xref: /linux/arch/x86/kvm/vmx/vmx.c (revision c924c5e9b8c65b3a479a90e5e37d74cc8cd9fe0a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32 
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/fred.h>
42 #include <asm/idtentry.h>
43 #include <asm/io.h>
44 #include <asm/irq_remapping.h>
45 #include <asm/reboot.h>
46 #include <asm/perf_event.h>
47 #include <asm/mmu_context.h>
48 #include <asm/mshyperv.h>
49 #include <asm/mwait.h>
50 #include <asm/spec-ctrl.h>
51 #include <asm/vmx.h>
52 
53 #include <trace/events/ipi.h>
54 
55 #include "capabilities.h"
56 #include "cpuid.h"
57 #include "hyperv.h"
58 #include "kvm_onhyperv.h"
59 #include "irq.h"
60 #include "kvm_cache_regs.h"
61 #include "lapic.h"
62 #include "mmu.h"
63 #include "nested.h"
64 #include "pmu.h"
65 #include "sgx.h"
66 #include "trace.h"
67 #include "vmcs.h"
68 #include "vmcs12.h"
69 #include "vmx.h"
70 #include "x86.h"
71 #include "x86_ops.h"
72 #include "smm.h"
73 #include "vmx_onhyperv.h"
74 #include "posted_intr.h"
75 
76 MODULE_AUTHOR("Qumranet");
77 MODULE_DESCRIPTION("KVM support for VMX (Intel VT-x) extensions");
78 MODULE_LICENSE("GPL");
79 
80 #ifdef MODULE
81 static const struct x86_cpu_id vmx_cpu_id[] = {
82 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
83 	{}
84 };
85 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
86 #endif
87 
88 bool __read_mostly enable_vpid = 1;
89 module_param_named(vpid, enable_vpid, bool, 0444);
90 
91 static bool __read_mostly enable_vnmi = 1;
92 module_param_named(vnmi, enable_vnmi, bool, 0444);
93 
94 bool __read_mostly flexpriority_enabled = 1;
95 module_param_named(flexpriority, flexpriority_enabled, bool, 0444);
96 
97 bool __read_mostly enable_ept = 1;
98 module_param_named(ept, enable_ept, bool, 0444);
99 
100 bool __read_mostly enable_unrestricted_guest = 1;
101 module_param_named(unrestricted_guest,
102 			enable_unrestricted_guest, bool, 0444);
103 
104 bool __read_mostly enable_ept_ad_bits = 1;
105 module_param_named(eptad, enable_ept_ad_bits, bool, 0444);
106 
107 static bool __read_mostly emulate_invalid_guest_state = true;
108 module_param(emulate_invalid_guest_state, bool, 0444);
109 
110 static bool __read_mostly fasteoi = 1;
111 module_param(fasteoi, bool, 0444);
112 
113 module_param(enable_apicv, bool, 0444);
114 
115 bool __read_mostly enable_ipiv = true;
116 module_param(enable_ipiv, bool, 0444);
117 
118 /*
119  * If nested=1, nested virtualization is supported, i.e., guests may use
120  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
121  * use VMX instructions.
122  */
123 static bool __read_mostly nested = 1;
124 module_param(nested, bool, 0444);
125 
126 bool __read_mostly enable_pml = 1;
127 module_param_named(pml, enable_pml, bool, 0444);
128 
129 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
130 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
131 
132 static bool __read_mostly dump_invalid_vmcs = 0;
133 module_param(dump_invalid_vmcs, bool, 0644);
134 
135 #define MSR_BITMAP_MODE_X2APIC		1
136 #define MSR_BITMAP_MODE_X2APIC_APICV	2
137 
138 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
139 
140 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
141 static int __read_mostly cpu_preemption_timer_multi;
142 static bool __read_mostly enable_preemption_timer = 1;
143 #ifdef CONFIG_X86_64
144 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
145 #endif
146 
147 extern bool __read_mostly allow_smaller_maxphyaddr;
148 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
149 
150 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
151 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
152 #define KVM_VM_CR0_ALWAYS_ON				\
153 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
154 
155 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
156 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
157 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
158 
159 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
160 
161 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
162 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
163 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
164 	RTIT_STATUS_BYTECNT))
165 
166 /*
167  * List of MSRs that can be directly passed to the guest.
168  * In addition to these x2apic, PT and LBR MSRs are handled specially.
169  */
170 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
171 	MSR_IA32_SPEC_CTRL,
172 	MSR_IA32_PRED_CMD,
173 	MSR_IA32_FLUSH_CMD,
174 	MSR_IA32_TSC,
175 #ifdef CONFIG_X86_64
176 	MSR_FS_BASE,
177 	MSR_GS_BASE,
178 	MSR_KERNEL_GS_BASE,
179 	MSR_IA32_XFD,
180 	MSR_IA32_XFD_ERR,
181 #endif
182 	MSR_IA32_SYSENTER_CS,
183 	MSR_IA32_SYSENTER_ESP,
184 	MSR_IA32_SYSENTER_EIP,
185 	MSR_CORE_C1_RES,
186 	MSR_CORE_C3_RESIDENCY,
187 	MSR_CORE_C6_RESIDENCY,
188 	MSR_CORE_C7_RESIDENCY,
189 };
190 
191 /*
192  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
193  * ple_gap:    upper bound on the amount of time between two successive
194  *             executions of PAUSE in a loop. Also indicate if ple enabled.
195  *             According to test, this time is usually smaller than 128 cycles.
196  * ple_window: upper bound on the amount of time a guest is allowed to execute
197  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
198  *             less than 2^12 cycles
199  * Time is measured based on a counter that runs at the same rate as the TSC,
200  * refer SDM volume 3b section 21.6.13 & 22.1.3.
201  */
202 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
203 module_param(ple_gap, uint, 0444);
204 
205 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
206 module_param(ple_window, uint, 0444);
207 
208 /* Default doubles per-vcpu window every exit. */
209 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
210 module_param(ple_window_grow, uint, 0444);
211 
212 /* Default resets per-vcpu window every exit to ple_window. */
213 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
214 module_param(ple_window_shrink, uint, 0444);
215 
216 /* Default is to compute the maximum so we can never overflow. */
217 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
218 module_param(ple_window_max, uint, 0444);
219 
220 /* Default is SYSTEM mode, 1 for host-guest mode (which is BROKEN) */
221 int __read_mostly pt_mode = PT_MODE_SYSTEM;
222 #ifdef CONFIG_BROKEN
223 module_param(pt_mode, int, S_IRUGO);
224 #endif
225 
226 struct x86_pmu_lbr __ro_after_init vmx_lbr_caps;
227 
228 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
229 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
230 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
231 
232 /* Storage for pre module init parameter parsing */
233 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
234 
235 static const struct {
236 	const char *option;
237 	bool for_parse;
238 } vmentry_l1d_param[] = {
239 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
240 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
241 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
242 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
243 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
244 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
245 };
246 
247 #define L1D_CACHE_ORDER 4
248 static void *vmx_l1d_flush_pages;
249 
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)250 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
251 {
252 	struct page *page;
253 	unsigned int i;
254 
255 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
256 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
257 		return 0;
258 	}
259 
260 	if (!enable_ept) {
261 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
262 		return 0;
263 	}
264 
265 	if (kvm_host.arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
266 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
267 		return 0;
268 	}
269 
270 	/* If set to auto use the default l1tf mitigation method */
271 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
272 		switch (l1tf_mitigation) {
273 		case L1TF_MITIGATION_OFF:
274 			l1tf = VMENTER_L1D_FLUSH_NEVER;
275 			break;
276 		case L1TF_MITIGATION_FLUSH_NOWARN:
277 		case L1TF_MITIGATION_FLUSH:
278 		case L1TF_MITIGATION_FLUSH_NOSMT:
279 			l1tf = VMENTER_L1D_FLUSH_COND;
280 			break;
281 		case L1TF_MITIGATION_FULL:
282 		case L1TF_MITIGATION_FULL_FORCE:
283 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
284 			break;
285 		}
286 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
287 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
288 	}
289 
290 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
291 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
292 		/*
293 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
294 		 * lifetime and so should not be charged to a memcg.
295 		 */
296 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
297 		if (!page)
298 			return -ENOMEM;
299 		vmx_l1d_flush_pages = page_address(page);
300 
301 		/*
302 		 * Initialize each page with a different pattern in
303 		 * order to protect against KSM in the nested
304 		 * virtualization case.
305 		 */
306 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
307 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
308 			       PAGE_SIZE);
309 		}
310 	}
311 
312 	l1tf_vmx_mitigation = l1tf;
313 
314 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
315 		static_branch_enable(&vmx_l1d_should_flush);
316 	else
317 		static_branch_disable(&vmx_l1d_should_flush);
318 
319 	if (l1tf == VMENTER_L1D_FLUSH_COND)
320 		static_branch_enable(&vmx_l1d_flush_cond);
321 	else
322 		static_branch_disable(&vmx_l1d_flush_cond);
323 	return 0;
324 }
325 
vmentry_l1d_flush_parse(const char * s)326 static int vmentry_l1d_flush_parse(const char *s)
327 {
328 	unsigned int i;
329 
330 	if (s) {
331 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
332 			if (vmentry_l1d_param[i].for_parse &&
333 			    sysfs_streq(s, vmentry_l1d_param[i].option))
334 				return i;
335 		}
336 	}
337 	return -EINVAL;
338 }
339 
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)340 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
341 {
342 	int l1tf, ret;
343 
344 	l1tf = vmentry_l1d_flush_parse(s);
345 	if (l1tf < 0)
346 		return l1tf;
347 
348 	if (!boot_cpu_has(X86_BUG_L1TF))
349 		return 0;
350 
351 	/*
352 	 * Has vmx_init() run already? If not then this is the pre init
353 	 * parameter parsing. In that case just store the value and let
354 	 * vmx_init() do the proper setup after enable_ept has been
355 	 * established.
356 	 */
357 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
358 		vmentry_l1d_flush_param = l1tf;
359 		return 0;
360 	}
361 
362 	mutex_lock(&vmx_l1d_flush_mutex);
363 	ret = vmx_setup_l1d_flush(l1tf);
364 	mutex_unlock(&vmx_l1d_flush_mutex);
365 	return ret;
366 }
367 
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)368 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
369 {
370 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
371 		return sysfs_emit(s, "???\n");
372 
373 	return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
374 }
375 
vmx_disable_fb_clear(struct vcpu_vmx * vmx)376 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
377 {
378 	u64 msr;
379 
380 	if (!vmx->disable_fb_clear)
381 		return;
382 
383 	msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
384 	msr |= FB_CLEAR_DIS;
385 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
386 	/* Cache the MSR value to avoid reading it later */
387 	vmx->msr_ia32_mcu_opt_ctrl = msr;
388 }
389 
vmx_enable_fb_clear(struct vcpu_vmx * vmx)390 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
391 {
392 	if (!vmx->disable_fb_clear)
393 		return;
394 
395 	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
396 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
397 }
398 
vmx_update_fb_clear_dis(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx)399 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
400 {
401 	/*
402 	 * Disable VERW's behavior of clearing CPU buffers for the guest if the
403 	 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
404 	 * the mitigation. Disabling the clearing behavior provides a
405 	 * performance boost for guests that aren't aware that manually clearing
406 	 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
407 	 * and VM-Exit.
408 	 */
409 	vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
410 				(kvm_host.arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
411 				!boot_cpu_has_bug(X86_BUG_MDS) &&
412 				!boot_cpu_has_bug(X86_BUG_TAA);
413 
414 	/*
415 	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
416 	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
417 	 * execute VERW.
418 	 */
419 	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
420 	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
421 	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
422 	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
423 	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
424 	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
425 		vmx->disable_fb_clear = false;
426 }
427 
428 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
429 	.set = vmentry_l1d_flush_set,
430 	.get = vmentry_l1d_flush_get,
431 };
432 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
433 
434 static u32 vmx_segment_access_rights(struct kvm_segment *var);
435 
436 void vmx_vmexit(void);
437 
438 #define vmx_insn_failed(fmt...)		\
439 do {					\
440 	WARN_ONCE(1, fmt);		\
441 	pr_warn_ratelimited(fmt);	\
442 } while (0)
443 
vmread_error(unsigned long field)444 noinline void vmread_error(unsigned long field)
445 {
446 	vmx_insn_failed("vmread failed: field=%lx\n", field);
447 }
448 
449 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
vmread_error_trampoline2(unsigned long field,bool fault)450 noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
451 {
452 	if (fault) {
453 		kvm_spurious_fault();
454 	} else {
455 		instrumentation_begin();
456 		vmread_error(field);
457 		instrumentation_end();
458 	}
459 }
460 #endif
461 
vmwrite_error(unsigned long field,unsigned long value)462 noinline void vmwrite_error(unsigned long field, unsigned long value)
463 {
464 	vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
465 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
466 }
467 
vmclear_error(struct vmcs * vmcs,u64 phys_addr)468 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
469 {
470 	vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
471 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
472 }
473 
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)474 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
475 {
476 	vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
477 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
478 }
479 
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)480 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
481 {
482 	vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
483 			ext, vpid, gva);
484 }
485 
invept_error(unsigned long ext,u64 eptp)486 noinline void invept_error(unsigned long ext, u64 eptp)
487 {
488 	vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx\n", ext, eptp);
489 }
490 
491 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
492 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
493 /*
494  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
495  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
496  */
497 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
498 
499 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
500 static DEFINE_SPINLOCK(vmx_vpid_lock);
501 
502 struct vmcs_config vmcs_config __ro_after_init;
503 struct vmx_capability vmx_capability __ro_after_init;
504 
505 #define VMX_SEGMENT_FIELD(seg)					\
506 	[VCPU_SREG_##seg] = {                                   \
507 		.selector = GUEST_##seg##_SELECTOR,		\
508 		.base = GUEST_##seg##_BASE,		   	\
509 		.limit = GUEST_##seg##_LIMIT,		   	\
510 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
511 	}
512 
513 static const struct kvm_vmx_segment_field {
514 	unsigned selector;
515 	unsigned base;
516 	unsigned limit;
517 	unsigned ar_bytes;
518 } kvm_vmx_segment_fields[] = {
519 	VMX_SEGMENT_FIELD(CS),
520 	VMX_SEGMENT_FIELD(DS),
521 	VMX_SEGMENT_FIELD(ES),
522 	VMX_SEGMENT_FIELD(FS),
523 	VMX_SEGMENT_FIELD(GS),
524 	VMX_SEGMENT_FIELD(SS),
525 	VMX_SEGMENT_FIELD(TR),
526 	VMX_SEGMENT_FIELD(LDTR),
527 };
528 
529 
530 static unsigned long host_idt_base;
531 
532 #if IS_ENABLED(CONFIG_HYPERV)
533 static bool __read_mostly enlightened_vmcs = true;
534 module_param(enlightened_vmcs, bool, 0444);
535 
hv_enable_l2_tlb_flush(struct kvm_vcpu * vcpu)536 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
537 {
538 	struct hv_enlightened_vmcs *evmcs;
539 	hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu);
540 
541 	if (partition_assist_page == INVALID_PAGE)
542 		return -ENOMEM;
543 
544 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
545 
546 	evmcs->partition_assist_page = partition_assist_page;
547 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
548 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
549 
550 	return 0;
551 }
552 
hv_init_evmcs(void)553 static __init void hv_init_evmcs(void)
554 {
555 	int cpu;
556 
557 	if (!enlightened_vmcs)
558 		return;
559 
560 	/*
561 	 * Enlightened VMCS usage should be recommended and the host needs
562 	 * to support eVMCS v1 or above.
563 	 */
564 	if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
565 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
566 	     KVM_EVMCS_VERSION) {
567 
568 		/* Check that we have assist pages on all online CPUs */
569 		for_each_online_cpu(cpu) {
570 			if (!hv_get_vp_assist_page(cpu)) {
571 				enlightened_vmcs = false;
572 				break;
573 			}
574 		}
575 
576 		if (enlightened_vmcs) {
577 			pr_info("Using Hyper-V Enlightened VMCS\n");
578 			static_branch_enable(&__kvm_is_using_evmcs);
579 		}
580 
581 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
582 			vt_x86_ops.enable_l2_tlb_flush
583 				= hv_enable_l2_tlb_flush;
584 	} else {
585 		enlightened_vmcs = false;
586 	}
587 }
588 
hv_reset_evmcs(void)589 static void hv_reset_evmcs(void)
590 {
591 	struct hv_vp_assist_page *vp_ap;
592 
593 	if (!kvm_is_using_evmcs())
594 		return;
595 
596 	/*
597 	 * KVM should enable eVMCS if and only if all CPUs have a VP assist
598 	 * page, and should reject CPU onlining if eVMCS is enabled the CPU
599 	 * doesn't have a VP assist page allocated.
600 	 */
601 	vp_ap = hv_get_vp_assist_page(smp_processor_id());
602 	if (WARN_ON_ONCE(!vp_ap))
603 		return;
604 
605 	/*
606 	 * Reset everything to support using non-enlightened VMCS access later
607 	 * (e.g. when we reload the module with enlightened_vmcs=0)
608 	 */
609 	vp_ap->nested_control.features.directhypercall = 0;
610 	vp_ap->current_nested_vmcs = 0;
611 	vp_ap->enlighten_vmentry = 0;
612 }
613 
614 #else /* IS_ENABLED(CONFIG_HYPERV) */
hv_init_evmcs(void)615 static void hv_init_evmcs(void) {}
hv_reset_evmcs(void)616 static void hv_reset_evmcs(void) {}
617 #endif /* IS_ENABLED(CONFIG_HYPERV) */
618 
619 /*
620  * Comment's format: document - errata name - stepping - processor name.
621  * Refer from
622  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
623  */
624 static u32 vmx_preemption_cpu_tfms[] = {
625 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
626 0x000206E6,
627 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
628 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
629 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
630 0x00020652,
631 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
632 0x00020655,
633 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
634 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
635 /*
636  * 320767.pdf - AAP86  - B1 -
637  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
638  */
639 0x000106E5,
640 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
641 0x000106A0,
642 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
643 0x000106A1,
644 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
645 0x000106A4,
646  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
647  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
648  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
649 0x000106A5,
650  /* Xeon E3-1220 V2 */
651 0x000306A8,
652 };
653 
cpu_has_broken_vmx_preemption_timer(void)654 static inline bool cpu_has_broken_vmx_preemption_timer(void)
655 {
656 	u32 eax = cpuid_eax(0x00000001), i;
657 
658 	/* Clear the reserved bits */
659 	eax &= ~(0x3U << 14 | 0xfU << 28);
660 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
661 		if (eax == vmx_preemption_cpu_tfms[i])
662 			return true;
663 
664 	return false;
665 }
666 
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)667 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
668 {
669 	return flexpriority_enabled && lapic_in_kernel(vcpu);
670 }
671 
vmx_get_passthrough_msr_slot(u32 msr)672 static int vmx_get_passthrough_msr_slot(u32 msr)
673 {
674 	int i;
675 
676 	switch (msr) {
677 	case 0x800 ... 0x8ff:
678 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
679 		return -ENOENT;
680 	case MSR_IA32_RTIT_STATUS:
681 	case MSR_IA32_RTIT_OUTPUT_BASE:
682 	case MSR_IA32_RTIT_OUTPUT_MASK:
683 	case MSR_IA32_RTIT_CR3_MATCH:
684 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
685 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
686 	case MSR_LBR_SELECT:
687 	case MSR_LBR_TOS:
688 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
689 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
690 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
691 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
692 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
693 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
694 		return -ENOENT;
695 	}
696 
697 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
698 		if (vmx_possible_passthrough_msrs[i] == msr)
699 			return i;
700 	}
701 
702 	WARN(1, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
703 	return -ENOENT;
704 }
705 
vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)706 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
707 {
708 	int i;
709 
710 	i = kvm_find_user_return_msr(msr);
711 	if (i >= 0)
712 		return &vmx->guest_uret_msrs[i];
713 	return NULL;
714 }
715 
vmx_set_guest_uret_msr(struct vcpu_vmx * vmx,struct vmx_uret_msr * msr,u64 data)716 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
717 				  struct vmx_uret_msr *msr, u64 data)
718 {
719 	unsigned int slot = msr - vmx->guest_uret_msrs;
720 	int ret = 0;
721 
722 	if (msr->load_into_hardware) {
723 		preempt_disable();
724 		ret = kvm_set_user_return_msr(slot, data, msr->mask);
725 		preempt_enable();
726 	}
727 	if (!ret)
728 		msr->data = data;
729 	return ret;
730 }
731 
732 /*
733  * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
734  *
735  * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
736  * atomically track post-VMXON state, e.g. this may be called in NMI context.
737  * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
738  * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
739  * magically in RM, VM86, compat mode, or at CPL>0.
740  */
kvm_cpu_vmxoff(void)741 static int kvm_cpu_vmxoff(void)
742 {
743 	asm goto("1: vmxoff\n\t"
744 			  _ASM_EXTABLE(1b, %l[fault])
745 			  ::: "cc", "memory" : fault);
746 
747 	cr4_clear_bits(X86_CR4_VMXE);
748 	return 0;
749 
750 fault:
751 	cr4_clear_bits(X86_CR4_VMXE);
752 	return -EIO;
753 }
754 
vmx_emergency_disable_virtualization_cpu(void)755 void vmx_emergency_disable_virtualization_cpu(void)
756 {
757 	int cpu = raw_smp_processor_id();
758 	struct loaded_vmcs *v;
759 
760 	kvm_rebooting = true;
761 
762 	/*
763 	 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
764 	 * set in task context.  If this races with VMX is disabled by an NMI,
765 	 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
766 	 * kvm_rebooting set.
767 	 */
768 	if (!(__read_cr4() & X86_CR4_VMXE))
769 		return;
770 
771 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
772 			    loaded_vmcss_on_cpu_link)
773 		vmcs_clear(v->vmcs);
774 
775 	kvm_cpu_vmxoff();
776 }
777 
__loaded_vmcs_clear(void * arg)778 static void __loaded_vmcs_clear(void *arg)
779 {
780 	struct loaded_vmcs *loaded_vmcs = arg;
781 	int cpu = raw_smp_processor_id();
782 
783 	if (loaded_vmcs->cpu != cpu)
784 		return; /* vcpu migration can race with cpu offline */
785 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
786 		per_cpu(current_vmcs, cpu) = NULL;
787 
788 	vmcs_clear(loaded_vmcs->vmcs);
789 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
790 		vmcs_clear(loaded_vmcs->shadow_vmcs);
791 
792 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
793 
794 	/*
795 	 * Ensure all writes to loaded_vmcs, including deleting it from its
796 	 * current percpu list, complete before setting loaded_vmcs->cpu to
797 	 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
798 	 * and add loaded_vmcs to its percpu list before it's deleted from this
799 	 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
800 	 */
801 	smp_wmb();
802 
803 	loaded_vmcs->cpu = -1;
804 	loaded_vmcs->launched = 0;
805 }
806 
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)807 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
808 {
809 	int cpu = loaded_vmcs->cpu;
810 
811 	if (cpu != -1)
812 		smp_call_function_single(cpu,
813 			 __loaded_vmcs_clear, loaded_vmcs, 1);
814 }
815 
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)816 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
817 				       unsigned field)
818 {
819 	bool ret;
820 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
821 
822 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
823 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
824 		vmx->segment_cache.bitmask = 0;
825 	}
826 	ret = vmx->segment_cache.bitmask & mask;
827 	vmx->segment_cache.bitmask |= mask;
828 	return ret;
829 }
830 
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)831 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
832 {
833 	u16 *p = &vmx->segment_cache.seg[seg].selector;
834 
835 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
836 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
837 	return *p;
838 }
839 
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)840 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
841 {
842 	ulong *p = &vmx->segment_cache.seg[seg].base;
843 
844 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
845 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
846 	return *p;
847 }
848 
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)849 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
850 {
851 	u32 *p = &vmx->segment_cache.seg[seg].limit;
852 
853 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
854 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
855 	return *p;
856 }
857 
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)858 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
859 {
860 	u32 *p = &vmx->segment_cache.seg[seg].ar;
861 
862 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
863 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
864 	return *p;
865 }
866 
vmx_update_exception_bitmap(struct kvm_vcpu * vcpu)867 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
868 {
869 	u32 eb;
870 
871 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
872 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
873 	/*
874 	 * #VE isn't used for VMX.  To test against unexpected changes
875 	 * related to #VE for VMX, intercept unexpected #VE and warn on it.
876 	 */
877 	if (IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
878 		eb |= 1u << VE_VECTOR;
879 	/*
880 	 * Guest access to VMware backdoor ports could legitimately
881 	 * trigger #GP because of TSS I/O permission bitmap.
882 	 * We intercept those #GP and allow access to them anyway
883 	 * as VMware does.
884 	 */
885 	if (enable_vmware_backdoor)
886 		eb |= (1u << GP_VECTOR);
887 	if ((vcpu->guest_debug &
888 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
889 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
890 		eb |= 1u << BP_VECTOR;
891 	if (to_vmx(vcpu)->rmode.vm86_active)
892 		eb = ~0;
893 	if (!vmx_need_pf_intercept(vcpu))
894 		eb &= ~(1u << PF_VECTOR);
895 
896 	/* When we are running a nested L2 guest and L1 specified for it a
897 	 * certain exception bitmap, we must trap the same exceptions and pass
898 	 * them to L1. When running L2, we will only handle the exceptions
899 	 * specified above if L1 did not want them.
900 	 */
901 	if (is_guest_mode(vcpu))
902 		eb |= get_vmcs12(vcpu)->exception_bitmap;
903 	else {
904 		int mask = 0, match = 0;
905 
906 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
907 			/*
908 			 * If EPT is enabled, #PF is currently only intercepted
909 			 * if MAXPHYADDR is smaller on the guest than on the
910 			 * host.  In that case we only care about present,
911 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
912 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
913 			 */
914 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
915 			match = PFERR_PRESENT_MASK;
916 		}
917 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
918 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
919 	}
920 
921 	/*
922 	 * Disabling xfd interception indicates that dynamic xfeatures
923 	 * might be used in the guest. Always trap #NM in this case
924 	 * to save guest xfd_err timely.
925 	 */
926 	if (vcpu->arch.xfd_no_write_intercept)
927 		eb |= (1u << NM_VECTOR);
928 
929 	vmcs_write32(EXCEPTION_BITMAP, eb);
930 }
931 
932 /*
933  * Check if MSR is intercepted for currently loaded MSR bitmap.
934  */
msr_write_intercepted(struct vcpu_vmx * vmx,u32 msr)935 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
936 {
937 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
938 		return true;
939 
940 	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
941 }
942 
__vmx_vcpu_run_flags(struct vcpu_vmx * vmx)943 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
944 {
945 	unsigned int flags = 0;
946 
947 	if (vmx->loaded_vmcs->launched)
948 		flags |= VMX_RUN_VMRESUME;
949 
950 	/*
951 	 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
952 	 * to change it directly without causing a vmexit.  In that case read
953 	 * it after vmexit and store it in vmx->spec_ctrl.
954 	 */
955 	if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
956 		flags |= VMX_RUN_SAVE_SPEC_CTRL;
957 
958 	return flags;
959 }
960 
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)961 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
962 		unsigned long entry, unsigned long exit)
963 {
964 	vm_entry_controls_clearbit(vmx, entry);
965 	vm_exit_controls_clearbit(vmx, exit);
966 }
967 
vmx_find_loadstore_msr_slot(struct vmx_msrs * m,u32 msr)968 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
969 {
970 	unsigned int i;
971 
972 	for (i = 0; i < m->nr; ++i) {
973 		if (m->val[i].index == msr)
974 			return i;
975 	}
976 	return -ENOENT;
977 }
978 
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)979 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
980 {
981 	int i;
982 	struct msr_autoload *m = &vmx->msr_autoload;
983 
984 	switch (msr) {
985 	case MSR_EFER:
986 		if (cpu_has_load_ia32_efer()) {
987 			clear_atomic_switch_msr_special(vmx,
988 					VM_ENTRY_LOAD_IA32_EFER,
989 					VM_EXIT_LOAD_IA32_EFER);
990 			return;
991 		}
992 		break;
993 	case MSR_CORE_PERF_GLOBAL_CTRL:
994 		if (cpu_has_load_perf_global_ctrl()) {
995 			clear_atomic_switch_msr_special(vmx,
996 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
997 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
998 			return;
999 		}
1000 		break;
1001 	}
1002 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1003 	if (i < 0)
1004 		goto skip_guest;
1005 	--m->guest.nr;
1006 	m->guest.val[i] = m->guest.val[m->guest.nr];
1007 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1008 
1009 skip_guest:
1010 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
1011 	if (i < 0)
1012 		return;
1013 
1014 	--m->host.nr;
1015 	m->host.val[i] = m->host.val[m->host.nr];
1016 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1017 }
1018 
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)1019 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1020 		unsigned long entry, unsigned long exit,
1021 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1022 		u64 guest_val, u64 host_val)
1023 {
1024 	vmcs_write64(guest_val_vmcs, guest_val);
1025 	if (host_val_vmcs != HOST_IA32_EFER)
1026 		vmcs_write64(host_val_vmcs, host_val);
1027 	vm_entry_controls_setbit(vmx, entry);
1028 	vm_exit_controls_setbit(vmx, exit);
1029 }
1030 
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)1031 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1032 				  u64 guest_val, u64 host_val, bool entry_only)
1033 {
1034 	int i, j = 0;
1035 	struct msr_autoload *m = &vmx->msr_autoload;
1036 
1037 	switch (msr) {
1038 	case MSR_EFER:
1039 		if (cpu_has_load_ia32_efer()) {
1040 			add_atomic_switch_msr_special(vmx,
1041 					VM_ENTRY_LOAD_IA32_EFER,
1042 					VM_EXIT_LOAD_IA32_EFER,
1043 					GUEST_IA32_EFER,
1044 					HOST_IA32_EFER,
1045 					guest_val, host_val);
1046 			return;
1047 		}
1048 		break;
1049 	case MSR_CORE_PERF_GLOBAL_CTRL:
1050 		if (cpu_has_load_perf_global_ctrl()) {
1051 			add_atomic_switch_msr_special(vmx,
1052 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1053 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1054 					GUEST_IA32_PERF_GLOBAL_CTRL,
1055 					HOST_IA32_PERF_GLOBAL_CTRL,
1056 					guest_val, host_val);
1057 			return;
1058 		}
1059 		break;
1060 	case MSR_IA32_PEBS_ENABLE:
1061 		/* PEBS needs a quiescent period after being disabled (to write
1062 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
1063 		 * provide that period, so a CPU could write host's record into
1064 		 * guest's memory.
1065 		 */
1066 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1067 	}
1068 
1069 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1070 	if (!entry_only)
1071 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
1072 
1073 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1074 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1075 		printk_once(KERN_WARNING "Not enough msr switch entries. "
1076 				"Can't add msr %x\n", msr);
1077 		return;
1078 	}
1079 	if (i < 0) {
1080 		i = m->guest.nr++;
1081 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1082 	}
1083 	m->guest.val[i].index = msr;
1084 	m->guest.val[i].value = guest_val;
1085 
1086 	if (entry_only)
1087 		return;
1088 
1089 	if (j < 0) {
1090 		j = m->host.nr++;
1091 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1092 	}
1093 	m->host.val[j].index = msr;
1094 	m->host.val[j].value = host_val;
1095 }
1096 
update_transition_efer(struct vcpu_vmx * vmx)1097 static bool update_transition_efer(struct vcpu_vmx *vmx)
1098 {
1099 	u64 guest_efer = vmx->vcpu.arch.efer;
1100 	u64 ignore_bits = 0;
1101 	int i;
1102 
1103 	/* Shadow paging assumes NX to be available.  */
1104 	if (!enable_ept)
1105 		guest_efer |= EFER_NX;
1106 
1107 	/*
1108 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1109 	 */
1110 	ignore_bits |= EFER_SCE;
1111 #ifdef CONFIG_X86_64
1112 	ignore_bits |= EFER_LMA | EFER_LME;
1113 	/* SCE is meaningful only in long mode on Intel */
1114 	if (guest_efer & EFER_LMA)
1115 		ignore_bits &= ~(u64)EFER_SCE;
1116 #endif
1117 
1118 	/*
1119 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1120 	 * On CPUs that support "load IA32_EFER", always switch EFER
1121 	 * atomically, since it's faster than switching it manually.
1122 	 */
1123 	if (cpu_has_load_ia32_efer() ||
1124 	    (enable_ept && ((vmx->vcpu.arch.efer ^ kvm_host.efer) & EFER_NX))) {
1125 		if (!(guest_efer & EFER_LMA))
1126 			guest_efer &= ~EFER_LME;
1127 		if (guest_efer != kvm_host.efer)
1128 			add_atomic_switch_msr(vmx, MSR_EFER,
1129 					      guest_efer, kvm_host.efer, false);
1130 		else
1131 			clear_atomic_switch_msr(vmx, MSR_EFER);
1132 		return false;
1133 	}
1134 
1135 	i = kvm_find_user_return_msr(MSR_EFER);
1136 	if (i < 0)
1137 		return false;
1138 
1139 	clear_atomic_switch_msr(vmx, MSR_EFER);
1140 
1141 	guest_efer &= ~ignore_bits;
1142 	guest_efer |= kvm_host.efer & ignore_bits;
1143 
1144 	vmx->guest_uret_msrs[i].data = guest_efer;
1145 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1146 
1147 	return true;
1148 }
1149 
1150 #ifdef CONFIG_X86_32
1151 /*
1152  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1153  * VMCS rather than the segment table.  KVM uses this helper to figure
1154  * out the current bases to poke them into the VMCS before entry.
1155  */
segment_base(u16 selector)1156 static unsigned long segment_base(u16 selector)
1157 {
1158 	struct desc_struct *table;
1159 	unsigned long v;
1160 
1161 	if (!(selector & ~SEGMENT_RPL_MASK))
1162 		return 0;
1163 
1164 	table = get_current_gdt_ro();
1165 
1166 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1167 		u16 ldt_selector = kvm_read_ldt();
1168 
1169 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1170 			return 0;
1171 
1172 		table = (struct desc_struct *)segment_base(ldt_selector);
1173 	}
1174 	v = get_desc_base(&table[selector >> 3]);
1175 	return v;
1176 }
1177 #endif
1178 
pt_can_write_msr(struct vcpu_vmx * vmx)1179 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1180 {
1181 	return vmx_pt_mode_is_host_guest() &&
1182 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1183 }
1184 
pt_output_base_valid(struct kvm_vcpu * vcpu,u64 base)1185 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1186 {
1187 	/* The base must be 128-byte aligned and a legal physical address. */
1188 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1189 }
1190 
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1191 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1192 {
1193 	u32 i;
1194 
1195 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1196 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1197 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1198 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1199 	for (i = 0; i < addr_range; i++) {
1200 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1201 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1202 	}
1203 }
1204 
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1205 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1206 {
1207 	u32 i;
1208 
1209 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1210 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1211 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1212 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1213 	for (i = 0; i < addr_range; i++) {
1214 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1215 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1216 	}
1217 }
1218 
pt_guest_enter(struct vcpu_vmx * vmx)1219 static void pt_guest_enter(struct vcpu_vmx *vmx)
1220 {
1221 	if (vmx_pt_mode_is_system())
1222 		return;
1223 
1224 	/*
1225 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1226 	 * Save host state before VM entry.
1227 	 */
1228 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1229 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1230 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1231 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1232 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1233 	}
1234 }
1235 
pt_guest_exit(struct vcpu_vmx * vmx)1236 static void pt_guest_exit(struct vcpu_vmx *vmx)
1237 {
1238 	if (vmx_pt_mode_is_system())
1239 		return;
1240 
1241 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1242 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1243 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1244 	}
1245 
1246 	/*
1247 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1248 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1249 	 */
1250 	if (vmx->pt_desc.host.ctl)
1251 		wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1252 }
1253 
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1254 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1255 			unsigned long fs_base, unsigned long gs_base)
1256 {
1257 	if (unlikely(fs_sel != host->fs_sel)) {
1258 		if (!(fs_sel & 7))
1259 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1260 		else
1261 			vmcs_write16(HOST_FS_SELECTOR, 0);
1262 		host->fs_sel = fs_sel;
1263 	}
1264 	if (unlikely(gs_sel != host->gs_sel)) {
1265 		if (!(gs_sel & 7))
1266 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1267 		else
1268 			vmcs_write16(HOST_GS_SELECTOR, 0);
1269 		host->gs_sel = gs_sel;
1270 	}
1271 	if (unlikely(fs_base != host->fs_base)) {
1272 		vmcs_writel(HOST_FS_BASE, fs_base);
1273 		host->fs_base = fs_base;
1274 	}
1275 	if (unlikely(gs_base != host->gs_base)) {
1276 		vmcs_writel(HOST_GS_BASE, gs_base);
1277 		host->gs_base = gs_base;
1278 	}
1279 }
1280 
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1281 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1282 {
1283 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1284 	struct vmcs_host_state *host_state;
1285 #ifdef CONFIG_X86_64
1286 	int cpu = raw_smp_processor_id();
1287 #endif
1288 	unsigned long fs_base, gs_base;
1289 	u16 fs_sel, gs_sel;
1290 	int i;
1291 
1292 	/*
1293 	 * Note that guest MSRs to be saved/restored can also be changed
1294 	 * when guest state is loaded. This happens when guest transitions
1295 	 * to/from long-mode by setting MSR_EFER.LMA.
1296 	 */
1297 	if (!vmx->guest_uret_msrs_loaded) {
1298 		vmx->guest_uret_msrs_loaded = true;
1299 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1300 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1301 				continue;
1302 
1303 			kvm_set_user_return_msr(i,
1304 						vmx->guest_uret_msrs[i].data,
1305 						vmx->guest_uret_msrs[i].mask);
1306 		}
1307 	}
1308 
1309 	if (vmx->nested.need_vmcs12_to_shadow_sync)
1310 		nested_sync_vmcs12_to_shadow(vcpu);
1311 
1312 	if (vmx->guest_state_loaded)
1313 		return;
1314 
1315 	host_state = &vmx->loaded_vmcs->host_state;
1316 
1317 	/*
1318 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1319 	 * allow segment selectors with cpl > 0 or ti == 1.
1320 	 */
1321 	host_state->ldt_sel = kvm_read_ldt();
1322 
1323 #ifdef CONFIG_X86_64
1324 	savesegment(ds, host_state->ds_sel);
1325 	savesegment(es, host_state->es_sel);
1326 
1327 	gs_base = cpu_kernelmode_gs_base(cpu);
1328 	if (likely(is_64bit_mm(current->mm))) {
1329 		current_save_fsgs();
1330 		fs_sel = current->thread.fsindex;
1331 		gs_sel = current->thread.gsindex;
1332 		fs_base = current->thread.fsbase;
1333 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1334 	} else {
1335 		savesegment(fs, fs_sel);
1336 		savesegment(gs, gs_sel);
1337 		fs_base = read_msr(MSR_FS_BASE);
1338 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1339 	}
1340 
1341 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1342 #else
1343 	savesegment(fs, fs_sel);
1344 	savesegment(gs, gs_sel);
1345 	fs_base = segment_base(fs_sel);
1346 	gs_base = segment_base(gs_sel);
1347 #endif
1348 
1349 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1350 	vmx->guest_state_loaded = true;
1351 }
1352 
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1353 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1354 {
1355 	struct vmcs_host_state *host_state;
1356 
1357 	if (!vmx->guest_state_loaded)
1358 		return;
1359 
1360 	host_state = &vmx->loaded_vmcs->host_state;
1361 
1362 	++vmx->vcpu.stat.host_state_reload;
1363 
1364 #ifdef CONFIG_X86_64
1365 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1366 #endif
1367 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1368 		kvm_load_ldt(host_state->ldt_sel);
1369 #ifdef CONFIG_X86_64
1370 		load_gs_index(host_state->gs_sel);
1371 #else
1372 		loadsegment(gs, host_state->gs_sel);
1373 #endif
1374 	}
1375 	if (host_state->fs_sel & 7)
1376 		loadsegment(fs, host_state->fs_sel);
1377 #ifdef CONFIG_X86_64
1378 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1379 		loadsegment(ds, host_state->ds_sel);
1380 		loadsegment(es, host_state->es_sel);
1381 	}
1382 #endif
1383 	invalidate_tss_limit();
1384 #ifdef CONFIG_X86_64
1385 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1386 #endif
1387 	load_fixmap_gdt(raw_smp_processor_id());
1388 	vmx->guest_state_loaded = false;
1389 	vmx->guest_uret_msrs_loaded = false;
1390 }
1391 
1392 #ifdef CONFIG_X86_64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1393 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1394 {
1395 	preempt_disable();
1396 	if (vmx->guest_state_loaded)
1397 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1398 	preempt_enable();
1399 	return vmx->msr_guest_kernel_gs_base;
1400 }
1401 
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1402 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1403 {
1404 	preempt_disable();
1405 	if (vmx->guest_state_loaded)
1406 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1407 	preempt_enable();
1408 	vmx->msr_guest_kernel_gs_base = data;
1409 }
1410 #endif
1411 
grow_ple_window(struct kvm_vcpu * vcpu)1412 static void grow_ple_window(struct kvm_vcpu *vcpu)
1413 {
1414 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1415 	unsigned int old = vmx->ple_window;
1416 
1417 	vmx->ple_window = __grow_ple_window(old, ple_window,
1418 					    ple_window_grow,
1419 					    ple_window_max);
1420 
1421 	if (vmx->ple_window != old) {
1422 		vmx->ple_window_dirty = true;
1423 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1424 					    vmx->ple_window, old);
1425 	}
1426 }
1427 
shrink_ple_window(struct kvm_vcpu * vcpu)1428 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1429 {
1430 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1431 	unsigned int old = vmx->ple_window;
1432 
1433 	vmx->ple_window = __shrink_ple_window(old, ple_window,
1434 					      ple_window_shrink,
1435 					      ple_window);
1436 
1437 	if (vmx->ple_window != old) {
1438 		vmx->ple_window_dirty = true;
1439 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1440 					    vmx->ple_window, old);
1441 	}
1442 }
1443 
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu,struct loaded_vmcs * buddy)1444 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1445 			struct loaded_vmcs *buddy)
1446 {
1447 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1448 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1449 	struct vmcs *prev;
1450 
1451 	if (!already_loaded) {
1452 		loaded_vmcs_clear(vmx->loaded_vmcs);
1453 		local_irq_disable();
1454 
1455 		/*
1456 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1457 		 * this cpu's percpu list, otherwise it may not yet be deleted
1458 		 * from its previous cpu's percpu list.  Pairs with the
1459 		 * smb_wmb() in __loaded_vmcs_clear().
1460 		 */
1461 		smp_rmb();
1462 
1463 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1464 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1465 		local_irq_enable();
1466 	}
1467 
1468 	prev = per_cpu(current_vmcs, cpu);
1469 	if (prev != vmx->loaded_vmcs->vmcs) {
1470 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1471 		vmcs_load(vmx->loaded_vmcs->vmcs);
1472 
1473 		/*
1474 		 * No indirect branch prediction barrier needed when switching
1475 		 * the active VMCS within a vCPU, unless IBRS is advertised to
1476 		 * the vCPU.  To minimize the number of IBPBs executed, KVM
1477 		 * performs IBPB on nested VM-Exit (a single nested transition
1478 		 * may switch the active VMCS multiple times).
1479 		 */
1480 		if (static_branch_likely(&switch_vcpu_ibpb) &&
1481 		    (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)))
1482 			indirect_branch_prediction_barrier();
1483 	}
1484 
1485 	if (!already_loaded) {
1486 		void *gdt = get_current_gdt_ro();
1487 
1488 		/*
1489 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1490 		 * TLB entries from its previous association with the vCPU.
1491 		 */
1492 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1493 
1494 		/*
1495 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1496 		 * processors.  See 22.2.4.
1497 		 */
1498 		vmcs_writel(HOST_TR_BASE,
1499 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1500 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1501 
1502 		if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1503 			/* 22.2.3 */
1504 			vmcs_writel(HOST_IA32_SYSENTER_ESP,
1505 				    (unsigned long)(cpu_entry_stack(cpu) + 1));
1506 		}
1507 
1508 		vmx->loaded_vmcs->cpu = cpu;
1509 	}
1510 }
1511 
1512 /*
1513  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1514  * vcpu mutex is already taken.
1515  */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1516 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1517 {
1518 	if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1519 		shrink_ple_window(vcpu);
1520 
1521 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1522 
1523 	vmx_vcpu_pi_load(vcpu, cpu);
1524 }
1525 
vmx_vcpu_put(struct kvm_vcpu * vcpu)1526 void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1527 {
1528 	vmx_vcpu_pi_put(vcpu);
1529 
1530 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1531 }
1532 
vmx_emulation_required(struct kvm_vcpu * vcpu)1533 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1534 {
1535 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1536 }
1537 
vmx_get_rflags(struct kvm_vcpu * vcpu)1538 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1539 {
1540 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1541 	unsigned long rflags, save_rflags;
1542 
1543 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1544 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1545 		rflags = vmcs_readl(GUEST_RFLAGS);
1546 		if (vmx->rmode.vm86_active) {
1547 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1548 			save_rflags = vmx->rmode.save_rflags;
1549 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1550 		}
1551 		vmx->rflags = rflags;
1552 	}
1553 	return vmx->rflags;
1554 }
1555 
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1556 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1557 {
1558 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1559 	unsigned long old_rflags;
1560 
1561 	/*
1562 	 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1563 	 * is an unrestricted guest in order to mark L2 as needing emulation
1564 	 * if L1 runs L2 as a restricted guest.
1565 	 */
1566 	if (is_unrestricted_guest(vcpu)) {
1567 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1568 		vmx->rflags = rflags;
1569 		vmcs_writel(GUEST_RFLAGS, rflags);
1570 		return;
1571 	}
1572 
1573 	old_rflags = vmx_get_rflags(vcpu);
1574 	vmx->rflags = rflags;
1575 	if (vmx->rmode.vm86_active) {
1576 		vmx->rmode.save_rflags = rflags;
1577 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1578 	}
1579 	vmcs_writel(GUEST_RFLAGS, rflags);
1580 
1581 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1582 		vmx->emulation_required = vmx_emulation_required(vcpu);
1583 }
1584 
vmx_get_if_flag(struct kvm_vcpu * vcpu)1585 bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1586 {
1587 	return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1588 }
1589 
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1590 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1591 {
1592 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1593 	int ret = 0;
1594 
1595 	if (interruptibility & GUEST_INTR_STATE_STI)
1596 		ret |= KVM_X86_SHADOW_INT_STI;
1597 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1598 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1599 
1600 	return ret;
1601 }
1602 
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1603 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1604 {
1605 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1606 	u32 interruptibility = interruptibility_old;
1607 
1608 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1609 
1610 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1611 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1612 	else if (mask & KVM_X86_SHADOW_INT_STI)
1613 		interruptibility |= GUEST_INTR_STATE_STI;
1614 
1615 	if ((interruptibility != interruptibility_old))
1616 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1617 }
1618 
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1619 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1620 {
1621 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1622 	unsigned long value;
1623 
1624 	/*
1625 	 * Any MSR write that attempts to change bits marked reserved will
1626 	 * case a #GP fault.
1627 	 */
1628 	if (data & vmx->pt_desc.ctl_bitmask)
1629 		return 1;
1630 
1631 	/*
1632 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1633 	 * result in a #GP unless the same write also clears TraceEn.
1634 	 */
1635 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1636 	    (data & RTIT_CTL_TRACEEN) &&
1637 	    data != vmx->pt_desc.guest.ctl)
1638 		return 1;
1639 
1640 	/*
1641 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1642 	 * and FabricEn would cause #GP, if
1643 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1644 	 */
1645 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1646 		!(data & RTIT_CTL_FABRIC_EN) &&
1647 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1648 					PT_CAP_single_range_output))
1649 		return 1;
1650 
1651 	/*
1652 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1653 	 * utilize encodings marked reserved will cause a #GP fault.
1654 	 */
1655 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1656 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1657 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1658 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1659 		return 1;
1660 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1661 						PT_CAP_cycle_thresholds);
1662 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1663 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1664 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1665 		return 1;
1666 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1667 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1668 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1669 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1670 		return 1;
1671 
1672 	/*
1673 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1674 	 * cause a #GP fault.
1675 	 */
1676 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1677 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1678 		return 1;
1679 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1680 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1681 		return 1;
1682 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1683 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1684 		return 1;
1685 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1686 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1687 		return 1;
1688 
1689 	return 0;
1690 }
1691 
vmx_check_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)1692 int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1693 				  void *insn, int insn_len)
1694 {
1695 	/*
1696 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1697 	 * not point at the failing instruction, and even if it did, the code
1698 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1699 	 * so that guest userspace can't DoS the guest simply by triggering
1700 	 * emulation (enclaves are CPL3 only).
1701 	 */
1702 	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1703 		kvm_queue_exception(vcpu, UD_VECTOR);
1704 		return X86EMUL_PROPAGATE_FAULT;
1705 	}
1706 
1707 	/* Check that emulation is possible during event vectoring */
1708 	if ((to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
1709 	    !kvm_can_emulate_event_vectoring(emul_type))
1710 		return X86EMUL_UNHANDLEABLE_VECTORING;
1711 
1712 	return X86EMUL_CONTINUE;
1713 }
1714 
skip_emulated_instruction(struct kvm_vcpu * vcpu)1715 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1716 {
1717 	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1718 	unsigned long rip, orig_rip;
1719 	u32 instr_len;
1720 
1721 	/*
1722 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1723 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1724 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1725 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1726 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1727 	 * i.e. we end up advancing IP with some random value.
1728 	 */
1729 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1730 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1731 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1732 
1733 		/*
1734 		 * Emulating an enclave's instructions isn't supported as KVM
1735 		 * cannot access the enclave's memory or its true RIP, e.g. the
1736 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1737 		 * the RIP that actually triggered the VM-Exit.  But, because
1738 		 * most instructions that cause VM-Exit will #UD in an enclave,
1739 		 * most instruction-based VM-Exits simply do not occur.
1740 		 *
1741 		 * There are a few exceptions, notably the debug instructions
1742 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1743 		 * and generate #DB/#BP as expected, which KVM might intercept.
1744 		 * But again, the CPU does the dirty work and saves an instr
1745 		 * length of zero so VMMs don't shoot themselves in the foot.
1746 		 * WARN if KVM tries to skip a non-zero length instruction on
1747 		 * a VM-Exit from an enclave.
1748 		 */
1749 		if (!instr_len)
1750 			goto rip_updated;
1751 
1752 		WARN_ONCE(exit_reason.enclave_mode,
1753 			  "skipping instruction after SGX enclave VM-Exit");
1754 
1755 		orig_rip = kvm_rip_read(vcpu);
1756 		rip = orig_rip + instr_len;
1757 #ifdef CONFIG_X86_64
1758 		/*
1759 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1760 		 * mode, but just finding out that we are in 64-bit mode is
1761 		 * quite expensive.  Only do it if there was a carry.
1762 		 */
1763 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1764 			rip = (u32)rip;
1765 #endif
1766 		kvm_rip_write(vcpu, rip);
1767 	} else {
1768 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1769 			return 0;
1770 	}
1771 
1772 rip_updated:
1773 	/* skipping an emulated instruction also counts */
1774 	vmx_set_interrupt_shadow(vcpu, 0);
1775 
1776 	return 1;
1777 }
1778 
1779 /*
1780  * Recognizes a pending MTF VM-exit and records the nested state for later
1781  * delivery.
1782  */
vmx_update_emulated_instruction(struct kvm_vcpu * vcpu)1783 void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1784 {
1785 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1786 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1787 
1788 	if (!is_guest_mode(vcpu))
1789 		return;
1790 
1791 	/*
1792 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1793 	 * TSS T-bit traps and ICEBP (INT1).  KVM doesn't emulate T-bit traps
1794 	 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1795 	 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1796 	 * as ICEBP is higher priority than both.  As instruction emulation is
1797 	 * completed at this point (i.e. KVM is at the instruction boundary),
1798 	 * any #DB exception pending delivery must be a debug-trap of lower
1799 	 * priority than MTF.  Record the pending MTF state to be delivered in
1800 	 * vmx_check_nested_events().
1801 	 */
1802 	if (nested_cpu_has_mtf(vmcs12) &&
1803 	    (!vcpu->arch.exception.pending ||
1804 	     vcpu->arch.exception.vector == DB_VECTOR) &&
1805 	    (!vcpu->arch.exception_vmexit.pending ||
1806 	     vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1807 		vmx->nested.mtf_pending = true;
1808 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1809 	} else {
1810 		vmx->nested.mtf_pending = false;
1811 	}
1812 }
1813 
vmx_skip_emulated_instruction(struct kvm_vcpu * vcpu)1814 int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1815 {
1816 	vmx_update_emulated_instruction(vcpu);
1817 	return skip_emulated_instruction(vcpu);
1818 }
1819 
vmx_clear_hlt(struct kvm_vcpu * vcpu)1820 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1821 {
1822 	/*
1823 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1824 	 * explicitly skip the instruction because if the HLT state is set,
1825 	 * then the instruction is already executing and RIP has already been
1826 	 * advanced.
1827 	 */
1828 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1829 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1830 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1831 }
1832 
vmx_inject_exception(struct kvm_vcpu * vcpu)1833 void vmx_inject_exception(struct kvm_vcpu *vcpu)
1834 {
1835 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
1836 	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1837 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1838 
1839 	kvm_deliver_exception_payload(vcpu, ex);
1840 
1841 	if (ex->has_error_code) {
1842 		/*
1843 		 * Despite the error code being architecturally defined as 32
1844 		 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1845 		 * VMX don't actually supporting setting bits 31:16.  Hardware
1846 		 * will (should) never provide a bogus error code, but AMD CPUs
1847 		 * do generate error codes with bits 31:16 set, and so KVM's
1848 		 * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1849 		 * the upper bits to avoid VM-Fail, losing information that
1850 		 * doesn't really exist is preferable to killing the VM.
1851 		 */
1852 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1853 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1854 	}
1855 
1856 	if (vmx->rmode.vm86_active) {
1857 		int inc_eip = 0;
1858 		if (kvm_exception_is_soft(ex->vector))
1859 			inc_eip = vcpu->arch.event_exit_inst_len;
1860 		kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1861 		return;
1862 	}
1863 
1864 	WARN_ON_ONCE(vmx->emulation_required);
1865 
1866 	if (kvm_exception_is_soft(ex->vector)) {
1867 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1868 			     vmx->vcpu.arch.event_exit_inst_len);
1869 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1870 	} else
1871 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1872 
1873 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1874 
1875 	vmx_clear_hlt(vcpu);
1876 }
1877 
vmx_setup_uret_msr(struct vcpu_vmx * vmx,unsigned int msr,bool load_into_hardware)1878 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1879 			       bool load_into_hardware)
1880 {
1881 	struct vmx_uret_msr *uret_msr;
1882 
1883 	uret_msr = vmx_find_uret_msr(vmx, msr);
1884 	if (!uret_msr)
1885 		return;
1886 
1887 	uret_msr->load_into_hardware = load_into_hardware;
1888 }
1889 
1890 /*
1891  * Configuring user return MSRs to automatically save, load, and restore MSRs
1892  * that need to be shoved into hardware when running the guest.  Note, omitting
1893  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1894  * loaded into hardware when running the guest.
1895  */
vmx_setup_uret_msrs(struct vcpu_vmx * vmx)1896 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1897 {
1898 #ifdef CONFIG_X86_64
1899 	bool load_syscall_msrs;
1900 
1901 	/*
1902 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1903 	 * when EFER.SCE is set.
1904 	 */
1905 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1906 			    (vmx->vcpu.arch.efer & EFER_SCE);
1907 
1908 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1909 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1910 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1911 #endif
1912 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1913 
1914 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1915 			   guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1916 			   guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDPID));
1917 
1918 	/*
1919 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1920 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1921 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1922 	 * so that TSX remains always disabled.
1923 	 */
1924 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1925 
1926 	/*
1927 	 * The set of MSRs to load may have changed, reload MSRs before the
1928 	 * next VM-Enter.
1929 	 */
1930 	vmx->guest_uret_msrs_loaded = false;
1931 }
1932 
vmx_get_l2_tsc_offset(struct kvm_vcpu * vcpu)1933 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1934 {
1935 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1936 
1937 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1938 		return vmcs12->tsc_offset;
1939 
1940 	return 0;
1941 }
1942 
vmx_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)1943 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1944 {
1945 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1946 
1947 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1948 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1949 		return vmcs12->tsc_multiplier;
1950 
1951 	return kvm_caps.default_tsc_scaling_ratio;
1952 }
1953 
vmx_write_tsc_offset(struct kvm_vcpu * vcpu)1954 void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1955 {
1956 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1957 }
1958 
vmx_write_tsc_multiplier(struct kvm_vcpu * vcpu)1959 void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1960 {
1961 	vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1962 }
1963 
1964 /*
1965  * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1966  * guest CPUID.  Note, KVM allows userspace to set "VMX in SMX" to maintain
1967  * backwards compatibility even though KVM doesn't support emulating SMX.  And
1968  * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1969  * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1970  */
1971 #define KVM_SUPPORTED_FEATURE_CONTROL  (FEAT_CTL_LOCKED			 | \
1972 					FEAT_CTL_VMX_ENABLED_INSIDE_SMX	 | \
1973 					FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1974 					FEAT_CTL_SGX_LC_ENABLED		 | \
1975 					FEAT_CTL_SGX_ENABLED		 | \
1976 					FEAT_CTL_LMCE_ENABLED)
1977 
is_vmx_feature_control_msr_valid(struct vcpu_vmx * vmx,struct msr_data * msr)1978 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1979 						    struct msr_data *msr)
1980 {
1981 	uint64_t valid_bits;
1982 
1983 	/*
1984 	 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1985 	 * exposed to the guest.
1986 	 */
1987 	WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1988 		     ~KVM_SUPPORTED_FEATURE_CONTROL);
1989 
1990 	if (!msr->host_initiated &&
1991 	    (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1992 		return false;
1993 
1994 	if (msr->host_initiated)
1995 		valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1996 	else
1997 		valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1998 
1999 	return !(msr->data & ~valid_bits);
2000 }
2001 
vmx_get_feature_msr(u32 msr,u64 * data)2002 int vmx_get_feature_msr(u32 msr, u64 *data)
2003 {
2004 	switch (msr) {
2005 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2006 		if (!nested)
2007 			return 1;
2008 		return vmx_get_vmx_msr(&vmcs_config.nested, msr, data);
2009 	default:
2010 		return KVM_MSR_RET_UNSUPPORTED;
2011 	}
2012 }
2013 
2014 /*
2015  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
2016  * Returns 0 on success, non-0 otherwise.
2017  * Assumes vcpu_load() was already called.
2018  */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2019 int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2020 {
2021 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2022 	struct vmx_uret_msr *msr;
2023 	u32 index;
2024 
2025 	switch (msr_info->index) {
2026 #ifdef CONFIG_X86_64
2027 	case MSR_FS_BASE:
2028 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
2029 		break;
2030 	case MSR_GS_BASE:
2031 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
2032 		break;
2033 	case MSR_KERNEL_GS_BASE:
2034 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
2035 		break;
2036 #endif
2037 	case MSR_EFER:
2038 		return kvm_get_msr_common(vcpu, msr_info);
2039 	case MSR_IA32_TSX_CTRL:
2040 		if (!msr_info->host_initiated &&
2041 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2042 			return 1;
2043 		goto find_uret_msr;
2044 	case MSR_IA32_UMWAIT_CONTROL:
2045 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2046 			return 1;
2047 
2048 		msr_info->data = vmx->msr_ia32_umwait_control;
2049 		break;
2050 	case MSR_IA32_SPEC_CTRL:
2051 		if (!msr_info->host_initiated &&
2052 		    !guest_has_spec_ctrl_msr(vcpu))
2053 			return 1;
2054 
2055 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
2056 		break;
2057 	case MSR_IA32_SYSENTER_CS:
2058 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2059 		break;
2060 	case MSR_IA32_SYSENTER_EIP:
2061 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2062 		break;
2063 	case MSR_IA32_SYSENTER_ESP:
2064 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2065 		break;
2066 	case MSR_IA32_BNDCFGS:
2067 		if (!kvm_mpx_supported() ||
2068 		    (!msr_info->host_initiated &&
2069 		     !guest_cpu_cap_has(vcpu, X86_FEATURE_MPX)))
2070 			return 1;
2071 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2072 		break;
2073 	case MSR_IA32_MCG_EXT_CTL:
2074 		if (!msr_info->host_initiated &&
2075 		    !(vmx->msr_ia32_feature_control &
2076 		      FEAT_CTL_LMCE_ENABLED))
2077 			return 1;
2078 		msr_info->data = vcpu->arch.mcg_ext_ctl;
2079 		break;
2080 	case MSR_IA32_FEAT_CTL:
2081 		msr_info->data = vmx->msr_ia32_feature_control;
2082 		break;
2083 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2084 		if (!msr_info->host_initiated &&
2085 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC))
2086 			return 1;
2087 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2088 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2089 		break;
2090 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2091 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
2092 			return 1;
2093 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2094 				    &msr_info->data))
2095 			return 1;
2096 #ifdef CONFIG_KVM_HYPERV
2097 		/*
2098 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2099 		 * instead of just ignoring the features, different Hyper-V
2100 		 * versions are either trying to use them and fail or do some
2101 		 * sanity checking and refuse to boot. Filter all unsupported
2102 		 * features out.
2103 		 */
2104 		if (!msr_info->host_initiated && guest_cpu_cap_has_evmcs(vcpu))
2105 			nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2106 							&msr_info->data);
2107 #endif
2108 		break;
2109 	case MSR_IA32_RTIT_CTL:
2110 		if (!vmx_pt_mode_is_host_guest())
2111 			return 1;
2112 		msr_info->data = vmx->pt_desc.guest.ctl;
2113 		break;
2114 	case MSR_IA32_RTIT_STATUS:
2115 		if (!vmx_pt_mode_is_host_guest())
2116 			return 1;
2117 		msr_info->data = vmx->pt_desc.guest.status;
2118 		break;
2119 	case MSR_IA32_RTIT_CR3_MATCH:
2120 		if (!vmx_pt_mode_is_host_guest() ||
2121 			!intel_pt_validate_cap(vmx->pt_desc.caps,
2122 						PT_CAP_cr3_filtering))
2123 			return 1;
2124 		msr_info->data = vmx->pt_desc.guest.cr3_match;
2125 		break;
2126 	case MSR_IA32_RTIT_OUTPUT_BASE:
2127 		if (!vmx_pt_mode_is_host_guest() ||
2128 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2129 					PT_CAP_topa_output) &&
2130 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2131 					PT_CAP_single_range_output)))
2132 			return 1;
2133 		msr_info->data = vmx->pt_desc.guest.output_base;
2134 		break;
2135 	case MSR_IA32_RTIT_OUTPUT_MASK:
2136 		if (!vmx_pt_mode_is_host_guest() ||
2137 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2138 					PT_CAP_topa_output) &&
2139 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2140 					PT_CAP_single_range_output)))
2141 			return 1;
2142 		msr_info->data = vmx->pt_desc.guest.output_mask;
2143 		break;
2144 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2145 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2146 		if (!vmx_pt_mode_is_host_guest() ||
2147 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
2148 			return 1;
2149 		if (index % 2)
2150 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2151 		else
2152 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2153 		break;
2154 	case MSR_IA32_DEBUGCTLMSR:
2155 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2156 		break;
2157 	default:
2158 	find_uret_msr:
2159 		msr = vmx_find_uret_msr(vmx, msr_info->index);
2160 		if (msr) {
2161 			msr_info->data = msr->data;
2162 			break;
2163 		}
2164 		return kvm_get_msr_common(vcpu, msr_info);
2165 	}
2166 
2167 	return 0;
2168 }
2169 
nested_vmx_truncate_sysenter_addr(struct kvm_vcpu * vcpu,u64 data)2170 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2171 						    u64 data)
2172 {
2173 #ifdef CONFIG_X86_64
2174 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
2175 		return (u32)data;
2176 #endif
2177 	return (unsigned long)data;
2178 }
2179 
vmx_get_supported_debugctl(struct kvm_vcpu * vcpu,bool host_initiated)2180 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2181 {
2182 	u64 debugctl = 0;
2183 
2184 	if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2185 	    (host_initiated || guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2186 		debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2187 
2188 	if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2189 	    (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2190 		debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2191 
2192 	return debugctl;
2193 }
2194 
2195 /*
2196  * Writes msr value into the appropriate "register".
2197  * Returns 0 on success, non-0 otherwise.
2198  * Assumes vcpu_load() was already called.
2199  */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2200 int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2201 {
2202 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2203 	struct vmx_uret_msr *msr;
2204 	int ret = 0;
2205 	u32 msr_index = msr_info->index;
2206 	u64 data = msr_info->data;
2207 	u32 index;
2208 
2209 	switch (msr_index) {
2210 	case MSR_EFER:
2211 		ret = kvm_set_msr_common(vcpu, msr_info);
2212 		break;
2213 #ifdef CONFIG_X86_64
2214 	case MSR_FS_BASE:
2215 		vmx_segment_cache_clear(vmx);
2216 		vmcs_writel(GUEST_FS_BASE, data);
2217 		break;
2218 	case MSR_GS_BASE:
2219 		vmx_segment_cache_clear(vmx);
2220 		vmcs_writel(GUEST_GS_BASE, data);
2221 		break;
2222 	case MSR_KERNEL_GS_BASE:
2223 		vmx_write_guest_kernel_gs_base(vmx, data);
2224 		break;
2225 	case MSR_IA32_XFD:
2226 		ret = kvm_set_msr_common(vcpu, msr_info);
2227 		/*
2228 		 * Always intercepting WRMSR could incur non-negligible
2229 		 * overhead given xfd might be changed frequently in
2230 		 * guest context switch. Disable write interception
2231 		 * upon the first write with a non-zero value (indicating
2232 		 * potential usage on dynamic xfeatures). Also update
2233 		 * exception bitmap to trap #NM for proper virtualization
2234 		 * of guest xfd_err.
2235 		 */
2236 		if (!ret && data) {
2237 			vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2238 						      MSR_TYPE_RW);
2239 			vcpu->arch.xfd_no_write_intercept = true;
2240 			vmx_update_exception_bitmap(vcpu);
2241 		}
2242 		break;
2243 #endif
2244 	case MSR_IA32_SYSENTER_CS:
2245 		if (is_guest_mode(vcpu))
2246 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2247 		vmcs_write32(GUEST_SYSENTER_CS, data);
2248 		break;
2249 	case MSR_IA32_SYSENTER_EIP:
2250 		if (is_guest_mode(vcpu)) {
2251 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2252 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2253 		}
2254 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2255 		break;
2256 	case MSR_IA32_SYSENTER_ESP:
2257 		if (is_guest_mode(vcpu)) {
2258 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2259 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2260 		}
2261 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2262 		break;
2263 	case MSR_IA32_DEBUGCTLMSR: {
2264 		u64 invalid;
2265 
2266 		invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2267 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2268 			kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2269 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2270 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2271 		}
2272 
2273 		if (invalid)
2274 			return 1;
2275 
2276 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2277 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2278 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2279 
2280 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2281 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2282 		    (data & DEBUGCTLMSR_LBR))
2283 			intel_pmu_create_guest_lbr_event(vcpu);
2284 		return 0;
2285 	}
2286 	case MSR_IA32_BNDCFGS:
2287 		if (!kvm_mpx_supported() ||
2288 		    (!msr_info->host_initiated &&
2289 		     !guest_cpu_cap_has(vcpu, X86_FEATURE_MPX)))
2290 			return 1;
2291 		if (is_noncanonical_msr_address(data & PAGE_MASK, vcpu) ||
2292 		    (data & MSR_IA32_BNDCFGS_RSVD))
2293 			return 1;
2294 
2295 		if (is_guest_mode(vcpu) &&
2296 		    ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2297 		     (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2298 			get_vmcs12(vcpu)->guest_bndcfgs = data;
2299 
2300 		vmcs_write64(GUEST_BNDCFGS, data);
2301 		break;
2302 	case MSR_IA32_UMWAIT_CONTROL:
2303 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2304 			return 1;
2305 
2306 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2307 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2308 			return 1;
2309 
2310 		vmx->msr_ia32_umwait_control = data;
2311 		break;
2312 	case MSR_IA32_SPEC_CTRL:
2313 		if (!msr_info->host_initiated &&
2314 		    !guest_has_spec_ctrl_msr(vcpu))
2315 			return 1;
2316 
2317 		if (kvm_spec_ctrl_test_value(data))
2318 			return 1;
2319 
2320 		vmx->spec_ctrl = data;
2321 		if (!data)
2322 			break;
2323 
2324 		/*
2325 		 * For non-nested:
2326 		 * When it's written (to non-zero) for the first time, pass
2327 		 * it through.
2328 		 *
2329 		 * For nested:
2330 		 * The handling of the MSR bitmap for L2 guests is done in
2331 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2332 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2333 		 * in the merging. We update the vmcs01 here for L1 as well
2334 		 * since it will end up touching the MSR anyway now.
2335 		 */
2336 		vmx_disable_intercept_for_msr(vcpu,
2337 					      MSR_IA32_SPEC_CTRL,
2338 					      MSR_TYPE_RW);
2339 		break;
2340 	case MSR_IA32_TSX_CTRL:
2341 		if (!msr_info->host_initiated &&
2342 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2343 			return 1;
2344 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2345 			return 1;
2346 		goto find_uret_msr;
2347 	case MSR_IA32_CR_PAT:
2348 		ret = kvm_set_msr_common(vcpu, msr_info);
2349 		if (ret)
2350 			break;
2351 
2352 		if (is_guest_mode(vcpu) &&
2353 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2354 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2355 
2356 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2357 			vmcs_write64(GUEST_IA32_PAT, data);
2358 		break;
2359 	case MSR_IA32_MCG_EXT_CTL:
2360 		if ((!msr_info->host_initiated &&
2361 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2362 		       FEAT_CTL_LMCE_ENABLED)) ||
2363 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2364 			return 1;
2365 		vcpu->arch.mcg_ext_ctl = data;
2366 		break;
2367 	case MSR_IA32_FEAT_CTL:
2368 		if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2369 			return 1;
2370 
2371 		vmx->msr_ia32_feature_control = data;
2372 		if (msr_info->host_initiated && data == 0)
2373 			vmx_leave_nested(vcpu);
2374 
2375 		/* SGX may be enabled/disabled by guest's firmware */
2376 		vmx_write_encls_bitmap(vcpu, NULL);
2377 		break;
2378 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2379 		/*
2380 		 * On real hardware, the LE hash MSRs are writable before
2381 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2382 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2383 		 * become writable.
2384 		 *
2385 		 * KVM does not emulate SGX activation for simplicity, so
2386 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2387 		 * is unlocked.  This is technically not architectural
2388 		 * behavior, but it's close enough.
2389 		 */
2390 		if (!msr_info->host_initiated &&
2391 		    (!guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC) ||
2392 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2393 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2394 			return 1;
2395 		vmx->msr_ia32_sgxlepubkeyhash
2396 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2397 		break;
2398 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2399 		if (!msr_info->host_initiated)
2400 			return 1; /* they are read-only */
2401 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
2402 			return 1;
2403 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2404 	case MSR_IA32_RTIT_CTL:
2405 		if (!vmx_pt_mode_is_host_guest() ||
2406 			vmx_rtit_ctl_check(vcpu, data) ||
2407 			vmx->nested.vmxon)
2408 			return 1;
2409 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2410 		vmx->pt_desc.guest.ctl = data;
2411 		pt_update_intercept_for_msr(vcpu);
2412 		break;
2413 	case MSR_IA32_RTIT_STATUS:
2414 		if (!pt_can_write_msr(vmx))
2415 			return 1;
2416 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2417 			return 1;
2418 		vmx->pt_desc.guest.status = data;
2419 		break;
2420 	case MSR_IA32_RTIT_CR3_MATCH:
2421 		if (!pt_can_write_msr(vmx))
2422 			return 1;
2423 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2424 					   PT_CAP_cr3_filtering))
2425 			return 1;
2426 		vmx->pt_desc.guest.cr3_match = data;
2427 		break;
2428 	case MSR_IA32_RTIT_OUTPUT_BASE:
2429 		if (!pt_can_write_msr(vmx))
2430 			return 1;
2431 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2432 					   PT_CAP_topa_output) &&
2433 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2434 					   PT_CAP_single_range_output))
2435 			return 1;
2436 		if (!pt_output_base_valid(vcpu, data))
2437 			return 1;
2438 		vmx->pt_desc.guest.output_base = data;
2439 		break;
2440 	case MSR_IA32_RTIT_OUTPUT_MASK:
2441 		if (!pt_can_write_msr(vmx))
2442 			return 1;
2443 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2444 					   PT_CAP_topa_output) &&
2445 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2446 					   PT_CAP_single_range_output))
2447 			return 1;
2448 		vmx->pt_desc.guest.output_mask = data;
2449 		break;
2450 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2451 		if (!pt_can_write_msr(vmx))
2452 			return 1;
2453 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2454 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2455 			return 1;
2456 		if (is_noncanonical_msr_address(data, vcpu))
2457 			return 1;
2458 		if (index % 2)
2459 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2460 		else
2461 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2462 		break;
2463 	case MSR_IA32_PERF_CAPABILITIES:
2464 		if (data & PMU_CAP_LBR_FMT) {
2465 			if ((data & PMU_CAP_LBR_FMT) !=
2466 			    (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2467 				return 1;
2468 			if (!cpuid_model_is_consistent(vcpu))
2469 				return 1;
2470 		}
2471 		if (data & PERF_CAP_PEBS_FORMAT) {
2472 			if ((data & PERF_CAP_PEBS_MASK) !=
2473 			    (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2474 				return 1;
2475 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DS))
2476 				return 1;
2477 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DTES64))
2478 				return 1;
2479 			if (!cpuid_model_is_consistent(vcpu))
2480 				return 1;
2481 		}
2482 		ret = kvm_set_msr_common(vcpu, msr_info);
2483 		break;
2484 
2485 	default:
2486 	find_uret_msr:
2487 		msr = vmx_find_uret_msr(vmx, msr_index);
2488 		if (msr)
2489 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2490 		else
2491 			ret = kvm_set_msr_common(vcpu, msr_info);
2492 	}
2493 
2494 	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2495 	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2496 		vmx_update_fb_clear_dis(vcpu, vmx);
2497 
2498 	return ret;
2499 }
2500 
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2501 void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2502 {
2503 	unsigned long guest_owned_bits;
2504 
2505 	kvm_register_mark_available(vcpu, reg);
2506 
2507 	switch (reg) {
2508 	case VCPU_REGS_RSP:
2509 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2510 		break;
2511 	case VCPU_REGS_RIP:
2512 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2513 		break;
2514 	case VCPU_EXREG_PDPTR:
2515 		if (enable_ept)
2516 			ept_save_pdptrs(vcpu);
2517 		break;
2518 	case VCPU_EXREG_CR0:
2519 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2520 
2521 		vcpu->arch.cr0 &= ~guest_owned_bits;
2522 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2523 		break;
2524 	case VCPU_EXREG_CR3:
2525 		/*
2526 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2527 		 * CR3 is loaded into hardware, not the guest's CR3.
2528 		 */
2529 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2530 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2531 		break;
2532 	case VCPU_EXREG_CR4:
2533 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2534 
2535 		vcpu->arch.cr4 &= ~guest_owned_bits;
2536 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2537 		break;
2538 	default:
2539 		KVM_BUG_ON(1, vcpu->kvm);
2540 		break;
2541 	}
2542 }
2543 
2544 /*
2545  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2546  * directly instead of going through cpu_has(), to ensure KVM is trapping
2547  * ENCLS whenever it's supported in hardware.  It does not matter whether
2548  * the host OS supports or has enabled SGX.
2549  */
cpu_has_sgx(void)2550 static bool cpu_has_sgx(void)
2551 {
2552 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2553 }
2554 
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2555 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2556 {
2557 	u32 vmx_msr_low, vmx_msr_high;
2558 	u32 ctl = ctl_min | ctl_opt;
2559 
2560 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2561 
2562 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2563 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2564 
2565 	/* Ensure minimum (required) set of control bits are supported. */
2566 	if (ctl_min & ~ctl)
2567 		return -EIO;
2568 
2569 	*result = ctl;
2570 	return 0;
2571 }
2572 
adjust_vmx_controls64(u64 ctl_opt,u32 msr)2573 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2574 {
2575 	u64 allowed;
2576 
2577 	rdmsrl(msr, allowed);
2578 
2579 	return  ctl_opt & allowed;
2580 }
2581 
2582 #define vmx_check_entry_exit_pairs(pairs, entry_controls, exit_controls)	\
2583 ({										\
2584 	int i, r = 0;								\
2585 										\
2586 	BUILD_BUG_ON(sizeof(pairs[0].entry_control) != sizeof(entry_controls));	\
2587 	BUILD_BUG_ON(sizeof(pairs[0].exit_control)  != sizeof(exit_controls));	\
2588 										\
2589 	for (i = 0; i < ARRAY_SIZE(pairs); i++) {				\
2590 		typeof(entry_controls) n_ctrl = pairs[i].entry_control;		\
2591 		typeof(exit_controls) x_ctrl = pairs[i].exit_control;		\
2592 										\
2593 		if (!(entry_controls & n_ctrl) == !(exit_controls & x_ctrl))	\
2594 			continue;						\
2595 										\
2596 		pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, "		\
2597 			     "entry = %llx (%llx), exit = %llx (%llx)\n",	\
2598 			     (u64)(entry_controls & n_ctrl), (u64)n_ctrl,	\
2599 			     (u64)(exit_controls & x_ctrl), (u64)x_ctrl);	\
2600 										\
2601 		if (error_on_inconsistent_vmcs_config)				\
2602 			r = -EIO;						\
2603 										\
2604 		entry_controls &= ~n_ctrl;					\
2605 		exit_controls &= ~x_ctrl;					\
2606 	}									\
2607 	r;									\
2608 })
2609 
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2610 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2611 			     struct vmx_capability *vmx_cap)
2612 {
2613 	u32 _pin_based_exec_control = 0;
2614 	u32 _cpu_based_exec_control = 0;
2615 	u32 _cpu_based_2nd_exec_control = 0;
2616 	u64 _cpu_based_3rd_exec_control = 0;
2617 	u32 _vmexit_control = 0;
2618 	u32 _vmentry_control = 0;
2619 	u64 basic_msr;
2620 	u64 misc_msr;
2621 
2622 	/*
2623 	 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2624 	 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2625 	 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2626 	 */
2627 	struct {
2628 		u32 entry_control;
2629 		u32 exit_control;
2630 	} const vmcs_entry_exit_pairs[] = {
2631 		{ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,	VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2632 		{ VM_ENTRY_LOAD_IA32_PAT,		VM_EXIT_LOAD_IA32_PAT },
2633 		{ VM_ENTRY_LOAD_IA32_EFER,		VM_EXIT_LOAD_IA32_EFER },
2634 		{ VM_ENTRY_LOAD_BNDCFGS,		VM_EXIT_CLEAR_BNDCFGS },
2635 		{ VM_ENTRY_LOAD_IA32_RTIT_CTL,		VM_EXIT_CLEAR_IA32_RTIT_CTL },
2636 	};
2637 
2638 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2639 
2640 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2641 				KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2642 				MSR_IA32_VMX_PROCBASED_CTLS,
2643 				&_cpu_based_exec_control))
2644 		return -EIO;
2645 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2646 		if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2647 					KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2648 					MSR_IA32_VMX_PROCBASED_CTLS2,
2649 					&_cpu_based_2nd_exec_control))
2650 			return -EIO;
2651 	}
2652 	if (!IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
2653 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2654 
2655 #ifndef CONFIG_X86_64
2656 	if (!(_cpu_based_2nd_exec_control &
2657 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2658 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2659 #endif
2660 
2661 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2662 		_cpu_based_2nd_exec_control &= ~(
2663 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2664 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2665 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2666 
2667 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2668 		&vmx_cap->ept, &vmx_cap->vpid);
2669 
2670 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2671 	    vmx_cap->ept) {
2672 		pr_warn_once("EPT CAP should not exist if not support "
2673 				"1-setting enable EPT VM-execution control\n");
2674 
2675 		if (error_on_inconsistent_vmcs_config)
2676 			return -EIO;
2677 
2678 		vmx_cap->ept = 0;
2679 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2680 	}
2681 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2682 	    vmx_cap->vpid) {
2683 		pr_warn_once("VPID CAP should not exist if not support "
2684 				"1-setting enable VPID VM-execution control\n");
2685 
2686 		if (error_on_inconsistent_vmcs_config)
2687 			return -EIO;
2688 
2689 		vmx_cap->vpid = 0;
2690 	}
2691 
2692 	if (!cpu_has_sgx())
2693 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2694 
2695 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2696 		_cpu_based_3rd_exec_control =
2697 			adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2698 					      MSR_IA32_VMX_PROCBASED_CTLS3);
2699 
2700 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2701 				KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2702 				MSR_IA32_VMX_EXIT_CTLS,
2703 				&_vmexit_control))
2704 		return -EIO;
2705 
2706 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2707 				KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2708 				MSR_IA32_VMX_PINBASED_CTLS,
2709 				&_pin_based_exec_control))
2710 		return -EIO;
2711 
2712 	if (cpu_has_broken_vmx_preemption_timer())
2713 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2714 	if (!(_cpu_based_2nd_exec_control &
2715 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2716 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2717 
2718 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2719 				KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2720 				MSR_IA32_VMX_ENTRY_CTLS,
2721 				&_vmentry_control))
2722 		return -EIO;
2723 
2724 	if (vmx_check_entry_exit_pairs(vmcs_entry_exit_pairs,
2725 				       _vmentry_control, _vmexit_control))
2726 		return -EIO;
2727 
2728 	/*
2729 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2730 	 * can't be used due to an errata where VM Exit may incorrectly clear
2731 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2732 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2733 	 */
2734 	switch (boot_cpu_data.x86_vfm) {
2735 	case INTEL_NEHALEM_EP:	/* AAK155 */
2736 	case INTEL_NEHALEM:	/* AAP115 */
2737 	case INTEL_WESTMERE:	/* AAT100 */
2738 	case INTEL_WESTMERE_EP:	/* BC86,AAY89,BD102 */
2739 	case INTEL_NEHALEM_EX:	/* BA97 */
2740 		_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2741 		_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2742 		pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2743 			     "does not work properly. Using workaround\n");
2744 		break;
2745 	default:
2746 		break;
2747 	}
2748 
2749 	rdmsrl(MSR_IA32_VMX_BASIC, basic_msr);
2750 
2751 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2752 	if (vmx_basic_vmcs_size(basic_msr) > PAGE_SIZE)
2753 		return -EIO;
2754 
2755 #ifdef CONFIG_X86_64
2756 	/*
2757 	 * KVM expects to be able to shove all legal physical addresses into
2758 	 * VMCS fields for 64-bit kernels, and per the SDM, "This bit is always
2759 	 * 0 for processors that support Intel 64 architecture".
2760 	 */
2761 	if (basic_msr & VMX_BASIC_32BIT_PHYS_ADDR_ONLY)
2762 		return -EIO;
2763 #endif
2764 
2765 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2766 	if (vmx_basic_vmcs_mem_type(basic_msr) != X86_MEMTYPE_WB)
2767 		return -EIO;
2768 
2769 	rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2770 
2771 	vmcs_conf->basic = basic_msr;
2772 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2773 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2774 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2775 	vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2776 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2777 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2778 	vmcs_conf->misc	= misc_msr;
2779 
2780 #if IS_ENABLED(CONFIG_HYPERV)
2781 	if (enlightened_vmcs)
2782 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2783 #endif
2784 
2785 	return 0;
2786 }
2787 
__kvm_is_vmx_supported(void)2788 static bool __kvm_is_vmx_supported(void)
2789 {
2790 	int cpu = smp_processor_id();
2791 
2792 	if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2793 		pr_err("VMX not supported by CPU %d\n", cpu);
2794 		return false;
2795 	}
2796 
2797 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2798 	    !this_cpu_has(X86_FEATURE_VMX)) {
2799 		pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2800 		return false;
2801 	}
2802 
2803 	return true;
2804 }
2805 
kvm_is_vmx_supported(void)2806 static bool kvm_is_vmx_supported(void)
2807 {
2808 	bool supported;
2809 
2810 	migrate_disable();
2811 	supported = __kvm_is_vmx_supported();
2812 	migrate_enable();
2813 
2814 	return supported;
2815 }
2816 
vmx_check_processor_compat(void)2817 int vmx_check_processor_compat(void)
2818 {
2819 	int cpu = raw_smp_processor_id();
2820 	struct vmcs_config vmcs_conf;
2821 	struct vmx_capability vmx_cap;
2822 
2823 	if (!__kvm_is_vmx_supported())
2824 		return -EIO;
2825 
2826 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2827 		pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2828 		return -EIO;
2829 	}
2830 	if (nested)
2831 		nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2832 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2833 		pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2834 		return -EIO;
2835 	}
2836 	return 0;
2837 }
2838 
kvm_cpu_vmxon(u64 vmxon_pointer)2839 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2840 {
2841 	u64 msr;
2842 
2843 	cr4_set_bits(X86_CR4_VMXE);
2844 
2845 	asm goto("1: vmxon %[vmxon_pointer]\n\t"
2846 			  _ASM_EXTABLE(1b, %l[fault])
2847 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2848 			  : : fault);
2849 	return 0;
2850 
2851 fault:
2852 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2853 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2854 	cr4_clear_bits(X86_CR4_VMXE);
2855 
2856 	return -EFAULT;
2857 }
2858 
vmx_enable_virtualization_cpu(void)2859 int vmx_enable_virtualization_cpu(void)
2860 {
2861 	int cpu = raw_smp_processor_id();
2862 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2863 	int r;
2864 
2865 	if (cr4_read_shadow() & X86_CR4_VMXE)
2866 		return -EBUSY;
2867 
2868 	/*
2869 	 * This can happen if we hot-added a CPU but failed to allocate
2870 	 * VP assist page for it.
2871 	 */
2872 	if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2873 		return -EFAULT;
2874 
2875 	intel_pt_handle_vmx(1);
2876 
2877 	r = kvm_cpu_vmxon(phys_addr);
2878 	if (r) {
2879 		intel_pt_handle_vmx(0);
2880 		return r;
2881 	}
2882 
2883 	return 0;
2884 }
2885 
vmclear_local_loaded_vmcss(void)2886 static void vmclear_local_loaded_vmcss(void)
2887 {
2888 	int cpu = raw_smp_processor_id();
2889 	struct loaded_vmcs *v, *n;
2890 
2891 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2892 				 loaded_vmcss_on_cpu_link)
2893 		__loaded_vmcs_clear(v);
2894 }
2895 
vmx_disable_virtualization_cpu(void)2896 void vmx_disable_virtualization_cpu(void)
2897 {
2898 	vmclear_local_loaded_vmcss();
2899 
2900 	if (kvm_cpu_vmxoff())
2901 		kvm_spurious_fault();
2902 
2903 	hv_reset_evmcs();
2904 
2905 	intel_pt_handle_vmx(0);
2906 }
2907 
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)2908 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2909 {
2910 	int node = cpu_to_node(cpu);
2911 	struct page *pages;
2912 	struct vmcs *vmcs;
2913 
2914 	pages = __alloc_pages_node(node, flags, 0);
2915 	if (!pages)
2916 		return NULL;
2917 	vmcs = page_address(pages);
2918 	memset(vmcs, 0, vmx_basic_vmcs_size(vmcs_config.basic));
2919 
2920 	/* KVM supports Enlightened VMCS v1 only */
2921 	if (kvm_is_using_evmcs())
2922 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2923 	else
2924 		vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
2925 
2926 	if (shadow)
2927 		vmcs->hdr.shadow_vmcs = 1;
2928 	return vmcs;
2929 }
2930 
free_vmcs(struct vmcs * vmcs)2931 void free_vmcs(struct vmcs *vmcs)
2932 {
2933 	free_page((unsigned long)vmcs);
2934 }
2935 
2936 /*
2937  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2938  */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2939 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2940 {
2941 	if (!loaded_vmcs->vmcs)
2942 		return;
2943 	loaded_vmcs_clear(loaded_vmcs);
2944 	free_vmcs(loaded_vmcs->vmcs);
2945 	loaded_vmcs->vmcs = NULL;
2946 	if (loaded_vmcs->msr_bitmap)
2947 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2948 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2949 }
2950 
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2951 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2952 {
2953 	loaded_vmcs->vmcs = alloc_vmcs(false);
2954 	if (!loaded_vmcs->vmcs)
2955 		return -ENOMEM;
2956 
2957 	vmcs_clear(loaded_vmcs->vmcs);
2958 
2959 	loaded_vmcs->shadow_vmcs = NULL;
2960 	loaded_vmcs->hv_timer_soft_disabled = false;
2961 	loaded_vmcs->cpu = -1;
2962 	loaded_vmcs->launched = 0;
2963 
2964 	if (cpu_has_vmx_msr_bitmap()) {
2965 		loaded_vmcs->msr_bitmap = (unsigned long *)
2966 				__get_free_page(GFP_KERNEL_ACCOUNT);
2967 		if (!loaded_vmcs->msr_bitmap)
2968 			goto out_vmcs;
2969 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2970 	}
2971 
2972 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2973 	memset(&loaded_vmcs->controls_shadow, 0,
2974 		sizeof(struct vmcs_controls_shadow));
2975 
2976 	return 0;
2977 
2978 out_vmcs:
2979 	free_loaded_vmcs(loaded_vmcs);
2980 	return -ENOMEM;
2981 }
2982 
free_kvm_area(void)2983 static void free_kvm_area(void)
2984 {
2985 	int cpu;
2986 
2987 	for_each_possible_cpu(cpu) {
2988 		free_vmcs(per_cpu(vmxarea, cpu));
2989 		per_cpu(vmxarea, cpu) = NULL;
2990 	}
2991 }
2992 
alloc_kvm_area(void)2993 static __init int alloc_kvm_area(void)
2994 {
2995 	int cpu;
2996 
2997 	for_each_possible_cpu(cpu) {
2998 		struct vmcs *vmcs;
2999 
3000 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
3001 		if (!vmcs) {
3002 			free_kvm_area();
3003 			return -ENOMEM;
3004 		}
3005 
3006 		/*
3007 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
3008 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
3009 		 * revision_id reported by MSR_IA32_VMX_BASIC.
3010 		 *
3011 		 * However, even though not explicitly documented by
3012 		 * TLFS, VMXArea passed as VMXON argument should
3013 		 * still be marked with revision_id reported by
3014 		 * physical CPU.
3015 		 */
3016 		if (kvm_is_using_evmcs())
3017 			vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
3018 
3019 		per_cpu(vmxarea, cpu) = vmcs;
3020 	}
3021 	return 0;
3022 }
3023 
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)3024 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3025 		struct kvm_segment *save)
3026 {
3027 	if (!emulate_invalid_guest_state) {
3028 		/*
3029 		 * CS and SS RPL should be equal during guest entry according
3030 		 * to VMX spec, but in reality it is not always so. Since vcpu
3031 		 * is in the middle of the transition from real mode to
3032 		 * protected mode it is safe to assume that RPL 0 is a good
3033 		 * default value.
3034 		 */
3035 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3036 			save->selector &= ~SEGMENT_RPL_MASK;
3037 		save->dpl = save->selector & SEGMENT_RPL_MASK;
3038 		save->s = 1;
3039 	}
3040 	__vmx_set_segment(vcpu, save, seg);
3041 }
3042 
enter_pmode(struct kvm_vcpu * vcpu)3043 static void enter_pmode(struct kvm_vcpu *vcpu)
3044 {
3045 	unsigned long flags;
3046 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3047 
3048 	/*
3049 	 * Update real mode segment cache. It may be not up-to-date if segment
3050 	 * register was written while vcpu was in a guest mode.
3051 	 */
3052 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3053 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3054 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3055 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3056 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3057 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3058 
3059 	vmx->rmode.vm86_active = 0;
3060 
3061 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3062 
3063 	flags = vmcs_readl(GUEST_RFLAGS);
3064 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3065 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3066 	vmcs_writel(GUEST_RFLAGS, flags);
3067 
3068 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3069 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3070 
3071 	vmx_update_exception_bitmap(vcpu);
3072 
3073 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3074 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3075 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3076 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3077 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3078 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3079 }
3080 
fix_rmode_seg(int seg,struct kvm_segment * save)3081 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3082 {
3083 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3084 	struct kvm_segment var = *save;
3085 
3086 	var.dpl = 0x3;
3087 	if (seg == VCPU_SREG_CS)
3088 		var.type = 0x3;
3089 
3090 	if (!emulate_invalid_guest_state) {
3091 		var.selector = var.base >> 4;
3092 		var.base = var.base & 0xffff0;
3093 		var.limit = 0xffff;
3094 		var.g = 0;
3095 		var.db = 0;
3096 		var.present = 1;
3097 		var.s = 1;
3098 		var.l = 0;
3099 		var.unusable = 0;
3100 		var.type = 0x3;
3101 		var.avl = 0;
3102 		if (save->base & 0xf)
3103 			pr_warn_once("segment base is not paragraph aligned "
3104 				     "when entering protected mode (seg=%d)", seg);
3105 	}
3106 
3107 	vmcs_write16(sf->selector, var.selector);
3108 	vmcs_writel(sf->base, var.base);
3109 	vmcs_write32(sf->limit, var.limit);
3110 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3111 }
3112 
enter_rmode(struct kvm_vcpu * vcpu)3113 static void enter_rmode(struct kvm_vcpu *vcpu)
3114 {
3115 	unsigned long flags;
3116 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3117 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3118 
3119 	/*
3120 	 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3121 	 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3122 	 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3123 	 * should VM-Fail and KVM should reject userspace attempts to stuff
3124 	 * CR0.PG=0 when L2 is active.
3125 	 */
3126 	WARN_ON_ONCE(is_guest_mode(vcpu));
3127 
3128 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3129 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3130 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3131 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3132 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3133 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3134 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3135 
3136 	vmx->rmode.vm86_active = 1;
3137 
3138 	vmx_segment_cache_clear(vmx);
3139 
3140 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3141 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3142 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3143 
3144 	flags = vmcs_readl(GUEST_RFLAGS);
3145 	vmx->rmode.save_rflags = flags;
3146 
3147 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3148 
3149 	vmcs_writel(GUEST_RFLAGS, flags);
3150 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3151 	vmx_update_exception_bitmap(vcpu);
3152 
3153 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3154 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3155 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3156 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3157 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3158 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3159 }
3160 
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)3161 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3162 {
3163 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3164 
3165 	/* Nothing to do if hardware doesn't support EFER. */
3166 	if (!vmx_find_uret_msr(vmx, MSR_EFER))
3167 		return 0;
3168 
3169 	vcpu->arch.efer = efer;
3170 #ifdef CONFIG_X86_64
3171 	if (efer & EFER_LMA)
3172 		vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3173 	else
3174 		vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3175 #else
3176 	if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3177 		return 1;
3178 #endif
3179 
3180 	vmx_setup_uret_msrs(vmx);
3181 	return 0;
3182 }
3183 
3184 #ifdef CONFIG_X86_64
3185 
enter_lmode(struct kvm_vcpu * vcpu)3186 static void enter_lmode(struct kvm_vcpu *vcpu)
3187 {
3188 	u32 guest_tr_ar;
3189 
3190 	vmx_segment_cache_clear(to_vmx(vcpu));
3191 
3192 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3193 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3194 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3195 				     __func__);
3196 		vmcs_write32(GUEST_TR_AR_BYTES,
3197 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3198 			     | VMX_AR_TYPE_BUSY_64_TSS);
3199 	}
3200 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3201 }
3202 
exit_lmode(struct kvm_vcpu * vcpu)3203 static void exit_lmode(struct kvm_vcpu *vcpu)
3204 {
3205 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3206 }
3207 
3208 #endif
3209 
vmx_flush_tlb_all(struct kvm_vcpu * vcpu)3210 void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3211 {
3212 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3213 
3214 	/*
3215 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3216 	 * the CPU is not required to invalidate guest-physical mappings on
3217 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3218 	 * associated with the root EPT structure and not any particular VPID
3219 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
3220 	 */
3221 	if (enable_ept) {
3222 		ept_sync_global();
3223 	} else if (enable_vpid) {
3224 		if (cpu_has_vmx_invvpid_global()) {
3225 			vpid_sync_vcpu_global();
3226 		} else {
3227 			vpid_sync_vcpu_single(vmx->vpid);
3228 			vpid_sync_vcpu_single(vmx->nested.vpid02);
3229 		}
3230 	}
3231 }
3232 
vmx_get_current_vpid(struct kvm_vcpu * vcpu)3233 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3234 {
3235 	if (is_guest_mode(vcpu) && nested_cpu_has_vpid(get_vmcs12(vcpu)))
3236 		return nested_get_vpid02(vcpu);
3237 	return to_vmx(vcpu)->vpid;
3238 }
3239 
vmx_flush_tlb_current(struct kvm_vcpu * vcpu)3240 void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3241 {
3242 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3243 	u64 root_hpa = mmu->root.hpa;
3244 
3245 	/* No flush required if the current context is invalid. */
3246 	if (!VALID_PAGE(root_hpa))
3247 		return;
3248 
3249 	if (enable_ept)
3250 		ept_sync_context(construct_eptp(vcpu, root_hpa,
3251 						mmu->root_role.level));
3252 	else
3253 		vpid_sync_context(vmx_get_current_vpid(vcpu));
3254 }
3255 
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)3256 void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3257 {
3258 	/*
3259 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3260 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3261 	 */
3262 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3263 }
3264 
vmx_flush_tlb_guest(struct kvm_vcpu * vcpu)3265 void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3266 {
3267 	/*
3268 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3269 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3270 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3271 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3272 	 * i.e. no explicit INVVPID is necessary.
3273 	 */
3274 	vpid_sync_context(vmx_get_current_vpid(vcpu));
3275 }
3276 
vmx_ept_load_pdptrs(struct kvm_vcpu * vcpu)3277 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3278 {
3279 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3280 
3281 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3282 		return;
3283 
3284 	if (is_pae_paging(vcpu)) {
3285 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3286 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3287 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3288 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3289 	}
3290 }
3291 
ept_save_pdptrs(struct kvm_vcpu * vcpu)3292 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3293 {
3294 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3295 
3296 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3297 		return;
3298 
3299 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3300 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3301 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3302 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3303 
3304 	kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3305 }
3306 
3307 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3308 			  CPU_BASED_CR3_STORE_EXITING)
3309 
vmx_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3310 bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3311 {
3312 	if (is_guest_mode(vcpu))
3313 		return nested_guest_cr0_valid(vcpu, cr0);
3314 
3315 	if (to_vmx(vcpu)->nested.vmxon)
3316 		return nested_host_cr0_valid(vcpu, cr0);
3317 
3318 	return true;
3319 }
3320 
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3321 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3322 {
3323 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3324 	unsigned long hw_cr0, old_cr0_pg;
3325 	u32 tmp;
3326 
3327 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3328 
3329 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3330 	if (enable_unrestricted_guest)
3331 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3332 	else {
3333 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3334 		if (!enable_ept)
3335 			hw_cr0 |= X86_CR0_WP;
3336 
3337 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3338 			enter_pmode(vcpu);
3339 
3340 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3341 			enter_rmode(vcpu);
3342 	}
3343 
3344 	vmcs_writel(CR0_READ_SHADOW, cr0);
3345 	vmcs_writel(GUEST_CR0, hw_cr0);
3346 	vcpu->arch.cr0 = cr0;
3347 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3348 
3349 #ifdef CONFIG_X86_64
3350 	if (vcpu->arch.efer & EFER_LME) {
3351 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3352 			enter_lmode(vcpu);
3353 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3354 			exit_lmode(vcpu);
3355 	}
3356 #endif
3357 
3358 	if (enable_ept && !enable_unrestricted_guest) {
3359 		/*
3360 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3361 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3362 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3363 		 * KVM's CR3 is installed.
3364 		 */
3365 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3366 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3367 
3368 		/*
3369 		 * When running with EPT but not unrestricted guest, KVM must
3370 		 * intercept CR3 accesses when paging is _disabled_.  This is
3371 		 * necessary because restricted guests can't actually run with
3372 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3373 		 * run the guest when identity mapped page tables.
3374 		 *
3375 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3376 		 * update, it may be stale with respect to CR3 interception,
3377 		 * e.g. after nested VM-Enter.
3378 		 *
3379 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3380 		 * stores to forward them to L1, even if KVM does not need to
3381 		 * intercept them to preserve its identity mapped page tables.
3382 		 */
3383 		if (!(cr0 & X86_CR0_PG)) {
3384 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3385 		} else if (!is_guest_mode(vcpu)) {
3386 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3387 		} else {
3388 			tmp = exec_controls_get(vmx);
3389 			tmp &= ~CR3_EXITING_BITS;
3390 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3391 			exec_controls_set(vmx, tmp);
3392 		}
3393 
3394 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3395 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3396 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3397 
3398 		/*
3399 		 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3400 		 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3401 		 */
3402 		if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3403 			kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3404 	}
3405 
3406 	/* depends on vcpu->arch.cr0 to be set to a new value */
3407 	vmx->emulation_required = vmx_emulation_required(vcpu);
3408 }
3409 
vmx_get_max_ept_level(void)3410 static int vmx_get_max_ept_level(void)
3411 {
3412 	if (cpu_has_vmx_ept_5levels())
3413 		return 5;
3414 	return 4;
3415 }
3416 
construct_eptp(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3417 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3418 {
3419 	u64 eptp = VMX_EPTP_MT_WB;
3420 
3421 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3422 
3423 	if (enable_ept_ad_bits &&
3424 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3425 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3426 	eptp |= root_hpa;
3427 
3428 	return eptp;
3429 }
3430 
vmx_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3431 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3432 {
3433 	struct kvm *kvm = vcpu->kvm;
3434 	bool update_guest_cr3 = true;
3435 	unsigned long guest_cr3;
3436 	u64 eptp;
3437 
3438 	if (enable_ept) {
3439 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3440 		vmcs_write64(EPT_POINTER, eptp);
3441 
3442 		hv_track_root_tdp(vcpu, root_hpa);
3443 
3444 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3445 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3446 		else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3447 			guest_cr3 = vcpu->arch.cr3;
3448 		else /* vmcs.GUEST_CR3 is already up-to-date. */
3449 			update_guest_cr3 = false;
3450 		vmx_ept_load_pdptrs(vcpu);
3451 	} else {
3452 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) |
3453 			    kvm_get_active_cr3_lam_bits(vcpu);
3454 	}
3455 
3456 	if (update_guest_cr3)
3457 		vmcs_writel(GUEST_CR3, guest_cr3);
3458 }
3459 
vmx_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3460 bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3461 {
3462 	/*
3463 	 * We operate under the default treatment of SMM, so VMX cannot be
3464 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all,
3465 	 * i.e. is a reserved bit, is handled by common x86 code.
3466 	 */
3467 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3468 		return false;
3469 
3470 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3471 		return false;
3472 
3473 	return true;
3474 }
3475 
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3476 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3477 {
3478 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
3479 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3480 	unsigned long hw_cr4;
3481 
3482 	/*
3483 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3484 	 * is in force while we are in guest mode.  Do not let guests control
3485 	 * this bit, even if host CR4.MCE == 0.
3486 	 */
3487 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3488 	if (enable_unrestricted_guest)
3489 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3490 	else if (vmx->rmode.vm86_active)
3491 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3492 	else
3493 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3494 
3495 	if (vmx_umip_emulated()) {
3496 		if (cr4 & X86_CR4_UMIP) {
3497 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3498 			hw_cr4 &= ~X86_CR4_UMIP;
3499 		} else if (!is_guest_mode(vcpu) ||
3500 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3501 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3502 		}
3503 	}
3504 
3505 	vcpu->arch.cr4 = cr4;
3506 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3507 
3508 	if (!enable_unrestricted_guest) {
3509 		if (enable_ept) {
3510 			if (!is_paging(vcpu)) {
3511 				hw_cr4 &= ~X86_CR4_PAE;
3512 				hw_cr4 |= X86_CR4_PSE;
3513 			} else if (!(cr4 & X86_CR4_PAE)) {
3514 				hw_cr4 &= ~X86_CR4_PAE;
3515 			}
3516 		}
3517 
3518 		/*
3519 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3520 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3521 		 * to be manually disabled when guest switches to non-paging
3522 		 * mode.
3523 		 *
3524 		 * If !enable_unrestricted_guest, the CPU is always running
3525 		 * with CR0.PG=1 and CR4 needs to be modified.
3526 		 * If enable_unrestricted_guest, the CPU automatically
3527 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3528 		 */
3529 		if (!is_paging(vcpu))
3530 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3531 	}
3532 
3533 	vmcs_writel(CR4_READ_SHADOW, cr4);
3534 	vmcs_writel(GUEST_CR4, hw_cr4);
3535 
3536 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3537 		vcpu->arch.cpuid_dynamic_bits_dirty = true;
3538 }
3539 
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3540 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3541 {
3542 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3543 	u32 ar;
3544 
3545 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3546 		*var = vmx->rmode.segs[seg];
3547 		if (seg == VCPU_SREG_TR
3548 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3549 			return;
3550 		var->base = vmx_read_guest_seg_base(vmx, seg);
3551 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3552 		return;
3553 	}
3554 	var->base = vmx_read_guest_seg_base(vmx, seg);
3555 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3556 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3557 	ar = vmx_read_guest_seg_ar(vmx, seg);
3558 	var->unusable = (ar >> 16) & 1;
3559 	var->type = ar & 15;
3560 	var->s = (ar >> 4) & 1;
3561 	var->dpl = (ar >> 5) & 3;
3562 	/*
3563 	 * Some userspaces do not preserve unusable property. Since usable
3564 	 * segment has to be present according to VMX spec we can use present
3565 	 * property to amend userspace bug by making unusable segment always
3566 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3567 	 * segment as unusable.
3568 	 */
3569 	var->present = !var->unusable;
3570 	var->avl = (ar >> 12) & 1;
3571 	var->l = (ar >> 13) & 1;
3572 	var->db = (ar >> 14) & 1;
3573 	var->g = (ar >> 15) & 1;
3574 }
3575 
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3576 u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3577 {
3578 	struct kvm_segment s;
3579 
3580 	if (to_vmx(vcpu)->rmode.vm86_active) {
3581 		vmx_get_segment(vcpu, &s, seg);
3582 		return s.base;
3583 	}
3584 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3585 }
3586 
__vmx_get_cpl(struct kvm_vcpu * vcpu,bool no_cache)3587 static int __vmx_get_cpl(struct kvm_vcpu *vcpu, bool no_cache)
3588 {
3589 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3590 	int ar;
3591 
3592 	if (unlikely(vmx->rmode.vm86_active))
3593 		return 0;
3594 
3595 	if (no_cache)
3596 		ar = vmcs_read32(GUEST_SS_AR_BYTES);
3597 	else
3598 		ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3599 	return VMX_AR_DPL(ar);
3600 }
3601 
vmx_get_cpl(struct kvm_vcpu * vcpu)3602 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3603 {
3604 	return __vmx_get_cpl(vcpu, false);
3605 }
3606 
vmx_get_cpl_no_cache(struct kvm_vcpu * vcpu)3607 int vmx_get_cpl_no_cache(struct kvm_vcpu *vcpu)
3608 {
3609 	return __vmx_get_cpl(vcpu, true);
3610 }
3611 
vmx_segment_access_rights(struct kvm_segment * var)3612 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3613 {
3614 	u32 ar;
3615 
3616 	ar = var->type & 15;
3617 	ar |= (var->s & 1) << 4;
3618 	ar |= (var->dpl & 3) << 5;
3619 	ar |= (var->present & 1) << 7;
3620 	ar |= (var->avl & 1) << 12;
3621 	ar |= (var->l & 1) << 13;
3622 	ar |= (var->db & 1) << 14;
3623 	ar |= (var->g & 1) << 15;
3624 	ar |= (var->unusable || !var->present) << 16;
3625 
3626 	return ar;
3627 }
3628 
__vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3629 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3630 {
3631 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3632 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3633 
3634 	vmx_segment_cache_clear(vmx);
3635 
3636 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3637 		vmx->rmode.segs[seg] = *var;
3638 		if (seg == VCPU_SREG_TR)
3639 			vmcs_write16(sf->selector, var->selector);
3640 		else if (var->s)
3641 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3642 		return;
3643 	}
3644 
3645 	vmcs_writel(sf->base, var->base);
3646 	vmcs_write32(sf->limit, var->limit);
3647 	vmcs_write16(sf->selector, var->selector);
3648 
3649 	/*
3650 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3651 	 * qemu binaries.
3652 	 *   IA32 arch specifies that at the time of processor reset the
3653 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3654 	 * is setting it to 0 in the userland code. This causes invalid guest
3655 	 * state vmexit when "unrestricted guest" mode is turned on.
3656 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3657 	 * tree. Newer qemu binaries with that qemu fix would not need this
3658 	 * kvm hack.
3659 	 */
3660 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3661 		var->type |= 0x1; /* Accessed */
3662 
3663 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3664 }
3665 
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3666 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3667 {
3668 	__vmx_set_segment(vcpu, var, seg);
3669 
3670 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3671 }
3672 
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3673 void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3674 {
3675 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3676 
3677 	*db = (ar >> 14) & 1;
3678 	*l = (ar >> 13) & 1;
3679 }
3680 
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3681 void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3682 {
3683 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3684 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3685 }
3686 
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3687 void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3688 {
3689 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3690 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3691 }
3692 
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3693 void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3694 {
3695 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3696 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3697 }
3698 
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3699 void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3700 {
3701 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3702 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3703 }
3704 
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3705 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3706 {
3707 	struct kvm_segment var;
3708 	u32 ar;
3709 
3710 	vmx_get_segment(vcpu, &var, seg);
3711 	var.dpl = 0x3;
3712 	if (seg == VCPU_SREG_CS)
3713 		var.type = 0x3;
3714 	ar = vmx_segment_access_rights(&var);
3715 
3716 	if (var.base != (var.selector << 4))
3717 		return false;
3718 	if (var.limit != 0xffff)
3719 		return false;
3720 	if (ar != 0xf3)
3721 		return false;
3722 
3723 	return true;
3724 }
3725 
code_segment_valid(struct kvm_vcpu * vcpu)3726 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3727 {
3728 	struct kvm_segment cs;
3729 	unsigned int cs_rpl;
3730 
3731 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3732 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3733 
3734 	if (cs.unusable)
3735 		return false;
3736 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3737 		return false;
3738 	if (!cs.s)
3739 		return false;
3740 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3741 		if (cs.dpl > cs_rpl)
3742 			return false;
3743 	} else {
3744 		if (cs.dpl != cs_rpl)
3745 			return false;
3746 	}
3747 	if (!cs.present)
3748 		return false;
3749 
3750 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3751 	return true;
3752 }
3753 
stack_segment_valid(struct kvm_vcpu * vcpu)3754 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3755 {
3756 	struct kvm_segment ss;
3757 	unsigned int ss_rpl;
3758 
3759 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3760 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3761 
3762 	if (ss.unusable)
3763 		return true;
3764 	if (ss.type != 3 && ss.type != 7)
3765 		return false;
3766 	if (!ss.s)
3767 		return false;
3768 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3769 		return false;
3770 	if (!ss.present)
3771 		return false;
3772 
3773 	return true;
3774 }
3775 
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3776 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3777 {
3778 	struct kvm_segment var;
3779 	unsigned int rpl;
3780 
3781 	vmx_get_segment(vcpu, &var, seg);
3782 	rpl = var.selector & SEGMENT_RPL_MASK;
3783 
3784 	if (var.unusable)
3785 		return true;
3786 	if (!var.s)
3787 		return false;
3788 	if (!var.present)
3789 		return false;
3790 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3791 		if (var.dpl < rpl) /* DPL < RPL */
3792 			return false;
3793 	}
3794 
3795 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3796 	 * rights flags
3797 	 */
3798 	return true;
3799 }
3800 
tr_valid(struct kvm_vcpu * vcpu)3801 static bool tr_valid(struct kvm_vcpu *vcpu)
3802 {
3803 	struct kvm_segment tr;
3804 
3805 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3806 
3807 	if (tr.unusable)
3808 		return false;
3809 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3810 		return false;
3811 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3812 		return false;
3813 	if (!tr.present)
3814 		return false;
3815 
3816 	return true;
3817 }
3818 
ldtr_valid(struct kvm_vcpu * vcpu)3819 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3820 {
3821 	struct kvm_segment ldtr;
3822 
3823 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3824 
3825 	if (ldtr.unusable)
3826 		return true;
3827 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3828 		return false;
3829 	if (ldtr.type != 2)
3830 		return false;
3831 	if (!ldtr.present)
3832 		return false;
3833 
3834 	return true;
3835 }
3836 
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3837 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3838 {
3839 	struct kvm_segment cs, ss;
3840 
3841 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3842 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3843 
3844 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3845 		 (ss.selector & SEGMENT_RPL_MASK));
3846 }
3847 
3848 /*
3849  * Check if guest state is valid. Returns true if valid, false if
3850  * not.
3851  * We assume that registers are always usable
3852  */
__vmx_guest_state_valid(struct kvm_vcpu * vcpu)3853 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3854 {
3855 	/* real mode guest state checks */
3856 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3857 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3858 			return false;
3859 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3860 			return false;
3861 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3862 			return false;
3863 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3864 			return false;
3865 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3866 			return false;
3867 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3868 			return false;
3869 	} else {
3870 	/* protected mode guest state checks */
3871 		if (!cs_ss_rpl_check(vcpu))
3872 			return false;
3873 		if (!code_segment_valid(vcpu))
3874 			return false;
3875 		if (!stack_segment_valid(vcpu))
3876 			return false;
3877 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3878 			return false;
3879 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3880 			return false;
3881 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3882 			return false;
3883 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3884 			return false;
3885 		if (!tr_valid(vcpu))
3886 			return false;
3887 		if (!ldtr_valid(vcpu))
3888 			return false;
3889 	}
3890 	/* TODO:
3891 	 * - Add checks on RIP
3892 	 * - Add checks on RFLAGS
3893 	 */
3894 
3895 	return true;
3896 }
3897 
init_rmode_tss(struct kvm * kvm,void __user * ua)3898 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3899 {
3900 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3901 	u16 data;
3902 	int i;
3903 
3904 	for (i = 0; i < 3; i++) {
3905 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3906 			return -EFAULT;
3907 	}
3908 
3909 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3910 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3911 		return -EFAULT;
3912 
3913 	data = ~0;
3914 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3915 		return -EFAULT;
3916 
3917 	return 0;
3918 }
3919 
init_rmode_identity_map(struct kvm * kvm)3920 static int init_rmode_identity_map(struct kvm *kvm)
3921 {
3922 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3923 	int i, r = 0;
3924 	void __user *uaddr;
3925 	u32 tmp;
3926 
3927 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3928 	mutex_lock(&kvm->slots_lock);
3929 
3930 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3931 		goto out;
3932 
3933 	if (!kvm_vmx->ept_identity_map_addr)
3934 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3935 
3936 	uaddr = __x86_set_memory_region(kvm,
3937 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3938 					kvm_vmx->ept_identity_map_addr,
3939 					PAGE_SIZE);
3940 	if (IS_ERR(uaddr)) {
3941 		r = PTR_ERR(uaddr);
3942 		goto out;
3943 	}
3944 
3945 	/* Set up identity-mapping pagetable for EPT in real mode */
3946 	for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3947 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3948 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3949 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3950 			r = -EFAULT;
3951 			goto out;
3952 		}
3953 	}
3954 	kvm_vmx->ept_identity_pagetable_done = true;
3955 
3956 out:
3957 	mutex_unlock(&kvm->slots_lock);
3958 	return r;
3959 }
3960 
seg_setup(int seg)3961 static void seg_setup(int seg)
3962 {
3963 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3964 	unsigned int ar;
3965 
3966 	vmcs_write16(sf->selector, 0);
3967 	vmcs_writel(sf->base, 0);
3968 	vmcs_write32(sf->limit, 0xffff);
3969 	ar = 0x93;
3970 	if (seg == VCPU_SREG_CS)
3971 		ar |= 0x08; /* code segment */
3972 
3973 	vmcs_write32(sf->ar_bytes, ar);
3974 }
3975 
allocate_vpid(void)3976 int allocate_vpid(void)
3977 {
3978 	int vpid;
3979 
3980 	if (!enable_vpid)
3981 		return 0;
3982 	spin_lock(&vmx_vpid_lock);
3983 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3984 	if (vpid < VMX_NR_VPIDS)
3985 		__set_bit(vpid, vmx_vpid_bitmap);
3986 	else
3987 		vpid = 0;
3988 	spin_unlock(&vmx_vpid_lock);
3989 	return vpid;
3990 }
3991 
free_vpid(int vpid)3992 void free_vpid(int vpid)
3993 {
3994 	if (!enable_vpid || vpid == 0)
3995 		return;
3996 	spin_lock(&vmx_vpid_lock);
3997 	__clear_bit(vpid, vmx_vpid_bitmap);
3998 	spin_unlock(&vmx_vpid_lock);
3999 }
4000 
vmx_msr_bitmap_l01_changed(struct vcpu_vmx * vmx)4001 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
4002 {
4003 	/*
4004 	 * When KVM is a nested hypervisor on top of Hyper-V and uses
4005 	 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
4006 	 * bitmap has changed.
4007 	 */
4008 	if (kvm_is_using_evmcs()) {
4009 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
4010 
4011 		if (evmcs->hv_enlightenments_control.msr_bitmap)
4012 			evmcs->hv_clean_fields &=
4013 				~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
4014 	}
4015 
4016 	vmx->nested.force_msr_bitmap_recalc = true;
4017 }
4018 
vmx_disable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)4019 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
4020 {
4021 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4022 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4023 	int idx;
4024 
4025 	if (!cpu_has_vmx_msr_bitmap())
4026 		return;
4027 
4028 	vmx_msr_bitmap_l01_changed(vmx);
4029 
4030 	/*
4031 	 * Mark the desired intercept state in shadow bitmap, this is needed
4032 	 * for resync when the MSR filters change.
4033 	 */
4034 	idx = vmx_get_passthrough_msr_slot(msr);
4035 	if (idx >= 0) {
4036 		if (type & MSR_TYPE_R)
4037 			clear_bit(idx, vmx->shadow_msr_intercept.read);
4038 		if (type & MSR_TYPE_W)
4039 			clear_bit(idx, vmx->shadow_msr_intercept.write);
4040 	}
4041 
4042 	if ((type & MSR_TYPE_R) &&
4043 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
4044 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
4045 		type &= ~MSR_TYPE_R;
4046 	}
4047 
4048 	if ((type & MSR_TYPE_W) &&
4049 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
4050 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
4051 		type &= ~MSR_TYPE_W;
4052 	}
4053 
4054 	if (type & MSR_TYPE_R)
4055 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
4056 
4057 	if (type & MSR_TYPE_W)
4058 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
4059 }
4060 
vmx_enable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)4061 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
4062 {
4063 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4064 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4065 	int idx;
4066 
4067 	if (!cpu_has_vmx_msr_bitmap())
4068 		return;
4069 
4070 	vmx_msr_bitmap_l01_changed(vmx);
4071 
4072 	/*
4073 	 * Mark the desired intercept state in shadow bitmap, this is needed
4074 	 * for resync when the MSR filter changes.
4075 	 */
4076 	idx = vmx_get_passthrough_msr_slot(msr);
4077 	if (idx >= 0) {
4078 		if (type & MSR_TYPE_R)
4079 			set_bit(idx, vmx->shadow_msr_intercept.read);
4080 		if (type & MSR_TYPE_W)
4081 			set_bit(idx, vmx->shadow_msr_intercept.write);
4082 	}
4083 
4084 	if (type & MSR_TYPE_R)
4085 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
4086 
4087 	if (type & MSR_TYPE_W)
4088 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
4089 }
4090 
vmx_update_msr_bitmap_x2apic(struct kvm_vcpu * vcpu)4091 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4092 {
4093 	/*
4094 	 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4095 	 * of the MSR bitmap.  KVM emulates APIC registers up through 0x3f0,
4096 	 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4097 	 */
4098 	const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4099 	const int write_idx = read_idx + (0x800 / sizeof(u64));
4100 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4101 	u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4102 	u8 mode;
4103 
4104 	if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4105 		return;
4106 
4107 	if (cpu_has_secondary_exec_ctrls() &&
4108 	    (secondary_exec_controls_get(vmx) &
4109 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4110 		mode = MSR_BITMAP_MODE_X2APIC;
4111 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4112 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4113 	} else {
4114 		mode = 0;
4115 	}
4116 
4117 	if (mode == vmx->x2apic_msr_bitmap_mode)
4118 		return;
4119 
4120 	vmx->x2apic_msr_bitmap_mode = mode;
4121 
4122 	/*
4123 	 * Reset the bitmap for MSRs 0x800 - 0x83f.  Leave AMD's uber-extended
4124 	 * registers (0x840 and above) intercepted, KVM doesn't support them.
4125 	 * Intercept all writes by default and poke holes as needed.  Pass
4126 	 * through reads for all valid registers by default in x2APIC+APICv
4127 	 * mode, only the current timer count needs on-demand emulation by KVM.
4128 	 */
4129 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4130 		msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4131 	else
4132 		msr_bitmap[read_idx] = ~0ull;
4133 	msr_bitmap[write_idx] = ~0ull;
4134 
4135 	/*
4136 	 * TPR reads and writes can be virtualized even if virtual interrupt
4137 	 * delivery is not in use.
4138 	 */
4139 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4140 				  !(mode & MSR_BITMAP_MODE_X2APIC));
4141 
4142 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4143 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4144 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4145 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4146 		if (enable_ipiv)
4147 			vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4148 	}
4149 }
4150 
pt_update_intercept_for_msr(struct kvm_vcpu * vcpu)4151 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4152 {
4153 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4154 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4155 	u32 i;
4156 
4157 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4158 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4159 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4160 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4161 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4162 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4163 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4164 	}
4165 }
4166 
vmx_msr_filter_changed(struct kvm_vcpu * vcpu)4167 void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4168 {
4169 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4170 	u32 i;
4171 
4172 	if (!cpu_has_vmx_msr_bitmap())
4173 		return;
4174 
4175 	/*
4176 	 * Redo intercept permissions for MSRs that KVM is passing through to
4177 	 * the guest.  Disabling interception will check the new MSR filter and
4178 	 * ensure that KVM enables interception if usersepace wants to filter
4179 	 * the MSR.  MSRs that KVM is already intercepting don't need to be
4180 	 * refreshed since KVM is going to intercept them regardless of what
4181 	 * userspace wants.
4182 	 */
4183 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4184 		u32 msr = vmx_possible_passthrough_msrs[i];
4185 
4186 		if (!test_bit(i, vmx->shadow_msr_intercept.read))
4187 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4188 
4189 		if (!test_bit(i, vmx->shadow_msr_intercept.write))
4190 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4191 	}
4192 
4193 	/* PT MSRs can be passed through iff PT is exposed to the guest. */
4194 	if (vmx_pt_mode_is_host_guest())
4195 		pt_update_intercept_for_msr(vcpu);
4196 }
4197 
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu,int pi_vec)4198 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4199 						     int pi_vec)
4200 {
4201 #ifdef CONFIG_SMP
4202 	if (vcpu->mode == IN_GUEST_MODE) {
4203 		/*
4204 		 * The vector of the virtual has already been set in the PIR.
4205 		 * Send a notification event to deliver the virtual interrupt
4206 		 * unless the vCPU is the currently running vCPU, i.e. the
4207 		 * event is being sent from a fastpath VM-Exit handler, in
4208 		 * which case the PIR will be synced to the vIRR before
4209 		 * re-entering the guest.
4210 		 *
4211 		 * When the target is not the running vCPU, the following
4212 		 * possibilities emerge:
4213 		 *
4214 		 * Case 1: vCPU stays in non-root mode. Sending a notification
4215 		 * event posts the interrupt to the vCPU.
4216 		 *
4217 		 * Case 2: vCPU exits to root mode and is still runnable. The
4218 		 * PIR will be synced to the vIRR before re-entering the guest.
4219 		 * Sending a notification event is ok as the host IRQ handler
4220 		 * will ignore the spurious event.
4221 		 *
4222 		 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4223 		 * has already synced PIR to vIRR and never blocks the vCPU if
4224 		 * the vIRR is not empty. Therefore, a blocked vCPU here does
4225 		 * not wait for any requested interrupts in PIR, and sending a
4226 		 * notification event also results in a benign, spurious event.
4227 		 */
4228 
4229 		if (vcpu != kvm_get_running_vcpu())
4230 			__apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4231 		return;
4232 	}
4233 #endif
4234 	/*
4235 	 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4236 	 * otherwise do nothing as KVM will grab the highest priority pending
4237 	 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4238 	 */
4239 	kvm_vcpu_wake_up(vcpu);
4240 }
4241 
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4242 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4243 						int vector)
4244 {
4245 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4246 
4247 	/*
4248 	 * DO NOT query the vCPU's vmcs12, as vmcs12 is dynamically allocated
4249 	 * and freed, and must not be accessed outside of vcpu->mutex.  The
4250 	 * vCPU's cached PI NV is valid if and only if posted interrupts
4251 	 * enabled in its vmcs12, i.e. checking the vector also checks that
4252 	 * L1 has enabled posted interrupts for L2.
4253 	 */
4254 	if (is_guest_mode(vcpu) &&
4255 	    vector == vmx->nested.posted_intr_nv) {
4256 		/*
4257 		 * If a posted intr is not recognized by hardware,
4258 		 * we will accomplish it in the next vmentry.
4259 		 */
4260 		vmx->nested.pi_pending = true;
4261 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4262 
4263 		/*
4264 		 * This pairs with the smp_mb_*() after setting vcpu->mode in
4265 		 * vcpu_enter_guest() to guarantee the vCPU sees the event
4266 		 * request if triggering a posted interrupt "fails" because
4267 		 * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4268 		 * the smb_wmb() in kvm_make_request() only ensures everything
4269 		 * done before making the request is visible when the request
4270 		 * is visible, it doesn't ensure ordering between the store to
4271 		 * vcpu->requests and the load from vcpu->mode.
4272 		 */
4273 		smp_mb__after_atomic();
4274 
4275 		/* the PIR and ON have been set by L1. */
4276 		kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4277 		return 0;
4278 	}
4279 	return -1;
4280 }
4281 /*
4282  * Send interrupt to vcpu via posted interrupt way.
4283  * 1. If target vcpu is running(non-root mode), send posted interrupt
4284  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4285  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4286  * interrupt from PIR in next vmentry.
4287  */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4288 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4289 {
4290 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4291 	int r;
4292 
4293 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4294 	if (!r)
4295 		return 0;
4296 
4297 	/* Note, this is called iff the local APIC is in-kernel. */
4298 	if (!vcpu->arch.apic->apicv_active)
4299 		return -1;
4300 
4301 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4302 		return 0;
4303 
4304 	/* If a previous notification has sent the IPI, nothing to do.  */
4305 	if (pi_test_and_set_on(&vmx->pi_desc))
4306 		return 0;
4307 
4308 	/*
4309 	 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4310 	 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4311 	 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4312 	 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4313 	 */
4314 	kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4315 	return 0;
4316 }
4317 
vmx_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)4318 void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4319 			   int trig_mode, int vector)
4320 {
4321 	struct kvm_vcpu *vcpu = apic->vcpu;
4322 
4323 	if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4324 		kvm_lapic_set_irr(vector, apic);
4325 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4326 		kvm_vcpu_kick(vcpu);
4327 	} else {
4328 		trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4329 					   trig_mode, vector);
4330 	}
4331 }
4332 
4333 /*
4334  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4335  * will not change in the lifetime of the guest.
4336  * Note that host-state that does change is set elsewhere. E.g., host-state
4337  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4338  */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4339 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4340 {
4341 	u32 low32, high32;
4342 	unsigned long tmpl;
4343 	unsigned long cr0, cr3, cr4;
4344 
4345 	cr0 = read_cr0();
4346 	WARN_ON(cr0 & X86_CR0_TS);
4347 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4348 
4349 	/*
4350 	 * Save the most likely value for this task's CR3 in the VMCS.
4351 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4352 	 */
4353 	cr3 = __read_cr3();
4354 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4355 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4356 
4357 	/* Save the most likely value for this task's CR4 in the VMCS. */
4358 	cr4 = cr4_read_shadow();
4359 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4360 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4361 
4362 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4363 #ifdef CONFIG_X86_64
4364 	/*
4365 	 * Load null selectors, so we can avoid reloading them in
4366 	 * vmx_prepare_switch_to_host(), in case userspace uses
4367 	 * the null selectors too (the expected case).
4368 	 */
4369 	vmcs_write16(HOST_DS_SELECTOR, 0);
4370 	vmcs_write16(HOST_ES_SELECTOR, 0);
4371 #else
4372 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4373 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4374 #endif
4375 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4376 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4377 
4378 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4379 
4380 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4381 
4382 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4383 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4384 
4385 	/*
4386 	 * SYSENTER is used for 32-bit system calls on either 32-bit or
4387 	 * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4388 	 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4389 	 * have already done so!).
4390 	 */
4391 	if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4392 		vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4393 
4394 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4395 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4396 
4397 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4398 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4399 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4400 	}
4401 
4402 	if (cpu_has_load_ia32_efer())
4403 		vmcs_write64(HOST_IA32_EFER, kvm_host.efer);
4404 }
4405 
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4406 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4407 {
4408 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4409 
4410 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4411 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4412 	if (!enable_ept) {
4413 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4414 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4415 	}
4416 	if (is_guest_mode(&vmx->vcpu))
4417 		vcpu->arch.cr4_guest_owned_bits &=
4418 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4419 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4420 }
4421 
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4422 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4423 {
4424 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4425 
4426 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4427 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4428 
4429 	if (!enable_vnmi)
4430 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4431 
4432 	if (!enable_preemption_timer)
4433 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4434 
4435 	return pin_based_exec_ctrl;
4436 }
4437 
vmx_vmentry_ctrl(void)4438 static u32 vmx_vmentry_ctrl(void)
4439 {
4440 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4441 
4442 	if (vmx_pt_mode_is_system())
4443 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4444 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4445 	/*
4446 	 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4447 	 */
4448 	vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4449 			  VM_ENTRY_LOAD_IA32_EFER |
4450 			  VM_ENTRY_IA32E_MODE);
4451 
4452 	return vmentry_ctrl;
4453 }
4454 
vmx_vmexit_ctrl(void)4455 static u32 vmx_vmexit_ctrl(void)
4456 {
4457 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4458 
4459 	/*
4460 	 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4461 	 * nested virtualization and thus allowed to be set in vmcs12.
4462 	 */
4463 	vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4464 			 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4465 
4466 	if (vmx_pt_mode_is_system())
4467 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4468 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4469 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4470 	return vmexit_ctrl &
4471 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4472 }
4473 
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)4474 void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4475 {
4476 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4477 
4478 	if (is_guest_mode(vcpu)) {
4479 		vmx->nested.update_vmcs01_apicv_status = true;
4480 		return;
4481 	}
4482 
4483 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4484 
4485 	if (kvm_vcpu_apicv_active(vcpu)) {
4486 		secondary_exec_controls_setbit(vmx,
4487 					       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4488 					       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4489 		if (enable_ipiv)
4490 			tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4491 	} else {
4492 		secondary_exec_controls_clearbit(vmx,
4493 						 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4494 						 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4495 		if (enable_ipiv)
4496 			tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4497 	}
4498 
4499 	vmx_update_msr_bitmap_x2apic(vcpu);
4500 }
4501 
vmx_exec_control(struct vcpu_vmx * vmx)4502 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4503 {
4504 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4505 
4506 	/*
4507 	 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4508 	 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4509 	 */
4510 	exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4511 			  CPU_BASED_USE_IO_BITMAPS |
4512 			  CPU_BASED_MONITOR_TRAP_FLAG |
4513 			  CPU_BASED_PAUSE_EXITING);
4514 
4515 	/* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4516 	exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4517 			  CPU_BASED_NMI_WINDOW_EXITING);
4518 
4519 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4520 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4521 
4522 	if (!cpu_need_tpr_shadow(&vmx->vcpu))
4523 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4524 
4525 #ifdef CONFIG_X86_64
4526 	if (exec_control & CPU_BASED_TPR_SHADOW)
4527 		exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4528 				  CPU_BASED_CR8_STORE_EXITING);
4529 	else
4530 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4531 				CPU_BASED_CR8_LOAD_EXITING;
4532 #endif
4533 	/* No need to intercept CR3 access or INVPLG when using EPT. */
4534 	if (enable_ept)
4535 		exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4536 				  CPU_BASED_CR3_STORE_EXITING |
4537 				  CPU_BASED_INVLPG_EXITING);
4538 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4539 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4540 				CPU_BASED_MONITOR_EXITING);
4541 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4542 		exec_control &= ~CPU_BASED_HLT_EXITING;
4543 	return exec_control;
4544 }
4545 
vmx_tertiary_exec_control(struct vcpu_vmx * vmx)4546 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4547 {
4548 	u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4549 
4550 	/*
4551 	 * IPI virtualization relies on APICv. Disable IPI virtualization if
4552 	 * APICv is inhibited.
4553 	 */
4554 	if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4555 		exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4556 
4557 	return exec_control;
4558 }
4559 
4560 /*
4561  * Adjust a single secondary execution control bit to intercept/allow an
4562  * instruction in the guest.  This is usually done based on whether or not a
4563  * feature has been exposed to the guest in order to correctly emulate faults.
4564  */
4565 static inline void
vmx_adjust_secondary_exec_control(struct vcpu_vmx * vmx,u32 * exec_control,u32 control,bool enabled,bool exiting)4566 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4567 				  u32 control, bool enabled, bool exiting)
4568 {
4569 	/*
4570 	 * If the control is for an opt-in feature, clear the control if the
4571 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4572 	 * control is opt-out, i.e. an exiting control, clear the control if
4573 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4574 	 * disabled for the associated instruction.  Note, the caller is
4575 	 * responsible presetting exec_control to set all supported bits.
4576 	 */
4577 	if (enabled == exiting)
4578 		*exec_control &= ~control;
4579 
4580 	/*
4581 	 * Update the nested MSR settings so that a nested VMM can/can't set
4582 	 * controls for features that are/aren't exposed to the guest.
4583 	 */
4584 	if (nested &&
4585 	    kvm_check_has_quirk(vmx->vcpu.kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
4586 		/*
4587 		 * All features that can be added or removed to VMX MSRs must
4588 		 * be supported in the first place for nested virtualization.
4589 		 */
4590 		if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4591 			enabled = false;
4592 
4593 		if (enabled)
4594 			vmx->nested.msrs.secondary_ctls_high |= control;
4595 		else
4596 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4597 	}
4598 }
4599 
4600 /*
4601  * Wrapper macro for the common case of adjusting a secondary execution control
4602  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4603  * verifies that the control is actually supported by KVM and hardware.
4604  */
4605 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting)	\
4606 ({												\
4607 	struct kvm_vcpu *__vcpu = &(vmx)->vcpu;							\
4608 	bool __enabled;										\
4609 												\
4610 	if (cpu_has_vmx_##name()) {								\
4611 		__enabled = guest_cpu_cap_has(__vcpu, X86_FEATURE_##feat_name);			\
4612 		vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4613 						  __enabled, exiting);				\
4614 	}											\
4615 })
4616 
4617 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4618 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4619 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4620 
4621 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4622 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4623 
vmx_secondary_exec_control(struct vcpu_vmx * vmx)4624 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4625 {
4626 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4627 
4628 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4629 
4630 	if (vmx_pt_mode_is_system())
4631 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4632 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4633 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4634 	if (vmx->vpid == 0)
4635 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4636 	if (!enable_ept) {
4637 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4638 		exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
4639 		enable_unrestricted_guest = 0;
4640 	}
4641 	if (!enable_unrestricted_guest)
4642 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4643 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4644 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4645 	if (!kvm_vcpu_apicv_active(vcpu))
4646 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4647 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4648 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4649 
4650 	/*
4651 	 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4652 	 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4653 	 */
4654 	exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4655 
4656 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4657 	 * in vmx_set_cr4.  */
4658 	exec_control &= ~SECONDARY_EXEC_DESC;
4659 
4660 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4661 	   (handle_vmptrld).
4662 	   We can NOT enable shadow_vmcs here because we don't have yet
4663 	   a current VMCS12
4664 	*/
4665 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4666 
4667 	/*
4668 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4669 	 * it needs to be set here when dirty logging is already active, e.g.
4670 	 * if this vCPU was created after dirty logging was enabled.
4671 	 */
4672 	if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4673 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4674 
4675 	vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4676 
4677 	/*
4678 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4679 	 * feature is exposed to the guest.  This creates a virtualization hole
4680 	 * if both are supported in hardware but only one is exposed to the
4681 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4682 	 * is advertised is preferable to emulating the advertised instruction
4683 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4684 	 */
4685 	if (cpu_has_vmx_rdtscp()) {
4686 		bool rdpid_or_rdtscp_enabled =
4687 			guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) ||
4688 			guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID);
4689 
4690 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4691 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4692 						  rdpid_or_rdtscp_enabled, false);
4693 	}
4694 
4695 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4696 
4697 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4698 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4699 
4700 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4701 				    ENABLE_USR_WAIT_PAUSE, false);
4702 
4703 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4704 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4705 
4706 	if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4707 		exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4708 
4709 	return exec_control;
4710 }
4711 
vmx_get_pid_table_order(struct kvm * kvm)4712 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4713 {
4714 	return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4715 }
4716 
vmx_alloc_ipiv_pid_table(struct kvm * kvm)4717 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4718 {
4719 	struct page *pages;
4720 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4721 
4722 	if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4723 		return 0;
4724 
4725 	if (kvm_vmx->pid_table)
4726 		return 0;
4727 
4728 	pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4729 			    vmx_get_pid_table_order(kvm));
4730 	if (!pages)
4731 		return -ENOMEM;
4732 
4733 	kvm_vmx->pid_table = (void *)page_address(pages);
4734 	return 0;
4735 }
4736 
vmx_vcpu_precreate(struct kvm * kvm)4737 int vmx_vcpu_precreate(struct kvm *kvm)
4738 {
4739 	return vmx_alloc_ipiv_pid_table(kvm);
4740 }
4741 
4742 #define VMX_XSS_EXIT_BITMAP 0
4743 
init_vmcs(struct vcpu_vmx * vmx)4744 static void init_vmcs(struct vcpu_vmx *vmx)
4745 {
4746 	struct kvm *kvm = vmx->vcpu.kvm;
4747 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4748 
4749 	if (nested)
4750 		nested_vmx_set_vmcs_shadowing_bitmap();
4751 
4752 	if (cpu_has_vmx_msr_bitmap())
4753 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4754 
4755 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4756 
4757 	/* Control */
4758 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4759 
4760 	exec_controls_set(vmx, vmx_exec_control(vmx));
4761 
4762 	if (cpu_has_secondary_exec_ctrls()) {
4763 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4764 		if (vmx->ve_info)
4765 			vmcs_write64(VE_INFORMATION_ADDRESS,
4766 				     __pa(vmx->ve_info));
4767 	}
4768 
4769 	if (cpu_has_tertiary_exec_ctrls())
4770 		tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4771 
4772 	if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4773 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4774 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4775 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4776 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4777 
4778 		vmcs_write16(GUEST_INTR_STATUS, 0);
4779 
4780 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4781 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4782 	}
4783 
4784 	if (vmx_can_use_ipiv(&vmx->vcpu)) {
4785 		vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4786 		vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4787 	}
4788 
4789 	if (!kvm_pause_in_guest(kvm)) {
4790 		vmcs_write32(PLE_GAP, ple_gap);
4791 		vmx->ple_window = ple_window;
4792 		vmx->ple_window_dirty = true;
4793 	}
4794 
4795 	if (kvm_notify_vmexit_enabled(kvm))
4796 		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4797 
4798 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4799 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4800 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4801 
4802 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4803 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4804 	vmx_set_constant_host_state(vmx);
4805 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4806 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4807 
4808 	if (cpu_has_vmx_vmfunc())
4809 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4810 
4811 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4812 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4813 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4814 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4815 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4816 
4817 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4818 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4819 
4820 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4821 
4822 	/* 22.2.1, 20.8.1 */
4823 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4824 
4825 	vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4826 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4827 
4828 	set_cr4_guest_host_mask(vmx);
4829 
4830 	if (vmx->vpid != 0)
4831 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4832 
4833 	if (cpu_has_vmx_xsaves())
4834 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4835 
4836 	if (enable_pml) {
4837 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4838 		vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX);
4839 	}
4840 
4841 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4842 
4843 	if (vmx_pt_mode_is_host_guest()) {
4844 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4845 		/* Bit[6~0] are forced to 1, writes are ignored. */
4846 		vmx->pt_desc.guest.output_mask = 0x7F;
4847 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4848 	}
4849 
4850 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4851 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4852 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4853 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4854 
4855 	if (cpu_has_vmx_tpr_shadow()) {
4856 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4857 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4858 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4859 				     __pa(vmx->vcpu.arch.apic->regs));
4860 		vmcs_write32(TPR_THRESHOLD, 0);
4861 	}
4862 
4863 	vmx_setup_uret_msrs(vmx);
4864 }
4865 
__vmx_vcpu_reset(struct kvm_vcpu * vcpu)4866 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4867 {
4868 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4869 
4870 	init_vmcs(vmx);
4871 
4872 	if (nested &&
4873 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
4874 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4875 
4876 	vcpu_setup_sgx_lepubkeyhash(vcpu);
4877 
4878 	vmx->nested.posted_intr_nv = -1;
4879 	vmx->nested.vmxon_ptr = INVALID_GPA;
4880 	vmx->nested.current_vmptr = INVALID_GPA;
4881 
4882 #ifdef CONFIG_KVM_HYPERV
4883 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4884 #endif
4885 
4886 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
4887 		vcpu->arch.microcode_version = 0x100000000ULL;
4888 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4889 
4890 	/*
4891 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4892 	 * or POSTED_INTR_WAKEUP_VECTOR.
4893 	 */
4894 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4895 	__pi_set_sn(&vmx->pi_desc);
4896 }
4897 
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4898 void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4899 {
4900 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4901 
4902 	if (!init_event)
4903 		__vmx_vcpu_reset(vcpu);
4904 
4905 	vmx->rmode.vm86_active = 0;
4906 	vmx->spec_ctrl = 0;
4907 
4908 	vmx->msr_ia32_umwait_control = 0;
4909 
4910 	vmx->hv_deadline_tsc = -1;
4911 	kvm_set_cr8(vcpu, 0);
4912 
4913 	seg_setup(VCPU_SREG_CS);
4914 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4915 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4916 
4917 	seg_setup(VCPU_SREG_DS);
4918 	seg_setup(VCPU_SREG_ES);
4919 	seg_setup(VCPU_SREG_FS);
4920 	seg_setup(VCPU_SREG_GS);
4921 	seg_setup(VCPU_SREG_SS);
4922 
4923 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4924 	vmcs_writel(GUEST_TR_BASE, 0);
4925 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4926 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4927 
4928 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4929 	vmcs_writel(GUEST_LDTR_BASE, 0);
4930 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4931 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4932 
4933 	vmcs_writel(GUEST_GDTR_BASE, 0);
4934 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4935 
4936 	vmcs_writel(GUEST_IDTR_BASE, 0);
4937 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4938 
4939 	vmx_segment_cache_clear(vmx);
4940 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4941 
4942 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4943 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4944 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4945 	if (kvm_mpx_supported())
4946 		vmcs_write64(GUEST_BNDCFGS, 0);
4947 
4948 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4949 
4950 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4951 
4952 	vpid_sync_context(vmx->vpid);
4953 
4954 	vmx_update_fb_clear_dis(vcpu, vmx);
4955 }
4956 
vmx_enable_irq_window(struct kvm_vcpu * vcpu)4957 void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4958 {
4959 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4960 }
4961 
vmx_enable_nmi_window(struct kvm_vcpu * vcpu)4962 void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4963 {
4964 	if (!enable_vnmi ||
4965 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4966 		vmx_enable_irq_window(vcpu);
4967 		return;
4968 	}
4969 
4970 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4971 }
4972 
vmx_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)4973 void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4974 {
4975 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4976 	uint32_t intr;
4977 	int irq = vcpu->arch.interrupt.nr;
4978 
4979 	trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4980 
4981 	++vcpu->stat.irq_injections;
4982 	if (vmx->rmode.vm86_active) {
4983 		int inc_eip = 0;
4984 		if (vcpu->arch.interrupt.soft)
4985 			inc_eip = vcpu->arch.event_exit_inst_len;
4986 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4987 		return;
4988 	}
4989 	intr = irq | INTR_INFO_VALID_MASK;
4990 	if (vcpu->arch.interrupt.soft) {
4991 		intr |= INTR_TYPE_SOFT_INTR;
4992 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4993 			     vmx->vcpu.arch.event_exit_inst_len);
4994 	} else
4995 		intr |= INTR_TYPE_EXT_INTR;
4996 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4997 
4998 	vmx_clear_hlt(vcpu);
4999 }
5000 
vmx_inject_nmi(struct kvm_vcpu * vcpu)5001 void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5002 {
5003 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5004 
5005 	if (!enable_vnmi) {
5006 		/*
5007 		 * Tracking the NMI-blocked state in software is built upon
5008 		 * finding the next open IRQ window. This, in turn, depends on
5009 		 * well-behaving guests: They have to keep IRQs disabled at
5010 		 * least as long as the NMI handler runs. Otherwise we may
5011 		 * cause NMI nesting, maybe breaking the guest. But as this is
5012 		 * highly unlikely, we can live with the residual risk.
5013 		 */
5014 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
5015 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
5016 	}
5017 
5018 	++vcpu->stat.nmi_injections;
5019 	vmx->loaded_vmcs->nmi_known_unmasked = false;
5020 
5021 	if (vmx->rmode.vm86_active) {
5022 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
5023 		return;
5024 	}
5025 
5026 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5027 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5028 
5029 	vmx_clear_hlt(vcpu);
5030 }
5031 
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)5032 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5033 {
5034 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5035 	bool masked;
5036 
5037 	if (!enable_vnmi)
5038 		return vmx->loaded_vmcs->soft_vnmi_blocked;
5039 	if (vmx->loaded_vmcs->nmi_known_unmasked)
5040 		return false;
5041 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5042 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5043 	return masked;
5044 }
5045 
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)5046 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5047 {
5048 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5049 
5050 	if (!enable_vnmi) {
5051 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5052 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5053 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
5054 		}
5055 	} else {
5056 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5057 		if (masked)
5058 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5059 				      GUEST_INTR_STATE_NMI);
5060 		else
5061 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5062 					GUEST_INTR_STATE_NMI);
5063 	}
5064 }
5065 
vmx_nmi_blocked(struct kvm_vcpu * vcpu)5066 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5067 {
5068 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5069 		return false;
5070 
5071 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5072 		return true;
5073 
5074 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5075 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5076 		 GUEST_INTR_STATE_NMI));
5077 }
5078 
vmx_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)5079 int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5080 {
5081 	if (to_vmx(vcpu)->nested.nested_run_pending)
5082 		return -EBUSY;
5083 
5084 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
5085 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5086 		return -EBUSY;
5087 
5088 	return !vmx_nmi_blocked(vcpu);
5089 }
5090 
__vmx_interrupt_blocked(struct kvm_vcpu * vcpu)5091 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5092 {
5093 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5094 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5095 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5096 }
5097 
vmx_interrupt_blocked(struct kvm_vcpu * vcpu)5098 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5099 {
5100 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5101 		return false;
5102 
5103 	return __vmx_interrupt_blocked(vcpu);
5104 }
5105 
vmx_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)5106 int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5107 {
5108 	if (to_vmx(vcpu)->nested.nested_run_pending)
5109 		return -EBUSY;
5110 
5111 	/*
5112 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5113 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
5114 	 */
5115 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5116 		return -EBUSY;
5117 
5118 	return !vmx_interrupt_blocked(vcpu);
5119 }
5120 
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)5121 int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5122 {
5123 	void __user *ret;
5124 
5125 	if (enable_unrestricted_guest)
5126 		return 0;
5127 
5128 	mutex_lock(&kvm->slots_lock);
5129 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5130 				      PAGE_SIZE * 3);
5131 	mutex_unlock(&kvm->slots_lock);
5132 
5133 	if (IS_ERR(ret))
5134 		return PTR_ERR(ret);
5135 
5136 	to_kvm_vmx(kvm)->tss_addr = addr;
5137 
5138 	return init_rmode_tss(kvm, ret);
5139 }
5140 
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5141 int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5142 {
5143 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5144 	return 0;
5145 }
5146 
rmode_exception(struct kvm_vcpu * vcpu,int vec)5147 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5148 {
5149 	switch (vec) {
5150 	case BP_VECTOR:
5151 		/*
5152 		 * Update instruction length as we may reinject the exception
5153 		 * from user space while in guest debugging mode.
5154 		 */
5155 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5156 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5157 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5158 			return false;
5159 		fallthrough;
5160 	case DB_VECTOR:
5161 		return !(vcpu->guest_debug &
5162 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5163 	case DE_VECTOR:
5164 	case OF_VECTOR:
5165 	case BR_VECTOR:
5166 	case UD_VECTOR:
5167 	case DF_VECTOR:
5168 	case SS_VECTOR:
5169 	case GP_VECTOR:
5170 	case MF_VECTOR:
5171 		return true;
5172 	}
5173 	return false;
5174 }
5175 
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)5176 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5177 				  int vec, u32 err_code)
5178 {
5179 	/*
5180 	 * Instruction with address size override prefix opcode 0x67
5181 	 * Cause the #SS fault with 0 error code in VM86 mode.
5182 	 */
5183 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5184 		if (kvm_emulate_instruction(vcpu, 0)) {
5185 			if (vcpu->arch.halt_request) {
5186 				vcpu->arch.halt_request = 0;
5187 				return kvm_emulate_halt_noskip(vcpu);
5188 			}
5189 			return 1;
5190 		}
5191 		return 0;
5192 	}
5193 
5194 	/*
5195 	 * Forward all other exceptions that are valid in real mode.
5196 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5197 	 *        the required debugging infrastructure rework.
5198 	 */
5199 	kvm_queue_exception(vcpu, vec);
5200 	return 1;
5201 }
5202 
handle_machine_check(struct kvm_vcpu * vcpu)5203 static int handle_machine_check(struct kvm_vcpu *vcpu)
5204 {
5205 	/* handled by vmx_vcpu_run() */
5206 	return 1;
5207 }
5208 
5209 /*
5210  * If the host has split lock detection disabled, then #AC is
5211  * unconditionally injected into the guest, which is the pre split lock
5212  * detection behaviour.
5213  *
5214  * If the host has split lock detection enabled then #AC is
5215  * only injected into the guest when:
5216  *  - Guest CPL == 3 (user mode)
5217  *  - Guest has #AC detection enabled in CR0
5218  *  - Guest EFLAGS has AC bit set
5219  */
vmx_guest_inject_ac(struct kvm_vcpu * vcpu)5220 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5221 {
5222 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5223 		return true;
5224 
5225 	return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5226 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5227 }
5228 
is_xfd_nm_fault(struct kvm_vcpu * vcpu)5229 static bool is_xfd_nm_fault(struct kvm_vcpu *vcpu)
5230 {
5231 	return vcpu->arch.guest_fpu.fpstate->xfd &&
5232 	       !kvm_is_cr0_bit_set(vcpu, X86_CR0_TS);
5233 }
5234 
handle_exception_nmi(struct kvm_vcpu * vcpu)5235 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5236 {
5237 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5238 	struct kvm_run *kvm_run = vcpu->run;
5239 	u32 intr_info, ex_no, error_code;
5240 	unsigned long cr2, dr6;
5241 	u32 vect_info;
5242 
5243 	vect_info = vmx->idt_vectoring_info;
5244 	intr_info = vmx_get_intr_info(vcpu);
5245 
5246 	/*
5247 	 * Machine checks are handled by handle_exception_irqoff(), or by
5248 	 * vmx_vcpu_run() if a #MC occurs on VM-Entry.  NMIs are handled by
5249 	 * vmx_vcpu_enter_exit().
5250 	 */
5251 	if (is_machine_check(intr_info) || is_nmi(intr_info))
5252 		return 1;
5253 
5254 	/*
5255 	 * Queue the exception here instead of in handle_nm_fault_irqoff().
5256 	 * This ensures the nested_vmx check is not skipped so vmexit can
5257 	 * be reflected to L1 (when it intercepts #NM) before reaching this
5258 	 * point.
5259 	 */
5260 	if (is_nm_fault(intr_info)) {
5261 		kvm_queue_exception_p(vcpu, NM_VECTOR,
5262 				      is_xfd_nm_fault(vcpu) ? vcpu->arch.guest_fpu.xfd_err : 0);
5263 		return 1;
5264 	}
5265 
5266 	if (is_invalid_opcode(intr_info))
5267 		return handle_ud(vcpu);
5268 
5269 	if (WARN_ON_ONCE(is_ve_fault(intr_info))) {
5270 		struct vmx_ve_information *ve_info = vmx->ve_info;
5271 
5272 		WARN_ONCE(ve_info->exit_reason != EXIT_REASON_EPT_VIOLATION,
5273 			  "Unexpected #VE on VM-Exit reason 0x%x", ve_info->exit_reason);
5274 		dump_vmcs(vcpu);
5275 		kvm_mmu_print_sptes(vcpu, ve_info->guest_physical_address, "#VE");
5276 		return 1;
5277 	}
5278 
5279 	error_code = 0;
5280 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5281 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5282 
5283 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5284 		WARN_ON_ONCE(!enable_vmware_backdoor);
5285 
5286 		/*
5287 		 * VMware backdoor emulation on #GP interception only handles
5288 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5289 		 * error code on #GP.
5290 		 */
5291 		if (error_code) {
5292 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5293 			return 1;
5294 		}
5295 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5296 	}
5297 
5298 	/*
5299 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5300 	 * MMIO, it is better to report an internal error.
5301 	 * See the comments in vmx_handle_exit.
5302 	 */
5303 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5304 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5305 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5306 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5307 		vcpu->run->internal.ndata = 4;
5308 		vcpu->run->internal.data[0] = vect_info;
5309 		vcpu->run->internal.data[1] = intr_info;
5310 		vcpu->run->internal.data[2] = error_code;
5311 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5312 		return 0;
5313 	}
5314 
5315 	if (is_page_fault(intr_info)) {
5316 		cr2 = vmx_get_exit_qual(vcpu);
5317 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5318 			/*
5319 			 * EPT will cause page fault only if we need to
5320 			 * detect illegal GPAs.
5321 			 */
5322 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5323 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5324 			return 1;
5325 		} else
5326 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5327 	}
5328 
5329 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5330 
5331 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5332 		return handle_rmode_exception(vcpu, ex_no, error_code);
5333 
5334 	switch (ex_no) {
5335 	case DB_VECTOR:
5336 		dr6 = vmx_get_exit_qual(vcpu);
5337 		if (!(vcpu->guest_debug &
5338 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5339 			/*
5340 			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5341 			 * instruction.  ICEBP generates a trap-like #DB, but
5342 			 * despite its interception control being tied to #DB,
5343 			 * is an instruction intercept, i.e. the VM-Exit occurs
5344 			 * on the ICEBP itself.  Use the inner "skip" helper to
5345 			 * avoid single-step #DB and MTF updates, as ICEBP is
5346 			 * higher priority.  Note, skipping ICEBP still clears
5347 			 * STI and MOVSS blocking.
5348 			 *
5349 			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5350 			 * if single-step is enabled in RFLAGS and STI or MOVSS
5351 			 * blocking is active, as the CPU doesn't set the bit
5352 			 * on VM-Exit due to #DB interception.  VM-Entry has a
5353 			 * consistency check that a single-step #DB is pending
5354 			 * in this scenario as the previous instruction cannot
5355 			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5356 			 * don't modify RFLAGS), therefore the one instruction
5357 			 * delay when activating single-step breakpoints must
5358 			 * have already expired.  Note, the CPU sets/clears BS
5359 			 * as appropriate for all other VM-Exits types.
5360 			 */
5361 			if (is_icebp(intr_info))
5362 				WARN_ON(!skip_emulated_instruction(vcpu));
5363 			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5364 				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5365 				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5366 				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5367 					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5368 
5369 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5370 			return 1;
5371 		}
5372 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5373 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5374 		fallthrough;
5375 	case BP_VECTOR:
5376 		/*
5377 		 * Update instruction length as we may reinject #BP from
5378 		 * user space while in guest debugging mode. Reading it for
5379 		 * #DB as well causes no harm, it is not used in that case.
5380 		 */
5381 		vmx->vcpu.arch.event_exit_inst_len =
5382 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5383 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5384 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5385 		kvm_run->debug.arch.exception = ex_no;
5386 		break;
5387 	case AC_VECTOR:
5388 		if (vmx_guest_inject_ac(vcpu)) {
5389 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5390 			return 1;
5391 		}
5392 
5393 		/*
5394 		 * Handle split lock. Depending on detection mode this will
5395 		 * either warn and disable split lock detection for this
5396 		 * task or force SIGBUS on it.
5397 		 */
5398 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5399 			return 1;
5400 		fallthrough;
5401 	default:
5402 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5403 		kvm_run->ex.exception = ex_no;
5404 		kvm_run->ex.error_code = error_code;
5405 		break;
5406 	}
5407 	return 0;
5408 }
5409 
handle_external_interrupt(struct kvm_vcpu * vcpu)5410 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5411 {
5412 	++vcpu->stat.irq_exits;
5413 	return 1;
5414 }
5415 
handle_triple_fault(struct kvm_vcpu * vcpu)5416 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5417 {
5418 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5419 	vcpu->mmio_needed = 0;
5420 	return 0;
5421 }
5422 
handle_io(struct kvm_vcpu * vcpu)5423 static int handle_io(struct kvm_vcpu *vcpu)
5424 {
5425 	unsigned long exit_qualification;
5426 	int size, in, string;
5427 	unsigned port;
5428 
5429 	exit_qualification = vmx_get_exit_qual(vcpu);
5430 	string = (exit_qualification & 16) != 0;
5431 
5432 	++vcpu->stat.io_exits;
5433 
5434 	if (string)
5435 		return kvm_emulate_instruction(vcpu, 0);
5436 
5437 	port = exit_qualification >> 16;
5438 	size = (exit_qualification & 7) + 1;
5439 	in = (exit_qualification & 8) != 0;
5440 
5441 	return kvm_fast_pio(vcpu, size, port, in);
5442 }
5443 
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5444 void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5445 {
5446 	/*
5447 	 * Patch in the VMCALL instruction:
5448 	 */
5449 	hypercall[0] = 0x0f;
5450 	hypercall[1] = 0x01;
5451 	hypercall[2] = 0xc1;
5452 }
5453 
5454 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5455 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5456 {
5457 	if (is_guest_mode(vcpu)) {
5458 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5459 		unsigned long orig_val = val;
5460 
5461 		/*
5462 		 * We get here when L2 changed cr0 in a way that did not change
5463 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5464 		 * but did change L0 shadowed bits. So we first calculate the
5465 		 * effective cr0 value that L1 would like to write into the
5466 		 * hardware. It consists of the L2-owned bits from the new
5467 		 * value combined with the L1-owned bits from L1's guest_cr0.
5468 		 */
5469 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5470 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5471 
5472 		if (kvm_set_cr0(vcpu, val))
5473 			return 1;
5474 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5475 		return 0;
5476 	} else {
5477 		return kvm_set_cr0(vcpu, val);
5478 	}
5479 }
5480 
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5481 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5482 {
5483 	if (is_guest_mode(vcpu)) {
5484 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5485 		unsigned long orig_val = val;
5486 
5487 		/* analogously to handle_set_cr0 */
5488 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5489 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5490 		if (kvm_set_cr4(vcpu, val))
5491 			return 1;
5492 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5493 		return 0;
5494 	} else
5495 		return kvm_set_cr4(vcpu, val);
5496 }
5497 
handle_desc(struct kvm_vcpu * vcpu)5498 static int handle_desc(struct kvm_vcpu *vcpu)
5499 {
5500 	/*
5501 	 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5502 	 * and other code needs to be updated if UMIP can be guest owned.
5503 	 */
5504 	BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5505 
5506 	WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5507 	return kvm_emulate_instruction(vcpu, 0);
5508 }
5509 
handle_cr(struct kvm_vcpu * vcpu)5510 static int handle_cr(struct kvm_vcpu *vcpu)
5511 {
5512 	unsigned long exit_qualification, val;
5513 	int cr;
5514 	int reg;
5515 	int err;
5516 	int ret;
5517 
5518 	exit_qualification = vmx_get_exit_qual(vcpu);
5519 	cr = exit_qualification & 15;
5520 	reg = (exit_qualification >> 8) & 15;
5521 	switch ((exit_qualification >> 4) & 3) {
5522 	case 0: /* mov to cr */
5523 		val = kvm_register_read(vcpu, reg);
5524 		trace_kvm_cr_write(cr, val);
5525 		switch (cr) {
5526 		case 0:
5527 			err = handle_set_cr0(vcpu, val);
5528 			return kvm_complete_insn_gp(vcpu, err);
5529 		case 3:
5530 			WARN_ON_ONCE(enable_unrestricted_guest);
5531 
5532 			err = kvm_set_cr3(vcpu, val);
5533 			return kvm_complete_insn_gp(vcpu, err);
5534 		case 4:
5535 			err = handle_set_cr4(vcpu, val);
5536 			return kvm_complete_insn_gp(vcpu, err);
5537 		case 8: {
5538 				u8 cr8_prev = kvm_get_cr8(vcpu);
5539 				u8 cr8 = (u8)val;
5540 				err = kvm_set_cr8(vcpu, cr8);
5541 				ret = kvm_complete_insn_gp(vcpu, err);
5542 				if (lapic_in_kernel(vcpu))
5543 					return ret;
5544 				if (cr8_prev <= cr8)
5545 					return ret;
5546 				/*
5547 				 * TODO: we might be squashing a
5548 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5549 				 * KVM_EXIT_DEBUG here.
5550 				 */
5551 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5552 				return 0;
5553 			}
5554 		}
5555 		break;
5556 	case 2: /* clts */
5557 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5558 		return -EIO;
5559 	case 1: /*mov from cr*/
5560 		switch (cr) {
5561 		case 3:
5562 			WARN_ON_ONCE(enable_unrestricted_guest);
5563 
5564 			val = kvm_read_cr3(vcpu);
5565 			kvm_register_write(vcpu, reg, val);
5566 			trace_kvm_cr_read(cr, val);
5567 			return kvm_skip_emulated_instruction(vcpu);
5568 		case 8:
5569 			val = kvm_get_cr8(vcpu);
5570 			kvm_register_write(vcpu, reg, val);
5571 			trace_kvm_cr_read(cr, val);
5572 			return kvm_skip_emulated_instruction(vcpu);
5573 		}
5574 		break;
5575 	case 3: /* lmsw */
5576 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5577 		trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5578 		kvm_lmsw(vcpu, val);
5579 
5580 		return kvm_skip_emulated_instruction(vcpu);
5581 	default:
5582 		break;
5583 	}
5584 	vcpu->run->exit_reason = 0;
5585 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5586 	       (int)(exit_qualification >> 4) & 3, cr);
5587 	return 0;
5588 }
5589 
handle_dr(struct kvm_vcpu * vcpu)5590 static int handle_dr(struct kvm_vcpu *vcpu)
5591 {
5592 	unsigned long exit_qualification;
5593 	int dr, dr7, reg;
5594 	int err = 1;
5595 
5596 	exit_qualification = vmx_get_exit_qual(vcpu);
5597 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5598 
5599 	/* First, if DR does not exist, trigger UD */
5600 	if (!kvm_require_dr(vcpu, dr))
5601 		return 1;
5602 
5603 	if (vmx_get_cpl(vcpu) > 0)
5604 		goto out;
5605 
5606 	dr7 = vmcs_readl(GUEST_DR7);
5607 	if (dr7 & DR7_GD) {
5608 		/*
5609 		 * As the vm-exit takes precedence over the debug trap, we
5610 		 * need to emulate the latter, either for the host or the
5611 		 * guest debugging itself.
5612 		 */
5613 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5614 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5615 			vcpu->run->debug.arch.dr7 = dr7;
5616 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5617 			vcpu->run->debug.arch.exception = DB_VECTOR;
5618 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5619 			return 0;
5620 		} else {
5621 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5622 			return 1;
5623 		}
5624 	}
5625 
5626 	if (vcpu->guest_debug == 0) {
5627 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5628 
5629 		/*
5630 		 * No more DR vmexits; force a reload of the debug registers
5631 		 * and reenter on this instruction.  The next vmexit will
5632 		 * retrieve the full state of the debug registers.
5633 		 */
5634 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5635 		return 1;
5636 	}
5637 
5638 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5639 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5640 		kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
5641 		err = 0;
5642 	} else {
5643 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5644 	}
5645 
5646 out:
5647 	return kvm_complete_insn_gp(vcpu, err);
5648 }
5649 
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5650 void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5651 {
5652 	get_debugreg(vcpu->arch.db[0], 0);
5653 	get_debugreg(vcpu->arch.db[1], 1);
5654 	get_debugreg(vcpu->arch.db[2], 2);
5655 	get_debugreg(vcpu->arch.db[3], 3);
5656 	get_debugreg(vcpu->arch.dr6, 6);
5657 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5658 
5659 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5660 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5661 
5662 	/*
5663 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5664 	 * a stale dr6 from the guest.
5665 	 */
5666 	set_debugreg(DR6_RESERVED, 6);
5667 }
5668 
vmx_set_dr6(struct kvm_vcpu * vcpu,unsigned long val)5669 void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5670 {
5671 	lockdep_assert_irqs_disabled();
5672 	set_debugreg(vcpu->arch.dr6, 6);
5673 }
5674 
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5675 void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5676 {
5677 	vmcs_writel(GUEST_DR7, val);
5678 }
5679 
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5680 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5681 {
5682 	kvm_apic_update_ppr(vcpu);
5683 	return 1;
5684 }
5685 
handle_interrupt_window(struct kvm_vcpu * vcpu)5686 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5687 {
5688 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5689 
5690 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5691 
5692 	++vcpu->stat.irq_window_exits;
5693 	return 1;
5694 }
5695 
handle_invlpg(struct kvm_vcpu * vcpu)5696 static int handle_invlpg(struct kvm_vcpu *vcpu)
5697 {
5698 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5699 
5700 	kvm_mmu_invlpg(vcpu, exit_qualification);
5701 	return kvm_skip_emulated_instruction(vcpu);
5702 }
5703 
handle_apic_access(struct kvm_vcpu * vcpu)5704 static int handle_apic_access(struct kvm_vcpu *vcpu)
5705 {
5706 	if (likely(fasteoi)) {
5707 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5708 		int access_type, offset;
5709 
5710 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5711 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5712 		/*
5713 		 * Sane guest uses MOV to write EOI, with written value
5714 		 * not cared. So make a short-circuit here by avoiding
5715 		 * heavy instruction emulation.
5716 		 */
5717 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5718 		    (offset == APIC_EOI)) {
5719 			kvm_lapic_set_eoi(vcpu);
5720 			return kvm_skip_emulated_instruction(vcpu);
5721 		}
5722 	}
5723 	return kvm_emulate_instruction(vcpu, 0);
5724 }
5725 
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5726 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5727 {
5728 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5729 	int vector = exit_qualification & 0xff;
5730 
5731 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5732 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5733 	return 1;
5734 }
5735 
handle_apic_write(struct kvm_vcpu * vcpu)5736 static int handle_apic_write(struct kvm_vcpu *vcpu)
5737 {
5738 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5739 
5740 	/*
5741 	 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5742 	 * hardware has done any necessary aliasing, offset adjustments, etc...
5743 	 * for the access.  I.e. the correct value has already been  written to
5744 	 * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5745 	 * retrieve the register value and emulate the access.
5746 	 */
5747 	u32 offset = exit_qualification & 0xff0;
5748 
5749 	kvm_apic_write_nodecode(vcpu, offset);
5750 	return 1;
5751 }
5752 
handle_task_switch(struct kvm_vcpu * vcpu)5753 static int handle_task_switch(struct kvm_vcpu *vcpu)
5754 {
5755 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5756 	unsigned long exit_qualification;
5757 	bool has_error_code = false;
5758 	u32 error_code = 0;
5759 	u16 tss_selector;
5760 	int reason, type, idt_v, idt_index;
5761 
5762 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5763 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5764 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5765 
5766 	exit_qualification = vmx_get_exit_qual(vcpu);
5767 
5768 	reason = (u32)exit_qualification >> 30;
5769 	if (reason == TASK_SWITCH_GATE && idt_v) {
5770 		switch (type) {
5771 		case INTR_TYPE_NMI_INTR:
5772 			vcpu->arch.nmi_injected = false;
5773 			vmx_set_nmi_mask(vcpu, true);
5774 			break;
5775 		case INTR_TYPE_EXT_INTR:
5776 		case INTR_TYPE_SOFT_INTR:
5777 			kvm_clear_interrupt_queue(vcpu);
5778 			break;
5779 		case INTR_TYPE_HARD_EXCEPTION:
5780 			if (vmx->idt_vectoring_info &
5781 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5782 				has_error_code = true;
5783 				error_code =
5784 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5785 			}
5786 			fallthrough;
5787 		case INTR_TYPE_SOFT_EXCEPTION:
5788 			kvm_clear_exception_queue(vcpu);
5789 			break;
5790 		default:
5791 			break;
5792 		}
5793 	}
5794 	tss_selector = exit_qualification;
5795 
5796 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5797 		       type != INTR_TYPE_EXT_INTR &&
5798 		       type != INTR_TYPE_NMI_INTR))
5799 		WARN_ON(!skip_emulated_instruction(vcpu));
5800 
5801 	/*
5802 	 * TODO: What about debug traps on tss switch?
5803 	 *       Are we supposed to inject them and update dr6?
5804 	 */
5805 	return kvm_task_switch(vcpu, tss_selector,
5806 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5807 			       reason, has_error_code, error_code);
5808 }
5809 
handle_ept_violation(struct kvm_vcpu * vcpu)5810 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5811 {
5812 	unsigned long exit_qualification;
5813 	gpa_t gpa;
5814 	u64 error_code;
5815 
5816 	exit_qualification = vmx_get_exit_qual(vcpu);
5817 
5818 	/*
5819 	 * EPT violation happened while executing iret from NMI,
5820 	 * "blocked by NMI" bit has to be set before next VM entry.
5821 	 * There are errata that may cause this bit to not be set:
5822 	 * AAK134, BY25.
5823 	 */
5824 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5825 			enable_vnmi &&
5826 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5827 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5828 
5829 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5830 	trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5831 
5832 	/* Is it a read fault? */
5833 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5834 		     ? PFERR_USER_MASK : 0;
5835 	/* Is it a write fault? */
5836 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5837 		      ? PFERR_WRITE_MASK : 0;
5838 	/* Is it a fetch fault? */
5839 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5840 		      ? PFERR_FETCH_MASK : 0;
5841 	/* ept page table entry is present? */
5842 	error_code |= (exit_qualification & EPT_VIOLATION_PROT_MASK)
5843 		      ? PFERR_PRESENT_MASK : 0;
5844 
5845 	if (error_code & EPT_VIOLATION_GVA_IS_VALID)
5846 		error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) ?
5847 			      PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5848 
5849 	/*
5850 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5851 	 * a guest page fault.  We have to emulate the instruction here, because
5852 	 * if the illegal address is that of a paging structure, then
5853 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5854 	 * would also use advanced VM-exit information for EPT violations to
5855 	 * reconstruct the page fault error code.
5856 	 */
5857 	if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa)))
5858 		return kvm_emulate_instruction(vcpu, 0);
5859 
5860 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5861 }
5862 
handle_ept_misconfig(struct kvm_vcpu * vcpu)5863 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5864 {
5865 	gpa_t gpa;
5866 
5867 	if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5868 		return 1;
5869 
5870 	/*
5871 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5872 	 * nGPA here instead of the required GPA.
5873 	 */
5874 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5875 	if (!is_guest_mode(vcpu) &&
5876 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5877 		trace_kvm_fast_mmio(gpa);
5878 		return kvm_skip_emulated_instruction(vcpu);
5879 	}
5880 
5881 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5882 }
5883 
handle_nmi_window(struct kvm_vcpu * vcpu)5884 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5885 {
5886 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5887 		return -EIO;
5888 
5889 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5890 	++vcpu->stat.nmi_window_exits;
5891 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5892 
5893 	return 1;
5894 }
5895 
5896 /*
5897  * Returns true if emulation is required (due to the vCPU having invalid state
5898  * with unsrestricted guest mode disabled) and KVM can't faithfully emulate the
5899  * current vCPU state.
5900  */
vmx_unhandleable_emulation_required(struct kvm_vcpu * vcpu)5901 static bool vmx_unhandleable_emulation_required(struct kvm_vcpu *vcpu)
5902 {
5903 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5904 
5905 	if (!vmx->emulation_required)
5906 		return false;
5907 
5908 	/*
5909 	 * It is architecturally impossible for emulation to be required when a
5910 	 * nested VM-Enter is pending completion, as VM-Enter will VM-Fail if
5911 	 * guest state is invalid and unrestricted guest is disabled, i.e. KVM
5912 	 * should synthesize VM-Fail instead emulation L2 code.  This path is
5913 	 * only reachable if userspace modifies L2 guest state after KVM has
5914 	 * performed the nested VM-Enter consistency checks.
5915 	 */
5916 	if (vmx->nested.nested_run_pending)
5917 		return true;
5918 
5919 	/*
5920 	 * KVM only supports emulating exceptions if the vCPU is in Real Mode.
5921 	 * If emulation is required, KVM can't perform a successful VM-Enter to
5922 	 * inject the exception.
5923 	 */
5924 	return !vmx->rmode.vm86_active &&
5925 	       (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5926 }
5927 
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5928 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5929 {
5930 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5931 	bool intr_window_requested;
5932 	unsigned count = 130;
5933 
5934 	intr_window_requested = exec_controls_get(vmx) &
5935 				CPU_BASED_INTR_WINDOW_EXITING;
5936 
5937 	while (vmx->emulation_required && count-- != 0) {
5938 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5939 			return handle_interrupt_window(&vmx->vcpu);
5940 
5941 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5942 			return 1;
5943 
5944 		if (!kvm_emulate_instruction(vcpu, 0))
5945 			return 0;
5946 
5947 		if (vmx_unhandleable_emulation_required(vcpu)) {
5948 			kvm_prepare_emulation_failure_exit(vcpu);
5949 			return 0;
5950 		}
5951 
5952 		if (vcpu->arch.halt_request) {
5953 			vcpu->arch.halt_request = 0;
5954 			return kvm_emulate_halt_noskip(vcpu);
5955 		}
5956 
5957 		/*
5958 		 * Note, return 1 and not 0, vcpu_run() will invoke
5959 		 * xfer_to_guest_mode() which will create a proper return
5960 		 * code.
5961 		 */
5962 		if (__xfer_to_guest_mode_work_pending())
5963 			return 1;
5964 	}
5965 
5966 	return 1;
5967 }
5968 
vmx_vcpu_pre_run(struct kvm_vcpu * vcpu)5969 int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5970 {
5971 	if (vmx_unhandleable_emulation_required(vcpu)) {
5972 		kvm_prepare_emulation_failure_exit(vcpu);
5973 		return 0;
5974 	}
5975 
5976 	return 1;
5977 }
5978 
5979 /*
5980  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5981  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5982  */
handle_pause(struct kvm_vcpu * vcpu)5983 static int handle_pause(struct kvm_vcpu *vcpu)
5984 {
5985 	if (!kvm_pause_in_guest(vcpu->kvm))
5986 		grow_ple_window(vcpu);
5987 
5988 	/*
5989 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5990 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5991 	 * never set PAUSE_EXITING and just set PLE if supported,
5992 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5993 	 */
5994 	kvm_vcpu_on_spin(vcpu, true);
5995 	return kvm_skip_emulated_instruction(vcpu);
5996 }
5997 
handle_monitor_trap(struct kvm_vcpu * vcpu)5998 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5999 {
6000 	return 1;
6001 }
6002 
handle_invpcid(struct kvm_vcpu * vcpu)6003 static int handle_invpcid(struct kvm_vcpu *vcpu)
6004 {
6005 	u32 vmx_instruction_info;
6006 	unsigned long type;
6007 	gva_t gva;
6008 	struct {
6009 		u64 pcid;
6010 		u64 gla;
6011 	} operand;
6012 	int gpr_index;
6013 
6014 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) {
6015 		kvm_queue_exception(vcpu, UD_VECTOR);
6016 		return 1;
6017 	}
6018 
6019 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6020 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
6021 	type = kvm_register_read(vcpu, gpr_index);
6022 
6023 	/* According to the Intel instruction reference, the memory operand
6024 	 * is read even if it isn't needed (e.g., for type==all)
6025 	 */
6026 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
6027 				vmx_instruction_info, false,
6028 				sizeof(operand), &gva))
6029 		return 1;
6030 
6031 	return kvm_handle_invpcid(vcpu, type, gva);
6032 }
6033 
handle_pml_full(struct kvm_vcpu * vcpu)6034 static int handle_pml_full(struct kvm_vcpu *vcpu)
6035 {
6036 	unsigned long exit_qualification;
6037 
6038 	trace_kvm_pml_full(vcpu->vcpu_id);
6039 
6040 	exit_qualification = vmx_get_exit_qual(vcpu);
6041 
6042 	/*
6043 	 * PML buffer FULL happened while executing iret from NMI,
6044 	 * "blocked by NMI" bit has to be set before next VM entry.
6045 	 */
6046 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6047 			enable_vnmi &&
6048 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
6049 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6050 				GUEST_INTR_STATE_NMI);
6051 
6052 	/*
6053 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
6054 	 * here.., and there's no userspace involvement needed for PML.
6055 	 */
6056 	return 1;
6057 }
6058 
handle_fastpath_preemption_timer(struct kvm_vcpu * vcpu,bool force_immediate_exit)6059 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu,
6060 						   bool force_immediate_exit)
6061 {
6062 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6063 
6064 	/*
6065 	 * In the *extremely* unlikely scenario that this is a spurious VM-Exit
6066 	 * due to the timer expiring while it was "soft" disabled, just eat the
6067 	 * exit and re-enter the guest.
6068 	 */
6069 	if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
6070 		return EXIT_FASTPATH_REENTER_GUEST;
6071 
6072 	/*
6073 	 * If the timer expired because KVM used it to force an immediate exit,
6074 	 * then mission accomplished.
6075 	 */
6076 	if (force_immediate_exit)
6077 		return EXIT_FASTPATH_EXIT_HANDLED;
6078 
6079 	/*
6080 	 * If L2 is active, go down the slow path as emulating the guest timer
6081 	 * expiration likely requires synthesizing a nested VM-Exit.
6082 	 */
6083 	if (is_guest_mode(vcpu))
6084 		return EXIT_FASTPATH_NONE;
6085 
6086 	kvm_lapic_expired_hv_timer(vcpu);
6087 	return EXIT_FASTPATH_REENTER_GUEST;
6088 }
6089 
handle_preemption_timer(struct kvm_vcpu * vcpu)6090 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6091 {
6092 	/*
6093 	 * This non-fastpath handler is reached if and only if the preemption
6094 	 * timer was being used to emulate a guest timer while L2 is active.
6095 	 * All other scenarios are supposed to be handled in the fastpath.
6096 	 */
6097 	WARN_ON_ONCE(!is_guest_mode(vcpu));
6098 	kvm_lapic_expired_hv_timer(vcpu);
6099 	return 1;
6100 }
6101 
6102 /*
6103  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
6104  * are overwritten by nested_vmx_hardware_setup() when nested=1.
6105  */
handle_vmx_instruction(struct kvm_vcpu * vcpu)6106 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6107 {
6108 	kvm_queue_exception(vcpu, UD_VECTOR);
6109 	return 1;
6110 }
6111 
6112 #ifndef CONFIG_X86_SGX_KVM
handle_encls(struct kvm_vcpu * vcpu)6113 static int handle_encls(struct kvm_vcpu *vcpu)
6114 {
6115 	/*
6116 	 * SGX virtualization is disabled.  There is no software enable bit for
6117 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6118 	 * the guest from executing ENCLS (when SGX is supported by hardware).
6119 	 */
6120 	kvm_queue_exception(vcpu, UD_VECTOR);
6121 	return 1;
6122 }
6123 #endif /* CONFIG_X86_SGX_KVM */
6124 
handle_bus_lock_vmexit(struct kvm_vcpu * vcpu)6125 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6126 {
6127 	/*
6128 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6129 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
6130 	 * vmx_handle_exit().
6131 	 */
6132 	to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
6133 	return 1;
6134 }
6135 
handle_notify(struct kvm_vcpu * vcpu)6136 static int handle_notify(struct kvm_vcpu *vcpu)
6137 {
6138 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6139 	bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6140 
6141 	++vcpu->stat.notify_window_exits;
6142 
6143 	/*
6144 	 * Notify VM exit happened while executing iret from NMI,
6145 	 * "blocked by NMI" bit has to be set before next VM entry.
6146 	 */
6147 	if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6148 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6149 			      GUEST_INTR_STATE_NMI);
6150 
6151 	if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6152 	    context_invalid) {
6153 		vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6154 		vcpu->run->notify.flags = context_invalid ?
6155 					  KVM_NOTIFY_CONTEXT_INVALID : 0;
6156 		return 0;
6157 	}
6158 
6159 	return 1;
6160 }
6161 
6162 /*
6163  * The exit handlers return 1 if the exit was handled fully and guest execution
6164  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6165  * to be done to userspace and return 0.
6166  */
6167 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6168 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
6169 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6170 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6171 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
6172 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6173 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
6174 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
6175 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
6176 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
6177 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
6178 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
6179 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
6180 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
6181 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
6182 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
6183 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
6184 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
6185 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
6186 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
6187 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
6188 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
6189 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
6190 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
6191 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
6192 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
6193 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6194 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6195 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6196 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6197 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
6198 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
6199 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6200 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6201 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
6202 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
6203 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
6204 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6205 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6206 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
6207 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
6208 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
6209 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
6210 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
6211 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
6212 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
6213 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
6214 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
6215 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
6216 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
6217 	[EXIT_REASON_ENCLS]		      = handle_encls,
6218 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
6219 	[EXIT_REASON_NOTIFY]		      = handle_notify,
6220 };
6221 
6222 static const int kvm_vmx_max_exit_handlers =
6223 	ARRAY_SIZE(kvm_vmx_exit_handlers);
6224 
vmx_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)6225 void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6226 		       u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code)
6227 {
6228 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6229 
6230 	*reason = vmx->exit_reason.full;
6231 	*info1 = vmx_get_exit_qual(vcpu);
6232 	if (!(vmx->exit_reason.failed_vmentry)) {
6233 		*info2 = vmx->idt_vectoring_info;
6234 		*intr_info = vmx_get_intr_info(vcpu);
6235 		if (is_exception_with_error_code(*intr_info))
6236 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6237 		else
6238 			*error_code = 0;
6239 	} else {
6240 		*info2 = 0;
6241 		*intr_info = 0;
6242 		*error_code = 0;
6243 	}
6244 }
6245 
vmx_get_entry_info(struct kvm_vcpu * vcpu,u32 * intr_info,u32 * error_code)6246 void vmx_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info, u32 *error_code)
6247 {
6248 	*intr_info = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
6249 	if (is_exception_with_error_code(*intr_info))
6250 		*error_code = vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE);
6251 	else
6252 		*error_code = 0;
6253 }
6254 
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)6255 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6256 {
6257 	if (vmx->pml_pg) {
6258 		__free_page(vmx->pml_pg);
6259 		vmx->pml_pg = NULL;
6260 	}
6261 }
6262 
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)6263 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6264 {
6265 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6266 	u16 pml_idx, pml_tail_index;
6267 	u64 *pml_buf;
6268 	int i;
6269 
6270 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
6271 
6272 	/* Do nothing if PML buffer is empty */
6273 	if (pml_idx == PML_HEAD_INDEX)
6274 		return;
6275 	/*
6276 	 * PML index always points to the next available PML buffer entity
6277 	 * unless PML log has just overflowed.
6278 	 */
6279 	pml_tail_index = (pml_idx >= PML_LOG_NR_ENTRIES) ? 0 : pml_idx + 1;
6280 
6281 	/*
6282 	 * PML log is written backwards: the CPU first writes the entry 511
6283 	 * then the entry 510, and so on.
6284 	 *
6285 	 * Read the entries in the same order they were written, to ensure that
6286 	 * the dirty ring is filled in the same order the CPU wrote them.
6287 	 */
6288 	pml_buf = page_address(vmx->pml_pg);
6289 
6290 	for (i = PML_HEAD_INDEX; i >= pml_tail_index; i--) {
6291 		u64 gpa;
6292 
6293 		gpa = pml_buf[i];
6294 		WARN_ON(gpa & (PAGE_SIZE - 1));
6295 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6296 	}
6297 
6298 	/* reset PML index */
6299 	vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX);
6300 }
6301 
vmx_dump_sel(char * name,uint32_t sel)6302 static void vmx_dump_sel(char *name, uint32_t sel)
6303 {
6304 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6305 	       name, vmcs_read16(sel),
6306 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6307 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6308 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6309 }
6310 
vmx_dump_dtsel(char * name,uint32_t limit)6311 static void vmx_dump_dtsel(char *name, uint32_t limit)
6312 {
6313 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
6314 	       name, vmcs_read32(limit),
6315 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6316 }
6317 
vmx_dump_msrs(char * name,struct vmx_msrs * m)6318 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6319 {
6320 	unsigned int i;
6321 	struct vmx_msr_entry *e;
6322 
6323 	pr_err("MSR %s:\n", name);
6324 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6325 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6326 }
6327 
dump_vmcs(struct kvm_vcpu * vcpu)6328 void dump_vmcs(struct kvm_vcpu *vcpu)
6329 {
6330 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6331 	u32 vmentry_ctl, vmexit_ctl;
6332 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6333 	u64 tertiary_exec_control;
6334 	unsigned long cr4;
6335 	int efer_slot;
6336 
6337 	if (!dump_invalid_vmcs) {
6338 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6339 		return;
6340 	}
6341 
6342 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6343 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6344 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6345 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6346 	cr4 = vmcs_readl(GUEST_CR4);
6347 
6348 	if (cpu_has_secondary_exec_ctrls())
6349 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6350 	else
6351 		secondary_exec_control = 0;
6352 
6353 	if (cpu_has_tertiary_exec_ctrls())
6354 		tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6355 	else
6356 		tertiary_exec_control = 0;
6357 
6358 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6359 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6360 	pr_err("*** Guest State ***\n");
6361 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6362 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6363 	       vmcs_readl(CR0_GUEST_HOST_MASK));
6364 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6365 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6366 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6367 	if (cpu_has_vmx_ept()) {
6368 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
6369 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6370 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
6371 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6372 	}
6373 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
6374 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6375 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
6376 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6377 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6378 	       vmcs_readl(GUEST_SYSENTER_ESP),
6379 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6380 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
6381 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
6382 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
6383 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
6384 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
6385 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
6386 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6387 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6388 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6389 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
6390 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6391 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6392 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6393 	else if (efer_slot >= 0)
6394 		pr_err("EFER= 0x%016llx (autoload)\n",
6395 		       vmx->msr_autoload.guest.val[efer_slot].value);
6396 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6397 		pr_err("EFER= 0x%016llx (effective)\n",
6398 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
6399 	else
6400 		pr_err("EFER= 0x%016llx (effective)\n",
6401 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6402 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6403 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6404 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
6405 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
6406 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6407 	if (cpu_has_load_perf_global_ctrl() &&
6408 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6409 		pr_err("PerfGlobCtl = 0x%016llx\n",
6410 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6411 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6412 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6413 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
6414 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6415 	       vmcs_read32(GUEST_ACTIVITY_STATE));
6416 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6417 		pr_err("InterruptStatus = %04x\n",
6418 		       vmcs_read16(GUEST_INTR_STATUS));
6419 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6420 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6421 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6422 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6423 
6424 	pr_err("*** Host State ***\n");
6425 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
6426 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6427 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6428 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6429 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6430 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6431 	       vmcs_read16(HOST_TR_SELECTOR));
6432 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6433 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6434 	       vmcs_readl(HOST_TR_BASE));
6435 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6436 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6437 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6438 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6439 	       vmcs_readl(HOST_CR4));
6440 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6441 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
6442 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
6443 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
6444 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6445 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6446 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6447 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6448 	if (cpu_has_load_perf_global_ctrl() &&
6449 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6450 		pr_err("PerfGlobCtl = 0x%016llx\n",
6451 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6452 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6453 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6454 
6455 	pr_err("*** Control State ***\n");
6456 	pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6457 	       cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6458 	pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6459 	       pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6460 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6461 	       vmcs_read32(EXCEPTION_BITMAP),
6462 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6463 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6464 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6465 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6466 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6467 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6468 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6469 	       vmcs_read32(VM_EXIT_INTR_INFO),
6470 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6471 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6472 	pr_err("        reason=%08x qualification=%016lx\n",
6473 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6474 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6475 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
6476 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
6477 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6478 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6479 		pr_err("TSC Multiplier = 0x%016llx\n",
6480 		       vmcs_read64(TSC_MULTIPLIER));
6481 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6482 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6483 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
6484 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6485 		}
6486 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6487 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6488 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6489 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6490 	}
6491 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6492 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6493 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6494 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6495 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6496 		pr_err("PLE Gap=%08x Window=%08x\n",
6497 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6498 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6499 		pr_err("Virtual processor ID = 0x%04x\n",
6500 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
6501 	if (secondary_exec_control & SECONDARY_EXEC_EPT_VIOLATION_VE) {
6502 		struct vmx_ve_information *ve_info = vmx->ve_info;
6503 		u64 ve_info_pa = vmcs_read64(VE_INFORMATION_ADDRESS);
6504 
6505 		/*
6506 		 * If KVM is dumping the VMCS, then something has gone wrong
6507 		 * already.  Derefencing an address from the VMCS, which could
6508 		 * very well be corrupted, is a terrible idea.  The virtual
6509 		 * address is known so use it.
6510 		 */
6511 		pr_err("VE info address = 0x%016llx%s\n", ve_info_pa,
6512 		       ve_info_pa == __pa(ve_info) ? "" : "(corrupted!)");
6513 		pr_err("ve_info: 0x%08x 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%04x\n",
6514 		       ve_info->exit_reason, ve_info->delivery,
6515 		       ve_info->exit_qualification,
6516 		       ve_info->guest_linear_address,
6517 		       ve_info->guest_physical_address, ve_info->eptp_index);
6518 	}
6519 }
6520 
6521 /*
6522  * The guest has exited.  See if we can fix it or if we need userspace
6523  * assistance.
6524  */
__vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6525 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6526 {
6527 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6528 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6529 	u32 vectoring_info = vmx->idt_vectoring_info;
6530 	u16 exit_handler_index;
6531 
6532 	/*
6533 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6534 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6535 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6536 	 * mode as if vcpus is in root mode, the PML buffer must has been
6537 	 * flushed already.  Note, PML is never enabled in hardware while
6538 	 * running L2.
6539 	 */
6540 	if (enable_pml && !is_guest_mode(vcpu))
6541 		vmx_flush_pml_buffer(vcpu);
6542 
6543 	/*
6544 	 * KVM should never reach this point with a pending nested VM-Enter.
6545 	 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6546 	 * invalid guest state should never happen as that means KVM knowingly
6547 	 * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6548 	 */
6549 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6550 		return -EIO;
6551 
6552 	if (is_guest_mode(vcpu)) {
6553 		/*
6554 		 * PML is never enabled when running L2, bail immediately if a
6555 		 * PML full exit occurs as something is horribly wrong.
6556 		 */
6557 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
6558 			goto unexpected_vmexit;
6559 
6560 		/*
6561 		 * The host physical addresses of some pages of guest memory
6562 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6563 		 * Page). The CPU may write to these pages via their host
6564 		 * physical address while L2 is running, bypassing any
6565 		 * address-translation-based dirty tracking (e.g. EPT write
6566 		 * protection).
6567 		 *
6568 		 * Mark them dirty on every exit from L2 to prevent them from
6569 		 * getting out of sync with dirty tracking.
6570 		 */
6571 		nested_mark_vmcs12_pages_dirty(vcpu);
6572 
6573 		/*
6574 		 * Synthesize a triple fault if L2 state is invalid.  In normal
6575 		 * operation, nested VM-Enter rejects any attempt to enter L2
6576 		 * with invalid state.  However, those checks are skipped if
6577 		 * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6578 		 * L2 state is invalid, it means either L1 modified SMRAM state
6579 		 * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6580 		 * doing so is architecturally allowed in the RSM case, and is
6581 		 * the least awful solution for the userspace case without
6582 		 * risking false positives.
6583 		 */
6584 		if (vmx->emulation_required) {
6585 			nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6586 			return 1;
6587 		}
6588 
6589 		if (nested_vmx_reflect_vmexit(vcpu))
6590 			return 1;
6591 	}
6592 
6593 	/* If guest state is invalid, start emulating.  L2 is handled above. */
6594 	if (vmx->emulation_required)
6595 		return handle_invalid_guest_state(vcpu);
6596 
6597 	if (exit_reason.failed_vmentry) {
6598 		dump_vmcs(vcpu);
6599 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6600 		vcpu->run->fail_entry.hardware_entry_failure_reason
6601 			= exit_reason.full;
6602 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6603 		return 0;
6604 	}
6605 
6606 	if (unlikely(vmx->fail)) {
6607 		dump_vmcs(vcpu);
6608 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6609 		vcpu->run->fail_entry.hardware_entry_failure_reason
6610 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6611 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6612 		return 0;
6613 	}
6614 
6615 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6616 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6617 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6618 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6619 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6620 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6621 	     exit_reason.basic != EXIT_REASON_NOTIFY &&
6622 	     exit_reason.basic != EXIT_REASON_EPT_MISCONFIG)) {
6623 		kvm_prepare_event_vectoring_exit(vcpu, INVALID_GPA);
6624 		return 0;
6625 	}
6626 
6627 	if (unlikely(!enable_vnmi &&
6628 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6629 		if (!vmx_interrupt_blocked(vcpu)) {
6630 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6631 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6632 			   vcpu->arch.nmi_pending) {
6633 			/*
6634 			 * This CPU don't support us in finding the end of an
6635 			 * NMI-blocked window if the guest runs with IRQs
6636 			 * disabled. So we pull the trigger after 1 s of
6637 			 * futile waiting, but inform the user about this.
6638 			 */
6639 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6640 			       "state on VCPU %d after 1 s timeout\n",
6641 			       __func__, vcpu->vcpu_id);
6642 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6643 		}
6644 	}
6645 
6646 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6647 		return 1;
6648 
6649 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6650 		goto unexpected_vmexit;
6651 #ifdef CONFIG_MITIGATION_RETPOLINE
6652 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6653 		return kvm_emulate_wrmsr(vcpu);
6654 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6655 		return handle_preemption_timer(vcpu);
6656 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6657 		return handle_interrupt_window(vcpu);
6658 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6659 		return handle_external_interrupt(vcpu);
6660 	else if (exit_reason.basic == EXIT_REASON_HLT)
6661 		return kvm_emulate_halt(vcpu);
6662 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6663 		return handle_ept_misconfig(vcpu);
6664 #endif
6665 
6666 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6667 						kvm_vmx_max_exit_handlers);
6668 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6669 		goto unexpected_vmexit;
6670 
6671 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6672 
6673 unexpected_vmexit:
6674 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6675 		    exit_reason.full);
6676 	dump_vmcs(vcpu);
6677 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6678 	vcpu->run->internal.suberror =
6679 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6680 	vcpu->run->internal.ndata = 2;
6681 	vcpu->run->internal.data[0] = exit_reason.full;
6682 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6683 	return 0;
6684 }
6685 
vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6686 int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6687 {
6688 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6689 
6690 	/*
6691 	 * Exit to user space when bus lock detected to inform that there is
6692 	 * a bus lock in guest.
6693 	 */
6694 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6695 		if (ret > 0)
6696 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6697 
6698 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6699 		return 0;
6700 	}
6701 	return ret;
6702 }
6703 
6704 /*
6705  * Software based L1D cache flush which is used when microcode providing
6706  * the cache control MSR is not loaded.
6707  *
6708  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6709  * flush it is required to read in 64 KiB because the replacement algorithm
6710  * is not exactly LRU. This could be sized at runtime via topology
6711  * information but as all relevant affected CPUs have 32KiB L1D cache size
6712  * there is no point in doing so.
6713  */
vmx_l1d_flush(struct kvm_vcpu * vcpu)6714 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6715 {
6716 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6717 
6718 	/*
6719 	 * This code is only executed when the flush mode is 'cond' or
6720 	 * 'always'
6721 	 */
6722 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6723 		bool flush_l1d;
6724 
6725 		/*
6726 		 * Clear the per-vcpu flush bit, it gets set again if the vCPU
6727 		 * is reloaded, i.e. if the vCPU is scheduled out or if KVM
6728 		 * exits to userspace, or if KVM reaches one of the unsafe
6729 		 * VMEXIT handlers, e.g. if KVM calls into the emulator.
6730 		 */
6731 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6732 		vcpu->arch.l1tf_flush_l1d = false;
6733 
6734 		/*
6735 		 * Clear the per-cpu flush bit, it gets set again from
6736 		 * the interrupt handlers.
6737 		 */
6738 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6739 		kvm_clear_cpu_l1tf_flush_l1d();
6740 
6741 		if (!flush_l1d)
6742 			return;
6743 	}
6744 
6745 	vcpu->stat.l1d_flush++;
6746 
6747 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6748 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6749 		return;
6750 	}
6751 
6752 	asm volatile(
6753 		/* First ensure the pages are in the TLB */
6754 		"xorl	%%eax, %%eax\n"
6755 		".Lpopulate_tlb:\n\t"
6756 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6757 		"addl	$4096, %%eax\n\t"
6758 		"cmpl	%%eax, %[size]\n\t"
6759 		"jne	.Lpopulate_tlb\n\t"
6760 		"xorl	%%eax, %%eax\n\t"
6761 		"cpuid\n\t"
6762 		/* Now fill the cache */
6763 		"xorl	%%eax, %%eax\n"
6764 		".Lfill_cache:\n"
6765 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6766 		"addl	$64, %%eax\n\t"
6767 		"cmpl	%%eax, %[size]\n\t"
6768 		"jne	.Lfill_cache\n\t"
6769 		"lfence\n"
6770 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6771 		    [size] "r" (size)
6772 		: "eax", "ebx", "ecx", "edx");
6773 }
6774 
vmx_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6775 void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6776 {
6777 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6778 	int tpr_threshold;
6779 
6780 	if (is_guest_mode(vcpu) &&
6781 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6782 		return;
6783 
6784 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6785 	if (is_guest_mode(vcpu))
6786 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6787 	else
6788 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6789 }
6790 
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6791 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6792 {
6793 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6794 	u32 sec_exec_control;
6795 
6796 	if (!lapic_in_kernel(vcpu))
6797 		return;
6798 
6799 	if (!flexpriority_enabled &&
6800 	    !cpu_has_vmx_virtualize_x2apic_mode())
6801 		return;
6802 
6803 	/* Postpone execution until vmcs01 is the current VMCS. */
6804 	if (is_guest_mode(vcpu)) {
6805 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6806 		return;
6807 	}
6808 
6809 	sec_exec_control = secondary_exec_controls_get(vmx);
6810 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6811 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6812 
6813 	switch (kvm_get_apic_mode(vcpu)) {
6814 	case LAPIC_MODE_INVALID:
6815 		WARN_ONCE(true, "Invalid local APIC state");
6816 		break;
6817 	case LAPIC_MODE_DISABLED:
6818 		break;
6819 	case LAPIC_MODE_XAPIC:
6820 		if (flexpriority_enabled) {
6821 			sec_exec_control |=
6822 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6823 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6824 
6825 			/*
6826 			 * Flush the TLB, reloading the APIC access page will
6827 			 * only do so if its physical address has changed, but
6828 			 * the guest may have inserted a non-APIC mapping into
6829 			 * the TLB while the APIC access page was disabled.
6830 			 */
6831 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6832 		}
6833 		break;
6834 	case LAPIC_MODE_X2APIC:
6835 		if (cpu_has_vmx_virtualize_x2apic_mode())
6836 			sec_exec_control |=
6837 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6838 		break;
6839 	}
6840 	secondary_exec_controls_set(vmx, sec_exec_control);
6841 
6842 	vmx_update_msr_bitmap_x2apic(vcpu);
6843 }
6844 
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu)6845 void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6846 {
6847 	const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6848 	struct kvm *kvm = vcpu->kvm;
6849 	struct kvm_memslots *slots = kvm_memslots(kvm);
6850 	struct kvm_memory_slot *slot;
6851 	struct page *refcounted_page;
6852 	unsigned long mmu_seq;
6853 	kvm_pfn_t pfn;
6854 	bool writable;
6855 
6856 	/* Defer reload until vmcs01 is the current VMCS. */
6857 	if (is_guest_mode(vcpu)) {
6858 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6859 		return;
6860 	}
6861 
6862 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6863 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6864 		return;
6865 
6866 	/*
6867 	 * Explicitly grab the memslot using KVM's internal slot ID to ensure
6868 	 * KVM doesn't unintentionally grab a userspace memslot.  It _should_
6869 	 * be impossible for userspace to create a memslot for the APIC when
6870 	 * APICv is enabled, but paranoia won't hurt in this case.
6871 	 */
6872 	slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6873 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6874 		return;
6875 
6876 	/*
6877 	 * Ensure that the mmu_notifier sequence count is read before KVM
6878 	 * retrieves the pfn from the primary MMU.  Note, the memslot is
6879 	 * protected by SRCU, not the mmu_notifier.  Pairs with the smp_wmb()
6880 	 * in kvm_mmu_invalidate_end().
6881 	 */
6882 	mmu_seq = kvm->mmu_invalidate_seq;
6883 	smp_rmb();
6884 
6885 	/*
6886 	 * No need to retry if the memslot does not exist or is invalid.  KVM
6887 	 * controls the APIC-access page memslot, and only deletes the memslot
6888 	 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6889 	 */
6890 	pfn = __kvm_faultin_pfn(slot, gfn, FOLL_WRITE, &writable, &refcounted_page);
6891 	if (is_error_noslot_pfn(pfn))
6892 		return;
6893 
6894 	read_lock(&vcpu->kvm->mmu_lock);
6895 	if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn))
6896 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6897 	else
6898 		vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6899 
6900 	/*
6901 	 * Do not pin the APIC access page in memory so that it can be freely
6902 	 * migrated, the MMU notifier will call us again if it is migrated or
6903 	 * swapped out.  KVM backs the memslot with anonymous memory, the pfn
6904 	 * should always point at a refcounted page (if the pfn is valid).
6905 	 */
6906 	if (!WARN_ON_ONCE(!refcounted_page))
6907 		kvm_release_page_clean(refcounted_page);
6908 
6909 	/*
6910 	 * No need for a manual TLB flush at this point, KVM has already done a
6911 	 * flush if there were SPTEs pointing at the previous page.
6912 	 */
6913 	read_unlock(&vcpu->kvm->mmu_lock);
6914 }
6915 
vmx_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)6916 void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6917 {
6918 	u16 status;
6919 	u8 old;
6920 
6921 	/*
6922 	 * If L2 is active, defer the SVI update until vmcs01 is loaded, as SVI
6923 	 * is only relevant for if and only if Virtual Interrupt Delivery is
6924 	 * enabled in vmcs12, and if VID is enabled then L2 EOIs affect L2's
6925 	 * vAPIC, not L1's vAPIC.  KVM must update vmcs01 on the next nested
6926 	 * VM-Exit, otherwise L1 with run with a stale SVI.
6927 	 */
6928 	if (is_guest_mode(vcpu)) {
6929 		/*
6930 		 * KVM is supposed to forward intercepted L2 EOIs to L1 if VID
6931 		 * is enabled in vmcs12; as above, the EOIs affect L2's vAPIC.
6932 		 * Note, userspace can stuff state while L2 is active; assert
6933 		 * that VID is disabled if and only if the vCPU is in KVM_RUN
6934 		 * to avoid false positives if userspace is setting APIC state.
6935 		 */
6936 		WARN_ON_ONCE(vcpu->wants_to_run &&
6937 			     nested_cpu_has_vid(get_vmcs12(vcpu)));
6938 		to_vmx(vcpu)->nested.update_vmcs01_hwapic_isr = true;
6939 		return;
6940 	}
6941 
6942 	if (max_isr == -1)
6943 		max_isr = 0;
6944 
6945 	status = vmcs_read16(GUEST_INTR_STATUS);
6946 	old = status >> 8;
6947 	if (max_isr != old) {
6948 		status &= 0xff;
6949 		status |= max_isr << 8;
6950 		vmcs_write16(GUEST_INTR_STATUS, status);
6951 	}
6952 }
6953 
vmx_set_rvi(int vector)6954 static void vmx_set_rvi(int vector)
6955 {
6956 	u16 status;
6957 	u8 old;
6958 
6959 	if (vector == -1)
6960 		vector = 0;
6961 
6962 	status = vmcs_read16(GUEST_INTR_STATUS);
6963 	old = (u8)status & 0xff;
6964 	if ((u8)vector != old) {
6965 		status &= ~0xff;
6966 		status |= (u8)vector;
6967 		vmcs_write16(GUEST_INTR_STATUS, status);
6968 	}
6969 }
6970 
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6971 int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6972 {
6973 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6974 	int max_irr;
6975 	bool got_posted_interrupt;
6976 
6977 	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6978 		return -EIO;
6979 
6980 	if (pi_test_on(&vmx->pi_desc)) {
6981 		pi_clear_on(&vmx->pi_desc);
6982 		/*
6983 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6984 		 * But on x86 this is just a compiler barrier anyway.
6985 		 */
6986 		smp_mb__after_atomic();
6987 		got_posted_interrupt =
6988 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6989 	} else {
6990 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6991 		got_posted_interrupt = false;
6992 	}
6993 
6994 	/*
6995 	 * Newly recognized interrupts are injected via either virtual interrupt
6996 	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6997 	 * disabled in two cases:
6998 	 *
6999 	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
7000 	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
7001 	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
7002 	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
7003 	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
7004 	 *
7005 	 * 2) If APICv is disabled for this vCPU, assigned devices may still
7006 	 * attempt to post interrupts.  The posted interrupt vector will cause
7007 	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
7008 	 */
7009 	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
7010 		vmx_set_rvi(max_irr);
7011 	else if (got_posted_interrupt)
7012 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7013 
7014 	return max_irr;
7015 }
7016 
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)7017 void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
7018 {
7019 	if (!kvm_vcpu_apicv_active(vcpu))
7020 		return;
7021 
7022 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
7023 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
7024 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
7025 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
7026 }
7027 
vmx_apicv_pre_state_restore(struct kvm_vcpu * vcpu)7028 void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu)
7029 {
7030 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7031 
7032 	pi_clear_on(&vmx->pi_desc);
7033 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
7034 }
7035 
7036 void vmx_do_interrupt_irqoff(unsigned long entry);
7037 void vmx_do_nmi_irqoff(void);
7038 
handle_nm_fault_irqoff(struct kvm_vcpu * vcpu)7039 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
7040 {
7041 	/*
7042 	 * Save xfd_err to guest_fpu before interrupt is enabled, so the
7043 	 * MSR value is not clobbered by the host activity before the guest
7044 	 * has chance to consume it.
7045 	 *
7046 	 * Update the guest's XFD_ERR if and only if XFD is enabled, as the #NM
7047 	 * interception may have been caused by L1 interception.  Per the SDM,
7048 	 * XFD_ERR is not modified for non-XFD #NM, i.e. if CR0.TS=1.
7049 	 *
7050 	 * Note, XFD_ERR is updated _before_ the #NM interception check, i.e.
7051 	 * unlike CR2 and DR6, the value is not a payload that is attached to
7052 	 * the #NM exception.
7053 	 */
7054 	if (is_xfd_nm_fault(vcpu))
7055 		rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
7056 }
7057 
handle_exception_irqoff(struct kvm_vcpu * vcpu,u32 intr_info)7058 static void handle_exception_irqoff(struct kvm_vcpu *vcpu, u32 intr_info)
7059 {
7060 	/* if exit due to PF check for async PF */
7061 	if (is_page_fault(intr_info))
7062 		vcpu->arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
7063 	/* if exit due to NM, handle before interrupts are enabled */
7064 	else if (is_nm_fault(intr_info))
7065 		handle_nm_fault_irqoff(vcpu);
7066 	/* Handle machine checks before interrupts are enabled */
7067 	else if (is_machine_check(intr_info))
7068 		kvm_machine_check();
7069 }
7070 
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu,u32 intr_info)7071 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu,
7072 					     u32 intr_info)
7073 {
7074 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
7075 
7076 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
7077 	    "unexpected VM-Exit interrupt info: 0x%x", intr_info))
7078 		return;
7079 
7080 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
7081 	if (cpu_feature_enabled(X86_FEATURE_FRED))
7082 		fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector);
7083 	else
7084 		vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector));
7085 	kvm_after_interrupt(vcpu);
7086 
7087 	vcpu->arch.at_instruction_boundary = true;
7088 }
7089 
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)7090 void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
7091 {
7092 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7093 
7094 	if (vmx->emulation_required)
7095 		return;
7096 
7097 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
7098 		handle_external_interrupt_irqoff(vcpu, vmx_get_intr_info(vcpu));
7099 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
7100 		handle_exception_irqoff(vcpu, vmx_get_intr_info(vcpu));
7101 }
7102 
7103 /*
7104  * The kvm parameter can be NULL (module initialization, or invocation before
7105  * VM creation). Be sure to check the kvm parameter before using it.
7106  */
vmx_has_emulated_msr(struct kvm * kvm,u32 index)7107 bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
7108 {
7109 	switch (index) {
7110 	case MSR_IA32_SMBASE:
7111 		if (!IS_ENABLED(CONFIG_KVM_SMM))
7112 			return false;
7113 		/*
7114 		 * We cannot do SMM unless we can run the guest in big
7115 		 * real mode.
7116 		 */
7117 		return enable_unrestricted_guest || emulate_invalid_guest_state;
7118 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7119 		return nested;
7120 	case MSR_AMD64_VIRT_SPEC_CTRL:
7121 	case MSR_AMD64_TSC_RATIO:
7122 		/* This is AMD only.  */
7123 		return false;
7124 	default:
7125 		return true;
7126 	}
7127 }
7128 
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)7129 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7130 {
7131 	u32 exit_intr_info;
7132 	bool unblock_nmi;
7133 	u8 vector;
7134 	bool idtv_info_valid;
7135 
7136 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7137 
7138 	if (enable_vnmi) {
7139 		if (vmx->loaded_vmcs->nmi_known_unmasked)
7140 			return;
7141 
7142 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7143 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7144 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7145 		/*
7146 		 * SDM 3: 27.7.1.2 (September 2008)
7147 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7148 		 * a guest IRET fault.
7149 		 * SDM 3: 23.2.2 (September 2008)
7150 		 * Bit 12 is undefined in any of the following cases:
7151 		 *  If the VM exit sets the valid bit in the IDT-vectoring
7152 		 *   information field.
7153 		 *  If the VM exit is due to a double fault.
7154 		 */
7155 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7156 		    vector != DF_VECTOR && !idtv_info_valid)
7157 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7158 				      GUEST_INTR_STATE_NMI);
7159 		else
7160 			vmx->loaded_vmcs->nmi_known_unmasked =
7161 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7162 				  & GUEST_INTR_STATE_NMI);
7163 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7164 		vmx->loaded_vmcs->vnmi_blocked_time +=
7165 			ktime_to_ns(ktime_sub(ktime_get(),
7166 					      vmx->loaded_vmcs->entry_time));
7167 }
7168 
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)7169 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7170 				      u32 idt_vectoring_info,
7171 				      int instr_len_field,
7172 				      int error_code_field)
7173 {
7174 	u8 vector;
7175 	int type;
7176 	bool idtv_info_valid;
7177 
7178 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7179 
7180 	vcpu->arch.nmi_injected = false;
7181 	kvm_clear_exception_queue(vcpu);
7182 	kvm_clear_interrupt_queue(vcpu);
7183 
7184 	if (!idtv_info_valid)
7185 		return;
7186 
7187 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7188 
7189 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7190 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7191 
7192 	switch (type) {
7193 	case INTR_TYPE_NMI_INTR:
7194 		vcpu->arch.nmi_injected = true;
7195 		/*
7196 		 * SDM 3: 27.7.1.2 (September 2008)
7197 		 * Clear bit "block by NMI" before VM entry if a NMI
7198 		 * delivery faulted.
7199 		 */
7200 		vmx_set_nmi_mask(vcpu, false);
7201 		break;
7202 	case INTR_TYPE_SOFT_EXCEPTION:
7203 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7204 		fallthrough;
7205 	case INTR_TYPE_HARD_EXCEPTION: {
7206 		u32 error_code = 0;
7207 
7208 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK)
7209 			error_code = vmcs_read32(error_code_field);
7210 
7211 		kvm_requeue_exception(vcpu, vector,
7212 				      idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK,
7213 				      error_code);
7214 		break;
7215 	}
7216 	case INTR_TYPE_SOFT_INTR:
7217 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7218 		fallthrough;
7219 	case INTR_TYPE_EXT_INTR:
7220 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7221 		break;
7222 	default:
7223 		break;
7224 	}
7225 }
7226 
vmx_complete_interrupts(struct vcpu_vmx * vmx)7227 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7228 {
7229 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7230 				  VM_EXIT_INSTRUCTION_LEN,
7231 				  IDT_VECTORING_ERROR_CODE);
7232 }
7233 
vmx_cancel_injection(struct kvm_vcpu * vcpu)7234 void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7235 {
7236 	__vmx_complete_interrupts(vcpu,
7237 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7238 				  VM_ENTRY_INSTRUCTION_LEN,
7239 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
7240 
7241 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7242 }
7243 
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)7244 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7245 {
7246 	int i, nr_msrs;
7247 	struct perf_guest_switch_msr *msrs;
7248 	struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7249 
7250 	pmu->host_cross_mapped_mask = 0;
7251 	if (pmu->pebs_enable & pmu->global_ctrl)
7252 		intel_pmu_cross_mapped_check(pmu);
7253 
7254 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7255 	msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7256 	if (!msrs)
7257 		return;
7258 
7259 	for (i = 0; i < nr_msrs; i++)
7260 		if (msrs[i].host == msrs[i].guest)
7261 			clear_atomic_switch_msr(vmx, msrs[i].msr);
7262 		else
7263 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7264 					msrs[i].host, false);
7265 }
7266 
vmx_update_hv_timer(struct kvm_vcpu * vcpu,bool force_immediate_exit)7267 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7268 {
7269 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7270 	u64 tscl;
7271 	u32 delta_tsc;
7272 
7273 	if (force_immediate_exit) {
7274 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7275 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7276 	} else if (vmx->hv_deadline_tsc != -1) {
7277 		tscl = rdtsc();
7278 		if (vmx->hv_deadline_tsc > tscl)
7279 			/* set_hv_timer ensures the delta fits in 32-bits */
7280 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7281 				cpu_preemption_timer_multi);
7282 		else
7283 			delta_tsc = 0;
7284 
7285 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7286 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7287 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7288 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7289 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7290 	}
7291 }
7292 
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)7293 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7294 {
7295 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7296 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
7297 		vmcs_writel(HOST_RSP, host_rsp);
7298 	}
7299 }
7300 
vmx_spec_ctrl_restore_host(struct vcpu_vmx * vmx,unsigned int flags)7301 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7302 					unsigned int flags)
7303 {
7304 	u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7305 
7306 	if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7307 		return;
7308 
7309 	if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7310 		vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7311 
7312 	/*
7313 	 * If the guest/host SPEC_CTRL values differ, restore the host value.
7314 	 *
7315 	 * For legacy IBRS, the IBRS bit always needs to be written after
7316 	 * transitioning from a less privileged predictor mode, regardless of
7317 	 * whether the guest/host values differ.
7318 	 */
7319 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7320 	    vmx->spec_ctrl != hostval)
7321 		native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7322 
7323 	barrier_nospec();
7324 }
7325 
vmx_exit_handlers_fastpath(struct kvm_vcpu * vcpu,bool force_immediate_exit)7326 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu,
7327 					     bool force_immediate_exit)
7328 {
7329 	/*
7330 	 * If L2 is active, some VMX preemption timer exits can be handled in
7331 	 * the fastpath even, all other exits must use the slow path.
7332 	 */
7333 	if (is_guest_mode(vcpu) &&
7334 	    to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_PREEMPTION_TIMER)
7335 		return EXIT_FASTPATH_NONE;
7336 
7337 	switch (to_vmx(vcpu)->exit_reason.basic) {
7338 	case EXIT_REASON_MSR_WRITE:
7339 		return handle_fastpath_set_msr_irqoff(vcpu);
7340 	case EXIT_REASON_PREEMPTION_TIMER:
7341 		return handle_fastpath_preemption_timer(vcpu, force_immediate_exit);
7342 	case EXIT_REASON_HLT:
7343 		return handle_fastpath_hlt(vcpu);
7344 	default:
7345 		return EXIT_FASTPATH_NONE;
7346 	}
7347 }
7348 
vmx_vcpu_enter_exit(struct kvm_vcpu * vcpu,unsigned int flags)7349 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7350 					unsigned int flags)
7351 {
7352 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7353 
7354 	guest_state_enter_irqoff();
7355 
7356 	/*
7357 	 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
7358 	 * mitigation for MDS is done late in VMentry and is still
7359 	 * executed in spite of L1D Flush. This is because an extra VERW
7360 	 * should not matter much after the big hammer L1D Flush.
7361 	 */
7362 	if (static_branch_unlikely(&vmx_l1d_should_flush))
7363 		vmx_l1d_flush(vcpu);
7364 	else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7365 		 kvm_arch_has_assigned_device(vcpu->kvm))
7366 		mds_clear_cpu_buffers();
7367 
7368 	vmx_disable_fb_clear(vmx);
7369 
7370 	if (vcpu->arch.cr2 != native_read_cr2())
7371 		native_write_cr2(vcpu->arch.cr2);
7372 
7373 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7374 				   flags);
7375 
7376 	vcpu->arch.cr2 = native_read_cr2();
7377 	vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7378 
7379 	vmx->idt_vectoring_info = 0;
7380 
7381 	vmx_enable_fb_clear(vmx);
7382 
7383 	if (unlikely(vmx->fail)) {
7384 		vmx->exit_reason.full = 0xdead;
7385 		goto out;
7386 	}
7387 
7388 	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7389 	if (likely(!vmx->exit_reason.failed_vmentry))
7390 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7391 
7392 	if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
7393 	    is_nmi(vmx_get_intr_info(vcpu))) {
7394 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7395 		if (cpu_feature_enabled(X86_FEATURE_FRED))
7396 			fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR);
7397 		else
7398 			vmx_do_nmi_irqoff();
7399 		kvm_after_interrupt(vcpu);
7400 	}
7401 
7402 out:
7403 	guest_state_exit_irqoff();
7404 }
7405 
vmx_vcpu_run(struct kvm_vcpu * vcpu,bool force_immediate_exit)7406 fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7407 {
7408 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7409 	unsigned long cr3, cr4;
7410 
7411 	/* Record the guest's net vcpu time for enforced NMI injections. */
7412 	if (unlikely(!enable_vnmi &&
7413 		     vmx->loaded_vmcs->soft_vnmi_blocked))
7414 		vmx->loaded_vmcs->entry_time = ktime_get();
7415 
7416 	/*
7417 	 * Don't enter VMX if guest state is invalid, let the exit handler
7418 	 * start emulation until we arrive back to a valid state.  Synthesize a
7419 	 * consistency check VM-Exit due to invalid guest state and bail.
7420 	 */
7421 	if (unlikely(vmx->emulation_required)) {
7422 		vmx->fail = 0;
7423 
7424 		vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7425 		vmx->exit_reason.failed_vmentry = 1;
7426 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7427 		vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7428 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7429 		vmx->exit_intr_info = 0;
7430 		return EXIT_FASTPATH_NONE;
7431 	}
7432 
7433 	trace_kvm_entry(vcpu, force_immediate_exit);
7434 
7435 	if (vmx->ple_window_dirty) {
7436 		vmx->ple_window_dirty = false;
7437 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
7438 	}
7439 
7440 	/*
7441 	 * We did this in prepare_switch_to_guest, because it needs to
7442 	 * be within srcu_read_lock.
7443 	 */
7444 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7445 
7446 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7447 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7448 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7449 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7450 	vcpu->arch.regs_dirty = 0;
7451 
7452 	/*
7453 	 * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
7454 	 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7455 	 * it switches back to the current->mm, which can occur in KVM context
7456 	 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7457 	 * toggles a static key while handling a VM-Exit.
7458 	 */
7459 	cr3 = __get_current_cr3_fast();
7460 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7461 		vmcs_writel(HOST_CR3, cr3);
7462 		vmx->loaded_vmcs->host_state.cr3 = cr3;
7463 	}
7464 
7465 	cr4 = cr4_read_shadow();
7466 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7467 		vmcs_writel(HOST_CR4, cr4);
7468 		vmx->loaded_vmcs->host_state.cr4 = cr4;
7469 	}
7470 
7471 	/* When single-stepping over STI and MOV SS, we must clear the
7472 	 * corresponding interruptibility bits in the guest state. Otherwise
7473 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
7474 	 * exceptions being set, but that's not correct for the guest debugging
7475 	 * case. */
7476 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7477 		vmx_set_interrupt_shadow(vcpu, 0);
7478 
7479 	kvm_load_guest_xsave_state(vcpu);
7480 
7481 	pt_guest_enter(vmx);
7482 
7483 	atomic_switch_perf_msrs(vmx);
7484 	if (intel_pmu_lbr_is_enabled(vcpu))
7485 		vmx_passthrough_lbr_msrs(vcpu);
7486 
7487 	if (enable_preemption_timer)
7488 		vmx_update_hv_timer(vcpu, force_immediate_exit);
7489 	else if (force_immediate_exit)
7490 		smp_send_reschedule(vcpu->cpu);
7491 
7492 	kvm_wait_lapic_expire(vcpu);
7493 
7494 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
7495 	vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7496 
7497 	/* All fields are clean at this point */
7498 	if (kvm_is_using_evmcs()) {
7499 		current_evmcs->hv_clean_fields |=
7500 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7501 
7502 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7503 	}
7504 
7505 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7506 	if (vcpu->arch.host_debugctl)
7507 		update_debugctlmsr(vcpu->arch.host_debugctl);
7508 
7509 #ifndef CONFIG_X86_64
7510 	/*
7511 	 * The sysexit path does not restore ds/es, so we must set them to
7512 	 * a reasonable value ourselves.
7513 	 *
7514 	 * We can't defer this to vmx_prepare_switch_to_host() since that
7515 	 * function may be executed in interrupt context, which saves and
7516 	 * restore segments around it, nullifying its effect.
7517 	 */
7518 	loadsegment(ds, __USER_DS);
7519 	loadsegment(es, __USER_DS);
7520 #endif
7521 
7522 	pt_guest_exit(vmx);
7523 
7524 	kvm_load_host_xsave_state(vcpu);
7525 
7526 	if (is_guest_mode(vcpu)) {
7527 		/*
7528 		 * Track VMLAUNCH/VMRESUME that have made past guest state
7529 		 * checking.
7530 		 */
7531 		if (vmx->nested.nested_run_pending &&
7532 		    !vmx->exit_reason.failed_vmentry)
7533 			++vcpu->stat.nested_run;
7534 
7535 		vmx->nested.nested_run_pending = 0;
7536 	}
7537 
7538 	if (unlikely(vmx->fail))
7539 		return EXIT_FASTPATH_NONE;
7540 
7541 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7542 		kvm_machine_check();
7543 
7544 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
7545 
7546 	if (unlikely(vmx->exit_reason.failed_vmentry))
7547 		return EXIT_FASTPATH_NONE;
7548 
7549 	vmx->loaded_vmcs->launched = 1;
7550 
7551 	vmx_recover_nmi_blocking(vmx);
7552 	vmx_complete_interrupts(vmx);
7553 
7554 	return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit);
7555 }
7556 
vmx_vcpu_free(struct kvm_vcpu * vcpu)7557 void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7558 {
7559 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7560 
7561 	if (enable_pml)
7562 		vmx_destroy_pml_buffer(vmx);
7563 	free_vpid(vmx->vpid);
7564 	nested_vmx_free_vcpu(vcpu);
7565 	free_loaded_vmcs(vmx->loaded_vmcs);
7566 	free_page((unsigned long)vmx->ve_info);
7567 }
7568 
vmx_vcpu_create(struct kvm_vcpu * vcpu)7569 int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7570 {
7571 	struct vmx_uret_msr *tsx_ctrl;
7572 	struct vcpu_vmx *vmx;
7573 	int i, err;
7574 
7575 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7576 	vmx = to_vmx(vcpu);
7577 
7578 	INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7579 
7580 	err = -ENOMEM;
7581 
7582 	vmx->vpid = allocate_vpid();
7583 
7584 	/*
7585 	 * If PML is turned on, failure on enabling PML just results in failure
7586 	 * of creating the vcpu, therefore we can simplify PML logic (by
7587 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
7588 	 * for the guest), etc.
7589 	 */
7590 	if (enable_pml) {
7591 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7592 		if (!vmx->pml_pg)
7593 			goto free_vpid;
7594 	}
7595 
7596 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
7597 		vmx->guest_uret_msrs[i].mask = -1ull;
7598 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7599 		/*
7600 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7601 		 * Keep the host value unchanged to avoid changing CPUID bits
7602 		 * under the host kernel's feet.
7603 		 */
7604 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7605 		if (tsx_ctrl)
7606 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7607 	}
7608 
7609 	err = alloc_loaded_vmcs(&vmx->vmcs01);
7610 	if (err < 0)
7611 		goto free_pml;
7612 
7613 	/*
7614 	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7615 	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7616 	 * feature only for vmcs01, KVM currently isn't equipped to realize any
7617 	 * performance benefits from enabling it for vmcs02.
7618 	 */
7619 	if (kvm_is_using_evmcs() &&
7620 	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7621 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7622 
7623 		evmcs->hv_enlightenments_control.msr_bitmap = 1;
7624 	}
7625 
7626 	/* The MSR bitmap starts with all ones */
7627 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7628 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7629 
7630 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7631 #ifdef CONFIG_X86_64
7632 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7633 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7634 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7635 #endif
7636 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7637 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7638 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7639 	if (kvm_cstate_in_guest(vcpu->kvm)) {
7640 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7641 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7642 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7643 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7644 	}
7645 
7646 	vmx->loaded_vmcs = &vmx->vmcs01;
7647 
7648 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7649 		err = kvm_alloc_apic_access_page(vcpu->kvm);
7650 		if (err)
7651 			goto free_vmcs;
7652 	}
7653 
7654 	if (enable_ept && !enable_unrestricted_guest) {
7655 		err = init_rmode_identity_map(vcpu->kvm);
7656 		if (err)
7657 			goto free_vmcs;
7658 	}
7659 
7660 	err = -ENOMEM;
7661 	if (vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_EPT_VIOLATION_VE) {
7662 		struct page *page;
7663 
7664 		BUILD_BUG_ON(sizeof(*vmx->ve_info) > PAGE_SIZE);
7665 
7666 		/* ve_info must be page aligned. */
7667 		page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7668 		if (!page)
7669 			goto free_vmcs;
7670 
7671 		vmx->ve_info = page_to_virt(page);
7672 	}
7673 
7674 	if (vmx_can_use_ipiv(vcpu))
7675 		WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7676 			   __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7677 
7678 	return 0;
7679 
7680 free_vmcs:
7681 	free_loaded_vmcs(vmx->loaded_vmcs);
7682 free_pml:
7683 	vmx_destroy_pml_buffer(vmx);
7684 free_vpid:
7685 	free_vpid(vmx->vpid);
7686 	return err;
7687 }
7688 
7689 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7690 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7691 
vmx_vm_init(struct kvm * kvm)7692 int vmx_vm_init(struct kvm *kvm)
7693 {
7694 	if (!ple_gap)
7695 		kvm->arch.pause_in_guest = true;
7696 
7697 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7698 		switch (l1tf_mitigation) {
7699 		case L1TF_MITIGATION_OFF:
7700 		case L1TF_MITIGATION_FLUSH_NOWARN:
7701 			/* 'I explicitly don't care' is set */
7702 			break;
7703 		case L1TF_MITIGATION_FLUSH:
7704 		case L1TF_MITIGATION_FLUSH_NOSMT:
7705 		case L1TF_MITIGATION_FULL:
7706 			/*
7707 			 * Warn upon starting the first VM in a potentially
7708 			 * insecure environment.
7709 			 */
7710 			if (sched_smt_active())
7711 				pr_warn_once(L1TF_MSG_SMT);
7712 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7713 				pr_warn_once(L1TF_MSG_L1D);
7714 			break;
7715 		case L1TF_MITIGATION_FULL_FORCE:
7716 			/* Flush is enforced */
7717 			break;
7718 		}
7719 	}
7720 	return 0;
7721 }
7722 
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)7723 u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7724 {
7725 	/*
7726 	 * Force UC for host MMIO regions, as allowing the guest to access MMIO
7727 	 * with cacheable accesses will result in Machine Checks.
7728 	 */
7729 	if (is_mmio)
7730 		return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7731 
7732 	/*
7733 	 * Force WB and ignore guest PAT if the VM does NOT have a non-coherent
7734 	 * device attached.  Letting the guest control memory types on Intel
7735 	 * CPUs may result in unexpected behavior, and so KVM's ABI is to trust
7736 	 * the guest to behave only as a last resort.
7737 	 */
7738 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7739 		return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7740 
7741 	return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT);
7742 }
7743 
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx,u32 new_ctl)7744 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7745 {
7746 	/*
7747 	 * These bits in the secondary execution controls field
7748 	 * are dynamic, the others are mostly based on the hypervisor
7749 	 * architecture and the guest's CPUID.  Do not touch the
7750 	 * dynamic bits.
7751 	 */
7752 	u32 mask =
7753 		SECONDARY_EXEC_SHADOW_VMCS |
7754 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7755 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7756 		SECONDARY_EXEC_DESC;
7757 
7758 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7759 
7760 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7761 }
7762 
7763 /*
7764  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7765  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7766  */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)7767 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7768 {
7769 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7770 	struct kvm_cpuid_entry2 *entry;
7771 
7772 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7773 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7774 
7775 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7776 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7777 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7778 } while (0)
7779 
7780 	entry = kvm_find_cpuid_entry(vcpu, 0x1);
7781 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7782 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7783 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7784 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7785 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7786 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7787 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7788 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7789 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7790 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7791 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7792 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7793 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7794 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7795 
7796 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7797 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7798 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7799 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7800 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7801 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7802 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7803 
7804 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1);
7805 	cr4_fixed1_update(X86_CR4_LAM_SUP,    eax, feature_bit(LAM));
7806 
7807 #undef cr4_fixed1_update
7808 }
7809 
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7810 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7811 {
7812 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7813 	struct kvm_cpuid_entry2 *best = NULL;
7814 	int i;
7815 
7816 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7817 		best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7818 		if (!best)
7819 			return;
7820 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7821 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7822 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7823 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7824 	}
7825 
7826 	/* Get the number of configurable Address Ranges for filtering */
7827 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7828 						PT_CAP_num_address_ranges);
7829 
7830 	/* Initialize and clear the no dependency bits */
7831 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7832 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7833 			RTIT_CTL_BRANCH_EN);
7834 
7835 	/*
7836 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7837 	 * will inject an #GP
7838 	 */
7839 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7840 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7841 
7842 	/*
7843 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7844 	 * PSBFreq can be set
7845 	 */
7846 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7847 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7848 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7849 
7850 	/*
7851 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7852 	 */
7853 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7854 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7855 					      RTIT_CTL_MTC_RANGE);
7856 
7857 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7858 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7859 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7860 							RTIT_CTL_PTW_EN);
7861 
7862 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7863 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7864 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7865 
7866 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7867 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7868 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7869 
7870 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7871 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7872 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7873 
7874 	/* unmask address range configure area */
7875 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7876 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7877 }
7878 
vmx_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)7879 void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7880 {
7881 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7882 
7883 	/*
7884 	 * XSAVES is effectively enabled if and only if XSAVE is also exposed
7885 	 * to the guest.  XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7886 	 * set if and only if XSAVE is supported.
7887 	 */
7888 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE))
7889 		guest_cpu_cap_clear(vcpu, X86_FEATURE_XSAVES);
7890 
7891 	vmx_setup_uret_msrs(vmx);
7892 
7893 	if (cpu_has_secondary_exec_ctrls())
7894 		vmcs_set_secondary_exec_control(vmx,
7895 						vmx_secondary_exec_control(vmx));
7896 
7897 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
7898 		vmx->msr_ia32_feature_control_valid_bits |=
7899 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7900 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7901 	else
7902 		vmx->msr_ia32_feature_control_valid_bits &=
7903 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7904 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7905 
7906 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
7907 		nested_vmx_cr_fixed1_bits_update(vcpu);
7908 
7909 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7910 			guest_cpu_cap_has(vcpu, X86_FEATURE_INTEL_PT))
7911 		update_intel_pt_cfg(vcpu);
7912 
7913 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7914 		struct vmx_uret_msr *msr;
7915 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7916 		if (msr) {
7917 			bool enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_RTM);
7918 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7919 		}
7920 	}
7921 
7922 	if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7923 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7924 					  !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD));
7925 
7926 	if (boot_cpu_has(X86_FEATURE_IBPB))
7927 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7928 					  !guest_has_pred_cmd_msr(vcpu));
7929 
7930 	if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7931 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7932 					  !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D));
7933 
7934 	set_cr4_guest_host_mask(vmx);
7935 
7936 	vmx_write_encls_bitmap(vcpu, NULL);
7937 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX))
7938 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7939 	else
7940 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7941 
7942 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC))
7943 		vmx->msr_ia32_feature_control_valid_bits |=
7944 			FEAT_CTL_SGX_LC_ENABLED;
7945 	else
7946 		vmx->msr_ia32_feature_control_valid_bits &=
7947 			~FEAT_CTL_SGX_LC_ENABLED;
7948 
7949 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7950 	vmx_update_exception_bitmap(vcpu);
7951 }
7952 
vmx_get_perf_capabilities(void)7953 static __init u64 vmx_get_perf_capabilities(void)
7954 {
7955 	u64 perf_cap = PMU_CAP_FW_WRITES;
7956 	u64 host_perf_cap = 0;
7957 
7958 	if (!enable_pmu)
7959 		return 0;
7960 
7961 	if (boot_cpu_has(X86_FEATURE_PDCM))
7962 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7963 
7964 	if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7965 		x86_perf_get_lbr(&vmx_lbr_caps);
7966 
7967 		/*
7968 		 * KVM requires LBR callstack support, as the overhead due to
7969 		 * context switching LBRs without said support is too high.
7970 		 * See intel_pmu_create_guest_lbr_event() for more info.
7971 		 */
7972 		if (!vmx_lbr_caps.has_callstack)
7973 			memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps));
7974 		else if (vmx_lbr_caps.nr)
7975 			perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7976 	}
7977 
7978 	if (vmx_pebs_supported()) {
7979 		perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7980 
7981 		/*
7982 		 * Disallow adaptive PEBS as it is functionally broken, can be
7983 		 * used by the guest to read *host* LBRs, and can be used to
7984 		 * bypass userspace event filters.  To correctly and safely
7985 		 * support adaptive PEBS, KVM needs to:
7986 		 *
7987 		 * 1. Account for the ADAPTIVE flag when (re)programming fixed
7988 		 *    counters.
7989 		 *
7990 		 * 2. Gain support from perf (or take direct control of counter
7991 		 *    programming) to support events without adaptive PEBS
7992 		 *    enabled for the hardware counter.
7993 		 *
7994 		 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with
7995 		 *    adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1.
7996 		 *
7997 		 * 4. Document which PMU events are effectively exposed to the
7998 		 *    guest via adaptive PEBS, and make adaptive PEBS mutually
7999 		 *    exclusive with KVM_SET_PMU_EVENT_FILTER if necessary.
8000 		 */
8001 		perf_cap &= ~PERF_CAP_PEBS_BASELINE;
8002 	}
8003 
8004 	return perf_cap;
8005 }
8006 
vmx_set_cpu_caps(void)8007 static __init void vmx_set_cpu_caps(void)
8008 {
8009 	kvm_set_cpu_caps();
8010 
8011 	/* CPUID 0x1 */
8012 	if (nested)
8013 		kvm_cpu_cap_set(X86_FEATURE_VMX);
8014 
8015 	/* CPUID 0x7 */
8016 	if (kvm_mpx_supported())
8017 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
8018 	if (!cpu_has_vmx_invpcid())
8019 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
8020 	if (vmx_pt_mode_is_host_guest())
8021 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
8022 	if (vmx_pebs_supported()) {
8023 		kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
8024 		kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
8025 	}
8026 
8027 	if (!enable_pmu)
8028 		kvm_cpu_cap_clear(X86_FEATURE_PDCM);
8029 	kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
8030 
8031 	if (!enable_sgx) {
8032 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
8033 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
8034 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
8035 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
8036 		kvm_cpu_cap_clear(X86_FEATURE_SGX_EDECCSSA);
8037 	}
8038 
8039 	if (vmx_umip_emulated())
8040 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
8041 
8042 	/* CPUID 0xD.1 */
8043 	kvm_caps.supported_xss = 0;
8044 	if (!cpu_has_vmx_xsaves())
8045 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
8046 
8047 	/* CPUID 0x80000001 and 0x7 (RDPID) */
8048 	if (!cpu_has_vmx_rdtscp()) {
8049 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
8050 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
8051 	}
8052 
8053 	if (cpu_has_vmx_waitpkg())
8054 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
8055 }
8056 
vmx_is_io_intercepted(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,unsigned long * exit_qualification)8057 static bool vmx_is_io_intercepted(struct kvm_vcpu *vcpu,
8058 				  struct x86_instruction_info *info,
8059 				  unsigned long *exit_qualification)
8060 {
8061 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8062 	unsigned short port;
8063 	int size;
8064 	bool imm;
8065 
8066 	/*
8067 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
8068 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
8069 	 * control.
8070 	 *
8071 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
8072 	 */
8073 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
8074 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
8075 
8076 	if (info->intercept == x86_intercept_in ||
8077 	    info->intercept == x86_intercept_ins) {
8078 		port = info->src_val;
8079 		size = info->dst_bytes;
8080 		imm  = info->src_type == OP_IMM;
8081 	} else {
8082 		port = info->dst_val;
8083 		size = info->src_bytes;
8084 		imm  = info->dst_type == OP_IMM;
8085 	}
8086 
8087 
8088 	*exit_qualification = ((unsigned long)port << 16) | (size - 1);
8089 
8090 	if (info->intercept == x86_intercept_ins ||
8091 	    info->intercept == x86_intercept_outs)
8092 		*exit_qualification |= BIT(4);
8093 
8094 	if (info->rep_prefix)
8095 		*exit_qualification |= BIT(5);
8096 
8097 	if (imm)
8098 		*exit_qualification |= BIT(6);
8099 
8100 	return nested_vmx_check_io_bitmaps(vcpu, port, size);
8101 }
8102 
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)8103 int vmx_check_intercept(struct kvm_vcpu *vcpu,
8104 			struct x86_instruction_info *info,
8105 			enum x86_intercept_stage stage,
8106 			struct x86_exception *exception)
8107 {
8108 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8109 	unsigned long exit_qualification = 0;
8110 	u32 vm_exit_reason;
8111 	u64 exit_insn_len;
8112 
8113 	switch (info->intercept) {
8114 	case x86_intercept_rdpid:
8115 		/*
8116 		 * RDPID causes #UD if not enabled through secondary execution
8117 		 * controls (ENABLE_RDTSCP).  Note, the implicit MSR access to
8118 		 * TSC_AUX is NOT subject to interception, i.e. checking only
8119 		 * the dedicated execution control is architecturally correct.
8120 		 */
8121 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
8122 			exception->vector = UD_VECTOR;
8123 			exception->error_code_valid = false;
8124 			return X86EMUL_PROPAGATE_FAULT;
8125 		}
8126 		return X86EMUL_CONTINUE;
8127 
8128 	case x86_intercept_in:
8129 	case x86_intercept_ins:
8130 	case x86_intercept_out:
8131 	case x86_intercept_outs:
8132 		if (!vmx_is_io_intercepted(vcpu, info, &exit_qualification))
8133 			return X86EMUL_CONTINUE;
8134 
8135 		vm_exit_reason = EXIT_REASON_IO_INSTRUCTION;
8136 		break;
8137 
8138 	case x86_intercept_lgdt:
8139 	case x86_intercept_lidt:
8140 	case x86_intercept_lldt:
8141 	case x86_intercept_ltr:
8142 	case x86_intercept_sgdt:
8143 	case x86_intercept_sidt:
8144 	case x86_intercept_sldt:
8145 	case x86_intercept_str:
8146 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
8147 			return X86EMUL_CONTINUE;
8148 
8149 		if (info->intercept == x86_intercept_lldt ||
8150 		    info->intercept == x86_intercept_ltr ||
8151 		    info->intercept == x86_intercept_sldt ||
8152 		    info->intercept == x86_intercept_str)
8153 			vm_exit_reason = EXIT_REASON_LDTR_TR;
8154 		else
8155 			vm_exit_reason = EXIT_REASON_GDTR_IDTR;
8156 		/*
8157 		 * FIXME: Decode the ModR/M to generate the correct exit
8158 		 *        qualification for memory operands.
8159 		 */
8160 		break;
8161 
8162 	case x86_intercept_hlt:
8163 		if (!nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING))
8164 			return X86EMUL_CONTINUE;
8165 
8166 		vm_exit_reason = EXIT_REASON_HLT;
8167 		break;
8168 
8169 	case x86_intercept_pause:
8170 		/*
8171 		 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
8172 		 * with vanilla NOPs in the emulator.  Apply the interception
8173 		 * check only to actual PAUSE instructions.  Don't check
8174 		 * PAUSE-loop-exiting, software can't expect a given PAUSE to
8175 		 * exit, i.e. KVM is within its rights to allow L2 to execute
8176 		 * the PAUSE.
8177 		 */
8178 		if ((info->rep_prefix != REPE_PREFIX) ||
8179 		    !nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING))
8180 			return X86EMUL_CONTINUE;
8181 
8182 		vm_exit_reason = EXIT_REASON_PAUSE_INSTRUCTION;
8183 		break;
8184 
8185 	/* TODO: check more intercepts... */
8186 	default:
8187 		return X86EMUL_UNHANDLEABLE;
8188 	}
8189 
8190 	exit_insn_len = abs_diff((s64)info->next_rip, (s64)info->rip);
8191 	if (!exit_insn_len || exit_insn_len > X86_MAX_INSTRUCTION_LENGTH)
8192 		return X86EMUL_UNHANDLEABLE;
8193 
8194 	__nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification,
8195 			    exit_insn_len);
8196 	return X86EMUL_INTERCEPTED;
8197 }
8198 
8199 #ifdef CONFIG_X86_64
8200 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)8201 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8202 				  u64 divisor, u64 *result)
8203 {
8204 	u64 low = a << shift, high = a >> (64 - shift);
8205 
8206 	/* To avoid the overflow on divq */
8207 	if (high >= divisor)
8208 		return 1;
8209 
8210 	/* Low hold the result, high hold rem which is discarded */
8211 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8212 	    "rm" (divisor), "0" (low), "1" (high));
8213 	*result = low;
8214 
8215 	return 0;
8216 }
8217 
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)8218 int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8219 		     bool *expired)
8220 {
8221 	struct vcpu_vmx *vmx;
8222 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8223 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8224 
8225 	vmx = to_vmx(vcpu);
8226 	tscl = rdtsc();
8227 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8228 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8229 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8230 						    ktimer->timer_advance_ns);
8231 
8232 	if (delta_tsc > lapic_timer_advance_cycles)
8233 		delta_tsc -= lapic_timer_advance_cycles;
8234 	else
8235 		delta_tsc = 0;
8236 
8237 	/* Convert to host delta tsc if tsc scaling is enabled */
8238 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8239 	    delta_tsc && u64_shl_div_u64(delta_tsc,
8240 				kvm_caps.tsc_scaling_ratio_frac_bits,
8241 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8242 		return -ERANGE;
8243 
8244 	/*
8245 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
8246 	 * we can't use the preemption timer.
8247 	 * It's possible that it fits on later vmentries, but checking
8248 	 * on every vmentry is costly so we just use an hrtimer.
8249 	 */
8250 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8251 		return -ERANGE;
8252 
8253 	vmx->hv_deadline_tsc = tscl + delta_tsc;
8254 	*expired = !delta_tsc;
8255 	return 0;
8256 }
8257 
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)8258 void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8259 {
8260 	to_vmx(vcpu)->hv_deadline_tsc = -1;
8261 }
8262 #endif
8263 
vmx_update_cpu_dirty_logging(struct kvm_vcpu * vcpu)8264 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8265 {
8266 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8267 
8268 	if (WARN_ON_ONCE(!enable_pml))
8269 		return;
8270 
8271 	if (is_guest_mode(vcpu)) {
8272 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8273 		return;
8274 	}
8275 
8276 	/*
8277 	 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8278 	 * code, but in that case another update request will be made and so
8279 	 * the guest will never run with a stale PML value.
8280 	 */
8281 	if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8282 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8283 	else
8284 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8285 }
8286 
vmx_setup_mce(struct kvm_vcpu * vcpu)8287 void vmx_setup_mce(struct kvm_vcpu *vcpu)
8288 {
8289 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8290 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8291 			FEAT_CTL_LMCE_ENABLED;
8292 	else
8293 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8294 			~FEAT_CTL_LMCE_ENABLED;
8295 }
8296 
8297 #ifdef CONFIG_KVM_SMM
vmx_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)8298 int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8299 {
8300 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
8301 	if (to_vmx(vcpu)->nested.nested_run_pending)
8302 		return -EBUSY;
8303 	return !is_smm(vcpu);
8304 }
8305 
vmx_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)8306 int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8307 {
8308 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8309 
8310 	/*
8311 	 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8312 	 * SMI and RSM.  Using the common VM-Exit + VM-Enter routines is wrong
8313 	 * SMI and RSM only modify state that is saved and restored via SMRAM.
8314 	 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8315 	 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8316 	 */
8317 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8318 	if (vmx->nested.smm.guest_mode)
8319 		nested_vmx_vmexit(vcpu, -1, 0, 0);
8320 
8321 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
8322 	vmx->nested.vmxon = false;
8323 	vmx_clear_hlt(vcpu);
8324 	return 0;
8325 }
8326 
vmx_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)8327 int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8328 {
8329 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8330 	int ret;
8331 
8332 	if (vmx->nested.smm.vmxon) {
8333 		vmx->nested.vmxon = true;
8334 		vmx->nested.smm.vmxon = false;
8335 	}
8336 
8337 	if (vmx->nested.smm.guest_mode) {
8338 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
8339 		if (ret)
8340 			return ret;
8341 
8342 		vmx->nested.nested_run_pending = 1;
8343 		vmx->nested.smm.guest_mode = false;
8344 	}
8345 	return 0;
8346 }
8347 
vmx_enable_smi_window(struct kvm_vcpu * vcpu)8348 void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8349 {
8350 	/* RSM will cause a vmexit anyway.  */
8351 }
8352 #endif
8353 
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)8354 bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8355 {
8356 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8357 }
8358 
vmx_migrate_timers(struct kvm_vcpu * vcpu)8359 void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8360 {
8361 	if (is_guest_mode(vcpu)) {
8362 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8363 
8364 		if (hrtimer_try_to_cancel(timer) == 1)
8365 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8366 	}
8367 }
8368 
vmx_hardware_unsetup(void)8369 void vmx_hardware_unsetup(void)
8370 {
8371 	kvm_set_posted_intr_wakeup_handler(NULL);
8372 
8373 	if (nested)
8374 		nested_vmx_hardware_unsetup();
8375 
8376 	free_kvm_area();
8377 }
8378 
vmx_vm_destroy(struct kvm * kvm)8379 void vmx_vm_destroy(struct kvm *kvm)
8380 {
8381 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8382 
8383 	free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8384 }
8385 
8386 /*
8387  * Note, the SDM states that the linear address is masked *after* the modified
8388  * canonicality check, whereas KVM masks (untags) the address and then performs
8389  * a "normal" canonicality check.  Functionally, the two methods are identical,
8390  * and when the masking occurs relative to the canonicality check isn't visible
8391  * to software, i.e. KVM's behavior doesn't violate the SDM.
8392  */
vmx_get_untagged_addr(struct kvm_vcpu * vcpu,gva_t gva,unsigned int flags)8393 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags)
8394 {
8395 	int lam_bit;
8396 	unsigned long cr3_bits;
8397 
8398 	if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG))
8399 		return gva;
8400 
8401 	if (!is_64_bit_mode(vcpu))
8402 		return gva;
8403 
8404 	/*
8405 	 * Bit 63 determines if the address should be treated as user address
8406 	 * or a supervisor address.
8407 	 */
8408 	if (!(gva & BIT_ULL(63))) {
8409 		cr3_bits = kvm_get_active_cr3_lam_bits(vcpu);
8410 		if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48)))
8411 			return gva;
8412 
8413 		/* LAM_U48 is ignored if LAM_U57 is set. */
8414 		lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47;
8415 	} else {
8416 		if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP))
8417 			return gva;
8418 
8419 		lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47;
8420 	}
8421 
8422 	/*
8423 	 * Untag the address by sign-extending the lam_bit, but NOT to bit 63.
8424 	 * Bit 63 is retained from the raw virtual address so that untagging
8425 	 * doesn't change a user access to a supervisor access, and vice versa.
8426 	 */
8427 	return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63));
8428 }
8429 
vmx_handle_intel_pt_intr(void)8430 static unsigned int vmx_handle_intel_pt_intr(void)
8431 {
8432 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8433 
8434 	/* '0' on failure so that the !PT case can use a RET0 static call. */
8435 	if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8436 		return 0;
8437 
8438 	kvm_make_request(KVM_REQ_PMI, vcpu);
8439 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8440 		  (unsigned long *)&vcpu->arch.pmu.global_status);
8441 	return 1;
8442 }
8443 
vmx_setup_user_return_msrs(void)8444 static __init void vmx_setup_user_return_msrs(void)
8445 {
8446 
8447 	/*
8448 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8449 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
8450 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8451 	 * support this emulation, MSR_STAR is included in the list for i386,
8452 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
8453 	 * into hardware and is here purely for emulation purposes.
8454 	 */
8455 	const u32 vmx_uret_msrs_list[] = {
8456 	#ifdef CONFIG_X86_64
8457 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8458 	#endif
8459 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8460 		MSR_IA32_TSX_CTRL,
8461 	};
8462 	int i;
8463 
8464 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8465 
8466 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8467 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8468 }
8469 
vmx_setup_me_spte_mask(void)8470 static void __init vmx_setup_me_spte_mask(void)
8471 {
8472 	u64 me_mask = 0;
8473 
8474 	/*
8475 	 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8476 	 * kvm_host.maxphyaddr.  On MKTME and/or TDX capable systems,
8477 	 * boot_cpu_data.x86_phys_bits holds the actual physical address
8478 	 * w/o the KeyID bits, and kvm_host.maxphyaddr equals to
8479 	 * MAXPHYADDR reported by CPUID.  Those bits between are KeyID bits.
8480 	 */
8481 	if (boot_cpu_data.x86_phys_bits != kvm_host.maxphyaddr)
8482 		me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8483 				    kvm_host.maxphyaddr - 1);
8484 
8485 	/*
8486 	 * Unlike SME, host kernel doesn't support setting up any
8487 	 * MKTME KeyID on Intel platforms.  No memory encryption
8488 	 * bits should be included into the SPTE.
8489 	 */
8490 	kvm_mmu_set_me_spte_mask(0, me_mask);
8491 }
8492 
vmx_hardware_setup(void)8493 __init int vmx_hardware_setup(void)
8494 {
8495 	unsigned long host_bndcfgs;
8496 	struct desc_ptr dt;
8497 	int r;
8498 
8499 	store_idt(&dt);
8500 	host_idt_base = dt.address;
8501 
8502 	vmx_setup_user_return_msrs();
8503 
8504 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8505 		return -EIO;
8506 
8507 	if (boot_cpu_has(X86_FEATURE_NX))
8508 		kvm_enable_efer_bits(EFER_NX);
8509 
8510 	if (boot_cpu_has(X86_FEATURE_MPX)) {
8511 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8512 		WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8513 	}
8514 
8515 	if (!cpu_has_vmx_mpx())
8516 		kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8517 					     XFEATURE_MASK_BNDCSR);
8518 
8519 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8520 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8521 		enable_vpid = 0;
8522 
8523 	if (!cpu_has_vmx_ept() ||
8524 	    !cpu_has_vmx_ept_4levels() ||
8525 	    !cpu_has_vmx_ept_mt_wb() ||
8526 	    !cpu_has_vmx_invept_global())
8527 		enable_ept = 0;
8528 
8529 	/* NX support is required for shadow paging. */
8530 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8531 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
8532 		return -EOPNOTSUPP;
8533 	}
8534 
8535 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8536 		enable_ept_ad_bits = 0;
8537 
8538 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8539 		enable_unrestricted_guest = 0;
8540 
8541 	if (!cpu_has_vmx_flexpriority())
8542 		flexpriority_enabled = 0;
8543 
8544 	if (!cpu_has_virtual_nmis())
8545 		enable_vnmi = 0;
8546 
8547 #ifdef CONFIG_X86_SGX_KVM
8548 	if (!cpu_has_vmx_encls_vmexit())
8549 		enable_sgx = false;
8550 #endif
8551 
8552 	/*
8553 	 * set_apic_access_page_addr() is used to reload apic access
8554 	 * page upon invalidation.  No need to do anything if not
8555 	 * using the APIC_ACCESS_ADDR VMCS field.
8556 	 */
8557 	if (!flexpriority_enabled)
8558 		vt_x86_ops.set_apic_access_page_addr = NULL;
8559 
8560 	if (!cpu_has_vmx_tpr_shadow())
8561 		vt_x86_ops.update_cr8_intercept = NULL;
8562 
8563 #if IS_ENABLED(CONFIG_HYPERV)
8564 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8565 	    && enable_ept) {
8566 		vt_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8567 		vt_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8568 	}
8569 #endif
8570 
8571 	if (!cpu_has_vmx_ple()) {
8572 		ple_gap = 0;
8573 		ple_window = 0;
8574 		ple_window_grow = 0;
8575 		ple_window_max = 0;
8576 		ple_window_shrink = 0;
8577 	}
8578 
8579 	if (!cpu_has_vmx_apicv())
8580 		enable_apicv = 0;
8581 	if (!enable_apicv)
8582 		vt_x86_ops.sync_pir_to_irr = NULL;
8583 
8584 	if (!enable_apicv || !cpu_has_vmx_ipiv())
8585 		enable_ipiv = false;
8586 
8587 	if (cpu_has_vmx_tsc_scaling())
8588 		kvm_caps.has_tsc_control = true;
8589 
8590 	kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8591 	kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8592 	kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8593 	kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8594 
8595 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8596 
8597 	if (enable_ept)
8598 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8599 				      cpu_has_vmx_ept_execute_only());
8600 
8601 	/*
8602 	 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8603 	 * bits to shadow_zero_check.
8604 	 */
8605 	vmx_setup_me_spte_mask();
8606 
8607 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8608 			  ept_caps_to_lpage_level(vmx_capability.ept));
8609 
8610 	/*
8611 	 * Only enable PML when hardware supports PML feature, and both EPT
8612 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8613 	 */
8614 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8615 		enable_pml = 0;
8616 
8617 	if (!enable_pml)
8618 		vt_x86_ops.cpu_dirty_log_size = 0;
8619 
8620 	if (!cpu_has_vmx_preemption_timer())
8621 		enable_preemption_timer = false;
8622 
8623 	if (enable_preemption_timer) {
8624 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8625 
8626 		cpu_preemption_timer_multi =
8627 			vmx_misc_preemption_timer_rate(vmcs_config.misc);
8628 
8629 		if (tsc_khz)
8630 			use_timer_freq = (u64)tsc_khz * 1000;
8631 		use_timer_freq >>= cpu_preemption_timer_multi;
8632 
8633 		/*
8634 		 * KVM "disables" the preemption timer by setting it to its max
8635 		 * value.  Don't use the timer if it might cause spurious exits
8636 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8637 		 */
8638 		if (use_timer_freq > 0xffffffffu / 10)
8639 			enable_preemption_timer = false;
8640 	}
8641 
8642 	if (!enable_preemption_timer) {
8643 		vt_x86_ops.set_hv_timer = NULL;
8644 		vt_x86_ops.cancel_hv_timer = NULL;
8645 	}
8646 
8647 	kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8648 	kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8649 
8650 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8651 		return -EINVAL;
8652 	if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8653 		pt_mode = PT_MODE_SYSTEM;
8654 	if (pt_mode == PT_MODE_HOST_GUEST)
8655 		vt_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8656 	else
8657 		vt_init_ops.handle_intel_pt_intr = NULL;
8658 
8659 	setup_default_sgx_lepubkeyhash();
8660 
8661 	if (nested) {
8662 		nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8663 
8664 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8665 		if (r)
8666 			return r;
8667 	}
8668 
8669 	vmx_set_cpu_caps();
8670 
8671 	r = alloc_kvm_area();
8672 	if (r && nested)
8673 		nested_vmx_hardware_unsetup();
8674 
8675 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8676 
8677 	return r;
8678 }
8679 
vmx_cleanup_l1d_flush(void)8680 static void vmx_cleanup_l1d_flush(void)
8681 {
8682 	if (vmx_l1d_flush_pages) {
8683 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8684 		vmx_l1d_flush_pages = NULL;
8685 	}
8686 	/* Restore state so sysfs ignores VMX */
8687 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8688 }
8689 
__vmx_exit(void)8690 static void __vmx_exit(void)
8691 {
8692 	allow_smaller_maxphyaddr = false;
8693 
8694 	vmx_cleanup_l1d_flush();
8695 }
8696 
vmx_exit(void)8697 static void __exit vmx_exit(void)
8698 {
8699 	kvm_exit();
8700 	__vmx_exit();
8701 	kvm_x86_vendor_exit();
8702 
8703 }
8704 module_exit(vmx_exit);
8705 
vmx_init(void)8706 static int __init vmx_init(void)
8707 {
8708 	int r, cpu;
8709 
8710 	if (!kvm_is_vmx_supported())
8711 		return -EOPNOTSUPP;
8712 
8713 	/*
8714 	 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8715 	 * to unwind if a later step fails.
8716 	 */
8717 	hv_init_evmcs();
8718 
8719 	r = kvm_x86_vendor_init(&vt_init_ops);
8720 	if (r)
8721 		return r;
8722 
8723 	/*
8724 	 * Must be called after common x86 init so enable_ept is properly set
8725 	 * up. Hand the parameter mitigation value in which was stored in
8726 	 * the pre module init parser. If no parameter was given, it will
8727 	 * contain 'auto' which will be turned into the default 'cond'
8728 	 * mitigation mode.
8729 	 */
8730 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8731 	if (r)
8732 		goto err_l1d_flush;
8733 
8734 	for_each_possible_cpu(cpu) {
8735 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8736 
8737 		pi_init_cpu(cpu);
8738 	}
8739 
8740 	vmx_check_vmcs12_offsets();
8741 
8742 	/*
8743 	 * Shadow paging doesn't have a (further) performance penalty
8744 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8745 	 * by default
8746 	 */
8747 	if (!enable_ept)
8748 		allow_smaller_maxphyaddr = true;
8749 
8750 	/*
8751 	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
8752 	 * exposed to userspace!
8753 	 */
8754 	r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
8755 		     THIS_MODULE);
8756 	if (r)
8757 		goto err_kvm_init;
8758 
8759 	return 0;
8760 
8761 err_kvm_init:
8762 	__vmx_exit();
8763 err_l1d_flush:
8764 	kvm_x86_vendor_exit();
8765 	return r;
8766 }
8767 module_init(vmx_init);
8768