1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/api.h>
39 #include <asm/fpu/xstate.h>
40 #include <asm/fred.h>
41 #include <asm/idtentry.h>
42 #include <asm/io.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/reboot.h>
45 #include <asm/perf_event.h>
46 #include <asm/mmu_context.h>
47 #include <asm/mshyperv.h>
48 #include <asm/msr.h>
49 #include <asm/mwait.h>
50 #include <asm/spec-ctrl.h>
51 #include <asm/vmx.h>
52
53 #include <trace/events/ipi.h>
54
55 #include "capabilities.h"
56 #include "common.h"
57 #include "cpuid.h"
58 #include "hyperv.h"
59 #include "kvm_onhyperv.h"
60 #include "irq.h"
61 #include "kvm_cache_regs.h"
62 #include "lapic.h"
63 #include "mmu.h"
64 #include "nested.h"
65 #include "pmu.h"
66 #include "sgx.h"
67 #include "trace.h"
68 #include "vmcs.h"
69 #include "vmcs12.h"
70 #include "vmx.h"
71 #include "x86.h"
72 #include "x86_ops.h"
73 #include "smm.h"
74 #include "vmx_onhyperv.h"
75 #include "posted_intr.h"
76
77 #include "mmu/spte.h"
78
79 MODULE_AUTHOR("Qumranet");
80 MODULE_DESCRIPTION("KVM support for VMX (Intel VT-x) extensions");
81 MODULE_LICENSE("GPL");
82
83 #ifdef MODULE
84 static const struct x86_cpu_id vmx_cpu_id[] = {
85 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
86 {}
87 };
88 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
89 #endif
90
91 bool __read_mostly enable_vpid = 1;
92 module_param_named(vpid, enable_vpid, bool, 0444);
93
94 static bool __read_mostly enable_vnmi = 1;
95 module_param_named(vnmi, enable_vnmi, bool, 0444);
96
97 bool __read_mostly flexpriority_enabled = 1;
98 module_param_named(flexpriority, flexpriority_enabled, bool, 0444);
99
100 bool __read_mostly enable_ept = 1;
101 module_param_named(ept, enable_ept, bool, 0444);
102
103 bool __read_mostly enable_unrestricted_guest = 1;
104 module_param_named(unrestricted_guest,
105 enable_unrestricted_guest, bool, 0444);
106
107 bool __read_mostly enable_ept_ad_bits = 1;
108 module_param_named(eptad, enable_ept_ad_bits, bool, 0444);
109
110 static bool __read_mostly emulate_invalid_guest_state = true;
111 module_param(emulate_invalid_guest_state, bool, 0444);
112
113 static bool __read_mostly fasteoi = 1;
114 module_param(fasteoi, bool, 0444);
115
116 module_param(enable_apicv, bool, 0444);
117 module_param(enable_ipiv, bool, 0444);
118
119 module_param(enable_device_posted_irqs, bool, 0444);
120
121 /*
122 * If nested=1, nested virtualization is supported, i.e., guests may use
123 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
124 * use VMX instructions.
125 */
126 static bool __read_mostly nested = 1;
127 module_param(nested, bool, 0444);
128
129 bool __read_mostly enable_pml = 1;
130 module_param_named(pml, enable_pml, bool, 0444);
131
132 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
133 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
134
135 static bool __read_mostly dump_invalid_vmcs = 0;
136 module_param(dump_invalid_vmcs, bool, 0644);
137
138 #define MSR_BITMAP_MODE_X2APIC 1
139 #define MSR_BITMAP_MODE_X2APIC_APICV 2
140
141 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
142
143 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
144 static int __read_mostly cpu_preemption_timer_multi;
145 static bool __read_mostly enable_preemption_timer = 1;
146 #ifdef CONFIG_X86_64
147 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
148 #endif
149
150 extern bool __read_mostly allow_smaller_maxphyaddr;
151 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
152
153 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
154 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
155 #define KVM_VM_CR0_ALWAYS_ON \
156 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
157
158 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
159 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
160 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
161
162 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
163
164 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
165 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
166 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
167 RTIT_STATUS_BYTECNT))
168
169 /*
170 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
171 * ple_gap: upper bound on the amount of time between two successive
172 * executions of PAUSE in a loop. Also indicate if ple enabled.
173 * According to test, this time is usually smaller than 128 cycles.
174 * ple_window: upper bound on the amount of time a guest is allowed to execute
175 * in a PAUSE loop. Tests indicate that most spinlocks are held for
176 * less than 2^12 cycles
177 * Time is measured based on a counter that runs at the same rate as the TSC,
178 * refer SDM volume 3b section 21.6.13 & 22.1.3.
179 */
180 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
181 module_param(ple_gap, uint, 0444);
182
183 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
184 module_param(ple_window, uint, 0444);
185
186 /* Default doubles per-vcpu window every exit. */
187 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
188 module_param(ple_window_grow, uint, 0444);
189
190 /* Default resets per-vcpu window every exit to ple_window. */
191 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
192 module_param(ple_window_shrink, uint, 0444);
193
194 /* Default is to compute the maximum so we can never overflow. */
195 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
196 module_param(ple_window_max, uint, 0444);
197
198 /* Default is SYSTEM mode, 1 for host-guest mode (which is BROKEN) */
199 int __read_mostly pt_mode = PT_MODE_SYSTEM;
200 #ifdef CONFIG_BROKEN
201 module_param(pt_mode, int, S_IRUGO);
202 #endif
203
204 struct x86_pmu_lbr __ro_after_init vmx_lbr_caps;
205
206 #ifdef CONFIG_CPU_MITIGATIONS
207 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
209 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
210
211 /* Storage for pre module init parameter parsing */
212 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
213
214 static const struct {
215 const char *option;
216 bool for_parse;
217 } vmentry_l1d_param[] = {
218 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
219 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
220 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
221 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
222 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
223 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
224 };
225
226 #define L1D_CACHE_ORDER 4
227 static void *vmx_l1d_flush_pages;
228
__vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)229 static int __vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
230 {
231 struct page *page;
232 unsigned int i;
233
234 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
235 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
236 return 0;
237 }
238
239 if (!enable_ept) {
240 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
241 return 0;
242 }
243
244 if (kvm_host.arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
245 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
246 return 0;
247 }
248
249 /* If set to auto use the default l1tf mitigation method */
250 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
251 switch (l1tf_mitigation) {
252 case L1TF_MITIGATION_OFF:
253 l1tf = VMENTER_L1D_FLUSH_NEVER;
254 break;
255 case L1TF_MITIGATION_AUTO:
256 case L1TF_MITIGATION_FLUSH_NOWARN:
257 case L1TF_MITIGATION_FLUSH:
258 case L1TF_MITIGATION_FLUSH_NOSMT:
259 l1tf = VMENTER_L1D_FLUSH_COND;
260 break;
261 case L1TF_MITIGATION_FULL:
262 case L1TF_MITIGATION_FULL_FORCE:
263 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
264 break;
265 }
266 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
267 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
268 }
269
270 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
271 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
272 /*
273 * This allocation for vmx_l1d_flush_pages is not tied to a VM
274 * lifetime and so should not be charged to a memcg.
275 */
276 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
277 if (!page)
278 return -ENOMEM;
279 vmx_l1d_flush_pages = page_address(page);
280
281 /*
282 * Initialize each page with a different pattern in
283 * order to protect against KSM in the nested
284 * virtualization case.
285 */
286 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
287 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
288 PAGE_SIZE);
289 }
290 }
291
292 l1tf_vmx_mitigation = l1tf;
293
294 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
295 static_branch_enable(&vmx_l1d_should_flush);
296 else
297 static_branch_disable(&vmx_l1d_should_flush);
298
299 if (l1tf == VMENTER_L1D_FLUSH_COND)
300 static_branch_enable(&vmx_l1d_flush_cond);
301 else
302 static_branch_disable(&vmx_l1d_flush_cond);
303 return 0;
304 }
305
vmx_setup_l1d_flush(void)306 static int vmx_setup_l1d_flush(void)
307 {
308 /*
309 * Hand the parameter mitigation value in which was stored in the pre
310 * module init parser. If no parameter was given, it will contain
311 * 'auto' which will be turned into the default 'cond' mitigation mode.
312 */
313 return __vmx_setup_l1d_flush(vmentry_l1d_flush_param);
314 }
315
vmx_cleanup_l1d_flush(void)316 static void vmx_cleanup_l1d_flush(void)
317 {
318 if (vmx_l1d_flush_pages) {
319 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
320 vmx_l1d_flush_pages = NULL;
321 }
322 /* Restore state so sysfs ignores VMX */
323 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
324 }
325
vmentry_l1d_flush_parse(const char * s)326 static int vmentry_l1d_flush_parse(const char *s)
327 {
328 unsigned int i;
329
330 if (s) {
331 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
332 if (vmentry_l1d_param[i].for_parse &&
333 sysfs_streq(s, vmentry_l1d_param[i].option))
334 return i;
335 }
336 }
337 return -EINVAL;
338 }
339
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)340 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
341 {
342 int l1tf, ret;
343
344 l1tf = vmentry_l1d_flush_parse(s);
345 if (l1tf < 0)
346 return l1tf;
347
348 if (!boot_cpu_has(X86_BUG_L1TF))
349 return 0;
350
351 /*
352 * Has vmx_init() run already? If not then this is the pre init
353 * parameter parsing. In that case just store the value and let
354 * vmx_init() do the proper setup after enable_ept has been
355 * established.
356 */
357 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
358 vmentry_l1d_flush_param = l1tf;
359 return 0;
360 }
361
362 mutex_lock(&vmx_l1d_flush_mutex);
363 ret = __vmx_setup_l1d_flush(l1tf);
364 mutex_unlock(&vmx_l1d_flush_mutex);
365 return ret;
366 }
367
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)368 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
369 {
370 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
371 return sysfs_emit(s, "???\n");
372
373 return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
374 }
375
376 /*
377 * Software based L1D cache flush which is used when microcode providing
378 * the cache control MSR is not loaded.
379 *
380 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
381 * flush it is required to read in 64 KiB because the replacement algorithm
382 * is not exactly LRU. This could be sized at runtime via topology
383 * information but as all relevant affected CPUs have 32KiB L1D cache size
384 * there is no point in doing so.
385 */
vmx_l1d_flush(struct kvm_vcpu * vcpu)386 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
387 {
388 int size = PAGE_SIZE << L1D_CACHE_ORDER;
389
390 if (!static_branch_unlikely(&vmx_l1d_should_flush))
391 return;
392
393 /*
394 * This code is only executed when the flush mode is 'cond' or
395 * 'always'
396 */
397 if (static_branch_likely(&vmx_l1d_flush_cond)) {
398 /*
399 * Clear the per-cpu flush bit, it gets set again if the vCPU
400 * is reloaded, i.e. if the vCPU is scheduled out or if KVM
401 * exits to userspace, or if KVM reaches one of the unsafe
402 * VMEXIT handlers, e.g. if KVM calls into the emulator,
403 * or from the interrupt handlers.
404 */
405 if (!kvm_get_cpu_l1tf_flush_l1d())
406 return;
407 kvm_clear_cpu_l1tf_flush_l1d();
408 }
409
410 vcpu->stat.l1d_flush++;
411
412 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
413 native_wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
414 return;
415 }
416
417 asm volatile(
418 /* First ensure the pages are in the TLB */
419 "xorl %%eax, %%eax\n"
420 ".Lpopulate_tlb:\n\t"
421 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
422 "addl $4096, %%eax\n\t"
423 "cmpl %%eax, %[size]\n\t"
424 "jne .Lpopulate_tlb\n\t"
425 "xorl %%eax, %%eax\n\t"
426 "cpuid\n\t"
427 /* Now fill the cache */
428 "xorl %%eax, %%eax\n"
429 ".Lfill_cache:\n"
430 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
431 "addl $64, %%eax\n\t"
432 "cmpl %%eax, %[size]\n\t"
433 "jne .Lfill_cache\n\t"
434 "lfence\n"
435 :: [flush_pages] "r" (vmx_l1d_flush_pages),
436 [size] "r" (size)
437 : "eax", "ebx", "ecx", "edx");
438 }
439
440 #else /* CONFIG_CPU_MITIGATIONS*/
vmx_setup_l1d_flush(void)441 static int vmx_setup_l1d_flush(void)
442 {
443 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NEVER;
444 return 0;
445 }
vmx_cleanup_l1d_flush(void)446 static void vmx_cleanup_l1d_flush(void)
447 {
448 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
449 }
vmx_l1d_flush(struct kvm_vcpu * vcpu)450 static __always_inline void vmx_l1d_flush(struct kvm_vcpu *vcpu)
451 {
452
453 }
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)454 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
455 {
456 pr_warn_once("Kernel compiled without mitigations, ignoring vmentry_l1d_flush\n");
457 return 0;
458 }
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)459 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
460 {
461 return sysfs_emit(s, "never\n");
462 }
463 #endif
464
465 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
466 .set = vmentry_l1d_flush_set,
467 .get = vmentry_l1d_flush_get,
468 };
469 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
470
vmx_disable_fb_clear(struct vcpu_vmx * vmx)471 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
472 {
473 u64 msr;
474
475 if (!vmx->disable_fb_clear)
476 return;
477
478 msr = native_rdmsrq(MSR_IA32_MCU_OPT_CTRL);
479 msr |= FB_CLEAR_DIS;
480 native_wrmsrq(MSR_IA32_MCU_OPT_CTRL, msr);
481 /* Cache the MSR value to avoid reading it later */
482 vmx->msr_ia32_mcu_opt_ctrl = msr;
483 }
484
vmx_enable_fb_clear(struct vcpu_vmx * vmx)485 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
486 {
487 if (!vmx->disable_fb_clear)
488 return;
489
490 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
491 native_wrmsrq(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
492 }
493
vmx_update_fb_clear_dis(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx)494 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
495 {
496 /*
497 * Disable VERW's behavior of clearing CPU buffers for the guest if the
498 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
499 * the mitigation. Disabling the clearing behavior provides a
500 * performance boost for guests that aren't aware that manually clearing
501 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
502 * and VM-Exit.
503 */
504 vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
505 (kvm_host.arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
506 !boot_cpu_has_bug(X86_BUG_MDS) &&
507 !boot_cpu_has_bug(X86_BUG_TAA);
508
509 /*
510 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
511 * at VMEntry. Skip the MSR read/write when a guest has no use case to
512 * execute VERW.
513 */
514 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
515 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
516 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
517 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
518 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
519 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
520 vmx->disable_fb_clear = false;
521 }
522
523 static u32 vmx_segment_access_rights(struct kvm_segment *var);
524
525 void vmx_vmexit(void);
526
527 #define vmx_insn_failed(fmt...) \
528 do { \
529 WARN_ONCE(1, fmt); \
530 pr_warn_ratelimited(fmt); \
531 } while (0)
532
vmread_error(unsigned long field)533 noinline void vmread_error(unsigned long field)
534 {
535 vmx_insn_failed("vmread failed: field=%lx\n", field);
536 }
537
538 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
vmread_error_trampoline2(unsigned long field,bool fault)539 noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
540 {
541 if (fault) {
542 kvm_spurious_fault();
543 } else {
544 instrumentation_begin();
545 vmread_error(field);
546 instrumentation_end();
547 }
548 }
549 #endif
550
vmwrite_error(unsigned long field,unsigned long value)551 noinline void vmwrite_error(unsigned long field, unsigned long value)
552 {
553 vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
554 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
555 }
556
vmclear_error(struct vmcs * vmcs,u64 phys_addr)557 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
558 {
559 vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
560 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
561 }
562
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)563 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
564 {
565 vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
566 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
567 }
568
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)569 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
570 {
571 vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
572 ext, vpid, gva);
573 }
574
invept_error(unsigned long ext,u64 eptp)575 noinline void invept_error(unsigned long ext, u64 eptp)
576 {
577 vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx\n", ext, eptp);
578 }
579
580 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
581 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
582 /*
583 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
584 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
585 */
586 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
587
588 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
589 static DEFINE_SPINLOCK(vmx_vpid_lock);
590
591 struct vmcs_config vmcs_config __ro_after_init;
592 struct vmx_capability vmx_capability __ro_after_init;
593
594 #define VMX_SEGMENT_FIELD(seg) \
595 [VCPU_SREG_##seg] = { \
596 .selector = GUEST_##seg##_SELECTOR, \
597 .base = GUEST_##seg##_BASE, \
598 .limit = GUEST_##seg##_LIMIT, \
599 .ar_bytes = GUEST_##seg##_AR_BYTES, \
600 }
601
602 static const struct kvm_vmx_segment_field {
603 unsigned selector;
604 unsigned base;
605 unsigned limit;
606 unsigned ar_bytes;
607 } kvm_vmx_segment_fields[] = {
608 VMX_SEGMENT_FIELD(CS),
609 VMX_SEGMENT_FIELD(DS),
610 VMX_SEGMENT_FIELD(ES),
611 VMX_SEGMENT_FIELD(FS),
612 VMX_SEGMENT_FIELD(GS),
613 VMX_SEGMENT_FIELD(SS),
614 VMX_SEGMENT_FIELD(TR),
615 VMX_SEGMENT_FIELD(LDTR),
616 };
617
618
619 static unsigned long host_idt_base;
620
621 #if IS_ENABLED(CONFIG_HYPERV)
622 static bool __read_mostly enlightened_vmcs = true;
623 module_param(enlightened_vmcs, bool, 0444);
624
hv_enable_l2_tlb_flush(struct kvm_vcpu * vcpu)625 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
626 {
627 struct hv_enlightened_vmcs *evmcs;
628 hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu);
629
630 if (partition_assist_page == INVALID_PAGE)
631 return -ENOMEM;
632
633 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
634
635 evmcs->partition_assist_page = partition_assist_page;
636 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
637 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
638
639 return 0;
640 }
641
hv_init_evmcs(void)642 static __init void hv_init_evmcs(void)
643 {
644 int cpu;
645
646 if (!enlightened_vmcs)
647 return;
648
649 /*
650 * Enlightened VMCS usage should be recommended and the host needs
651 * to support eVMCS v1 or above.
652 */
653 if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
654 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
655 KVM_EVMCS_VERSION) {
656
657 /* Check that we have assist pages on all online CPUs */
658 for_each_online_cpu(cpu) {
659 if (!hv_get_vp_assist_page(cpu)) {
660 enlightened_vmcs = false;
661 break;
662 }
663 }
664
665 if (enlightened_vmcs) {
666 pr_info("Using Hyper-V Enlightened VMCS\n");
667 static_branch_enable(&__kvm_is_using_evmcs);
668 }
669
670 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
671 vt_x86_ops.enable_l2_tlb_flush
672 = hv_enable_l2_tlb_flush;
673 } else {
674 enlightened_vmcs = false;
675 }
676 }
677
hv_reset_evmcs(void)678 static void hv_reset_evmcs(void)
679 {
680 struct hv_vp_assist_page *vp_ap;
681
682 if (!kvm_is_using_evmcs())
683 return;
684
685 /*
686 * KVM should enable eVMCS if and only if all CPUs have a VP assist
687 * page, and should reject CPU onlining if eVMCS is enabled the CPU
688 * doesn't have a VP assist page allocated.
689 */
690 vp_ap = hv_get_vp_assist_page(smp_processor_id());
691 if (WARN_ON_ONCE(!vp_ap))
692 return;
693
694 /*
695 * Reset everything to support using non-enlightened VMCS access later
696 * (e.g. when we reload the module with enlightened_vmcs=0)
697 */
698 vp_ap->nested_control.features.directhypercall = 0;
699 vp_ap->current_nested_vmcs = 0;
700 vp_ap->enlighten_vmentry = 0;
701 }
702
703 #else /* IS_ENABLED(CONFIG_HYPERV) */
hv_init_evmcs(void)704 static void hv_init_evmcs(void) {}
hv_reset_evmcs(void)705 static void hv_reset_evmcs(void) {}
706 #endif /* IS_ENABLED(CONFIG_HYPERV) */
707
708 /*
709 * Comment's format: document - errata name - stepping - processor name.
710 * Refer from
711 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
712 */
713 static u32 vmx_preemption_cpu_tfms[] = {
714 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
715 0x000206E6,
716 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
717 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
718 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
719 0x00020652,
720 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
721 0x00020655,
722 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
723 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
724 /*
725 * 320767.pdf - AAP86 - B1 -
726 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
727 */
728 0x000106E5,
729 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
730 0x000106A0,
731 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
732 0x000106A1,
733 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
734 0x000106A4,
735 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
736 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
737 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
738 0x000106A5,
739 /* Xeon E3-1220 V2 */
740 0x000306A8,
741 };
742
cpu_has_broken_vmx_preemption_timer(void)743 static inline bool cpu_has_broken_vmx_preemption_timer(void)
744 {
745 u32 eax = cpuid_eax(0x00000001), i;
746
747 /* Clear the reserved bits */
748 eax &= ~(0x3U << 14 | 0xfU << 28);
749 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
750 if (eax == vmx_preemption_cpu_tfms[i])
751 return true;
752
753 return false;
754 }
755
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)756 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
757 {
758 return flexpriority_enabled && lapic_in_kernel(vcpu);
759 }
760
vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)761 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
762 {
763 int i;
764
765 i = kvm_find_user_return_msr(msr);
766 if (i >= 0)
767 return &vmx->guest_uret_msrs[i];
768 return NULL;
769 }
770
vmx_set_guest_uret_msr(struct vcpu_vmx * vmx,struct vmx_uret_msr * msr,u64 data)771 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
772 struct vmx_uret_msr *msr, u64 data)
773 {
774 unsigned int slot = msr - vmx->guest_uret_msrs;
775 int ret = 0;
776
777 if (msr->load_into_hardware) {
778 preempt_disable();
779 ret = kvm_set_user_return_msr(slot, data, msr->mask);
780 preempt_enable();
781 }
782 if (!ret)
783 msr->data = data;
784 return ret;
785 }
786
787 /*
788 * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
789 *
790 * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
791 * atomically track post-VMXON state, e.g. this may be called in NMI context.
792 * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
793 * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
794 * magically in RM, VM86, compat mode, or at CPL>0.
795 */
kvm_cpu_vmxoff(void)796 static int kvm_cpu_vmxoff(void)
797 {
798 asm goto("1: vmxoff\n\t"
799 _ASM_EXTABLE(1b, %l[fault])
800 ::: "cc", "memory" : fault);
801
802 cr4_clear_bits(X86_CR4_VMXE);
803 return 0;
804
805 fault:
806 cr4_clear_bits(X86_CR4_VMXE);
807 return -EIO;
808 }
809
vmx_emergency_disable_virtualization_cpu(void)810 void vmx_emergency_disable_virtualization_cpu(void)
811 {
812 int cpu = raw_smp_processor_id();
813 struct loaded_vmcs *v;
814
815 kvm_rebooting = true;
816
817 /*
818 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
819 * set in task context. If this races with VMX is disabled by an NMI,
820 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
821 * kvm_rebooting set.
822 */
823 if (!(__read_cr4() & X86_CR4_VMXE))
824 return;
825
826 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
827 loaded_vmcss_on_cpu_link) {
828 vmcs_clear(v->vmcs);
829 if (v->shadow_vmcs)
830 vmcs_clear(v->shadow_vmcs);
831 }
832
833 kvm_cpu_vmxoff();
834 }
835
__loaded_vmcs_clear(void * arg)836 static void __loaded_vmcs_clear(void *arg)
837 {
838 struct loaded_vmcs *loaded_vmcs = arg;
839 int cpu = raw_smp_processor_id();
840
841 if (loaded_vmcs->cpu != cpu)
842 return; /* vcpu migration can race with cpu offline */
843 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
844 per_cpu(current_vmcs, cpu) = NULL;
845
846 vmcs_clear(loaded_vmcs->vmcs);
847 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
848 vmcs_clear(loaded_vmcs->shadow_vmcs);
849
850 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
851
852 /*
853 * Ensure all writes to loaded_vmcs, including deleting it from its
854 * current percpu list, complete before setting loaded_vmcs->cpu to
855 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
856 * and add loaded_vmcs to its percpu list before it's deleted from this
857 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
858 */
859 smp_wmb();
860
861 loaded_vmcs->cpu = -1;
862 loaded_vmcs->launched = 0;
863 }
864
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)865 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
866 {
867 int cpu = loaded_vmcs->cpu;
868
869 if (cpu != -1)
870 smp_call_function_single(cpu,
871 __loaded_vmcs_clear, loaded_vmcs, 1);
872 }
873
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)874 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
875 unsigned field)
876 {
877 bool ret;
878 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
879
880 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
881 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
882 vmx->segment_cache.bitmask = 0;
883 }
884 ret = vmx->segment_cache.bitmask & mask;
885 vmx->segment_cache.bitmask |= mask;
886 return ret;
887 }
888
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)889 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
890 {
891 u16 *p = &vmx->segment_cache.seg[seg].selector;
892
893 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
894 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
895 return *p;
896 }
897
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)898 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
899 {
900 ulong *p = &vmx->segment_cache.seg[seg].base;
901
902 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
903 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
904 return *p;
905 }
906
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)907 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
908 {
909 u32 *p = &vmx->segment_cache.seg[seg].limit;
910
911 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
912 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
913 return *p;
914 }
915
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)916 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
917 {
918 u32 *p = &vmx->segment_cache.seg[seg].ar;
919
920 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
921 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
922 return *p;
923 }
924
vmx_update_exception_bitmap(struct kvm_vcpu * vcpu)925 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
926 {
927 u32 eb;
928
929 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
930 (1u << DB_VECTOR) | (1u << AC_VECTOR);
931 /*
932 * #VE isn't used for VMX. To test against unexpected changes
933 * related to #VE for VMX, intercept unexpected #VE and warn on it.
934 */
935 if (IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
936 eb |= 1u << VE_VECTOR;
937 /*
938 * Guest access to VMware backdoor ports could legitimately
939 * trigger #GP because of TSS I/O permission bitmap.
940 * We intercept those #GP and allow access to them anyway
941 * as VMware does.
942 */
943 if (enable_vmware_backdoor)
944 eb |= (1u << GP_VECTOR);
945 if ((vcpu->guest_debug &
946 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
947 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
948 eb |= 1u << BP_VECTOR;
949 if (to_vmx(vcpu)->rmode.vm86_active)
950 eb = ~0;
951 if (!vmx_need_pf_intercept(vcpu))
952 eb &= ~(1u << PF_VECTOR);
953
954 /* When we are running a nested L2 guest and L1 specified for it a
955 * certain exception bitmap, we must trap the same exceptions and pass
956 * them to L1. When running L2, we will only handle the exceptions
957 * specified above if L1 did not want them.
958 */
959 if (is_guest_mode(vcpu))
960 eb |= get_vmcs12(vcpu)->exception_bitmap;
961 else {
962 int mask = 0, match = 0;
963
964 if (enable_ept && (eb & (1u << PF_VECTOR))) {
965 /*
966 * If EPT is enabled, #PF is currently only intercepted
967 * if MAXPHYADDR is smaller on the guest than on the
968 * host. In that case we only care about present,
969 * non-reserved faults. For vmcs02, however, PFEC_MASK
970 * and PFEC_MATCH are set in prepare_vmcs02_rare.
971 */
972 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
973 match = PFERR_PRESENT_MASK;
974 }
975 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
976 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
977 }
978
979 /*
980 * Disabling xfd interception indicates that dynamic xfeatures
981 * might be used in the guest. Always trap #NM in this case
982 * to save guest xfd_err timely.
983 */
984 if (vcpu->arch.xfd_no_write_intercept)
985 eb |= (1u << NM_VECTOR);
986
987 vmcs_write32(EXCEPTION_BITMAP, eb);
988 }
989
990 /*
991 * Check if MSR is intercepted for currently loaded MSR bitmap.
992 */
msr_write_intercepted(struct vcpu_vmx * vmx,u32 msr)993 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
994 {
995 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
996 return true;
997
998 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
999 }
1000
__vmx_vcpu_run_flags(struct vcpu_vmx * vmx)1001 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
1002 {
1003 unsigned int flags = 0;
1004
1005 if (vmx->loaded_vmcs->launched)
1006 flags |= VMX_RUN_VMRESUME;
1007
1008 /*
1009 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
1010 * to change it directly without causing a vmexit. In that case read
1011 * it after vmexit and store it in vmx->spec_ctrl.
1012 */
1013 if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
1014 flags |= VMX_RUN_SAVE_SPEC_CTRL;
1015
1016 if (cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF_VM_MMIO) &&
1017 kvm_vcpu_can_access_host_mmio(&vmx->vcpu))
1018 flags |= VMX_RUN_CLEAR_CPU_BUFFERS_FOR_MMIO;
1019
1020 return flags;
1021 }
1022
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)1023 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1024 unsigned long entry, unsigned long exit)
1025 {
1026 vm_entry_controls_clearbit(vmx, entry);
1027 vm_exit_controls_clearbit(vmx, exit);
1028 }
1029
vmx_find_loadstore_msr_slot(struct vmx_msrs * m,u32 msr)1030 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
1031 {
1032 unsigned int i;
1033
1034 for (i = 0; i < m->nr; ++i) {
1035 if (m->val[i].index == msr)
1036 return i;
1037 }
1038 return -ENOENT;
1039 }
1040
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)1041 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1042 {
1043 int i;
1044 struct msr_autoload *m = &vmx->msr_autoload;
1045
1046 switch (msr) {
1047 case MSR_EFER:
1048 if (cpu_has_load_ia32_efer()) {
1049 clear_atomic_switch_msr_special(vmx,
1050 VM_ENTRY_LOAD_IA32_EFER,
1051 VM_EXIT_LOAD_IA32_EFER);
1052 return;
1053 }
1054 break;
1055 case MSR_CORE_PERF_GLOBAL_CTRL:
1056 if (cpu_has_load_perf_global_ctrl()) {
1057 clear_atomic_switch_msr_special(vmx,
1058 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1059 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1060 return;
1061 }
1062 break;
1063 }
1064 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1065 if (i < 0)
1066 goto skip_guest;
1067 --m->guest.nr;
1068 m->guest.val[i] = m->guest.val[m->guest.nr];
1069 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1070
1071 skip_guest:
1072 i = vmx_find_loadstore_msr_slot(&m->host, msr);
1073 if (i < 0)
1074 return;
1075
1076 --m->host.nr;
1077 m->host.val[i] = m->host.val[m->host.nr];
1078 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1079 }
1080
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)1081 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1082 unsigned long entry, unsigned long exit,
1083 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1084 u64 guest_val, u64 host_val)
1085 {
1086 vmcs_write64(guest_val_vmcs, guest_val);
1087 if (host_val_vmcs != HOST_IA32_EFER)
1088 vmcs_write64(host_val_vmcs, host_val);
1089 vm_entry_controls_setbit(vmx, entry);
1090 vm_exit_controls_setbit(vmx, exit);
1091 }
1092
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)1093 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1094 u64 guest_val, u64 host_val, bool entry_only)
1095 {
1096 int i, j = 0;
1097 struct msr_autoload *m = &vmx->msr_autoload;
1098
1099 switch (msr) {
1100 case MSR_EFER:
1101 if (cpu_has_load_ia32_efer()) {
1102 add_atomic_switch_msr_special(vmx,
1103 VM_ENTRY_LOAD_IA32_EFER,
1104 VM_EXIT_LOAD_IA32_EFER,
1105 GUEST_IA32_EFER,
1106 HOST_IA32_EFER,
1107 guest_val, host_val);
1108 return;
1109 }
1110 break;
1111 case MSR_CORE_PERF_GLOBAL_CTRL:
1112 if (cpu_has_load_perf_global_ctrl()) {
1113 add_atomic_switch_msr_special(vmx,
1114 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1115 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1116 GUEST_IA32_PERF_GLOBAL_CTRL,
1117 HOST_IA32_PERF_GLOBAL_CTRL,
1118 guest_val, host_val);
1119 return;
1120 }
1121 break;
1122 case MSR_IA32_PEBS_ENABLE:
1123 /* PEBS needs a quiescent period after being disabled (to write
1124 * a record). Disabling PEBS through VMX MSR swapping doesn't
1125 * provide that period, so a CPU could write host's record into
1126 * guest's memory.
1127 */
1128 wrmsrq(MSR_IA32_PEBS_ENABLE, 0);
1129 }
1130
1131 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1132 if (!entry_only)
1133 j = vmx_find_loadstore_msr_slot(&m->host, msr);
1134
1135 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1136 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1137 printk_once(KERN_WARNING "Not enough msr switch entries. "
1138 "Can't add msr %x\n", msr);
1139 return;
1140 }
1141 if (i < 0) {
1142 i = m->guest.nr++;
1143 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1144 }
1145 m->guest.val[i].index = msr;
1146 m->guest.val[i].value = guest_val;
1147
1148 if (entry_only)
1149 return;
1150
1151 if (j < 0) {
1152 j = m->host.nr++;
1153 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1154 }
1155 m->host.val[j].index = msr;
1156 m->host.val[j].value = host_val;
1157 }
1158
update_transition_efer(struct vcpu_vmx * vmx)1159 static bool update_transition_efer(struct vcpu_vmx *vmx)
1160 {
1161 u64 guest_efer = vmx->vcpu.arch.efer;
1162 u64 ignore_bits = 0;
1163 int i;
1164
1165 /* Shadow paging assumes NX to be available. */
1166 if (!enable_ept)
1167 guest_efer |= EFER_NX;
1168
1169 /*
1170 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1171 */
1172 ignore_bits |= EFER_SCE;
1173 #ifdef CONFIG_X86_64
1174 ignore_bits |= EFER_LMA | EFER_LME;
1175 /* SCE is meaningful only in long mode on Intel */
1176 if (guest_efer & EFER_LMA)
1177 ignore_bits &= ~(u64)EFER_SCE;
1178 #endif
1179
1180 /*
1181 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1182 * On CPUs that support "load IA32_EFER", always switch EFER
1183 * atomically, since it's faster than switching it manually.
1184 */
1185 if (cpu_has_load_ia32_efer() ||
1186 (enable_ept && ((vmx->vcpu.arch.efer ^ kvm_host.efer) & EFER_NX))) {
1187 if (!(guest_efer & EFER_LMA))
1188 guest_efer &= ~EFER_LME;
1189 if (guest_efer != kvm_host.efer)
1190 add_atomic_switch_msr(vmx, MSR_EFER,
1191 guest_efer, kvm_host.efer, false);
1192 else
1193 clear_atomic_switch_msr(vmx, MSR_EFER);
1194 return false;
1195 }
1196
1197 i = kvm_find_user_return_msr(MSR_EFER);
1198 if (i < 0)
1199 return false;
1200
1201 clear_atomic_switch_msr(vmx, MSR_EFER);
1202
1203 guest_efer &= ~ignore_bits;
1204 guest_efer |= kvm_host.efer & ignore_bits;
1205
1206 vmx->guest_uret_msrs[i].data = guest_efer;
1207 vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1208
1209 return true;
1210 }
1211
1212 #ifdef CONFIG_X86_32
1213 /*
1214 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1215 * VMCS rather than the segment table. KVM uses this helper to figure
1216 * out the current bases to poke them into the VMCS before entry.
1217 */
segment_base(u16 selector)1218 static unsigned long segment_base(u16 selector)
1219 {
1220 struct desc_struct *table;
1221 unsigned long v;
1222
1223 if (!(selector & ~SEGMENT_RPL_MASK))
1224 return 0;
1225
1226 table = get_current_gdt_ro();
1227
1228 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1229 u16 ldt_selector = kvm_read_ldt();
1230
1231 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1232 return 0;
1233
1234 table = (struct desc_struct *)segment_base(ldt_selector);
1235 }
1236 v = get_desc_base(&table[selector >> 3]);
1237 return v;
1238 }
1239 #endif
1240
pt_can_write_msr(struct vcpu_vmx * vmx)1241 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1242 {
1243 return vmx_pt_mode_is_host_guest() &&
1244 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1245 }
1246
pt_output_base_valid(struct kvm_vcpu * vcpu,u64 base)1247 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1248 {
1249 /* The base must be 128-byte aligned and a legal physical address. */
1250 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1251 }
1252
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1253 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1254 {
1255 u32 i;
1256
1257 wrmsrq(MSR_IA32_RTIT_STATUS, ctx->status);
1258 wrmsrq(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1259 wrmsrq(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1260 wrmsrq(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1261 for (i = 0; i < addr_range; i++) {
1262 wrmsrq(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1263 wrmsrq(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1264 }
1265 }
1266
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1267 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1268 {
1269 u32 i;
1270
1271 rdmsrq(MSR_IA32_RTIT_STATUS, ctx->status);
1272 rdmsrq(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1273 rdmsrq(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1274 rdmsrq(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1275 for (i = 0; i < addr_range; i++) {
1276 rdmsrq(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1277 rdmsrq(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1278 }
1279 }
1280
pt_guest_enter(struct vcpu_vmx * vmx)1281 static void pt_guest_enter(struct vcpu_vmx *vmx)
1282 {
1283 if (vmx_pt_mode_is_system())
1284 return;
1285
1286 /*
1287 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1288 * Save host state before VM entry.
1289 */
1290 rdmsrq(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1291 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1292 wrmsrq(MSR_IA32_RTIT_CTL, 0);
1293 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1294 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1295 }
1296 }
1297
pt_guest_exit(struct vcpu_vmx * vmx)1298 static void pt_guest_exit(struct vcpu_vmx *vmx)
1299 {
1300 if (vmx_pt_mode_is_system())
1301 return;
1302
1303 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1304 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1305 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1306 }
1307
1308 /*
1309 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1310 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary.
1311 */
1312 if (vmx->pt_desc.host.ctl)
1313 wrmsrq(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1314 }
1315
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1316 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1317 unsigned long fs_base, unsigned long gs_base)
1318 {
1319 if (unlikely(fs_sel != host->fs_sel)) {
1320 if (!(fs_sel & 7))
1321 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1322 else
1323 vmcs_write16(HOST_FS_SELECTOR, 0);
1324 host->fs_sel = fs_sel;
1325 }
1326 if (unlikely(gs_sel != host->gs_sel)) {
1327 if (!(gs_sel & 7))
1328 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1329 else
1330 vmcs_write16(HOST_GS_SELECTOR, 0);
1331 host->gs_sel = gs_sel;
1332 }
1333 if (unlikely(fs_base != host->fs_base)) {
1334 vmcs_writel(HOST_FS_BASE, fs_base);
1335 host->fs_base = fs_base;
1336 }
1337 if (unlikely(gs_base != host->gs_base)) {
1338 vmcs_writel(HOST_GS_BASE, gs_base);
1339 host->gs_base = gs_base;
1340 }
1341 }
1342
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1343 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1344 {
1345 struct vcpu_vmx *vmx = to_vmx(vcpu);
1346 struct vcpu_vt *vt = to_vt(vcpu);
1347 struct vmcs_host_state *host_state;
1348 #ifdef CONFIG_X86_64
1349 int cpu = raw_smp_processor_id();
1350 #endif
1351 unsigned long fs_base, gs_base;
1352 u16 fs_sel, gs_sel;
1353 int i;
1354
1355 /*
1356 * Note that guest MSRs to be saved/restored can also be changed
1357 * when guest state is loaded. This happens when guest transitions
1358 * to/from long-mode by setting MSR_EFER.LMA.
1359 */
1360 if (!vmx->guest_uret_msrs_loaded) {
1361 vmx->guest_uret_msrs_loaded = true;
1362 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1363 if (!vmx->guest_uret_msrs[i].load_into_hardware)
1364 continue;
1365
1366 kvm_set_user_return_msr(i,
1367 vmx->guest_uret_msrs[i].data,
1368 vmx->guest_uret_msrs[i].mask);
1369 }
1370 }
1371
1372 if (vmx->nested.need_vmcs12_to_shadow_sync)
1373 nested_sync_vmcs12_to_shadow(vcpu);
1374
1375 if (vt->guest_state_loaded)
1376 return;
1377
1378 host_state = &vmx->loaded_vmcs->host_state;
1379
1380 /*
1381 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1382 * allow segment selectors with cpl > 0 or ti == 1.
1383 */
1384 host_state->ldt_sel = kvm_read_ldt();
1385
1386 #ifdef CONFIG_X86_64
1387 savesegment(ds, host_state->ds_sel);
1388 savesegment(es, host_state->es_sel);
1389
1390 gs_base = cpu_kernelmode_gs_base(cpu);
1391 if (likely(is_64bit_mm(current->mm))) {
1392 current_save_fsgs();
1393 fs_sel = current->thread.fsindex;
1394 gs_sel = current->thread.gsindex;
1395 fs_base = current->thread.fsbase;
1396 vt->msr_host_kernel_gs_base = current->thread.gsbase;
1397 } else {
1398 savesegment(fs, fs_sel);
1399 savesegment(gs, gs_sel);
1400 fs_base = read_msr(MSR_FS_BASE);
1401 vt->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1402 }
1403
1404 wrmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1405 #else
1406 savesegment(fs, fs_sel);
1407 savesegment(gs, gs_sel);
1408 fs_base = segment_base(fs_sel);
1409 gs_base = segment_base(gs_sel);
1410 #endif
1411
1412 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1413 vt->guest_state_loaded = true;
1414 }
1415
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1416 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1417 {
1418 struct vmcs_host_state *host_state;
1419
1420 if (!vmx->vt.guest_state_loaded)
1421 return;
1422
1423 host_state = &vmx->loaded_vmcs->host_state;
1424
1425 ++vmx->vcpu.stat.host_state_reload;
1426
1427 #ifdef CONFIG_X86_64
1428 rdmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1429 #endif
1430 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1431 kvm_load_ldt(host_state->ldt_sel);
1432 #ifdef CONFIG_X86_64
1433 load_gs_index(host_state->gs_sel);
1434 #else
1435 loadsegment(gs, host_state->gs_sel);
1436 #endif
1437 }
1438 if (host_state->fs_sel & 7)
1439 loadsegment(fs, host_state->fs_sel);
1440 #ifdef CONFIG_X86_64
1441 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1442 loadsegment(ds, host_state->ds_sel);
1443 loadsegment(es, host_state->es_sel);
1444 }
1445 #endif
1446 invalidate_tss_limit();
1447 #ifdef CONFIG_X86_64
1448 wrmsrq(MSR_KERNEL_GS_BASE, vmx->vt.msr_host_kernel_gs_base);
1449 #endif
1450 load_fixmap_gdt(raw_smp_processor_id());
1451 vmx->vt.guest_state_loaded = false;
1452 vmx->guest_uret_msrs_loaded = false;
1453 }
1454
1455 #ifdef CONFIG_X86_64
vmx_read_guest_host_msr(struct vcpu_vmx * vmx,u32 msr,u64 * cache)1456 static u64 vmx_read_guest_host_msr(struct vcpu_vmx *vmx, u32 msr, u64 *cache)
1457 {
1458 preempt_disable();
1459 if (vmx->vt.guest_state_loaded)
1460 *cache = read_msr(msr);
1461 preempt_enable();
1462 return *cache;
1463 }
1464
vmx_write_guest_host_msr(struct vcpu_vmx * vmx,u32 msr,u64 data,u64 * cache)1465 static void vmx_write_guest_host_msr(struct vcpu_vmx *vmx, u32 msr, u64 data,
1466 u64 *cache)
1467 {
1468 preempt_disable();
1469 if (vmx->vt.guest_state_loaded)
1470 wrmsrns(msr, data);
1471 preempt_enable();
1472 *cache = data;
1473 }
1474
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1475 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1476 {
1477 return vmx_read_guest_host_msr(vmx, MSR_KERNEL_GS_BASE,
1478 &vmx->msr_guest_kernel_gs_base);
1479 }
1480
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1481 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1482 {
1483 vmx_write_guest_host_msr(vmx, MSR_KERNEL_GS_BASE, data,
1484 &vmx->msr_guest_kernel_gs_base);
1485 }
1486 #endif
1487
grow_ple_window(struct kvm_vcpu * vcpu)1488 static void grow_ple_window(struct kvm_vcpu *vcpu)
1489 {
1490 struct vcpu_vmx *vmx = to_vmx(vcpu);
1491 unsigned int old = vmx->ple_window;
1492
1493 vmx->ple_window = __grow_ple_window(old, ple_window,
1494 ple_window_grow,
1495 ple_window_max);
1496
1497 if (vmx->ple_window != old) {
1498 vmx->ple_window_dirty = true;
1499 trace_kvm_ple_window_update(vcpu->vcpu_id,
1500 vmx->ple_window, old);
1501 }
1502 }
1503
shrink_ple_window(struct kvm_vcpu * vcpu)1504 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1505 {
1506 struct vcpu_vmx *vmx = to_vmx(vcpu);
1507 unsigned int old = vmx->ple_window;
1508
1509 vmx->ple_window = __shrink_ple_window(old, ple_window,
1510 ple_window_shrink,
1511 ple_window);
1512
1513 if (vmx->ple_window != old) {
1514 vmx->ple_window_dirty = true;
1515 trace_kvm_ple_window_update(vcpu->vcpu_id,
1516 vmx->ple_window, old);
1517 }
1518 }
1519
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu)1520 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1521 {
1522 struct vcpu_vmx *vmx = to_vmx(vcpu);
1523 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1524 struct vmcs *prev;
1525
1526 if (!already_loaded) {
1527 loaded_vmcs_clear(vmx->loaded_vmcs);
1528 local_irq_disable();
1529
1530 /*
1531 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1532 * this cpu's percpu list, otherwise it may not yet be deleted
1533 * from its previous cpu's percpu list. Pairs with the
1534 * smb_wmb() in __loaded_vmcs_clear().
1535 */
1536 smp_rmb();
1537
1538 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1539 &per_cpu(loaded_vmcss_on_cpu, cpu));
1540 local_irq_enable();
1541 }
1542
1543 prev = per_cpu(current_vmcs, cpu);
1544 if (prev != vmx->loaded_vmcs->vmcs) {
1545 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1546 vmcs_load(vmx->loaded_vmcs->vmcs);
1547 }
1548
1549 if (!already_loaded) {
1550 void *gdt = get_current_gdt_ro();
1551
1552 /*
1553 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1554 * TLB entries from its previous association with the vCPU.
1555 */
1556 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1557
1558 /*
1559 * Linux uses per-cpu TSS and GDT, so set these when switching
1560 * processors. See 22.2.4.
1561 */
1562 vmcs_writel(HOST_TR_BASE,
1563 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1564 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1565
1566 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1567 /* 22.2.3 */
1568 vmcs_writel(HOST_IA32_SYSENTER_ESP,
1569 (unsigned long)(cpu_entry_stack(cpu) + 1));
1570 }
1571
1572 vmx->loaded_vmcs->cpu = cpu;
1573 }
1574 }
1575
1576 /*
1577 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1578 * vcpu mutex is already taken.
1579 */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1580 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1581 {
1582 if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1583 shrink_ple_window(vcpu);
1584
1585 vmx_vcpu_load_vmcs(vcpu, cpu);
1586
1587 vmx_vcpu_pi_load(vcpu, cpu);
1588 }
1589
vmx_vcpu_put(struct kvm_vcpu * vcpu)1590 void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1591 {
1592 vmx_vcpu_pi_put(vcpu);
1593
1594 vmx_prepare_switch_to_host(to_vmx(vcpu));
1595 }
1596
vmx_emulation_required(struct kvm_vcpu * vcpu)1597 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1598 {
1599 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1600 }
1601
vmx_get_rflags(struct kvm_vcpu * vcpu)1602 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1603 {
1604 struct vcpu_vmx *vmx = to_vmx(vcpu);
1605 unsigned long rflags, save_rflags;
1606
1607 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1608 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1609 rflags = vmcs_readl(GUEST_RFLAGS);
1610 if (vmx->rmode.vm86_active) {
1611 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1612 save_rflags = vmx->rmode.save_rflags;
1613 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1614 }
1615 vmx->rflags = rflags;
1616 }
1617 return vmx->rflags;
1618 }
1619
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1620 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1621 {
1622 struct vcpu_vmx *vmx = to_vmx(vcpu);
1623 unsigned long old_rflags;
1624
1625 /*
1626 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1627 * is an unrestricted guest in order to mark L2 as needing emulation
1628 * if L1 runs L2 as a restricted guest.
1629 */
1630 if (is_unrestricted_guest(vcpu)) {
1631 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1632 vmx->rflags = rflags;
1633 vmcs_writel(GUEST_RFLAGS, rflags);
1634 return;
1635 }
1636
1637 old_rflags = vmx_get_rflags(vcpu);
1638 vmx->rflags = rflags;
1639 if (vmx->rmode.vm86_active) {
1640 vmx->rmode.save_rflags = rflags;
1641 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1642 }
1643 vmcs_writel(GUEST_RFLAGS, rflags);
1644
1645 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1646 vmx->vt.emulation_required = vmx_emulation_required(vcpu);
1647 }
1648
vmx_get_if_flag(struct kvm_vcpu * vcpu)1649 bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1650 {
1651 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1652 }
1653
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1654 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1655 {
1656 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1657 int ret = 0;
1658
1659 if (interruptibility & GUEST_INTR_STATE_STI)
1660 ret |= KVM_X86_SHADOW_INT_STI;
1661 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1662 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1663
1664 return ret;
1665 }
1666
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1667 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1668 {
1669 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1670 u32 interruptibility = interruptibility_old;
1671
1672 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1673
1674 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1675 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1676 else if (mask & KVM_X86_SHADOW_INT_STI)
1677 interruptibility |= GUEST_INTR_STATE_STI;
1678
1679 if ((interruptibility != interruptibility_old))
1680 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1681 }
1682
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1683 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1684 {
1685 struct vcpu_vmx *vmx = to_vmx(vcpu);
1686 unsigned long value;
1687
1688 /*
1689 * Any MSR write that attempts to change bits marked reserved will
1690 * case a #GP fault.
1691 */
1692 if (data & vmx->pt_desc.ctl_bitmask)
1693 return 1;
1694
1695 /*
1696 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1697 * result in a #GP unless the same write also clears TraceEn.
1698 */
1699 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1700 (data & RTIT_CTL_TRACEEN) &&
1701 data != vmx->pt_desc.guest.ctl)
1702 return 1;
1703
1704 /*
1705 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1706 * and FabricEn would cause #GP, if
1707 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1708 */
1709 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1710 !(data & RTIT_CTL_FABRIC_EN) &&
1711 !intel_pt_validate_cap(vmx->pt_desc.caps,
1712 PT_CAP_single_range_output))
1713 return 1;
1714
1715 /*
1716 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1717 * utilize encodings marked reserved will cause a #GP fault.
1718 */
1719 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1720 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1721 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1722 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1723 return 1;
1724 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1725 PT_CAP_cycle_thresholds);
1726 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1727 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1728 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1729 return 1;
1730 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1731 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1732 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1733 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1734 return 1;
1735
1736 /*
1737 * If ADDRx_CFG is reserved or the encodings is >2 will
1738 * cause a #GP fault.
1739 */
1740 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1741 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1742 return 1;
1743 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1744 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1745 return 1;
1746 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1747 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1748 return 1;
1749 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1750 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1751 return 1;
1752
1753 return 0;
1754 }
1755
vmx_check_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)1756 int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1757 void *insn, int insn_len)
1758 {
1759 /*
1760 * Emulation of instructions in SGX enclaves is impossible as RIP does
1761 * not point at the failing instruction, and even if it did, the code
1762 * stream is inaccessible. Inject #UD instead of exiting to userspace
1763 * so that guest userspace can't DoS the guest simply by triggering
1764 * emulation (enclaves are CPL3 only).
1765 */
1766 if (vmx_get_exit_reason(vcpu).enclave_mode) {
1767 kvm_queue_exception(vcpu, UD_VECTOR);
1768 return X86EMUL_PROPAGATE_FAULT;
1769 }
1770
1771 /* Check that emulation is possible during event vectoring */
1772 if ((to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
1773 !kvm_can_emulate_event_vectoring(emul_type))
1774 return X86EMUL_UNHANDLEABLE_VECTORING;
1775
1776 return X86EMUL_CONTINUE;
1777 }
1778
skip_emulated_instruction(struct kvm_vcpu * vcpu)1779 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1780 {
1781 union vmx_exit_reason exit_reason = vmx_get_exit_reason(vcpu);
1782 unsigned long rip, orig_rip;
1783 u32 instr_len;
1784
1785 /*
1786 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1787 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1788 * set when EPT misconfig occurs. In practice, real hardware updates
1789 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1790 * (namely Hyper-V) don't set it due to it being undefined behavior,
1791 * i.e. we end up advancing IP with some random value.
1792 */
1793 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1794 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1795 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1796
1797 /*
1798 * Emulating an enclave's instructions isn't supported as KVM
1799 * cannot access the enclave's memory or its true RIP, e.g. the
1800 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1801 * the RIP that actually triggered the VM-Exit. But, because
1802 * most instructions that cause VM-Exit will #UD in an enclave,
1803 * most instruction-based VM-Exits simply do not occur.
1804 *
1805 * There are a few exceptions, notably the debug instructions
1806 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1807 * and generate #DB/#BP as expected, which KVM might intercept.
1808 * But again, the CPU does the dirty work and saves an instr
1809 * length of zero so VMMs don't shoot themselves in the foot.
1810 * WARN if KVM tries to skip a non-zero length instruction on
1811 * a VM-Exit from an enclave.
1812 */
1813 if (!instr_len)
1814 goto rip_updated;
1815
1816 WARN_ONCE(exit_reason.enclave_mode,
1817 "skipping instruction after SGX enclave VM-Exit");
1818
1819 orig_rip = kvm_rip_read(vcpu);
1820 rip = orig_rip + instr_len;
1821 #ifdef CONFIG_X86_64
1822 /*
1823 * We need to mask out the high 32 bits of RIP if not in 64-bit
1824 * mode, but just finding out that we are in 64-bit mode is
1825 * quite expensive. Only do it if there was a carry.
1826 */
1827 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1828 rip = (u32)rip;
1829 #endif
1830 kvm_rip_write(vcpu, rip);
1831 } else {
1832 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1833 return 0;
1834 }
1835
1836 rip_updated:
1837 /* skipping an emulated instruction also counts */
1838 vmx_set_interrupt_shadow(vcpu, 0);
1839
1840 return 1;
1841 }
1842
1843 /*
1844 * Recognizes a pending MTF VM-exit and records the nested state for later
1845 * delivery.
1846 */
vmx_update_emulated_instruction(struct kvm_vcpu * vcpu)1847 void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1848 {
1849 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1850 struct vcpu_vmx *vmx = to_vmx(vcpu);
1851
1852 if (!is_guest_mode(vcpu))
1853 return;
1854
1855 /*
1856 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1857 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps
1858 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1859 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1860 * as ICEBP is higher priority than both. As instruction emulation is
1861 * completed at this point (i.e. KVM is at the instruction boundary),
1862 * any #DB exception pending delivery must be a debug-trap of lower
1863 * priority than MTF. Record the pending MTF state to be delivered in
1864 * vmx_check_nested_events().
1865 */
1866 if (nested_cpu_has_mtf(vmcs12) &&
1867 (!vcpu->arch.exception.pending ||
1868 vcpu->arch.exception.vector == DB_VECTOR) &&
1869 (!vcpu->arch.exception_vmexit.pending ||
1870 vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1871 vmx->nested.mtf_pending = true;
1872 kvm_make_request(KVM_REQ_EVENT, vcpu);
1873 } else {
1874 vmx->nested.mtf_pending = false;
1875 }
1876 }
1877
vmx_skip_emulated_instruction(struct kvm_vcpu * vcpu)1878 int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1879 {
1880 vmx_update_emulated_instruction(vcpu);
1881 return skip_emulated_instruction(vcpu);
1882 }
1883
vmx_clear_hlt(struct kvm_vcpu * vcpu)1884 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1885 {
1886 /*
1887 * Ensure that we clear the HLT state in the VMCS. We don't need to
1888 * explicitly skip the instruction because if the HLT state is set,
1889 * then the instruction is already executing and RIP has already been
1890 * advanced.
1891 */
1892 if (kvm_hlt_in_guest(vcpu->kvm) &&
1893 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1894 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1895 }
1896
vmx_inject_exception(struct kvm_vcpu * vcpu)1897 void vmx_inject_exception(struct kvm_vcpu *vcpu)
1898 {
1899 struct kvm_queued_exception *ex = &vcpu->arch.exception;
1900 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1901 struct vcpu_vmx *vmx = to_vmx(vcpu);
1902
1903 kvm_deliver_exception_payload(vcpu, ex);
1904
1905 if (ex->has_error_code) {
1906 /*
1907 * Despite the error code being architecturally defined as 32
1908 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1909 * VMX don't actually supporting setting bits 31:16. Hardware
1910 * will (should) never provide a bogus error code, but AMD CPUs
1911 * do generate error codes with bits 31:16 set, and so KVM's
1912 * ABI lets userspace shove in arbitrary 32-bit values. Drop
1913 * the upper bits to avoid VM-Fail, losing information that
1914 * doesn't really exist is preferable to killing the VM.
1915 */
1916 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1917 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1918 }
1919
1920 if (vmx->rmode.vm86_active) {
1921 int inc_eip = 0;
1922 if (kvm_exception_is_soft(ex->vector))
1923 inc_eip = vcpu->arch.event_exit_inst_len;
1924 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1925 return;
1926 }
1927
1928 WARN_ON_ONCE(vmx->vt.emulation_required);
1929
1930 if (kvm_exception_is_soft(ex->vector)) {
1931 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1932 vmx->vcpu.arch.event_exit_inst_len);
1933 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1934 } else
1935 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1936
1937 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1938
1939 vmx_clear_hlt(vcpu);
1940 }
1941
vmx_setup_uret_msr(struct vcpu_vmx * vmx,unsigned int msr,bool load_into_hardware)1942 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1943 bool load_into_hardware)
1944 {
1945 struct vmx_uret_msr *uret_msr;
1946
1947 uret_msr = vmx_find_uret_msr(vmx, msr);
1948 if (!uret_msr)
1949 return;
1950
1951 uret_msr->load_into_hardware = load_into_hardware;
1952 }
1953
1954 /*
1955 * Configuring user return MSRs to automatically save, load, and restore MSRs
1956 * that need to be shoved into hardware when running the guest. Note, omitting
1957 * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1958 * loaded into hardware when running the guest.
1959 */
vmx_setup_uret_msrs(struct vcpu_vmx * vmx)1960 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1961 {
1962 #ifdef CONFIG_X86_64
1963 bool load_syscall_msrs;
1964
1965 /*
1966 * The SYSCALL MSRs are only needed on long mode guests, and only
1967 * when EFER.SCE is set.
1968 */
1969 load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1970 (vmx->vcpu.arch.efer & EFER_SCE);
1971
1972 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1973 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1974 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1975 #endif
1976 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1977
1978 vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1979 guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1980 guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDPID));
1981
1982 /*
1983 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1984 * kernel and old userspace. If those guests run on a tsx=off host, do
1985 * allow guests to use TSX_CTRL, but don't change the value in hardware
1986 * so that TSX remains always disabled.
1987 */
1988 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1989
1990 /*
1991 * The set of MSRs to load may have changed, reload MSRs before the
1992 * next VM-Enter.
1993 */
1994 vmx->guest_uret_msrs_loaded = false;
1995 }
1996
vmx_get_l2_tsc_offset(struct kvm_vcpu * vcpu)1997 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1998 {
1999 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2000
2001 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
2002 return vmcs12->tsc_offset;
2003
2004 return 0;
2005 }
2006
vmx_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)2007 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
2008 {
2009 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2010
2011 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
2012 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
2013 return vmcs12->tsc_multiplier;
2014
2015 return kvm_caps.default_tsc_scaling_ratio;
2016 }
2017
vmx_write_tsc_offset(struct kvm_vcpu * vcpu)2018 void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
2019 {
2020 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2021 }
2022
vmx_write_tsc_multiplier(struct kvm_vcpu * vcpu)2023 void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
2024 {
2025 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2026 }
2027
2028 /*
2029 * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
2030 * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain
2031 * backwards compatibility even though KVM doesn't support emulating SMX. And
2032 * because userspace set "VMX in SMX", the guest must also be allowed to set it,
2033 * e.g. if the MSR is left unlocked and the guest does a RMW operation.
2034 */
2035 #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \
2036 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \
2037 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
2038 FEAT_CTL_SGX_LC_ENABLED | \
2039 FEAT_CTL_SGX_ENABLED | \
2040 FEAT_CTL_LMCE_ENABLED)
2041
is_vmx_feature_control_msr_valid(struct vcpu_vmx * vmx,struct msr_data * msr)2042 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
2043 struct msr_data *msr)
2044 {
2045 uint64_t valid_bits;
2046
2047 /*
2048 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
2049 * exposed to the guest.
2050 */
2051 WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
2052 ~KVM_SUPPORTED_FEATURE_CONTROL);
2053
2054 if (!msr->host_initiated &&
2055 (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
2056 return false;
2057
2058 if (msr->host_initiated)
2059 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
2060 else
2061 valid_bits = vmx->msr_ia32_feature_control_valid_bits;
2062
2063 return !(msr->data & ~valid_bits);
2064 }
2065
vmx_get_feature_msr(u32 msr,u64 * data)2066 int vmx_get_feature_msr(u32 msr, u64 *data)
2067 {
2068 switch (msr) {
2069 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2070 if (!nested)
2071 return 1;
2072 return vmx_get_vmx_msr(&vmcs_config.nested, msr, data);
2073 default:
2074 return KVM_MSR_RET_UNSUPPORTED;
2075 }
2076 }
2077
2078 /*
2079 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
2080 * Returns 0 on success, non-0 otherwise.
2081 * Assumes vcpu_load() was already called.
2082 */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2083 int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2084 {
2085 struct vcpu_vmx *vmx = to_vmx(vcpu);
2086 struct vmx_uret_msr *msr;
2087 u32 index;
2088
2089 switch (msr_info->index) {
2090 #ifdef CONFIG_X86_64
2091 case MSR_FS_BASE:
2092 msr_info->data = vmcs_readl(GUEST_FS_BASE);
2093 break;
2094 case MSR_GS_BASE:
2095 msr_info->data = vmcs_readl(GUEST_GS_BASE);
2096 break;
2097 case MSR_KERNEL_GS_BASE:
2098 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
2099 break;
2100 #endif
2101 case MSR_EFER:
2102 return kvm_get_msr_common(vcpu, msr_info);
2103 case MSR_IA32_TSX_CTRL:
2104 if (!msr_info->host_initiated &&
2105 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2106 return 1;
2107 goto find_uret_msr;
2108 case MSR_IA32_UMWAIT_CONTROL:
2109 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2110 return 1;
2111
2112 msr_info->data = vmx->msr_ia32_umwait_control;
2113 break;
2114 case MSR_IA32_SPEC_CTRL:
2115 if (!msr_info->host_initiated &&
2116 !guest_has_spec_ctrl_msr(vcpu))
2117 return 1;
2118
2119 msr_info->data = to_vmx(vcpu)->spec_ctrl;
2120 break;
2121 case MSR_IA32_SYSENTER_CS:
2122 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2123 break;
2124 case MSR_IA32_SYSENTER_EIP:
2125 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2126 break;
2127 case MSR_IA32_SYSENTER_ESP:
2128 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2129 break;
2130 case MSR_IA32_BNDCFGS:
2131 if (!kvm_mpx_supported() ||
2132 (!msr_info->host_initiated &&
2133 !guest_cpu_cap_has(vcpu, X86_FEATURE_MPX)))
2134 return 1;
2135 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2136 break;
2137 case MSR_IA32_MCG_EXT_CTL:
2138 if (!msr_info->host_initiated &&
2139 !(vmx->msr_ia32_feature_control &
2140 FEAT_CTL_LMCE_ENABLED))
2141 return 1;
2142 msr_info->data = vcpu->arch.mcg_ext_ctl;
2143 break;
2144 case MSR_IA32_FEAT_CTL:
2145 msr_info->data = vmx->msr_ia32_feature_control;
2146 break;
2147 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2148 if (!msr_info->host_initiated &&
2149 !guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC))
2150 return 1;
2151 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2152 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2153 break;
2154 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2155 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
2156 return 1;
2157 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2158 &msr_info->data))
2159 return 1;
2160 #ifdef CONFIG_KVM_HYPERV
2161 /*
2162 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2163 * instead of just ignoring the features, different Hyper-V
2164 * versions are either trying to use them and fail or do some
2165 * sanity checking and refuse to boot. Filter all unsupported
2166 * features out.
2167 */
2168 if (!msr_info->host_initiated && guest_cpu_cap_has_evmcs(vcpu))
2169 nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2170 &msr_info->data);
2171 #endif
2172 break;
2173 case MSR_IA32_RTIT_CTL:
2174 if (!vmx_pt_mode_is_host_guest())
2175 return 1;
2176 msr_info->data = vmx->pt_desc.guest.ctl;
2177 break;
2178 case MSR_IA32_RTIT_STATUS:
2179 if (!vmx_pt_mode_is_host_guest())
2180 return 1;
2181 msr_info->data = vmx->pt_desc.guest.status;
2182 break;
2183 case MSR_IA32_RTIT_CR3_MATCH:
2184 if (!vmx_pt_mode_is_host_guest() ||
2185 !intel_pt_validate_cap(vmx->pt_desc.caps,
2186 PT_CAP_cr3_filtering))
2187 return 1;
2188 msr_info->data = vmx->pt_desc.guest.cr3_match;
2189 break;
2190 case MSR_IA32_RTIT_OUTPUT_BASE:
2191 if (!vmx_pt_mode_is_host_guest() ||
2192 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2193 PT_CAP_topa_output) &&
2194 !intel_pt_validate_cap(vmx->pt_desc.caps,
2195 PT_CAP_single_range_output)))
2196 return 1;
2197 msr_info->data = vmx->pt_desc.guest.output_base;
2198 break;
2199 case MSR_IA32_RTIT_OUTPUT_MASK:
2200 if (!vmx_pt_mode_is_host_guest() ||
2201 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2202 PT_CAP_topa_output) &&
2203 !intel_pt_validate_cap(vmx->pt_desc.caps,
2204 PT_CAP_single_range_output)))
2205 return 1;
2206 msr_info->data = vmx->pt_desc.guest.output_mask;
2207 break;
2208 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2209 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2210 if (!vmx_pt_mode_is_host_guest() ||
2211 (index >= 2 * vmx->pt_desc.num_address_ranges))
2212 return 1;
2213 if (index % 2)
2214 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2215 else
2216 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2217 break;
2218 case MSR_IA32_S_CET:
2219 msr_info->data = vmcs_readl(GUEST_S_CET);
2220 break;
2221 case MSR_KVM_INTERNAL_GUEST_SSP:
2222 msr_info->data = vmcs_readl(GUEST_SSP);
2223 break;
2224 case MSR_IA32_INT_SSP_TAB:
2225 msr_info->data = vmcs_readl(GUEST_INTR_SSP_TABLE);
2226 break;
2227 case MSR_IA32_DEBUGCTLMSR:
2228 msr_info->data = vmx_guest_debugctl_read();
2229 break;
2230 default:
2231 find_uret_msr:
2232 msr = vmx_find_uret_msr(vmx, msr_info->index);
2233 if (msr) {
2234 msr_info->data = msr->data;
2235 break;
2236 }
2237 return kvm_get_msr_common(vcpu, msr_info);
2238 }
2239
2240 return 0;
2241 }
2242
nested_vmx_truncate_sysenter_addr(struct kvm_vcpu * vcpu,u64 data)2243 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2244 u64 data)
2245 {
2246 #ifdef CONFIG_X86_64
2247 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
2248 return (u32)data;
2249 #endif
2250 return (unsigned long)data;
2251 }
2252
vmx_get_supported_debugctl(struct kvm_vcpu * vcpu,bool host_initiated)2253 u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2254 {
2255 u64 debugctl = 0;
2256
2257 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2258 (host_initiated || guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2259 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2260
2261 if ((kvm_caps.supported_perf_cap & PERF_CAP_LBR_FMT) &&
2262 (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2263 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2264
2265 if (boot_cpu_has(X86_FEATURE_RTM) &&
2266 (host_initiated || guest_cpu_cap_has(vcpu, X86_FEATURE_RTM)))
2267 debugctl |= DEBUGCTLMSR_RTM_DEBUG;
2268
2269 return debugctl;
2270 }
2271
vmx_is_valid_debugctl(struct kvm_vcpu * vcpu,u64 data,bool host_initiated)2272 bool vmx_is_valid_debugctl(struct kvm_vcpu *vcpu, u64 data, bool host_initiated)
2273 {
2274 u64 invalid;
2275
2276 invalid = data & ~vmx_get_supported_debugctl(vcpu, host_initiated);
2277 if (invalid & (DEBUGCTLMSR_BTF | DEBUGCTLMSR_LBR)) {
2278 kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data);
2279 invalid &= ~(DEBUGCTLMSR_BTF | DEBUGCTLMSR_LBR);
2280 }
2281 return !invalid;
2282 }
2283
2284 /*
2285 * Writes msr value into the appropriate "register".
2286 * Returns 0 on success, non-0 otherwise.
2287 * Assumes vcpu_load() was already called.
2288 */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2289 int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2290 {
2291 struct vcpu_vmx *vmx = to_vmx(vcpu);
2292 struct vmx_uret_msr *msr;
2293 int ret = 0;
2294 u32 msr_index = msr_info->index;
2295 u64 data = msr_info->data;
2296 u32 index;
2297
2298 switch (msr_index) {
2299 case MSR_EFER:
2300 ret = kvm_set_msr_common(vcpu, msr_info);
2301 break;
2302 #ifdef CONFIG_X86_64
2303 case MSR_FS_BASE:
2304 vmx_segment_cache_clear(vmx);
2305 vmcs_writel(GUEST_FS_BASE, data);
2306 break;
2307 case MSR_GS_BASE:
2308 vmx_segment_cache_clear(vmx);
2309 vmcs_writel(GUEST_GS_BASE, data);
2310 break;
2311 case MSR_KERNEL_GS_BASE:
2312 vmx_write_guest_kernel_gs_base(vmx, data);
2313 break;
2314 case MSR_IA32_XFD:
2315 ret = kvm_set_msr_common(vcpu, msr_info);
2316 /*
2317 * Always intercepting WRMSR could incur non-negligible
2318 * overhead given xfd might be changed frequently in
2319 * guest context switch. Disable write interception
2320 * upon the first write with a non-zero value (indicating
2321 * potential usage on dynamic xfeatures). Also update
2322 * exception bitmap to trap #NM for proper virtualization
2323 * of guest xfd_err.
2324 */
2325 if (!ret && data) {
2326 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2327 MSR_TYPE_RW);
2328 vcpu->arch.xfd_no_write_intercept = true;
2329 vmx_update_exception_bitmap(vcpu);
2330 }
2331 break;
2332 #endif
2333 case MSR_IA32_SYSENTER_CS:
2334 if (is_guest_mode(vcpu))
2335 get_vmcs12(vcpu)->guest_sysenter_cs = data;
2336 vmcs_write32(GUEST_SYSENTER_CS, data);
2337 break;
2338 case MSR_IA32_SYSENTER_EIP:
2339 if (is_guest_mode(vcpu)) {
2340 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2341 get_vmcs12(vcpu)->guest_sysenter_eip = data;
2342 }
2343 vmcs_writel(GUEST_SYSENTER_EIP, data);
2344 break;
2345 case MSR_IA32_SYSENTER_ESP:
2346 if (is_guest_mode(vcpu)) {
2347 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2348 get_vmcs12(vcpu)->guest_sysenter_esp = data;
2349 }
2350 vmcs_writel(GUEST_SYSENTER_ESP, data);
2351 break;
2352 case MSR_IA32_DEBUGCTLMSR:
2353 if (!vmx_is_valid_debugctl(vcpu, data, msr_info->host_initiated))
2354 return 1;
2355
2356 data &= vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2357
2358 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2359 VM_EXIT_SAVE_DEBUG_CONTROLS)
2360 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2361
2362 vmx_guest_debugctl_write(vcpu, data);
2363
2364 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2365 (data & DEBUGCTLMSR_LBR))
2366 intel_pmu_create_guest_lbr_event(vcpu);
2367 return 0;
2368 case MSR_IA32_BNDCFGS:
2369 if (!kvm_mpx_supported() ||
2370 (!msr_info->host_initiated &&
2371 !guest_cpu_cap_has(vcpu, X86_FEATURE_MPX)))
2372 return 1;
2373 if (is_noncanonical_msr_address(data & PAGE_MASK, vcpu) ||
2374 (data & MSR_IA32_BNDCFGS_RSVD))
2375 return 1;
2376
2377 if (is_guest_mode(vcpu) &&
2378 ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2379 (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2380 get_vmcs12(vcpu)->guest_bndcfgs = data;
2381
2382 vmcs_write64(GUEST_BNDCFGS, data);
2383 break;
2384 case MSR_IA32_UMWAIT_CONTROL:
2385 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2386 return 1;
2387
2388 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2389 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2390 return 1;
2391
2392 vmx->msr_ia32_umwait_control = data;
2393 break;
2394 case MSR_IA32_SPEC_CTRL:
2395 if (!msr_info->host_initiated &&
2396 !guest_has_spec_ctrl_msr(vcpu))
2397 return 1;
2398
2399 if (kvm_spec_ctrl_test_value(data))
2400 return 1;
2401
2402 vmx->spec_ctrl = data;
2403 if (!data)
2404 break;
2405
2406 /*
2407 * For non-nested:
2408 * When it's written (to non-zero) for the first time, pass
2409 * it through.
2410 *
2411 * For nested:
2412 * The handling of the MSR bitmap for L2 guests is done in
2413 * nested_vmx_prepare_msr_bitmap. We should not touch the
2414 * vmcs02.msr_bitmap here since it gets completely overwritten
2415 * in the merging. We update the vmcs01 here for L1 as well
2416 * since it will end up touching the MSR anyway now.
2417 */
2418 vmx_disable_intercept_for_msr(vcpu,
2419 MSR_IA32_SPEC_CTRL,
2420 MSR_TYPE_RW);
2421 break;
2422 case MSR_IA32_TSX_CTRL:
2423 if (!msr_info->host_initiated &&
2424 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2425 return 1;
2426 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2427 return 1;
2428 goto find_uret_msr;
2429 case MSR_IA32_CR_PAT:
2430 ret = kvm_set_msr_common(vcpu, msr_info);
2431 if (ret)
2432 break;
2433
2434 if (is_guest_mode(vcpu) &&
2435 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2436 get_vmcs12(vcpu)->guest_ia32_pat = data;
2437
2438 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2439 vmcs_write64(GUEST_IA32_PAT, data);
2440 break;
2441 case MSR_IA32_MCG_EXT_CTL:
2442 if ((!msr_info->host_initiated &&
2443 !(to_vmx(vcpu)->msr_ia32_feature_control &
2444 FEAT_CTL_LMCE_ENABLED)) ||
2445 (data & ~MCG_EXT_CTL_LMCE_EN))
2446 return 1;
2447 vcpu->arch.mcg_ext_ctl = data;
2448 break;
2449 case MSR_IA32_FEAT_CTL:
2450 if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2451 return 1;
2452
2453 vmx->msr_ia32_feature_control = data;
2454 if (msr_info->host_initiated && data == 0)
2455 vmx_leave_nested(vcpu);
2456
2457 /* SGX may be enabled/disabled by guest's firmware */
2458 vmx_write_encls_bitmap(vcpu, NULL);
2459 break;
2460 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2461 /*
2462 * On real hardware, the LE hash MSRs are writable before
2463 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2464 * at which point SGX related bits in IA32_FEATURE_CONTROL
2465 * become writable.
2466 *
2467 * KVM does not emulate SGX activation for simplicity, so
2468 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2469 * is unlocked. This is technically not architectural
2470 * behavior, but it's close enough.
2471 */
2472 if (!msr_info->host_initiated &&
2473 (!guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC) ||
2474 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2475 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2476 return 1;
2477 vmx->msr_ia32_sgxlepubkeyhash
2478 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2479 break;
2480 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2481 if (!msr_info->host_initiated)
2482 return 1; /* they are read-only */
2483 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
2484 return 1;
2485 return vmx_set_vmx_msr(vcpu, msr_index, data);
2486 case MSR_IA32_RTIT_CTL:
2487 if (!vmx_pt_mode_is_host_guest() ||
2488 vmx_rtit_ctl_check(vcpu, data) ||
2489 vmx->nested.vmxon)
2490 return 1;
2491 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2492 vmx->pt_desc.guest.ctl = data;
2493 pt_update_intercept_for_msr(vcpu);
2494 break;
2495 case MSR_IA32_RTIT_STATUS:
2496 if (!pt_can_write_msr(vmx))
2497 return 1;
2498 if (data & MSR_IA32_RTIT_STATUS_MASK)
2499 return 1;
2500 vmx->pt_desc.guest.status = data;
2501 break;
2502 case MSR_IA32_RTIT_CR3_MATCH:
2503 if (!pt_can_write_msr(vmx))
2504 return 1;
2505 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2506 PT_CAP_cr3_filtering))
2507 return 1;
2508 vmx->pt_desc.guest.cr3_match = data;
2509 break;
2510 case MSR_IA32_RTIT_OUTPUT_BASE:
2511 if (!pt_can_write_msr(vmx))
2512 return 1;
2513 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2514 PT_CAP_topa_output) &&
2515 !intel_pt_validate_cap(vmx->pt_desc.caps,
2516 PT_CAP_single_range_output))
2517 return 1;
2518 if (!pt_output_base_valid(vcpu, data))
2519 return 1;
2520 vmx->pt_desc.guest.output_base = data;
2521 break;
2522 case MSR_IA32_RTIT_OUTPUT_MASK:
2523 if (!pt_can_write_msr(vmx))
2524 return 1;
2525 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2526 PT_CAP_topa_output) &&
2527 !intel_pt_validate_cap(vmx->pt_desc.caps,
2528 PT_CAP_single_range_output))
2529 return 1;
2530 vmx->pt_desc.guest.output_mask = data;
2531 break;
2532 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2533 if (!pt_can_write_msr(vmx))
2534 return 1;
2535 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2536 if (index >= 2 * vmx->pt_desc.num_address_ranges)
2537 return 1;
2538 if (is_noncanonical_msr_address(data, vcpu))
2539 return 1;
2540 if (index % 2)
2541 vmx->pt_desc.guest.addr_b[index / 2] = data;
2542 else
2543 vmx->pt_desc.guest.addr_a[index / 2] = data;
2544 break;
2545 case MSR_IA32_S_CET:
2546 vmcs_writel(GUEST_S_CET, data);
2547 break;
2548 case MSR_KVM_INTERNAL_GUEST_SSP:
2549 vmcs_writel(GUEST_SSP, data);
2550 break;
2551 case MSR_IA32_INT_SSP_TAB:
2552 vmcs_writel(GUEST_INTR_SSP_TABLE, data);
2553 break;
2554 case MSR_IA32_PERF_CAPABILITIES:
2555 if (data & PERF_CAP_LBR_FMT) {
2556 if ((data & PERF_CAP_LBR_FMT) !=
2557 (kvm_caps.supported_perf_cap & PERF_CAP_LBR_FMT))
2558 return 1;
2559 if (!cpuid_model_is_consistent(vcpu))
2560 return 1;
2561 }
2562 if (data & PERF_CAP_PEBS_FORMAT) {
2563 if ((data & PERF_CAP_PEBS_MASK) !=
2564 (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2565 return 1;
2566 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DS))
2567 return 1;
2568 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DTES64))
2569 return 1;
2570 if (!cpuid_model_is_consistent(vcpu))
2571 return 1;
2572 }
2573 ret = kvm_set_msr_common(vcpu, msr_info);
2574 break;
2575
2576 default:
2577 find_uret_msr:
2578 msr = vmx_find_uret_msr(vmx, msr_index);
2579 if (msr)
2580 ret = vmx_set_guest_uret_msr(vmx, msr, data);
2581 else
2582 ret = kvm_set_msr_common(vcpu, msr_info);
2583 }
2584
2585 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2586 if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2587 vmx_update_fb_clear_dis(vcpu, vmx);
2588
2589 return ret;
2590 }
2591
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2592 void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2593 {
2594 unsigned long guest_owned_bits;
2595
2596 kvm_register_mark_available(vcpu, reg);
2597
2598 switch (reg) {
2599 case VCPU_REGS_RSP:
2600 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2601 break;
2602 case VCPU_REGS_RIP:
2603 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2604 break;
2605 case VCPU_EXREG_PDPTR:
2606 if (enable_ept)
2607 ept_save_pdptrs(vcpu);
2608 break;
2609 case VCPU_EXREG_CR0:
2610 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2611
2612 vcpu->arch.cr0 &= ~guest_owned_bits;
2613 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2614 break;
2615 case VCPU_EXREG_CR3:
2616 /*
2617 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2618 * CR3 is loaded into hardware, not the guest's CR3.
2619 */
2620 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2621 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2622 break;
2623 case VCPU_EXREG_CR4:
2624 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2625
2626 vcpu->arch.cr4 &= ~guest_owned_bits;
2627 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2628 break;
2629 default:
2630 KVM_BUG_ON(1, vcpu->kvm);
2631 break;
2632 }
2633 }
2634
2635 /*
2636 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2637 * directly instead of going through cpu_has(), to ensure KVM is trapping
2638 * ENCLS whenever it's supported in hardware. It does not matter whether
2639 * the host OS supports or has enabled SGX.
2640 */
cpu_has_sgx(void)2641 static bool cpu_has_sgx(void)
2642 {
2643 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2644 }
2645
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2646 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2647 {
2648 u32 vmx_msr_low, vmx_msr_high;
2649 u32 ctl = ctl_min | ctl_opt;
2650
2651 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2652
2653 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2654 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2655
2656 /* Ensure minimum (required) set of control bits are supported. */
2657 if (ctl_min & ~ctl)
2658 return -EIO;
2659
2660 *result = ctl;
2661 return 0;
2662 }
2663
adjust_vmx_controls64(u64 ctl_opt,u32 msr)2664 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2665 {
2666 u64 allowed;
2667
2668 rdmsrq(msr, allowed);
2669
2670 return ctl_opt & allowed;
2671 }
2672
2673 #define vmx_check_entry_exit_pairs(pairs, entry_controls, exit_controls) \
2674 ({ \
2675 int i, r = 0; \
2676 \
2677 BUILD_BUG_ON(sizeof(pairs[0].entry_control) != sizeof(entry_controls)); \
2678 BUILD_BUG_ON(sizeof(pairs[0].exit_control) != sizeof(exit_controls)); \
2679 \
2680 for (i = 0; i < ARRAY_SIZE(pairs); i++) { \
2681 typeof(entry_controls) n_ctrl = pairs[i].entry_control; \
2682 typeof(exit_controls) x_ctrl = pairs[i].exit_control; \
2683 \
2684 if (!(entry_controls & n_ctrl) == !(exit_controls & x_ctrl)) \
2685 continue; \
2686 \
2687 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, " \
2688 "entry = %llx (%llx), exit = %llx (%llx)\n", \
2689 (u64)(entry_controls & n_ctrl), (u64)n_ctrl, \
2690 (u64)(exit_controls & x_ctrl), (u64)x_ctrl); \
2691 \
2692 if (error_on_inconsistent_vmcs_config) \
2693 r = -EIO; \
2694 \
2695 entry_controls &= ~n_ctrl; \
2696 exit_controls &= ~x_ctrl; \
2697 } \
2698 r; \
2699 })
2700
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2701 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2702 struct vmx_capability *vmx_cap)
2703 {
2704 u32 _pin_based_exec_control = 0;
2705 u32 _cpu_based_exec_control = 0;
2706 u32 _cpu_based_2nd_exec_control = 0;
2707 u64 _cpu_based_3rd_exec_control = 0;
2708 u32 _vmexit_control = 0;
2709 u32 _vmentry_control = 0;
2710 u64 basic_msr;
2711 u64 misc_msr;
2712
2713 /*
2714 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2715 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2716 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2717 */
2718 struct {
2719 u32 entry_control;
2720 u32 exit_control;
2721 } const vmcs_entry_exit_pairs[] = {
2722 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2723 { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT },
2724 { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER },
2725 { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS },
2726 { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL },
2727 { VM_ENTRY_LOAD_CET_STATE, VM_EXIT_LOAD_CET_STATE },
2728 };
2729
2730 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2731
2732 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2733 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2734 MSR_IA32_VMX_PROCBASED_CTLS,
2735 &_cpu_based_exec_control))
2736 return -EIO;
2737 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2738 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2739 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2740 MSR_IA32_VMX_PROCBASED_CTLS2,
2741 &_cpu_based_2nd_exec_control))
2742 return -EIO;
2743 }
2744 if (!IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
2745 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2746
2747 #ifndef CONFIG_X86_64
2748 if (!(_cpu_based_2nd_exec_control &
2749 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2750 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2751 #endif
2752
2753 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2754 _cpu_based_2nd_exec_control &= ~(
2755 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2756 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2757 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2758
2759 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2760 &vmx_cap->ept, &vmx_cap->vpid);
2761
2762 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2763 vmx_cap->ept) {
2764 pr_warn_once("EPT CAP should not exist if not support "
2765 "1-setting enable EPT VM-execution control\n");
2766
2767 if (error_on_inconsistent_vmcs_config)
2768 return -EIO;
2769
2770 vmx_cap->ept = 0;
2771 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2772 }
2773 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2774 vmx_cap->vpid) {
2775 pr_warn_once("VPID CAP should not exist if not support "
2776 "1-setting enable VPID VM-execution control\n");
2777
2778 if (error_on_inconsistent_vmcs_config)
2779 return -EIO;
2780
2781 vmx_cap->vpid = 0;
2782 }
2783
2784 if (!cpu_has_sgx())
2785 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2786
2787 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2788 _cpu_based_3rd_exec_control =
2789 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2790 MSR_IA32_VMX_PROCBASED_CTLS3);
2791
2792 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2793 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2794 MSR_IA32_VMX_EXIT_CTLS,
2795 &_vmexit_control))
2796 return -EIO;
2797
2798 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2799 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2800 MSR_IA32_VMX_PINBASED_CTLS,
2801 &_pin_based_exec_control))
2802 return -EIO;
2803
2804 if (cpu_has_broken_vmx_preemption_timer())
2805 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2806 if (!(_cpu_based_2nd_exec_control &
2807 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2808 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2809
2810 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2811 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2812 MSR_IA32_VMX_ENTRY_CTLS,
2813 &_vmentry_control))
2814 return -EIO;
2815
2816 if (vmx_check_entry_exit_pairs(vmcs_entry_exit_pairs,
2817 _vmentry_control, _vmexit_control))
2818 return -EIO;
2819
2820 /*
2821 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2822 * can't be used due to an errata where VM Exit may incorrectly clear
2823 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the
2824 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2825 */
2826 switch (boot_cpu_data.x86_vfm) {
2827 case INTEL_NEHALEM_EP: /* AAK155 */
2828 case INTEL_NEHALEM: /* AAP115 */
2829 case INTEL_WESTMERE: /* AAT100 */
2830 case INTEL_WESTMERE_EP: /* BC86,AAY89,BD102 */
2831 case INTEL_NEHALEM_EX: /* BA97 */
2832 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2833 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2834 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2835 "does not work properly. Using workaround\n");
2836 break;
2837 default:
2838 break;
2839 }
2840
2841 rdmsrq(MSR_IA32_VMX_BASIC, basic_msr);
2842
2843 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2844 if (vmx_basic_vmcs_size(basic_msr) > PAGE_SIZE)
2845 return -EIO;
2846
2847 #ifdef CONFIG_X86_64
2848 /*
2849 * KVM expects to be able to shove all legal physical addresses into
2850 * VMCS fields for 64-bit kernels, and per the SDM, "This bit is always
2851 * 0 for processors that support Intel 64 architecture".
2852 */
2853 if (basic_msr & VMX_BASIC_32BIT_PHYS_ADDR_ONLY)
2854 return -EIO;
2855 #endif
2856
2857 /* Require Write-Back (WB) memory type for VMCS accesses. */
2858 if (vmx_basic_vmcs_mem_type(basic_msr) != X86_MEMTYPE_WB)
2859 return -EIO;
2860
2861 rdmsrq(MSR_IA32_VMX_MISC, misc_msr);
2862
2863 vmcs_conf->basic = basic_msr;
2864 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2865 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2866 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2867 vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2868 vmcs_conf->vmexit_ctrl = _vmexit_control;
2869 vmcs_conf->vmentry_ctrl = _vmentry_control;
2870 vmcs_conf->misc = misc_msr;
2871
2872 #if IS_ENABLED(CONFIG_HYPERV)
2873 if (enlightened_vmcs)
2874 evmcs_sanitize_exec_ctrls(vmcs_conf);
2875 #endif
2876
2877 return 0;
2878 }
2879
__kvm_is_vmx_supported(void)2880 static bool __kvm_is_vmx_supported(void)
2881 {
2882 int cpu = smp_processor_id();
2883
2884 if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2885 pr_err("VMX not supported by CPU %d\n", cpu);
2886 return false;
2887 }
2888
2889 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2890 !this_cpu_has(X86_FEATURE_VMX)) {
2891 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2892 return false;
2893 }
2894
2895 return true;
2896 }
2897
kvm_is_vmx_supported(void)2898 static bool kvm_is_vmx_supported(void)
2899 {
2900 bool supported;
2901
2902 migrate_disable();
2903 supported = __kvm_is_vmx_supported();
2904 migrate_enable();
2905
2906 return supported;
2907 }
2908
vmx_check_processor_compat(void)2909 int vmx_check_processor_compat(void)
2910 {
2911 int cpu = raw_smp_processor_id();
2912 struct vmcs_config vmcs_conf;
2913 struct vmx_capability vmx_cap;
2914
2915 if (!__kvm_is_vmx_supported())
2916 return -EIO;
2917
2918 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2919 pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2920 return -EIO;
2921 }
2922 if (nested)
2923 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2924 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2925 pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2926 return -EIO;
2927 }
2928 return 0;
2929 }
2930
kvm_cpu_vmxon(u64 vmxon_pointer)2931 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2932 {
2933 u64 msr;
2934
2935 cr4_set_bits(X86_CR4_VMXE);
2936
2937 asm goto("1: vmxon %[vmxon_pointer]\n\t"
2938 _ASM_EXTABLE(1b, %l[fault])
2939 : : [vmxon_pointer] "m"(vmxon_pointer)
2940 : : fault);
2941 return 0;
2942
2943 fault:
2944 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2945 rdmsrq_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2946 cr4_clear_bits(X86_CR4_VMXE);
2947
2948 return -EFAULT;
2949 }
2950
vmx_enable_virtualization_cpu(void)2951 int vmx_enable_virtualization_cpu(void)
2952 {
2953 int cpu = raw_smp_processor_id();
2954 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2955 int r;
2956
2957 if (cr4_read_shadow() & X86_CR4_VMXE)
2958 return -EBUSY;
2959
2960 /*
2961 * This can happen if we hot-added a CPU but failed to allocate
2962 * VP assist page for it.
2963 */
2964 if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2965 return -EFAULT;
2966
2967 intel_pt_handle_vmx(1);
2968
2969 r = kvm_cpu_vmxon(phys_addr);
2970 if (r) {
2971 intel_pt_handle_vmx(0);
2972 return r;
2973 }
2974
2975 return 0;
2976 }
2977
vmclear_local_loaded_vmcss(void)2978 static void vmclear_local_loaded_vmcss(void)
2979 {
2980 int cpu = raw_smp_processor_id();
2981 struct loaded_vmcs *v, *n;
2982
2983 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2984 loaded_vmcss_on_cpu_link)
2985 __loaded_vmcs_clear(v);
2986 }
2987
vmx_disable_virtualization_cpu(void)2988 void vmx_disable_virtualization_cpu(void)
2989 {
2990 vmclear_local_loaded_vmcss();
2991
2992 if (kvm_cpu_vmxoff())
2993 kvm_spurious_fault();
2994
2995 hv_reset_evmcs();
2996
2997 intel_pt_handle_vmx(0);
2998 }
2999
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)3000 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
3001 {
3002 int node = cpu_to_node(cpu);
3003 struct page *pages;
3004 struct vmcs *vmcs;
3005
3006 pages = __alloc_pages_node(node, flags, 0);
3007 if (!pages)
3008 return NULL;
3009 vmcs = page_address(pages);
3010 memset(vmcs, 0, vmx_basic_vmcs_size(vmcs_config.basic));
3011
3012 /* KVM supports Enlightened VMCS v1 only */
3013 if (kvm_is_using_evmcs())
3014 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
3015 else
3016 vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
3017
3018 if (shadow)
3019 vmcs->hdr.shadow_vmcs = 1;
3020 return vmcs;
3021 }
3022
free_vmcs(struct vmcs * vmcs)3023 void free_vmcs(struct vmcs *vmcs)
3024 {
3025 free_page((unsigned long)vmcs);
3026 }
3027
3028 /*
3029 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3030 */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)3031 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3032 {
3033 if (!loaded_vmcs->vmcs)
3034 return;
3035 loaded_vmcs_clear(loaded_vmcs);
3036 free_vmcs(loaded_vmcs->vmcs);
3037 loaded_vmcs->vmcs = NULL;
3038 if (loaded_vmcs->msr_bitmap)
3039 free_page((unsigned long)loaded_vmcs->msr_bitmap);
3040 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
3041 }
3042
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)3043 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3044 {
3045 loaded_vmcs->vmcs = alloc_vmcs(false);
3046 if (!loaded_vmcs->vmcs)
3047 return -ENOMEM;
3048
3049 vmcs_clear(loaded_vmcs->vmcs);
3050
3051 loaded_vmcs->shadow_vmcs = NULL;
3052 loaded_vmcs->hv_timer_soft_disabled = false;
3053 loaded_vmcs->cpu = -1;
3054 loaded_vmcs->launched = 0;
3055
3056 if (cpu_has_vmx_msr_bitmap()) {
3057 loaded_vmcs->msr_bitmap = (unsigned long *)
3058 __get_free_page(GFP_KERNEL_ACCOUNT);
3059 if (!loaded_vmcs->msr_bitmap)
3060 goto out_vmcs;
3061 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
3062 }
3063
3064 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
3065 memset(&loaded_vmcs->controls_shadow, 0,
3066 sizeof(struct vmcs_controls_shadow));
3067
3068 return 0;
3069
3070 out_vmcs:
3071 free_loaded_vmcs(loaded_vmcs);
3072 return -ENOMEM;
3073 }
3074
free_kvm_area(void)3075 static void free_kvm_area(void)
3076 {
3077 int cpu;
3078
3079 for_each_possible_cpu(cpu) {
3080 free_vmcs(per_cpu(vmxarea, cpu));
3081 per_cpu(vmxarea, cpu) = NULL;
3082 }
3083 }
3084
alloc_kvm_area(void)3085 static __init int alloc_kvm_area(void)
3086 {
3087 int cpu;
3088
3089 for_each_possible_cpu(cpu) {
3090 struct vmcs *vmcs;
3091
3092 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
3093 if (!vmcs) {
3094 free_kvm_area();
3095 return -ENOMEM;
3096 }
3097
3098 /*
3099 * When eVMCS is enabled, alloc_vmcs_cpu() sets
3100 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
3101 * revision_id reported by MSR_IA32_VMX_BASIC.
3102 *
3103 * However, even though not explicitly documented by
3104 * TLFS, VMXArea passed as VMXON argument should
3105 * still be marked with revision_id reported by
3106 * physical CPU.
3107 */
3108 if (kvm_is_using_evmcs())
3109 vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
3110
3111 per_cpu(vmxarea, cpu) = vmcs;
3112 }
3113 return 0;
3114 }
3115
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)3116 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3117 struct kvm_segment *save)
3118 {
3119 if (!emulate_invalid_guest_state) {
3120 /*
3121 * CS and SS RPL should be equal during guest entry according
3122 * to VMX spec, but in reality it is not always so. Since vcpu
3123 * is in the middle of the transition from real mode to
3124 * protected mode it is safe to assume that RPL 0 is a good
3125 * default value.
3126 */
3127 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3128 save->selector &= ~SEGMENT_RPL_MASK;
3129 save->dpl = save->selector & SEGMENT_RPL_MASK;
3130 save->s = 1;
3131 }
3132 __vmx_set_segment(vcpu, save, seg);
3133 }
3134
enter_pmode(struct kvm_vcpu * vcpu)3135 static void enter_pmode(struct kvm_vcpu *vcpu)
3136 {
3137 unsigned long flags;
3138 struct vcpu_vmx *vmx = to_vmx(vcpu);
3139
3140 /*
3141 * Update real mode segment cache. It may be not up-to-date if segment
3142 * register was written while vcpu was in a guest mode.
3143 */
3144 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3145 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3146 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3147 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3148 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3149 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3150
3151 vmx->rmode.vm86_active = 0;
3152
3153 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3154
3155 flags = vmcs_readl(GUEST_RFLAGS);
3156 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3157 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3158 vmcs_writel(GUEST_RFLAGS, flags);
3159
3160 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3161 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3162
3163 vmx_update_exception_bitmap(vcpu);
3164
3165 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3166 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3167 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3168 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3169 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3170 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3171 }
3172
fix_rmode_seg(int seg,struct kvm_segment * save)3173 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3174 {
3175 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3176 struct kvm_segment var = *save;
3177
3178 var.dpl = 0x3;
3179 if (seg == VCPU_SREG_CS)
3180 var.type = 0x3;
3181
3182 if (!emulate_invalid_guest_state) {
3183 var.selector = var.base >> 4;
3184 var.base = var.base & 0xffff0;
3185 var.limit = 0xffff;
3186 var.g = 0;
3187 var.db = 0;
3188 var.present = 1;
3189 var.s = 1;
3190 var.l = 0;
3191 var.unusable = 0;
3192 var.type = 0x3;
3193 var.avl = 0;
3194 if (save->base & 0xf)
3195 pr_warn_once("segment base is not paragraph aligned "
3196 "when entering protected mode (seg=%d)", seg);
3197 }
3198
3199 vmcs_write16(sf->selector, var.selector);
3200 vmcs_writel(sf->base, var.base);
3201 vmcs_write32(sf->limit, var.limit);
3202 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3203 }
3204
enter_rmode(struct kvm_vcpu * vcpu)3205 static void enter_rmode(struct kvm_vcpu *vcpu)
3206 {
3207 unsigned long flags;
3208 struct vcpu_vmx *vmx = to_vmx(vcpu);
3209 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3210
3211 /*
3212 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3213 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3214 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3215 * should VM-Fail and KVM should reject userspace attempts to stuff
3216 * CR0.PG=0 when L2 is active.
3217 */
3218 WARN_ON_ONCE(is_guest_mode(vcpu));
3219
3220 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3221 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3222 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3223 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3224 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3225 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3226 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3227
3228 vmx->rmode.vm86_active = 1;
3229
3230 vmx_segment_cache_clear(vmx);
3231
3232 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3233 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3234 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3235
3236 flags = vmcs_readl(GUEST_RFLAGS);
3237 vmx->rmode.save_rflags = flags;
3238
3239 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3240
3241 vmcs_writel(GUEST_RFLAGS, flags);
3242 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3243 vmx_update_exception_bitmap(vcpu);
3244
3245 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3246 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3247 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3248 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3249 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3250 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3251 }
3252
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)3253 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3254 {
3255 struct vcpu_vmx *vmx = to_vmx(vcpu);
3256
3257 /* Nothing to do if hardware doesn't support EFER. */
3258 if (!vmx_find_uret_msr(vmx, MSR_EFER))
3259 return 0;
3260
3261 vcpu->arch.efer = efer;
3262 #ifdef CONFIG_X86_64
3263 if (efer & EFER_LMA)
3264 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3265 else
3266 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3267 #else
3268 if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3269 return 1;
3270 #endif
3271
3272 vmx_setup_uret_msrs(vmx);
3273 return 0;
3274 }
3275
3276 #ifdef CONFIG_X86_64
3277
enter_lmode(struct kvm_vcpu * vcpu)3278 static void enter_lmode(struct kvm_vcpu *vcpu)
3279 {
3280 u32 guest_tr_ar;
3281
3282 vmx_segment_cache_clear(to_vmx(vcpu));
3283
3284 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3285 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3286 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3287 __func__);
3288 vmcs_write32(GUEST_TR_AR_BYTES,
3289 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3290 | VMX_AR_TYPE_BUSY_64_TSS);
3291 }
3292 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3293 }
3294
exit_lmode(struct kvm_vcpu * vcpu)3295 static void exit_lmode(struct kvm_vcpu *vcpu)
3296 {
3297 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3298 }
3299
3300 #endif
3301
vmx_flush_tlb_all(struct kvm_vcpu * vcpu)3302 void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3303 {
3304 struct vcpu_vmx *vmx = to_vmx(vcpu);
3305
3306 /*
3307 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3308 * the CPU is not required to invalidate guest-physical mappings on
3309 * VM-Entry, even if VPID is disabled. Guest-physical mappings are
3310 * associated with the root EPT structure and not any particular VPID
3311 * (INVVPID also isn't required to invalidate guest-physical mappings).
3312 */
3313 if (enable_ept) {
3314 ept_sync_global();
3315 } else if (enable_vpid) {
3316 if (cpu_has_vmx_invvpid_global()) {
3317 vpid_sync_vcpu_global();
3318 } else {
3319 vpid_sync_vcpu_single(vmx->vpid);
3320 vpid_sync_vcpu_single(vmx->nested.vpid02);
3321 }
3322 }
3323 }
3324
vmx_get_current_vpid(struct kvm_vcpu * vcpu)3325 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3326 {
3327 if (is_guest_mode(vcpu) && nested_cpu_has_vpid(get_vmcs12(vcpu)))
3328 return nested_get_vpid02(vcpu);
3329 return to_vmx(vcpu)->vpid;
3330 }
3331
construct_eptp(hpa_t root_hpa)3332 static u64 construct_eptp(hpa_t root_hpa)
3333 {
3334 u64 eptp = root_hpa | VMX_EPTP_MT_WB;
3335 struct kvm_mmu_page *root;
3336
3337 if (kvm_mmu_is_dummy_root(root_hpa))
3338 return eptp | VMX_EPTP_PWL_4;
3339
3340 /*
3341 * EPT roots should always have an associated MMU page. Return a "bad"
3342 * EPTP to induce VM-Fail instead of continuing on in a unknown state.
3343 */
3344 root = root_to_sp(root_hpa);
3345 if (WARN_ON_ONCE(!root))
3346 return INVALID_PAGE;
3347
3348 eptp |= (root->role.level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3349
3350 if (enable_ept_ad_bits && !root->role.ad_disabled)
3351 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3352
3353 return eptp;
3354 }
3355
vmx_flush_tlb_ept_root(hpa_t root_hpa)3356 static void vmx_flush_tlb_ept_root(hpa_t root_hpa)
3357 {
3358 u64 eptp = construct_eptp(root_hpa);
3359
3360 if (VALID_PAGE(eptp))
3361 ept_sync_context(eptp);
3362 else
3363 ept_sync_global();
3364 }
3365
vmx_flush_tlb_current(struct kvm_vcpu * vcpu)3366 void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3367 {
3368 struct kvm_mmu *mmu = vcpu->arch.mmu;
3369 u64 root_hpa = mmu->root.hpa;
3370
3371 /* No flush required if the current context is invalid. */
3372 if (!VALID_PAGE(root_hpa))
3373 return;
3374
3375 if (enable_ept)
3376 vmx_flush_tlb_ept_root(root_hpa);
3377 else
3378 vpid_sync_context(vmx_get_current_vpid(vcpu));
3379 }
3380
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)3381 void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3382 {
3383 /*
3384 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3385 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3386 */
3387 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3388 }
3389
vmx_flush_tlb_guest(struct kvm_vcpu * vcpu)3390 void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3391 {
3392 /*
3393 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3394 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are
3395 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3396 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3397 * i.e. no explicit INVVPID is necessary.
3398 */
3399 vpid_sync_context(vmx_get_current_vpid(vcpu));
3400 }
3401
vmx_ept_load_pdptrs(struct kvm_vcpu * vcpu)3402 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3403 {
3404 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3405
3406 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3407 return;
3408
3409 if (is_pae_paging(vcpu)) {
3410 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3411 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3412 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3413 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3414 }
3415 }
3416
ept_save_pdptrs(struct kvm_vcpu * vcpu)3417 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3418 {
3419 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3420
3421 if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3422 return;
3423
3424 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3425 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3426 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3427 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3428
3429 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3430 }
3431
3432 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3433 CPU_BASED_CR3_STORE_EXITING)
3434
vmx_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3435 bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3436 {
3437 if (is_guest_mode(vcpu))
3438 return nested_guest_cr0_valid(vcpu, cr0);
3439
3440 if (to_vmx(vcpu)->nested.vmxon)
3441 return nested_host_cr0_valid(vcpu, cr0);
3442
3443 return true;
3444 }
3445
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3446 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3447 {
3448 struct vcpu_vmx *vmx = to_vmx(vcpu);
3449 unsigned long hw_cr0, old_cr0_pg;
3450 u32 tmp;
3451
3452 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3453
3454 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3455 if (enable_unrestricted_guest)
3456 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3457 else {
3458 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3459 if (!enable_ept)
3460 hw_cr0 |= X86_CR0_WP;
3461
3462 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3463 enter_pmode(vcpu);
3464
3465 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3466 enter_rmode(vcpu);
3467 }
3468
3469 vmcs_writel(CR0_READ_SHADOW, cr0);
3470 vmcs_writel(GUEST_CR0, hw_cr0);
3471 vcpu->arch.cr0 = cr0;
3472 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3473
3474 #ifdef CONFIG_X86_64
3475 if (vcpu->arch.efer & EFER_LME) {
3476 if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3477 enter_lmode(vcpu);
3478 else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3479 exit_lmode(vcpu);
3480 }
3481 #endif
3482
3483 if (enable_ept && !enable_unrestricted_guest) {
3484 /*
3485 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If
3486 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3487 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3488 * KVM's CR3 is installed.
3489 */
3490 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3491 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3492
3493 /*
3494 * When running with EPT but not unrestricted guest, KVM must
3495 * intercept CR3 accesses when paging is _disabled_. This is
3496 * necessary because restricted guests can't actually run with
3497 * paging disabled, and so KVM stuffs its own CR3 in order to
3498 * run the guest when identity mapped page tables.
3499 *
3500 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3501 * update, it may be stale with respect to CR3 interception,
3502 * e.g. after nested VM-Enter.
3503 *
3504 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3505 * stores to forward them to L1, even if KVM does not need to
3506 * intercept them to preserve its identity mapped page tables.
3507 */
3508 if (!(cr0 & X86_CR0_PG)) {
3509 exec_controls_setbit(vmx, CR3_EXITING_BITS);
3510 } else if (!is_guest_mode(vcpu)) {
3511 exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3512 } else {
3513 tmp = exec_controls_get(vmx);
3514 tmp &= ~CR3_EXITING_BITS;
3515 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3516 exec_controls_set(vmx, tmp);
3517 }
3518
3519 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3520 if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3521 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3522
3523 /*
3524 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3525 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3526 */
3527 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3528 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3529 }
3530
3531 /* depends on vcpu->arch.cr0 to be set to a new value */
3532 vmx->vt.emulation_required = vmx_emulation_required(vcpu);
3533 }
3534
vmx_get_max_ept_level(void)3535 static int vmx_get_max_ept_level(void)
3536 {
3537 if (cpu_has_vmx_ept_5levels())
3538 return 5;
3539 return 4;
3540 }
3541
vmx_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3542 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3543 {
3544 struct kvm *kvm = vcpu->kvm;
3545 bool update_guest_cr3 = true;
3546 unsigned long guest_cr3;
3547
3548 if (enable_ept) {
3549 KVM_MMU_WARN_ON(root_to_sp(root_hpa) &&
3550 root_level != root_to_sp(root_hpa)->role.level);
3551 vmcs_write64(EPT_POINTER, construct_eptp(root_hpa));
3552
3553 hv_track_root_tdp(vcpu, root_hpa);
3554
3555 if (!enable_unrestricted_guest && !is_paging(vcpu))
3556 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3557 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3558 guest_cr3 = vcpu->arch.cr3;
3559 else /* vmcs.GUEST_CR3 is already up-to-date. */
3560 update_guest_cr3 = false;
3561 vmx_ept_load_pdptrs(vcpu);
3562 } else {
3563 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) |
3564 kvm_get_active_cr3_lam_bits(vcpu);
3565 }
3566
3567 if (update_guest_cr3)
3568 vmcs_writel(GUEST_CR3, guest_cr3);
3569 }
3570
vmx_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3571 bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3572 {
3573 /*
3574 * We operate under the default treatment of SMM, so VMX cannot be
3575 * enabled under SMM. Note, whether or not VMXE is allowed at all,
3576 * i.e. is a reserved bit, is handled by common x86 code.
3577 */
3578 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3579 return false;
3580
3581 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3582 return false;
3583
3584 return true;
3585 }
3586
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3587 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3588 {
3589 unsigned long old_cr4 = kvm_read_cr4(vcpu);
3590 struct vcpu_vmx *vmx = to_vmx(vcpu);
3591 unsigned long hw_cr4;
3592
3593 /*
3594 * Pass through host's Machine Check Enable value to hw_cr4, which
3595 * is in force while we are in guest mode. Do not let guests control
3596 * this bit, even if host CR4.MCE == 0.
3597 */
3598 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3599 if (enable_unrestricted_guest)
3600 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3601 else if (vmx->rmode.vm86_active)
3602 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3603 else
3604 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3605
3606 if (vmx_umip_emulated()) {
3607 if (cr4 & X86_CR4_UMIP) {
3608 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3609 hw_cr4 &= ~X86_CR4_UMIP;
3610 } else if (!is_guest_mode(vcpu) ||
3611 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3612 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3613 }
3614 }
3615
3616 vcpu->arch.cr4 = cr4;
3617 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3618
3619 if (!enable_unrestricted_guest) {
3620 if (enable_ept) {
3621 if (!is_paging(vcpu)) {
3622 hw_cr4 &= ~X86_CR4_PAE;
3623 hw_cr4 |= X86_CR4_PSE;
3624 } else if (!(cr4 & X86_CR4_PAE)) {
3625 hw_cr4 &= ~X86_CR4_PAE;
3626 }
3627 }
3628
3629 /*
3630 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3631 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3632 * to be manually disabled when guest switches to non-paging
3633 * mode.
3634 *
3635 * If !enable_unrestricted_guest, the CPU is always running
3636 * with CR0.PG=1 and CR4 needs to be modified.
3637 * If enable_unrestricted_guest, the CPU automatically
3638 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3639 */
3640 if (!is_paging(vcpu))
3641 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3642 }
3643
3644 vmcs_writel(CR4_READ_SHADOW, cr4);
3645 vmcs_writel(GUEST_CR4, hw_cr4);
3646
3647 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3648 vcpu->arch.cpuid_dynamic_bits_dirty = true;
3649 }
3650
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3651 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3652 {
3653 struct vcpu_vmx *vmx = to_vmx(vcpu);
3654 u32 ar;
3655
3656 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3657 *var = vmx->rmode.segs[seg];
3658 if (seg == VCPU_SREG_TR
3659 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3660 return;
3661 var->base = vmx_read_guest_seg_base(vmx, seg);
3662 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3663 return;
3664 }
3665 var->base = vmx_read_guest_seg_base(vmx, seg);
3666 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3667 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3668 ar = vmx_read_guest_seg_ar(vmx, seg);
3669 var->unusable = (ar >> 16) & 1;
3670 var->type = ar & 15;
3671 var->s = (ar >> 4) & 1;
3672 var->dpl = (ar >> 5) & 3;
3673 /*
3674 * Some userspaces do not preserve unusable property. Since usable
3675 * segment has to be present according to VMX spec we can use present
3676 * property to amend userspace bug by making unusable segment always
3677 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3678 * segment as unusable.
3679 */
3680 var->present = !var->unusable;
3681 var->avl = (ar >> 12) & 1;
3682 var->l = (ar >> 13) & 1;
3683 var->db = (ar >> 14) & 1;
3684 var->g = (ar >> 15) & 1;
3685 }
3686
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3687 u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3688 {
3689 struct kvm_segment s;
3690
3691 if (to_vmx(vcpu)->rmode.vm86_active) {
3692 vmx_get_segment(vcpu, &s, seg);
3693 return s.base;
3694 }
3695 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3696 }
3697
__vmx_get_cpl(struct kvm_vcpu * vcpu,bool no_cache)3698 static int __vmx_get_cpl(struct kvm_vcpu *vcpu, bool no_cache)
3699 {
3700 struct vcpu_vmx *vmx = to_vmx(vcpu);
3701 int ar;
3702
3703 if (unlikely(vmx->rmode.vm86_active))
3704 return 0;
3705
3706 if (no_cache)
3707 ar = vmcs_read32(GUEST_SS_AR_BYTES);
3708 else
3709 ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3710 return VMX_AR_DPL(ar);
3711 }
3712
vmx_get_cpl(struct kvm_vcpu * vcpu)3713 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3714 {
3715 return __vmx_get_cpl(vcpu, false);
3716 }
3717
vmx_get_cpl_no_cache(struct kvm_vcpu * vcpu)3718 int vmx_get_cpl_no_cache(struct kvm_vcpu *vcpu)
3719 {
3720 return __vmx_get_cpl(vcpu, true);
3721 }
3722
vmx_segment_access_rights(struct kvm_segment * var)3723 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3724 {
3725 u32 ar;
3726
3727 ar = var->type & 15;
3728 ar |= (var->s & 1) << 4;
3729 ar |= (var->dpl & 3) << 5;
3730 ar |= (var->present & 1) << 7;
3731 ar |= (var->avl & 1) << 12;
3732 ar |= (var->l & 1) << 13;
3733 ar |= (var->db & 1) << 14;
3734 ar |= (var->g & 1) << 15;
3735 ar |= (var->unusable || !var->present) << 16;
3736
3737 return ar;
3738 }
3739
__vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3740 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3741 {
3742 struct vcpu_vmx *vmx = to_vmx(vcpu);
3743 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3744
3745 vmx_segment_cache_clear(vmx);
3746
3747 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3748 vmx->rmode.segs[seg] = *var;
3749 if (seg == VCPU_SREG_TR)
3750 vmcs_write16(sf->selector, var->selector);
3751 else if (var->s)
3752 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3753 return;
3754 }
3755
3756 vmcs_writel(sf->base, var->base);
3757 vmcs_write32(sf->limit, var->limit);
3758 vmcs_write16(sf->selector, var->selector);
3759
3760 /*
3761 * Fix the "Accessed" bit in AR field of segment registers for older
3762 * qemu binaries.
3763 * IA32 arch specifies that at the time of processor reset the
3764 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3765 * is setting it to 0 in the userland code. This causes invalid guest
3766 * state vmexit when "unrestricted guest" mode is turned on.
3767 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3768 * tree. Newer qemu binaries with that qemu fix would not need this
3769 * kvm hack.
3770 */
3771 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3772 var->type |= 0x1; /* Accessed */
3773
3774 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3775 }
3776
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3777 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3778 {
3779 __vmx_set_segment(vcpu, var, seg);
3780
3781 to_vmx(vcpu)->vt.emulation_required = vmx_emulation_required(vcpu);
3782 }
3783
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3784 void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3785 {
3786 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3787
3788 *db = (ar >> 14) & 1;
3789 *l = (ar >> 13) & 1;
3790 }
3791
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3792 void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3793 {
3794 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3795 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3796 }
3797
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3798 void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3799 {
3800 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3801 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3802 }
3803
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3804 void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3805 {
3806 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3807 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3808 }
3809
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3810 void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3811 {
3812 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3813 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3814 }
3815
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3816 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3817 {
3818 struct kvm_segment var;
3819 u32 ar;
3820
3821 vmx_get_segment(vcpu, &var, seg);
3822 var.dpl = 0x3;
3823 if (seg == VCPU_SREG_CS)
3824 var.type = 0x3;
3825 ar = vmx_segment_access_rights(&var);
3826
3827 if (var.base != (var.selector << 4))
3828 return false;
3829 if (var.limit != 0xffff)
3830 return false;
3831 if (ar != 0xf3)
3832 return false;
3833
3834 return true;
3835 }
3836
code_segment_valid(struct kvm_vcpu * vcpu)3837 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3838 {
3839 struct kvm_segment cs;
3840 unsigned int cs_rpl;
3841
3842 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3843 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3844
3845 if (cs.unusable)
3846 return false;
3847 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3848 return false;
3849 if (!cs.s)
3850 return false;
3851 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3852 if (cs.dpl > cs_rpl)
3853 return false;
3854 } else {
3855 if (cs.dpl != cs_rpl)
3856 return false;
3857 }
3858 if (!cs.present)
3859 return false;
3860
3861 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3862 return true;
3863 }
3864
stack_segment_valid(struct kvm_vcpu * vcpu)3865 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3866 {
3867 struct kvm_segment ss;
3868 unsigned int ss_rpl;
3869
3870 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3871 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3872
3873 if (ss.unusable)
3874 return true;
3875 if (ss.type != 3 && ss.type != 7)
3876 return false;
3877 if (!ss.s)
3878 return false;
3879 if (ss.dpl != ss_rpl) /* DPL != RPL */
3880 return false;
3881 if (!ss.present)
3882 return false;
3883
3884 return true;
3885 }
3886
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3887 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3888 {
3889 struct kvm_segment var;
3890 unsigned int rpl;
3891
3892 vmx_get_segment(vcpu, &var, seg);
3893 rpl = var.selector & SEGMENT_RPL_MASK;
3894
3895 if (var.unusable)
3896 return true;
3897 if (!var.s)
3898 return false;
3899 if (!var.present)
3900 return false;
3901 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3902 if (var.dpl < rpl) /* DPL < RPL */
3903 return false;
3904 }
3905
3906 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3907 * rights flags
3908 */
3909 return true;
3910 }
3911
tr_valid(struct kvm_vcpu * vcpu)3912 static bool tr_valid(struct kvm_vcpu *vcpu)
3913 {
3914 struct kvm_segment tr;
3915
3916 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3917
3918 if (tr.unusable)
3919 return false;
3920 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3921 return false;
3922 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3923 return false;
3924 if (!tr.present)
3925 return false;
3926
3927 return true;
3928 }
3929
ldtr_valid(struct kvm_vcpu * vcpu)3930 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3931 {
3932 struct kvm_segment ldtr;
3933
3934 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3935
3936 if (ldtr.unusable)
3937 return true;
3938 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3939 return false;
3940 if (ldtr.type != 2)
3941 return false;
3942 if (!ldtr.present)
3943 return false;
3944
3945 return true;
3946 }
3947
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3948 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3949 {
3950 struct kvm_segment cs, ss;
3951
3952 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3953 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3954
3955 return ((cs.selector & SEGMENT_RPL_MASK) ==
3956 (ss.selector & SEGMENT_RPL_MASK));
3957 }
3958
3959 /*
3960 * Check if guest state is valid. Returns true if valid, false if
3961 * not.
3962 * We assume that registers are always usable
3963 */
__vmx_guest_state_valid(struct kvm_vcpu * vcpu)3964 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3965 {
3966 /* real mode guest state checks */
3967 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3968 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3969 return false;
3970 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3971 return false;
3972 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3973 return false;
3974 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3975 return false;
3976 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3977 return false;
3978 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3979 return false;
3980 } else {
3981 /* protected mode guest state checks */
3982 if (!cs_ss_rpl_check(vcpu))
3983 return false;
3984 if (!code_segment_valid(vcpu))
3985 return false;
3986 if (!stack_segment_valid(vcpu))
3987 return false;
3988 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3989 return false;
3990 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3991 return false;
3992 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3993 return false;
3994 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3995 return false;
3996 if (!tr_valid(vcpu))
3997 return false;
3998 if (!ldtr_valid(vcpu))
3999 return false;
4000 }
4001 /* TODO:
4002 * - Add checks on RIP
4003 * - Add checks on RFLAGS
4004 */
4005
4006 return true;
4007 }
4008
init_rmode_tss(struct kvm * kvm,void __user * ua)4009 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
4010 {
4011 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
4012 u16 data;
4013 int i;
4014
4015 for (i = 0; i < 3; i++) {
4016 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
4017 return -EFAULT;
4018 }
4019
4020 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4021 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
4022 return -EFAULT;
4023
4024 data = ~0;
4025 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
4026 return -EFAULT;
4027
4028 return 0;
4029 }
4030
init_rmode_identity_map(struct kvm * kvm)4031 static int init_rmode_identity_map(struct kvm *kvm)
4032 {
4033 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4034 int i, r = 0;
4035 void __user *uaddr;
4036 u32 tmp;
4037
4038 /* Protect kvm_vmx->ept_identity_pagetable_done. */
4039 mutex_lock(&kvm->slots_lock);
4040
4041 if (likely(kvm_vmx->ept_identity_pagetable_done))
4042 goto out;
4043
4044 if (!kvm_vmx->ept_identity_map_addr)
4045 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
4046
4047 uaddr = __x86_set_memory_region(kvm,
4048 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4049 kvm_vmx->ept_identity_map_addr,
4050 PAGE_SIZE);
4051 if (IS_ERR(uaddr)) {
4052 r = PTR_ERR(uaddr);
4053 goto out;
4054 }
4055
4056 /* Set up identity-mapping pagetable for EPT in real mode */
4057 for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
4058 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4059 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4060 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
4061 r = -EFAULT;
4062 goto out;
4063 }
4064 }
4065 kvm_vmx->ept_identity_pagetable_done = true;
4066
4067 out:
4068 mutex_unlock(&kvm->slots_lock);
4069 return r;
4070 }
4071
seg_setup(int seg)4072 static void seg_setup(int seg)
4073 {
4074 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4075 unsigned int ar;
4076
4077 vmcs_write16(sf->selector, 0);
4078 vmcs_writel(sf->base, 0);
4079 vmcs_write32(sf->limit, 0xffff);
4080 ar = 0x93;
4081 if (seg == VCPU_SREG_CS)
4082 ar |= 0x08; /* code segment */
4083
4084 vmcs_write32(sf->ar_bytes, ar);
4085 }
4086
allocate_vpid(void)4087 int allocate_vpid(void)
4088 {
4089 int vpid;
4090
4091 if (!enable_vpid)
4092 return 0;
4093 spin_lock(&vmx_vpid_lock);
4094 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4095 if (vpid < VMX_NR_VPIDS)
4096 __set_bit(vpid, vmx_vpid_bitmap);
4097 else
4098 vpid = 0;
4099 spin_unlock(&vmx_vpid_lock);
4100 return vpid;
4101 }
4102
free_vpid(int vpid)4103 void free_vpid(int vpid)
4104 {
4105 if (!enable_vpid || vpid == 0)
4106 return;
4107 spin_lock(&vmx_vpid_lock);
4108 __clear_bit(vpid, vmx_vpid_bitmap);
4109 spin_unlock(&vmx_vpid_lock);
4110 }
4111
vmx_msr_bitmap_l01_changed(struct vcpu_vmx * vmx)4112 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
4113 {
4114 /*
4115 * When KVM is a nested hypervisor on top of Hyper-V and uses
4116 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
4117 * bitmap has changed.
4118 */
4119 if (kvm_is_using_evmcs()) {
4120 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
4121
4122 if (evmcs->hv_enlightenments_control.msr_bitmap)
4123 evmcs->hv_clean_fields &=
4124 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
4125 }
4126
4127 vmx->nested.force_msr_bitmap_recalc = true;
4128 }
4129
vmx_set_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type,bool set)4130 void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set)
4131 {
4132 struct vcpu_vmx *vmx = to_vmx(vcpu);
4133 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4134
4135 if (!cpu_has_vmx_msr_bitmap())
4136 return;
4137
4138 vmx_msr_bitmap_l01_changed(vmx);
4139
4140 if (type & MSR_TYPE_R) {
4141 if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
4142 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
4143 else
4144 vmx_set_msr_bitmap_read(msr_bitmap, msr);
4145 }
4146
4147 if (type & MSR_TYPE_W) {
4148 if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
4149 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
4150 else
4151 vmx_set_msr_bitmap_write(msr_bitmap, msr);
4152 }
4153 }
4154
vmx_update_msr_bitmap_x2apic(struct kvm_vcpu * vcpu)4155 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4156 {
4157 /*
4158 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4159 * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0,
4160 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4161 */
4162 const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4163 const int write_idx = read_idx + (0x800 / sizeof(u64));
4164 struct vcpu_vmx *vmx = to_vmx(vcpu);
4165 u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4166 u8 mode;
4167
4168 if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4169 return;
4170
4171 if (cpu_has_secondary_exec_ctrls() &&
4172 (secondary_exec_controls_get(vmx) &
4173 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4174 mode = MSR_BITMAP_MODE_X2APIC;
4175 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4176 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4177 } else {
4178 mode = 0;
4179 }
4180
4181 if (mode == vmx->x2apic_msr_bitmap_mode)
4182 return;
4183
4184 vmx->x2apic_msr_bitmap_mode = mode;
4185
4186 /*
4187 * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended
4188 * registers (0x840 and above) intercepted, KVM doesn't support them.
4189 * Intercept all writes by default and poke holes as needed. Pass
4190 * through reads for all valid registers by default in x2APIC+APICv
4191 * mode, only the current timer count needs on-demand emulation by KVM.
4192 */
4193 if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4194 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4195 else
4196 msr_bitmap[read_idx] = ~0ull;
4197 msr_bitmap[write_idx] = ~0ull;
4198
4199 /*
4200 * TPR reads and writes can be virtualized even if virtual interrupt
4201 * delivery is not in use.
4202 */
4203 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4204 !(mode & MSR_BITMAP_MODE_X2APIC));
4205
4206 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4207 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4208 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4209 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4210 if (enable_ipiv)
4211 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4212 }
4213 }
4214
pt_update_intercept_for_msr(struct kvm_vcpu * vcpu)4215 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4216 {
4217 struct vcpu_vmx *vmx = to_vmx(vcpu);
4218 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4219 u32 i;
4220
4221 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4222 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4223 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4224 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4225 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4226 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4227 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4228 }
4229 }
4230
vmx_recalc_msr_intercepts(struct kvm_vcpu * vcpu)4231 static void vmx_recalc_msr_intercepts(struct kvm_vcpu *vcpu)
4232 {
4233 bool intercept;
4234
4235 if (!cpu_has_vmx_msr_bitmap())
4236 return;
4237
4238 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
4239 #ifdef CONFIG_X86_64
4240 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
4241 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
4242 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
4243 #endif
4244 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
4245 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
4246 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
4247 if (kvm_cstate_in_guest(vcpu->kvm)) {
4248 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
4249 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
4250 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
4251 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
4252 }
4253 if (kvm_aperfmperf_in_guest(vcpu->kvm)) {
4254 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_APERF, MSR_TYPE_R);
4255 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_MPERF, MSR_TYPE_R);
4256 }
4257
4258 /* PT MSRs can be passed through iff PT is exposed to the guest. */
4259 if (vmx_pt_mode_is_host_guest())
4260 pt_update_intercept_for_msr(vcpu);
4261
4262 if (vcpu->arch.xfd_no_write_intercept)
4263 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, MSR_TYPE_RW);
4264
4265 vmx_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW,
4266 !to_vmx(vcpu)->spec_ctrl);
4267
4268 if (kvm_cpu_cap_has(X86_FEATURE_XFD))
4269 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
4270 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD));
4271
4272 if (cpu_feature_enabled(X86_FEATURE_IBPB))
4273 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
4274 !guest_has_pred_cmd_msr(vcpu));
4275
4276 if (cpu_feature_enabled(X86_FEATURE_FLUSH_L1D))
4277 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
4278 !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D));
4279
4280 if (kvm_cpu_cap_has(X86_FEATURE_SHSTK)) {
4281 intercept = !guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK);
4282
4283 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PL0_SSP, MSR_TYPE_RW, intercept);
4284 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PL1_SSP, MSR_TYPE_RW, intercept);
4285 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PL2_SSP, MSR_TYPE_RW, intercept);
4286 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PL3_SSP, MSR_TYPE_RW, intercept);
4287 }
4288
4289 if (kvm_cpu_cap_has(X86_FEATURE_SHSTK) || kvm_cpu_cap_has(X86_FEATURE_IBT)) {
4290 intercept = !guest_cpu_cap_has(vcpu, X86_FEATURE_IBT) &&
4291 !guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK);
4292
4293 vmx_set_intercept_for_msr(vcpu, MSR_IA32_U_CET, MSR_TYPE_RW, intercept);
4294 vmx_set_intercept_for_msr(vcpu, MSR_IA32_S_CET, MSR_TYPE_RW, intercept);
4295 }
4296
4297 /*
4298 * x2APIC and LBR MSR intercepts are modified on-demand and cannot be
4299 * filtered by userspace.
4300 */
4301 }
4302
vmx_recalc_intercepts(struct kvm_vcpu * vcpu)4303 void vmx_recalc_intercepts(struct kvm_vcpu *vcpu)
4304 {
4305 vmx_recalc_msr_intercepts(vcpu);
4306 }
4307
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4308 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4309 int vector)
4310 {
4311 struct vcpu_vmx *vmx = to_vmx(vcpu);
4312
4313 /*
4314 * DO NOT query the vCPU's vmcs12, as vmcs12 is dynamically allocated
4315 * and freed, and must not be accessed outside of vcpu->mutex. The
4316 * vCPU's cached PI NV is valid if and only if posted interrupts
4317 * enabled in its vmcs12, i.e. checking the vector also checks that
4318 * L1 has enabled posted interrupts for L2.
4319 */
4320 if (is_guest_mode(vcpu) &&
4321 vector == vmx->nested.posted_intr_nv) {
4322 /*
4323 * If a posted intr is not recognized by hardware,
4324 * we will accomplish it in the next vmentry.
4325 */
4326 vmx->nested.pi_pending = true;
4327 kvm_make_request(KVM_REQ_EVENT, vcpu);
4328
4329 /*
4330 * This pairs with the smp_mb_*() after setting vcpu->mode in
4331 * vcpu_enter_guest() to guarantee the vCPU sees the event
4332 * request if triggering a posted interrupt "fails" because
4333 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as
4334 * the smb_wmb() in kvm_make_request() only ensures everything
4335 * done before making the request is visible when the request
4336 * is visible, it doesn't ensure ordering between the store to
4337 * vcpu->requests and the load from vcpu->mode.
4338 */
4339 smp_mb__after_atomic();
4340
4341 /* the PIR and ON have been set by L1. */
4342 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4343 return 0;
4344 }
4345 return -1;
4346 }
4347 /*
4348 * Send interrupt to vcpu via posted interrupt way.
4349 * 1. If target vcpu is running(non-root mode), send posted interrupt
4350 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4351 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4352 * interrupt from PIR in next vmentry.
4353 */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4354 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4355 {
4356 struct vcpu_vt *vt = to_vt(vcpu);
4357 int r;
4358
4359 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4360 if (!r)
4361 return 0;
4362
4363 /* Note, this is called iff the local APIC is in-kernel. */
4364 if (!vcpu->arch.apic->apicv_active)
4365 return -1;
4366
4367 __vmx_deliver_posted_interrupt(vcpu, &vt->pi_desc, vector);
4368 return 0;
4369 }
4370
vmx_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)4371 void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4372 int trig_mode, int vector)
4373 {
4374 struct kvm_vcpu *vcpu = apic->vcpu;
4375
4376 if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4377 kvm_lapic_set_irr(vector, apic);
4378 kvm_make_request(KVM_REQ_EVENT, vcpu);
4379 kvm_vcpu_kick(vcpu);
4380 } else {
4381 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4382 trig_mode, vector);
4383 }
4384 }
4385
4386 /*
4387 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4388 * will not change in the lifetime of the guest.
4389 * Note that host-state that does change is set elsewhere. E.g., host-state
4390 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4391 */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4392 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4393 {
4394 u32 low32, high32;
4395 unsigned long tmpl;
4396 unsigned long cr0, cr3, cr4;
4397
4398 cr0 = read_cr0();
4399 WARN_ON(cr0 & X86_CR0_TS);
4400 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
4401
4402 /*
4403 * Save the most likely value for this task's CR3 in the VMCS.
4404 * We can't use __get_current_cr3_fast() because we're not atomic.
4405 */
4406 cr3 = __read_cr3();
4407 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
4408 vmx->loaded_vmcs->host_state.cr3 = cr3;
4409
4410 /* Save the most likely value for this task's CR4 in the VMCS. */
4411 cr4 = cr4_read_shadow();
4412 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4413 vmx->loaded_vmcs->host_state.cr4 = cr4;
4414
4415 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4416 #ifdef CONFIG_X86_64
4417 /*
4418 * Load null selectors, so we can avoid reloading them in
4419 * vmx_prepare_switch_to_host(), in case userspace uses
4420 * the null selectors too (the expected case).
4421 */
4422 vmcs_write16(HOST_DS_SELECTOR, 0);
4423 vmcs_write16(HOST_ES_SELECTOR, 0);
4424 #else
4425 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4426 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4427 #endif
4428 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4429 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4430
4431 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
4432
4433 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4434
4435 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4436 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4437
4438 /*
4439 * SYSENTER is used for 32-bit system calls on either 32-bit or
4440 * 64-bit kernels. It is always zero If neither is allowed, otherwise
4441 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4442 * have already done so!).
4443 */
4444 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4445 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4446
4447 rdmsrq(MSR_IA32_SYSENTER_EIP, tmpl);
4448 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4449
4450 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4451 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4452 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4453 }
4454
4455 if (cpu_has_load_ia32_efer())
4456 vmcs_write64(HOST_IA32_EFER, kvm_host.efer);
4457
4458 /*
4459 * Supervisor shadow stack is not enabled on host side, i.e.,
4460 * host IA32_S_CET.SHSTK_EN bit is guaranteed to 0 now, per SDM
4461 * description(RDSSP instruction), SSP is not readable in CPL0,
4462 * so resetting the two registers to 0s at VM-Exit does no harm
4463 * to kernel execution. When execution flow exits to userspace,
4464 * SSP is reloaded from IA32_PL3_SSP. Check SDM Vol.2A/B Chapter
4465 * 3 and 4 for details.
4466 */
4467 if (cpu_has_load_cet_ctrl()) {
4468 vmcs_writel(HOST_S_CET, kvm_host.s_cet);
4469 vmcs_writel(HOST_SSP, 0);
4470 vmcs_writel(HOST_INTR_SSP_TABLE, 0);
4471 }
4472 }
4473
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4474 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4475 {
4476 struct kvm_vcpu *vcpu = &vmx->vcpu;
4477
4478 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4479 ~vcpu->arch.cr4_guest_rsvd_bits;
4480 if (!enable_ept) {
4481 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4482 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4483 }
4484 if (is_guest_mode(&vmx->vcpu))
4485 vcpu->arch.cr4_guest_owned_bits &=
4486 ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4487 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4488 }
4489
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4490 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4491 {
4492 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4493
4494 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4495 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4496
4497 if (!enable_vnmi)
4498 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4499
4500 if (!enable_preemption_timer)
4501 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4502
4503 return pin_based_exec_ctrl;
4504 }
4505
vmx_get_initial_vmentry_ctrl(void)4506 static u32 vmx_get_initial_vmentry_ctrl(void)
4507 {
4508 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4509
4510 if (vmx_pt_mode_is_system())
4511 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4512 VM_ENTRY_LOAD_IA32_RTIT_CTL);
4513 /*
4514 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4515 */
4516 vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4517 VM_ENTRY_LOAD_IA32_EFER |
4518 VM_ENTRY_IA32E_MODE);
4519
4520 return vmentry_ctrl;
4521 }
4522
vmx_get_initial_vmexit_ctrl(void)4523 static u32 vmx_get_initial_vmexit_ctrl(void)
4524 {
4525 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4526
4527 /*
4528 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4529 * nested virtualization and thus allowed to be set in vmcs12.
4530 */
4531 vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4532 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4533
4534 if (vmx_pt_mode_is_system())
4535 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4536 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4537 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4538 return vmexit_ctrl &
4539 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4540 }
4541
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)4542 void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4543 {
4544 struct vcpu_vmx *vmx = to_vmx(vcpu);
4545
4546 if (is_guest_mode(vcpu)) {
4547 vmx->nested.update_vmcs01_apicv_status = true;
4548 return;
4549 }
4550
4551 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4552
4553 secondary_exec_controls_changebit(vmx,
4554 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4555 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY,
4556 kvm_vcpu_apicv_active(vcpu));
4557 if (enable_ipiv)
4558 tertiary_exec_controls_changebit(vmx, TERTIARY_EXEC_IPI_VIRT,
4559 kvm_vcpu_apicv_active(vcpu));
4560
4561 vmx_update_msr_bitmap_x2apic(vcpu);
4562 }
4563
vmx_exec_control(struct vcpu_vmx * vmx)4564 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4565 {
4566 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4567
4568 /*
4569 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4570 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4571 */
4572 exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4573 CPU_BASED_USE_IO_BITMAPS |
4574 CPU_BASED_MONITOR_TRAP_FLAG |
4575 CPU_BASED_PAUSE_EXITING);
4576
4577 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4578 exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4579 CPU_BASED_NMI_WINDOW_EXITING);
4580
4581 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4582 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4583
4584 if (!cpu_need_tpr_shadow(&vmx->vcpu))
4585 exec_control &= ~CPU_BASED_TPR_SHADOW;
4586
4587 #ifdef CONFIG_X86_64
4588 if (exec_control & CPU_BASED_TPR_SHADOW)
4589 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4590 CPU_BASED_CR8_STORE_EXITING);
4591 else
4592 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4593 CPU_BASED_CR8_LOAD_EXITING;
4594 #endif
4595 /* No need to intercept CR3 access or INVPLG when using EPT. */
4596 if (enable_ept)
4597 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4598 CPU_BASED_CR3_STORE_EXITING |
4599 CPU_BASED_INVLPG_EXITING);
4600 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4601 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4602 CPU_BASED_MONITOR_EXITING);
4603 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4604 exec_control &= ~CPU_BASED_HLT_EXITING;
4605 return exec_control;
4606 }
4607
vmx_tertiary_exec_control(struct vcpu_vmx * vmx)4608 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4609 {
4610 u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4611
4612 /*
4613 * IPI virtualization relies on APICv. Disable IPI virtualization if
4614 * APICv is inhibited.
4615 */
4616 if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4617 exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4618
4619 return exec_control;
4620 }
4621
4622 /*
4623 * Adjust a single secondary execution control bit to intercept/allow an
4624 * instruction in the guest. This is usually done based on whether or not a
4625 * feature has been exposed to the guest in order to correctly emulate faults.
4626 */
4627 static inline void
vmx_adjust_secondary_exec_control(struct vcpu_vmx * vmx,u32 * exec_control,u32 control,bool enabled,bool exiting)4628 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4629 u32 control, bool enabled, bool exiting)
4630 {
4631 /*
4632 * If the control is for an opt-in feature, clear the control if the
4633 * feature is not exposed to the guest, i.e. not enabled. If the
4634 * control is opt-out, i.e. an exiting control, clear the control if
4635 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4636 * disabled for the associated instruction. Note, the caller is
4637 * responsible presetting exec_control to set all supported bits.
4638 */
4639 if (enabled == exiting)
4640 *exec_control &= ~control;
4641
4642 /*
4643 * Update the nested MSR settings so that a nested VMM can/can't set
4644 * controls for features that are/aren't exposed to the guest.
4645 */
4646 if (nested &&
4647 kvm_check_has_quirk(vmx->vcpu.kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
4648 /*
4649 * All features that can be added or removed to VMX MSRs must
4650 * be supported in the first place for nested virtualization.
4651 */
4652 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4653 enabled = false;
4654
4655 if (enabled)
4656 vmx->nested.msrs.secondary_ctls_high |= control;
4657 else
4658 vmx->nested.msrs.secondary_ctls_high &= ~control;
4659 }
4660 }
4661
4662 /*
4663 * Wrapper macro for the common case of adjusting a secondary execution control
4664 * based on a single guest CPUID bit, with a dedicated feature bit. This also
4665 * verifies that the control is actually supported by KVM and hardware.
4666 */
4667 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4668 ({ \
4669 struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \
4670 bool __enabled; \
4671 \
4672 if (cpu_has_vmx_##name()) { \
4673 __enabled = guest_cpu_cap_has(__vcpu, X86_FEATURE_##feat_name); \
4674 vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4675 __enabled, exiting); \
4676 } \
4677 })
4678
4679 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4680 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4681 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4682
4683 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4684 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4685
vmx_secondary_exec_control(struct vcpu_vmx * vmx)4686 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4687 {
4688 struct kvm_vcpu *vcpu = &vmx->vcpu;
4689
4690 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4691
4692 if (vmx_pt_mode_is_system())
4693 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4694 if (!cpu_need_virtualize_apic_accesses(vcpu))
4695 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4696 if (vmx->vpid == 0)
4697 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4698 if (!enable_ept) {
4699 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4700 exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
4701 enable_unrestricted_guest = 0;
4702 }
4703 if (!enable_unrestricted_guest)
4704 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4705 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4706 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4707 if (!kvm_vcpu_apicv_active(vcpu))
4708 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4709 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4710 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4711
4712 /*
4713 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4714 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4715 */
4716 exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4717
4718 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4719 * in vmx_set_cr4. */
4720 exec_control &= ~SECONDARY_EXEC_DESC;
4721
4722 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4723 (handle_vmptrld).
4724 We can NOT enable shadow_vmcs here because we don't have yet
4725 a current VMCS12
4726 */
4727 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4728
4729 /*
4730 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4731 * it needs to be set here when dirty logging is already active, e.g.
4732 * if this vCPU was created after dirty logging was enabled.
4733 */
4734 if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4735 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4736
4737 vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4738
4739 /*
4740 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4741 * feature is exposed to the guest. This creates a virtualization hole
4742 * if both are supported in hardware but only one is exposed to the
4743 * guest, but letting the guest execute RDTSCP or RDPID when either one
4744 * is advertised is preferable to emulating the advertised instruction
4745 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4746 */
4747 if (cpu_has_vmx_rdtscp()) {
4748 bool rdpid_or_rdtscp_enabled =
4749 guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) ||
4750 guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID);
4751
4752 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4753 SECONDARY_EXEC_ENABLE_RDTSCP,
4754 rdpid_or_rdtscp_enabled, false);
4755 }
4756
4757 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4758
4759 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4760 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4761
4762 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4763 ENABLE_USR_WAIT_PAUSE, false);
4764
4765 if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4766 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4767
4768 if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4769 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4770
4771 return exec_control;
4772 }
4773
vmx_get_pid_table_order(struct kvm * kvm)4774 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4775 {
4776 return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4777 }
4778
vmx_alloc_ipiv_pid_table(struct kvm * kvm)4779 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4780 {
4781 struct page *pages;
4782 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4783
4784 if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4785 return 0;
4786
4787 if (kvm_vmx->pid_table)
4788 return 0;
4789
4790 pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4791 vmx_get_pid_table_order(kvm));
4792 if (!pages)
4793 return -ENOMEM;
4794
4795 kvm_vmx->pid_table = (void *)page_address(pages);
4796 return 0;
4797 }
4798
vmx_vcpu_precreate(struct kvm * kvm)4799 int vmx_vcpu_precreate(struct kvm *kvm)
4800 {
4801 return vmx_alloc_ipiv_pid_table(kvm);
4802 }
4803
4804 #define VMX_XSS_EXIT_BITMAP 0
4805
init_vmcs(struct vcpu_vmx * vmx)4806 static void init_vmcs(struct vcpu_vmx *vmx)
4807 {
4808 struct kvm *kvm = vmx->vcpu.kvm;
4809 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4810
4811 if (nested)
4812 nested_vmx_set_vmcs_shadowing_bitmap();
4813
4814 if (cpu_has_vmx_msr_bitmap())
4815 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4816
4817 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4818
4819 /* Control */
4820 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4821
4822 exec_controls_set(vmx, vmx_exec_control(vmx));
4823
4824 if (cpu_has_secondary_exec_ctrls()) {
4825 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4826 if (vmx->ve_info)
4827 vmcs_write64(VE_INFORMATION_ADDRESS,
4828 __pa(vmx->ve_info));
4829 }
4830
4831 if (cpu_has_tertiary_exec_ctrls())
4832 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4833
4834 if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4835 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4836 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4837 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4838 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4839
4840 vmcs_write16(GUEST_INTR_STATUS, 0);
4841
4842 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4843 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->vt.pi_desc)));
4844 }
4845
4846 if (vmx_can_use_ipiv(&vmx->vcpu)) {
4847 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4848 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4849 }
4850
4851 if (!kvm_pause_in_guest(kvm)) {
4852 vmcs_write32(PLE_GAP, ple_gap);
4853 vmx->ple_window = ple_window;
4854 vmx->ple_window_dirty = true;
4855 }
4856
4857 if (kvm_notify_vmexit_enabled(kvm))
4858 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4859
4860 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4861 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4862 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4863
4864 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4865 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4866 vmx_set_constant_host_state(vmx);
4867 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4868 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4869
4870 if (cpu_has_vmx_vmfunc())
4871 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4872
4873 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4874 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4875 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4876 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4877 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4878
4879 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4880 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4881
4882 vm_exit_controls_set(vmx, vmx_get_initial_vmexit_ctrl());
4883
4884 /* 22.2.1, 20.8.1 */
4885 vm_entry_controls_set(vmx, vmx_get_initial_vmentry_ctrl());
4886
4887 vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4888 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4889
4890 set_cr4_guest_host_mask(vmx);
4891
4892 if (vmx->vpid != 0)
4893 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4894
4895 if (cpu_has_vmx_xsaves())
4896 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4897
4898 if (enable_pml) {
4899 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4900 vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX);
4901 }
4902
4903 vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4904
4905 if (vmx_pt_mode_is_host_guest()) {
4906 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4907 /* Bit[6~0] are forced to 1, writes are ignored. */
4908 vmx->pt_desc.guest.output_mask = 0x7F;
4909 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4910 }
4911
4912 vmcs_write32(GUEST_SYSENTER_CS, 0);
4913 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4914 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4915
4916 vmx_guest_debugctl_write(&vmx->vcpu, 0);
4917
4918 if (cpu_has_vmx_tpr_shadow()) {
4919 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4920 if (cpu_need_tpr_shadow(&vmx->vcpu))
4921 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4922 __pa(vmx->vcpu.arch.apic->regs));
4923 vmcs_write32(TPR_THRESHOLD, 0);
4924 }
4925
4926 vmx_setup_uret_msrs(vmx);
4927 }
4928
__vmx_vcpu_reset(struct kvm_vcpu * vcpu)4929 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4930 {
4931 struct vcpu_vmx *vmx = to_vmx(vcpu);
4932
4933 init_vmcs(vmx);
4934
4935 if (nested &&
4936 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
4937 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4938
4939 vcpu_setup_sgx_lepubkeyhash(vcpu);
4940
4941 vmx->nested.posted_intr_nv = -1;
4942 vmx->nested.vmxon_ptr = INVALID_GPA;
4943 vmx->nested.current_vmptr = INVALID_GPA;
4944
4945 #ifdef CONFIG_KVM_HYPERV
4946 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4947 #endif
4948
4949 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
4950 vcpu->arch.microcode_version = 0x100000000ULL;
4951 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4952
4953 /*
4954 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4955 * or POSTED_INTR_WAKEUP_VECTOR.
4956 */
4957 vmx->vt.pi_desc.nv = POSTED_INTR_VECTOR;
4958 __pi_set_sn(&vmx->vt.pi_desc);
4959 }
4960
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4961 void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4962 {
4963 struct vcpu_vmx *vmx = to_vmx(vcpu);
4964
4965 if (!init_event)
4966 __vmx_vcpu_reset(vcpu);
4967
4968 vmx->rmode.vm86_active = 0;
4969 vmx->spec_ctrl = 0;
4970
4971 vmx->msr_ia32_umwait_control = 0;
4972
4973 vmx->hv_deadline_tsc = -1;
4974 kvm_set_cr8(vcpu, 0);
4975
4976 seg_setup(VCPU_SREG_CS);
4977 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4978 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4979
4980 seg_setup(VCPU_SREG_DS);
4981 seg_setup(VCPU_SREG_ES);
4982 seg_setup(VCPU_SREG_FS);
4983 seg_setup(VCPU_SREG_GS);
4984 seg_setup(VCPU_SREG_SS);
4985
4986 vmcs_write16(GUEST_TR_SELECTOR, 0);
4987 vmcs_writel(GUEST_TR_BASE, 0);
4988 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4989 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4990
4991 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4992 vmcs_writel(GUEST_LDTR_BASE, 0);
4993 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4994 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4995
4996 vmcs_writel(GUEST_GDTR_BASE, 0);
4997 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4998
4999 vmcs_writel(GUEST_IDTR_BASE, 0);
5000 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5001
5002 vmx_segment_cache_clear(vmx);
5003 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
5004
5005 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5006 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
5007 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
5008 if (kvm_mpx_supported())
5009 vmcs_write64(GUEST_BNDCFGS, 0);
5010
5011 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5012
5013 if (kvm_cpu_cap_has(X86_FEATURE_SHSTK)) {
5014 vmcs_writel(GUEST_SSP, 0);
5015 vmcs_writel(GUEST_INTR_SSP_TABLE, 0);
5016 }
5017 if (kvm_cpu_cap_has(X86_FEATURE_IBT) ||
5018 kvm_cpu_cap_has(X86_FEATURE_SHSTK))
5019 vmcs_writel(GUEST_S_CET, 0);
5020
5021 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5022
5023 vpid_sync_context(vmx->vpid);
5024
5025 vmx_update_fb_clear_dis(vcpu, vmx);
5026 }
5027
vmx_enable_irq_window(struct kvm_vcpu * vcpu)5028 void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
5029 {
5030 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5031 }
5032
vmx_enable_nmi_window(struct kvm_vcpu * vcpu)5033 void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
5034 {
5035 if (!enable_vnmi ||
5036 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5037 vmx_enable_irq_window(vcpu);
5038 return;
5039 }
5040
5041 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5042 }
5043
vmx_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)5044 void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
5045 {
5046 struct vcpu_vmx *vmx = to_vmx(vcpu);
5047 uint32_t intr;
5048 int irq = vcpu->arch.interrupt.nr;
5049
5050 trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
5051
5052 ++vcpu->stat.irq_injections;
5053 if (vmx->rmode.vm86_active) {
5054 int inc_eip = 0;
5055 if (vcpu->arch.interrupt.soft)
5056 inc_eip = vcpu->arch.event_exit_inst_len;
5057 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
5058 return;
5059 }
5060 intr = irq | INTR_INFO_VALID_MASK;
5061 if (vcpu->arch.interrupt.soft) {
5062 intr |= INTR_TYPE_SOFT_INTR;
5063 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5064 vmx->vcpu.arch.event_exit_inst_len);
5065 } else
5066 intr |= INTR_TYPE_EXT_INTR;
5067 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5068
5069 vmx_clear_hlt(vcpu);
5070 }
5071
vmx_inject_nmi(struct kvm_vcpu * vcpu)5072 void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5073 {
5074 struct vcpu_vmx *vmx = to_vmx(vcpu);
5075
5076 if (!enable_vnmi) {
5077 /*
5078 * Tracking the NMI-blocked state in software is built upon
5079 * finding the next open IRQ window. This, in turn, depends on
5080 * well-behaving guests: They have to keep IRQs disabled at
5081 * least as long as the NMI handler runs. Otherwise we may
5082 * cause NMI nesting, maybe breaking the guest. But as this is
5083 * highly unlikely, we can live with the residual risk.
5084 */
5085 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
5086 vmx->loaded_vmcs->vnmi_blocked_time = 0;
5087 }
5088
5089 ++vcpu->stat.nmi_injections;
5090 vmx->loaded_vmcs->nmi_known_unmasked = false;
5091
5092 if (vmx->rmode.vm86_active) {
5093 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
5094 return;
5095 }
5096
5097 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5098 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5099
5100 vmx_clear_hlt(vcpu);
5101 }
5102
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)5103 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5104 {
5105 struct vcpu_vmx *vmx = to_vmx(vcpu);
5106 bool masked;
5107
5108 if (!enable_vnmi)
5109 return vmx->loaded_vmcs->soft_vnmi_blocked;
5110 if (vmx->loaded_vmcs->nmi_known_unmasked)
5111 return false;
5112 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5113 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5114 return masked;
5115 }
5116
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)5117 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5118 {
5119 struct vcpu_vmx *vmx = to_vmx(vcpu);
5120
5121 if (!enable_vnmi) {
5122 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5123 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5124 vmx->loaded_vmcs->vnmi_blocked_time = 0;
5125 }
5126 } else {
5127 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5128 if (masked)
5129 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5130 GUEST_INTR_STATE_NMI);
5131 else
5132 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5133 GUEST_INTR_STATE_NMI);
5134 }
5135 }
5136
vmx_nmi_blocked(struct kvm_vcpu * vcpu)5137 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5138 {
5139 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5140 return false;
5141
5142 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5143 return true;
5144
5145 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5146 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5147 GUEST_INTR_STATE_NMI));
5148 }
5149
vmx_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)5150 int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5151 {
5152 if (to_vmx(vcpu)->nested.nested_run_pending)
5153 return -EBUSY;
5154
5155 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
5156 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5157 return -EBUSY;
5158
5159 return !vmx_nmi_blocked(vcpu);
5160 }
5161
__vmx_interrupt_blocked(struct kvm_vcpu * vcpu)5162 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5163 {
5164 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5165 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5166 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5167 }
5168
vmx_interrupt_blocked(struct kvm_vcpu * vcpu)5169 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5170 {
5171 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5172 return false;
5173
5174 return __vmx_interrupt_blocked(vcpu);
5175 }
5176
vmx_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)5177 int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5178 {
5179 if (to_vmx(vcpu)->nested.nested_run_pending)
5180 return -EBUSY;
5181
5182 /*
5183 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5184 * e.g. if the IRQ arrived asynchronously after checking nested events.
5185 */
5186 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5187 return -EBUSY;
5188
5189 return !vmx_interrupt_blocked(vcpu);
5190 }
5191
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)5192 int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5193 {
5194 void __user *ret;
5195
5196 if (enable_unrestricted_guest)
5197 return 0;
5198
5199 mutex_lock(&kvm->slots_lock);
5200 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5201 PAGE_SIZE * 3);
5202 mutex_unlock(&kvm->slots_lock);
5203
5204 if (IS_ERR(ret))
5205 return PTR_ERR(ret);
5206
5207 to_kvm_vmx(kvm)->tss_addr = addr;
5208
5209 return init_rmode_tss(kvm, ret);
5210 }
5211
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5212 int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5213 {
5214 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5215 return 0;
5216 }
5217
rmode_exception(struct kvm_vcpu * vcpu,int vec)5218 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5219 {
5220 switch (vec) {
5221 case BP_VECTOR:
5222 /*
5223 * Update instruction length as we may reinject the exception
5224 * from user space while in guest debugging mode.
5225 */
5226 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5227 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5228 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5229 return false;
5230 fallthrough;
5231 case DB_VECTOR:
5232 return !(vcpu->guest_debug &
5233 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5234 case DE_VECTOR:
5235 case OF_VECTOR:
5236 case BR_VECTOR:
5237 case UD_VECTOR:
5238 case DF_VECTOR:
5239 case SS_VECTOR:
5240 case GP_VECTOR:
5241 case MF_VECTOR:
5242 return true;
5243 }
5244 return false;
5245 }
5246
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)5247 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5248 int vec, u32 err_code)
5249 {
5250 /*
5251 * Instruction with address size override prefix opcode 0x67
5252 * Cause the #SS fault with 0 error code in VM86 mode.
5253 */
5254 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5255 if (kvm_emulate_instruction(vcpu, 0)) {
5256 if (vcpu->arch.halt_request) {
5257 vcpu->arch.halt_request = 0;
5258 return kvm_emulate_halt_noskip(vcpu);
5259 }
5260 return 1;
5261 }
5262 return 0;
5263 }
5264
5265 /*
5266 * Forward all other exceptions that are valid in real mode.
5267 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5268 * the required debugging infrastructure rework.
5269 */
5270 kvm_queue_exception(vcpu, vec);
5271 return 1;
5272 }
5273
handle_machine_check(struct kvm_vcpu * vcpu)5274 static int handle_machine_check(struct kvm_vcpu *vcpu)
5275 {
5276 /* handled by vmx_vcpu_run() */
5277 return 1;
5278 }
5279
5280 /*
5281 * If the host has split lock detection disabled, then #AC is
5282 * unconditionally injected into the guest, which is the pre split lock
5283 * detection behaviour.
5284 *
5285 * If the host has split lock detection enabled then #AC is
5286 * only injected into the guest when:
5287 * - Guest CPL == 3 (user mode)
5288 * - Guest has #AC detection enabled in CR0
5289 * - Guest EFLAGS has AC bit set
5290 */
vmx_guest_inject_ac(struct kvm_vcpu * vcpu)5291 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5292 {
5293 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5294 return true;
5295
5296 return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5297 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5298 }
5299
is_xfd_nm_fault(struct kvm_vcpu * vcpu)5300 static bool is_xfd_nm_fault(struct kvm_vcpu *vcpu)
5301 {
5302 return vcpu->arch.guest_fpu.fpstate->xfd &&
5303 !kvm_is_cr0_bit_set(vcpu, X86_CR0_TS);
5304 }
5305
handle_exception_nmi(struct kvm_vcpu * vcpu)5306 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5307 {
5308 struct vcpu_vmx *vmx = to_vmx(vcpu);
5309 struct kvm_run *kvm_run = vcpu->run;
5310 u32 intr_info, ex_no, error_code;
5311 unsigned long cr2, dr6;
5312 u32 vect_info;
5313
5314 vect_info = vmx->idt_vectoring_info;
5315 intr_info = vmx_get_intr_info(vcpu);
5316
5317 /*
5318 * Machine checks are handled by handle_exception_irqoff(), or by
5319 * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by
5320 * vmx_vcpu_enter_exit().
5321 */
5322 if (is_machine_check(intr_info) || is_nmi(intr_info))
5323 return 1;
5324
5325 /*
5326 * Queue the exception here instead of in handle_nm_fault_irqoff().
5327 * This ensures the nested_vmx check is not skipped so vmexit can
5328 * be reflected to L1 (when it intercepts #NM) before reaching this
5329 * point.
5330 */
5331 if (is_nm_fault(intr_info)) {
5332 kvm_queue_exception_p(vcpu, NM_VECTOR,
5333 is_xfd_nm_fault(vcpu) ? vcpu->arch.guest_fpu.xfd_err : 0);
5334 return 1;
5335 }
5336
5337 if (is_invalid_opcode(intr_info))
5338 return handle_ud(vcpu);
5339
5340 if (WARN_ON_ONCE(is_ve_fault(intr_info))) {
5341 struct vmx_ve_information *ve_info = vmx->ve_info;
5342
5343 WARN_ONCE(ve_info->exit_reason != EXIT_REASON_EPT_VIOLATION,
5344 "Unexpected #VE on VM-Exit reason 0x%x", ve_info->exit_reason);
5345 dump_vmcs(vcpu);
5346 kvm_mmu_print_sptes(vcpu, ve_info->guest_physical_address, "#VE");
5347 return 1;
5348 }
5349
5350 error_code = 0;
5351 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5352 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5353
5354 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5355 WARN_ON_ONCE(!enable_vmware_backdoor);
5356
5357 /*
5358 * VMware backdoor emulation on #GP interception only handles
5359 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5360 * error code on #GP.
5361 */
5362 if (error_code) {
5363 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5364 return 1;
5365 }
5366 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5367 }
5368
5369 /*
5370 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5371 * MMIO, it is better to report an internal error.
5372 * See the comments in vmx_handle_exit.
5373 */
5374 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5375 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5376 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5377 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5378 vcpu->run->internal.ndata = 4;
5379 vcpu->run->internal.data[0] = vect_info;
5380 vcpu->run->internal.data[1] = intr_info;
5381 vcpu->run->internal.data[2] = error_code;
5382 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5383 return 0;
5384 }
5385
5386 if (is_page_fault(intr_info)) {
5387 cr2 = vmx_get_exit_qual(vcpu);
5388 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5389 /*
5390 * EPT will cause page fault only if we need to
5391 * detect illegal GPAs.
5392 */
5393 WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5394 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5395 return 1;
5396 } else
5397 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5398 }
5399
5400 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5401
5402 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5403 return handle_rmode_exception(vcpu, ex_no, error_code);
5404
5405 switch (ex_no) {
5406 case DB_VECTOR:
5407 dr6 = vmx_get_exit_qual(vcpu);
5408 if (!(vcpu->guest_debug &
5409 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5410 /*
5411 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5412 * instruction. ICEBP generates a trap-like #DB, but
5413 * despite its interception control being tied to #DB,
5414 * is an instruction intercept, i.e. the VM-Exit occurs
5415 * on the ICEBP itself. Use the inner "skip" helper to
5416 * avoid single-step #DB and MTF updates, as ICEBP is
5417 * higher priority. Note, skipping ICEBP still clears
5418 * STI and MOVSS blocking.
5419 *
5420 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5421 * if single-step is enabled in RFLAGS and STI or MOVSS
5422 * blocking is active, as the CPU doesn't set the bit
5423 * on VM-Exit due to #DB interception. VM-Entry has a
5424 * consistency check that a single-step #DB is pending
5425 * in this scenario as the previous instruction cannot
5426 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5427 * don't modify RFLAGS), therefore the one instruction
5428 * delay when activating single-step breakpoints must
5429 * have already expired. Note, the CPU sets/clears BS
5430 * as appropriate for all other VM-Exits types.
5431 */
5432 if (is_icebp(intr_info))
5433 WARN_ON(!skip_emulated_instruction(vcpu));
5434 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5435 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5436 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5437 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5438 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5439
5440 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5441 return 1;
5442 }
5443 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5444 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5445 fallthrough;
5446 case BP_VECTOR:
5447 /*
5448 * Update instruction length as we may reinject #BP from
5449 * user space while in guest debugging mode. Reading it for
5450 * #DB as well causes no harm, it is not used in that case.
5451 */
5452 vmx->vcpu.arch.event_exit_inst_len =
5453 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5454 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5455 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5456 kvm_run->debug.arch.exception = ex_no;
5457 break;
5458 case AC_VECTOR:
5459 if (vmx_guest_inject_ac(vcpu)) {
5460 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5461 return 1;
5462 }
5463
5464 /*
5465 * Handle split lock. Depending on detection mode this will
5466 * either warn and disable split lock detection for this
5467 * task or force SIGBUS on it.
5468 */
5469 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5470 return 1;
5471 fallthrough;
5472 default:
5473 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5474 kvm_run->ex.exception = ex_no;
5475 kvm_run->ex.error_code = error_code;
5476 break;
5477 }
5478 return 0;
5479 }
5480
handle_external_interrupt(struct kvm_vcpu * vcpu)5481 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5482 {
5483 ++vcpu->stat.irq_exits;
5484 return 1;
5485 }
5486
handle_triple_fault(struct kvm_vcpu * vcpu)5487 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5488 {
5489 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5490 vcpu->mmio_needed = 0;
5491 return 0;
5492 }
5493
handle_io(struct kvm_vcpu * vcpu)5494 static int handle_io(struct kvm_vcpu *vcpu)
5495 {
5496 unsigned long exit_qualification;
5497 int size, in, string;
5498 unsigned port;
5499
5500 exit_qualification = vmx_get_exit_qual(vcpu);
5501 string = (exit_qualification & 16) != 0;
5502
5503 ++vcpu->stat.io_exits;
5504
5505 if (string)
5506 return kvm_emulate_instruction(vcpu, 0);
5507
5508 port = exit_qualification >> 16;
5509 size = (exit_qualification & 7) + 1;
5510 in = (exit_qualification & 8) != 0;
5511
5512 return kvm_fast_pio(vcpu, size, port, in);
5513 }
5514
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5515 void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5516 {
5517 /*
5518 * Patch in the VMCALL instruction:
5519 */
5520 hypercall[0] = 0x0f;
5521 hypercall[1] = 0x01;
5522 hypercall[2] = 0xc1;
5523 }
5524
5525 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5526 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5527 {
5528 if (is_guest_mode(vcpu)) {
5529 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5530 unsigned long orig_val = val;
5531
5532 /*
5533 * We get here when L2 changed cr0 in a way that did not change
5534 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5535 * but did change L0 shadowed bits. So we first calculate the
5536 * effective cr0 value that L1 would like to write into the
5537 * hardware. It consists of the L2-owned bits from the new
5538 * value combined with the L1-owned bits from L1's guest_cr0.
5539 */
5540 val = (val & ~vmcs12->cr0_guest_host_mask) |
5541 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5542
5543 if (kvm_set_cr0(vcpu, val))
5544 return 1;
5545 vmcs_writel(CR0_READ_SHADOW, orig_val);
5546 return 0;
5547 } else {
5548 return kvm_set_cr0(vcpu, val);
5549 }
5550 }
5551
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5552 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5553 {
5554 if (is_guest_mode(vcpu)) {
5555 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5556 unsigned long orig_val = val;
5557
5558 /* analogously to handle_set_cr0 */
5559 val = (val & ~vmcs12->cr4_guest_host_mask) |
5560 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5561 if (kvm_set_cr4(vcpu, val))
5562 return 1;
5563 vmcs_writel(CR4_READ_SHADOW, orig_val);
5564 return 0;
5565 } else
5566 return kvm_set_cr4(vcpu, val);
5567 }
5568
handle_desc(struct kvm_vcpu * vcpu)5569 static int handle_desc(struct kvm_vcpu *vcpu)
5570 {
5571 /*
5572 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5573 * and other code needs to be updated if UMIP can be guest owned.
5574 */
5575 BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5576
5577 WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5578 return kvm_emulate_instruction(vcpu, 0);
5579 }
5580
handle_cr(struct kvm_vcpu * vcpu)5581 static int handle_cr(struct kvm_vcpu *vcpu)
5582 {
5583 unsigned long exit_qualification, val;
5584 int cr;
5585 int reg;
5586 int err;
5587 int ret;
5588
5589 exit_qualification = vmx_get_exit_qual(vcpu);
5590 cr = exit_qualification & 15;
5591 reg = (exit_qualification >> 8) & 15;
5592 switch ((exit_qualification >> 4) & 3) {
5593 case 0: /* mov to cr */
5594 val = kvm_register_read(vcpu, reg);
5595 trace_kvm_cr_write(cr, val);
5596 switch (cr) {
5597 case 0:
5598 err = handle_set_cr0(vcpu, val);
5599 return kvm_complete_insn_gp(vcpu, err);
5600 case 3:
5601 WARN_ON_ONCE(enable_unrestricted_guest);
5602
5603 err = kvm_set_cr3(vcpu, val);
5604 return kvm_complete_insn_gp(vcpu, err);
5605 case 4:
5606 err = handle_set_cr4(vcpu, val);
5607 return kvm_complete_insn_gp(vcpu, err);
5608 case 8: {
5609 u8 cr8_prev = kvm_get_cr8(vcpu);
5610 u8 cr8 = (u8)val;
5611 err = kvm_set_cr8(vcpu, cr8);
5612 ret = kvm_complete_insn_gp(vcpu, err);
5613 if (lapic_in_kernel(vcpu))
5614 return ret;
5615 if (cr8_prev <= cr8)
5616 return ret;
5617 /*
5618 * TODO: we might be squashing a
5619 * KVM_GUESTDBG_SINGLESTEP-triggered
5620 * KVM_EXIT_DEBUG here.
5621 */
5622 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5623 return 0;
5624 }
5625 }
5626 break;
5627 case 2: /* clts */
5628 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5629 return -EIO;
5630 case 1: /*mov from cr*/
5631 switch (cr) {
5632 case 3:
5633 WARN_ON_ONCE(enable_unrestricted_guest);
5634
5635 val = kvm_read_cr3(vcpu);
5636 kvm_register_write(vcpu, reg, val);
5637 trace_kvm_cr_read(cr, val);
5638 return kvm_skip_emulated_instruction(vcpu);
5639 case 8:
5640 val = kvm_get_cr8(vcpu);
5641 kvm_register_write(vcpu, reg, val);
5642 trace_kvm_cr_read(cr, val);
5643 return kvm_skip_emulated_instruction(vcpu);
5644 }
5645 break;
5646 case 3: /* lmsw */
5647 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5648 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5649 kvm_lmsw(vcpu, val);
5650
5651 return kvm_skip_emulated_instruction(vcpu);
5652 default:
5653 break;
5654 }
5655 vcpu->run->exit_reason = 0;
5656 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5657 (int)(exit_qualification >> 4) & 3, cr);
5658 return 0;
5659 }
5660
handle_dr(struct kvm_vcpu * vcpu)5661 static int handle_dr(struct kvm_vcpu *vcpu)
5662 {
5663 unsigned long exit_qualification;
5664 int dr, dr7, reg;
5665 int err = 1;
5666
5667 exit_qualification = vmx_get_exit_qual(vcpu);
5668 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5669
5670 /* First, if DR does not exist, trigger UD */
5671 if (!kvm_require_dr(vcpu, dr))
5672 return 1;
5673
5674 if (vmx_get_cpl(vcpu) > 0)
5675 goto out;
5676
5677 dr7 = vmcs_readl(GUEST_DR7);
5678 if (dr7 & DR7_GD) {
5679 /*
5680 * As the vm-exit takes precedence over the debug trap, we
5681 * need to emulate the latter, either for the host or the
5682 * guest debugging itself.
5683 */
5684 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5685 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5686 vcpu->run->debug.arch.dr7 = dr7;
5687 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5688 vcpu->run->debug.arch.exception = DB_VECTOR;
5689 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5690 return 0;
5691 } else {
5692 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5693 return 1;
5694 }
5695 }
5696
5697 if (vcpu->guest_debug == 0) {
5698 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5699
5700 /*
5701 * No more DR vmexits; force a reload of the debug registers
5702 * and reenter on this instruction. The next vmexit will
5703 * retrieve the full state of the debug registers.
5704 */
5705 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5706 return 1;
5707 }
5708
5709 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5710 if (exit_qualification & TYPE_MOV_FROM_DR) {
5711 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
5712 err = 0;
5713 } else {
5714 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5715 }
5716
5717 out:
5718 return kvm_complete_insn_gp(vcpu, err);
5719 }
5720
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5721 void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5722 {
5723 get_debugreg(vcpu->arch.db[0], 0);
5724 get_debugreg(vcpu->arch.db[1], 1);
5725 get_debugreg(vcpu->arch.db[2], 2);
5726 get_debugreg(vcpu->arch.db[3], 3);
5727 get_debugreg(vcpu->arch.dr6, 6);
5728 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5729
5730 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5731 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5732
5733 /*
5734 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5735 * a stale dr6 from the guest.
5736 */
5737 set_debugreg(DR6_RESERVED, 6);
5738 }
5739
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5740 void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5741 {
5742 vmcs_writel(GUEST_DR7, val);
5743 }
5744
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5745 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5746 {
5747 kvm_apic_update_ppr(vcpu);
5748 return 1;
5749 }
5750
handle_interrupt_window(struct kvm_vcpu * vcpu)5751 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5752 {
5753 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5754
5755 kvm_make_request(KVM_REQ_EVENT, vcpu);
5756
5757 ++vcpu->stat.irq_window_exits;
5758 return 1;
5759 }
5760
handle_invlpg(struct kvm_vcpu * vcpu)5761 static int handle_invlpg(struct kvm_vcpu *vcpu)
5762 {
5763 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5764
5765 kvm_mmu_invlpg(vcpu, exit_qualification);
5766 return kvm_skip_emulated_instruction(vcpu);
5767 }
5768
handle_apic_access(struct kvm_vcpu * vcpu)5769 static int handle_apic_access(struct kvm_vcpu *vcpu)
5770 {
5771 if (likely(fasteoi)) {
5772 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5773 int access_type, offset;
5774
5775 access_type = exit_qualification & APIC_ACCESS_TYPE;
5776 offset = exit_qualification & APIC_ACCESS_OFFSET;
5777 /*
5778 * Sane guest uses MOV to write EOI, with written value
5779 * not cared. So make a short-circuit here by avoiding
5780 * heavy instruction emulation.
5781 */
5782 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5783 (offset == APIC_EOI)) {
5784 kvm_lapic_set_eoi(vcpu);
5785 return kvm_skip_emulated_instruction(vcpu);
5786 }
5787 }
5788 return kvm_emulate_instruction(vcpu, 0);
5789 }
5790
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5791 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5792 {
5793 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5794 int vector = exit_qualification & 0xff;
5795
5796 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5797 kvm_apic_set_eoi_accelerated(vcpu, vector);
5798 return 1;
5799 }
5800
handle_apic_write(struct kvm_vcpu * vcpu)5801 static int handle_apic_write(struct kvm_vcpu *vcpu)
5802 {
5803 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5804
5805 /*
5806 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5807 * hardware has done any necessary aliasing, offset adjustments, etc...
5808 * for the access. I.e. the correct value has already been written to
5809 * the vAPIC page for the correct 16-byte chunk. KVM needs only to
5810 * retrieve the register value and emulate the access.
5811 */
5812 u32 offset = exit_qualification & 0xff0;
5813
5814 kvm_apic_write_nodecode(vcpu, offset);
5815 return 1;
5816 }
5817
handle_task_switch(struct kvm_vcpu * vcpu)5818 static int handle_task_switch(struct kvm_vcpu *vcpu)
5819 {
5820 struct vcpu_vmx *vmx = to_vmx(vcpu);
5821 unsigned long exit_qualification;
5822 bool has_error_code = false;
5823 u32 error_code = 0;
5824 u16 tss_selector;
5825 int reason, type, idt_v, idt_index;
5826
5827 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5828 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5829 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5830
5831 exit_qualification = vmx_get_exit_qual(vcpu);
5832
5833 reason = (u32)exit_qualification >> 30;
5834 if (reason == TASK_SWITCH_GATE && idt_v) {
5835 switch (type) {
5836 case INTR_TYPE_NMI_INTR:
5837 vcpu->arch.nmi_injected = false;
5838 vmx_set_nmi_mask(vcpu, true);
5839 break;
5840 case INTR_TYPE_EXT_INTR:
5841 case INTR_TYPE_SOFT_INTR:
5842 kvm_clear_interrupt_queue(vcpu);
5843 break;
5844 case INTR_TYPE_HARD_EXCEPTION:
5845 if (vmx->idt_vectoring_info &
5846 VECTORING_INFO_DELIVER_CODE_MASK) {
5847 has_error_code = true;
5848 error_code =
5849 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5850 }
5851 fallthrough;
5852 case INTR_TYPE_SOFT_EXCEPTION:
5853 kvm_clear_exception_queue(vcpu);
5854 break;
5855 default:
5856 break;
5857 }
5858 }
5859 tss_selector = exit_qualification;
5860
5861 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5862 type != INTR_TYPE_EXT_INTR &&
5863 type != INTR_TYPE_NMI_INTR))
5864 WARN_ON(!skip_emulated_instruction(vcpu));
5865
5866 /*
5867 * TODO: What about debug traps on tss switch?
5868 * Are we supposed to inject them and update dr6?
5869 */
5870 return kvm_task_switch(vcpu, tss_selector,
5871 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5872 reason, has_error_code, error_code);
5873 }
5874
handle_ept_violation(struct kvm_vcpu * vcpu)5875 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5876 {
5877 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5878 gpa_t gpa;
5879
5880 /*
5881 * EPT violation happened while executing iret from NMI,
5882 * "blocked by NMI" bit has to be set before next VM entry.
5883 * There are errata that may cause this bit to not be set:
5884 * AAK134, BY25.
5885 */
5886 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5887 enable_vnmi &&
5888 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5889 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5890
5891 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5892 trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5893
5894 /*
5895 * Check that the GPA doesn't exceed physical memory limits, as that is
5896 * a guest page fault. We have to emulate the instruction here, because
5897 * if the illegal address is that of a paging structure, then
5898 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
5899 * would also use advanced VM-exit information for EPT violations to
5900 * reconstruct the page fault error code.
5901 */
5902 if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa)))
5903 return kvm_emulate_instruction(vcpu, 0);
5904
5905 return __vmx_handle_ept_violation(vcpu, gpa, exit_qualification);
5906 }
5907
handle_ept_misconfig(struct kvm_vcpu * vcpu)5908 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5909 {
5910 gpa_t gpa;
5911
5912 if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5913 return 1;
5914
5915 /*
5916 * A nested guest cannot optimize MMIO vmexits, because we have an
5917 * nGPA here instead of the required GPA.
5918 */
5919 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5920 if (!is_guest_mode(vcpu) &&
5921 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5922 trace_kvm_fast_mmio(gpa);
5923 return kvm_skip_emulated_instruction(vcpu);
5924 }
5925
5926 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5927 }
5928
handle_nmi_window(struct kvm_vcpu * vcpu)5929 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5930 {
5931 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5932 return -EIO;
5933
5934 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5935 ++vcpu->stat.nmi_window_exits;
5936 kvm_make_request(KVM_REQ_EVENT, vcpu);
5937
5938 return 1;
5939 }
5940
5941 /*
5942 * Returns true if emulation is required (due to the vCPU having invalid state
5943 * with unsrestricted guest mode disabled) and KVM can't faithfully emulate the
5944 * current vCPU state.
5945 */
vmx_unhandleable_emulation_required(struct kvm_vcpu * vcpu)5946 static bool vmx_unhandleable_emulation_required(struct kvm_vcpu *vcpu)
5947 {
5948 struct vcpu_vmx *vmx = to_vmx(vcpu);
5949
5950 if (!vmx->vt.emulation_required)
5951 return false;
5952
5953 /*
5954 * It is architecturally impossible for emulation to be required when a
5955 * nested VM-Enter is pending completion, as VM-Enter will VM-Fail if
5956 * guest state is invalid and unrestricted guest is disabled, i.e. KVM
5957 * should synthesize VM-Fail instead emulation L2 code. This path is
5958 * only reachable if userspace modifies L2 guest state after KVM has
5959 * performed the nested VM-Enter consistency checks.
5960 */
5961 if (vmx->nested.nested_run_pending)
5962 return true;
5963
5964 /*
5965 * KVM only supports emulating exceptions if the vCPU is in Real Mode.
5966 * If emulation is required, KVM can't perform a successful VM-Enter to
5967 * inject the exception.
5968 */
5969 return !vmx->rmode.vm86_active &&
5970 (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5971 }
5972
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5973 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5974 {
5975 struct vcpu_vmx *vmx = to_vmx(vcpu);
5976 bool intr_window_requested;
5977 unsigned count = 130;
5978
5979 intr_window_requested = exec_controls_get(vmx) &
5980 CPU_BASED_INTR_WINDOW_EXITING;
5981
5982 while (vmx->vt.emulation_required && count-- != 0) {
5983 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5984 return handle_interrupt_window(&vmx->vcpu);
5985
5986 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5987 return 1;
5988
5989 /*
5990 * Ensure that any updates to kvm->buses[] observed by the
5991 * previous instruction (emulated or otherwise) are also
5992 * visible to the instruction KVM is about to emulate.
5993 */
5994 smp_rmb();
5995
5996 if (!kvm_emulate_instruction(vcpu, 0))
5997 return 0;
5998
5999 if (vmx_unhandleable_emulation_required(vcpu)) {
6000 kvm_prepare_emulation_failure_exit(vcpu);
6001 return 0;
6002 }
6003
6004 if (vcpu->arch.halt_request) {
6005 vcpu->arch.halt_request = 0;
6006 return kvm_emulate_halt_noskip(vcpu);
6007 }
6008
6009 /*
6010 * Note, return 1 and not 0, vcpu_run() will invoke
6011 * xfer_to_guest_mode() which will create a proper return
6012 * code.
6013 */
6014 if (__xfer_to_guest_mode_work_pending())
6015 return 1;
6016 }
6017
6018 return 1;
6019 }
6020
vmx_vcpu_pre_run(struct kvm_vcpu * vcpu)6021 int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
6022 {
6023 if (vmx_unhandleable_emulation_required(vcpu)) {
6024 kvm_prepare_emulation_failure_exit(vcpu);
6025 return 0;
6026 }
6027
6028 return 1;
6029 }
6030
6031 /*
6032 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6033 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6034 */
handle_pause(struct kvm_vcpu * vcpu)6035 static int handle_pause(struct kvm_vcpu *vcpu)
6036 {
6037 if (!kvm_pause_in_guest(vcpu->kvm))
6038 grow_ple_window(vcpu);
6039
6040 /*
6041 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
6042 * VM-execution control is ignored if CPL > 0. OTOH, KVM
6043 * never set PAUSE_EXITING and just set PLE if supported,
6044 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
6045 */
6046 kvm_vcpu_on_spin(vcpu, true);
6047 return kvm_skip_emulated_instruction(vcpu);
6048 }
6049
handle_monitor_trap(struct kvm_vcpu * vcpu)6050 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6051 {
6052 return 1;
6053 }
6054
handle_invpcid(struct kvm_vcpu * vcpu)6055 static int handle_invpcid(struct kvm_vcpu *vcpu)
6056 {
6057 u32 vmx_instruction_info;
6058 unsigned long type;
6059 gva_t gva;
6060 struct {
6061 u64 pcid;
6062 u64 gla;
6063 } operand;
6064 int gpr_index;
6065
6066 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) {
6067 kvm_queue_exception(vcpu, UD_VECTOR);
6068 return 1;
6069 }
6070
6071 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6072 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
6073 type = kvm_register_read(vcpu, gpr_index);
6074
6075 /* According to the Intel instruction reference, the memory operand
6076 * is read even if it isn't needed (e.g., for type==all)
6077 */
6078 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
6079 vmx_instruction_info, false,
6080 sizeof(operand), &gva))
6081 return 1;
6082
6083 return kvm_handle_invpcid(vcpu, type, gva);
6084 }
6085
handle_pml_full(struct kvm_vcpu * vcpu)6086 static int handle_pml_full(struct kvm_vcpu *vcpu)
6087 {
6088 unsigned long exit_qualification;
6089
6090 trace_kvm_pml_full(vcpu->vcpu_id);
6091
6092 exit_qualification = vmx_get_exit_qual(vcpu);
6093
6094 /*
6095 * PML buffer FULL happened while executing iret from NMI,
6096 * "blocked by NMI" bit has to be set before next VM entry.
6097 */
6098 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6099 enable_vnmi &&
6100 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
6101 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6102 GUEST_INTR_STATE_NMI);
6103
6104 /*
6105 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
6106 * here.., and there's no userspace involvement needed for PML.
6107 */
6108 return 1;
6109 }
6110
handle_fastpath_preemption_timer(struct kvm_vcpu * vcpu,bool force_immediate_exit)6111 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu,
6112 bool force_immediate_exit)
6113 {
6114 struct vcpu_vmx *vmx = to_vmx(vcpu);
6115
6116 /*
6117 * In the *extremely* unlikely scenario that this is a spurious VM-Exit
6118 * due to the timer expiring while it was "soft" disabled, just eat the
6119 * exit and re-enter the guest.
6120 */
6121 if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
6122 return EXIT_FASTPATH_REENTER_GUEST;
6123
6124 /*
6125 * If the timer expired because KVM used it to force an immediate exit,
6126 * then mission accomplished.
6127 */
6128 if (force_immediate_exit)
6129 return EXIT_FASTPATH_EXIT_HANDLED;
6130
6131 /*
6132 * If L2 is active, go down the slow path as emulating the guest timer
6133 * expiration likely requires synthesizing a nested VM-Exit.
6134 */
6135 if (is_guest_mode(vcpu))
6136 return EXIT_FASTPATH_NONE;
6137
6138 kvm_lapic_expired_hv_timer(vcpu);
6139 return EXIT_FASTPATH_REENTER_GUEST;
6140 }
6141
handle_preemption_timer(struct kvm_vcpu * vcpu)6142 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6143 {
6144 /*
6145 * This non-fastpath handler is reached if and only if the preemption
6146 * timer was being used to emulate a guest timer while L2 is active.
6147 * All other scenarios are supposed to be handled in the fastpath.
6148 */
6149 WARN_ON_ONCE(!is_guest_mode(vcpu));
6150 kvm_lapic_expired_hv_timer(vcpu);
6151 return 1;
6152 }
6153
6154 /*
6155 * When nested=0, all VMX instruction VM Exits filter here. The handlers
6156 * are overwritten by nested_vmx_hardware_setup() when nested=1.
6157 */
handle_vmx_instruction(struct kvm_vcpu * vcpu)6158 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6159 {
6160 kvm_queue_exception(vcpu, UD_VECTOR);
6161 return 1;
6162 }
6163
handle_tdx_instruction(struct kvm_vcpu * vcpu)6164 static int handle_tdx_instruction(struct kvm_vcpu *vcpu)
6165 {
6166 kvm_queue_exception(vcpu, UD_VECTOR);
6167 return 1;
6168 }
6169
6170 #ifndef CONFIG_X86_SGX_KVM
handle_encls(struct kvm_vcpu * vcpu)6171 static int handle_encls(struct kvm_vcpu *vcpu)
6172 {
6173 /*
6174 * SGX virtualization is disabled. There is no software enable bit for
6175 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6176 * the guest from executing ENCLS (when SGX is supported by hardware).
6177 */
6178 kvm_queue_exception(vcpu, UD_VECTOR);
6179 return 1;
6180 }
6181 #endif /* CONFIG_X86_SGX_KVM */
6182
handle_bus_lock_vmexit(struct kvm_vcpu * vcpu)6183 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6184 {
6185 /*
6186 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6187 * VM-Exits. Unconditionally set the flag here and leave the handling to
6188 * vmx_handle_exit().
6189 */
6190 to_vt(vcpu)->exit_reason.bus_lock_detected = true;
6191 return 1;
6192 }
6193
handle_notify(struct kvm_vcpu * vcpu)6194 static int handle_notify(struct kvm_vcpu *vcpu)
6195 {
6196 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6197 bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6198
6199 ++vcpu->stat.notify_window_exits;
6200
6201 /*
6202 * Notify VM exit happened while executing iret from NMI,
6203 * "blocked by NMI" bit has to be set before next VM entry.
6204 */
6205 if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6206 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6207 GUEST_INTR_STATE_NMI);
6208
6209 if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6210 context_invalid) {
6211 vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6212 vcpu->run->notify.flags = context_invalid ?
6213 KVM_NOTIFY_CONTEXT_INVALID : 0;
6214 return 0;
6215 }
6216
6217 return 1;
6218 }
6219
vmx_get_msr_imm_reg(struct kvm_vcpu * vcpu)6220 static int vmx_get_msr_imm_reg(struct kvm_vcpu *vcpu)
6221 {
6222 return vmx_get_instr_info_reg(vmcs_read32(VMX_INSTRUCTION_INFO));
6223 }
6224
handle_rdmsr_imm(struct kvm_vcpu * vcpu)6225 static int handle_rdmsr_imm(struct kvm_vcpu *vcpu)
6226 {
6227 return kvm_emulate_rdmsr_imm(vcpu, vmx_get_exit_qual(vcpu),
6228 vmx_get_msr_imm_reg(vcpu));
6229 }
6230
handle_wrmsr_imm(struct kvm_vcpu * vcpu)6231 static int handle_wrmsr_imm(struct kvm_vcpu *vcpu)
6232 {
6233 return kvm_emulate_wrmsr_imm(vcpu, vmx_get_exit_qual(vcpu),
6234 vmx_get_msr_imm_reg(vcpu));
6235 }
6236
6237 /*
6238 * The exit handlers return 1 if the exit was handled fully and guest execution
6239 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6240 * to be done to userspace and return 0.
6241 */
6242 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6243 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
6244 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
6245 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
6246 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6247 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6248 [EXIT_REASON_CR_ACCESS] = handle_cr,
6249 [EXIT_REASON_DR_ACCESS] = handle_dr,
6250 [EXIT_REASON_CPUID] = kvm_emulate_cpuid,
6251 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
6252 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
6253 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
6254 [EXIT_REASON_HLT] = kvm_emulate_halt,
6255 [EXIT_REASON_INVD] = kvm_emulate_invd,
6256 [EXIT_REASON_INVLPG] = handle_invlpg,
6257 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc,
6258 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall,
6259 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
6260 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
6261 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
6262 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
6263 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
6264 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
6265 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
6266 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
6267 [EXIT_REASON_VMON] = handle_vmx_instruction,
6268 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
6269 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
6270 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
6271 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
6272 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd,
6273 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv,
6274 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
6275 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
6276 [EXIT_REASON_GDTR_IDTR] = handle_desc,
6277 [EXIT_REASON_LDTR_TR] = handle_desc,
6278 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
6279 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
6280 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
6281 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait,
6282 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
6283 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor,
6284 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
6285 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
6286 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op,
6287 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op,
6288 [EXIT_REASON_PML_FULL] = handle_pml_full,
6289 [EXIT_REASON_INVPCID] = handle_invpcid,
6290 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
6291 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6292 [EXIT_REASON_ENCLS] = handle_encls,
6293 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit,
6294 [EXIT_REASON_NOTIFY] = handle_notify,
6295 [EXIT_REASON_SEAMCALL] = handle_tdx_instruction,
6296 [EXIT_REASON_TDCALL] = handle_tdx_instruction,
6297 [EXIT_REASON_MSR_READ_IMM] = handle_rdmsr_imm,
6298 [EXIT_REASON_MSR_WRITE_IMM] = handle_wrmsr_imm,
6299 };
6300
6301 static const int kvm_vmx_max_exit_handlers =
6302 ARRAY_SIZE(kvm_vmx_exit_handlers);
6303
vmx_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)6304 void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6305 u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code)
6306 {
6307 struct vcpu_vmx *vmx = to_vmx(vcpu);
6308
6309 *reason = vmx->vt.exit_reason.full;
6310 *info1 = vmx_get_exit_qual(vcpu);
6311 if (!(vmx->vt.exit_reason.failed_vmentry)) {
6312 *info2 = vmx->idt_vectoring_info;
6313 *intr_info = vmx_get_intr_info(vcpu);
6314 if (is_exception_with_error_code(*intr_info))
6315 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6316 else
6317 *error_code = 0;
6318 } else {
6319 *info2 = 0;
6320 *intr_info = 0;
6321 *error_code = 0;
6322 }
6323 }
6324
vmx_get_entry_info(struct kvm_vcpu * vcpu,u32 * intr_info,u32 * error_code)6325 void vmx_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info, u32 *error_code)
6326 {
6327 *intr_info = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
6328 if (is_exception_with_error_code(*intr_info))
6329 *error_code = vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE);
6330 else
6331 *error_code = 0;
6332 }
6333
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)6334 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6335 {
6336 if (vmx->pml_pg) {
6337 __free_page(vmx->pml_pg);
6338 vmx->pml_pg = NULL;
6339 }
6340 }
6341
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)6342 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6343 {
6344 struct vcpu_vmx *vmx = to_vmx(vcpu);
6345 u16 pml_idx, pml_tail_index;
6346 u64 *pml_buf;
6347 int i;
6348
6349 pml_idx = vmcs_read16(GUEST_PML_INDEX);
6350
6351 /* Do nothing if PML buffer is empty */
6352 if (pml_idx == PML_HEAD_INDEX)
6353 return;
6354 /*
6355 * PML index always points to the next available PML buffer entity
6356 * unless PML log has just overflowed.
6357 */
6358 pml_tail_index = (pml_idx >= PML_LOG_NR_ENTRIES) ? 0 : pml_idx + 1;
6359
6360 /*
6361 * PML log is written backwards: the CPU first writes the entry 511
6362 * then the entry 510, and so on.
6363 *
6364 * Read the entries in the same order they were written, to ensure that
6365 * the dirty ring is filled in the same order the CPU wrote them.
6366 */
6367 pml_buf = page_address(vmx->pml_pg);
6368
6369 for (i = PML_HEAD_INDEX; i >= pml_tail_index; i--) {
6370 u64 gpa;
6371
6372 gpa = pml_buf[i];
6373 WARN_ON(gpa & (PAGE_SIZE - 1));
6374 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6375 }
6376
6377 /* reset PML index */
6378 vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX);
6379 }
6380
vmx_dump_sel(char * name,uint32_t sel)6381 static void vmx_dump_sel(char *name, uint32_t sel)
6382 {
6383 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6384 name, vmcs_read16(sel),
6385 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6386 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6387 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6388 }
6389
vmx_dump_dtsel(char * name,uint32_t limit)6390 static void vmx_dump_dtsel(char *name, uint32_t limit)
6391 {
6392 pr_err("%s limit=0x%08x, base=0x%016lx\n",
6393 name, vmcs_read32(limit),
6394 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6395 }
6396
vmx_dump_msrs(char * name,struct vmx_msrs * m)6397 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6398 {
6399 unsigned int i;
6400 struct vmx_msr_entry *e;
6401
6402 pr_err("MSR %s:\n", name);
6403 for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6404 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6405 }
6406
dump_vmcs(struct kvm_vcpu * vcpu)6407 void dump_vmcs(struct kvm_vcpu *vcpu)
6408 {
6409 struct vcpu_vmx *vmx = to_vmx(vcpu);
6410 u32 vmentry_ctl, vmexit_ctl;
6411 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6412 u64 tertiary_exec_control;
6413 unsigned long cr4;
6414 int efer_slot;
6415
6416 if (!dump_invalid_vmcs) {
6417 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6418 return;
6419 }
6420
6421 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6422 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6423 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6424 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6425 cr4 = vmcs_readl(GUEST_CR4);
6426
6427 if (cpu_has_secondary_exec_ctrls())
6428 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6429 else
6430 secondary_exec_control = 0;
6431
6432 if (cpu_has_tertiary_exec_ctrls())
6433 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6434 else
6435 tertiary_exec_control = 0;
6436
6437 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6438 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6439 pr_err("*** Guest State ***\n");
6440 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6441 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6442 vmcs_readl(CR0_GUEST_HOST_MASK));
6443 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6444 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6445 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6446 if (cpu_has_vmx_ept()) {
6447 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
6448 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6449 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
6450 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6451 }
6452 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
6453 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6454 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
6455 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6456 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6457 vmcs_readl(GUEST_SYSENTER_ESP),
6458 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6459 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
6460 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
6461 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
6462 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
6463 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
6464 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
6465 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6466 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6467 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6468 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
6469 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6470 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6471 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6472 else if (efer_slot >= 0)
6473 pr_err("EFER= 0x%016llx (autoload)\n",
6474 vmx->msr_autoload.guest.val[efer_slot].value);
6475 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6476 pr_err("EFER= 0x%016llx (effective)\n",
6477 vcpu->arch.efer | (EFER_LMA | EFER_LME));
6478 else
6479 pr_err("EFER= 0x%016llx (effective)\n",
6480 vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6481 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6482 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6483 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
6484 vmcs_read64(GUEST_IA32_DEBUGCTL),
6485 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6486 if (cpu_has_load_perf_global_ctrl() &&
6487 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6488 pr_err("PerfGlobCtl = 0x%016llx\n",
6489 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6490 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6491 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6492 pr_err("Interruptibility = %08x ActivityState = %08x\n",
6493 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6494 vmcs_read32(GUEST_ACTIVITY_STATE));
6495 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6496 pr_err("InterruptStatus = %04x\n",
6497 vmcs_read16(GUEST_INTR_STATUS));
6498 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6499 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6500 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6501 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6502
6503 if (vmentry_ctl & VM_ENTRY_LOAD_CET_STATE)
6504 pr_err("S_CET = 0x%016lx, SSP = 0x%016lx, SSP TABLE = 0x%016lx\n",
6505 vmcs_readl(GUEST_S_CET), vmcs_readl(GUEST_SSP),
6506 vmcs_readl(GUEST_INTR_SSP_TABLE));
6507 pr_err("*** Host State ***\n");
6508 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
6509 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6510 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6511 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6512 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6513 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6514 vmcs_read16(HOST_TR_SELECTOR));
6515 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6516 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6517 vmcs_readl(HOST_TR_BASE));
6518 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6519 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6520 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6521 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6522 vmcs_readl(HOST_CR4));
6523 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6524 vmcs_readl(HOST_IA32_SYSENTER_ESP),
6525 vmcs_read32(HOST_IA32_SYSENTER_CS),
6526 vmcs_readl(HOST_IA32_SYSENTER_EIP));
6527 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6528 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6529 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6530 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6531 if (cpu_has_load_perf_global_ctrl() &&
6532 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6533 pr_err("PerfGlobCtl = 0x%016llx\n",
6534 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6535 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6536 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6537 if (vmexit_ctl & VM_EXIT_LOAD_CET_STATE)
6538 pr_err("S_CET = 0x%016lx, SSP = 0x%016lx, SSP TABLE = 0x%016lx\n",
6539 vmcs_readl(HOST_S_CET), vmcs_readl(HOST_SSP),
6540 vmcs_readl(HOST_INTR_SSP_TABLE));
6541
6542 pr_err("*** Control State ***\n");
6543 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6544 cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6545 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6546 pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6547 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6548 vmcs_read32(EXCEPTION_BITMAP),
6549 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6550 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6551 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6552 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6553 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6554 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6555 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6556 vmcs_read32(VM_EXIT_INTR_INFO),
6557 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6558 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6559 pr_err(" reason=%08x qualification=%016lx\n",
6560 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6561 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6562 vmcs_read32(IDT_VECTORING_INFO_FIELD),
6563 vmcs_read32(IDT_VECTORING_ERROR_CODE));
6564 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6565 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6566 pr_err("TSC Multiplier = 0x%016llx\n",
6567 vmcs_read64(TSC_MULTIPLIER));
6568 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6569 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6570 u16 status = vmcs_read16(GUEST_INTR_STATUS);
6571 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6572 }
6573 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6574 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6575 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6576 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6577 }
6578 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6579 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6580 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6581 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6582 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6583 pr_err("PLE Gap=%08x Window=%08x\n",
6584 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6585 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6586 pr_err("Virtual processor ID = 0x%04x\n",
6587 vmcs_read16(VIRTUAL_PROCESSOR_ID));
6588 if (secondary_exec_control & SECONDARY_EXEC_EPT_VIOLATION_VE) {
6589 struct vmx_ve_information *ve_info = vmx->ve_info;
6590 u64 ve_info_pa = vmcs_read64(VE_INFORMATION_ADDRESS);
6591
6592 /*
6593 * If KVM is dumping the VMCS, then something has gone wrong
6594 * already. Derefencing an address from the VMCS, which could
6595 * very well be corrupted, is a terrible idea. The virtual
6596 * address is known so use it.
6597 */
6598 pr_err("VE info address = 0x%016llx%s\n", ve_info_pa,
6599 ve_info_pa == __pa(ve_info) ? "" : "(corrupted!)");
6600 pr_err("ve_info: 0x%08x 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%04x\n",
6601 ve_info->exit_reason, ve_info->delivery,
6602 ve_info->exit_qualification,
6603 ve_info->guest_linear_address,
6604 ve_info->guest_physical_address, ve_info->eptp_index);
6605 }
6606 }
6607
6608 /*
6609 * The guest has exited. See if we can fix it or if we need userspace
6610 * assistance.
6611 */
__vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6612 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6613 {
6614 struct vcpu_vmx *vmx = to_vmx(vcpu);
6615 union vmx_exit_reason exit_reason = vmx_get_exit_reason(vcpu);
6616 u32 vectoring_info = vmx->idt_vectoring_info;
6617 u16 exit_handler_index;
6618
6619 /*
6620 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6621 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6622 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6623 * mode as if vcpus is in root mode, the PML buffer must has been
6624 * flushed already. Note, PML is never enabled in hardware while
6625 * running L2.
6626 */
6627 if (enable_pml && !is_guest_mode(vcpu))
6628 vmx_flush_pml_buffer(vcpu);
6629
6630 /*
6631 * KVM should never reach this point with a pending nested VM-Enter.
6632 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6633 * invalid guest state should never happen as that means KVM knowingly
6634 * allowed a nested VM-Enter with an invalid vmcs12. More below.
6635 */
6636 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6637 return -EIO;
6638
6639 if (is_guest_mode(vcpu)) {
6640 /*
6641 * PML is never enabled when running L2, bail immediately if a
6642 * PML full exit occurs as something is horribly wrong.
6643 */
6644 if (exit_reason.basic == EXIT_REASON_PML_FULL)
6645 goto unexpected_vmexit;
6646
6647 /*
6648 * The host physical addresses of some pages of guest memory
6649 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6650 * Page). The CPU may write to these pages via their host
6651 * physical address while L2 is running, bypassing any
6652 * address-translation-based dirty tracking (e.g. EPT write
6653 * protection).
6654 *
6655 * Mark them dirty on every exit from L2 to prevent them from
6656 * getting out of sync with dirty tracking.
6657 */
6658 nested_mark_vmcs12_pages_dirty(vcpu);
6659
6660 /*
6661 * Synthesize a triple fault if L2 state is invalid. In normal
6662 * operation, nested VM-Enter rejects any attempt to enter L2
6663 * with invalid state. However, those checks are skipped if
6664 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If
6665 * L2 state is invalid, it means either L1 modified SMRAM state
6666 * or userspace provided bad state. Synthesize TRIPLE_FAULT as
6667 * doing so is architecturally allowed in the RSM case, and is
6668 * the least awful solution for the userspace case without
6669 * risking false positives.
6670 */
6671 if (vmx->vt.emulation_required) {
6672 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6673 return 1;
6674 }
6675
6676 if (nested_vmx_reflect_vmexit(vcpu))
6677 return 1;
6678 }
6679
6680 /* If guest state is invalid, start emulating. L2 is handled above. */
6681 if (vmx->vt.emulation_required)
6682 return handle_invalid_guest_state(vcpu);
6683
6684 if (exit_reason.failed_vmentry) {
6685 dump_vmcs(vcpu);
6686 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6687 vcpu->run->fail_entry.hardware_entry_failure_reason
6688 = exit_reason.full;
6689 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6690 return 0;
6691 }
6692
6693 if (unlikely(vmx->fail)) {
6694 dump_vmcs(vcpu);
6695 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6696 vcpu->run->fail_entry.hardware_entry_failure_reason
6697 = vmcs_read32(VM_INSTRUCTION_ERROR);
6698 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6699 return 0;
6700 }
6701
6702 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6703 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6704 exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6705 exit_reason.basic != EXIT_REASON_PML_FULL &&
6706 exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6707 exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6708 exit_reason.basic != EXIT_REASON_NOTIFY &&
6709 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG)) {
6710 kvm_prepare_event_vectoring_exit(vcpu, INVALID_GPA);
6711 return 0;
6712 }
6713
6714 if (unlikely(!enable_vnmi &&
6715 vmx->loaded_vmcs->soft_vnmi_blocked)) {
6716 if (!vmx_interrupt_blocked(vcpu)) {
6717 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6718 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6719 vcpu->arch.nmi_pending) {
6720 /*
6721 * This CPU don't support us in finding the end of an
6722 * NMI-blocked window if the guest runs with IRQs
6723 * disabled. So we pull the trigger after 1 s of
6724 * futile waiting, but inform the user about this.
6725 */
6726 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6727 "state on VCPU %d after 1 s timeout\n",
6728 __func__, vcpu->vcpu_id);
6729 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6730 }
6731 }
6732
6733 if (exit_fastpath != EXIT_FASTPATH_NONE)
6734 return 1;
6735
6736 if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6737 goto unexpected_vmexit;
6738 #ifdef CONFIG_MITIGATION_RETPOLINE
6739 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6740 return kvm_emulate_wrmsr(vcpu);
6741 else if (exit_reason.basic == EXIT_REASON_MSR_WRITE_IMM)
6742 return handle_wrmsr_imm(vcpu);
6743 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6744 return handle_preemption_timer(vcpu);
6745 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6746 return handle_interrupt_window(vcpu);
6747 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6748 return handle_external_interrupt(vcpu);
6749 else if (exit_reason.basic == EXIT_REASON_HLT)
6750 return kvm_emulate_halt(vcpu);
6751 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6752 return handle_ept_misconfig(vcpu);
6753 #endif
6754
6755 exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6756 kvm_vmx_max_exit_handlers);
6757 if (!kvm_vmx_exit_handlers[exit_handler_index])
6758 goto unexpected_vmexit;
6759
6760 return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6761
6762 unexpected_vmexit:
6763 dump_vmcs(vcpu);
6764 kvm_prepare_unexpected_reason_exit(vcpu, exit_reason.full);
6765 return 0;
6766 }
6767
vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6768 int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6769 {
6770 int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6771
6772 /*
6773 * Exit to user space when bus lock detected to inform that there is
6774 * a bus lock in guest.
6775 */
6776 if (vmx_get_exit_reason(vcpu).bus_lock_detected) {
6777 if (ret > 0)
6778 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6779
6780 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6781 return 0;
6782 }
6783 return ret;
6784 }
6785
vmx_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6786 void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6787 {
6788 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6789 int tpr_threshold;
6790
6791 if (is_guest_mode(vcpu) &&
6792 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6793 return;
6794
6795 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6796 if (is_guest_mode(vcpu))
6797 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6798 else
6799 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6800 }
6801
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6802 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6803 {
6804 struct vcpu_vmx *vmx = to_vmx(vcpu);
6805 u32 sec_exec_control;
6806
6807 if (!lapic_in_kernel(vcpu))
6808 return;
6809
6810 if (!flexpriority_enabled &&
6811 !cpu_has_vmx_virtualize_x2apic_mode())
6812 return;
6813
6814 /* Postpone execution until vmcs01 is the current VMCS. */
6815 if (is_guest_mode(vcpu)) {
6816 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6817 return;
6818 }
6819
6820 sec_exec_control = secondary_exec_controls_get(vmx);
6821 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6822 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6823
6824 switch (kvm_get_apic_mode(vcpu)) {
6825 case LAPIC_MODE_INVALID:
6826 WARN_ONCE(true, "Invalid local APIC state");
6827 break;
6828 case LAPIC_MODE_DISABLED:
6829 break;
6830 case LAPIC_MODE_XAPIC:
6831 if (flexpriority_enabled) {
6832 sec_exec_control |=
6833 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6834 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6835
6836 /*
6837 * Flush the TLB, reloading the APIC access page will
6838 * only do so if its physical address has changed, but
6839 * the guest may have inserted a non-APIC mapping into
6840 * the TLB while the APIC access page was disabled.
6841 */
6842 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6843 }
6844 break;
6845 case LAPIC_MODE_X2APIC:
6846 if (cpu_has_vmx_virtualize_x2apic_mode())
6847 sec_exec_control |=
6848 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6849 break;
6850 }
6851 secondary_exec_controls_set(vmx, sec_exec_control);
6852
6853 vmx_update_msr_bitmap_x2apic(vcpu);
6854 }
6855
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu)6856 void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6857 {
6858 const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6859 struct kvm *kvm = vcpu->kvm;
6860 struct kvm_memslots *slots = kvm_memslots(kvm);
6861 struct kvm_memory_slot *slot;
6862 struct page *refcounted_page;
6863 unsigned long mmu_seq;
6864 kvm_pfn_t pfn;
6865 bool writable;
6866
6867 /* Defer reload until vmcs01 is the current VMCS. */
6868 if (is_guest_mode(vcpu)) {
6869 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6870 return;
6871 }
6872
6873 if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6874 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6875 return;
6876
6877 /*
6878 * Explicitly grab the memslot using KVM's internal slot ID to ensure
6879 * KVM doesn't unintentionally grab a userspace memslot. It _should_
6880 * be impossible for userspace to create a memslot for the APIC when
6881 * APICv is enabled, but paranoia won't hurt in this case.
6882 */
6883 slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6884 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6885 return;
6886
6887 /*
6888 * Ensure that the mmu_notifier sequence count is read before KVM
6889 * retrieves the pfn from the primary MMU. Note, the memslot is
6890 * protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb()
6891 * in kvm_mmu_invalidate_end().
6892 */
6893 mmu_seq = kvm->mmu_invalidate_seq;
6894 smp_rmb();
6895
6896 /*
6897 * No need to retry if the memslot does not exist or is invalid. KVM
6898 * controls the APIC-access page memslot, and only deletes the memslot
6899 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6900 */
6901 pfn = __kvm_faultin_pfn(slot, gfn, FOLL_WRITE, &writable, &refcounted_page);
6902 if (is_error_noslot_pfn(pfn))
6903 return;
6904
6905 read_lock(&vcpu->kvm->mmu_lock);
6906 if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn))
6907 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6908 else
6909 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6910
6911 /*
6912 * Do not pin the APIC access page in memory so that it can be freely
6913 * migrated, the MMU notifier will call us again if it is migrated or
6914 * swapped out. KVM backs the memslot with anonymous memory, the pfn
6915 * should always point at a refcounted page (if the pfn is valid).
6916 */
6917 if (!WARN_ON_ONCE(!refcounted_page))
6918 kvm_release_page_clean(refcounted_page);
6919
6920 /*
6921 * No need for a manual TLB flush at this point, KVM has already done a
6922 * flush if there were SPTEs pointing at the previous page.
6923 */
6924 read_unlock(&vcpu->kvm->mmu_lock);
6925 }
6926
vmx_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)6927 void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6928 {
6929 u16 status;
6930 u8 old;
6931
6932 /*
6933 * If L2 is active, defer the SVI update until vmcs01 is loaded, as SVI
6934 * is only relevant for if and only if Virtual Interrupt Delivery is
6935 * enabled in vmcs12, and if VID is enabled then L2 EOIs affect L2's
6936 * vAPIC, not L1's vAPIC. KVM must update vmcs01 on the next nested
6937 * VM-Exit, otherwise L1 with run with a stale SVI.
6938 */
6939 if (is_guest_mode(vcpu)) {
6940 /*
6941 * KVM is supposed to forward intercepted L2 EOIs to L1 if VID
6942 * is enabled in vmcs12; as above, the EOIs affect L2's vAPIC.
6943 * Note, userspace can stuff state while L2 is active; assert
6944 * that VID is disabled if and only if the vCPU is in KVM_RUN
6945 * to avoid false positives if userspace is setting APIC state.
6946 */
6947 WARN_ON_ONCE(vcpu->wants_to_run &&
6948 nested_cpu_has_vid(get_vmcs12(vcpu)));
6949 to_vmx(vcpu)->nested.update_vmcs01_hwapic_isr = true;
6950 return;
6951 }
6952
6953 if (max_isr == -1)
6954 max_isr = 0;
6955
6956 status = vmcs_read16(GUEST_INTR_STATUS);
6957 old = status >> 8;
6958 if (max_isr != old) {
6959 status &= 0xff;
6960 status |= max_isr << 8;
6961 vmcs_write16(GUEST_INTR_STATUS, status);
6962 }
6963 }
6964
vmx_set_rvi(int vector)6965 static void vmx_set_rvi(int vector)
6966 {
6967 u16 status;
6968 u8 old;
6969
6970 if (vector == -1)
6971 vector = 0;
6972
6973 status = vmcs_read16(GUEST_INTR_STATUS);
6974 old = (u8)status & 0xff;
6975 if ((u8)vector != old) {
6976 status &= ~0xff;
6977 status |= (u8)vector;
6978 vmcs_write16(GUEST_INTR_STATUS, status);
6979 }
6980 }
6981
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6982 int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6983 {
6984 struct vcpu_vt *vt = to_vt(vcpu);
6985 int max_irr;
6986 bool got_posted_interrupt;
6987
6988 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6989 return -EIO;
6990
6991 if (pi_test_on(&vt->pi_desc)) {
6992 pi_clear_on(&vt->pi_desc);
6993 /*
6994 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6995 * But on x86 this is just a compiler barrier anyway.
6996 */
6997 smp_mb__after_atomic();
6998 got_posted_interrupt =
6999 kvm_apic_update_irr(vcpu, vt->pi_desc.pir, &max_irr);
7000 } else {
7001 max_irr = kvm_lapic_find_highest_irr(vcpu);
7002 got_posted_interrupt = false;
7003 }
7004
7005 /*
7006 * Newly recognized interrupts are injected via either virtual interrupt
7007 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is
7008 * disabled in two cases:
7009 *
7010 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1
7011 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
7012 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected
7013 * into L2, but KVM doesn't use virtual interrupt delivery to inject
7014 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
7015 *
7016 * 2) If APICv is disabled for this vCPU, assigned devices may still
7017 * attempt to post interrupts. The posted interrupt vector will cause
7018 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
7019 */
7020 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
7021 vmx_set_rvi(max_irr);
7022 else if (got_posted_interrupt)
7023 kvm_make_request(KVM_REQ_EVENT, vcpu);
7024
7025 return max_irr;
7026 }
7027
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)7028 void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
7029 {
7030 if (!kvm_vcpu_apicv_active(vcpu))
7031 return;
7032
7033 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
7034 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
7035 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
7036 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
7037 }
7038
7039 void vmx_do_interrupt_irqoff(unsigned long entry);
7040 void vmx_do_nmi_irqoff(void);
7041
handle_nm_fault_irqoff(struct kvm_vcpu * vcpu)7042 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
7043 {
7044 /*
7045 * Save xfd_err to guest_fpu before interrupt is enabled, so the
7046 * MSR value is not clobbered by the host activity before the guest
7047 * has chance to consume it.
7048 *
7049 * Update the guest's XFD_ERR if and only if XFD is enabled, as the #NM
7050 * interception may have been caused by L1 interception. Per the SDM,
7051 * XFD_ERR is not modified for non-XFD #NM, i.e. if CR0.TS=1.
7052 *
7053 * Note, XFD_ERR is updated _before_ the #NM interception check, i.e.
7054 * unlike CR2 and DR6, the value is not a payload that is attached to
7055 * the #NM exception.
7056 */
7057 if (is_xfd_nm_fault(vcpu))
7058 rdmsrq(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
7059 }
7060
handle_exception_irqoff(struct kvm_vcpu * vcpu,u32 intr_info)7061 static void handle_exception_irqoff(struct kvm_vcpu *vcpu, u32 intr_info)
7062 {
7063 /* if exit due to PF check for async PF */
7064 if (is_page_fault(intr_info))
7065 vcpu->arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
7066 /* if exit due to NM, handle before interrupts are enabled */
7067 else if (is_nm_fault(intr_info))
7068 handle_nm_fault_irqoff(vcpu);
7069 /* Handle machine checks before interrupts are enabled */
7070 else if (is_machine_check(intr_info))
7071 kvm_machine_check();
7072 }
7073
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu,u32 intr_info)7074 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu,
7075 u32 intr_info)
7076 {
7077 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
7078
7079 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
7080 "unexpected VM-Exit interrupt info: 0x%x", intr_info))
7081 return;
7082
7083 /*
7084 * Invoke the kernel's IRQ handler for the vector. Use the FRED path
7085 * when it's available even if FRED isn't fully enabled, e.g. even if
7086 * FRED isn't supported in hardware, in order to avoid the indirect
7087 * CALL in the non-FRED path.
7088 */
7089 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
7090 if (IS_ENABLED(CONFIG_X86_FRED))
7091 fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector);
7092 else
7093 vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector));
7094 kvm_after_interrupt(vcpu);
7095
7096 vcpu->arch.at_instruction_boundary = true;
7097 }
7098
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)7099 void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
7100 {
7101 if (to_vt(vcpu)->emulation_required)
7102 return;
7103
7104 switch (vmx_get_exit_reason(vcpu).basic) {
7105 case EXIT_REASON_EXTERNAL_INTERRUPT:
7106 handle_external_interrupt_irqoff(vcpu, vmx_get_intr_info(vcpu));
7107 break;
7108 case EXIT_REASON_EXCEPTION_NMI:
7109 handle_exception_irqoff(vcpu, vmx_get_intr_info(vcpu));
7110 break;
7111 case EXIT_REASON_MCE_DURING_VMENTRY:
7112 kvm_machine_check();
7113 break;
7114 default:
7115 break;
7116 }
7117 }
7118
7119 /*
7120 * The kvm parameter can be NULL (module initialization, or invocation before
7121 * VM creation). Be sure to check the kvm parameter before using it.
7122 */
vmx_has_emulated_msr(struct kvm * kvm,u32 index)7123 bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
7124 {
7125 switch (index) {
7126 case MSR_IA32_SMBASE:
7127 if (!IS_ENABLED(CONFIG_KVM_SMM))
7128 return false;
7129 /*
7130 * We cannot do SMM unless we can run the guest in big
7131 * real mode.
7132 */
7133 return enable_unrestricted_guest || emulate_invalid_guest_state;
7134 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7135 return nested;
7136 case MSR_AMD64_VIRT_SPEC_CTRL:
7137 case MSR_AMD64_TSC_RATIO:
7138 /* This is AMD only. */
7139 return false;
7140 default:
7141 return true;
7142 }
7143 }
7144
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)7145 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7146 {
7147 u32 exit_intr_info;
7148 bool unblock_nmi;
7149 u8 vector;
7150 bool idtv_info_valid;
7151
7152 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7153
7154 if (enable_vnmi) {
7155 if (vmx->loaded_vmcs->nmi_known_unmasked)
7156 return;
7157
7158 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7159 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7160 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7161 /*
7162 * SDM 3: 27.7.1.2 (September 2008)
7163 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7164 * a guest IRET fault.
7165 * SDM 3: 23.2.2 (September 2008)
7166 * Bit 12 is undefined in any of the following cases:
7167 * If the VM exit sets the valid bit in the IDT-vectoring
7168 * information field.
7169 * If the VM exit is due to a double fault.
7170 */
7171 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7172 vector != DF_VECTOR && !idtv_info_valid)
7173 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7174 GUEST_INTR_STATE_NMI);
7175 else
7176 vmx->loaded_vmcs->nmi_known_unmasked =
7177 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7178 & GUEST_INTR_STATE_NMI);
7179 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7180 vmx->loaded_vmcs->vnmi_blocked_time +=
7181 ktime_to_ns(ktime_sub(ktime_get(),
7182 vmx->loaded_vmcs->entry_time));
7183 }
7184
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)7185 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7186 u32 idt_vectoring_info,
7187 int instr_len_field,
7188 int error_code_field)
7189 {
7190 u8 vector;
7191 int type;
7192 bool idtv_info_valid;
7193
7194 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7195
7196 vcpu->arch.nmi_injected = false;
7197 kvm_clear_exception_queue(vcpu);
7198 kvm_clear_interrupt_queue(vcpu);
7199
7200 if (!idtv_info_valid)
7201 return;
7202
7203 kvm_make_request(KVM_REQ_EVENT, vcpu);
7204
7205 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7206 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7207
7208 switch (type) {
7209 case INTR_TYPE_NMI_INTR:
7210 vcpu->arch.nmi_injected = true;
7211 /*
7212 * SDM 3: 27.7.1.2 (September 2008)
7213 * Clear bit "block by NMI" before VM entry if a NMI
7214 * delivery faulted.
7215 */
7216 vmx_set_nmi_mask(vcpu, false);
7217 break;
7218 case INTR_TYPE_SOFT_EXCEPTION:
7219 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7220 fallthrough;
7221 case INTR_TYPE_HARD_EXCEPTION: {
7222 u32 error_code = 0;
7223
7224 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK)
7225 error_code = vmcs_read32(error_code_field);
7226
7227 kvm_requeue_exception(vcpu, vector,
7228 idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK,
7229 error_code);
7230 break;
7231 }
7232 case INTR_TYPE_SOFT_INTR:
7233 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7234 fallthrough;
7235 case INTR_TYPE_EXT_INTR:
7236 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7237 break;
7238 default:
7239 break;
7240 }
7241 }
7242
vmx_complete_interrupts(struct vcpu_vmx * vmx)7243 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7244 {
7245 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7246 VM_EXIT_INSTRUCTION_LEN,
7247 IDT_VECTORING_ERROR_CODE);
7248 }
7249
vmx_cancel_injection(struct kvm_vcpu * vcpu)7250 void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7251 {
7252 __vmx_complete_interrupts(vcpu,
7253 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7254 VM_ENTRY_INSTRUCTION_LEN,
7255 VM_ENTRY_EXCEPTION_ERROR_CODE);
7256
7257 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7258 }
7259
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)7260 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7261 {
7262 int i, nr_msrs;
7263 struct perf_guest_switch_msr *msrs;
7264 struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7265
7266 pmu->host_cross_mapped_mask = 0;
7267 if (pmu->pebs_enable & pmu->global_ctrl)
7268 intel_pmu_cross_mapped_check(pmu);
7269
7270 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7271 msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7272 if (!msrs)
7273 return;
7274
7275 for (i = 0; i < nr_msrs; i++)
7276 if (msrs[i].host == msrs[i].guest)
7277 clear_atomic_switch_msr(vmx, msrs[i].msr);
7278 else
7279 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7280 msrs[i].host, false);
7281 }
7282
vmx_update_hv_timer(struct kvm_vcpu * vcpu,bool force_immediate_exit)7283 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7284 {
7285 struct vcpu_vmx *vmx = to_vmx(vcpu);
7286 u64 tscl;
7287 u32 delta_tsc;
7288
7289 if (force_immediate_exit) {
7290 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7291 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7292 } else if (vmx->hv_deadline_tsc != -1) {
7293 tscl = rdtsc();
7294 if (vmx->hv_deadline_tsc > tscl)
7295 /* set_hv_timer ensures the delta fits in 32-bits */
7296 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7297 cpu_preemption_timer_multi);
7298 else
7299 delta_tsc = 0;
7300
7301 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7302 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7303 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7304 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7305 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7306 }
7307 }
7308
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)7309 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7310 {
7311 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7312 vmx->loaded_vmcs->host_state.rsp = host_rsp;
7313 vmcs_writel(HOST_RSP, host_rsp);
7314 }
7315 }
7316
vmx_spec_ctrl_restore_host(struct vcpu_vmx * vmx,unsigned int flags)7317 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7318 unsigned int flags)
7319 {
7320 u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7321
7322 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7323 return;
7324
7325 if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7326 vmx->spec_ctrl = native_rdmsrq(MSR_IA32_SPEC_CTRL);
7327
7328 /*
7329 * If the guest/host SPEC_CTRL values differ, restore the host value.
7330 *
7331 * For legacy IBRS, the IBRS bit always needs to be written after
7332 * transitioning from a less privileged predictor mode, regardless of
7333 * whether the guest/host values differ.
7334 */
7335 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7336 vmx->spec_ctrl != hostval)
7337 native_wrmsrq(MSR_IA32_SPEC_CTRL, hostval);
7338
7339 barrier_nospec();
7340 }
7341
vmx_exit_handlers_fastpath(struct kvm_vcpu * vcpu,bool force_immediate_exit)7342 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu,
7343 bool force_immediate_exit)
7344 {
7345 /*
7346 * If L2 is active, some VMX preemption timer exits can be handled in
7347 * the fastpath even, all other exits must use the slow path.
7348 */
7349 if (is_guest_mode(vcpu) &&
7350 vmx_get_exit_reason(vcpu).basic != EXIT_REASON_PREEMPTION_TIMER)
7351 return EXIT_FASTPATH_NONE;
7352
7353 switch (vmx_get_exit_reason(vcpu).basic) {
7354 case EXIT_REASON_MSR_WRITE:
7355 return handle_fastpath_wrmsr(vcpu);
7356 case EXIT_REASON_MSR_WRITE_IMM:
7357 return handle_fastpath_wrmsr_imm(vcpu, vmx_get_exit_qual(vcpu),
7358 vmx_get_msr_imm_reg(vcpu));
7359 case EXIT_REASON_PREEMPTION_TIMER:
7360 return handle_fastpath_preemption_timer(vcpu, force_immediate_exit);
7361 case EXIT_REASON_HLT:
7362 return handle_fastpath_hlt(vcpu);
7363 case EXIT_REASON_INVD:
7364 return handle_fastpath_invd(vcpu);
7365 default:
7366 return EXIT_FASTPATH_NONE;
7367 }
7368 }
7369
vmx_handle_nmi(struct kvm_vcpu * vcpu)7370 noinstr void vmx_handle_nmi(struct kvm_vcpu *vcpu)
7371 {
7372 if ((u16)vmx_get_exit_reason(vcpu).basic != EXIT_REASON_EXCEPTION_NMI ||
7373 !is_nmi(vmx_get_intr_info(vcpu)))
7374 return;
7375
7376 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7377 if (cpu_feature_enabled(X86_FEATURE_FRED))
7378 fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR);
7379 else
7380 vmx_do_nmi_irqoff();
7381 kvm_after_interrupt(vcpu);
7382 }
7383
vmx_vcpu_enter_exit(struct kvm_vcpu * vcpu,unsigned int flags)7384 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7385 unsigned int flags)
7386 {
7387 struct vcpu_vmx *vmx = to_vmx(vcpu);
7388
7389 guest_state_enter_irqoff();
7390
7391 vmx_l1d_flush(vcpu);
7392
7393 vmx_disable_fb_clear(vmx);
7394
7395 if (vcpu->arch.cr2 != native_read_cr2())
7396 native_write_cr2(vcpu->arch.cr2);
7397
7398 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7399 flags);
7400
7401 vcpu->arch.cr2 = native_read_cr2();
7402 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7403
7404 vmx->idt_vectoring_info = 0;
7405
7406 vmx_enable_fb_clear(vmx);
7407
7408 if (unlikely(vmx->fail)) {
7409 vmx->vt.exit_reason.full = 0xdead;
7410 goto out;
7411 }
7412
7413 vmx->vt.exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7414 if (likely(!vmx_get_exit_reason(vcpu).failed_vmentry))
7415 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7416
7417 vmx_handle_nmi(vcpu);
7418
7419 out:
7420 guest_state_exit_irqoff();
7421 }
7422
vmx_vcpu_run(struct kvm_vcpu * vcpu,u64 run_flags)7423 fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
7424 {
7425 bool force_immediate_exit = run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT;
7426 struct vcpu_vmx *vmx = to_vmx(vcpu);
7427 unsigned long cr3, cr4;
7428
7429 /* Record the guest's net vcpu time for enforced NMI injections. */
7430 if (unlikely(!enable_vnmi &&
7431 vmx->loaded_vmcs->soft_vnmi_blocked))
7432 vmx->loaded_vmcs->entry_time = ktime_get();
7433
7434 /*
7435 * Don't enter VMX if guest state is invalid, let the exit handler
7436 * start emulation until we arrive back to a valid state. Synthesize a
7437 * consistency check VM-Exit due to invalid guest state and bail.
7438 */
7439 if (unlikely(vmx->vt.emulation_required)) {
7440 vmx->fail = 0;
7441
7442 vmx->vt.exit_reason.full = EXIT_REASON_INVALID_STATE;
7443 vmx->vt.exit_reason.failed_vmentry = 1;
7444 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7445 vmx->vt.exit_qualification = ENTRY_FAIL_DEFAULT;
7446 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7447 vmx->vt.exit_intr_info = 0;
7448 return EXIT_FASTPATH_NONE;
7449 }
7450
7451 trace_kvm_entry(vcpu, force_immediate_exit);
7452
7453 if (vmx->ple_window_dirty) {
7454 vmx->ple_window_dirty = false;
7455 vmcs_write32(PLE_WINDOW, vmx->ple_window);
7456 }
7457
7458 /*
7459 * We did this in prepare_switch_to_guest, because it needs to
7460 * be within srcu_read_lock.
7461 */
7462 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7463
7464 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7465 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7466 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7467 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7468 vcpu->arch.regs_dirty = 0;
7469
7470 if (run_flags & KVM_RUN_LOAD_GUEST_DR6)
7471 set_debugreg(vcpu->arch.dr6, 6);
7472
7473 if (run_flags & KVM_RUN_LOAD_DEBUGCTL)
7474 vmx_reload_guest_debugctl(vcpu);
7475
7476 /*
7477 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately
7478 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7479 * it switches back to the current->mm, which can occur in KVM context
7480 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7481 * toggles a static key while handling a VM-Exit.
7482 */
7483 cr3 = __get_current_cr3_fast();
7484 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7485 vmcs_writel(HOST_CR3, cr3);
7486 vmx->loaded_vmcs->host_state.cr3 = cr3;
7487 }
7488
7489 cr4 = cr4_read_shadow();
7490 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7491 vmcs_writel(HOST_CR4, cr4);
7492 vmx->loaded_vmcs->host_state.cr4 = cr4;
7493 }
7494
7495 /* When single-stepping over STI and MOV SS, we must clear the
7496 * corresponding interruptibility bits in the guest state. Otherwise
7497 * vmentry fails as it then expects bit 14 (BS) in pending debug
7498 * exceptions being set, but that's not correct for the guest debugging
7499 * case. */
7500 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7501 vmx_set_interrupt_shadow(vcpu, 0);
7502
7503 pt_guest_enter(vmx);
7504
7505 atomic_switch_perf_msrs(vmx);
7506 if (intel_pmu_lbr_is_enabled(vcpu))
7507 vmx_passthrough_lbr_msrs(vcpu);
7508
7509 if (enable_preemption_timer)
7510 vmx_update_hv_timer(vcpu, force_immediate_exit);
7511 else if (force_immediate_exit)
7512 smp_send_reschedule(vcpu->cpu);
7513
7514 kvm_wait_lapic_expire(vcpu);
7515
7516 /* The actual VMENTER/EXIT is in the .noinstr.text section. */
7517 vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7518
7519 /* All fields are clean at this point */
7520 if (kvm_is_using_evmcs()) {
7521 current_evmcs->hv_clean_fields |=
7522 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7523
7524 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7525 }
7526
7527 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7528 if (vcpu->arch.host_debugctl)
7529 update_debugctlmsr(vcpu->arch.host_debugctl);
7530
7531 #ifndef CONFIG_X86_64
7532 /*
7533 * The sysexit path does not restore ds/es, so we must set them to
7534 * a reasonable value ourselves.
7535 *
7536 * We can't defer this to vmx_prepare_switch_to_host() since that
7537 * function may be executed in interrupt context, which saves and
7538 * restore segments around it, nullifying its effect.
7539 */
7540 loadsegment(ds, __USER_DS);
7541 loadsegment(es, __USER_DS);
7542 #endif
7543
7544 pt_guest_exit(vmx);
7545
7546 if (is_guest_mode(vcpu)) {
7547 /*
7548 * Track VMLAUNCH/VMRESUME that have made past guest state
7549 * checking.
7550 */
7551 if (vmx->nested.nested_run_pending &&
7552 !vmx_get_exit_reason(vcpu).failed_vmentry)
7553 ++vcpu->stat.nested_run;
7554
7555 vmx->nested.nested_run_pending = 0;
7556 }
7557
7558 if (unlikely(vmx->fail))
7559 return EXIT_FASTPATH_NONE;
7560
7561 trace_kvm_exit(vcpu, KVM_ISA_VMX);
7562
7563 if (unlikely(vmx_get_exit_reason(vcpu).failed_vmentry))
7564 return EXIT_FASTPATH_NONE;
7565
7566 vmx->loaded_vmcs->launched = 1;
7567
7568 vmx_recover_nmi_blocking(vmx);
7569 vmx_complete_interrupts(vmx);
7570
7571 return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit);
7572 }
7573
vmx_vcpu_free(struct kvm_vcpu * vcpu)7574 void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7575 {
7576 struct vcpu_vmx *vmx = to_vmx(vcpu);
7577
7578 if (enable_pml)
7579 vmx_destroy_pml_buffer(vmx);
7580 free_vpid(vmx->vpid);
7581 nested_vmx_free_vcpu(vcpu);
7582 free_loaded_vmcs(vmx->loaded_vmcs);
7583 free_page((unsigned long)vmx->ve_info);
7584 }
7585
vmx_vcpu_create(struct kvm_vcpu * vcpu)7586 int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7587 {
7588 struct vmx_uret_msr *tsx_ctrl;
7589 struct vcpu_vmx *vmx;
7590 int i, err;
7591
7592 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7593 vmx = to_vmx(vcpu);
7594
7595 INIT_LIST_HEAD(&vmx->vt.pi_wakeup_list);
7596
7597 err = -ENOMEM;
7598
7599 vmx->vpid = allocate_vpid();
7600
7601 /*
7602 * If PML is turned on, failure on enabling PML just results in failure
7603 * of creating the vcpu, therefore we can simplify PML logic (by
7604 * avoiding dealing with cases, such as enabling PML partially on vcpus
7605 * for the guest), etc.
7606 */
7607 if (enable_pml) {
7608 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7609 if (!vmx->pml_pg)
7610 goto free_vpid;
7611 }
7612
7613 for (i = 0; i < kvm_nr_uret_msrs; ++i)
7614 vmx->guest_uret_msrs[i].mask = -1ull;
7615 if (boot_cpu_has(X86_FEATURE_RTM)) {
7616 /*
7617 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7618 * Keep the host value unchanged to avoid changing CPUID bits
7619 * under the host kernel's feet.
7620 */
7621 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7622 if (tsx_ctrl)
7623 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7624 }
7625
7626 err = alloc_loaded_vmcs(&vmx->vmcs01);
7627 if (err < 0)
7628 goto free_pml;
7629
7630 /*
7631 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7632 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7633 * feature only for vmcs01, KVM currently isn't equipped to realize any
7634 * performance benefits from enabling it for vmcs02.
7635 */
7636 if (kvm_is_using_evmcs() &&
7637 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7638 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7639
7640 evmcs->hv_enlightenments_control.msr_bitmap = 1;
7641 }
7642
7643 vmx->loaded_vmcs = &vmx->vmcs01;
7644
7645 if (cpu_need_virtualize_apic_accesses(vcpu)) {
7646 err = kvm_alloc_apic_access_page(vcpu->kvm);
7647 if (err)
7648 goto free_vmcs;
7649 }
7650
7651 if (enable_ept && !enable_unrestricted_guest) {
7652 err = init_rmode_identity_map(vcpu->kvm);
7653 if (err)
7654 goto free_vmcs;
7655 }
7656
7657 err = -ENOMEM;
7658 if (vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_EPT_VIOLATION_VE) {
7659 struct page *page;
7660
7661 BUILD_BUG_ON(sizeof(*vmx->ve_info) > PAGE_SIZE);
7662
7663 /* ve_info must be page aligned. */
7664 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7665 if (!page)
7666 goto free_vmcs;
7667
7668 vmx->ve_info = page_to_virt(page);
7669 }
7670
7671 if (vmx_can_use_ipiv(vcpu))
7672 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7673 __pa(&vmx->vt.pi_desc) | PID_TABLE_ENTRY_VALID);
7674
7675 return 0;
7676
7677 free_vmcs:
7678 free_loaded_vmcs(vmx->loaded_vmcs);
7679 free_pml:
7680 vmx_destroy_pml_buffer(vmx);
7681 free_vpid:
7682 free_vpid(vmx->vpid);
7683 return err;
7684 }
7685
7686 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7687 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7688
vmx_vm_init(struct kvm * kvm)7689 int vmx_vm_init(struct kvm *kvm)
7690 {
7691 if (!ple_gap)
7692 kvm_disable_exits(kvm, KVM_X86_DISABLE_EXITS_PAUSE);
7693
7694 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7695 switch (l1tf_mitigation) {
7696 case L1TF_MITIGATION_OFF:
7697 case L1TF_MITIGATION_FLUSH_NOWARN:
7698 /* 'I explicitly don't care' is set */
7699 break;
7700 case L1TF_MITIGATION_AUTO:
7701 case L1TF_MITIGATION_FLUSH:
7702 case L1TF_MITIGATION_FLUSH_NOSMT:
7703 case L1TF_MITIGATION_FULL:
7704 /*
7705 * Warn upon starting the first VM in a potentially
7706 * insecure environment.
7707 */
7708 if (sched_smt_active())
7709 pr_warn_once(L1TF_MSG_SMT);
7710 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7711 pr_warn_once(L1TF_MSG_L1D);
7712 break;
7713 case L1TF_MITIGATION_FULL_FORCE:
7714 /* Flush is enforced */
7715 break;
7716 }
7717 }
7718
7719 if (enable_pml)
7720 kvm->arch.cpu_dirty_log_size = PML_LOG_NR_ENTRIES;
7721 return 0;
7722 }
7723
vmx_ignore_guest_pat(struct kvm * kvm)7724 static inline bool vmx_ignore_guest_pat(struct kvm *kvm)
7725 {
7726 /*
7727 * Non-coherent DMA devices need the guest to flush CPU properly.
7728 * In that case it is not possible to map all guest RAM as WB, so
7729 * always trust guest PAT.
7730 */
7731 return !kvm_arch_has_noncoherent_dma(kvm) &&
7732 kvm_check_has_quirk(kvm, KVM_X86_QUIRK_IGNORE_GUEST_PAT);
7733 }
7734
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)7735 u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7736 {
7737 /*
7738 * Force UC for host MMIO regions, as allowing the guest to access MMIO
7739 * with cacheable accesses will result in Machine Checks.
7740 */
7741 if (is_mmio)
7742 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7743
7744 /* Force WB if ignoring guest PAT */
7745 if (vmx_ignore_guest_pat(vcpu->kvm))
7746 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7747
7748 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT);
7749 }
7750
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx,u32 new_ctl)7751 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7752 {
7753 /*
7754 * These bits in the secondary execution controls field
7755 * are dynamic, the others are mostly based on the hypervisor
7756 * architecture and the guest's CPUID. Do not touch the
7757 * dynamic bits.
7758 */
7759 u32 mask =
7760 SECONDARY_EXEC_SHADOW_VMCS |
7761 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7762 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7763 SECONDARY_EXEC_DESC;
7764
7765 u32 cur_ctl = secondary_exec_controls_get(vmx);
7766
7767 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7768 }
7769
7770 /*
7771 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7772 * (indicating "allowed-1") if they are supported in the guest's CPUID.
7773 */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)7774 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7775 {
7776 struct vcpu_vmx *vmx = to_vmx(vcpu);
7777 struct kvm_cpuid_entry2 *entry;
7778
7779 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7780 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7781
7782 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
7783 if (entry && (entry->_reg & (_cpuid_mask))) \
7784 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
7785 } while (0)
7786
7787 entry = kvm_find_cpuid_entry(vcpu, 0x1);
7788 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
7789 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
7790 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
7791 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
7792 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
7793 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
7794 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
7795 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
7796 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
7797 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7798 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
7799 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
7800 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
7801 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
7802
7803 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7804 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
7805 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
7806 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
7807 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
7808 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
7809 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
7810 cr4_fixed1_update(X86_CR4_CET, ecx, feature_bit(SHSTK));
7811 cr4_fixed1_update(X86_CR4_CET, edx, feature_bit(IBT));
7812
7813 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1);
7814 cr4_fixed1_update(X86_CR4_LAM_SUP, eax, feature_bit(LAM));
7815
7816 #undef cr4_fixed1_update
7817 }
7818
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7819 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7820 {
7821 struct vcpu_vmx *vmx = to_vmx(vcpu);
7822 struct kvm_cpuid_entry2 *best = NULL;
7823 int i;
7824
7825 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7826 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7827 if (!best)
7828 return;
7829 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7830 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7831 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7832 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7833 }
7834
7835 /* Get the number of configurable Address Ranges for filtering */
7836 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7837 PT_CAP_num_address_ranges);
7838
7839 /* Initialize and clear the no dependency bits */
7840 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7841 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7842 RTIT_CTL_BRANCH_EN);
7843
7844 /*
7845 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7846 * will inject an #GP
7847 */
7848 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7849 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7850
7851 /*
7852 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7853 * PSBFreq can be set
7854 */
7855 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7856 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7857 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7858
7859 /*
7860 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7861 */
7862 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7863 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7864 RTIT_CTL_MTC_RANGE);
7865
7866 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7867 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7868 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7869 RTIT_CTL_PTW_EN);
7870
7871 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7872 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7873 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7874
7875 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7876 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7877 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7878
7879 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7880 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7881 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7882
7883 /* unmask address range configure area */
7884 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7885 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7886 }
7887
vmx_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)7888 void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7889 {
7890 struct vcpu_vmx *vmx = to_vmx(vcpu);
7891
7892 /*
7893 * XSAVES is effectively enabled if and only if XSAVE is also exposed
7894 * to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7895 * set if and only if XSAVE is supported.
7896 */
7897 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE))
7898 guest_cpu_cap_clear(vcpu, X86_FEATURE_XSAVES);
7899
7900 vmx_setup_uret_msrs(vmx);
7901
7902 if (cpu_has_secondary_exec_ctrls())
7903 vmcs_set_secondary_exec_control(vmx,
7904 vmx_secondary_exec_control(vmx));
7905
7906 if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
7907 vmx->msr_ia32_feature_control_valid_bits |=
7908 FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7909 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7910 else
7911 vmx->msr_ia32_feature_control_valid_bits &=
7912 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7913 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7914
7915 if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
7916 nested_vmx_cr_fixed1_bits_update(vcpu);
7917
7918 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7919 guest_cpu_cap_has(vcpu, X86_FEATURE_INTEL_PT))
7920 update_intel_pt_cfg(vcpu);
7921
7922 if (boot_cpu_has(X86_FEATURE_RTM)) {
7923 struct vmx_uret_msr *msr;
7924 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7925 if (msr) {
7926 bool enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_RTM);
7927 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7928 }
7929 }
7930
7931 set_cr4_guest_host_mask(vmx);
7932
7933 vmx_write_encls_bitmap(vcpu, NULL);
7934 if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX))
7935 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7936 else
7937 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7938
7939 if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC))
7940 vmx->msr_ia32_feature_control_valid_bits |=
7941 FEAT_CTL_SGX_LC_ENABLED;
7942 else
7943 vmx->msr_ia32_feature_control_valid_bits &=
7944 ~FEAT_CTL_SGX_LC_ENABLED;
7945
7946 /* Refresh #PF interception to account for MAXPHYADDR changes. */
7947 vmx_update_exception_bitmap(vcpu);
7948 }
7949
vmx_get_perf_capabilities(void)7950 static __init u64 vmx_get_perf_capabilities(void)
7951 {
7952 u64 perf_cap = PERF_CAP_FW_WRITES;
7953 u64 host_perf_cap = 0;
7954
7955 if (!enable_pmu)
7956 return 0;
7957
7958 if (boot_cpu_has(X86_FEATURE_PDCM))
7959 rdmsrq(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7960
7961 if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7962 x86_perf_get_lbr(&vmx_lbr_caps);
7963
7964 /*
7965 * KVM requires LBR callstack support, as the overhead due to
7966 * context switching LBRs without said support is too high.
7967 * See intel_pmu_create_guest_lbr_event() for more info.
7968 */
7969 if (!vmx_lbr_caps.has_callstack)
7970 memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps));
7971 else if (vmx_lbr_caps.nr)
7972 perf_cap |= host_perf_cap & PERF_CAP_LBR_FMT;
7973 }
7974
7975 if (vmx_pebs_supported()) {
7976 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7977
7978 /*
7979 * Disallow adaptive PEBS as it is functionally broken, can be
7980 * used by the guest to read *host* LBRs, and can be used to
7981 * bypass userspace event filters. To correctly and safely
7982 * support adaptive PEBS, KVM needs to:
7983 *
7984 * 1. Account for the ADAPTIVE flag when (re)programming fixed
7985 * counters.
7986 *
7987 * 2. Gain support from perf (or take direct control of counter
7988 * programming) to support events without adaptive PEBS
7989 * enabled for the hardware counter.
7990 *
7991 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with
7992 * adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1.
7993 *
7994 * 4. Document which PMU events are effectively exposed to the
7995 * guest via adaptive PEBS, and make adaptive PEBS mutually
7996 * exclusive with KVM_SET_PMU_EVENT_FILTER if necessary.
7997 */
7998 perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7999 }
8000
8001 return perf_cap;
8002 }
8003
vmx_set_cpu_caps(void)8004 static __init void vmx_set_cpu_caps(void)
8005 {
8006 kvm_set_cpu_caps();
8007
8008 /* CPUID 0x1 */
8009 if (nested)
8010 kvm_cpu_cap_set(X86_FEATURE_VMX);
8011
8012 /* CPUID 0x7 */
8013 if (kvm_mpx_supported())
8014 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
8015 if (!cpu_has_vmx_invpcid())
8016 kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
8017 if (vmx_pt_mode_is_host_guest())
8018 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
8019 if (vmx_pebs_supported()) {
8020 kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
8021 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
8022 }
8023
8024 if (!enable_pmu)
8025 kvm_cpu_cap_clear(X86_FEATURE_PDCM);
8026 kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
8027
8028 if (!enable_sgx) {
8029 kvm_cpu_cap_clear(X86_FEATURE_SGX);
8030 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
8031 kvm_cpu_cap_clear(X86_FEATURE_SGX1);
8032 kvm_cpu_cap_clear(X86_FEATURE_SGX2);
8033 kvm_cpu_cap_clear(X86_FEATURE_SGX_EDECCSSA);
8034 }
8035
8036 if (vmx_umip_emulated())
8037 kvm_cpu_cap_set(X86_FEATURE_UMIP);
8038
8039 /* CPUID 0xD.1 */
8040 if (!cpu_has_vmx_xsaves())
8041 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
8042
8043 /* CPUID 0x80000001 and 0x7 (RDPID) */
8044 if (!cpu_has_vmx_rdtscp()) {
8045 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
8046 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
8047 }
8048
8049 if (cpu_has_vmx_waitpkg())
8050 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
8051
8052 /*
8053 * Disable CET if unrestricted_guest is unsupported as KVM doesn't
8054 * enforce CET HW behaviors in emulator. On platforms with
8055 * VMX_BASIC[bit56] == 0, inject #CP at VMX entry with error code
8056 * fails, so disable CET in this case too.
8057 */
8058 if (!cpu_has_load_cet_ctrl() || !enable_unrestricted_guest ||
8059 !cpu_has_vmx_basic_no_hw_errcode_cc()) {
8060 kvm_cpu_cap_clear(X86_FEATURE_SHSTK);
8061 kvm_cpu_cap_clear(X86_FEATURE_IBT);
8062 }
8063 }
8064
vmx_is_io_intercepted(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,unsigned long * exit_qualification)8065 static bool vmx_is_io_intercepted(struct kvm_vcpu *vcpu,
8066 struct x86_instruction_info *info,
8067 unsigned long *exit_qualification)
8068 {
8069 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8070 unsigned short port;
8071 int size;
8072 bool imm;
8073
8074 /*
8075 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
8076 * VM-exits depend on the 'unconditional IO exiting' VM-execution
8077 * control.
8078 *
8079 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
8080 */
8081 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
8082 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
8083
8084 if (info->intercept == x86_intercept_in ||
8085 info->intercept == x86_intercept_ins) {
8086 port = info->src_val;
8087 size = info->dst_bytes;
8088 imm = info->src_type == OP_IMM;
8089 } else {
8090 port = info->dst_val;
8091 size = info->src_bytes;
8092 imm = info->dst_type == OP_IMM;
8093 }
8094
8095
8096 *exit_qualification = ((unsigned long)port << 16) | (size - 1);
8097
8098 if (info->intercept == x86_intercept_ins ||
8099 info->intercept == x86_intercept_outs)
8100 *exit_qualification |= BIT(4);
8101
8102 if (info->rep_prefix)
8103 *exit_qualification |= BIT(5);
8104
8105 if (imm)
8106 *exit_qualification |= BIT(6);
8107
8108 return nested_vmx_check_io_bitmaps(vcpu, port, size);
8109 }
8110
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)8111 int vmx_check_intercept(struct kvm_vcpu *vcpu,
8112 struct x86_instruction_info *info,
8113 enum x86_intercept_stage stage,
8114 struct x86_exception *exception)
8115 {
8116 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8117 unsigned long exit_qualification = 0;
8118 u32 vm_exit_reason;
8119 u64 exit_insn_len;
8120
8121 switch (info->intercept) {
8122 case x86_intercept_rdpid:
8123 /*
8124 * RDPID causes #UD if not enabled through secondary execution
8125 * controls (ENABLE_RDTSCP). Note, the implicit MSR access to
8126 * TSC_AUX is NOT subject to interception, i.e. checking only
8127 * the dedicated execution control is architecturally correct.
8128 */
8129 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
8130 exception->vector = UD_VECTOR;
8131 exception->error_code_valid = false;
8132 return X86EMUL_PROPAGATE_FAULT;
8133 }
8134 return X86EMUL_CONTINUE;
8135
8136 case x86_intercept_in:
8137 case x86_intercept_ins:
8138 case x86_intercept_out:
8139 case x86_intercept_outs:
8140 if (!vmx_is_io_intercepted(vcpu, info, &exit_qualification))
8141 return X86EMUL_CONTINUE;
8142
8143 vm_exit_reason = EXIT_REASON_IO_INSTRUCTION;
8144 break;
8145
8146 case x86_intercept_lgdt:
8147 case x86_intercept_lidt:
8148 case x86_intercept_lldt:
8149 case x86_intercept_ltr:
8150 case x86_intercept_sgdt:
8151 case x86_intercept_sidt:
8152 case x86_intercept_sldt:
8153 case x86_intercept_str:
8154 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
8155 return X86EMUL_CONTINUE;
8156
8157 if (info->intercept == x86_intercept_lldt ||
8158 info->intercept == x86_intercept_ltr ||
8159 info->intercept == x86_intercept_sldt ||
8160 info->intercept == x86_intercept_str)
8161 vm_exit_reason = EXIT_REASON_LDTR_TR;
8162 else
8163 vm_exit_reason = EXIT_REASON_GDTR_IDTR;
8164 /*
8165 * FIXME: Decode the ModR/M to generate the correct exit
8166 * qualification for memory operands.
8167 */
8168 break;
8169
8170 case x86_intercept_hlt:
8171 if (!nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING))
8172 return X86EMUL_CONTINUE;
8173
8174 vm_exit_reason = EXIT_REASON_HLT;
8175 break;
8176
8177 case x86_intercept_pause:
8178 /*
8179 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
8180 * with vanilla NOPs in the emulator. Apply the interception
8181 * check only to actual PAUSE instructions. Don't check
8182 * PAUSE-loop-exiting, software can't expect a given PAUSE to
8183 * exit, i.e. KVM is within its rights to allow L2 to execute
8184 * the PAUSE.
8185 */
8186 if ((info->rep_prefix != REPE_PREFIX) ||
8187 !nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING))
8188 return X86EMUL_CONTINUE;
8189
8190 vm_exit_reason = EXIT_REASON_PAUSE_INSTRUCTION;
8191 break;
8192
8193 /* TODO: check more intercepts... */
8194 default:
8195 return X86EMUL_UNHANDLEABLE;
8196 }
8197
8198 exit_insn_len = abs_diff((s64)info->next_rip, (s64)info->rip);
8199 if (!exit_insn_len || exit_insn_len > X86_MAX_INSTRUCTION_LENGTH)
8200 return X86EMUL_UNHANDLEABLE;
8201
8202 __nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification,
8203 exit_insn_len);
8204 return X86EMUL_INTERCEPTED;
8205 }
8206
8207 #ifdef CONFIG_X86_64
8208 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)8209 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8210 u64 divisor, u64 *result)
8211 {
8212 u64 low = a << shift, high = a >> (64 - shift);
8213
8214 /* To avoid the overflow on divq */
8215 if (high >= divisor)
8216 return 1;
8217
8218 /* Low hold the result, high hold rem which is discarded */
8219 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8220 "rm" (divisor), "0" (low), "1" (high));
8221 *result = low;
8222
8223 return 0;
8224 }
8225
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)8226 int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8227 bool *expired)
8228 {
8229 struct vcpu_vmx *vmx;
8230 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8231 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8232
8233 vmx = to_vmx(vcpu);
8234 tscl = rdtsc();
8235 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8236 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8237 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8238 ktimer->timer_advance_ns);
8239
8240 if (delta_tsc > lapic_timer_advance_cycles)
8241 delta_tsc -= lapic_timer_advance_cycles;
8242 else
8243 delta_tsc = 0;
8244
8245 /* Convert to host delta tsc if tsc scaling is enabled */
8246 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8247 delta_tsc && u64_shl_div_u64(delta_tsc,
8248 kvm_caps.tsc_scaling_ratio_frac_bits,
8249 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8250 return -ERANGE;
8251
8252 /*
8253 * If the delta tsc can't fit in the 32 bit after the multi shift,
8254 * we can't use the preemption timer.
8255 * It's possible that it fits on later vmentries, but checking
8256 * on every vmentry is costly so we just use an hrtimer.
8257 */
8258 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8259 return -ERANGE;
8260
8261 vmx->hv_deadline_tsc = tscl + delta_tsc;
8262 *expired = !delta_tsc;
8263 return 0;
8264 }
8265
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)8266 void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8267 {
8268 to_vmx(vcpu)->hv_deadline_tsc = -1;
8269 }
8270 #endif
8271
vmx_update_cpu_dirty_logging(struct kvm_vcpu * vcpu)8272 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8273 {
8274 struct vcpu_vmx *vmx = to_vmx(vcpu);
8275
8276 if (WARN_ON_ONCE(!enable_pml))
8277 return;
8278
8279 if (is_guest_mode(vcpu)) {
8280 vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8281 return;
8282 }
8283
8284 /*
8285 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8286 * code, but in that case another update request will be made and so
8287 * the guest will never run with a stale PML value.
8288 */
8289 if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8290 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8291 else
8292 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8293 }
8294
vmx_setup_mce(struct kvm_vcpu * vcpu)8295 void vmx_setup_mce(struct kvm_vcpu *vcpu)
8296 {
8297 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8298 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8299 FEAT_CTL_LMCE_ENABLED;
8300 else
8301 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8302 ~FEAT_CTL_LMCE_ENABLED;
8303 }
8304
8305 #ifdef CONFIG_KVM_SMM
vmx_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)8306 int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8307 {
8308 /* we need a nested vmexit to enter SMM, postpone if run is pending */
8309 if (to_vmx(vcpu)->nested.nested_run_pending)
8310 return -EBUSY;
8311 return !is_smm(vcpu);
8312 }
8313
vmx_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)8314 int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8315 {
8316 struct vcpu_vmx *vmx = to_vmx(vcpu);
8317
8318 /*
8319 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8320 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong
8321 * SMI and RSM only modify state that is saved and restored via SMRAM.
8322 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8323 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8324 */
8325 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8326 if (vmx->nested.smm.guest_mode)
8327 nested_vmx_vmexit(vcpu, -1, 0, 0);
8328
8329 vmx->nested.smm.vmxon = vmx->nested.vmxon;
8330 vmx->nested.vmxon = false;
8331 vmx_clear_hlt(vcpu);
8332 return 0;
8333 }
8334
vmx_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)8335 int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8336 {
8337 struct vcpu_vmx *vmx = to_vmx(vcpu);
8338 int ret;
8339
8340 if (vmx->nested.smm.vmxon) {
8341 vmx->nested.vmxon = true;
8342 vmx->nested.smm.vmxon = false;
8343 }
8344
8345 if (vmx->nested.smm.guest_mode) {
8346 ret = nested_vmx_enter_non_root_mode(vcpu, false);
8347 if (ret)
8348 return ret;
8349
8350 vmx->nested.nested_run_pending = 1;
8351 vmx->nested.smm.guest_mode = false;
8352 }
8353 return 0;
8354 }
8355
vmx_enable_smi_window(struct kvm_vcpu * vcpu)8356 void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8357 {
8358 /* RSM will cause a vmexit anyway. */
8359 }
8360 #endif
8361
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)8362 bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8363 {
8364 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8365 }
8366
vmx_migrate_timers(struct kvm_vcpu * vcpu)8367 void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8368 {
8369 if (is_guest_mode(vcpu)) {
8370 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8371
8372 if (hrtimer_try_to_cancel(timer) == 1)
8373 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8374 }
8375 }
8376
vmx_hardware_unsetup(void)8377 void vmx_hardware_unsetup(void)
8378 {
8379 kvm_set_posted_intr_wakeup_handler(NULL);
8380
8381 if (nested)
8382 nested_vmx_hardware_unsetup();
8383
8384 free_kvm_area();
8385 }
8386
vmx_vm_destroy(struct kvm * kvm)8387 void vmx_vm_destroy(struct kvm *kvm)
8388 {
8389 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8390
8391 free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8392 }
8393
8394 /*
8395 * Note, the SDM states that the linear address is masked *after* the modified
8396 * canonicality check, whereas KVM masks (untags) the address and then performs
8397 * a "normal" canonicality check. Functionally, the two methods are identical,
8398 * and when the masking occurs relative to the canonicality check isn't visible
8399 * to software, i.e. KVM's behavior doesn't violate the SDM.
8400 */
vmx_get_untagged_addr(struct kvm_vcpu * vcpu,gva_t gva,unsigned int flags)8401 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags)
8402 {
8403 int lam_bit;
8404 unsigned long cr3_bits;
8405
8406 if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG))
8407 return gva;
8408
8409 if (!is_64_bit_mode(vcpu))
8410 return gva;
8411
8412 /*
8413 * Bit 63 determines if the address should be treated as user address
8414 * or a supervisor address.
8415 */
8416 if (!(gva & BIT_ULL(63))) {
8417 cr3_bits = kvm_get_active_cr3_lam_bits(vcpu);
8418 if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48)))
8419 return gva;
8420
8421 /* LAM_U48 is ignored if LAM_U57 is set. */
8422 lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47;
8423 } else {
8424 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP))
8425 return gva;
8426
8427 lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47;
8428 }
8429
8430 /*
8431 * Untag the address by sign-extending the lam_bit, but NOT to bit 63.
8432 * Bit 63 is retained from the raw virtual address so that untagging
8433 * doesn't change a user access to a supervisor access, and vice versa.
8434 */
8435 return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63));
8436 }
8437
vmx_handle_intel_pt_intr(void)8438 static unsigned int vmx_handle_intel_pt_intr(void)
8439 {
8440 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8441
8442 /* '0' on failure so that the !PT case can use a RET0 static call. */
8443 if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8444 return 0;
8445
8446 kvm_make_request(KVM_REQ_PMI, vcpu);
8447 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8448 (unsigned long *)&vcpu->arch.pmu.global_status);
8449 return 1;
8450 }
8451
vmx_setup_user_return_msrs(void)8452 static __init void vmx_setup_user_return_msrs(void)
8453 {
8454
8455 /*
8456 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8457 * will emulate SYSCALL in legacy mode if the vendor string in guest
8458 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8459 * support this emulation, MSR_STAR is included in the list for i386,
8460 * but is never loaded into hardware. MSR_CSTAR is also never loaded
8461 * into hardware and is here purely for emulation purposes.
8462 */
8463 const u32 vmx_uret_msrs_list[] = {
8464 #ifdef CONFIG_X86_64
8465 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8466 #endif
8467 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8468 MSR_IA32_TSX_CTRL,
8469 };
8470 int i;
8471
8472 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8473
8474 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8475 kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8476 }
8477
vmx_setup_me_spte_mask(void)8478 static void __init vmx_setup_me_spte_mask(void)
8479 {
8480 u64 me_mask = 0;
8481
8482 /*
8483 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8484 * kvm_host.maxphyaddr. On MKTME and/or TDX capable systems,
8485 * boot_cpu_data.x86_phys_bits holds the actual physical address
8486 * w/o the KeyID bits, and kvm_host.maxphyaddr equals to
8487 * MAXPHYADDR reported by CPUID. Those bits between are KeyID bits.
8488 */
8489 if (boot_cpu_data.x86_phys_bits != kvm_host.maxphyaddr)
8490 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8491 kvm_host.maxphyaddr - 1);
8492
8493 /*
8494 * Unlike SME, host kernel doesn't support setting up any
8495 * MKTME KeyID on Intel platforms. No memory encryption
8496 * bits should be included into the SPTE.
8497 */
8498 kvm_mmu_set_me_spte_mask(0, me_mask);
8499 }
8500
vmx_hardware_setup(void)8501 __init int vmx_hardware_setup(void)
8502 {
8503 unsigned long host_bndcfgs;
8504 struct desc_ptr dt;
8505 int r;
8506
8507 store_idt(&dt);
8508 host_idt_base = dt.address;
8509
8510 vmx_setup_user_return_msrs();
8511
8512
8513 if (boot_cpu_has(X86_FEATURE_NX))
8514 kvm_enable_efer_bits(EFER_NX);
8515
8516 if (boot_cpu_has(X86_FEATURE_MPX)) {
8517 rdmsrq(MSR_IA32_BNDCFGS, host_bndcfgs);
8518 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8519 }
8520
8521 if (!cpu_has_vmx_mpx())
8522 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8523 XFEATURE_MASK_BNDCSR);
8524
8525 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8526 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8527 enable_vpid = 0;
8528
8529 if (!cpu_has_vmx_ept() ||
8530 !cpu_has_vmx_ept_4levels() ||
8531 !cpu_has_vmx_ept_mt_wb() ||
8532 !cpu_has_vmx_invept_global())
8533 enable_ept = 0;
8534
8535 /* NX support is required for shadow paging. */
8536 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8537 pr_err_ratelimited("NX (Execute Disable) not supported\n");
8538 return -EOPNOTSUPP;
8539 }
8540
8541 /*
8542 * Shadow paging doesn't have a (further) performance penalty
8543 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8544 * by default
8545 */
8546 if (!enable_ept)
8547 allow_smaller_maxphyaddr = true;
8548
8549 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8550 enable_ept_ad_bits = 0;
8551
8552 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8553 enable_unrestricted_guest = 0;
8554
8555 if (!cpu_has_vmx_flexpriority())
8556 flexpriority_enabled = 0;
8557
8558 if (!cpu_has_virtual_nmis())
8559 enable_vnmi = 0;
8560
8561 #ifdef CONFIG_X86_SGX_KVM
8562 if (!cpu_has_vmx_encls_vmexit())
8563 enable_sgx = false;
8564 #endif
8565
8566 /*
8567 * set_apic_access_page_addr() is used to reload apic access
8568 * page upon invalidation. No need to do anything if not
8569 * using the APIC_ACCESS_ADDR VMCS field.
8570 */
8571 if (!flexpriority_enabled)
8572 vt_x86_ops.set_apic_access_page_addr = NULL;
8573
8574 if (!cpu_has_vmx_tpr_shadow())
8575 vt_x86_ops.update_cr8_intercept = NULL;
8576
8577 #if IS_ENABLED(CONFIG_HYPERV)
8578 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8579 && enable_ept) {
8580 vt_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8581 vt_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8582 }
8583 #endif
8584
8585 if (!cpu_has_vmx_ple()) {
8586 ple_gap = 0;
8587 ple_window = 0;
8588 ple_window_grow = 0;
8589 ple_window_max = 0;
8590 ple_window_shrink = 0;
8591 }
8592
8593 if (!cpu_has_vmx_apicv())
8594 enable_apicv = 0;
8595 if (!enable_apicv)
8596 vt_x86_ops.sync_pir_to_irr = NULL;
8597
8598 if (!enable_apicv || !cpu_has_vmx_ipiv())
8599 enable_ipiv = false;
8600
8601 if (cpu_has_vmx_tsc_scaling())
8602 kvm_caps.has_tsc_control = true;
8603
8604 kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8605 kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8606 kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8607 kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8608
8609 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8610
8611 if (enable_ept)
8612 kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8613 cpu_has_vmx_ept_execute_only());
8614 else
8615 vt_x86_ops.get_mt_mask = NULL;
8616
8617 /*
8618 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8619 * bits to shadow_zero_check.
8620 */
8621 vmx_setup_me_spte_mask();
8622
8623 kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8624 ept_caps_to_lpage_level(vmx_capability.ept));
8625
8626 /*
8627 * Only enable PML when hardware supports PML feature, and both EPT
8628 * and EPT A/D bit features are enabled -- PML depends on them to work.
8629 */
8630 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8631 enable_pml = 0;
8632
8633 if (!cpu_has_vmx_preemption_timer())
8634 enable_preemption_timer = false;
8635
8636 if (enable_preemption_timer) {
8637 u64 use_timer_freq = 5000ULL * 1000 * 1000;
8638
8639 cpu_preemption_timer_multi =
8640 vmx_misc_preemption_timer_rate(vmcs_config.misc);
8641
8642 if (tsc_khz)
8643 use_timer_freq = (u64)tsc_khz * 1000;
8644 use_timer_freq >>= cpu_preemption_timer_multi;
8645
8646 /*
8647 * KVM "disables" the preemption timer by setting it to its max
8648 * value. Don't use the timer if it might cause spurious exits
8649 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8650 */
8651 if (use_timer_freq > 0xffffffffu / 10)
8652 enable_preemption_timer = false;
8653 }
8654
8655 if (!enable_preemption_timer) {
8656 vt_x86_ops.set_hv_timer = NULL;
8657 vt_x86_ops.cancel_hv_timer = NULL;
8658 }
8659
8660 kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8661 kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8662
8663 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8664 return -EINVAL;
8665 if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8666 pt_mode = PT_MODE_SYSTEM;
8667 if (pt_mode == PT_MODE_HOST_GUEST)
8668 vt_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8669 else
8670 vt_init_ops.handle_intel_pt_intr = NULL;
8671
8672 setup_default_sgx_lepubkeyhash();
8673
8674 vmx_set_cpu_caps();
8675
8676 /*
8677 * Configure nested capabilities after core CPU capabilities so that
8678 * nested support can be conditional on base support, e.g. so that KVM
8679 * can hide/show features based on kvm_cpu_cap_has().
8680 */
8681 if (nested) {
8682 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8683
8684 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8685 if (r)
8686 return r;
8687 }
8688
8689 r = alloc_kvm_area();
8690 if (r && nested)
8691 nested_vmx_hardware_unsetup();
8692
8693 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8694
8695 /*
8696 * On Intel CPUs that lack self-snoop feature, letting the guest control
8697 * memory types may result in unexpected behavior. So always ignore guest
8698 * PAT on those CPUs and map VM as writeback, not allowing userspace to
8699 * disable the quirk.
8700 *
8701 * On certain Intel CPUs (e.g. SPR, ICX), though self-snoop feature is
8702 * supported, UC is slow enough to cause issues with some older guests (e.g.
8703 * an old version of bochs driver uses ioremap() instead of ioremap_wc() to
8704 * map the video RAM, causing wayland desktop to fail to get started
8705 * correctly). To avoid breaking those older guests that rely on KVM to force
8706 * memory type to WB, provide KVM_X86_QUIRK_IGNORE_GUEST_PAT to preserve the
8707 * safer (for performance) default behavior.
8708 *
8709 * On top of this, non-coherent DMA devices need the guest to flush CPU
8710 * caches properly. This also requires honoring guest PAT, and is forced
8711 * independent of the quirk in vmx_ignore_guest_pat().
8712 */
8713 if (!static_cpu_has(X86_FEATURE_SELFSNOOP))
8714 kvm_caps.supported_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT;
8715
8716 kvm_caps.inapplicable_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT;
8717
8718 return r;
8719 }
8720
vmx_exit(void)8721 void vmx_exit(void)
8722 {
8723 allow_smaller_maxphyaddr = false;
8724
8725 vmx_cleanup_l1d_flush();
8726
8727 kvm_x86_vendor_exit();
8728 }
8729
vmx_init(void)8730 int __init vmx_init(void)
8731 {
8732 int r, cpu;
8733
8734 KVM_SANITY_CHECK_VM_STRUCT_SIZE(kvm_vmx);
8735
8736 if (!kvm_is_vmx_supported())
8737 return -EOPNOTSUPP;
8738
8739 /*
8740 * Note, VMCS and eVMCS configuration only touch VMX knobs/variables,
8741 * i.e. there's nothing to unwind if a later step fails.
8742 */
8743 hv_init_evmcs();
8744
8745 /*
8746 * Parse the VMCS config and VMX capabilities before anything else, so
8747 * that the information is available to all setup flows.
8748 */
8749 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8750 return -EIO;
8751
8752 r = kvm_x86_vendor_init(&vt_init_ops);
8753 if (r)
8754 return r;
8755
8756 /* Must be called after common x86 init so enable_ept is setup. */
8757 r = vmx_setup_l1d_flush();
8758 if (r)
8759 goto err_l1d_flush;
8760
8761 for_each_possible_cpu(cpu) {
8762 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8763
8764 pi_init_cpu(cpu);
8765 }
8766
8767 vmx_check_vmcs12_offsets();
8768
8769 return 0;
8770
8771 err_l1d_flush:
8772 kvm_x86_vendor_exit();
8773 return r;
8774 }
8775