmx_capability *vmx_cap)
2609 {
2610 	u32 _pin_based_exec_control = 0;
2611 	u32 _cpu_based_exec_control = 0;
2612 	u32 _cpu_based_2nd_exec_control = 0;
2613 	u64 _cpu_based_3rd_exec_control = 0;
2614 	u32 _vmexit_control = 0;
2615 	u32 _vmentry_control = 0;
2616 	u64 basic_msr;
2617 	u64 misc_msr;
2618 
2619 	/*
2620 	 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2621 	 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2622 	 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2623 	 */
2624 	struct {
2625 		u32 entry_control;
2626 		u32 exit_control;
2627 	} const vmcs_entry_exit_pairs[] = {
2628 		{ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,	VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2629 		{ VM_ENTRY_LOAD_IA32_PAT,		VM_EXIT_LOAD_IA32_PAT },
2630 		{ VM_ENTRY_LOAD_IA32_EFER,		VM_EXIT_LOAD_IA32_EFER },
2631 		{ VM_ENTRY_LOAD_BNDCFGS,		VM_EXIT_CLEAR_BNDCFGS },
2632 		{ VM_ENTRY_LOAD_IA32_RTIT_CTL,		VM_EXIT_CLEAR_IA32_RTIT_CTL },
2633 	};
2634 
2635 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2636 
2637 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2638 				KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2639 				MSR_IA32_VMX_PROCBASED_CTLS,
2640 				&_cpu_based_exec_control))
2641 		return -EIO;
2642 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2643 		if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2644 					KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2645 					MSR_IA32_VMX_PROCBASED_CTLS2,
2646 					&_cpu_based_2nd_exec_control))
2647 			return -EIO;
2648 	}
2649 	if (!IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
2650 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2651 
2652 #ifndef CONFIG_X86_64
2653 	if (!(_cpu_based_2nd_exec_control &
2654 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2655 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2656 #endif
2657 
2658 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2659 		_cpu_based_2nd_exec_control &= ~(
2660 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2661 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2662 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2663 
2664 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2665 		&vmx_cap->ept, &vmx_cap->vpid);
2666 
2667 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2668 	    vmx_cap->ept) {
2669 		pr_warn_once("EPT CAP should not exist if not support "
2670 				"1-setting enable EPT VM-execution control\n");
2671 
2672 		if (error_on_inconsistent_vmcs_config)
2673 			return -EIO;
2674 
2675 		vmx_cap->ept = 0;
2676 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2677 	}
2678 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2679 	    vmx_cap->vpid) {
2680 		pr_warn_once("VPID CAP should not exist if not support "
2681 				"1-setting enable VPID VM-execution control\n");
2682 
2683 		if (error_on_inconsistent_vmcs_config)
2684 			return -EIO;
2685 
2686 		vmx_cap->vpid = 0;
2687 	}
2688 
2689 	if (!cpu_has_sgx())
2690 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2691 
2692 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2693 		_cpu_based_3rd_exec_control =
2694 			adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2695 					      MSR_IA32_VMX_PROCBASED_CTLS3);
2696 
2697 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2698 				KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2699 				MSR_IA32_VMX_EXIT_CTLS,
2700 				&_vmexit_control))
2701 		return -EIO;
2702 
2703 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2704 				KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2705 				MSR_IA32_VMX_PINBASED_CTLS,
2706 				&_pin_based_exec_control))
2707 		return -EIO;
2708 
2709 	if (cpu_has_broken_vmx_preemption_timer())
2710 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2711 	if (!(_cpu_based_2nd_exec_control &
2712 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2713 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2714 
2715 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2716 				KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2717 				MSR_IA32_VMX_ENTRY_CTLS,
2718 				&_vmentry_control))
2719 		return -EIO;
2720 
2721 	if (vmx_check_entry_exit_pairs(vmcs_entry_exit_pairs,
2722 				       _vmentry_control, _vmexit_control))
2723 		return -EIO;
2724 
2725 	/*
2726 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2727 	 * can't be used due to an errata where VM Exit may incorrectly clear
2728 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2729 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2730 	 */
2731 	switch (boot_cpu_data.x86_vfm) {
2732 	case INTEL_NEHALEM_EP:	/* AAK155 */
2733 	case INTEL_NEHALEM:	/* AAP115 */
2734 	case INTEL_WESTMERE:	/* AAT100 */
2735 	case INTEL_WESTMERE_EP:	/* BC86,AAY89,BD102 */
2736 	case INTEL_NEHALEM_EX:	/* BA97 */
2737 		_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2738 		_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2739 		pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2740 			     "does not work properly. Using workaround\n");
2741 		break;
2742 	default:
2743 		break;
2744 	}
2745 
2746 	rdmsrq(MSR_IA32_VMX_BASIC, basic_msr);
2747 
2748 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2749 	if (vmx_basic_vmcs_size(basic_msr) > PAGE_SIZE)
2750 		return -EIO;
2751 
2752 #ifdef CONFIG_X86_64
2753 	/*
2754 	 * KVM expects to be able to shove all legal physical addresses into
2755 	 * VMCS fields for 64-bit kernels, and per the SDM, "This bit is always
2756 	 * 0 for processors that support Intel 64 architecture".
2757 	 */
2758 	if (basic_msr & VMX_BASIC_32BIT_PHYS_ADDR_ONLY)
2759 		return -EIO;
2760 #endif
2761 
2762 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2763 	if (vmx_basic_vmcs_mem_type(basic_msr) != X86_MEMTYPE_WB)
2764 		return -EIO;
2765 
2766 	rdmsrq(MSR_IA32_VMX_MISC, misc_msr);
2767 
2768 	vmcs_conf->basic = basic_msr;
2769 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2770 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2771 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2772 	vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2773 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2774 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2775 	vmcs_conf->misc	= misc_msr;
2776 
2777 #if IS_ENABLED(CONFIG_HYPERV)
2778 	if (enlightened_vmcs)
2779 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2780 #endif
2781 
2782 	return 0;
2783 }
2784 
__kvm_is_vmx_supported(void)2785 static bool __kvm_is_vmx_supported(void)
2786 {
2787 	int cpu = smp_processor_id();
2788 
2789 	if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2790 		pr_err("VMX not supported by CPU %d\n", cpu);
2791 		return false;
2792 	}
2793 
2794 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2795 	    !this_cpu_has(X86_FEATURE_VMX)) {
2796 		pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2797 		return false;
2798 	}
2799 
2800 	return true;
2801 }
2802 
kvm_is_vmx_supported(void)2803 static bool kvm_is_vmx_supported(void)
2804 {
2805 	bool supported;
2806 
2807 	migrate_disable();
2808 	supported = __kvm_is_vmx_supported();
2809 	migrate_enable();
2810 
2811 	return supported;
2812 }
2813 
vmx_check_processor_compat(void)2814 int vmx_check_processor_compat(void)
2815 {
2816 	int cpu = raw_smp_processor_id();
2817 	struct vmcs_config vmcs_conf;
2818 	struct vmx_capability vmx_cap;
2819 
2820 	if (!__kvm_is_vmx_supported())
2821 		return -EIO;
2822 
2823 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2824 		pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2825 		return -EIO;
2826 	}
2827 	if (nested)
2828 		nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2829 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2830 		pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2831 		return -EIO;
2832 	}
2833 	return 0;
2834 }
2835 
kvm_cpu_vmxon(u64 vmxon_pointer)2836 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2837 {
2838 	u64 msr;
2839 
2840 	cr4_set_bits(X86_CR4_VMXE);
2841 
2842 	asm goto("1: vmxon %[vmxon_pointer]\n\t"
2843 			  _ASM_EXTABLE(1b, %l[fault])
2844 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2845 			  : : fault);
2846 	return 0;
2847 
2848 fault:
2849 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2850 		  rdmsrq_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2851 	cr4_clear_bits(X86_CR4_VMXE);
2852 
2853 	return -EFAULT;
2854 }
2855 
vmx_enable_virtualization_cpu(void)2856 int vmx_enable_virtualization_cpu(void)
2857 {
2858 	int cpu = raw_smp_processor_id();
2859 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2860 	int r;
2861 
2862 	if (cr4_read_shadow() & X86_CR4_VMXE)
2863 		return -EBUSY;
2864 
2865 	/*
2866 	 * This can happen if we hot-added a CPU but failed to allocate
2867 	 * VP assist page for it.
2868 	 */
2869 	if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2870 		return -EFAULT;
2871 
2872 	intel_pt_handle_vmx(1);
2873 
2874 	r = kvm_cpu_vmxon(phys_addr);
2875 	if (r) {
2876 		intel_pt_handle_vmx(0);
2877 		return r;
2878 	}
2879 
2880 	return 0;
2881 }
2882 
vmclear_local_loaded_vmcss(void)2883 static void vmclear_local_loaded_vmcss(void)
2884 {
2885 	int cpu = raw_smp_processor_id();
2886 	struct loaded_vmcs *v, *n;
2887 
2888 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2889 				 loaded_vmcss_on_cpu_link)
2890 		__loaded_vmcs_clear(v);
2891 }
2892 
vmx_disable_virtualization_cpu(void)2893 void vmx_disable_virtualization_cpu(void)
2894 {
2895 	vmclear_local_loaded_vmcss();
2896 
2897 	if (kvm_cpu_vmxoff())
2898 		kvm_spurious_fault();
2899 
2900 	hv_reset_evmcs();
2901 
2902 	intel_pt_handle_vmx(0);
2903 }
2904 
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)2905 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2906 {
2907 	int node = cpu_to_node(cpu);
2908 	struct page *pages;
2909 	struct vmcs *vmcs;
2910 
2911 	pages = __alloc_pages_node(node, flags, 0);
2912 	if (!pages)
2913 		return NULL;
2914 	vmcs = page_address(pages);
2915 	memset(vmcs, 0, vmx_basic_vmcs_size(vmcs_config.basic));
2916 
2917 	/* KVM supports Enlightened VMCS v1 only */
2918 	if (kvm_is_using_evmcs())
2919 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2920 	else
2921 		vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
2922 
2923 	if (shadow)
2924 		vmcs->hdr.shadow_vmcs = 1;
2925 	return vmcs;
2926 }
2927 
free_vmcs(struct vmcs * vmcs)2928 void free_vmcs(struct vmcs *vmcs)
2929 {
2930 	free_page((unsigned long)vmcs);
2931 }
2932 
2933 /*
2934  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2935  */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2936 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2937 {
2938 	if (!loaded_vmcs->vmcs)
2939 		return;
2940 	loaded_vmcs_clear(loaded_vmcs);
2941 	free_vmcs(loaded_vmcs->vmcs);
2942 	loaded_vmcs->vmcs = NULL;
2943 	if (loaded_vmcs->msr_bitmap)
2944 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2945 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2946 }
2947 
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2948 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2949 {
2950 	loaded_vmcs->vmcs = alloc_vmcs(false);
2951 	if (!loaded_vmcs->vmcs)
2952 		return -ENOMEM;
2953 
2954 	vmcs_clear(loaded_vmcs->vmcs);
2955 
2956 	loaded_vmcs->shadow_vmcs = NULL;
2957 	loaded_vmcs->hv_timer_soft_disabled = false;
2958 	loaded_vmcs->cpu = -1;
2959 	loaded_vmcs->launched = 0;
2960 
2961 	if (cpu_has_vmx_msr_bitmap()) {
2962 		loaded_vmcs->msr_bitmap = (unsigned long *)
2963 				__get_free_page(GFP_KERNEL_ACCOUNT);
2964 		if (!loaded_vmcs->msr_bitmap)
2965 			goto out_vmcs;
2966 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2967 	}
2968 
2969 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2970 	memset(&loaded_vmcs->controls_shadow, 0,
2971 		sizeof(struct vmcs_controls_shadow));
2972 
2973 	return 0;
2974 
2975 out_vmcs:
2976 	free_loaded_vmcs(loaded_vmcs);
2977 	return -ENOMEM;
2978 }
2979 
free_kvm_area(void)2980 static void free_kvm_area(void)
2981 {
2982 	int cpu;
2983 
2984 	for_each_possible_cpu(cpu) {
2985 		free_vmcs(per_cpu(vmxarea, cpu));
2986 		per_cpu(vmxarea, cpu) = NULL;
2987 	}
2988 }
2989 
alloc_kvm_area(void)2990 static __init int alloc_kvm_area(void)
2991 {
2992 	int cpu;
2993 
2994 	for_each_possible_cpu(cpu) {
2995 		struct vmcs *vmcs;
2996 
2997 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2998 		if (!vmcs) {
2999 			free_kvm_area();
3000 			return -ENOMEM;
3001 		}
3002 
3003 		/*
3004 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
3005 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
3006 		 * revision_id reported by MSR_IA32_VMX_BASIC.
3007 		 *
3008 		 * However, even though not explicitly documented by
3009 		 * TLFS, VMXArea passed as VMXON argument should
3010 		 * still be marked with revision_id reported by
3011 		 * physical CPU.
3012 		 */
3013 		if (kvm_is_using_evmcs())
3014 			vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
3015 
3016 		per_cpu(vmxarea, cpu) = vmcs;
3017 	}
3018 	return 0;
3019 }
3020 
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)3021 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3022 		struct kvm_segment *save)
3023 {
3024 	if (!emulate_invalid_guest_state) {
3025 		/*
3026 		 * CS and SS RPL should be equal during guest entry according
3027 		 * to VMX spec, but in reality it is not always so. Since vcpu
3028 		 * is in the middle of the transition from real mode to
3029 		 * protected mode it is safe to assume that RPL 0 is a good
3030 		 * default value.
3031 		 */
3032 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3033 			save->selector &= ~SEGMENT_RPL_MASK;
3034 		save->dpl = save->selector & SEGMENT_RPL_MASK;
3035 		save->s = 1;
3036 	}
3037 	__vmx_set_segment(vcpu, save, seg);
3038 }
3039 
enter_pmode(struct kvm_vcpu * vcpu)3040 static void enter_pmode(struct kvm_vcpu *vcpu)
3041 {
3042 	unsigned long flags;
3043 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3044 
3045 	/*
3046 	 * Update real mode segment cache. It may be not up-to-date if segment
3047 	 * register was written while vcpu was in a guest mode.
3048 	 */
3049 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3050 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3051 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3052 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3053 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3054 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3055 
3056 	vmx->rmode.vm86_active = 0;
3057 
3058 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3059 
3060 	flags = vmcs_readl(GUEST_RFLAGS);
3061 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3062 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3063 	vmcs_writel(GUEST_RFLAGS, flags);
3064 
3065 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3066 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3067 
3068 	vmx_update_exception_bitmap(vcpu);
3069 
3070 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3071 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3072 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3073 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3074 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3075 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3076 }
3077 
fix_rmode_seg(int seg,struct kvm_segment * save)3078 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3079 {
3080 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3081 	struct kvm_segment var = *save;
3082 
3083 	var.dpl = 0x3;
3084 	if (seg == VCPU_SREG_CS)
3085 		var.type = 0x3;
3086 
3087 	if (!emulate_invalid_guest_state) {
3088 		var.selector = var.base >> 4;
3089 		var.base = var.base & 0xffff0;
3090 		var.limit = 0xffff;
3091 		var.g = 0;
3092 		var.db = 0;
3093 		var.present = 1;
3094 		var.s = 1;
3095 		var.l = 0;
3096 		var.unusable = 0;
3097 		var.type = 0x3;
3098 		var.avl = 0;
3099 		if (save->base & 0xf)
3100 			pr_warn_once("segment base is not paragraph aligned "
3101 				     "when entering protected mode (seg=%d)", seg);
3102 	}
3103 
3104 	vmcs_write16(sf->selector, var.selector);
3105 	vmcs_writel(sf->base, var.base);
3106 	vmcs_write32(sf->limit, var.limit);
3107 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3108 }
3109 
enter_rmode(struct kvm_vcpu * vcpu)3110 static void enter_rmode(struct kvm_vcpu *vcpu)
3111 {
3112 	unsigned long flags;
3113 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3114 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3115 
3116 	/*
3117 	 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3118 	 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3119 	 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3120 	 * should VM-Fail and KVM should reject userspace attempts to stuff
3121 	 * CR0.PG=0 when L2 is active.
3122 	 */
3123 	WARN_ON_ONCE(is_guest_mode(vcpu));
3124 
3125 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3126 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3127 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3128 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3129 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3130 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3131 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3132 
3133 	vmx->rmode.vm86_active = 1;
3134 
3135 	vmx_segment_cache_clear(vmx);
3136 
3137 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3138 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3139 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3140 
3141 	flags = vmcs_readl(GUEST_RFLAGS);
3142 	vmx->rmode.save_rflags = flags;
3143 
3144 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3145 
3146 	vmcs_writel(GUEST_RFLAGS, flags);
3147 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3148 	vmx_update_exception_bitmap(vcpu);
3149 
3150 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3151 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3152 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3153 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3154 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3155 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3156 }
3157 
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)3158 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3159 {
3160 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3161 
3162 	/* Nothing to do if hardware doesn't support EFER. */
3163 	if (!vmx_find_uret_msr(vmx, MSR_EFER))
3164 		return 0;
3165 
3166 	vcpu->arch.efer = efer;
3167 #ifdef CONFIG_X86_64
3168 	if (efer & EFER_LMA)
3169 		vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3170 	else
3171 		vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3172 #else
3173 	if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3174 		return 1;
3175 #endif
3176 
3177 	vmx_setup_uret_msrs(vmx);
3178 	return 0;
3179 }
3180 
3181 #ifdef CONFIG_X86_64
3182 
enter_lmode(struct kvm_vcpu * vcpu)3183 static void enter_lmode(struct kvm_vcpu *vcpu)
3184 {
3185 	u32 guest_tr_ar;
3186 
3187 	vmx_segment_cache_clear(to_vmx(vcpu));
3188 
3189 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3190 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3191 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3192 				     __func__);
3193 		vmcs_write32(GUEST_TR_AR_BYTES,
3194 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3195 			     | VMX_AR_TYPE_BUSY_64_TSS);
3196 	}
3197 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3198 }
3199 
exit_lmode(struct kvm_vcpu * vcpu)3200 static void exit_lmode(struct kvm_vcpu *vcpu)
3201 {
3202 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3203 }
3204 
3205 #endif
3206 
vmx_flush_tlb_all(struct kvm_vcpu * vcpu)3207 void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3208 {
3209 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3210 
3211 	/*
3212 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3213 	 * the CPU is not required to invalidate guest-physical mappings on
3214 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3215 	 * associated with the root EPT structure and not any particular VPID
3216 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
3217 	 */
3218 	if (enable_ept) {
3219 		ept_sync_global();
3220 	} else if (enable_vpid) {
3221 		if (cpu_has_vmx_invvpid_global()) {
3222 			vpid_sync_vcpu_global();
3223 		} else {
3224 			vpid_sync_vcpu_single(vmx->vpid);
3225 			vpid_sync_vcpu_single(vmx->nested.vpid02);
3226 		}
3227 	}
3228 }
3229 
vmx_get_current_vpid(struct kvm_vcpu * vcpu)3230 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3231 {
3232 	if (is_guest_mode(vcpu) && nested_cpu_has_vpid(get_vmcs12(vcpu)))
3233 		return nested_get_vpid02(vcpu);
3234 	return to_vmx(vcpu)->vpid;
3235 }
3236 
vmx_flush_tlb_current(struct kvm_vcpu * vcpu)3237 void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3238 {
3239 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3240 	u64 root_hpa = mmu->root.hpa;
3241 
3242 	/* No flush required if the current context is invalid. */
3243 	if (!VALID_PAGE(root_hpa))
3244 		return;
3245 
3246 	if (enable_ept)
3247 		ept_sync_context(construct_eptp(vcpu, root_hpa,
3248 						mmu->root_role.level));
3249 	else
3250 		vpid_sync_context(vmx_get_current_vpid(vcpu));
3251 }
3252 
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)3253 void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3254 {
3255 	/*
3256 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3257 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3258 	 */
3259 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3260 }
3261 
vmx_flush_tlb_guest(struct kvm_vcpu * vcpu)3262 void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3263 {
3264 	/*
3265 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3266 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3267 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3268 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3269 	 * i.e. no explicit INVVPID is necessary.
3270 	 */
3271 	vpid_sync_context(vmx_get_current_vpid(vcpu));
3272 }
3273 
vmx_ept_load_pdptrs(struct kvm_vcpu * vcpu)3274 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3275 {
3276 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3277 
3278 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3279 		return;
3280 
3281 	if (is_pae_paging(vcpu)) {
3282 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3283 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3284 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3285 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3286 	}
3287 }
3288 
ept_save_pdptrs(struct kvm_vcpu * vcpu)3289 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3290 {
3291 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3292 
3293 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3294 		return;
3295 
3296 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3297 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3298 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3299 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3300 
3301 	kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3302 }
3303 
3304 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3305 			  CPU_BASED_CR3_STORE_EXITING)
3306 
vmx_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3307 bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3308 {
3309 	if (is_guest_mode(vcpu))
3310 		return nested_guest_cr0_valid(vcpu, cr0);
3311 
3312 	if (to_vmx(vcpu)->nested.vmxon)
3313 		return nested_host_cr0_valid(vcpu, cr0);
3314 
3315 	return true;
3316 }
3317 
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3318 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3319 {
3320 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3321 	unsigned long hw_cr0, old_cr0_pg;
3322 	u32 tmp;
3323 
3324 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3325 
3326 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3327 	if (enable_unrestricted_guest)
3328 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3329 	else {
3330 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3331 		if (!enable_ept)
3332 			hw_cr0 |= X86_CR0_WP;
3333 
3334 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3335 			enter_pmode(vcpu);
3336 
3337 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3338 			enter_rmode(vcpu);
3339 	}
3340 
3341 	vmcs_writel(CR0_READ_SHADOW, cr0);
3342 	vmcs_writel(GUEST_CR0, hw_cr0);
3343 	vcpu->arch.cr0 = cr0;
3344 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3345 
3346 #ifdef CONFIG_X86_64
3347 	if (vcpu->arch.efer & EFER_LME) {
3348 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3349 			enter_lmode(vcpu);
3350 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3351 			exit_lmode(vcpu);
3352 	}
3353 #endif
3354 
3355 	if (enable_ept && !enable_unrestricted_guest) {
3356 		/*
3357 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3358 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3359 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3360 		 * KVM's CR3 is installed.
3361 		 */
3362 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3363 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3364 
3365 		/*
3366 		 * When running with EPT but not unrestricted guest, KVM must
3367 		 * intercept CR3 accesses when paging is _disabled_.  This is
3368 		 * necessary because restricted guests can't actually run with
3369 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3370 		 * run the guest when identity mapped page tables.
3371 		 *
3372 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3373 		 * update, it may be stale with respect to CR3 interception,
3374 		 * e.g. after nested VM-Enter.
3375 		 *
3376 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3377 		 * stores to forward them to L1, even if KVM does not need to
3378 		 * intercept them to preserve its identity mapped page tables.
3379 		 */
3380 		if (!(cr0 & X86_CR0_PG)) {
3381 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3382 		} else if (!is_guest_mode(vcpu)) {
3383 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3384 		} else {
3385 			tmp = exec_controls_get(vmx);
3386 			tmp &= ~CR3_EXITING_BITS;
3387 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3388 			exec_controls_set(vmx, tmp);
3389 		}
3390 
3391 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3392 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3393 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3394 
3395 		/*
3396 		 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3397 		 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3398 		 */
3399 		if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3400 			kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3401 	}
3402 
3403 	/* depends on vcpu->arch.cr0 to be set to a new value */
3404 	vmx->vt.emulation_required = vmx_emulation_required(vcpu);
3405 }
3406 
vmx_get_max_ept_level(void)3407 static int vmx_get_max_ept_level(void)
3408 {
3409 	if (cpu_has_vmx_ept_5levels())
3410 		return 5;
3411 	return 4;
3412 }
3413 
construct_eptp(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3414 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3415 {
3416 	u64 eptp = VMX_EPTP_MT_WB;
3417 
3418 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3419 
3420 	if (enable_ept_ad_bits &&
3421 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3422 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3423 	eptp |= root_hpa;
3424 
3425 	return eptp;
3426 }
3427 
vmx_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3428 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3429 {
3430 	struct kvm *kvm = vcpu->kvm;
3431 	bool update_guest_cr3 = true;
3432 	unsigned long guest_cr3;
3433 	u64 eptp;
3434 
3435 	if (enable_ept) {
3436 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3437 		vmcs_write64(EPT_POINTER, eptp);
3438 
3439 		hv_track_root_tdp(vcpu, root_hpa);
3440 
3441 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3442 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3443 		else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3444 			guest_cr3 = vcpu->arch.cr3;
3445 		else /* vmcs.GUEST_CR3 is already up-to-date. */
3446 			update_guest_cr3 = false;
3447 		vmx_ept_load_pdptrs(vcpu);
3448 	} else {
3449 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) |
3450 			    kvm_get_active_cr3_lam_bits(vcpu);
3451 	}
3452 
3453 	if (update_guest_cr3)
3454 		vmcs_writel(GUEST_CR3, guest_cr3);
3455 }
3456 
vmx_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3457 bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3458 {
3459 	/*
3460 	 * We operate under the default treatment of SMM, so VMX cannot be
3461 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all,
3462 	 * i.e. is a reserved bit, is handled by common x86 code.
3463 	 */
3464 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3465 		return false;
3466 
3467 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3468 		return false;
3469 
3470 	return true;
3471 }
3472 
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3473 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3474 {
3475 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
3476 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3477 	unsigned long hw_cr4;
3478 
3479 	/*
3480 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3481 	 * is in force while we are in guest mode.  Do not let guests control
3482 	 * this bit, even if host CR4.MCE == 0.
3483 	 */
3484 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3485 	if (enable_unrestricted_guest)
3486 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3487 	else if (vmx->rmode.vm86_active)
3488 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3489 	else
3490 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3491 
3492 	if (vmx_umip_emulated()) {
3493 		if (cr4 & X86_CR4_UMIP) {
3494 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3495 			hw_cr4 &= ~X86_CR4_UMIP;
3496 		} else if (!is_guest_mode(vcpu) ||
3497 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3498 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3499 		}
3500 	}
3501 
3502 	vcpu->arch.cr4 = cr4;
3503 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3504 
3505 	if (!enable_unrestricted_guest) {
3506 		if (enable_ept) {
3507 			if (!is_paging(vcpu)) {
3508 				hw_cr4 &= ~X86_CR4_PAE;
3509 				hw_cr4 |= X86_CR4_PSE;
3510 			} else if (!(cr4 & X86_CR4_PAE)) {
3511 				hw_cr4 &= ~X86_CR4_PAE;
3512 			}
3513 		}
3514 
3515 		/*
3516 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3517 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3518 		 * to be manually disabled when guest switches to non-paging
3519 		 * mode.
3520 		 *
3521 		 * If !enable_unrestricted_guest, the CPU is always running
3522 		 * with CR0.PG=1 and CR4 needs to be modified.
3523 		 * If enable_unrestricted_guest, the CPU automatically
3524 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3525 		 */
3526 		if (!is_paging(vcpu))
3527 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3528 	}
3529 
3530 	vmcs_writel(CR4_READ_SHADOW, cr4);
3531 	vmcs_writel(GUEST_CR4, hw_cr4);
3532 
3533 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3534 		vcpu->arch.cpuid_dynamic_bits_dirty = true;
3535 }
3536 
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3537 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3538 {
3539 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3540 	u32 ar;
3541 
3542 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3543 		*var = vmx->rmode.segs[seg];
3544 		if (seg == VCPU_SREG_TR
3545 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3546 			return;
3547 		var->base = vmx_read_guest_seg_base(vmx, seg);
3548 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3549 		return;
3550 	}
3551 	var->base = vmx_read_guest_seg_base(vmx, seg);
3552 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3553 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3554 	ar = vmx_read_guest_seg_ar(vmx, seg);
3555 	var->unusable = (ar >> 16) & 1;
3556 	var->type = ar & 15;
3557 	var->s = (ar >> 4) & 1;
3558 	var->dpl = (ar >> 5) & 3;
3559 	/*
3560 	 * Some userspaces do not preserve unusable property. Since usable
3561 	 * segment has to be present according to VMX spec we can use present
3562 	 * property to amend userspace bug by making unusable segment always
3563 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3564 	 * segment as unusable.
3565 	 */
3566 	var->present = !var->unusable;
3567 	var->avl = (ar >> 12) & 1;
3568 	var->l = (ar >> 13) & 1;
3569 	var->db = (ar >> 14) & 1;
3570 	var->g = (ar >> 15) & 1;
3571 }
3572 
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3573 u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3574 {
3575 	struct kvm_segment s;
3576 
3577 	if (to_vmx(vcpu)->rmode.vm86_active) {
3578 		vmx_get_segment(vcpu, &s, seg);
3579 		return s.base;
3580 	}
3581 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3582 }
3583 
__vmx_get_cpl(struct kvm_vcpu * vcpu,bool no_cache)3584 static int __vmx_get_cpl(struct kvm_vcpu *vcpu, bool no_cache)
3585 {
3586 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3587 	int ar;
3588 
3589 	if (unlikely(vmx->rmode.vm86_active))
3590 		return 0;
3591 
3592 	if (no_cache)
3593 		ar = vmcs_read32(GUEST_SS_AR_BYTES);
3594 	else
3595 		ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3596 	return VMX_AR_DPL(ar);
3597 }
3598 
vmx_get_cpl(struct kvm_vcpu * vcpu)3599 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3600 {
3601 	return __vmx_get_cpl(vcpu, false);
3602 }
3603 
vmx_get_cpl_no_cache(struct kvm_vcpu * vcpu)3604 int vmx_get_cpl_no_cache(struct kvm_vcpu *vcpu)
3605 {
3606 	return __vmx_get_cpl(vcpu, true);
3607 }
3608 
vmx_segment_access_rights(struct kvm_segment * var)3609 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3610 {
3611 	u32 ar;
3612 
3613 	ar = var->type & 15;
3614 	ar |= (var->s & 1) << 4;
3615 	ar |= (var->dpl & 3) << 5;
3616 	ar |= (var->present & 1) << 7;
3617 	ar |= (var->avl & 1) << 12;
3618 	ar |= (var->l & 1) << 13;
3619 	ar |= (var->db & 1) << 14;
3620 	ar |= (var->g & 1) << 15;
3621 	ar |= (var->unusable || !var->present) << 16;
3622 
3623 	return ar;
3624 }
3625 
__vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3626 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3627 {
3628 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3629 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3630 
3631 	vmx_segment_cache_clear(vmx);
3632 
3633 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3634 		vmx->rmode.segs[seg] = *var;
3635 		if (seg == VCPU_SREG_TR)
3636 			vmcs_write16(sf->selector, var->selector);
3637 		else if (var->s)
3638 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3639 		return;
3640 	}
3641 
3642 	vmcs_writel(sf->base, var->base);
3643 	vmcs_write32(sf->limit, var->limit);
3644 	vmcs_write16(sf->selector, var->selector);
3645 
3646 	/*
3647 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3648 	 * qemu binaries.
3649 	 *   IA32 arch specifies that at the time of processor reset the
3650 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3651 	 * is setting it to 0 in the userland code. This causes invalid guest
3652 	 * state vmexit when "unrestricted guest" mode is turned on.
3653 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3654 	 * tree. Newer qemu binaries with that qemu fix would not need this
3655 	 * kvm hack.
3656 	 */
3657 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3658 		var->type |= 0x1; /* Accessed */
3659 
3660 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3661 }
3662 
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3663 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3664 {
3665 	__vmx_set_segment(vcpu, var, seg);
3666 
3667 	to_vmx(vcpu)->vt.emulation_required = vmx_emulation_required(vcpu);
3668 }
3669 
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3670 void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3671 {
3672 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3673 
3674 	*db = (ar >> 14) & 1;
3675 	*l = (ar >> 13) & 1;
3676 }
3677 
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3678 void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3679 {
3680 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3681 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3682 }
3683 
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3684 void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3685 {
3686 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3687 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3688 }
3689 
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3690 void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3691 {
3692 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3693 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3694 }
3695 
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3696 void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3697 {
3698 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3699 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3700 }
3701 
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3702 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3703 {
3704 	struct kvm_segment var;
3705 	u32 ar;
3706 
3707 	vmx_get_segment(vcpu, &var, seg);
3708 	var.dpl = 0x3;
3709 	if (seg == VCPU_SREG_CS)
3710 		var.type = 0x3;
3711 	ar = vmx_segment_access_rights(&var);
3712 
3713 	if (var.base != (var.selector << 4))
3714 		return false;
3715 	if (var.limit != 0xffff)
3716 		return false;
3717 	if (ar != 0xf3)
3718 		return false;
3719 
3720 	return true;
3721 }
3722 
code_segment_valid(struct kvm_vcpu * vcpu)3723 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3724 {
3725 	struct kvm_segment cs;
3726 	unsigned int cs_rpl;
3727 
3728 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3729 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3730 
3731 	if (cs.unusable)
3732 		return false;
3733 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3734 		return false;
3735 	if (!cs.s)
3736 		return false;
3737 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3738 		if (cs.dpl > cs_rpl)
3739 			return false;
3740 	} else {
3741 		if (cs.dpl != cs_rpl)
3742 			return false;
3743 	}
3744 	if (!cs.present)
3745 		return false;
3746 
3747 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3748 	return true;
3749 }
3750 
stack_segment_valid(struct kvm_vcpu * vcpu)3751 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3752 {
3753 	struct kvm_segment ss;
3754 	unsigned int ss_rpl;
3755 
3756 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3757 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3758 
3759 	if (ss.unusable)
3760 		return true;
3761 	if (ss.type != 3 && ss.type != 7)
3762 		return false;
3763 	if (!ss.s)
3764 		return false;
3765 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3766 		return false;
3767 	if (!ss.present)
3768 		return false;
3769 
3770 	return true;
3771 }
3772 
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3773 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3774 {
3775 	struct kvm_segment var;
3776 	unsigned int rpl;
3777 
3778 	vmx_get_segment(vcpu, &var, seg);
3779 	rpl = var.selector & SEGMENT_RPL_MASK;
3780 
3781 	if (var.unusable)
3782 		return true;
3783 	if (!var.s)
3784 		return false;
3785 	if (!var.present)
3786 		return false;
3787 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3788 		if (var.dpl < rpl) /* DPL < RPL */
3789 			return false;
3790 	}
3791 
3792 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3793 	 * rights flags
3794 	 */
3795 	return true;
3796 }
3797 
tr_valid(struct kvm_vcpu * vcpu)3798 static bool tr_valid(struct kvm_vcpu *vcpu)
3799 {
3800 	struct kvm_segment tr;
3801 
3802 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3803 
3804 	if (tr.unusable)
3805 		return false;
3806 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3807 		return false;
3808 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3809 		return false;
3810 	if (!tr.present)
3811 		return false;
3812 
3813 	return true;
3814 }
3815 
ldtr_valid(struct kvm_vcpu * vcpu)3816 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3817 {
3818 	struct kvm_segment ldtr;
3819 
3820 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3821 
3822 	if (ldtr.unusable)
3823 		return true;
3824 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3825 		return false;
3826 	if (ldtr.type != 2)
3827 		return false;
3828 	if (!ldtr.present)
3829 		return false;
3830 
3831 	return true;
3832 }
3833 
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3834 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3835 {
3836 	struct kvm_segment cs, ss;
3837 
3838 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3839 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3840 
3841 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3842 		 (ss.selector & SEGMENT_RPL_MASK));
3843 }
3844 
3845 /*
3846  * Check if guest state is valid. Returns true if valid, false if
3847  * not.
3848  * We assume that registers are always usable
3849  */
__vmx_guest_state_valid(struct kvm_vcpu * vcpu)3850 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3851 {
3852 	/* real mode guest state checks */
3853 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3854 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3855 			return false;
3856 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3857 			return false;
3858 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3859 			return false;
3860 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3861 			return false;
3862 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3863 			return false;
3864 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3865 			return false;
3866 	} else {
3867 	/* protected mode guest state checks */
3868 		if (!cs_ss_rpl_check(vcpu))
3869 			return false;
3870 		if (!code_segment_valid(vcpu))
3871 			return false;
3872 		if (!stack_segment_valid(vcpu))
3873 			return false;
3874 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3875 			return false;
3876 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3877 			return false;
3878 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3879 			return false;
3880 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3881 			return false;
3882 		if (!tr_valid(vcpu))
3883 			return false;
3884 		if (!ldtr_valid(vcpu))
3885 			return false;
3886 	}
3887 	/* TODO:
3888 	 * - Add checks on RIP
3889 	 * - Add checks on RFLAGS
3890 	 */
3891 
3892 	return true;
3893 }
3894 
init_rmode_tss(struct kvm * kvm,void __user * ua)3895 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3896 {
3897 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3898 	u16 data;
3899 	int i;
3900 
3901 	for (i = 0; i < 3; i++) {
3902 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3903 			return -EFAULT;
3904 	}
3905 
3906 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3907 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3908 		return -EFAULT;
3909 
3910 	data = ~0;
3911 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3912 		return -EFAULT;
3913 
3914 	return 0;
3915 }
3916 
init_rmode_identity_map(struct kvm * kvm)3917 static int init_rmode_identity_map(struct kvm *kvm)
3918 {
3919 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3920 	int i, r = 0;
3921 	void __user *uaddr;
3922 	u32 tmp;
3923 
3924 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3925 	mutex_lock(&kvm->slots_lock);
3926 
3927 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3928 		goto out;
3929 
3930 	if (!kvm_vmx->ept_identity_map_addr)
3931 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3932 
3933 	uaddr = __x86_set_memory_region(kvm,
3934 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3935 					kvm_vmx->ept_identity_map_addr,
3936 					PAGE_SIZE);
3937 	if (IS_ERR(uaddr)) {
3938 		r = PTR_ERR(uaddr);
3939 		goto out;
3940 	}
3941 
3942 	/* Set up identity-mapping pagetable for EPT in real mode */
3943 	for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3944 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3945 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3946 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3947 			r = -EFAULT;
3948 			goto out;
3949 		}
3950 	}
3951 	kvm_vmx->ept_identity_pagetable_done = true;
3952 
3953 out:
3954 	mutex_unlock(&kvm->slots_lock);
3955 	return r;
3956 }
3957 
seg_setup(int seg)3958 static void seg_setup(int seg)
3959 {
3960 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3961 	unsigned int ar;
3962 
3963 	vmcs_write16(sf->selector, 0);
3964 	vmcs_writel(sf->base, 0);
3965 	vmcs_write32(sf->limit, 0xffff);
3966 	ar = 0x93;
3967 	if (seg == VCPU_SREG_CS)
3968 		ar |= 0x08; /* code segment */
3969 
3970 	vmcs_write32(sf->ar_bytes, ar);
3971 }
3972 
allocate_vpid(void)3973 int allocate_vpid(void)
3974 {
3975 	int vpid;
3976 
3977 	if (!enable_vpid)
3978 		return 0;
3979 	spin_lock(&vmx_vpid_lock);
3980 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3981 	if (vpid < VMX_NR_VPIDS)
3982 		__set_bit(vpid, vmx_vpid_bitmap);
3983 	else
3984 		vpid = 0;
3985 	spin_unlock(&vmx_vpid_lock);
3986 	return vpid;
3987 }
3988 
free_vpid(int vpid)3989 void free_vpid(int vpid)
3990 {
3991 	if (!enable_vpid || vpid == 0)
3992 		return;
3993 	spin_lock(&vmx_vpid_lock);
3994 	__clear_bit(vpid, vmx_vpid_bitmap);
3995 	spin_unlock(&vmx_vpid_lock);
3996 }
3997 
vmx_msr_bitmap_l01_changed(struct vcpu_vmx * vmx)3998 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3999 {
4000 	/*
4001 	 * When KVM is a nested hypervisor on top of Hyper-V and uses
4002 	 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
4003 	 * bitmap has changed.
4004 	 */
4005 	if (kvm_is_using_evmcs()) {
4006 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
4007 
4008 		if (evmcs->hv_enlightenments_control.msr_bitmap)
4009 			evmcs->hv_clean_fields &=
4010 				~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
4011 	}
4012 
4013 	vmx->nested.force_msr_bitmap_recalc = true;
4014 }
4015 
vmx_disable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)4016 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
4017 {
4018 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4019 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4020 	int idx;
4021 
4022 	if (!cpu_has_vmx_msr_bitmap())
4023 		return;
4024 
4025 	vmx_msr_bitmap_l01_changed(vmx);
4026 
4027 	/*
4028 	 * Mark the desired intercept state in shadow bitmap, this is needed
4029 	 * for resync when the MSR filters change.
4030 	 */
4031 	idx = vmx_get_passthrough_msr_slot(msr);
4032 	if (idx >= 0) {
4033 		if (type & MSR_TYPE_R)
4034 			clear_bit(idx, vmx->shadow_msr_intercept.read);
4035 		if (type & MSR_TYPE_W)
4036 			clear_bit(idx, vmx->shadow_msr_intercept.write);
4037 	}
4038 
4039 	if ((type & MSR_TYPE_R) &&
4040 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
4041 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
4042 		type &= ~MSR_TYPE_R;
4043 	}
4044 
4045 	if ((type & MSR_TYPE_W) &&
4046 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
4047 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
4048 		type &= ~MSR_TYPE_W;
4049 	}
4050 
4051 	if (type & MSR_TYPE_R)
4052 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
4053 
4054 	if (type & MSR_TYPE_W)
4055 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
4056 }
4057 
vmx_enable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)4058 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
4059 {
4060 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4061 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4062 	int idx;
4063 
4064 	if (!cpu_has_vmx_msr_bitmap())
4065 		return;
4066 
4067 	vmx_msr_bitmap_l01_changed(vmx);
4068 
4069 	/*
4070 	 * Mark the desired intercept state in shadow bitmap, this is needed
4071 	 * for resync when the MSR filter changes.
4072 	 */
4073 	idx = vmx_get_passthrough_msr_slot(msr);
4074 	if (idx >= 0) {
4075 		if (type & MSR_TYPE_R)
4076 			set_bit(idx, vmx->shadow_msr_intercept.read);
4077 		if (type & MSR_TYPE_W)
4078 			set_bit(idx, vmx->shadow_msr_intercept.write);
4079 	}
4080 
4081 	if (type & MSR_TYPE_R)
4082 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
4083 
4084 	if (type & MSR_TYPE_W)
4085 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
4086 }
4087 
vmx_update_msr_bitmap_x2apic(struct kvm_vcpu * vcpu)4088 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4089 {
4090 	/*
4091 	 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4092 	 * of the MSR bitmap.  KVM emulates APIC registers up through 0x3f0,
4093 	 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4094 	 */
4095 	const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4096 	const int write_idx = read_idx + (0x800 / sizeof(u64));
4097 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4098 	u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4099 	u8 mode;
4100 
4101 	if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4102 		return;
4103 
4104 	if (cpu_has_secondary_exec_ctrls() &&
4105 	    (secondary_exec_controls_get(vmx) &
4106 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4107 		mode = MSR_BITMAP_MODE_X2APIC;
4108 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4109 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4110 	} else {
4111 		mode = 0;
4112 	}
4113 
4114 	if (mode == vmx->x2apic_msr_bitmap_mode)
4115 		return;
4116 
4117 	vmx->x2apic_msr_bitmap_mode = mode;
4118 
4119 	/*
4120 	 * Reset the bitmap for MSRs 0x800 - 0x83f.  Leave AMD's uber-extended
4121 	 * registers (0x840 and above) intercepted, KVM doesn't support them.
4122 	 * Intercept all writes by default and poke holes as needed.  Pass
4123 	 * through reads for all valid registers by default in x2APIC+APICv
4124 	 * mode, only the current timer count needs on-demand emulation by KVM.
4125 	 */
4126 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4127 		msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4128 	else
4129 		msr_bitmap[read_idx] = ~0ull;
4130 	msr_bitmap[write_idx] = ~0ull;
4131 
4132 	/*
4133 	 * TPR reads and writes can be virtualized even if virtual interrupt
4134 	 * delivery is not in use.
4135 	 */
4136 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4137 				  !(mode & MSR_BITMAP_MODE_X2APIC));
4138 
4139 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4140 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4141 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4142 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4143 		if (enable_ipiv)
4144 			vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4145 	}
4146 }
4147 
pt_update_intercept_for_msr(struct kvm_vcpu * vcpu)4148 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4149 {
4150 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4151 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4152 	u32 i;
4153 
4154 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4155 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4156 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4157 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4158 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4159 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4160 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4161 	}
4162 }
4163 
vmx_msr_filter_changed(struct kvm_vcpu * vcpu)4164 void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4165 {
4166 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4167 	u32 i;
4168 
4169 	if (!cpu_has_vmx_msr_bitmap())
4170 		return;
4171 
4172 	/*
4173 	 * Redo intercept permissions for MSRs that KVM is passing through to
4174 	 * the guest.  Disabling interception will check the new MSR filter and
4175 	 * ensure that KVM enables interception if usersepace wants to filter
4176 	 * the MSR.  MSRs that KVM is already intercepting don't need to be
4177 	 * refreshed since KVM is going to intercept them regardless of what
4178 	 * userspace wants.
4179 	 */
4180 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4181 		u32 msr = vmx_possible_passthrough_msrs[i];
4182 
4183 		if (!test_bit(i, vmx->shadow_msr_intercept.read))
4184 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4185 
4186 		if (!test_bit(i, vmx->shadow_msr_intercept.write))
4187 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4188 	}
4189 
4190 	/* PT MSRs can be passed through iff PT is exposed to the guest. */
4191 	if (vmx_pt_mode_is_host_guest())
4192 		pt_update_intercept_for_msr(vcpu);
4193 }
4194 
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4195 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4196 						int vector)
4197 {
4198 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4199 
4200 	/*
4201 	 * DO NOT query the vCPU's vmcs12, as vmcs12 is dynamically allocated
4202 	 * and freed, and must not be accessed outside of vcpu->mutex.  The
4203 	 * vCPU's cached PI NV is valid if and only if posted interrupts
4204 	 * enabled in its vmcs12, i.e. checking the vector also checks that
4205 	 * L1 has enabled posted interrupts for L2.
4206 	 */
4207 	if (is_guest_mode(vcpu) &&
4208 	    vector == vmx->nested.posted_intr_nv) {
4209 		/*
4210 		 * If a posted intr is not recognized by hardware,
4211 		 * we will accomplish it in the next vmentry.
4212 		 */
4213 		vmx->nested.pi_pending = true;
4214 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4215 
4216 		/*
4217 		 * This pairs with the smp_mb_*() after setting vcpu->mode in
4218 		 * vcpu_enter_guest() to guarantee the vCPU sees the event
4219 		 * request if triggering a posted interrupt "fails" because
4220 		 * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4221 		 * the smb_wmb() in kvm_make_request() only ensures everything
4222 		 * done before making the request is visible when the request
4223 		 * is visible, it doesn't ensure ordering between the store to
4224 		 * vcpu->requests and the load from vcpu->mode.
4225 		 */
4226 		smp_mb__after_atomic();
4227 
4228 		/* the PIR and ON have been set by L1. */
4229 		kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4230 		return 0;
4231 	}
4232 	return -1;
4233 }
4234 /*
4235  * Send interrupt to vcpu via posted interrupt way.
4236  * 1. If target vcpu is running(non-root mode), send posted interrupt
4237  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4238  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4239  * interrupt from PIR in next vmentry.
4240  */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4241 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4242 {
4243 	struct vcpu_vt *vt = to_vt(vcpu);
4244 	int r;
4245 
4246 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4247 	if (!r)
4248 		return 0;
4249 
4250 	/* Note, this is called iff the local APIC is in-kernel. */
4251 	if (!vcpu->arch.apic->apicv_active)
4252 		return -1;
4253 
4254 	__vmx_deliver_posted_interrupt(vcpu, &vt->pi_desc, vector);
4255 	return 0;
4256 }
4257 
vmx_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)4258 void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4259 			   int trig_mode, int vector)
4260 {
4261 	struct kvm_vcpu *vcpu = apic->vcpu;
4262 
4263 	if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4264 		kvm_lapic_set_irr(vector, apic);
4265 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4266 		kvm_vcpu_kick(vcpu);
4267 	} else {
4268 		trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4269 					   trig_mode, vector);
4270 	}
4271 }
4272 
4273 /*
4274  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4275  * will not change in the lifetime of the guest.
4276  * Note that host-state that does change is set elsewhere. E.g., host-state
4277  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4278  */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4279 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4280 {
4281 	u32 low32, high32;
4282 	unsigned long tmpl;
4283 	unsigned long cr0, cr3, cr4;
4284 
4285 	cr0 = read_cr0();
4286 	WARN_ON(cr0 & X86_CR0_TS);
4287 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4288 
4289 	/*
4290 	 * Save the most likely value for this task's CR3 in the VMCS.
4291 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4292 	 */
4293 	cr3 = __read_cr3();
4294 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4295 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4296 
4297 	/* Save the most likely value for this task's CR4 in the VMCS. */
4298 	cr4 = cr4_read_shadow();
4299 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4300 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4301 
4302 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4303 #ifdef CONFIG_X86_64
4304 	/*
4305 	 * Load null selectors, so we can avoid reloading them in
4306 	 * vmx_prepare_switch_to_host(), in case userspace uses
4307 	 * the null selectors too (the expected case).
4308 	 */
4309 	vmcs_write16(HOST_DS_SELECTOR, 0);
4310 	vmcs_write16(HOST_ES_SELECTOR, 0);
4311 #else
4312 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4313 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4314 #endif
4315 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4316 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4317 
4318 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4319 
4320 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4321 
4322 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4323 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4324 
4325 	/*
4326 	 * SYSENTER is used for 32-bit system calls on either 32-bit or
4327 	 * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4328 	 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4329 	 * have already done so!).
4330 	 */
4331 	if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4332 		vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4333 
4334 	rdmsrq(MSR_IA32_SYSENTER_EIP, tmpl);
4335 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4336 
4337 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4338 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4339 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4340 	}
4341 
4342 	if (cpu_has_load_ia32_efer())
4343 		vmcs_write64(HOST_IA32_EFER, kvm_host.efer);
4344 }
4345 
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4346 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4347 {
4348 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4349 
4350 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4351 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4352 	if (!enable_ept) {
4353 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4354 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4355 	}
4356 	if (is_guest_mode(&vmx->vcpu))
4357 		vcpu->arch.cr4_guest_owned_bits &=
4358 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4359 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4360 }
4361 
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4362 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4363 {
4364 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4365 
4366 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4367 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4368 
4369 	if (!enable_vnmi)
4370 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4371 
4372 	if (!enable_preemption_timer)
4373 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4374 
4375 	return pin_based_exec_ctrl;
4376 }
4377 
vmx_vmentry_ctrl(void)4378 static u32 vmx_vmentry_ctrl(void)
4379 {
4380 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4381 
4382 	if (vmx_pt_mode_is_system())
4383 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4384 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4385 	/*
4386 	 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4387 	 */
4388 	vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4389 			  VM_ENTRY_LOAD_IA32_EFER |
4390 			  VM_ENTRY_IA32E_MODE);
4391 
4392 	return vmentry_ctrl;
4393 }
4394 
vmx_vmexit_ctrl(void)4395 static u32 vmx_vmexit_ctrl(void)
4396 {
4397 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4398 
4399 	/*
4400 	 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4401 	 * nested virtualization and thus allowed to be set in vmcs12.
4402 	 */
4403 	vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4404 			 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4405 
4406 	if (vmx_pt_mode_is_system())
4407 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4408 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4409 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4410 	return vmexit_ctrl &
4411 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4412 }
4413 
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)4414 void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4415 {
4416 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4417 
4418 	if (is_guest_mode(vcpu)) {
4419 		vmx->nested.update_vmcs01_apicv_status = true;
4420 		return;
4421 	}
4422 
4423 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4424 
4425 	if (kvm_vcpu_apicv_active(vcpu)) {
4426 		secondary_exec_controls_setbit(vmx,
4427 					       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4428 					       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4429 		if (enable_ipiv)
4430 			tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4431 	} else {
4432 		secondary_exec_controls_clearbit(vmx,
4433 						 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4434 						 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4435 		if (enable_ipiv)
4436 			tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4437 	}
4438 
4439 	vmx_update_msr_bitmap_x2apic(vcpu);
4440 }
4441 
vmx_exec_control(struct vcpu_vmx * vmx)4442 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4443 {
4444 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4445 
4446 	/*
4447 	 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4448 	 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4449 	 */
4450 	exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4451 			  CPU_BASED_USE_IO_BITMAPS |
4452 			  CPU_BASED_MONITOR_TRAP_FLAG |
4453 			  CPU_BASED_PAUSE_EXITING);
4454 
4455 	/* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4456 	exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4457 			  CPU_BASED_NMI_WINDOW_EXITING);
4458 
4459 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4460 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4461 
4462 	if (!cpu_need_tpr_shadow(&vmx->vcpu))
4463 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4464 
4465 #ifdef CONFIG_X86_64
4466 	if (exec_control & CPU_BASED_TPR_SHADOW)
4467 		exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4468 				  CPU_BASED_CR8_STORE_EXITING);
4469 	else
4470 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4471 				CPU_BASED_CR8_LOAD_EXITING;
4472 #endif
4473 	/* No need to intercept CR3 access or INVPLG when using EPT. */
4474 	if (enable_ept)
4475 		exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4476 				  CPU_BASED_CR3_STORE_EXITING |
4477 				  CPU_BASED_INVLPG_EXITING);
4478 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4479 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4480 				CPU_BASED_MONITOR_EXITING);
4481 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4482 		exec_control &= ~CPU_BASED_HLT_EXITING;
4483 	return exec_control;
4484 }
4485 
vmx_tertiary_exec_control(struct vcpu_vmx * vmx)4486 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4487 {
4488 	u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4489 
4490 	/*
4491 	 * IPI virtualization relies on APICv. Disable IPI virtualization if
4492 	 * APICv is inhibited.
4493 	 */
4494 	if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4495 		exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4496 
4497 	return exec_control;
4498 }
4499 
4500 /*
4501  * Adjust a single secondary execution control bit to intercept/allow an
4502  * instruction in the guest.  This is usually done based on whether or not a
4503  * feature has been exposed to the guest in order to correctly emulate faults.
4504  */
4505 static inline void
vmx_adjust_secondary_exec_control(struct vcpu_vmx * vmx,u32 * exec_control,u32 control,bool enabled,bool exiting)4506 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4507 				  u32 control, bool enabled, bool exiting)
4508 {
4509 	/*
4510 	 * If the control is for an opt-in feature, clear the control if the
4511 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4512 	 * control is opt-out, i.e. an exiting control, clear the control if
4513 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4514 	 * disabled for the associated instruction.  Note, the caller is
4515 	 * responsible presetting exec_control to set all supported bits.
4516 	 */
4517 	if (enabled == exiting)
4518 		*exec_control &= ~control;
4519 
4520 	/*
4521 	 * Update the nested MSR settings so that a nested VMM can/can't set
4522 	 * controls for features that are/aren't exposed to the guest.
4523 	 */
4524 	if (nested &&
4525 	    kvm_check_has_quirk(vmx->vcpu.kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
4526 		/*
4527 		 * All features that can be added or removed to VMX MSRs must
4528 		 * be supported in the first place for nested virtualization.
4529 		 */
4530 		if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4531 			enabled = false;
4532 
4533 		if (enabled)
4534 			vmx->nested.msrs.secondary_ctls_high |= control;
4535 		else
4536 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4537 	}
4538 }
4539 
4540 /*
4541  * Wrapper macro for the common case of adjusting a secondary execution control
4542  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4543  * verifies that the control is actually supported by KVM and hardware.
4544  */
4545 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting)	\
4546 ({												\
4547 	struct kvm_vcpu *__vcpu = &(vmx)->vcpu;							\
4548 	bool __enabled;										\
4549 												\
4550 	if (cpu_has_vmx_##name()) {								\
4551 		__enabled = guest_cpu_cap_has(__vcpu, X86_FEATURE_##feat_name);			\
4552 		vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4553 						  __enabled, exiting);				\
4554 	}											\
4555 })
4556 
4557 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4558 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4559 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4560 
4561 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4562 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4563 
vmx_secondary_exec_control(struct vcpu_vmx * vmx)4564 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4565 {
4566 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4567 
4568 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4569 
4570 	if (vmx_pt_mode_is_system())
4571 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4572 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4573 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4574 	if (vmx->vpid == 0)
4575 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4576 	if (!enable_ept) {
4577 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4578 		exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
4579 		enable_unrestricted_guest = 0;
4580 	}
4581 	if (!enable_unrestricted_guest)
4582 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4583 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4584 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4585 	if (!kvm_vcpu_apicv_active(vcpu))
4586 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4587 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4588 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4589 
4590 	/*
4591 	 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4592 	 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4593 	 */
4594 	exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4595 
4596 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4597 	 * in vmx_set_cr4.  */
4598 	exec_control &= ~SECONDARY_EXEC_DESC;
4599 
4600 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4601 	   (handle_vmptrld).
4602 	   We can NOT enable shadow_vmcs here because we don't have yet
4603 	   a current VMCS12
4604 	*/
4605 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4606 
4607 	/*
4608 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4609 	 * it needs to be set here when dirty logging is already active, e.g.
4610 	 * if this vCPU was created after dirty logging was enabled.
4611 	 */
4612 	if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4613 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4614 
4615 	vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4616 
4617 	/*
4618 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4619 	 * feature is exposed to the guest.  This creates a virtualization hole
4620 	 * if both are supported in hardware but only one is exposed to the
4621 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4622 	 * is advertised is preferable to emulating the advertised instruction
4623 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4624 	 */
4625 	if (cpu_has_vmx_rdtscp()) {
4626 		bool rdpid_or_rdtscp_enabled =
4627 			guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) ||
4628 			guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID);
4629 
4630 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4631 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4632 						  rdpid_or_rdtscp_enabled, false);
4633 	}
4634 
4635 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4636 
4637 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4638 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4639 
4640 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4641 				    ENABLE_USR_WAIT_PAUSE, false);
4642 
4643 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4644 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4645 
4646 	if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4647 		exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4648 
4649 	return exec_control;
4650 }
4651 
vmx_get_pid_table_order(struct kvm * kvm)4652 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4653 {
4654 	return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4655 }
4656 
vmx_alloc_ipiv_pid_table(struct kvm * kvm)4657 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4658 {
4659 	struct page *pages;
4660 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4661 
4662 	if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4663 		return 0;
4664 
4665 	if (kvm_vmx->pid_table)
4666 		return 0;
4667 
4668 	pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4669 			    vmx_get_pid_table_order(kvm));
4670 	if (!pages)
4671 		return -ENOMEM;
4672 
4673 	kvm_vmx->pid_table = (void *)page_address(pages);
4674 	return 0;
4675 }
4676 
vmx_vcpu_precreate(struct kvm * kvm)4677 int vmx_vcpu_precreate(struct kvm *kvm)
4678 {
4679 	return vmx_alloc_ipiv_pid_table(kvm);
4680 }
4681 
4682 #define VMX_XSS_EXIT_BITMAP 0
4683 
init_vmcs(struct vcpu_vmx * vmx)4684 static void init_vmcs(struct vcpu_vmx *vmx)
4685 {
4686 	struct kvm *kvm = vmx->vcpu.kvm;
4687 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4688 
4689 	if (nested)
4690 		nested_vmx_set_vmcs_shadowing_bitmap();
4691 
4692 	if (cpu_has_vmx_msr_bitmap())
4693 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4694 
4695 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4696 
4697 	/* Control */
4698 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4699 
4700 	exec_controls_set(vmx, vmx_exec_control(vmx));
4701 
4702 	if (cpu_has_secondary_exec_ctrls()) {
4703 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4704 		if (vmx->ve_info)
4705 			vmcs_write64(VE_INFORMATION_ADDRESS,
4706 				     __pa(vmx->ve_info));
4707 	}
4708 
4709 	if (cpu_has_tertiary_exec_ctrls())
4710 		tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4711 
4712 	if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4713 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4714 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4715 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4716 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4717 
4718 		vmcs_write16(GUEST_INTR_STATUS, 0);
4719 
4720 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4721 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->vt.pi_desc)));
4722 	}
4723 
4724 	if (vmx_can_use_ipiv(&vmx->vcpu)) {
4725 		vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4726 		vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4727 	}
4728 
4729 	if (!kvm_pause_in_guest(kvm)) {
4730 		vmcs_write32(PLE_GAP, ple_gap);
4731 		vmx->ple_window = ple_window;
4732 		vmx->ple_window_dirty = true;
4733 	}
4734 
4735 	if (kvm_notify_vmexit_enabled(kvm))
4736 		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4737 
4738 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4739 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4740 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4741 
4742 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4743 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4744 	vmx_set_constant_host_state(vmx);
4745 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4746 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4747 
4748 	if (cpu_has_vmx_vmfunc())
4749 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4750 
4751 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4752 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4753 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4754 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4755 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4756 
4757 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4758 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4759 
4760 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4761 
4762 	/* 22.2.1, 20.8.1 */
4763 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4764 
4765 	vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4766 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4767 
4768 	set_cr4_guest_host_mask(vmx);
4769 
4770 	if (vmx->vpid != 0)
4771 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4772 
4773 	if (cpu_has_vmx_xsaves())
4774 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4775 
4776 	if (enable_pml) {
4777 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4778 		vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX);
4779 	}
4780 
4781 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4782 
4783 	if (vmx_pt_mode_is_host_guest()) {
4784 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4785 		/* Bit[6~0] are forced to 1, writes are ignored. */
4786 		vmx->pt_desc.guest.output_mask = 0x7F;
4787 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4788 	}
4789 
4790 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4791 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4792 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4793 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4794 
4795 	if (cpu_has_vmx_tpr_shadow()) {
4796 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4797 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4798 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4799 				     __pa(vmx->vcpu.arch.apic->regs));
4800 		vmcs_write32(TPR_THRESHOLD, 0);
4801 	}
4802 
4803 	vmx_setup_uret_msrs(vmx);
4804 }
4805 
__vmx_vcpu_reset(struct kvm_vcpu * vcpu)4806 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4807 {
4808 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4809 
4810 	init_vmcs(vmx);
4811 
4812 	if (nested &&
4813 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
4814 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4815 
4816 	vcpu_setup_sgx_lepubkeyhash(vcpu);
4817 
4818 	vmx->nested.posted_intr_nv = -1;
4819 	vmx->nested.vmxon_ptr = INVALID_GPA;
4820 	vmx->nested.current_vmptr = INVALID_GPA;
4821 
4822 #ifdef CONFIG_KVM_HYPERV
4823 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4824 #endif
4825 
4826 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
4827 		vcpu->arch.microcode_version = 0x100000000ULL;
4828 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4829 
4830 	/*
4831 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4832 	 * or POSTED_INTR_WAKEUP_VECTOR.
4833 	 */
4834 	vmx->vt.pi_desc.nv = POSTED_INTR_VECTOR;
4835 	__pi_set_sn(&vmx->vt.pi_desc);
4836 }
4837 
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4838 void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4839 {
4840 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4841 
4842 	if (!init_event)
4843 		__vmx_vcpu_reset(vcpu);
4844 
4845 	vmx->rmode.vm86_active = 0;
4846 	vmx->spec_ctrl = 0;
4847 
4848 	vmx->msr_ia32_umwait_control = 0;
4849 
4850 	vmx->hv_deadline_tsc = -1;
4851 	kvm_set_cr8(vcpu, 0);
4852 
4853 	seg_setup(VCPU_SREG_CS);
4854 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4855 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4856 
4857 	seg_setup(VCPU_SREG_DS);
4858 	seg_setup(VCPU_SREG_ES);
4859 	seg_setup(VCPU_SREG_FS);
4860 	seg_setup(VCPU_SREG_GS);
4861 	seg_setup(VCPU_SREG_SS);
4862 
4863 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4864 	vmcs_writel(GUEST_TR_BASE, 0);
4865 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4866 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4867 
4868 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4869 	vmcs_writel(GUEST_LDTR_BASE, 0);
4870 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4871 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4872 
4873 	vmcs_writel(GUEST_GDTR_BASE, 0);
4874 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4875 
4876 	vmcs_writel(GUEST_IDTR_BASE, 0);
4877 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4878 
4879 	vmx_segment_cache_clear(vmx);
4880 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4881 
4882 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4883 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4884 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4885 	if (kvm_mpx_supported())
4886 		vmcs_write64(GUEST_BNDCFGS, 0);
4887 
4888 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4889 
4890 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4891 
4892 	vpid_sync_context(vmx->vpid);
4893 
4894 	vmx_update_fb_clear_dis(vcpu, vmx);
4895 }
4896 
vmx_enable_irq_window(struct kvm_vcpu * vcpu)4897 void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4898 {
4899 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4900 }
4901 
vmx_enable_nmi_window(struct kvm_vcpu * vcpu)4902 void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4903 {
4904 	if (!enable_vnmi ||
4905 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4906 		vmx_enable_irq_window(vcpu);
4907 		return;
4908 	}
4909 
4910 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4911 }
4912 
vmx_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)4913 void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4914 {
4915 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4916 	uint32_t intr;
4917 	int irq = vcpu->arch.interrupt.nr;
4918 
4919 	trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4920 
4921 	++vcpu->stat.irq_injections;
4922 	if (vmx->rmode.vm86_active) {
4923 		int inc_eip = 0;
4924 		if (vcpu->arch.interrupt.soft)
4925 			inc_eip = vcpu->arch.event_exit_inst_len;
4926 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4927 		return;
4928 	}
4929 	intr = irq | INTR_INFO_VALID_MASK;
4930 	if (vcpu->arch.interrupt.soft) {
4931 		intr |= INTR_TYPE_SOFT_INTR;
4932 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4933 			     vmx->vcpu.arch.event_exit_inst_len);
4934 	} else
4935 		intr |= INTR_TYPE_EXT_INTR;
4936 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4937 
4938 	vmx_clear_hlt(vcpu);
4939 }
4940 
vmx_inject_nmi(struct kvm_vcpu * vcpu)4941 void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4942 {
4943 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4944 
4945 	if (!enable_vnmi) {
4946 		/*
4947 		 * Tracking the NMI-blocked state in software is built upon
4948 		 * finding the next open IRQ window. This, in turn, depends on
4949 		 * well-behaving guests: They have to keep IRQs disabled at
4950 		 * least as long as the NMI handler runs. Otherwise we may
4951 		 * cause NMI nesting, maybe breaking the guest. But as this is
4952 		 * highly unlikely, we can live with the residual risk.
4953 		 */
4954 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4955 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4956 	}
4957 
4958 	++vcpu->stat.nmi_injections;
4959 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4960 
4961 	if (vmx->rmode.vm86_active) {
4962 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4963 		return;
4964 	}
4965 
4966 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4967 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4968 
4969 	vmx_clear_hlt(vcpu);
4970 }
4971 
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)4972 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4973 {
4974 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4975 	bool masked;
4976 
4977 	if (!enable_vnmi)
4978 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4979 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4980 		return false;
4981 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4982 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4983 	return masked;
4984 }
4985 
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)4986 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4987 {
4988 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4989 
4990 	if (!enable_vnmi) {
4991 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4992 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4993 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4994 		}
4995 	} else {
4996 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4997 		if (masked)
4998 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4999 				      GUEST_INTR_STATE_NMI);
5000 		else
5001 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5002 					GUEST_INTR_STATE_NMI);
5003 	}
5004 }
5005 
vmx_nmi_blocked(struct kvm_vcpu * vcpu)5006 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5007 {
5008 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5009 		return false;
5010 
5011 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5012 		return true;
5013 
5014 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5015 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5016 		 GUEST_INTR_STATE_NMI));
5017 }
5018 
vmx_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)5019 int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5020 {
5021 	if (to_vmx(vcpu)->nested.nested_run_pending)
5022 		return -EBUSY;
5023 
5024 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
5025 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5026 		return -EBUSY;
5027 
5028 	return !vmx_nmi_blocked(vcpu);
5029 }
5030 
__vmx_interrupt_blocked(struct kvm_vcpu * vcpu)5031 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5032 {
5033 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5034 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5035 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5036 }
5037 
vmx_interrupt_blocked(struct kvm_vcpu * vcpu)5038 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5039 {
5040 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5041 		return false;
5042 
5043 	return __vmx_interrupt_blocked(vcpu);
5044 }
5045 
vmx_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)5046 int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5047 {
5048 	if (to_vmx(vcpu)->nested.nested_run_pending)
5049 		return -EBUSY;
5050 
5051 	/*
5052 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5053 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
5054 	 */
5055 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5056 		return -EBUSY;
5057 
5058 	return !vmx_interrupt_blocked(vcpu);
5059 }
5060 
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)5061 int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5062 {
5063 	void __user *ret;
5064 
5065 	if (enable_unrestricted_guest)
5066 		return 0;
5067 
5068 	mutex_lock(&kvm->slots_lock);
5069 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5070 				      PAGE_SIZE * 3);
5071 	mutex_unlock(&kvm->slots_lock);
5072 
5073 	if (IS_ERR(ret))
5074 		return PTR_ERR(ret);
5075 
5076 	to_kvm_vmx(kvm)->tss_addr = addr;
5077 
5078 	return init_rmode_tss(kvm, ret);
5079 }
5080 
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5081 int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5082 {
5083 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5084 	return 0;
5085 }
5086 
rmode_exception(struct kvm_vcpu * vcpu,int vec)5087 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5088 {
5089 	switch (vec) {
5090 	case BP_VECTOR:
5091 		/*
5092 		 * Update instruction length as we may reinject the exception
5093 		 * from user space while in guest debugging mode.
5094 		 */
5095 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5096 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5097 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5098 			return false;
5099 		fallthrough;
5100 	case DB_VECTOR:
5101 		return !(vcpu->guest_debug &
5102 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5103 	case DE_VECTOR:
5104 	case OF_VECTOR:
5105 	case BR_VECTOR:
5106 	case UD_VECTOR:
5107 	case DF_VECTOR:
5108 	case SS_VECTOR:
5109 	case GP_VECTOR:
5110 	case MF_VECTOR:
5111 		return true;
5112 	}
5113 	return false;
5114 }
5115 
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)5116 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5117 				  int vec, u32 err_code)
5118 {
5119 	/*
5120 	 * Instruction with address size override prefix opcode 0x67
5121 	 * Cause the #SS fault with 0 error code in VM86 mode.
5122 	 */
5123 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5124 		if (kvm_emulate_instruction(vcpu, 0)) {
5125 			if (vcpu->arch.halt_request) {
5126 				vcpu->arch.halt_request = 0;
5127 				return kvm_emulate_halt_noskip(vcpu);
5128 			}
5129 			return 1;
5130 		}
5131 		return 0;
5132 	}
5133 
5134 	/*
5135 	 * Forward all other exceptions that are valid in real mode.
5136 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5137 	 *        the required debugging infrastructure rework.
5138 	 */
5139 	kvm_queue_exception(vcpu, vec);
5140 	return 1;
5141 }
5142 
handle_machine_check(struct kvm_vcpu * vcpu)5143 static int handle_machine_check(struct kvm_vcpu *vcpu)
5144 {
5145 	/* handled by vmx_vcpu_run() */
5146 	return 1;
5147 }
5148 
5149 /*
5150  * If the host has split lock detection disabled, then #AC is
5151  * unconditionally injected into the guest, which is the pre split lock
5152  * detection behaviour.
5153  *
5154  * If the host has split lock detection enabled then #AC is
5155  * only injected into the guest when:
5156  *  - Guest CPL == 3 (user mode)
5157  *  - Guest has #AC detection enabled in CR0
5158  *  - Guest EFLAGS has AC bit set
5159  */
vmx_guest_inject_ac(struct kvm_vcpu * vcpu)5160 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5161 {
5162 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5163 		return true;
5164 
5165 	return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5166 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5167 }
5168 
is_xfd_nm_fault(struct kvm_vcpu * vcpu)5169 static bool is_xfd_nm_fault(struct kvm_vcpu *vcpu)
5170 {
5171 	return vcpu->arch.guest_fpu.fpstate->xfd &&
5172 	       !kvm_is_cr0_bit_set(vcpu, X86_CR0_TS);
5173 }
5174 
handle_exception_nmi(struct kvm_vcpu * vcpu)5175 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5176 {
5177 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5178 	struct kvm_run *kvm_run = vcpu->run;
5179 	u32 intr_info, ex_no, error_code;
5180 	unsigned long cr2, dr6;
5181 	u32 vect_info;
5182 
5183 	vect_info = vmx->idt_vectoring_info;
5184 	intr_info = vmx_get_intr_info(vcpu);
5185 
5186 	/*
5187 	 * Machine checks are handled by handle_exception_irqoff(), or by
5188 	 * vmx_vcpu_run() if a #MC occurs on VM-Entry.  NMIs are handled by
5189 	 * vmx_vcpu_enter_exit().
5190 	 */
5191 	if (is_machine_check(intr_info) || is_nmi(intr_info))
5192 		return 1;
5193 
5194 	/*
5195 	 * Queue the exception here instead of in handle_nm_fault_irqoff().
5196 	 * This ensures the nested_vmx check is not skipped so vmexit can
5197 	 * be reflected to L1 (when it intercepts #NM) before reaching this
5198 	 * point.
5199 	 */
5200 	if (is_nm_fault(intr_info)) {
5201 		kvm_queue_exception_p(vcpu, NM_VECTOR,
5202 				      is_xfd_nm_fault(vcpu) ? vcpu->arch.guest_fpu.xfd_err : 0);
5203 		return 1;
5204 	}
5205 
5206 	if (is_invalid_opcode(intr_info))
5207 		return handle_ud(vcpu);
5208 
5209 	if (WARN_ON_ONCE(is_ve_fault(intr_info))) {
5210 		struct vmx_ve_information *ve_info = vmx->ve_info;
5211 
5212 		WARN_ONCE(ve_info->exit_reason != EXIT_REASON_EPT_VIOLATION,
5213 			  "Unexpected #VE on VM-Exit reason 0x%x", ve_info->exit_reason);
5214 		dump_vmcs(vcpu);
5215 		kvm_mmu_print_sptes(vcpu, ve_info->guest_physical_address, "#VE");
5216 		return 1;
5217 	}
5218 
5219 	error_code = 0;
5220 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5221 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5222 
5223 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5224 		WARN_ON_ONCE(!enable_vmware_backdoor);
5225 
5226 		/*
5227 		 * VMware backdoor emulation on #GP interception only handles
5228 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5229 		 * error code on #GP.
5230 		 */
5231 		if (error_code) {
5232 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5233 			return 1;
5234 		}
5235 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5236 	}
5237 
5238 	/*
5239 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5240 	 * MMIO, it is better to report an internal error.
5241 	 * See the comments in vmx_handle_exit.
5242 	 */
5243 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5244 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5245 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5246 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5247 		vcpu->run->internal.ndata = 4;
5248 		vcpu->run->internal.data[0] = vect_info;
5249 		vcpu->run->internal.data[1] = intr_info;
5250 		vcpu->run->internal.data[2] = error_code;
5251 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5252 		return 0;
5253 	}
5254 
5255 	if (is_page_fault(intr_info)) {
5256 		cr2 = vmx_get_exit_qual(vcpu);
5257 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5258 			/*
5259 			 * EPT will cause page fault only if we need to
5260 			 * detect illegal GPAs.
5261 			 */
5262 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5263 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5264 			return 1;
5265 		} else
5266 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5267 	}
5268 
5269 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5270 
5271 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5272 		return handle_rmode_exception(vcpu, ex_no, error_code);
5273 
5274 	switch (ex_no) {
5275 	case DB_VECTOR:
5276 		dr6 = vmx_get_exit_qual(vcpu);
5277 		if (!(vcpu->guest_debug &
5278 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5279 			/*
5280 			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5281 			 * instruction.  ICEBP generates a trap-like #DB, but
5282 			 * despite its interception control being tied to #DB,
5283 			 * is an instruction intercept, i.e. the VM-Exit occurs
5284 			 * on the ICEBP itself.  Use the inner "skip" helper to
5285 			 * avoid single-step #DB and MTF updates, as ICEBP is
5286 			 * higher priority.  Note, skipping ICEBP still clears
5287 			 * STI and MOVSS blocking.
5288 			 *
5289 			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5290 			 * if single-step is enabled in RFLAGS and STI or MOVSS
5291 			 * blocking is active, as the CPU doesn't set the bit
5292 			 * on VM-Exit due to #DB interception.  VM-Entry has a
5293 			 * consistency check that a single-step #DB is pending
5294 			 * in this scenario as the previous instruction cannot
5295 			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5296 			 * don't modify RFLAGS), therefore the one instruction
5297 			 * delay when activating single-step breakpoints must
5298 			 * have already expired.  Note, the CPU sets/clears BS
5299 			 * as appropriate for all other VM-Exits types.
5300 			 */
5301 			if (is_icebp(intr_info))
5302 				WARN_ON(!skip_emulated_instruction(vcpu));
5303 			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5304 				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5305 				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5306 				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5307 					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5308 
5309 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5310 			return 1;
5311 		}
5312 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5313 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5314 		fallthrough;
5315 	case BP_VECTOR:
5316 		/*
5317 		 * Update instruction length as we may reinject #BP from
5318 		 * user space while in guest debugging mode. Reading it for
5319 		 * #DB as well causes no harm, it is not used in that case.
5320 		 */
5321 		vmx->vcpu.arch.event_exit_inst_len =
5322 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5323 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5324 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5325 		kvm_run->debug.arch.exception = ex_no;
5326 		break;
5327 	case AC_VECTOR:
5328 		if (vmx_guest_inject_ac(vcpu)) {
5329 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5330 			return 1;
5331 		}
5332 
5333 		/*
5334 		 * Handle split lock. Depending on detection mode this will
5335 		 * either warn and disable split lock detection for this
5336 		 * task or force SIGBUS on it.
5337 		 */
5338 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5339 			return 1;
5340 		fallthrough;
5341 	default:
5342 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5343 		kvm_run->ex.exception = ex_no;
5344 		kvm_run->ex.error_code = error_code;
5345 		break;
5346 	}
5347 	return 0;
5348 }
5349 
handle_external_interrupt(struct kvm_vcpu * vcpu)5350 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5351 {
5352 	++vcpu->stat.irq_exits;
5353 	return 1;
5354 }
5355 
handle_triple_fault(struct kvm_vcpu * vcpu)5356 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5357 {
5358 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5359 	vcpu->mmio_needed = 0;
5360 	return 0;
5361 }
5362 
handle_io(struct kvm_vcpu * vcpu)5363 static int handle_io(struct kvm_vcpu *vcpu)
5364 {
5365 	unsigned long exit_qualification;
5366 	int size, in, string;
5367 	unsigned port;
5368 
5369 	exit_qualification = vmx_get_exit_qual(vcpu);
5370 	string = (exit_qualification & 16) != 0;
5371 
5372 	++vcpu->stat.io_exits;
5373 
5374 	if (string)
5375 		return kvm_emulate_instruction(vcpu, 0);
5376 
5377 	port = exit_qualification >> 16;
5378 	size = (exit_qualification & 7) + 1;
5379 	in = (exit_qualification & 8) != 0;
5380 
5381 	return kvm_fast_pio(vcpu, size, port, in);
5382 }
5383 
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5384 void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5385 {
5386 	/*
5387 	 * Patch in the VMCALL instruction:
5388 	 */
5389 	hypercall[0] = 0x0f;
5390 	hypercall[1] = 0x01;
5391 	hypercall[2] = 0xc1;
5392 }
5393 
5394 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5395 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5396 {
5397 	if (is_guest_mode(vcpu)) {
5398 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5399 		unsigned long orig_val = val;
5400 
5401 		/*
5402 		 * We get here when L2 changed cr0 in a way that did not change
5403 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5404 		 * but did change L0 shadowed bits. So we first calculate the
5405 		 * effective cr0 value that L1 would like to write into the
5406 		 * hardware. It consists of the L2-owned bits from the new
5407 		 * value combined with the L1-owned bits from L1's guest_cr0.
5408 		 */
5409 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5410 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5411 
5412 		if (kvm_set_cr0(vcpu, val))
5413 			return 1;
5414 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5415 		return 0;
5416 	} else {
5417 		return kvm_set_cr0(vcpu, val);
5418 	}
5419 }
5420 
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5421 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5422 {
5423 	if (is_guest_mode(vcpu)) {
5424 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5425 		unsigned long orig_val = val;
5426 
5427 		/* analogously to handle_set_cr0 */
5428 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5429 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5430 		if (kvm_set_cr4(vcpu, val))
5431 			return 1;
5432 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5433 		return 0;
5434 	} else
5435 		return kvm_set_cr4(vcpu, val);
5436 }
5437 
handle_desc(struct kvm_vcpu * vcpu)5438 static int handle_desc(struct kvm_vcpu *vcpu)
5439 {
5440 	/*
5441 	 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5442 	 * and other code needs to be updated if UMIP can be guest owned.
5443 	 */
5444 	BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5445 
5446 	WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5447 	return kvm_emulate_instruction(vcpu, 0);
5448 }
5449 
handle_cr(struct kvm_vcpu * vcpu)5450 static int handle_cr(struct kvm_vcpu *vcpu)
5451 {
5452 	unsigned long exit_qualification, val;
5453 	int cr;
5454 	int reg;
5455 	int err;
5456 	int ret;
5457 
5458 	exit_qualification = vmx_get_exit_qual(vcpu);
5459 	cr = exit_qualification & 15;
5460 	reg = (exit_qualification >> 8) & 15;
5461 	switch ((exit_qualification >> 4) & 3) {
5462 	case 0: /* mov to cr */
5463 		val = kvm_register_read(vcpu, reg);
5464 		trace_kvm_cr_write(cr, val);
5465 		switch (cr) {
5466 		case 0:
5467 			err = handle_set_cr0(vcpu, val);
5468 			return kvm_complete_insn_gp(vcpu, err);
5469 		case 3:
5470 			WARN_ON_ONCE(enable_unrestricted_guest);
5471 
5472 			err = kvm_set_cr3(vcpu, val);
5473 			return kvm_complete_insn_gp(vcpu, err);
5474 		case 4:
5475 			err = handle_set_cr4(vcpu, val);
5476 			return kvm_complete_insn_gp(vcpu, err);
5477 		case 8: {
5478 				u8 cr8_prev = kvm_get_cr8(vcpu);
5479 				u8 cr8 = (u8)val;
5480 				err = kvm_set_cr8(vcpu, cr8);
5481 				ret = kvm_complete_insn_gp(vcpu, err);
5482 				if (lapic_in_kernel(vcpu))
5483 					return ret;
5484 				if (cr8_prev <= cr8)
5485 					return ret;
5486 				/*
5487 				 * TODO: we might be squashing a
5488 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5489 				 * KVM_EXIT_DEBUG here.
5490 				 */
5491 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5492 				return 0;
5493 			}
5494 		}
5495 		break;
5496 	case 2: /* clts */
5497 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5498 		return -EIO;
5499 	case 1: /*mov from cr*/
5500 		switch (cr) {
5501 		case 3:
5502 			WARN_ON_ONCE(enable_unrestricted_guest);
5503 
5504 			val = kvm_read_cr3(vcpu);
5505 			kvm_register_write(vcpu, reg, val);
5506 			trace_kvm_cr_read(cr, val);
5507 			return kvm_skip_emulated_instruction(vcpu);
5508 		case 8:
5509 			val = kvm_get_cr8(vcpu);
5510 			kvm_register_write(vcpu, reg, val);
5511 			trace_kvm_cr_read(cr, val);
5512 			return kvm_skip_emulated_instruction(vcpu);
5513 		}
5514 		break;
5515 	case 3: /* lmsw */
5516 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5517 		trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5518 		kvm_lmsw(vcpu, val);
5519 
5520 		return kvm_skip_emulated_instruction(vcpu);
5521 	default:
5522 		break;
5523 	}
5524 	vcpu->run->exit_reason = 0;
5525 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5526 	       (int)(exit_qualification >> 4) & 3, cr);
5527 	return 0;
5528 }
5529 
handle_dr(struct kvm_vcpu * vcpu)5530 static int handle_dr(struct kvm_vcpu *vcpu)
5531 {
5532 	unsigned long exit_qualification;
5533 	int dr, dr7, reg;
5534 	int err = 1;
5535 
5536 	exit_qualification = vmx_get_exit_qual(vcpu);
5537 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5538 
5539 	/* First, if DR does not exist, trigger UD */
5540 	if (!kvm_require_dr(vcpu, dr))
5541 		return 1;
5542 
5543 	if (vmx_get_cpl(vcpu) > 0)
5544 		goto out;
5545 
5546 	dr7 = vmcs_readl(GUEST_DR7);
5547 	if (dr7 & DR7_GD) {
5548 		/*
5549 		 * As the vm-exit takes precedence over the debug trap, we
5550 		 * need to emulate the latter, either for the host or the
5551 		 * guest debugging itself.
5552 		 */
5553 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5554 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5555 			vcpu->run->debug.arch.dr7 = dr7;
5556 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5557 			vcpu->run->debug.arch.exception = DB_VECTOR;
5558 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5559 			return 0;
5560 		} else {
5561 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5562 			return 1;
5563 		}
5564 	}
5565 
5566 	if (vcpu->guest_debug == 0) {
5567 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5568 
5569 		/*
5570 		 * No more DR vmexits; force a reload of the debug registers
5571 		 * and reenter on this instruction.  The next vmexit will
5572 		 * retrieve the full state of the debug registers.
5573 		 */
5574 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5575 		return 1;
5576 	}
5577 
5578 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5579 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5580 		kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
5581 		err = 0;
5582 	} else {
5583 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5584 	}
5585 
5586 out:
5587 	return kvm_complete_insn_gp(vcpu, err);
5588 }
5589 
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5590 void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5591 {
5592 	get_debugreg(vcpu->arch.db[0], 0);
5593 	get_debugreg(vcpu->arch.db[1], 1);
5594 	get_debugreg(vcpu->arch.db[2], 2);
5595 	get_debugreg(vcpu->arch.db[3], 3);
5596 	get_debugreg(vcpu->arch.dr6, 6);
5597 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5598 
5599 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5600 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5601 
5602 	/*
5603 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5604 	 * a stale dr6 from the guest.
5605 	 */
5606 	set_debugreg(DR6_RESERVED, 6);
5607 }
5608 
vmx_set_dr6(struct kvm_vcpu * vcpu,unsigned long val)5609 void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5610 {
5611 	lockdep_assert_irqs_disabled();
5612 	set_debugreg(vcpu->arch.dr6, 6);
5613 }
5614 
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5615 void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5616 {
5617 	vmcs_writel(GUEST_DR7, val);
5618 }
5619 
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5620 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5621 {
5622 	kvm_apic_update_ppr(vcpu);
5623 	return 1;
5624 }
5625 
handle_interrupt_window(struct kvm_vcpu * vcpu)5626 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5627 {
5628 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5629 
5630 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5631 
5632 	++vcpu->stat.irq_window_exits;
5633 	return 1;
5634 }
5635 
handle_invlpg(struct kvm_vcpu * vcpu)5636 static int handle_invlpg(struct kvm_vcpu *vcpu)
5637 {
5638 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5639 
5640 	kvm_mmu_invlpg(vcpu, exit_qualification);
5641 	return kvm_skip_emulated_instruction(vcpu);
5642 }
5643 
handle_apic_access(struct kvm_vcpu * vcpu)5644 static int handle_apic_access(struct kvm_vcpu *vcpu)
5645 {
5646 	if (likely(fasteoi)) {
5647 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5648 		int access_type, offset;
5649 
5650 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5651 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5652 		/*
5653 		 * Sane guest uses MOV to write EOI, with written value
5654 		 * not cared. So make a short-circuit here by avoiding
5655 		 * heavy instruction emulation.
5656 		 */
5657 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5658 		    (offset == APIC_EOI)) {
5659 			kvm_lapic_set_eoi(vcpu);
5660 			return kvm_skip_emulated_instruction(vcpu);
5661 		}
5662 	}
5663 	return kvm_emulate_instruction(vcpu, 0);
5664 }
5665 
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5666 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5667 {
5668 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5669 	int vector = exit_qualification & 0xff;
5670 
5671 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5672 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5673 	return 1;
5674 }
5675 
handle_apic_write(struct kvm_vcpu * vcpu)5676 static int handle_apic_write(struct kvm_vcpu *vcpu)
5677 {
5678 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5679 
5680 	/*
5681 	 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5682 	 * hardware has done any necessary aliasing, offset adjustments, etc...
5683 	 * for the access.  I.e. the correct value has already been  written to
5684 	 * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5685 	 * retrieve the register value and emulate the access.
5686 	 */
5687 	u32 offset = exit_qualification & 0xff0;
5688 
5689 	kvm_apic_write_nodecode(vcpu, offset);
5690 	return 1;
5691 }
5692 
handle_task_switch(struct kvm_vcpu * vcpu)5693 static int handle_task_switch(struct kvm_vcpu *vcpu)
5694 {
5695 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5696 	unsigned long exit_qualification;
5697 	bool has_error_code = false;
5698 	u32 error_code = 0;
5699 	u16 tss_selector;
5700 	int reason, type, idt_v, idt_index;
5701 
5702 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5703 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5704 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5705 
5706 	exit_qualification = vmx_get_exit_qual(vcpu);
5707 
5708 	reason = (u32)exit_qualification >> 30;
5709 	if (reason == TASK_SWITCH_GATE && idt_v) {
5710 		switch (type) {
5711 		case INTR_TYPE_NMI_INTR:
5712 			vcpu->arch.nmi_injected = false;
5713 			vmx_set_nmi_mask(vcpu, true);
5714 			break;
5715 		case INTR_TYPE_EXT_INTR:
5716 		case INTR_TYPE_SOFT_INTR:
5717 			kvm_clear_interrupt_queue(vcpu);
5718 			break;
5719 		case INTR_TYPE_HARD_EXCEPTION:
5720 			if (vmx->idt_vectoring_info &
5721 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5722 				has_error_code = true;
5723 				error_code =
5724 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5725 			}
5726 			fallthrough;
5727 		case INTR_TYPE_SOFT_EXCEPTION:
5728 			kvm_clear_exception_queue(vcpu);
5729 			break;
5730 		default:
5731 			break;
5732 		}
5733 	}
5734 	tss_selector = exit_qualification;
5735 
5736 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5737 		       type != INTR_TYPE_EXT_INTR &&
5738 		       type != INTR_TYPE_NMI_INTR))
5739 		WARN_ON(!skip_emulated_instruction(vcpu));
5740 
5741 	/*
5742 	 * TODO: What about debug traps on tss switch?
5743 	 *       Are we supposed to inject them and update dr6?
5744 	 */
5745 	return kvm_task_switch(vcpu, tss_selector,
5746 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5747 			       reason, has_error_code, error_code);
5748 }
5749 
handle_ept_violation(struct kvm_vcpu * vcpu)5750 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5751 {
5752 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5753 	gpa_t gpa;
5754 
5755 	/*
5756 	 * EPT violation happened while executing iret from NMI,
5757 	 * "blocked by NMI" bit has to be set before next VM entry.
5758 	 * There are errata that may cause this bit to not be set:
5759 	 * AAK134, BY25.
5760 	 */
5761 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5762 			enable_vnmi &&
5763 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5764 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5765 
5766 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5767 	trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5768 
5769 	/*
5770 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5771 	 * a guest page fault.  We have to emulate the instruction here, because
5772 	 * if the illegal address is that of a paging structure, then
5773 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5774 	 * would also use advanced VM-exit information for EPT violations to
5775 	 * reconstruct the page fault error code.
5776 	 */
5777 	if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa)))
5778 		return kvm_emulate_instruction(vcpu, 0);
5779 
5780 	return __vmx_handle_ept_violation(vcpu, gpa, exit_qualification);
5781 }
5782 
handle_ept_misconfig(struct kvm_vcpu * vcpu)5783 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5784 {
5785 	gpa_t gpa;
5786 
5787 	if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5788 		return 1;
5789 
5790 	/*
5791 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5792 	 * nGPA here instead of the required GPA.
5793 	 */
5794 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5795 	if (!is_guest_mode(vcpu) &&
5796 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5797 		trace_kvm_fast_mmio(gpa);
5798 		return kvm_skip_emulated_instruction(vcpu);
5799 	}
5800 
5801 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5802 }
5803 
handle_nmi_window(struct kvm_vcpu * vcpu)5804 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5805 {
5806 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5807 		return -EIO;
5808 
5809 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5810 	++vcpu->stat.nmi_window_exits;
5811 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5812 
5813 	return 1;
5814 }
5815 
5816 /*
5817  * Returns true if emulation is required (due to the vCPU having invalid state
5818  * with unsrestricted guest mode disabled) and KVM can't faithfully emulate the
5819  * current vCPU state.
5820  */
vmx_unhandleable_emulation_required(struct kvm_vcpu * vcpu)5821 static bool vmx_unhandleable_emulation_required(struct kvm_vcpu *vcpu)
5822 {
5823 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5824 
5825 	if (!vmx->vt.emulation_required)
5826 		return false;
5827 
5828 	/*
5829 	 * It is architecturally impossible for emulation to be required when a
5830 	 * nested VM-Enter is pending completion, as VM-Enter will VM-Fail if
5831 	 * guest state is invalid and unrestricted guest is disabled, i.e. KVM
5832 	 * should synthesize VM-Fail instead emulation L2 code.  This path is
5833 	 * only reachable if userspace modifies L2 guest state after KVM has
5834 	 * performed the nested VM-Enter consistency checks.
5835 	 */
5836 	if (vmx->nested.nested_run_pending)
5837 		return true;
5838 
5839 	/*
5840 	 * KVM only supports emulating exceptions if the vCPU is in Real Mode.
5841 	 * If emulation is required, KVM can't perform a successful VM-Enter to
5842 	 * inject the exception.
5843 	 */
5844 	return !vmx->rmode.vm86_active &&
5845 	       (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5846 }
5847 
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5848 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5849 {
5850 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5851 	bool intr_window_requested;
5852 	unsigned count = 130;
5853 
5854 	intr_window_requested = exec_controls_get(vmx) &
5855 				CPU_BASED_INTR_WINDOW_EXITING;
5856 
5857 	while (vmx->vt.emulation_required && count-- != 0) {
5858 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5859 			return handle_interrupt_window(&vmx->vcpu);
5860 
5861 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5862 			return 1;
5863 
5864 		if (!kvm_emulate_instruction(vcpu, 0))
5865 			return 0;
5866 
5867 		if (vmx_unhandleable_emulation_required(vcpu)) {
5868 			kvm_prepare_emulation_failure_exit(vcpu);
5869 			return 0;
5870 		}
5871 
5872 		if (vcpu->arch.halt_request) {
5873 			vcpu->arch.halt_request = 0;
5874 			return kvm_emulate_halt_noskip(vcpu);
5875 		}
5876 
5877 		/*
5878 		 * Note, return 1 and not 0, vcpu_run() will invoke
5879 		 * xfer_to_guest_mode() which will create a proper return
5880 		 * code.
5881 		 */
5882 		if (__xfer_to_guest_mode_work_pending())
5883 			return 1;
5884 	}
5885 
5886 	return 1;
5887 }
5888 
vmx_vcpu_pre_run(struct kvm_vcpu * vcpu)5889 int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5890 {
5891 	if (vmx_unhandleable_emulation_required(vcpu)) {
5892 		kvm_prepare_emulation_failure_exit(vcpu);
5893 		return 0;
5894 	}
5895 
5896 	return 1;
5897 }
5898 
5899 /*
5900  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5901  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5902  */
handle_pause(struct kvm_vcpu * vcpu)5903 static int handle_pause(struct kvm_vcpu *vcpu)
5904 {
5905 	if (!kvm_pause_in_guest(vcpu->kvm))
5906 		grow_ple_window(vcpu);
5907 
5908 	/*
5909 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5910 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5911 	 * never set PAUSE_EXITING and just set PLE if supported,
5912 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5913 	 */
5914 	kvm_vcpu_on_spin(vcpu, true);
5915 	return kvm_skip_emulated_instruction(vcpu);
5916 }
5917 
handle_monitor_trap(struct kvm_vcpu * vcpu)5918 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5919 {
5920 	return 1;
5921 }
5922 
handle_invpcid(struct kvm_vcpu * vcpu)5923 static int handle_invpcid(struct kvm_vcpu *vcpu)
5924 {
5925 	u32 vmx_instruction_info;
5926 	unsigned long type;
5927 	gva_t gva;
5928 	struct {
5929 		u64 pcid;
5930 		u64 gla;
5931 	} operand;
5932 	int gpr_index;
5933 
5934 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) {
5935 		kvm_queue_exception(vcpu, UD_VECTOR);
5936 		return 1;
5937 	}
5938 
5939 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5940 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5941 	type = kvm_register_read(vcpu, gpr_index);
5942 
5943 	/* According to the Intel instruction reference, the memory operand
5944 	 * is read even if it isn't needed (e.g., for type==all)
5945 	 */
5946 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5947 				vmx_instruction_info, false,
5948 				sizeof(operand), &gva))
5949 		return 1;
5950 
5951 	return kvm_handle_invpcid(vcpu, type, gva);
5952 }
5953 
handle_pml_full(struct kvm_vcpu * vcpu)5954 static int handle_pml_full(struct kvm_vcpu *vcpu)
5955 {
5956 	unsigned long exit_qualification;
5957 
5958 	trace_kvm_pml_full(vcpu->vcpu_id);
5959 
5960 	exit_qualification = vmx_get_exit_qual(vcpu);
5961 
5962 	/*
5963 	 * PML buffer FULL happened while executing iret from NMI,
5964 	 * "blocked by NMI" bit has to be set before next VM entry.
5965 	 */
5966 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5967 			enable_vnmi &&
5968 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5969 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5970 				GUEST_INTR_STATE_NMI);
5971 
5972 	/*
5973 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5974 	 * here.., and there's no userspace involvement needed for PML.
5975 	 */
5976 	return 1;
5977 }
5978 
handle_fastpath_preemption_timer(struct kvm_vcpu * vcpu,bool force_immediate_exit)5979 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu,
5980 						   bool force_immediate_exit)
5981 {
5982 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5983 
5984 	/*
5985 	 * In the *extremely* unlikely scenario that this is a spurious VM-Exit
5986 	 * due to the timer expiring while it was "soft" disabled, just eat the
5987 	 * exit and re-enter the guest.
5988 	 */
5989 	if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5990 		return EXIT_FASTPATH_REENTER_GUEST;
5991 
5992 	/*
5993 	 * If the timer expired because KVM used it to force an immediate exit,
5994 	 * then mission accomplished.
5995 	 */
5996 	if (force_immediate_exit)
5997 		return EXIT_FASTPATH_EXIT_HANDLED;
5998 
5999 	/*
6000 	 * If L2 is active, go down the slow path as emulating the guest timer
6001 	 * expiration likely requires synthesizing a nested VM-Exit.
6002 	 */
6003 	if (is_guest_mode(vcpu))
6004 		return EXIT_FASTPATH_NONE;
6005 
6006 	kvm_lapic_expired_hv_timer(vcpu);
6007 	return EXIT_FASTPATH_REENTER_GUEST;
6008 }
6009 
handle_preemption_timer(struct kvm_vcpu * vcpu)6010 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6011 {
6012 	/*
6013 	 * This non-fastpath handler is reached if and only if the preemption
6014 	 * timer was being used to emulate a guest timer while L2 is active.
6015 	 * All other scenarios are supposed to be handled in the fastpath.
6016 	 */
6017 	WARN_ON_ONCE(!is_guest_mode(vcpu));
6018 	kvm_lapic_expired_hv_timer(vcpu);
6019 	return 1;
6020 }
6021 
6022 /*
6023  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
6024  * are overwritten by nested_vmx_hardware_setup() when nested=1.
6025  */
handle_vmx_instruction(struct kvm_vcpu * vcpu)6026 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6027 {
6028 	kvm_queue_exception(vcpu, UD_VECTOR);
6029 	return 1;
6030 }
6031 
6032 #ifndef CONFIG_X86_SGX_KVM
handle_encls(struct kvm_vcpu * vcpu)6033 static int handle_encls(struct kvm_vcpu *vcpu)
6034 {
6035 	/*
6036 	 * SGX virtualization is disabled.  There is no software enable bit for
6037 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6038 	 * the guest from executing ENCLS (when SGX is supported by hardware).
6039 	 */
6040 	kvm_queue_exception(vcpu, UD_VECTOR);
6041 	return 1;
6042 }
6043 #endif /* CONFIG_X86_SGX_KVM */
6044 
handle_bus_lock_vmexit(struct kvm_vcpu * vcpu)6045 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6046 {
6047 	/*
6048 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6049 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
6050 	 * vmx_handle_exit().
6051 	 */
6052 	to_vt(vcpu)->exit_reason.bus_lock_detected = true;
6053 	return 1;
6054 }
6055 
handle_notify(struct kvm_vcpu * vcpu)6056 static int handle_notify(struct kvm_vcpu *vcpu)
6057 {
6058 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6059 	bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6060 
6061 	++vcpu->stat.notify_window_exits;
6062 
6063 	/*
6064 	 * Notify VM exit happened while executing iret from NMI,
6065 	 * "blocked by NMI" bit has to be set before next VM entry.
6066 	 */
6067 	if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6068 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6069 			      GUEST_INTR_STATE_NMI);
6070 
6071 	if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6072 	    context_invalid) {
6073 		vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6074 		vcpu->run->notify.flags = context_invalid ?
6075 					  KVM_NOTIFY_CONTEXT_INVALID : 0;
6076 		return 0;
6077 	}
6078 
6079 	return 1;
6080 }
6081 
6082 /*
6083  * The exit handlers return 1 if the exit was handled fully and guest execution
6084  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6085  * to be done to userspace and return 0.
6086  */
6087 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6088 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
6089 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6090 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6091 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
6092 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6093 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
6094 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
6095 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
6096 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
6097 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
6098 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
6099 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
6100 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
6101 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
6102 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
6103 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
6104 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
6105 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
6106 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
6107 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
6108 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
6109 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
6110 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
6111 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
6112 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
6113 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6114 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6115 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6116 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6117 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
6118 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
6119 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6120 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6121 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
6122 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
6123 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
6124 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6125 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6126 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
6127 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
6128 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
6129 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
6130 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
6131 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
6132 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
6133 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
6134 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
6135 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
6136 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
6137 	[EXIT_REASON_ENCLS]		      = handle_encls,
6138 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
6139 	[EXIT_REASON_NOTIFY]		      = handle_notify,
6140 };
6141 
6142 static const int kvm_vmx_max_exit_handlers =
6143 	ARRAY_SIZE(kvm_vmx_exit_handlers);
6144 
vmx_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)6145 void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6146 		       u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code)
6147 {
6148 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6149 
6150 	*reason = vmx->vt.exit_reason.full;
6151 	*info1 = vmx_get_exit_qual(vcpu);
6152 	if (!(vmx->vt.exit_reason.failed_vmentry)) {
6153 		*info2 = vmx->idt_vectoring_info;
6154 		*intr_info = vmx_get_intr_info(vcpu);
6155 		if (is_exception_with_error_code(*intr_info))
6156 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6157 		else
6158 			*error_code = 0;
6159 	} else {
6160 		*info2 = 0;
6161 		*intr_info = 0;
6162 		*error_code = 0;
6163 	}
6164 }
6165 
vmx_get_entry_info(struct kvm_vcpu * vcpu,u32 * intr_info,u32 * error_code)6166 void vmx_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info, u32 *error_code)
6167 {
6168 	*intr_info = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
6169 	if (is_exception_with_error_code(*intr_info))
6170 		*error_code = vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE);
6171 	else
6172 		*error_code = 0;
6173 }
6174 
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)6175 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6176 {
6177 	if (vmx->pml_pg) {
6178 		__free_page(vmx->pml_pg);
6179 		vmx->pml_pg = NULL;
6180 	}
6181 }
6182 
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)6183 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6184 {
6185 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6186 	u16 pml_idx, pml_tail_index;
6187 	u64 *pml_buf;
6188 	int i;
6189 
6190 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
6191 
6192 	/* Do nothing if PML buffer is empty */
6193 	if (pml_idx == PML_HEAD_INDEX)
6194 		return;
6195 	/*
6196 	 * PML index always points to the next available PML buffer entity
6197 	 * unless PML log has just overflowed.
6198 	 */
6199 	pml_tail_index = (pml_idx >= PML_LOG_NR_ENTRIES) ? 0 : pml_idx + 1;
6200 
6201 	/*
6202 	 * PML log is written backwards: the CPU first writes the entry 511
6203 	 * then the entry 510, and so on.
6204 	 *
6205 	 * Read the entries in the same order they were written, to ensure that
6206 	 * the dirty ring is filled in the same order the CPU wrote them.
6207 	 */
6208 	pml_buf = page_address(vmx->pml_pg);
6209 
6210 	for (i = PML_HEAD_INDEX; i >= pml_tail_index; i--) {
6211 		u64 gpa;
6212 
6213 		gpa = pml_buf[i];
6214 		WARN_ON(gpa & (PAGE_SIZE - 1));
6215 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6216 	}
6217 
6218 	/* reset PML index */
6219 	vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX);
6220 }
6221 
vmx_dump_sel(char * name,uint32_t sel)6222 static void vmx_dump_sel(char *name, uint32_t sel)
6223 {
6224 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6225 	       name, vmcs_read16(sel),
6226 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6227 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6228 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6229 }
6230 
vmx_dump_dtsel(char * name,uint32_t limit)6231 static void vmx_dump_dtsel(char *name, uint32_t limit)
6232 {
6233 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
6234 	       name, vmcs_read32(limit),
6235 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6236 }
6237 
vmx_dump_msrs(char * name,struct vmx_msrs * m)6238 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6239 {
6240 	unsigned int i;
6241 	struct vmx_msr_entry *e;
6242 
6243 	pr_err("MSR %s:\n", name);
6244 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6245 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6246 }
6247 
dump_vmcs(struct kvm_vcpu * vcpu)6248 void dump_vmcs(struct kvm_vcpu *vcpu)
6249 {
6250 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6251 	u32 vmentry_ctl, vmexit_ctl;
6252 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6253 	u64 tertiary_exec_control;
6254 	unsigned long cr4;
6255 	int efer_slot;
6256 
6257 	if (!dump_invalid_vmcs) {
6258 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6259 		return;
6260 	}
6261 
6262 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6263 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6264 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6265 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6266 	cr4 = vmcs_readl(GUEST_CR4);
6267 
6268 	if (cpu_has_secondary_exec_ctrls())
6269 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6270 	else
6271 		secondary_exec_control = 0;
6272 
6273 	if (cpu_has_tertiary_exec_ctrls())
6274 		tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6275 	else
6276 		tertiary_exec_control = 0;
6277 
6278 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6279 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6280 	pr_err("*** Guest State ***\n");
6281 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6282 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6283 	       vmcs_readl(CR0_GUEST_HOST_MASK));
6284 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6285 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6286 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6287 	if (cpu_has_vmx_ept()) {
6288 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
6289 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6290 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
6291 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6292 	}
6293 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
6294 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6295 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
6296 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6297 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6298 	       vmcs_readl(GUEST_SYSENTER_ESP),
6299 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6300 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
6301 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
6302 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
6303 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
6304 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
6305 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
6306 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6307 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6308 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6309 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
6310 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6311 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6312 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6313 	else if (efer_slot >= 0)
6314 		pr_err("EFER= 0x%016llx (autoload)\n",
6315 		       vmx->msr_autoload.guest.val[efer_slot].value);
6316 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6317 		pr_err("EFER= 0x%016llx (effective)\n",
6318 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
6319 	else
6320 		pr_err("EFER= 0x%016llx (effective)\n",
6321 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6322 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6323 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6324 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
6325 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
6326 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6327 	if (cpu_has_load_perf_global_ctrl() &&
6328 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6329 		pr_err("PerfGlobCtl = 0x%016llx\n",
6330 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6331 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6332 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6333 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
6334 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6335 	       vmcs_read32(GUEST_ACTIVITY_STATE));
6336 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6337 		pr_err("InterruptStatus = %04x\n",
6338 		       vmcs_read16(GUEST_INTR_STATUS));
6339 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6340 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6341 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6342 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6343 
6344 	pr_err("*** Host State ***\n");
6345 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
6346 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6347 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6348 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6349 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6350 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6351 	       vmcs_read16(HOST_TR_SELECTOR));
6352 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6353 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6354 	       vmcs_readl(HOST_TR_BASE));
6355 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6356 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6357 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6358 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6359 	       vmcs_readl(HOST_CR4));
6360 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6361 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
6362 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
6363 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
6364 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6365 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6366 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6367 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6368 	if (cpu_has_load_perf_global_ctrl() &&
6369 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6370 		pr_err("PerfGlobCtl = 0x%016llx\n",
6371 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6372 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6373 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6374 
6375 	pr_err("*** Control State ***\n");
6376 	pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6377 	       cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6378 	pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6379 	       pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6380 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6381 	       vmcs_read32(EXCEPTION_BITMAP),
6382 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6383 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6384 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6385 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6386 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6387 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6388 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6389 	       vmcs_read32(VM_EXIT_INTR_INFO),
6390 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6391 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6392 	pr_err("        reason=%08x qualification=%016lx\n",
6393 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6394 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6395 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
6396 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
6397 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6398 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6399 		pr_err("TSC Multiplier = 0x%016llx\n",
6400 		       vmcs_read64(TSC_MULTIPLIER));
6401 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6402 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6403 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
6404 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6405 		}
6406 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6407 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6408 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6409 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6410 	}
6411 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6412 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6413 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6414 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6415 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6416 		pr_err("PLE Gap=%08x Window=%08x\n",
6417 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6418 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6419 		pr_err("Virtual processor ID = 0x%04x\n",
6420 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
6421 	if (secondary_exec_control & SECONDARY_EXEC_EPT_VIOLATION_VE) {
6422 		struct vmx_ve_information *ve_info = vmx->ve_info;
6423 		u64 ve_info_pa = vmcs_read64(VE_INFORMATION_ADDRESS);
6424 
6425 		/*
6426 		 * If KVM is dumping the VMCS, then something has gone wrong
6427 		 * already.  Derefencing an address from the VMCS, which could
6428 		 * very well be corrupted, is a terrible idea.  The virtual
6429 		 * address is known so use it.
6430 		 */
6431 		pr_err("VE info address = 0x%016llx%s\n", ve_info_pa,
6432 		       ve_info_pa == __pa(ve_info) ? "" : "(corrupted!)");
6433 		pr_err("ve_info: 0x%08x 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%04x\n",
6434 		       ve_info->exit_reason, ve_info->delivery,
6435 		       ve_info->exit_qualification,
6436 		       ve_info->guest_linear_address,
6437 		       ve_info->guest_physical_address, ve_info->eptp_index);
6438 	}
6439 }
6440 
6441 /*
6442  * The guest has exited.  See if we can fix it or if we need userspace
6443  * assistance.
6444  */
__vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6445 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6446 {
6447 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6448 	union vmx_exit_reason exit_reason = vmx_get_exit_reason(vcpu);
6449 	u32 vectoring_info = vmx->idt_vectoring_info;
6450 	u16 exit_handler_index;
6451 
6452 	/*
6453 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6454 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6455 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6456 	 * mode as if vcpus is in root mode, the PML buffer must has been
6457 	 * flushed already.  Note, PML is never enabled in hardware while
6458 	 * running L2.
6459 	 */
6460 	if (enable_pml && !is_guest_mode(vcpu))
6461 		vmx_flush_pml_buffer(vcpu);
6462 
6463 	/*
6464 	 * KVM should never reach this point with a pending nested VM-Enter.
6465 	 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6466 	 * invalid guest state should never happen as that means KVM knowingly
6467 	 * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6468 	 */
6469 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6470 		return -EIO;
6471 
6472 	if (is_guest_mode(vcpu)) {
6473 		/*
6474 		 * PML is never enabled when running L2, bail immediately if a
6475 		 * PML full exit occurs as something is horribly wrong.
6476 		 */
6477 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
6478 			goto unexpected_vmexit;
6479 
6480 		/*
6481 		 * The host physical addresses of some pages of guest memory
6482 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6483 		 * Page). The CPU may write to these pages via their host
6484 		 * physical address while L2 is running, bypassing any
6485 		 * address-translation-based dirty tracking (e.g. EPT write
6486 		 * protection).
6487 		 *
6488 		 * Mark them dirty on every exit from L2 to prevent them from
6489 		 * getting out of sync with dirty tracking.
6490 		 */
6491 		nested_mark_vmcs12_pages_dirty(vcpu);
6492 
6493 		/*
6494 		 * Synthesize a triple fault if L2 state is invalid.  In normal
6495 		 * operation, nested VM-Enter rejects any attempt to enter L2
6496 		 * with invalid state.  However, those checks are skipped if
6497 		 * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6498 		 * L2 state is invalid, it means either L1 modified SMRAM state
6499 		 * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6500 		 * doing so is architecturally allowed in the RSM case, and is
6501 		 * the least awful solution for the userspace case without
6502 		 * risking false positives.
6503 		 */
6504 		if (vmx->vt.emulation_required) {
6505 			nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6506 			return 1;
6507 		}
6508 
6509 		if (nested_vmx_reflect_vmexit(vcpu))
6510 			return 1;
6511 	}
6512 
6513 	/* If guest state is invalid, start emulating.  L2 is handled above. */
6514 	if (vmx->vt.emulation_required)
6515 		return handle_invalid_guest_state(vcpu);
6516 
6517 	if (exit_reason.failed_vmentry) {
6518 		dump_vmcs(vcpu);
6519 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6520 		vcpu->run->fail_entry.hardware_entry_failure_reason
6521 			= exit_reason.full;
6522 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6523 		return 0;
6524 	}
6525 
6526 	if (unlikely(vmx->fail)) {
6527 		dump_vmcs(vcpu);
6528 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6529 		vcpu->run->fail_entry.hardware_entry_failure_reason
6530 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6531 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6532 		return 0;
6533 	}
6534 
6535 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6536 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6537 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6538 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6539 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6540 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6541 	     exit_reason.basic != EXIT_REASON_NOTIFY &&
6542 	     exit_reason.basic != EXIT_REASON_EPT_MISCONFIG)) {
6543 		kvm_prepare_event_vectoring_exit(vcpu, INVALID_GPA);
6544 		return 0;
6545 	}
6546 
6547 	if (unlikely(!enable_vnmi &&
6548 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6549 		if (!vmx_interrupt_blocked(vcpu)) {
6550 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6551 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6552 			   vcpu->arch.nmi_pending) {
6553 			/*
6554 			 * This CPU don't support us in finding the end of an
6555 			 * NMI-blocked window if the guest runs with IRQs
6556 			 * disabled. So we pull the trigger after 1 s of
6557 			 * futile waiting, but inform the user about this.
6558 			 */
6559 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6560 			       "state on VCPU %d after 1 s timeout\n",
6561 			       __func__, vcpu->vcpu_id);
6562 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6563 		}
6564 	}
6565 
6566 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6567 		return 1;
6568 
6569 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6570 		goto unexpected_vmexit;
6571 #ifdef CONFIG_MITIGATION_RETPOLINE
6572 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6573 		return kvm_emulate_wrmsr(vcpu);
6574 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6575 		return handle_preemption_timer(vcpu);
6576 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6577 		return handle_interrupt_window(vcpu);
6578 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6579 		return handle_external_interrupt(vcpu);
6580 	else if (exit_reason.basic == EXIT_REASON_HLT)
6581 		return kvm_emulate_halt(vcpu);
6582 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6583 		return handle_ept_misconfig(vcpu);
6584 #endif
6585 
6586 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6587 						kvm_vmx_max_exit_handlers);
6588 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6589 		goto unexpected_vmexit;
6590 
6591 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6592 
6593 unexpected_vmexit:
6594 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6595 		    exit_reason.full);
6596 	dump_vmcs(vcpu);
6597 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6598 	vcpu->run->internal.suberror =
6599 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6600 	vcpu->run->internal.ndata = 2;
6601 	vcpu->run->internal.data[0] = exit_reason.full;
6602 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6603 	return 0;
6604 }
6605 
vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6606 int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6607 {
6608 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6609 
6610 	/*
6611 	 * Exit to user space when bus lock detected to inform that there is
6612 	 * a bus lock in guest.
6613 	 */
6614 	if (vmx_get_exit_reason(vcpu).bus_lock_detected) {
6615 		if (ret > 0)
6616 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6617 
6618 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6619 		return 0;
6620 	}
6621 	return ret;
6622 }
6623 
6624 /*
6625  * Software based L1D cache flush which is used when microcode providing
6626  * the cache control MSR is not loaded.
6627  *
6628  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6629  * flush it is required to read in 64 KiB because the replacement algorithm
6630  * is not exactly LRU. This could be sized at runtime via topology
6631  * information but as all relevant affected CPUs have 32KiB L1D cache size
6632  * there is no point in doing so.
6633  */
vmx_l1d_flush(struct kvm_vcpu * vcpu)6634 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6635 {
6636 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6637 
6638 	/*
6639 	 * This code is only executed when the flush mode is 'cond' or
6640 	 * 'always'
6641 	 */
6642 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6643 		bool flush_l1d;
6644 
6645 		/*
6646 		 * Clear the per-vcpu flush bit, it gets set again if the vCPU
6647 		 * is reloaded, i.e. if the vCPU is scheduled out or if KVM
6648 		 * exits to userspace, or if KVM reaches one of the unsafe
6649 		 * VMEXIT handlers, e.g. if KVM calls into the emulator.
6650 		 */
6651 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6652 		vcpu->arch.l1tf_flush_l1d = false;
6653 
6654 		/*
6655 		 * Clear the per-cpu flush bit, it gets set again from
6656 		 * the interrupt handlers.
6657 		 */
6658 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6659 		kvm_clear_cpu_l1tf_flush_l1d();
6660 
6661 		if (!flush_l1d)
6662 			return;
6663 	}
6664 
6665 	vcpu->stat.l1d_flush++;
6666 
6667 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6668 		native_wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6669 		return;
6670 	}
6671 
6672 	asm volatile(
6673 		/* First ensure the pages are in the TLB */
6674 		"xorl	%%eax, %%eax\n"
6675 		".Lpopulate_tlb:\n\t"
6676 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6677 		"addl	$4096, %%eax\n\t"
6678 		"cmpl	%%eax, %[size]\n\t"
6679 		"jne	.Lpopulate_tlb\n\t"
6680 		"xorl	%%eax, %%eax\n\t"
6681 		"cpuid\n\t"
6682 		/* Now fill the cache */
6683 		"xorl	%%eax, %%eax\n"
6684 		".Lfill_cache:\n"
6685 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6686 		"addl	$64, %%eax\n\t"
6687 		"cmpl	%%eax, %[size]\n\t"
6688 		"jne	.Lfill_cache\n\t"
6689 		"lfence\n"
6690 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6691 		    [size] "r" (size)
6692 		: "eax", "ebx", "ecx", "edx");
6693 }
6694 
vmx_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6695 void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6696 {
6697 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6698 	int tpr_threshold;
6699 
6700 	if (is_guest_mode(vcpu) &&
6701 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6702 		return;
6703 
6704 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6705 	if (is_guest_mode(vcpu))
6706 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6707 	else
6708 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6709 }
6710 
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6711 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6712 {
6713 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6714 	u32 sec_exec_control;
6715 
6716 	if (!lapic_in_kernel(vcpu))
6717 		return;
6718 
6719 	if (!flexpriority_enabled &&
6720 	    !cpu_has_vmx_virtualize_x2apic_mode())
6721 		return;
6722 
6723 	/* Postpone execution until vmcs01 is the current VMCS. */
6724 	if (is_guest_mode(vcpu)) {
6725 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6726 		return;
6727 	}
6728 
6729 	sec_exec_control = secondary_exec_controls_get(vmx);
6730 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6731 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6732 
6733 	switch (kvm_get_apic_mode(vcpu)) {
6734 	case LAPIC_MODE_INVALID:
6735 		WARN_ONCE(true, "Invalid local APIC state");
6736 		break;
6737 	case LAPIC_MODE_DISABLED:
6738 		break;
6739 	case LAPIC_MODE_XAPIC:
6740 		if (flexpriority_enabled) {
6741 			sec_exec_control |=
6742 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6743 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6744 
6745 			/*
6746 			 * Flush the TLB, reloading the APIC access page will
6747 			 * only do so if its physical address has changed, but
6748 			 * the guest may have inserted a non-APIC mapping into
6749 			 * the TLB while the APIC access page was disabled.
6750 			 */
6751 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6752 		}
6753 		break;
6754 	case LAPIC_MODE_X2APIC:
6755 		if (cpu_has_vmx_virtualize_x2apic_mode())
6756 			sec_exec_control |=
6757 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6758 		break;
6759 	}
6760 	secondary_exec_controls_set(vmx, sec_exec_control);
6761 
6762 	vmx_update_msr_bitmap_x2apic(vcpu);
6763 }
6764 
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu)6765 void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6766 {
6767 	const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6768 	struct kvm *kvm = vcpu->kvm;
6769 	struct kvm_memslots *slots = kvm_memslots(kvm);
6770 	struct kvm_memory_slot *slot;
6771 	struct page *refcounted_page;
6772 	unsigned long mmu_seq;
6773 	kvm_pfn_t pfn;
6774 	bool writable;
6775 
6776 	/* Defer reload until vmcs01 is the current VMCS. */
6777 	if (is_guest_mode(vcpu)) {
6778 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6779 		return;
6780 	}
6781 
6782 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6783 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6784 		return;
6785 
6786 	/*
6787 	 * Explicitly grab the memslot using KVM's internal slot ID to ensure
6788 	 * KVM doesn't unintentionally grab a userspace memslot.  It _should_
6789 	 * be impossible for userspace to create a memslot for the APIC when
6790 	 * APICv is enabled, but paranoia won't hurt in this case.
6791 	 */
6792 	slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6793 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6794 		return;
6795 
6796 	/*
6797 	 * Ensure that the mmu_notifier sequence count is read before KVM
6798 	 * retrieves the pfn from the primary MMU.  Note, the memslot is
6799 	 * protected by SRCU, not the mmu_notifier.  Pairs with the smp_wmb()
6800 	 * in kvm_mmu_invalidate_end().
6801 	 */
6802 	mmu_seq = kvm->mmu_invalidate_seq;
6803 	smp_rmb();
6804 
6805 	/*
6806 	 * No need to retry if the memslot does not exist or is invalid.  KVM
6807 	 * controls the APIC-access page memslot, and only deletes the memslot
6808 	 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6809 	 */
6810 	pfn = __kvm_faultin_pfn(slot, gfn, FOLL_WRITE, &writable, &refcounted_page);
6811 	if (is_error_noslot_pfn(pfn))
6812 		return;
6813 
6814 	read_lock(&vcpu->kvm->mmu_lock);
6815 	if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn))
6816 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6817 	else
6818 		vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6819 
6820 	/*
6821 	 * Do not pin the APIC access page in memory so that it can be freely
6822 	 * migrated, the MMU notifier will call us again if it is migrated or
6823 	 * swapped out.  KVM backs the memslot with anonymous memory, the pfn
6824 	 * should always point at a refcounted page (if the pfn is valid).
6825 	 */
6826 	if (!WARN_ON_ONCE(!refcounted_page))
6827 		kvm_release_page_clean(refcounted_page);
6828 
6829 	/*
6830 	 * No need for a manual TLB flush at this point, KVM has already done a
6831 	 * flush if there were SPTEs pointing at the previous page.
6832 	 */
6833 	read_unlock(&vcpu->kvm->mmu_lock);
6834 }
6835 
vmx_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)6836 void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6837 {
6838 	u16 status;
6839 	u8 old;
6840 
6841 	/*
6842 	 * If L2 is active, defer the SVI update until vmcs01 is loaded, as SVI
6843 	 * is only relevant for if and only if Virtual Interrupt Delivery is
6844 	 * enabled in vmcs12, and if VID is enabled then L2 EOIs affect L2's
6845 	 * vAPIC, not L1's vAPIC.  KVM must update vmcs01 on the next nested
6846 	 * VM-Exit, otherwise L1 with run with a stale SVI.
6847 	 */
6848 	if (is_guest_mode(vcpu)) {
6849 		/*
6850 		 * KVM is supposed to forward intercepted L2 EOIs to L1 if VID
6851 		 * is enabled in vmcs12; as above, the EOIs affect L2's vAPIC.
6852 		 * Note, userspace can stuff state while L2 is active; assert
6853 		 * that VID is disabled if and only if the vCPU is in KVM_RUN
6854 		 * to avoid false positives if userspace is setting APIC state.
6855 		 */
6856 		WARN_ON_ONCE(vcpu->wants_to_run &&
6857 			     nested_cpu_has_vid(get_vmcs12(vcpu)));
6858 		to_vmx(vcpu)->nested.update_vmcs01_hwapic_isr = true;
6859 		return;
6860 	}
6861 
6862 	if (max_isr == -1)
6863 		max_isr = 0;
6864 
6865 	status = vmcs_read16(GUEST_INTR_STATUS);
6866 	old = status >> 8;
6867 	if (max_isr != old) {
6868 		status &= 0xff;
6869 		status |= max_isr << 8;
6870 		vmcs_write16(GUEST_INTR_STATUS, status);
6871 	}
6872 }
6873 
vmx_set_rvi(int vector)6874 static void vmx_set_rvi(int vector)
6875 {
6876 	u16 status;
6877 	u8 old;
6878 
6879 	if (vector == -1)
6880 		vector = 0;
6881 
6882 	status = vmcs_read16(GUEST_INTR_STATUS);
6883 	old = (u8)status & 0xff;
6884 	if ((u8)vector != old) {
6885 		status &= ~0xff;
6886 		status |= (u8)vector;
6887 		vmcs_write16(GUEST_INTR_STATUS, status);
6888 	}
6889 }
6890 
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6891 int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6892 {
6893 	struct vcpu_vt *vt = to_vt(vcpu);
6894 	int max_irr;
6895 	bool got_posted_interrupt;
6896 
6897 	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6898 		return -EIO;
6899 
6900 	if (pi_test_on(&vt->pi_desc)) {
6901 		pi_clear_on(&vt->pi_desc);
6902 		/*
6903 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6904 		 * But on x86 this is just a compiler barrier anyway.
6905 		 */
6906 		smp_mb__after_atomic();
6907 		got_posted_interrupt =
6908 			kvm_apic_update_irr(vcpu, vt->pi_desc.pir, &max_irr);
6909 	} else {
6910 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6911 		got_posted_interrupt = false;
6912 	}
6913 
6914 	/*
6915 	 * Newly recognized interrupts are injected via either virtual interrupt
6916 	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6917 	 * disabled in two cases:
6918 	 *
6919 	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6920 	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6921 	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6922 	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6923 	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6924 	 *
6925 	 * 2) If APICv is disabled for this vCPU, assigned devices may still
6926 	 * attempt to post interrupts.  The posted interrupt vector will cause
6927 	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6928 	 */
6929 	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6930 		vmx_set_rvi(max_irr);
6931 	else if (got_posted_interrupt)
6932 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6933 
6934 	return max_irr;
6935 }
6936 
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)6937 void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6938 {
6939 	if (!kvm_vcpu_apicv_active(vcpu))
6940 		return;
6941 
6942 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6943 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6944 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6945 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6946 }
6947 
6948 void vmx_do_interrupt_irqoff(unsigned long entry);
6949 void vmx_do_nmi_irqoff(void);
6950 
handle_nm_fault_irqoff(struct kvm_vcpu * vcpu)6951 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6952 {
6953 	/*
6954 	 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6955 	 * MSR value is not clobbered by the host activity before the guest
6956 	 * has chance to consume it.
6957 	 *
6958 	 * Update the guest's XFD_ERR if and only if XFD is enabled, as the #NM
6959 	 * interception may have been caused by L1 interception.  Per the SDM,
6960 	 * XFD_ERR is not modified for non-XFD #NM, i.e. if CR0.TS=1.
6961 	 *
6962 	 * Note, XFD_ERR is updated _before_ the #NM interception check, i.e.
6963 	 * unlike CR2 and DR6, the value is not a payload that is attached to
6964 	 * the #NM exception.
6965 	 */
6966 	if (is_xfd_nm_fault(vcpu))
6967 		rdmsrq(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6968 }
6969 
handle_exception_irqoff(struct kvm_vcpu * vcpu,u32 intr_info)6970 static void handle_exception_irqoff(struct kvm_vcpu *vcpu, u32 intr_info)
6971 {
6972 	/* if exit due to PF check for async PF */
6973 	if (is_page_fault(intr_info))
6974 		vcpu->arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6975 	/* if exit due to NM, handle before interrupts are enabled */
6976 	else if (is_nm_fault(intr_info))
6977 		handle_nm_fault_irqoff(vcpu);
6978 	/* Handle machine checks before interrupts are enabled */
6979 	else if (is_machine_check(intr_info))
6980 		kvm_machine_check();
6981 }
6982 
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu,u32 intr_info)6983 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu,
6984 					     u32 intr_info)
6985 {
6986 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6987 
6988 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6989 	    "unexpected VM-Exit interrupt info: 0x%x", intr_info))
6990 		return;
6991 
6992 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
6993 	if (cpu_feature_enabled(X86_FEATURE_FRED))
6994 		fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector);
6995 	else
6996 		vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector));
6997 	kvm_after_interrupt(vcpu);
6998 
6999 	vcpu->arch.at_instruction_boundary = true;
7000 }
7001 
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)7002 void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
7003 {
7004 	if (to_vt(vcpu)->emulation_required)
7005 		return;
7006 
7007 	if (vmx_get_exit_reason(vcpu).basic == EXIT_REASON_EXTERNAL_INTERRUPT)
7008 		handle_external_interrupt_irqoff(vcpu, vmx_get_intr_info(vcpu));
7009 	else if (vmx_get_exit_reason(vcpu).basic == EXIT_REASON_EXCEPTION_NMI)
7010 		handle_exception_irqoff(vcpu, vmx_get_intr_info(vcpu));
7011 }
7012 
7013 /*
7014  * The kvm parameter can be NULL (module initialization, or invocation before
7015  * VM creation). Be sure to check the kvm parameter before using it.
7016  */
vmx_has_emulated_msr(struct kvm * kvm,u32 index)7017 bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
7018 {
7019 	switch (index) {
7020 	case MSR_IA32_SMBASE:
7021 		if (!IS_ENABLED(CONFIG_KVM_SMM))
7022 			return false;
7023 		/*
7024 		 * We cannot do SMM unless we can run the guest in big
7025 		 * real mode.
7026 		 */
7027 		return enable_unrestricted_guest || emulate_invalid_guest_state;
7028 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7029 		return nested;
7030 	case MSR_AMD64_VIRT_SPEC_CTRL:
7031 	case MSR_AMD64_TSC_RATIO:
7032 		/* This is AMD only.  */
7033 		return false;
7034 	default:
7035 		return true;
7036 	}
7037 }
7038 
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)7039 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7040 {
7041 	u32 exit_intr_info;
7042 	bool unblock_nmi;
7043 	u8 vector;
7044 	bool idtv_info_valid;
7045 
7046 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7047 
7048 	if (enable_vnmi) {
7049 		if (vmx->loaded_vmcs->nmi_known_unmasked)
7050 			return;
7051 
7052 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7053 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7054 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7055 		/*
7056 		 * SDM 3: 27.7.1.2 (September 2008)
7057 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7058 		 * a guest IRET fault.
7059 		 * SDM 3: 23.2.2 (September 2008)
7060 		 * Bit 12 is undefined in any of the following cases:
7061 		 *  If the VM exit sets the valid bit in the IDT-vectoring
7062 		 *   information field.
7063 		 *  If the VM exit is due to a double fault.
7064 		 */
7065 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7066 		    vector != DF_VECTOR && !idtv_info_valid)
7067 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7068 				      GUEST_INTR_STATE_NMI);
7069 		else
7070 			vmx->loaded_vmcs->nmi_known_unmasked =
7071 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7072 				  & GUEST_INTR_STATE_NMI);
7073 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7074 		vmx->loaded_vmcs->vnmi_blocked_time +=
7075 			ktime_to_ns(ktime_sub(ktime_get(),
7076 					      vmx->loaded_vmcs->entry_time));
7077 }
7078 
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)7079 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7080 				      u32 idt_vectoring_info,
7081 				      int instr_len_field,
7082 				      int error_code_field)
7083 {
7084 	u8 vector;
7085 	int type;
7086 	bool idtv_info_valid;
7087 
7088 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7089 
7090 	vcpu->arch.nmi_injected = false;
7091 	kvm_clear_exception_queue(vcpu);
7092 	kvm_clear_interrupt_queue(vcpu);
7093 
7094 	if (!idtv_info_valid)
7095 		return;
7096 
7097 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7098 
7099 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7100 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7101 
7102 	switch (type) {
7103 	case INTR_TYPE_NMI_INTR:
7104 		vcpu->arch.nmi_injected = true;
7105 		/*
7106 		 * SDM 3: 27.7.1.2 (September 2008)
7107 		 * Clear bit "block by NMI" before VM entry if a NMI
7108 		 * delivery faulted.
7109 		 */
7110 		vmx_set_nmi_mask(vcpu, false);
7111 		break;
7112 	case INTR_TYPE_SOFT_EXCEPTION:
7113 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7114 		fallthrough;
7115 	case INTR_TYPE_HARD_EXCEPTION: {
7116 		u32 error_code = 0;
7117 
7118 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK)
7119 			error_code = vmcs_read32(error_code_field);
7120 
7121 		kvm_requeue_exception(vcpu, vector,
7122 				      idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK,
7123 				      error_code);
7124 		break;
7125 	}
7126 	case INTR_TYPE_SOFT_INTR:
7127 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7128 		fallthrough;
7129 	case INTR_TYPE_EXT_INTR:
7130 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7131 		break;
7132 	default:
7133 		break;
7134 	}
7135 }
7136 
vmx_complete_interrupts(struct vcpu_vmx * vmx)7137 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7138 {
7139 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7140 				  VM_EXIT_INSTRUCTION_LEN,
7141 				  IDT_VECTORING_ERROR_CODE);
7142 }
7143 
vmx_cancel_injection(struct kvm_vcpu * vcpu)7144 void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7145 {
7146 	__vmx_complete_interrupts(vcpu,
7147 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7148 				  VM_ENTRY_INSTRUCTION_LEN,
7149 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
7150 
7151 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7152 }
7153 
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)7154 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7155 {
7156 	int i, nr_msrs;
7157 	struct perf_guest_switch_msr *msrs;
7158 	struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7159 
7160 	pmu->host_cross_mapped_mask = 0;
7161 	if (pmu->pebs_enable & pmu->global_ctrl)
7162 		intel_pmu_cross_mapped_check(pmu);
7163 
7164 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7165 	msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7166 	if (!msrs)
7167 		return;
7168 
7169 	for (i = 0; i < nr_msrs; i++)
7170 		if (msrs[i].host == msrs[i].guest)
7171 			clear_atomic_switch_msr(vmx, msrs[i].msr);
7172 		else
7173 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7174 					msrs[i].host, false);
7175 }
7176 
vmx_update_hv_timer(struct kvm_vcpu * vcpu,bool force_immediate_exit)7177 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7178 {
7179 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7180 	u64 tscl;
7181 	u32 delta_tsc;
7182 
7183 	if (force_immediate_exit) {
7184 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7185 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7186 	} else if (vmx->hv_deadline_tsc != -1) {
7187 		tscl = rdtsc();
7188 		if (vmx->hv_deadline_tsc > tscl)
7189 			/* set_hv_timer ensures the delta fits in 32-bits */
7190 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7191 				cpu_preemption_timer_multi);
7192 		else
7193 			delta_tsc = 0;
7194 
7195 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7196 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7197 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7198 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7199 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7200 	}
7201 }
7202 
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)7203 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7204 {
7205 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7206 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
7207 		vmcs_writel(HOST_RSP, host_rsp);
7208 	}
7209 }
7210 
vmx_spec_ctrl_restore_host(struct vcpu_vmx * vmx,unsigned int flags)7211 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7212 					unsigned int flags)
7213 {
7214 	u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7215 
7216 	if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7217 		return;
7218 
7219 	if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7220 		vmx->spec_ctrl = native_rdmsrq(MSR_IA32_SPEC_CTRL);
7221 
7222 	/*
7223 	 * If the guest/host SPEC_CTRL values differ, restore the host value.
7224 	 *
7225 	 * For legacy IBRS, the IBRS bit always needs to be written after
7226 	 * transitioning from a less privileged predictor mode, regardless of
7227 	 * whether the guest/host values differ.
7228 	 */
7229 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7230 	    vmx->spec_ctrl != hostval)
7231 		native_wrmsrq(MSR_IA32_SPEC_CTRL, hostval);
7232 
7233 	barrier_nospec();
7234 }
7235 
vmx_exit_handlers_fastpath(struct kvm_vcpu * vcpu,bool force_immediate_exit)7236 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu,
7237 					     bool force_immediate_exit)
7238 {
7239 	/*
7240 	 * If L2 is active, some VMX preemption timer exits can be handled in
7241 	 * the fastpath even, all other exits must use the slow path.
7242 	 */
7243 	if (is_guest_mode(vcpu) &&
7244 	    vmx_get_exit_reason(vcpu).basic != EXIT_REASON_PREEMPTION_TIMER)
7245 		return EXIT_FASTPATH_NONE;
7246 
7247 	switch (vmx_get_exit_reason(vcpu).basic) {
7248 	case EXIT_REASON_MSR_WRITE:
7249 		return handle_fastpath_set_msr_irqoff(vcpu);
7250 	case EXIT_REASON_PREEMPTION_TIMER:
7251 		return handle_fastpath_preemption_timer(vcpu, force_immediate_exit);
7252 	case EXIT_REASON_HLT:
7253 		return handle_fastpath_hlt(vcpu);
7254 	default:
7255 		return EXIT_FASTPATH_NONE;
7256 	}
7257 }
7258 
vmx_handle_nmi(struct kvm_vcpu * vcpu)7259 noinstr void vmx_handle_nmi(struct kvm_vcpu *vcpu)
7260 {
7261 	if ((u16)vmx_get_exit_reason(vcpu).basic != EXIT_REASON_EXCEPTION_NMI ||
7262 	    !is_nmi(vmx_get_intr_info(vcpu)))
7263 		return;
7264 
7265 	kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7266 	if (cpu_feature_enabled(X86_FEATURE_FRED))
7267 		fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR);
7268 	else
7269 		vmx_do_nmi_irqoff();
7270 	kvm_after_interrupt(vcpu);
7271 }
7272 
vmx_vcpu_enter_exit(struct kvm_vcpu * vcpu,unsigned int flags)7273 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7274 					unsigned int flags)
7275 {
7276 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7277 
7278 	guest_state_enter_irqoff();
7279 
7280 	/*
7281 	 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
7282 	 * mitigation for MDS is done late in VMentry and is still
7283 	 * executed in spite of L1D Flush. This is because an extra VERW
7284 	 * should not matter much after the big hammer L1D Flush.
7285 	 *
7286 	 * cpu_buf_vm_clear is used when system is not vulnerable to MDS/TAA,
7287 	 * and is affected by MMIO Stale Data. In such cases mitigation in only
7288 	 * needed against an MMIO capable guest.
7289 	 */
7290 	if (static_branch_unlikely(&vmx_l1d_should_flush))
7291 		vmx_l1d_flush(vcpu);
7292 	else if (static_branch_unlikely(&cpu_buf_vm_clear) &&
7293 		 kvm_arch_has_assigned_device(vcpu->kvm))
7294 		x86_clear_cpu_buffers();
7295 
7296 	vmx_disable_fb_clear(vmx);
7297 
7298 	if (vcpu->arch.cr2 != native_read_cr2())
7299 		native_write_cr2(vcpu->arch.cr2);
7300 
7301 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7302 				   flags);
7303 
7304 	vcpu->arch.cr2 = native_read_cr2();
7305 	vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7306 
7307 	vmx->idt_vectoring_info = 0;
7308 
7309 	vmx_enable_fb_clear(vmx);
7310 
7311 	if (unlikely(vmx->fail)) {
7312 		vmx->vt.exit_reason.full = 0xdead;
7313 		goto out;
7314 	}
7315 
7316 	vmx->vt.exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7317 	if (likely(!vmx_get_exit_reason(vcpu).failed_vmentry))
7318 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7319 
7320 	vmx_handle_nmi(vcpu);
7321 
7322 out:
7323 	guest_state_exit_irqoff();
7324 }
7325 
vmx_vcpu_run(struct kvm_vcpu * vcpu,bool force_immediate_exit)7326 fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7327 {
7328 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7329 	unsigned long cr3, cr4;
7330 
7331 	/* Record the guest's net vcpu time for enforced NMI injections. */
7332 	if (unlikely(!enable_vnmi &&
7333 		     vmx->loaded_vmcs->soft_vnmi_blocked))
7334 		vmx->loaded_vmcs->entry_time = ktime_get();
7335 
7336 	/*
7337 	 * Don't enter VMX if guest state is invalid, let the exit handler
7338 	 * start emulation until we arrive back to a valid state.  Synthesize a
7339 	 * consistency check VM-Exit due to invalid guest state and bail.
7340 	 */
7341 	if (unlikely(vmx->vt.emulation_required)) {
7342 		vmx->fail = 0;
7343 
7344 		vmx->vt.exit_reason.full = EXIT_REASON_INVALID_STATE;
7345 		vmx->vt.exit_reason.failed_vmentry = 1;
7346 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7347 		vmx->vt.exit_qualification = ENTRY_FAIL_DEFAULT;
7348 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7349 		vmx->vt.exit_intr_info = 0;
7350 		return EXIT_FASTPATH_NONE;
7351 	}
7352 
7353 	trace_kvm_entry(vcpu, force_immediate_exit);
7354 
7355 	if (vmx->ple_window_dirty) {
7356 		vmx->ple_window_dirty = false;
7357 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
7358 	}
7359 
7360 	/*
7361 	 * We did this in prepare_switch_to_guest, because it needs to
7362 	 * be within srcu_read_lock.
7363 	 */
7364 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7365 
7366 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7367 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7368 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7369 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7370 	vcpu->arch.regs_dirty = 0;
7371 
7372 	/*
7373 	 * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
7374 	 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7375 	 * it switches back to the current->mm, which can occur in KVM context
7376 	 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7377 	 * toggles a static key while handling a VM-Exit.
7378 	 */
7379 	cr3 = __get_current_cr3_fast();
7380 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7381 		vmcs_writel(HOST_CR3, cr3);
7382 		vmx->loaded_vmcs->host_state.cr3 = cr3;
7383 	}
7384 
7385 	cr4 = cr4_read_shadow();
7386 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7387 		vmcs_writel(HOST_CR4, cr4);
7388 		vmx->loaded_vmcs->host_state.cr4 = cr4;
7389 	}
7390 
7391 	/* When single-stepping over STI and MOV SS, we must clear the
7392 	 * corresponding interruptibility bits in the guest state. Otherwise
7393 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
7394 	 * exceptions being set, but that's not correct for the guest debugging
7395 	 * case. */
7396 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7397 		vmx_set_interrupt_shadow(vcpu, 0);
7398 
7399 	kvm_load_guest_xsave_state(vcpu);
7400 
7401 	pt_guest_enter(vmx);
7402 
7403 	atomic_switch_perf_msrs(vmx);
7404 	if (intel_pmu_lbr_is_enabled(vcpu))
7405 		vmx_passthrough_lbr_msrs(vcpu);
7406 
7407 	if (enable_preemption_timer)
7408 		vmx_update_hv_timer(vcpu, force_immediate_exit);
7409 	else if (force_immediate_exit)
7410 		smp_send_reschedule(vcpu->cpu);
7411 
7412 	kvm_wait_lapic_expire(vcpu);
7413 
7414 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
7415 	vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7416 
7417 	/* All fields are clean at this point */
7418 	if (kvm_is_using_evmcs()) {
7419 		current_evmcs->hv_clean_fields |=
7420 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7421 
7422 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7423 	}
7424 
7425 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7426 	if (vcpu->arch.host_debugctl)
7427 		update_debugctlmsr(vcpu->arch.host_debugctl);
7428 
7429 #ifndef CONFIG_X86_64
7430 	/*
7431 	 * The sysexit path does not restore ds/es, so we must set them to
7432 	 * a reasonable value ourselves.
7433 	 *
7434 	 * We can't defer this to vmx_prepare_switch_to_host() since that
7435 	 * function may be executed in interrupt context, which saves and
7436 	 * restore segments around it, nullifying its effect.
7437 	 */
7438 	loadsegment(ds, __USER_DS);
7439 	loadsegment(es, __USER_DS);
7440 #endif
7441 
7442 	pt_guest_exit(vmx);
7443 
7444 	kvm_load_host_xsave_state(vcpu);
7445 
7446 	if (is_guest_mode(vcpu)) {
7447 		/*
7448 		 * Track VMLAUNCH/VMRESUME that have made past guest state
7449 		 * checking.
7450 		 */
7451 		if (vmx->nested.nested_run_pending &&
7452 		    !vmx_get_exit_reason(vcpu).failed_vmentry)
7453 			++vcpu->stat.nested_run;
7454 
7455 		vmx->nested.nested_run_pending = 0;
7456 	}
7457 
7458 	if (unlikely(vmx->fail))
7459 		return EXIT_FASTPATH_NONE;
7460 
7461 	if (unlikely((u16)vmx_get_exit_reason(vcpu).basic == EXIT_REASON_MCE_DURING_VMENTRY))
7462 		kvm_machine_check();
7463 
7464 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
7465 
7466 	if (unlikely(vmx_get_exit_reason(vcpu).failed_vmentry))
7467 		return EXIT_FASTPATH_NONE;
7468 
7469 	vmx->loaded_vmcs->launched = 1;
7470 
7471 	vmx_recover_nmi_blocking(vmx);
7472 	vmx_complete_interrupts(vmx);
7473 
7474 	return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit);
7475 }
7476 
vmx_vcpu_free(struct kvm_vcpu * vcpu)7477 void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7478 {
7479 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7480 
7481 	if (enable_pml)
7482 		vmx_destroy_pml_buffer(vmx);
7483 	free_vpid(vmx->vpid);
7484 	nested_vmx_free_vcpu(vcpu);
7485 	free_loaded_vmcs(vmx->loaded_vmcs);
7486 	free_page((unsigned long)vmx->ve_info);
7487 }
7488 
vmx_vcpu_create(struct kvm_vcpu * vcpu)7489 int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7490 {
7491 	struct vmx_uret_msr *tsx_ctrl;
7492 	struct vcpu_vmx *vmx;
7493 	int i, err;
7494 
7495 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7496 	vmx = to_vmx(vcpu);
7497 
7498 	INIT_LIST_HEAD(&vmx->vt.pi_wakeup_list);
7499 
7500 	err = -ENOMEM;
7501 
7502 	vmx->vpid = allocate_vpid();
7503 
7504 	/*
7505 	 * If PML is turned on, failure on enabling PML just results in failure
7506 	 * of creating the vcpu, therefore we can simplify PML logic (by
7507 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
7508 	 * for the guest), etc.
7509 	 */
7510 	if (enable_pml) {
7511 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7512 		if (!vmx->pml_pg)
7513 			goto free_vpid;
7514 	}
7515 
7516 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
7517 		vmx->guest_uret_msrs[i].mask = -1ull;
7518 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7519 		/*
7520 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7521 		 * Keep the host value unchanged to avoid changing CPUID bits
7522 		 * under the host kernel's feet.
7523 		 */
7524 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7525 		if (tsx_ctrl)
7526 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7527 	}
7528 
7529 	err = alloc_loaded_vmcs(&vmx->vmcs01);
7530 	if (err < 0)
7531 		goto free_pml;
7532 
7533 	/*
7534 	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7535 	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7536 	 * feature only for vmcs01, KVM currently isn't equipped to realize any
7537 	 * performance benefits from enabling it for vmcs02.
7538 	 */
7539 	if (kvm_is_using_evmcs() &&
7540 	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7541 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7542 
7543 		evmcs->hv_enlightenments_control.msr_bitmap = 1;
7544 	}
7545 
7546 	/* The MSR bitmap starts with all ones */
7547 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7548 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7549 
7550 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7551 #ifdef CONFIG_X86_64
7552 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7553 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7554 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7555 #endif
7556 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7557 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7558 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7559 	if (kvm_cstate_in_guest(vcpu->kvm)) {
7560 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7561 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7562 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7563 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7564 	}
7565 
7566 	vmx->loaded_vmcs = &vmx->vmcs01;
7567 
7568 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7569 		err = kvm_alloc_apic_access_page(vcpu->kvm);
7570 		if (err)
7571 			goto free_vmcs;
7572 	}
7573 
7574 	if (enable_ept && !enable_unrestricted_guest) {
7575 		err = init_rmode_identity_map(vcpu->kvm);
7576 		if (err)
7577 			goto free_vmcs;
7578 	}
7579 
7580 	err = -ENOMEM;
7581 	if (vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_EPT_VIOLATION_VE) {
7582 		struct page *page;
7583 
7584 		BUILD_BUG_ON(sizeof(*vmx->ve_info) > PAGE_SIZE);
7585 
7586 		/* ve_info must be page aligned. */
7587 		page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7588 		if (!page)
7589 			goto free_vmcs;
7590 
7591 		vmx->ve_info = page_to_virt(page);
7592 	}
7593 
7594 	if (vmx_can_use_ipiv(vcpu))
7595 		WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7596 			   __pa(&vmx->vt.pi_desc) | PID_TABLE_ENTRY_VALID);
7597 
7598 	return 0;
7599 
7600 free_vmcs:
7601 	free_loaded_vmcs(vmx->loaded_vmcs);
7602 free_pml:
7603 	vmx_destroy_pml_buffer(vmx);
7604 free_vpid:
7605 	free_vpid(vmx->vpid);
7606 	return err;
7607 }
7608 
7609 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7610 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7611 
vmx_vm_init(struct kvm * kvm)7612 int vmx_vm_init(struct kvm *kvm)
7613 {
7614 	if (!ple_gap)
7615 		kvm->arch.pause_in_guest = true;
7616 
7617 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7618 		switch (l1tf_mitigation) {
7619 		case L1TF_MITIGATION_OFF:
7620 		case L1TF_MITIGATION_FLUSH_NOWARN:
7621 			/* 'I explicitly don't care' is set */
7622 			break;
7623 		case L1TF_MITIGATION_AUTO:
7624 		case L1TF_MITIGATION_FLUSH:
7625 		case L1TF_MITIGATION_FLUSH_NOSMT:
7626 		case L1TF_MITIGATION_FULL:
7627 			/*
7628 			 * Warn upon starting the first VM in a potentially
7629 			 * insecure environment.
7630 			 */
7631 			if (sched_smt_active())
7632 				pr_warn_once(L1TF_MSG_SMT);
7633 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7634 				pr_warn_once(L1TF_MSG_L1D);
7635 			break;
7636 		case L1TF_MITIGATION_FULL_FORCE:
7637 			/* Flush is enforced */
7638 			break;
7639 		}
7640 	}
7641 
7642 	if (enable_pml)
7643 		kvm->arch.cpu_dirty_log_size = PML_LOG_NR_ENTRIES;
7644 	return 0;
7645 }
7646 
vmx_ignore_guest_pat(struct kvm * kvm)7647 static inline bool vmx_ignore_guest_pat(struct kvm *kvm)
7648 {
7649 	/*
7650 	 * Non-coherent DMA devices need the guest to flush CPU properly.
7651 	 * In that case it is not possible to map all guest RAM as WB, so
7652 	 * always trust guest PAT.
7653 	 */
7654 	return !kvm_arch_has_noncoherent_dma(kvm) &&
7655 	       kvm_check_has_quirk(kvm, KVM_X86_QUIRK_IGNORE_GUEST_PAT);
7656 }
7657 
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)7658 u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7659 {
7660 	/*
7661 	 * Force UC for host MMIO regions, as allowing the guest to access MMIO
7662 	 * with cacheable accesses will result in Machine Checks.
7663 	 */
7664 	if (is_mmio)
7665 		return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7666 
7667 	/* Force WB if ignoring guest PAT */
7668 	if (vmx_ignore_guest_pat(vcpu->kvm))
7669 		return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7670 
7671 	return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT);
7672 }
7673 
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx,u32 new_ctl)7674 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7675 {
7676 	/*
7677 	 * These bits in the secondary execution controls field
7678 	 * are dynamic, the others are mostly based on the hypervisor
7679 	 * architecture and the guest's CPUID.  Do not touch the
7680 	 * dynamic bits.
7681 	 */
7682 	u32 mask =
7683 		SECONDARY_EXEC_SHADOW_VMCS |
7684 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7685 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7686 		SECONDARY_EXEC_DESC;
7687 
7688 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7689 
7690 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7691 }
7692 
7693 /*
7694  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7695  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7696  */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)7697 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7698 {
7699 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7700 	struct kvm_cpuid_entry2 *entry;
7701 
7702 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7703 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7704 
7705 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7706 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7707 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7708 } while (0)
7709 
7710 	entry = kvm_find_cpuid_entry(vcpu, 0x1);
7711 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7712 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7713 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7714 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7715 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7716 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7717 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7718 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7719 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7720 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7721 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7722 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7723 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7724 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7725 
7726 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7727 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7728 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7729 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7730 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7731 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7732 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7733 
7734 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1);
7735 	cr4_fixed1_update(X86_CR4_LAM_SUP,    eax, feature_bit(LAM));
7736 
7737 #undef cr4_fixed1_update
7738 }
7739 
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7740 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7741 {
7742 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7743 	struct kvm_cpuid_entry2 *best = NULL;
7744 	int i;
7745 
7746 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7747 		best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7748 		if (!best)
7749 			return;
7750 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7751 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7752 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7753 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7754 	}
7755 
7756 	/* Get the number of configurable Address Ranges for filtering */
7757 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7758 						PT_CAP_num_address_ranges);
7759 
7760 	/* Initialize and clear the no dependency bits */
7761 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7762 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7763 			RTIT_CTL_BRANCH_EN);
7764 
7765 	/*
7766 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7767 	 * will inject an #GP
7768 	 */
7769 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7770 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7771 
7772 	/*
7773 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7774 	 * PSBFreq can be set
7775 	 */
7776 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7777 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7778 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7779 
7780 	/*
7781 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7782 	 */
7783 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7784 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7785 					      RTIT_CTL_MTC_RANGE);
7786 
7787 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7788 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7789 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7790 							RTIT_CTL_PTW_EN);
7791 
7792 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7793 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7794 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7795 
7796 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7797 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7798 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7799 
7800 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7801 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7802 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7803 
7804 	/* unmask address range configure area */
7805 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7806 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7807 }
7808 
vmx_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)7809 void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7810 {
7811 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7812 
7813 	/*
7814 	 * XSAVES is effectively enabled if and only if XSAVE is also exposed
7815 	 * to the guest.  XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7816 	 * set if and only if XSAVE is supported.
7817 	 */
7818 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE))
7819 		guest_cpu_cap_clear(vcpu, X86_FEATURE_XSAVES);
7820 
7821 	vmx_setup_uret_msrs(vmx);
7822 
7823 	if (cpu_has_secondary_exec_ctrls())
7824 		vmcs_set_secondary_exec_control(vmx,
7825 						vmx_secondary_exec_control(vmx));
7826 
7827 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
7828 		vmx->msr_ia32_feature_control_valid_bits |=
7829 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7830 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7831 	else
7832 		vmx->msr_ia32_feature_control_valid_bits &=
7833 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7834 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7835 
7836 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
7837 		nested_vmx_cr_fixed1_bits_update(vcpu);
7838 
7839 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7840 			guest_cpu_cap_has(vcpu, X86_FEATURE_INTEL_PT))
7841 		update_intel_pt_cfg(vcpu);
7842 
7843 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7844 		struct vmx_uret_msr *msr;
7845 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7846 		if (msr) {
7847 			bool enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_RTM);
7848 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7849 		}
7850 	}
7851 
7852 	if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7853 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7854 					  !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD));
7855 
7856 	if (boot_cpu_has(X86_FEATURE_IBPB))
7857 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7858 					  !guest_has_pred_cmd_msr(vcpu));
7859 
7860 	if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7861 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7862 					  !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D));
7863 
7864 	set_cr4_guest_host_mask(vmx);
7865 
7866 	vmx_write_encls_bitmap(vcpu, NULL);
7867 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX))
7868 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7869 	else
7870 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7871 
7872 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC))
7873 		vmx->msr_ia32_feature_control_valid_bits |=
7874 			FEAT_CTL_SGX_LC_ENABLED;
7875 	else
7876 		vmx->msr_ia32_feature_control_valid_bits &=
7877 			~FEAT_CTL_SGX_LC_ENABLED;
7878 
7879 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7880 	vmx_update_exception_bitmap(vcpu);
7881 }
7882 
vmx_get_perf_capabilities(void)7883 static __init u64 vmx_get_perf_capabilities(void)
7884 {
7885 	u64 perf_cap = PMU_CAP_FW_WRITES;
7886 	u64 host_perf_cap = 0;
7887 
7888 	if (!enable_pmu)
7889 		return 0;
7890 
7891 	if (boot_cpu_has(X86_FEATURE_PDCM))
7892 		rdmsrq(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7893 
7894 	if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7895 		x86_perf_get_lbr(&vmx_lbr_caps);
7896 
7897 		/*
7898 		 * KVM requires LBR callstack support, as the overhead due to
7899 		 * context switching LBRs without said support is too high.
7900 		 * See intel_pmu_create_guest_lbr_event() for more info.
7901 		 */
7902 		if (!vmx_lbr_caps.has_callstack)
7903 			memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps));
7904 		else if (vmx_lbr_caps.nr)
7905 			perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7906 	}
7907 
7908 	if (vmx_pebs_supported()) {
7909 		perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7910 
7911 		/*
7912 		 * Disallow adaptive PEBS as it is functionally broken, can be
7913 		 * used by the guest to read *host* LBRs, and can be used to
7914 		 * bypass userspace event filters.  To correctly and safely
7915 		 * support adaptive PEBS, KVM needs to:
7916 		 *
7917 		 * 1. Account for the ADAPTIVE flag when (re)programming fixed
7918 		 *    counters.
7919 		 *
7920 		 * 2. Gain support from perf (or take direct control of counter
7921 		 *    programming) to support events without adaptive PEBS
7922 		 *    enabled for the hardware counter.
7923 		 *
7924 		 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with
7925 		 *    adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1.
7926 		 *
7927 		 * 4. Document which PMU events are effectively exposed to the
7928 		 *    guest via adaptive PEBS, and make adaptive PEBS mutually
7929 		 *    exclusive with KVM_SET_PMU_EVENT_FILTER if necessary.
7930 		 */
7931 		perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7932 	}
7933 
7934 	return perf_cap;
7935 }
7936 
vmx_set_cpu_caps(void)7937 static __init void vmx_set_cpu_caps(void)
7938 {
7939 	kvm_set_cpu_caps();
7940 
7941 	/* CPUID 0x1 */
7942 	if (nested)
7943 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7944 
7945 	/* CPUID 0x7 */
7946 	if (kvm_mpx_supported())
7947 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7948 	if (!cpu_has_vmx_invpcid())
7949 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7950 	if (vmx_pt_mode_is_host_guest())
7951 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7952 	if (vmx_pebs_supported()) {
7953 		kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7954 		kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7955 	}
7956 
7957 	if (!enable_pmu)
7958 		kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7959 	kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7960 
7961 	if (!enable_sgx) {
7962 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7963 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7964 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7965 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7966 		kvm_cpu_cap_clear(X86_FEATURE_SGX_EDECCSSA);
7967 	}
7968 
7969 	if (vmx_umip_emulated())
7970 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7971 
7972 	/* CPUID 0xD.1 */
7973 	kvm_caps.supported_xss = 0;
7974 	if (!cpu_has_vmx_xsaves())
7975 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7976 
7977 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7978 	if (!cpu_has_vmx_rdtscp()) {
7979 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7980 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7981 	}
7982 
7983 	if (cpu_has_vmx_waitpkg())
7984 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7985 }
7986 
vmx_is_io_intercepted(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,unsigned long * exit_qualification)7987 static bool vmx_is_io_intercepted(struct kvm_vcpu *vcpu,
7988 				  struct x86_instruction_info *info,
7989 				  unsigned long *exit_qualification)
7990 {
7991 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7992 	unsigned short port;
7993 	int size;
7994 	bool imm;
7995 
7996 	/*
7997 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7998 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7999 	 * control.
8000 	 *
8001 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
8002 	 */
8003 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
8004 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
8005 
8006 	if (info->intercept == x86_intercept_in ||
8007 	    info->intercept == x86_intercept_ins) {
8008 		port = info->src_val;
8009 		size = info->dst_bytes;
8010 		imm  = info->src_type == OP_IMM;
8011 	} else {
8012 		port = info->dst_val;
8013 		size = info->src_bytes;
8014 		imm  = info->dst_type == OP_IMM;
8015 	}
8016 
8017 
8018 	*exit_qualification = ((unsigned long)port << 16) | (size - 1);
8019 
8020 	if (info->intercept == x86_intercept_ins ||
8021 	    info->intercept == x86_intercept_outs)
8022 		*exit_qualification |= BIT(4);
8023 
8024 	if (info->rep_prefix)
8025 		*exit_qualification |= BIT(5);
8026 
8027 	if (imm)
8028 		*exit_qualification |= BIT(6);
8029 
8030 	return nested_vmx_check_io_bitmaps(vcpu, port, size);
8031 }
8032 
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)8033 int vmx_check_intercept(struct kvm_vcpu *vcpu,
8034 			struct x86_instruction_info *info,
8035 			enum x86_intercept_stage stage,
8036 			struct x86_exception *exception)
8037 {
8038 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8039 	unsigned long exit_qualification = 0;
8040 	u32 vm_exit_reason;
8041 	u64 exit_insn_len;
8042 
8043 	switch (info->intercept) {
8044 	case x86_intercept_rdpid:
8045 		/*
8046 		 * RDPID causes #UD if not enabled through secondary execution
8047 		 * controls (ENABLE_RDTSCP).  Note, the implicit MSR access to
8048 		 * TSC_AUX is NOT subject to interception, i.e. checking only
8049 		 * the dedicated execution control is architecturally correct.
8050 		 */
8051 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
8052 			exception->vector = UD_VECTOR;
8053 			exception->error_code_valid = false;
8054 			return X86EMUL_PROPAGATE_FAULT;
8055 		}
8056 		return X86EMUL_CONTINUE;
8057 
8058 	case x86_intercept_in:
8059 	case x86_intercept_ins:
8060 	case x86_intercept_out:
8061 	case x86_intercept_outs:
8062 		if (!vmx_is_io_intercepted(vcpu, info, &exit_qualification))
8063 			return X86EMUL_CONTINUE;
8064 
8065 		vm_exit_reason = EXIT_REASON_IO_INSTRUCTION;
8066 		break;
8067 
8068 	case x86_intercept_lgdt:
8069 	case x86_intercept_lidt:
8070 	case x86_intercept_lldt:
8071 	case x86_intercept_ltr:
8072 	case x86_intercept_sgdt:
8073 	case x86_intercept_sidt:
8074 	case x86_intercept_sldt:
8075 	case x86_intercept_str:
8076 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
8077 			return X86EMUL_CONTINUE;
8078 
8079 		if (info->intercept == x86_intercept_lldt ||
8080 		    info->intercept == x86_intercept_ltr ||
8081 		    info->intercept == x86_intercept_sldt ||
8082 		    info->intercept == x86_intercept_str)
8083 			vm_exit_reason = EXIT_REASON_LDTR_TR;
8084 		else
8085 			vm_exit_reason = EXIT_REASON_GDTR_IDTR;
8086 		/*
8087 		 * FIXME: Decode the ModR/M to generate the correct exit
8088 		 *        qualification for memory operands.
8089 		 */
8090 		break;
8091 
8092 	case x86_intercept_hlt:
8093 		if (!nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING))
8094 			return X86EMUL_CONTINUE;
8095 
8096 		vm_exit_reason = EXIT_REASON_HLT;
8097 		break;
8098 
8099 	case x86_intercept_pause:
8100 		/*
8101 		 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
8102 		 * with vanilla NOPs in the emulator.  Apply the interception
8103 		 * check only to actual PAUSE instructions.  Don't check
8104 		 * PAUSE-loop-exiting, software can't expect a given PAUSE to
8105 		 * exit, i.e. KVM is within its rights to allow L2 to execute
8106 		 * the PAUSE.
8107 		 */
8108 		if ((info->rep_prefix != REPE_PREFIX) ||
8109 		    !nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING))
8110 			return X86EMUL_CONTINUE;
8111 
8112 		vm_exit_reason = EXIT_REASON_PAUSE_INSTRUCTION;
8113 		break;
8114 
8115 	/* TODO: check more intercepts... */
8116 	default:
8117 		return X86EMUL_UNHANDLEABLE;
8118 	}
8119 
8120 	exit_insn_len = abs_diff((s64)info->next_rip, (s64)info->rip);
8121 	if (!exit_insn_len || exit_insn_len > X86_MAX_INSTRUCTION_LENGTH)
8122 		return X86EMUL_UNHANDLEABLE;
8123 
8124 	__nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification,
8125 			    exit_insn_len);
8126 	return X86EMUL_INTERCEPTED;
8127 }
8128 
8129 #ifdef CONFIG_X86_64
8130 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)8131 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8132 				  u64 divisor, u64 *result)
8133 {
8134 	u64 low = a << shift, high = a >> (64 - shift);
8135 
8136 	/* To avoid the overflow on divq */
8137 	if (high >= divisor)
8138 		return 1;
8139 
8140 	/* Low hold the result, high hold rem which is discarded */
8141 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8142 	    "rm" (divisor), "0" (low), "1" (high));
8143 	*result = low;
8144 
8145 	return 0;
8146 }
8147 
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)8148 int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8149 		     bool *expired)
8150 {
8151 	struct vcpu_vmx *vmx;
8152 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8153 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8154 
8155 	vmx = to_vmx(vcpu);
8156 	tscl = rdtsc();
8157 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8158 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8159 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8160 						    ktimer->timer_advance_ns);
8161 
8162 	if (delta_tsc > lapic_timer_advance_cycles)
8163 		delta_tsc -= lapic_timer_advance_cycles;
8164 	else
8165 		delta_tsc = 0;
8166 
8167 	/* Convert to host delta tsc if tsc scaling is enabled */
8168 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8169 	    delta_tsc && u64_shl_div_u64(delta_tsc,
8170 				kvm_caps.tsc_scaling_ratio_frac_bits,
8171 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8172 		return -ERANGE;
8173 
8174 	/*
8175 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
8176 	 * we can't use the preemption timer.
8177 	 * It's possible that it fits on later vmentries, but checking
8178 	 * on every vmentry is costly so we just use an hrtimer.
8179 	 */
8180 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8181 		return -ERANGE;
8182 
8183 	vmx->hv_deadline_tsc = tscl + delta_tsc;
8184 	*expired = !delta_tsc;
8185 	return 0;
8186 }
8187 
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)8188 void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8189 {
8190 	to_vmx(vcpu)->hv_deadline_tsc = -1;
8191 }
8192 #endif
8193 
vmx_update_cpu_dirty_logging(struct kvm_vcpu * vcpu)8194 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8195 {
8196 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8197 
8198 	if (WARN_ON_ONCE(!enable_pml))
8199 		return;
8200 
8201 	if (is_guest_mode(vcpu)) {
8202 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8203 		return;
8204 	}
8205 
8206 	/*
8207 	 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8208 	 * code, but in that case another update request will be made and so
8209 	 * the guest will never run with a stale PML value.
8210 	 */
8211 	if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8212 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8213 	else
8214 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8215 }
8216 
vmx_setup_mce(struct kvm_vcpu * vcpu)8217 void vmx_setup_mce(struct kvm_vcpu *vcpu)
8218 {
8219 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8220 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8221 			FEAT_CTL_LMCE_ENABLED;
8222 	else
8223 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8224 			~FEAT_CTL_LMCE_ENABLED;
8225 }
8226 
8227 #ifdef CONFIG_KVM_SMM
vmx_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)8228 int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8229 {
8230 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
8231 	if (to_vmx(vcpu)->nested.nested_run_pending)
8232 		return -EBUSY;
8233 	return !is_smm(vcpu);
8234 }
8235 
vmx_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)8236 int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8237 {
8238 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8239 
8240 	/*
8241 	 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8242 	 * SMI and RSM.  Using the common VM-Exit + VM-Enter routines is wrong
8243 	 * SMI and RSM only modify state that is saved and restored via SMRAM.
8244 	 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8245 	 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8246 	 */
8247 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8248 	if (vmx->nested.smm.guest_mode)
8249 		nested_vmx_vmexit(vcpu, -1, 0, 0);
8250 
8251 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
8252 	vmx->nested.vmxon = false;
8253 	vmx_clear_hlt(vcpu);
8254 	return 0;
8255 }
8256 
vmx_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)8257 int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8258 {
8259 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8260 	int ret;
8261 
8262 	if (vmx->nested.smm.vmxon) {
8263 		vmx->nested.vmxon = true;
8264 		vmx->nested.smm.vmxon = false;
8265 	}
8266 
8267 	if (vmx->nested.smm.guest_mode) {
8268 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
8269 		if (ret)
8270 			return ret;
8271 
8272 		vmx->nested.nested_run_pending = 1;
8273 		vmx->nested.smm.guest_mode = false;
8274 	}
8275 	return 0;
8276 }
8277 
vmx_enable_smi_window(struct kvm_vcpu * vcpu)8278 void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8279 {
8280 	/* RSM will cause a vmexit anyway.  */
8281 }
8282 #endif
8283 
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)8284 bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8285 {
8286 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8287 }
8288 
vmx_migrate_timers(struct kvm_vcpu * vcpu)8289 void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8290 {
8291 	if (is_guest_mode(vcpu)) {
8292 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8293 
8294 		if (hrtimer_try_to_cancel(timer) == 1)
8295 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8296 	}
8297 }
8298 
vmx_hardware_unsetup(void)8299 void vmx_hardware_unsetup(void)
8300 {
8301 	kvm_set_posted_intr_wakeup_handler(NULL);
8302 
8303 	if (nested)
8304 		nested_vmx_hardware_unsetup();
8305 
8306 	free_kvm_area();
8307 }
8308 
vmx_vm_destroy(struct kvm * kvm)8309 void vmx_vm_destroy(struct kvm *kvm)
8310 {
8311 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8312 
8313 	free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8314 }
8315 
8316 /*
8317  * Note, the SDM states that the linear address is masked *after* the modified
8318  * canonicality check, whereas KVM masks (untags) the address and then performs
8319  * a "normal" canonicality check.  Functionally, the two methods are identical,
8320  * and when the masking occurs relative to the canonicality check isn't visible
8321  * to software, i.e. KVM's behavior doesn't violate the SDM.
8322  */
vmx_get_untagged_addr(struct kvm_vcpu * vcpu,gva_t gva,unsigned int flags)8323 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags)
8324 {
8325 	int lam_bit;
8326 	unsigned long cr3_bits;
8327 
8328 	if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG))
8329 		return gva;
8330 
8331 	if (!is_64_bit_mode(vcpu))
8332 		return gva;
8333 
8334 	/*
8335 	 * Bit 63 determines if the address should be treated as user address
8336 	 * or a supervisor address.
8337 	 */
8338 	if (!(gva & BIT_ULL(63))) {
8339 		cr3_bits = kvm_get_active_cr3_lam_bits(vcpu);
8340 		if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48)))
8341 			return gva;
8342 
8343 		/* LAM_U48 is ignored if LAM_U57 is set. */
8344 		lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47;
8345 	} else {
8346 		if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP))
8347 			return gva;
8348 
8349 		lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47;
8350 	}
8351 
8352 	/*
8353 	 * Untag the address by sign-extending the lam_bit, but NOT to bit 63.
8354 	 * Bit 63 is retained from the raw virtual address so that untagging
8355 	 * doesn't change a user access to a supervisor access, and vice versa.
8356 	 */
8357 	return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63));
8358 }
8359 
vmx_handle_intel_pt_intr(void)8360 static unsigned int vmx_handle_intel_pt_intr(void)
8361 {
8362 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8363 
8364 	/* '0' on failure so that the !PT case can use a RET0 static call. */
8365 	if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8366 		return 0;
8367 
8368 	kvm_make_request(KVM_REQ_PMI, vcpu);
8369 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8370 		  (unsigned long *)&vcpu->arch.pmu.global_status);
8371 	return 1;
8372 }
8373 
vmx_setup_user_return_msrs(void)8374 static __init void vmx_setup_user_return_msrs(void)
8375 {
8376 
8377 	/*
8378 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8379 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
8380 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8381 	 * support this emulation, MSR_STAR is included in the list for i386,
8382 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
8383 	 * into hardware and is here purely for emulation purposes.
8384 	 */
8385 	const u32 vmx_uret_msrs_list[] = {
8386 	#ifdef CONFIG_X86_64
8387 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8388 	#endif
8389 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8390 		MSR_IA32_TSX_CTRL,
8391 	};
8392 	int i;
8393 
8394 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8395 
8396 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8397 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8398 }
8399 
vmx_setup_me_spte_mask(void)8400 static void __init vmx_setup_me_spte_mask(void)
8401 {
8402 	u64 me_mask = 0;
8403 
8404 	/*
8405 	 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8406 	 * kvm_host.maxphyaddr.  On MKTME and/or TDX capable systems,
8407 	 * boot_cpu_data.x86_phys_bits holds the actual physical address
8408 	 * w/o the KeyID bits, and kvm_host.maxphyaddr equals to
8409 	 * MAXPHYADDR reported by CPUID.  Those bits between are KeyID bits.
8410 	 */
8411 	if (boot_cpu_data.x86_phys_bits != kvm_host.maxphyaddr)
8412 		me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8413 				    kvm_host.maxphyaddr - 1);
8414 
8415 	/*
8416 	 * Unlike SME, host kernel doesn't support setting up any
8417 	 * MKTME KeyID on Intel platforms.  No memory encryption
8418 	 * bits should be included into the SPTE.
8419 	 */
8420 	kvm_mmu_set_me_spte_mask(0, me_mask);
8421 }
8422 
vmx_hardware_setup(void)8423 __init int vmx_hardware_setup(void)
8424 {
8425 	unsigned long host_bndcfgs;
8426 	struct desc_ptr dt;
8427 	int r;
8428 
8429 	store_idt(&dt);
8430 	host_idt_base = dt.address;
8431 
8432 	vmx_setup_user_return_msrs();
8433 
8434 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8435 		return -EIO;
8436 
8437 	if (boot_cpu_has(X86_FEATURE_NX))
8438 		kvm_enable_efer_bits(EFER_NX);
8439 
8440 	if (boot_cpu_has(X86_FEATURE_MPX)) {
8441 		rdmsrq(MSR_IA32_BNDCFGS, host_bndcfgs);
8442 		WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8443 	}
8444 
8445 	if (!cpu_has_vmx_mpx())
8446 		kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8447 					     XFEATURE_MASK_BNDCSR);
8448 
8449 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8450 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8451 		enable_vpid = 0;
8452 
8453 	if (!cpu_has_vmx_ept() ||
8454 	    !cpu_has_vmx_ept_4levels() ||
8455 	    !cpu_has_vmx_ept_mt_wb() ||
8456 	    !cpu_has_vmx_invept_global())
8457 		enable_ept = 0;
8458 
8459 	/* NX support is required for shadow paging. */
8460 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8461 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
8462 		return -EOPNOTSUPP;
8463 	}
8464 
8465 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8466 		enable_ept_ad_bits = 0;
8467 
8468 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8469 		enable_unrestricted_guest = 0;
8470 
8471 	if (!cpu_has_vmx_flexpriority())
8472 		flexpriority_enabled = 0;
8473 
8474 	if (!cpu_has_virtual_nmis())
8475 		enable_vnmi = 0;
8476 
8477 #ifdef CONFIG_X86_SGX_KVM
8478 	if (!cpu_has_vmx_encls_vmexit())
8479 		enable_sgx = false;
8480 #endif
8481 
8482 	/*
8483 	 * set_apic_access_page_addr() is used to reload apic access
8484 	 * page upon invalidation.  No need to do anything if not
8485 	 * using the APIC_ACCESS_ADDR VMCS field.
8486 	 */
8487 	if (!flexpriority_enabled)
8488 		vt_x86_ops.set_apic_access_page_addr = NULL;
8489 
8490 	if (!cpu_has_vmx_tpr_shadow())
8491 		vt_x86_ops.update_cr8_intercept = NULL;
8492 
8493 #if IS_ENABLED(CONFIG_HYPERV)
8494 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8495 	    && enable_ept) {
8496 		vt_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8497 		vt_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8498 	}
8499 #endif
8500 
8501 	if (!cpu_has_vmx_ple()) {
8502 		ple_gap = 0;
8503 		ple_window = 0;
8504 		ple_window_grow = 0;
8505 		ple_window_max = 0;
8506 		ple_window_shrink = 0;
8507 	}
8508 
8509 	if (!cpu_has_vmx_apicv())
8510 		enable_apicv = 0;
8511 	if (!enable_apicv)
8512 		vt_x86_ops.sync_pir_to_irr = NULL;
8513 
8514 	if (!enable_apicv || !cpu_has_vmx_ipiv())
8515 		enable_ipiv = false;
8516 
8517 	if (cpu_has_vmx_tsc_scaling())
8518 		kvm_caps.has_tsc_control = true;
8519 
8520 	kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8521 	kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8522 	kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8523 	kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8524 
8525 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8526 
8527 	if (enable_ept)
8528 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8529 				      cpu_has_vmx_ept_execute_only());
8530 	else
8531 		vt_x86_ops.get_mt_mask = NULL;
8532 
8533 	/*
8534 	 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8535 	 * bits to shadow_zero_check.
8536 	 */
8537 	vmx_setup_me_spte_mask();
8538 
8539 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8540 			  ept_caps_to_lpage_level(vmx_capability.ept));
8541 
8542 	/*
8543 	 * Only enable PML when hardware supports PML feature, and both EPT
8544 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8545 	 */
8546 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8547 		enable_pml = 0;
8548 
8549 	if (!cpu_has_vmx_preemption_timer())
8550 		enable_preemption_timer = false;
8551 
8552 	if (enable_preemption_timer) {
8553 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8554 
8555 		cpu_preemption_timer_multi =
8556 			vmx_misc_preemption_timer_rate(vmcs_config.misc);
8557 
8558 		if (tsc_khz)
8559 			use_timer_freq = (u64)tsc_khz * 1000;
8560 		use_timer_freq >>= cpu_preemption_timer_multi;
8561 
8562 		/*
8563 		 * KVM "disables" the preemption timer by setting it to its max
8564 		 * value.  Don't use the timer if it might cause spurious exits
8565 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8566 		 */
8567 		if (use_timer_freq > 0xffffffffu / 10)
8568 			enable_preemption_timer = false;
8569 	}
8570 
8571 	if (!enable_preemption_timer) {
8572 		vt_x86_ops.set_hv_timer = NULL;
8573 		vt_x86_ops.cancel_hv_timer = NULL;
8574 	}
8575 
8576 	kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8577 	kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8578 
8579 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8580 		return -EINVAL;
8581 	if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8582 		pt_mode = PT_MODE_SYSTEM;
8583 	if (pt_mode == PT_MODE_HOST_GUEST)
8584 		vt_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8585 	else
8586 		vt_init_ops.handle_intel_pt_intr = NULL;
8587 
8588 	setup_default_sgx_lepubkeyhash();
8589 
8590 	if (nested) {
8591 		nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8592 
8593 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8594 		if (r)
8595 			return r;
8596 	}
8597 
8598 	vmx_set_cpu_caps();
8599 
8600 	r = alloc_kvm_area();
8601 	if (r && nested)
8602 		nested_vmx_hardware_unsetup();
8603 
8604 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8605 
8606 	/*
8607 	 * On Intel CPUs that lack self-snoop feature, letting the guest control
8608 	 * memory types may result in unexpected behavior. So always ignore guest
8609 	 * PAT on those CPUs and map VM as writeback, not allowing userspace to
8610 	 * disable the quirk.
8611 	 *
8612 	 * On certain Intel CPUs (e.g. SPR, ICX), though self-snoop feature is
8613 	 * supported, UC is slow enough to cause issues with some older guests (e.g.
8614 	 * an old version of bochs driver uses ioremap() instead of ioremap_wc() to
8615 	 * map the video RAM, causing wayland desktop to fail to get started
8616 	 * correctly). To avoid breaking those older guests that rely on KVM to force
8617 	 * memory type to WB, provide KVM_X86_QUIRK_IGNORE_GUEST_PAT to preserve the
8618 	 * safer (for performance) default behavior.
8619 	 *
8620 	 * On top of this, non-coherent DMA devices need the guest to flush CPU
8621 	 * caches properly.  This also requires honoring guest PAT, and is forced
8622 	 * independent of the quirk in vmx_ignore_guest_pat().
8623 	 */
8624 	if (!static_cpu_has(X86_FEATURE_SELFSNOOP))
8625 		kvm_caps.supported_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT;
8626        kvm_caps.inapplicable_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT;
8627 	return r;
8628 }
8629 
vmx_cleanup_l1d_flush(void)8630 static void vmx_cleanup_l1d_flush(void)
8631 {
8632 	if (vmx_l1d_flush_pages) {
8633 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8634 		vmx_l1d_flush_pages = NULL;
8635 	}
8636 	/* Restore state so sysfs ignores VMX */
8637 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8638 }
8639 
vmx_exit(void)8640 void vmx_exit(void)
8641 {
8642 	allow_smaller_maxphyaddr = false;
8643 
8644 	vmx_cleanup_l1d_flush();
8645 
8646 	kvm_x86_vendor_exit();
8647 }
8648 
vmx_init(void)8649 int __init vmx_init(void)
8650 {
8651 	int r, cpu;
8652 
8653 	if (!kvm_is_vmx_supported())
8654 		return -EOPNOTSUPP;
8655 
8656 	/*
8657 	 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8658 	 * to unwind if a later step fails.
8659 	 */
8660 	hv_init_evmcs();
8661 
8662 	r = kvm_x86_vendor_init(&vt_init_ops);
8663 	if (r)
8664 		return r;
8665 
8666 	/*
8667 	 * Must be called after common x86 init so enable_ept is properly set
8668 	 * up. Hand the parameter mitigation value in which was stored in
8669 	 * the pre module init parser. If no parameter was given, it will
8670 	 * contain 'auto' which will be turned into the default 'cond'
8671 	 * mitigation mode.
8672 	 */
8673 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8674 	if (r)
8675 		goto err_l1d_flush;
8676 
8677 	for_each_possible_cpu(cpu) {
8678 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8679 
8680 		pi_init_cpu(cpu);
8681 	}
8682 
8683 	vmx_check_vmcs12_offsets();
8684 
8685 	/*
8686 	 * Shadow paging doesn't have a (further) performance penalty
8687 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8688 	 * by default
8689 	 */
8690 	if (!enable_ept)
8691 		allow_smaller_maxphyaddr = true;
8692 
8693 	return 0;
8694 
8695 err_l1d_flush:
8696 	kvm_x86_vendor_exit();
8697 	return r;
8698 }
8699