1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/objtool.h>
5 #include <linux/percpu.h>
6
7 #include <asm/debugreg.h>
8 #include <asm/mmu_context.h>
9
10 #include "cpuid.h"
11 #include "hyperv.h"
12 #include "mmu.h"
13 #include "nested.h"
14 #include "pmu.h"
15 #include "posted_intr.h"
16 #include "sgx.h"
17 #include "trace.h"
18 #include "vmx.h"
19 #include "x86.h"
20 #include "smm.h"
21
22 static bool __read_mostly enable_shadow_vmcs = 1;
23 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
24
25 static bool __read_mostly nested_early_check = 0;
26 module_param(nested_early_check, bool, S_IRUGO);
27
28 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
29
30 /*
31 * Hyper-V requires all of these, so mark them as supported even though
32 * they are just treated the same as all-context.
33 */
34 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
35 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
36 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
37 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
38 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
39
40 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
41
42 enum {
43 VMX_VMREAD_BITMAP,
44 VMX_VMWRITE_BITMAP,
45 VMX_BITMAP_NR
46 };
47 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
48
49 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
50 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
51
52 struct shadow_vmcs_field {
53 u16 encoding;
54 u16 offset;
55 };
56 static struct shadow_vmcs_field shadow_read_only_fields[] = {
57 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
58 #include "vmcs_shadow_fields.h"
59 };
60 static int max_shadow_read_only_fields =
61 ARRAY_SIZE(shadow_read_only_fields);
62
63 static struct shadow_vmcs_field shadow_read_write_fields[] = {
64 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
65 #include "vmcs_shadow_fields.h"
66 };
67 static int max_shadow_read_write_fields =
68 ARRAY_SIZE(shadow_read_write_fields);
69
init_vmcs_shadow_fields(void)70 static void init_vmcs_shadow_fields(void)
71 {
72 int i, j;
73
74 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
75 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
76
77 for (i = j = 0; i < max_shadow_read_only_fields; i++) {
78 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
79 u16 field = entry.encoding;
80
81 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
82 (i + 1 == max_shadow_read_only_fields ||
83 shadow_read_only_fields[i + 1].encoding != field + 1))
84 pr_err("Missing field from shadow_read_only_field %x\n",
85 field + 1);
86
87 clear_bit(field, vmx_vmread_bitmap);
88 if (field & 1)
89 #ifdef CONFIG_X86_64
90 continue;
91 #else
92 entry.offset += sizeof(u32);
93 #endif
94 shadow_read_only_fields[j++] = entry;
95 }
96 max_shadow_read_only_fields = j;
97
98 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
99 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
100 u16 field = entry.encoding;
101
102 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
103 (i + 1 == max_shadow_read_write_fields ||
104 shadow_read_write_fields[i + 1].encoding != field + 1))
105 pr_err("Missing field from shadow_read_write_field %x\n",
106 field + 1);
107
108 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
109 field <= GUEST_TR_AR_BYTES,
110 "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
111
112 /*
113 * PML and the preemption timer can be emulated, but the
114 * processor cannot vmwrite to fields that don't exist
115 * on bare metal.
116 */
117 switch (field) {
118 case GUEST_PML_INDEX:
119 if (!cpu_has_vmx_pml())
120 continue;
121 break;
122 case VMX_PREEMPTION_TIMER_VALUE:
123 if (!cpu_has_vmx_preemption_timer())
124 continue;
125 break;
126 case GUEST_INTR_STATUS:
127 if (!cpu_has_vmx_apicv())
128 continue;
129 break;
130 default:
131 break;
132 }
133
134 clear_bit(field, vmx_vmwrite_bitmap);
135 clear_bit(field, vmx_vmread_bitmap);
136 if (field & 1)
137 #ifdef CONFIG_X86_64
138 continue;
139 #else
140 entry.offset += sizeof(u32);
141 #endif
142 shadow_read_write_fields[j++] = entry;
143 }
144 max_shadow_read_write_fields = j;
145 }
146
147 /*
148 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
149 * set the success or error code of an emulated VMX instruction (as specified
150 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
151 * instruction.
152 */
nested_vmx_succeed(struct kvm_vcpu * vcpu)153 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
154 {
155 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
156 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
157 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
158 return kvm_skip_emulated_instruction(vcpu);
159 }
160
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)161 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
162 {
163 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
164 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
165 X86_EFLAGS_SF | X86_EFLAGS_OF))
166 | X86_EFLAGS_CF);
167 return kvm_skip_emulated_instruction(vcpu);
168 }
169
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)170 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
171 u32 vm_instruction_error)
172 {
173 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
174 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
175 X86_EFLAGS_SF | X86_EFLAGS_OF))
176 | X86_EFLAGS_ZF);
177 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
178 /*
179 * We don't need to force sync to shadow VMCS because
180 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
181 * fields and thus must be synced.
182 */
183 if (nested_vmx_is_evmptr12_set(to_vmx(vcpu)))
184 to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
185
186 return kvm_skip_emulated_instruction(vcpu);
187 }
188
nested_vmx_fail(struct kvm_vcpu * vcpu,u32 vm_instruction_error)189 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
190 {
191 struct vcpu_vmx *vmx = to_vmx(vcpu);
192
193 /*
194 * failValid writes the error number to the current VMCS, which
195 * can't be done if there isn't a current VMCS.
196 */
197 if (vmx->nested.current_vmptr == INVALID_GPA &&
198 !nested_vmx_is_evmptr12_valid(vmx))
199 return nested_vmx_failInvalid(vcpu);
200
201 return nested_vmx_failValid(vcpu, vm_instruction_error);
202 }
203
nested_vmx_abort(struct kvm_vcpu * vcpu,u32 indicator)204 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
205 {
206 /* TODO: not to reset guest simply here. */
207 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
208 pr_debug_ratelimited("nested vmx abort, indicator %d\n", indicator);
209 }
210
vmx_control_verify(u32 control,u32 low,u32 high)211 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
212 {
213 return fixed_bits_valid(control, low, high);
214 }
215
vmx_control_msr(u32 low,u32 high)216 static inline u64 vmx_control_msr(u32 low, u32 high)
217 {
218 return low | ((u64)high << 32);
219 }
220
vmx_disable_shadow_vmcs(struct vcpu_vmx * vmx)221 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
222 {
223 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
224 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
225 vmx->nested.need_vmcs12_to_shadow_sync = false;
226 }
227
nested_release_evmcs(struct kvm_vcpu * vcpu)228 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
229 {
230 #ifdef CONFIG_KVM_HYPERV
231 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
232 struct vcpu_vmx *vmx = to_vmx(vcpu);
233
234 if (nested_vmx_is_evmptr12_valid(vmx)) {
235 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
236 vmx->nested.hv_evmcs = NULL;
237 }
238
239 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
240
241 if (hv_vcpu) {
242 hv_vcpu->nested.pa_page_gpa = INVALID_GPA;
243 hv_vcpu->nested.vm_id = 0;
244 hv_vcpu->nested.vp_id = 0;
245 }
246 #endif
247 }
248
nested_evmcs_handle_vmclear(struct kvm_vcpu * vcpu,gpa_t vmptr)249 static bool nested_evmcs_handle_vmclear(struct kvm_vcpu *vcpu, gpa_t vmptr)
250 {
251 #ifdef CONFIG_KVM_HYPERV
252 struct vcpu_vmx *vmx = to_vmx(vcpu);
253 /*
254 * When Enlightened VMEntry is enabled on the calling CPU we treat
255 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
256 * way to distinguish it from VMCS12) and we must not corrupt it by
257 * writing to the non-existent 'launch_state' field. The area doesn't
258 * have to be the currently active EVMCS on the calling CPU and there's
259 * nothing KVM has to do to transition it from 'active' to 'non-active'
260 * state. It is possible that the area will stay mapped as
261 * vmx->nested.hv_evmcs but this shouldn't be a problem.
262 */
263 if (!guest_cpuid_has_evmcs(vcpu) ||
264 !evmptr_is_valid(nested_get_evmptr(vcpu)))
265 return false;
266
267 if (nested_vmx_evmcs(vmx) && vmptr == vmx->nested.hv_evmcs_vmptr)
268 nested_release_evmcs(vcpu);
269
270 return true;
271 #else
272 return false;
273 #endif
274 }
275
vmx_sync_vmcs_host_state(struct vcpu_vmx * vmx,struct loaded_vmcs * prev)276 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
277 struct loaded_vmcs *prev)
278 {
279 struct vmcs_host_state *dest, *src;
280
281 if (unlikely(!vmx->guest_state_loaded))
282 return;
283
284 src = &prev->host_state;
285 dest = &vmx->loaded_vmcs->host_state;
286
287 vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
288 dest->ldt_sel = src->ldt_sel;
289 #ifdef CONFIG_X86_64
290 dest->ds_sel = src->ds_sel;
291 dest->es_sel = src->es_sel;
292 #endif
293 }
294
vmx_switch_vmcs(struct kvm_vcpu * vcpu,struct loaded_vmcs * vmcs)295 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
296 {
297 struct vcpu_vmx *vmx = to_vmx(vcpu);
298 struct loaded_vmcs *prev;
299 int cpu;
300
301 if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
302 return;
303
304 cpu = get_cpu();
305 prev = vmx->loaded_vmcs;
306 vmx->loaded_vmcs = vmcs;
307 vmx_vcpu_load_vmcs(vcpu, cpu, prev);
308 vmx_sync_vmcs_host_state(vmx, prev);
309 put_cpu();
310
311 vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
312
313 /*
314 * All lazily updated registers will be reloaded from VMCS12 on both
315 * vmentry and vmexit.
316 */
317 vcpu->arch.regs_dirty = 0;
318 }
319
320 /*
321 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
322 * just stops using VMX.
323 */
free_nested(struct kvm_vcpu * vcpu)324 static void free_nested(struct kvm_vcpu *vcpu)
325 {
326 struct vcpu_vmx *vmx = to_vmx(vcpu);
327
328 if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
329 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
330
331 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
332 return;
333
334 kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
335
336 vmx->nested.vmxon = false;
337 vmx->nested.smm.vmxon = false;
338 vmx->nested.vmxon_ptr = INVALID_GPA;
339 free_vpid(vmx->nested.vpid02);
340 vmx->nested.posted_intr_nv = -1;
341 vmx->nested.current_vmptr = INVALID_GPA;
342 if (enable_shadow_vmcs) {
343 vmx_disable_shadow_vmcs(vmx);
344 vmcs_clear(vmx->vmcs01.shadow_vmcs);
345 free_vmcs(vmx->vmcs01.shadow_vmcs);
346 vmx->vmcs01.shadow_vmcs = NULL;
347 }
348 kfree(vmx->nested.cached_vmcs12);
349 vmx->nested.cached_vmcs12 = NULL;
350 kfree(vmx->nested.cached_shadow_vmcs12);
351 vmx->nested.cached_shadow_vmcs12 = NULL;
352 /*
353 * Unpin physical memory we referred to in the vmcs02. The APIC access
354 * page's backing page (yeah, confusing) shouldn't actually be accessed,
355 * and if it is written, the contents are irrelevant.
356 */
357 kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
358 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
359 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
360 vmx->nested.pi_desc = NULL;
361
362 kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
363
364 nested_release_evmcs(vcpu);
365
366 free_loaded_vmcs(&vmx->nested.vmcs02);
367 }
368
369 /*
370 * Ensure that the current vmcs of the logical processor is the
371 * vmcs01 of the vcpu before calling free_nested().
372 */
nested_vmx_free_vcpu(struct kvm_vcpu * vcpu)373 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
374 {
375 vcpu_load(vcpu);
376 vmx_leave_nested(vcpu);
377 vcpu_put(vcpu);
378 }
379
380 #define EPTP_PA_MASK GENMASK_ULL(51, 12)
381
nested_ept_root_matches(hpa_t root_hpa,u64 root_eptp,u64 eptp)382 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
383 {
384 return VALID_PAGE(root_hpa) &&
385 ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
386 }
387
nested_ept_invalidate_addr(struct kvm_vcpu * vcpu,gpa_t eptp,gpa_t addr)388 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
389 gpa_t addr)
390 {
391 unsigned long roots = 0;
392 uint i;
393 struct kvm_mmu_root_info *cached_root;
394
395 WARN_ON_ONCE(!mmu_is_nested(vcpu));
396
397 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
398 cached_root = &vcpu->arch.mmu->prev_roots[i];
399
400 if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
401 eptp))
402 roots |= KVM_MMU_ROOT_PREVIOUS(i);
403 }
404 if (roots)
405 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.mmu, addr, roots);
406 }
407
nested_ept_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)408 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
409 struct x86_exception *fault)
410 {
411 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
412 struct vcpu_vmx *vmx = to_vmx(vcpu);
413 unsigned long exit_qualification;
414 u32 vm_exit_reason;
415
416 if (vmx->nested.pml_full) {
417 vm_exit_reason = EXIT_REASON_PML_FULL;
418 vmx->nested.pml_full = false;
419
420 /*
421 * It should be impossible to trigger a nested PML Full VM-Exit
422 * for anything other than an EPT Violation from L2. KVM *can*
423 * trigger nEPT page fault injection in response to an EPT
424 * Misconfig, e.g. if the MMIO SPTE was stale and L1's EPT
425 * tables also changed, but KVM should not treat EPT Misconfig
426 * VM-Exits as writes.
427 */
428 WARN_ON_ONCE(vmx->exit_reason.basic != EXIT_REASON_EPT_VIOLATION);
429
430 /*
431 * PML Full and EPT Violation VM-Exits both use bit 12 to report
432 * "NMI unblocking due to IRET", i.e. the bit can be propagated
433 * as-is from the original EXIT_QUALIFICATION.
434 */
435 exit_qualification = vmx_get_exit_qual(vcpu) & INTR_INFO_UNBLOCK_NMI;
436 } else {
437 if (fault->error_code & PFERR_RSVD_MASK) {
438 vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
439 exit_qualification = 0;
440 } else {
441 exit_qualification = fault->exit_qualification;
442 exit_qualification |= vmx_get_exit_qual(vcpu) &
443 (EPT_VIOLATION_GVA_IS_VALID |
444 EPT_VIOLATION_GVA_TRANSLATED);
445 vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
446 }
447
448 /*
449 * Although the caller (kvm_inject_emulated_page_fault) would
450 * have already synced the faulting address in the shadow EPT
451 * tables for the current EPTP12, we also need to sync it for
452 * any other cached EPTP02s based on the same EP4TA, since the
453 * TLB associates mappings to the EP4TA rather than the full EPTP.
454 */
455 nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
456 fault->address);
457 }
458
459 nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
460 vmcs12->guest_physical_address = fault->address;
461 }
462
nested_ept_new_eptp(struct kvm_vcpu * vcpu)463 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
464 {
465 struct vcpu_vmx *vmx = to_vmx(vcpu);
466 bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
467 int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
468
469 kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
470 nested_ept_ad_enabled(vcpu),
471 nested_ept_get_eptp(vcpu));
472 }
473
nested_ept_init_mmu_context(struct kvm_vcpu * vcpu)474 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
475 {
476 WARN_ON(mmu_is_nested(vcpu));
477
478 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
479 nested_ept_new_eptp(vcpu);
480 vcpu->arch.mmu->get_guest_pgd = nested_ept_get_eptp;
481 vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
482 vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
483
484 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
485 }
486
nested_ept_uninit_mmu_context(struct kvm_vcpu * vcpu)487 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
488 {
489 vcpu->arch.mmu = &vcpu->arch.root_mmu;
490 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
491 }
492
nested_vmx_is_page_fault_vmexit(struct vmcs12 * vmcs12,u16 error_code)493 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
494 u16 error_code)
495 {
496 bool inequality, bit;
497
498 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
499 inequality =
500 (error_code & vmcs12->page_fault_error_code_mask) !=
501 vmcs12->page_fault_error_code_match;
502 return inequality ^ bit;
503 }
504
nested_vmx_is_exception_vmexit(struct kvm_vcpu * vcpu,u8 vector,u32 error_code)505 static bool nested_vmx_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector,
506 u32 error_code)
507 {
508 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
509
510 /*
511 * Drop bits 31:16 of the error code when performing the #PF mask+match
512 * check. All VMCS fields involved are 32 bits, but Intel CPUs never
513 * set bits 31:16 and VMX disallows setting bits 31:16 in the injected
514 * error code. Including the to-be-dropped bits in the check might
515 * result in an "impossible" or missed exit from L1's perspective.
516 */
517 if (vector == PF_VECTOR)
518 return nested_vmx_is_page_fault_vmexit(vmcs12, (u16)error_code);
519
520 return (vmcs12->exception_bitmap & (1u << vector));
521 }
522
nested_vmx_check_io_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)523 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
524 struct vmcs12 *vmcs12)
525 {
526 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
527 return 0;
528
529 if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
530 CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
531 return -EINVAL;
532
533 return 0;
534 }
535
nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)536 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
537 struct vmcs12 *vmcs12)
538 {
539 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
540 return 0;
541
542 if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
543 return -EINVAL;
544
545 return 0;
546 }
547
nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)548 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
549 struct vmcs12 *vmcs12)
550 {
551 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
552 return 0;
553
554 if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
555 return -EINVAL;
556
557 return 0;
558 }
559
560 /*
561 * For x2APIC MSRs, ignore the vmcs01 bitmap. L1 can enable x2APIC without L1
562 * itself utilizing x2APIC. All MSRs were previously set to be intercepted,
563 * only the "disable intercept" case needs to be handled.
564 */
nested_vmx_disable_intercept_for_x2apic_msr(unsigned long * msr_bitmap_l1,unsigned long * msr_bitmap_l0,u32 msr,int type)565 static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
566 unsigned long *msr_bitmap_l0,
567 u32 msr, int type)
568 {
569 if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
570 vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
571
572 if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
573 vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
574 }
575
enable_x2apic_msr_intercepts(unsigned long * msr_bitmap)576 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
577 {
578 int msr;
579
580 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
581 unsigned word = msr / BITS_PER_LONG;
582
583 msr_bitmap[word] = ~0;
584 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
585 }
586 }
587
588 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw) \
589 static inline \
590 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx, \
591 unsigned long *msr_bitmap_l1, \
592 unsigned long *msr_bitmap_l0, u32 msr) \
593 { \
594 if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) || \
595 vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr)) \
596 vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr); \
597 else \
598 vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr); \
599 }
600 BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
BUILD_NVMX_MSR_INTERCEPT_HELPER(write)601 BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
602
603 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
604 unsigned long *msr_bitmap_l1,
605 unsigned long *msr_bitmap_l0,
606 u32 msr, int types)
607 {
608 if (types & MSR_TYPE_R)
609 nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
610 msr_bitmap_l0, msr);
611 if (types & MSR_TYPE_W)
612 nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
613 msr_bitmap_l0, msr);
614 }
615
616 /*
617 * Merge L0's and L1's MSR bitmap, return false to indicate that
618 * we do not use the hardware.
619 */
nested_vmx_prepare_msr_bitmap(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)620 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
621 struct vmcs12 *vmcs12)
622 {
623 struct vcpu_vmx *vmx = to_vmx(vcpu);
624 int msr;
625 unsigned long *msr_bitmap_l1;
626 unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
627 struct kvm_host_map *map = &vmx->nested.msr_bitmap_map;
628
629 /* Nothing to do if the MSR bitmap is not in use. */
630 if (!cpu_has_vmx_msr_bitmap() ||
631 !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
632 return false;
633
634 /*
635 * MSR bitmap update can be skipped when:
636 * - MSR bitmap for L1 hasn't changed.
637 * - Nested hypervisor (L1) is attempting to launch the same L2 as
638 * before.
639 * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
640 * and tells KVM (L0) there were no changes in MSR bitmap for L2.
641 */
642 if (!vmx->nested.force_msr_bitmap_recalc) {
643 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
644
645 if (evmcs && evmcs->hv_enlightenments_control.msr_bitmap &&
646 evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
647 return true;
648 }
649
650 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
651 return false;
652
653 msr_bitmap_l1 = (unsigned long *)map->hva;
654
655 /*
656 * To keep the control flow simple, pay eight 8-byte writes (sixteen
657 * 4-byte writes on 32-bit systems) up front to enable intercepts for
658 * the x2APIC MSR range and selectively toggle those relevant to L2.
659 */
660 enable_x2apic_msr_intercepts(msr_bitmap_l0);
661
662 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
663 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
664 /*
665 * L0 need not intercept reads for MSRs between 0x800
666 * and 0x8ff, it just lets the processor take the value
667 * from the virtual-APIC page; take those 256 bits
668 * directly from the L1 bitmap.
669 */
670 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
671 unsigned word = msr / BITS_PER_LONG;
672
673 msr_bitmap_l0[word] = msr_bitmap_l1[word];
674 }
675 }
676
677 nested_vmx_disable_intercept_for_x2apic_msr(
678 msr_bitmap_l1, msr_bitmap_l0,
679 X2APIC_MSR(APIC_TASKPRI),
680 MSR_TYPE_R | MSR_TYPE_W);
681
682 if (nested_cpu_has_vid(vmcs12)) {
683 nested_vmx_disable_intercept_for_x2apic_msr(
684 msr_bitmap_l1, msr_bitmap_l0,
685 X2APIC_MSR(APIC_EOI),
686 MSR_TYPE_W);
687 nested_vmx_disable_intercept_for_x2apic_msr(
688 msr_bitmap_l1, msr_bitmap_l0,
689 X2APIC_MSR(APIC_SELF_IPI),
690 MSR_TYPE_W);
691 }
692 }
693
694 /*
695 * Always check vmcs01's bitmap to honor userspace MSR filters and any
696 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
697 */
698 #ifdef CONFIG_X86_64
699 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
700 MSR_FS_BASE, MSR_TYPE_RW);
701
702 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
703 MSR_GS_BASE, MSR_TYPE_RW);
704
705 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
706 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
707 #endif
708 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
709 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
710
711 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
712 MSR_IA32_PRED_CMD, MSR_TYPE_W);
713
714 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
715 MSR_IA32_FLUSH_CMD, MSR_TYPE_W);
716
717 kvm_vcpu_unmap(vcpu, &vmx->nested.msr_bitmap_map, false);
718
719 vmx->nested.force_msr_bitmap_recalc = false;
720
721 return true;
722 }
723
nested_cache_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)724 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
725 struct vmcs12 *vmcs12)
726 {
727 struct vcpu_vmx *vmx = to_vmx(vcpu);
728 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
729
730 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
731 vmcs12->vmcs_link_pointer == INVALID_GPA)
732 return;
733
734 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
735 kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
736 vmcs12->vmcs_link_pointer, VMCS12_SIZE))
737 return;
738
739 kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
740 VMCS12_SIZE);
741 }
742
nested_flush_cached_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)743 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
744 struct vmcs12 *vmcs12)
745 {
746 struct vcpu_vmx *vmx = to_vmx(vcpu);
747 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
748
749 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
750 vmcs12->vmcs_link_pointer == INVALID_GPA)
751 return;
752
753 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
754 kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
755 vmcs12->vmcs_link_pointer, VMCS12_SIZE))
756 return;
757
758 kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
759 VMCS12_SIZE);
760 }
761
762 /*
763 * In nested virtualization, check if L1 has set
764 * VM_EXIT_ACK_INTR_ON_EXIT
765 */
nested_exit_intr_ack_set(struct kvm_vcpu * vcpu)766 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
767 {
768 return get_vmcs12(vcpu)->vm_exit_controls &
769 VM_EXIT_ACK_INTR_ON_EXIT;
770 }
771
nested_vmx_check_apic_access_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)772 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
773 struct vmcs12 *vmcs12)
774 {
775 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
776 CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
777 return -EINVAL;
778 else
779 return 0;
780 }
781
nested_vmx_check_apicv_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)782 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
783 struct vmcs12 *vmcs12)
784 {
785 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
786 !nested_cpu_has_apic_reg_virt(vmcs12) &&
787 !nested_cpu_has_vid(vmcs12) &&
788 !nested_cpu_has_posted_intr(vmcs12))
789 return 0;
790
791 /*
792 * If virtualize x2apic mode is enabled,
793 * virtualize apic access must be disabled.
794 */
795 if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
796 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
797 return -EINVAL;
798
799 /*
800 * If virtual interrupt delivery is enabled,
801 * we must exit on external interrupts.
802 */
803 if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
804 return -EINVAL;
805
806 /*
807 * bits 15:8 should be zero in posted_intr_nv,
808 * the descriptor address has been already checked
809 * in nested_get_vmcs12_pages.
810 *
811 * bits 5:0 of posted_intr_desc_addr should be zero.
812 */
813 if (nested_cpu_has_posted_intr(vmcs12) &&
814 (CC(!nested_cpu_has_vid(vmcs12)) ||
815 CC(!nested_exit_intr_ack_set(vcpu)) ||
816 CC((vmcs12->posted_intr_nv & 0xff00)) ||
817 CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
818 return -EINVAL;
819
820 /* tpr shadow is needed by all apicv features. */
821 if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
822 return -EINVAL;
823
824 return 0;
825 }
826
nested_vmx_check_msr_switch(struct kvm_vcpu * vcpu,u32 count,u64 addr)827 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
828 u32 count, u64 addr)
829 {
830 if (count == 0)
831 return 0;
832
833 if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
834 !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
835 return -EINVAL;
836
837 return 0;
838 }
839
nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)840 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
841 struct vmcs12 *vmcs12)
842 {
843 if (CC(nested_vmx_check_msr_switch(vcpu,
844 vmcs12->vm_exit_msr_load_count,
845 vmcs12->vm_exit_msr_load_addr)) ||
846 CC(nested_vmx_check_msr_switch(vcpu,
847 vmcs12->vm_exit_msr_store_count,
848 vmcs12->vm_exit_msr_store_addr)))
849 return -EINVAL;
850
851 return 0;
852 }
853
nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)854 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
855 struct vmcs12 *vmcs12)
856 {
857 if (CC(nested_vmx_check_msr_switch(vcpu,
858 vmcs12->vm_entry_msr_load_count,
859 vmcs12->vm_entry_msr_load_addr)))
860 return -EINVAL;
861
862 return 0;
863 }
864
nested_vmx_check_pml_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)865 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
866 struct vmcs12 *vmcs12)
867 {
868 if (!nested_cpu_has_pml(vmcs12))
869 return 0;
870
871 if (CC(!nested_cpu_has_ept(vmcs12)) ||
872 CC(!page_address_valid(vcpu, vmcs12->pml_address)))
873 return -EINVAL;
874
875 return 0;
876 }
877
nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)878 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
879 struct vmcs12 *vmcs12)
880 {
881 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
882 !nested_cpu_has_ept(vmcs12)))
883 return -EINVAL;
884 return 0;
885 }
886
nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)887 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
888 struct vmcs12 *vmcs12)
889 {
890 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
891 !nested_cpu_has_ept(vmcs12)))
892 return -EINVAL;
893 return 0;
894 }
895
nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)896 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
897 struct vmcs12 *vmcs12)
898 {
899 if (!nested_cpu_has_shadow_vmcs(vmcs12))
900 return 0;
901
902 if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
903 CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
904 return -EINVAL;
905
906 return 0;
907 }
908
nested_vmx_msr_check_common(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)909 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
910 struct vmx_msr_entry *e)
911 {
912 /* x2APIC MSR accesses are not allowed */
913 if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
914 return -EINVAL;
915 if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
916 CC(e->index == MSR_IA32_UCODE_REV))
917 return -EINVAL;
918 if (CC(e->reserved != 0))
919 return -EINVAL;
920 return 0;
921 }
922
nested_vmx_load_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)923 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
924 struct vmx_msr_entry *e)
925 {
926 if (CC(e->index == MSR_FS_BASE) ||
927 CC(e->index == MSR_GS_BASE) ||
928 CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
929 nested_vmx_msr_check_common(vcpu, e))
930 return -EINVAL;
931 return 0;
932 }
933
nested_vmx_store_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)934 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
935 struct vmx_msr_entry *e)
936 {
937 if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
938 nested_vmx_msr_check_common(vcpu, e))
939 return -EINVAL;
940 return 0;
941 }
942
nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu * vcpu)943 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
944 {
945 struct vcpu_vmx *vmx = to_vmx(vcpu);
946 u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
947 vmx->nested.msrs.misc_high);
948
949 return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
950 }
951
952 /*
953 * Load guest's/host's msr at nested entry/exit.
954 * return 0 for success, entry index for failure.
955 *
956 * One of the failure modes for MSR load/store is when a list exceeds the
957 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
958 * as possible, process all valid entries before failing rather than precheck
959 * for a capacity violation.
960 */
nested_vmx_load_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)961 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
962 {
963 u32 i;
964 struct vmx_msr_entry e;
965 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
966
967 for (i = 0; i < count; i++) {
968 if (unlikely(i >= max_msr_list_size))
969 goto fail;
970
971 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
972 &e, sizeof(e))) {
973 pr_debug_ratelimited(
974 "%s cannot read MSR entry (%u, 0x%08llx)\n",
975 __func__, i, gpa + i * sizeof(e));
976 goto fail;
977 }
978 if (nested_vmx_load_msr_check(vcpu, &e)) {
979 pr_debug_ratelimited(
980 "%s check failed (%u, 0x%x, 0x%x)\n",
981 __func__, i, e.index, e.reserved);
982 goto fail;
983 }
984 if (kvm_set_msr_with_filter(vcpu, e.index, e.value)) {
985 pr_debug_ratelimited(
986 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
987 __func__, i, e.index, e.value);
988 goto fail;
989 }
990 }
991 return 0;
992 fail:
993 /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
994 return i + 1;
995 }
996
nested_vmx_get_vmexit_msr_value(struct kvm_vcpu * vcpu,u32 msr_index,u64 * data)997 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
998 u32 msr_index,
999 u64 *data)
1000 {
1001 struct vcpu_vmx *vmx = to_vmx(vcpu);
1002
1003 /*
1004 * If the L0 hypervisor stored a more accurate value for the TSC that
1005 * does not include the time taken for emulation of the L2->L1
1006 * VM-exit in L0, use the more accurate value.
1007 */
1008 if (msr_index == MSR_IA32_TSC) {
1009 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
1010 MSR_IA32_TSC);
1011
1012 if (i >= 0) {
1013 u64 val = vmx->msr_autostore.guest.val[i].value;
1014
1015 *data = kvm_read_l1_tsc(vcpu, val);
1016 return true;
1017 }
1018 }
1019
1020 if (kvm_get_msr_with_filter(vcpu, msr_index, data)) {
1021 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
1022 msr_index);
1023 return false;
1024 }
1025 return true;
1026 }
1027
read_and_check_msr_entry(struct kvm_vcpu * vcpu,u64 gpa,int i,struct vmx_msr_entry * e)1028 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
1029 struct vmx_msr_entry *e)
1030 {
1031 if (kvm_vcpu_read_guest(vcpu,
1032 gpa + i * sizeof(*e),
1033 e, 2 * sizeof(u32))) {
1034 pr_debug_ratelimited(
1035 "%s cannot read MSR entry (%u, 0x%08llx)\n",
1036 __func__, i, gpa + i * sizeof(*e));
1037 return false;
1038 }
1039 if (nested_vmx_store_msr_check(vcpu, e)) {
1040 pr_debug_ratelimited(
1041 "%s check failed (%u, 0x%x, 0x%x)\n",
1042 __func__, i, e->index, e->reserved);
1043 return false;
1044 }
1045 return true;
1046 }
1047
nested_vmx_store_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)1048 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1049 {
1050 u64 data;
1051 u32 i;
1052 struct vmx_msr_entry e;
1053 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1054
1055 for (i = 0; i < count; i++) {
1056 if (unlikely(i >= max_msr_list_size))
1057 return -EINVAL;
1058
1059 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1060 return -EINVAL;
1061
1062 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1063 return -EINVAL;
1064
1065 if (kvm_vcpu_write_guest(vcpu,
1066 gpa + i * sizeof(e) +
1067 offsetof(struct vmx_msr_entry, value),
1068 &data, sizeof(data))) {
1069 pr_debug_ratelimited(
1070 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1071 __func__, i, e.index, data);
1072 return -EINVAL;
1073 }
1074 }
1075 return 0;
1076 }
1077
nested_msr_store_list_has_msr(struct kvm_vcpu * vcpu,u32 msr_index)1078 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1079 {
1080 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1081 u32 count = vmcs12->vm_exit_msr_store_count;
1082 u64 gpa = vmcs12->vm_exit_msr_store_addr;
1083 struct vmx_msr_entry e;
1084 u32 i;
1085
1086 for (i = 0; i < count; i++) {
1087 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1088 return false;
1089
1090 if (e.index == msr_index)
1091 return true;
1092 }
1093 return false;
1094 }
1095
prepare_vmx_msr_autostore_list(struct kvm_vcpu * vcpu,u32 msr_index)1096 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1097 u32 msr_index)
1098 {
1099 struct vcpu_vmx *vmx = to_vmx(vcpu);
1100 struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1101 bool in_vmcs12_store_list;
1102 int msr_autostore_slot;
1103 bool in_autostore_list;
1104 int last;
1105
1106 msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1107 in_autostore_list = msr_autostore_slot >= 0;
1108 in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1109
1110 if (in_vmcs12_store_list && !in_autostore_list) {
1111 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1112 /*
1113 * Emulated VMEntry does not fail here. Instead a less
1114 * accurate value will be returned by
1115 * nested_vmx_get_vmexit_msr_value() by reading KVM's
1116 * internal MSR state instead of reading the value from
1117 * the vmcs02 VMExit MSR-store area.
1118 */
1119 pr_warn_ratelimited(
1120 "Not enough msr entries in msr_autostore. Can't add msr %x\n",
1121 msr_index);
1122 return;
1123 }
1124 last = autostore->nr++;
1125 autostore->val[last].index = msr_index;
1126 } else if (!in_vmcs12_store_list && in_autostore_list) {
1127 last = --autostore->nr;
1128 autostore->val[msr_autostore_slot] = autostore->val[last];
1129 }
1130 }
1131
1132 /*
1133 * Load guest's/host's cr3 at nested entry/exit. @nested_ept is true if we are
1134 * emulating VM-Entry into a guest with EPT enabled. On failure, the expected
1135 * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1136 * @entry_failure_code.
1137 */
nested_vmx_load_cr3(struct kvm_vcpu * vcpu,unsigned long cr3,bool nested_ept,bool reload_pdptrs,enum vm_entry_failure_code * entry_failure_code)1138 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1139 bool nested_ept, bool reload_pdptrs,
1140 enum vm_entry_failure_code *entry_failure_code)
1141 {
1142 if (CC(!kvm_vcpu_is_legal_cr3(vcpu, cr3))) {
1143 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1144 return -EINVAL;
1145 }
1146
1147 /*
1148 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1149 * must not be dereferenced.
1150 */
1151 if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1152 CC(!load_pdptrs(vcpu, cr3))) {
1153 *entry_failure_code = ENTRY_FAIL_PDPTE;
1154 return -EINVAL;
1155 }
1156
1157 vcpu->arch.cr3 = cr3;
1158 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1159
1160 /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1161 kvm_init_mmu(vcpu);
1162
1163 if (!nested_ept)
1164 kvm_mmu_new_pgd(vcpu, cr3);
1165
1166 return 0;
1167 }
1168
1169 /*
1170 * Returns if KVM is able to config CPU to tag TLB entries
1171 * populated by L2 differently than TLB entries populated
1172 * by L1.
1173 *
1174 * If L0 uses EPT, L1 and L2 run with different EPTP because
1175 * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1176 * are tagged with different EPTP.
1177 *
1178 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1179 * with different VPID (L1 entries are tagged with vmx->vpid
1180 * while L2 entries are tagged with vmx->nested.vpid02).
1181 */
nested_has_guest_tlb_tag(struct kvm_vcpu * vcpu)1182 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1183 {
1184 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1185
1186 return enable_ept ||
1187 (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1188 }
1189
nested_vmx_transition_tlb_flush(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool is_vmenter)1190 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1191 struct vmcs12 *vmcs12,
1192 bool is_vmenter)
1193 {
1194 struct vcpu_vmx *vmx = to_vmx(vcpu);
1195
1196 /* Handle pending Hyper-V TLB flush requests */
1197 kvm_hv_nested_transtion_tlb_flush(vcpu, enable_ept);
1198
1199 /*
1200 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1201 * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1202 * full TLB flush from the guest's perspective. This is required even
1203 * if VPID is disabled in the host as KVM may need to synchronize the
1204 * MMU in response to the guest TLB flush.
1205 *
1206 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1207 * EPT is a special snowflake, as guest-physical mappings aren't
1208 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1209 * VPID disabled. As a result, KVM _never_ needs to sync nEPT
1210 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1211 * those mappings.
1212 */
1213 if (!nested_cpu_has_vpid(vmcs12)) {
1214 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1215 return;
1216 }
1217
1218 /* L2 should never have a VPID if VPID is disabled. */
1219 WARN_ON(!enable_vpid);
1220
1221 /*
1222 * VPID is enabled and in use by vmcs12. If vpid12 is changing, then
1223 * emulate a guest TLB flush as KVM does not track vpid12 history nor
1224 * is the VPID incorporated into the MMU context. I.e. KVM must assume
1225 * that the new vpid12 has never been used and thus represents a new
1226 * guest ASID that cannot have entries in the TLB.
1227 */
1228 if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1229 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1230 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1231 return;
1232 }
1233
1234 /*
1235 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1236 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1237 * KVM was unable to allocate a VPID for L2, flush the current context
1238 * as the effective ASID is common to both L1 and L2.
1239 */
1240 if (!nested_has_guest_tlb_tag(vcpu))
1241 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1242 }
1243
is_bitwise_subset(u64 superset,u64 subset,u64 mask)1244 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1245 {
1246 superset &= mask;
1247 subset &= mask;
1248
1249 return (superset | subset) == superset;
1250 }
1251
vmx_restore_vmx_basic(struct vcpu_vmx * vmx,u64 data)1252 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1253 {
1254 const u64 feature_bits = VMX_BASIC_DUAL_MONITOR_TREATMENT |
1255 VMX_BASIC_INOUT |
1256 VMX_BASIC_TRUE_CTLS;
1257
1258 const u64 reserved_bits = GENMASK_ULL(63, 56) |
1259 GENMASK_ULL(47, 45) |
1260 BIT_ULL(31);
1261
1262 u64 vmx_basic = vmcs_config.nested.basic;
1263
1264 BUILD_BUG_ON(feature_bits & reserved_bits);
1265
1266 /*
1267 * Except for 32BIT_PHYS_ADDR_ONLY, which is an anti-feature bit (has
1268 * inverted polarity), the incoming value must not set feature bits or
1269 * reserved bits that aren't allowed/supported by KVM. Fields, i.e.
1270 * multi-bit values, are explicitly checked below.
1271 */
1272 if (!is_bitwise_subset(vmx_basic, data, feature_bits | reserved_bits))
1273 return -EINVAL;
1274
1275 /*
1276 * KVM does not emulate a version of VMX that constrains physical
1277 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1278 */
1279 if (data & VMX_BASIC_32BIT_PHYS_ADDR_ONLY)
1280 return -EINVAL;
1281
1282 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1283 vmx_basic_vmcs_revision_id(data))
1284 return -EINVAL;
1285
1286 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1287 return -EINVAL;
1288
1289 vmx->nested.msrs.basic = data;
1290 return 0;
1291 }
1292
vmx_get_control_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u32 ** low,u32 ** high)1293 static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
1294 u32 **low, u32 **high)
1295 {
1296 switch (msr_index) {
1297 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1298 *low = &msrs->pinbased_ctls_low;
1299 *high = &msrs->pinbased_ctls_high;
1300 break;
1301 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1302 *low = &msrs->procbased_ctls_low;
1303 *high = &msrs->procbased_ctls_high;
1304 break;
1305 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1306 *low = &msrs->exit_ctls_low;
1307 *high = &msrs->exit_ctls_high;
1308 break;
1309 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1310 *low = &msrs->entry_ctls_low;
1311 *high = &msrs->entry_ctls_high;
1312 break;
1313 case MSR_IA32_VMX_PROCBASED_CTLS2:
1314 *low = &msrs->secondary_ctls_low;
1315 *high = &msrs->secondary_ctls_high;
1316 break;
1317 default:
1318 BUG();
1319 }
1320 }
1321
1322 static int
vmx_restore_control_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1323 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1324 {
1325 u32 *lowp, *highp;
1326 u64 supported;
1327
1328 vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp);
1329
1330 supported = vmx_control_msr(*lowp, *highp);
1331
1332 /* Check must-be-1 bits are still 1. */
1333 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1334 return -EINVAL;
1335
1336 /* Check must-be-0 bits are still 0. */
1337 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1338 return -EINVAL;
1339
1340 vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp);
1341 *lowp = data;
1342 *highp = data >> 32;
1343 return 0;
1344 }
1345
vmx_restore_vmx_misc(struct vcpu_vmx * vmx,u64 data)1346 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1347 {
1348 const u64 feature_bits = VMX_MISC_SAVE_EFER_LMA |
1349 VMX_MISC_ACTIVITY_HLT |
1350 VMX_MISC_ACTIVITY_SHUTDOWN |
1351 VMX_MISC_ACTIVITY_WAIT_SIPI |
1352 VMX_MISC_INTEL_PT |
1353 VMX_MISC_RDMSR_IN_SMM |
1354 VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
1355 VMX_MISC_VMXOFF_BLOCK_SMI |
1356 VMX_MISC_ZERO_LEN_INS;
1357
1358 const u64 reserved_bits = BIT_ULL(31) | GENMASK_ULL(13, 9);
1359
1360 u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low,
1361 vmcs_config.nested.misc_high);
1362
1363 BUILD_BUG_ON(feature_bits & reserved_bits);
1364
1365 /*
1366 * The incoming value must not set feature bits or reserved bits that
1367 * aren't allowed/supported by KVM. Fields, i.e. multi-bit values, are
1368 * explicitly checked below.
1369 */
1370 if (!is_bitwise_subset(vmx_misc, data, feature_bits | reserved_bits))
1371 return -EINVAL;
1372
1373 if ((vmx->nested.msrs.pinbased_ctls_high &
1374 PIN_BASED_VMX_PREEMPTION_TIMER) &&
1375 vmx_misc_preemption_timer_rate(data) !=
1376 vmx_misc_preemption_timer_rate(vmx_misc))
1377 return -EINVAL;
1378
1379 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1380 return -EINVAL;
1381
1382 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1383 return -EINVAL;
1384
1385 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1386 return -EINVAL;
1387
1388 vmx->nested.msrs.misc_low = data;
1389 vmx->nested.msrs.misc_high = data >> 32;
1390
1391 return 0;
1392 }
1393
vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx * vmx,u64 data)1394 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1395 {
1396 u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps,
1397 vmcs_config.nested.vpid_caps);
1398
1399 /* Every bit is either reserved or a feature bit. */
1400 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1401 return -EINVAL;
1402
1403 vmx->nested.msrs.ept_caps = data;
1404 vmx->nested.msrs.vpid_caps = data >> 32;
1405 return 0;
1406 }
1407
vmx_get_fixed0_msr(struct nested_vmx_msrs * msrs,u32 msr_index)1408 static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
1409 {
1410 switch (msr_index) {
1411 case MSR_IA32_VMX_CR0_FIXED0:
1412 return &msrs->cr0_fixed0;
1413 case MSR_IA32_VMX_CR4_FIXED0:
1414 return &msrs->cr4_fixed0;
1415 default:
1416 BUG();
1417 }
1418 }
1419
vmx_restore_fixed0_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1420 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1421 {
1422 const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index);
1423
1424 /*
1425 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1426 * must be 1 in the restored value.
1427 */
1428 if (!is_bitwise_subset(data, *msr, -1ULL))
1429 return -EINVAL;
1430
1431 *vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data;
1432 return 0;
1433 }
1434
1435 /*
1436 * Called when userspace is restoring VMX MSRs.
1437 *
1438 * Returns 0 on success, non-0 otherwise.
1439 */
vmx_set_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)1440 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1441 {
1442 struct vcpu_vmx *vmx = to_vmx(vcpu);
1443
1444 /*
1445 * Don't allow changes to the VMX capability MSRs while the vCPU
1446 * is in VMX operation.
1447 */
1448 if (vmx->nested.vmxon)
1449 return -EBUSY;
1450
1451 switch (msr_index) {
1452 case MSR_IA32_VMX_BASIC:
1453 return vmx_restore_vmx_basic(vmx, data);
1454 case MSR_IA32_VMX_PINBASED_CTLS:
1455 case MSR_IA32_VMX_PROCBASED_CTLS:
1456 case MSR_IA32_VMX_EXIT_CTLS:
1457 case MSR_IA32_VMX_ENTRY_CTLS:
1458 /*
1459 * The "non-true" VMX capability MSRs are generated from the
1460 * "true" MSRs, so we do not support restoring them directly.
1461 *
1462 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1463 * should restore the "true" MSRs with the must-be-1 bits
1464 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1465 * DEFAULT SETTINGS".
1466 */
1467 return -EINVAL;
1468 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1469 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1470 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1471 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1472 case MSR_IA32_VMX_PROCBASED_CTLS2:
1473 return vmx_restore_control_msr(vmx, msr_index, data);
1474 case MSR_IA32_VMX_MISC:
1475 return vmx_restore_vmx_misc(vmx, data);
1476 case MSR_IA32_VMX_CR0_FIXED0:
1477 case MSR_IA32_VMX_CR4_FIXED0:
1478 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1479 case MSR_IA32_VMX_CR0_FIXED1:
1480 case MSR_IA32_VMX_CR4_FIXED1:
1481 /*
1482 * These MSRs are generated based on the vCPU's CPUID, so we
1483 * do not support restoring them directly.
1484 */
1485 return -EINVAL;
1486 case MSR_IA32_VMX_EPT_VPID_CAP:
1487 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1488 case MSR_IA32_VMX_VMCS_ENUM:
1489 vmx->nested.msrs.vmcs_enum = data;
1490 return 0;
1491 case MSR_IA32_VMX_VMFUNC:
1492 if (data & ~vmcs_config.nested.vmfunc_controls)
1493 return -EINVAL;
1494 vmx->nested.msrs.vmfunc_controls = data;
1495 return 0;
1496 default:
1497 /*
1498 * The rest of the VMX capability MSRs do not support restore.
1499 */
1500 return -EINVAL;
1501 }
1502 }
1503
1504 /* Returns 0 on success, non-0 otherwise. */
vmx_get_vmx_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u64 * pdata)1505 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1506 {
1507 switch (msr_index) {
1508 case MSR_IA32_VMX_BASIC:
1509 *pdata = msrs->basic;
1510 break;
1511 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1512 case MSR_IA32_VMX_PINBASED_CTLS:
1513 *pdata = vmx_control_msr(
1514 msrs->pinbased_ctls_low,
1515 msrs->pinbased_ctls_high);
1516 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1517 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1518 break;
1519 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1520 case MSR_IA32_VMX_PROCBASED_CTLS:
1521 *pdata = vmx_control_msr(
1522 msrs->procbased_ctls_low,
1523 msrs->procbased_ctls_high);
1524 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1525 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1526 break;
1527 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1528 case MSR_IA32_VMX_EXIT_CTLS:
1529 *pdata = vmx_control_msr(
1530 msrs->exit_ctls_low,
1531 msrs->exit_ctls_high);
1532 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1533 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1534 break;
1535 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1536 case MSR_IA32_VMX_ENTRY_CTLS:
1537 *pdata = vmx_control_msr(
1538 msrs->entry_ctls_low,
1539 msrs->entry_ctls_high);
1540 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1541 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1542 break;
1543 case MSR_IA32_VMX_MISC:
1544 *pdata = vmx_control_msr(
1545 msrs->misc_low,
1546 msrs->misc_high);
1547 break;
1548 case MSR_IA32_VMX_CR0_FIXED0:
1549 *pdata = msrs->cr0_fixed0;
1550 break;
1551 case MSR_IA32_VMX_CR0_FIXED1:
1552 *pdata = msrs->cr0_fixed1;
1553 break;
1554 case MSR_IA32_VMX_CR4_FIXED0:
1555 *pdata = msrs->cr4_fixed0;
1556 break;
1557 case MSR_IA32_VMX_CR4_FIXED1:
1558 *pdata = msrs->cr4_fixed1;
1559 break;
1560 case MSR_IA32_VMX_VMCS_ENUM:
1561 *pdata = msrs->vmcs_enum;
1562 break;
1563 case MSR_IA32_VMX_PROCBASED_CTLS2:
1564 *pdata = vmx_control_msr(
1565 msrs->secondary_ctls_low,
1566 msrs->secondary_ctls_high);
1567 break;
1568 case MSR_IA32_VMX_EPT_VPID_CAP:
1569 *pdata = msrs->ept_caps |
1570 ((u64)msrs->vpid_caps << 32);
1571 break;
1572 case MSR_IA32_VMX_VMFUNC:
1573 *pdata = msrs->vmfunc_controls;
1574 break;
1575 default:
1576 return 1;
1577 }
1578
1579 return 0;
1580 }
1581
1582 /*
1583 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1584 * been modified by the L1 guest. Note, "writable" in this context means
1585 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1586 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1587 * VM-exit information fields (which are actually writable if the vCPU is
1588 * configured to support "VMWRITE to any supported field in the VMCS").
1589 */
copy_shadow_to_vmcs12(struct vcpu_vmx * vmx)1590 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1591 {
1592 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1593 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1594 struct shadow_vmcs_field field;
1595 unsigned long val;
1596 int i;
1597
1598 if (WARN_ON(!shadow_vmcs))
1599 return;
1600
1601 preempt_disable();
1602
1603 vmcs_load(shadow_vmcs);
1604
1605 for (i = 0; i < max_shadow_read_write_fields; i++) {
1606 field = shadow_read_write_fields[i];
1607 val = __vmcs_readl(field.encoding);
1608 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1609 }
1610
1611 vmcs_clear(shadow_vmcs);
1612 vmcs_load(vmx->loaded_vmcs->vmcs);
1613
1614 preempt_enable();
1615 }
1616
copy_vmcs12_to_shadow(struct vcpu_vmx * vmx)1617 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1618 {
1619 const struct shadow_vmcs_field *fields[] = {
1620 shadow_read_write_fields,
1621 shadow_read_only_fields
1622 };
1623 const int max_fields[] = {
1624 max_shadow_read_write_fields,
1625 max_shadow_read_only_fields
1626 };
1627 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1628 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1629 struct shadow_vmcs_field field;
1630 unsigned long val;
1631 int i, q;
1632
1633 if (WARN_ON(!shadow_vmcs))
1634 return;
1635
1636 vmcs_load(shadow_vmcs);
1637
1638 for (q = 0; q < ARRAY_SIZE(fields); q++) {
1639 for (i = 0; i < max_fields[q]; i++) {
1640 field = fields[q][i];
1641 val = vmcs12_read_any(vmcs12, field.encoding,
1642 field.offset);
1643 __vmcs_writel(field.encoding, val);
1644 }
1645 }
1646
1647 vmcs_clear(shadow_vmcs);
1648 vmcs_load(vmx->loaded_vmcs->vmcs);
1649 }
1650
copy_enlightened_to_vmcs12(struct vcpu_vmx * vmx,u32 hv_clean_fields)1651 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1652 {
1653 #ifdef CONFIG_KVM_HYPERV
1654 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1655 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1656 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(&vmx->vcpu);
1657
1658 /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1659 vmcs12->tpr_threshold = evmcs->tpr_threshold;
1660 vmcs12->guest_rip = evmcs->guest_rip;
1661
1662 if (unlikely(!(hv_clean_fields &
1663 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ENLIGHTENMENTSCONTROL))) {
1664 hv_vcpu->nested.pa_page_gpa = evmcs->partition_assist_page;
1665 hv_vcpu->nested.vm_id = evmcs->hv_vm_id;
1666 hv_vcpu->nested.vp_id = evmcs->hv_vp_id;
1667 }
1668
1669 if (unlikely(!(hv_clean_fields &
1670 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1671 vmcs12->guest_rsp = evmcs->guest_rsp;
1672 vmcs12->guest_rflags = evmcs->guest_rflags;
1673 vmcs12->guest_interruptibility_info =
1674 evmcs->guest_interruptibility_info;
1675 /*
1676 * Not present in struct vmcs12:
1677 * vmcs12->guest_ssp = evmcs->guest_ssp;
1678 */
1679 }
1680
1681 if (unlikely(!(hv_clean_fields &
1682 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1683 vmcs12->cpu_based_vm_exec_control =
1684 evmcs->cpu_based_vm_exec_control;
1685 }
1686
1687 if (unlikely(!(hv_clean_fields &
1688 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1689 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1690 }
1691
1692 if (unlikely(!(hv_clean_fields &
1693 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1694 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1695 }
1696
1697 if (unlikely(!(hv_clean_fields &
1698 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1699 vmcs12->vm_entry_intr_info_field =
1700 evmcs->vm_entry_intr_info_field;
1701 vmcs12->vm_entry_exception_error_code =
1702 evmcs->vm_entry_exception_error_code;
1703 vmcs12->vm_entry_instruction_len =
1704 evmcs->vm_entry_instruction_len;
1705 }
1706
1707 if (unlikely(!(hv_clean_fields &
1708 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1709 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1710 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1711 vmcs12->host_cr0 = evmcs->host_cr0;
1712 vmcs12->host_cr3 = evmcs->host_cr3;
1713 vmcs12->host_cr4 = evmcs->host_cr4;
1714 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1715 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1716 vmcs12->host_rip = evmcs->host_rip;
1717 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1718 vmcs12->host_es_selector = evmcs->host_es_selector;
1719 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1720 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1721 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1722 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1723 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1724 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1725 vmcs12->host_ia32_perf_global_ctrl = evmcs->host_ia32_perf_global_ctrl;
1726 /*
1727 * Not present in struct vmcs12:
1728 * vmcs12->host_ia32_s_cet = evmcs->host_ia32_s_cet;
1729 * vmcs12->host_ssp = evmcs->host_ssp;
1730 * vmcs12->host_ia32_int_ssp_table_addr = evmcs->host_ia32_int_ssp_table_addr;
1731 */
1732 }
1733
1734 if (unlikely(!(hv_clean_fields &
1735 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1736 vmcs12->pin_based_vm_exec_control =
1737 evmcs->pin_based_vm_exec_control;
1738 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1739 vmcs12->secondary_vm_exec_control =
1740 evmcs->secondary_vm_exec_control;
1741 }
1742
1743 if (unlikely(!(hv_clean_fields &
1744 HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1745 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1746 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1747 }
1748
1749 if (unlikely(!(hv_clean_fields &
1750 HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1751 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1752 }
1753
1754 if (unlikely(!(hv_clean_fields &
1755 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1756 vmcs12->guest_es_base = evmcs->guest_es_base;
1757 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1758 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1759 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1760 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1761 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1762 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1763 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1764 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1765 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1766 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1767 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1768 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1769 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1770 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1771 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1772 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1773 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1774 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1775 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1776 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1777 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1778 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1779 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1780 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1781 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1782 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1783 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1784 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1785 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1786 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1787 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1788 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1789 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1790 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1791 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1792 }
1793
1794 if (unlikely(!(hv_clean_fields &
1795 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1796 vmcs12->tsc_offset = evmcs->tsc_offset;
1797 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1798 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1799 vmcs12->encls_exiting_bitmap = evmcs->encls_exiting_bitmap;
1800 vmcs12->tsc_multiplier = evmcs->tsc_multiplier;
1801 }
1802
1803 if (unlikely(!(hv_clean_fields &
1804 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1805 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1806 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1807 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1808 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1809 vmcs12->guest_cr0 = evmcs->guest_cr0;
1810 vmcs12->guest_cr3 = evmcs->guest_cr3;
1811 vmcs12->guest_cr4 = evmcs->guest_cr4;
1812 vmcs12->guest_dr7 = evmcs->guest_dr7;
1813 }
1814
1815 if (unlikely(!(hv_clean_fields &
1816 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1817 vmcs12->host_fs_base = evmcs->host_fs_base;
1818 vmcs12->host_gs_base = evmcs->host_gs_base;
1819 vmcs12->host_tr_base = evmcs->host_tr_base;
1820 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1821 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1822 vmcs12->host_rsp = evmcs->host_rsp;
1823 }
1824
1825 if (unlikely(!(hv_clean_fields &
1826 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1827 vmcs12->ept_pointer = evmcs->ept_pointer;
1828 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1829 }
1830
1831 if (unlikely(!(hv_clean_fields &
1832 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1833 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1834 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1835 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1836 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1837 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1838 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1839 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1840 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1841 vmcs12->guest_pending_dbg_exceptions =
1842 evmcs->guest_pending_dbg_exceptions;
1843 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1844 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1845 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1846 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1847 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1848 vmcs12->guest_ia32_perf_global_ctrl = evmcs->guest_ia32_perf_global_ctrl;
1849 /*
1850 * Not present in struct vmcs12:
1851 * vmcs12->guest_ia32_s_cet = evmcs->guest_ia32_s_cet;
1852 * vmcs12->guest_ia32_lbr_ctl = evmcs->guest_ia32_lbr_ctl;
1853 * vmcs12->guest_ia32_int_ssp_table_addr = evmcs->guest_ia32_int_ssp_table_addr;
1854 */
1855 }
1856
1857 /*
1858 * Not used?
1859 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1860 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1861 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1862 * vmcs12->page_fault_error_code_mask =
1863 * evmcs->page_fault_error_code_mask;
1864 * vmcs12->page_fault_error_code_match =
1865 * evmcs->page_fault_error_code_match;
1866 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1867 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1868 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1869 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1870 */
1871
1872 /*
1873 * Read only fields:
1874 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1875 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1876 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1877 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1878 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1879 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1880 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1881 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1882 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1883 * vmcs12->exit_qualification = evmcs->exit_qualification;
1884 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1885 *
1886 * Not present in struct vmcs12:
1887 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1888 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1889 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1890 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1891 */
1892
1893 return;
1894 #else /* CONFIG_KVM_HYPERV */
1895 KVM_BUG_ON(1, vmx->vcpu.kvm);
1896 #endif /* CONFIG_KVM_HYPERV */
1897 }
1898
copy_vmcs12_to_enlightened(struct vcpu_vmx * vmx)1899 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1900 {
1901 #ifdef CONFIG_KVM_HYPERV
1902 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1903 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1904
1905 /*
1906 * Should not be changed by KVM:
1907 *
1908 * evmcs->host_es_selector = vmcs12->host_es_selector;
1909 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1910 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1911 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1912 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1913 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1914 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1915 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1916 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1917 * evmcs->host_cr0 = vmcs12->host_cr0;
1918 * evmcs->host_cr3 = vmcs12->host_cr3;
1919 * evmcs->host_cr4 = vmcs12->host_cr4;
1920 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1921 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1922 * evmcs->host_rip = vmcs12->host_rip;
1923 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1924 * evmcs->host_fs_base = vmcs12->host_fs_base;
1925 * evmcs->host_gs_base = vmcs12->host_gs_base;
1926 * evmcs->host_tr_base = vmcs12->host_tr_base;
1927 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1928 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1929 * evmcs->host_rsp = vmcs12->host_rsp;
1930 * sync_vmcs02_to_vmcs12() doesn't read these:
1931 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1932 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1933 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1934 * evmcs->ept_pointer = vmcs12->ept_pointer;
1935 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1936 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1937 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1938 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1939 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1940 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1941 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1942 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1943 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1944 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1945 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1946 * evmcs->page_fault_error_code_mask =
1947 * vmcs12->page_fault_error_code_mask;
1948 * evmcs->page_fault_error_code_match =
1949 * vmcs12->page_fault_error_code_match;
1950 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1951 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1952 * evmcs->tsc_offset = vmcs12->tsc_offset;
1953 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1954 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1955 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1956 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1957 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1958 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1959 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1960 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1961 * evmcs->guest_ia32_perf_global_ctrl = vmcs12->guest_ia32_perf_global_ctrl;
1962 * evmcs->host_ia32_perf_global_ctrl = vmcs12->host_ia32_perf_global_ctrl;
1963 * evmcs->encls_exiting_bitmap = vmcs12->encls_exiting_bitmap;
1964 * evmcs->tsc_multiplier = vmcs12->tsc_multiplier;
1965 *
1966 * Not present in struct vmcs12:
1967 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1968 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1969 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1970 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1971 * evmcs->host_ia32_s_cet = vmcs12->host_ia32_s_cet;
1972 * evmcs->host_ssp = vmcs12->host_ssp;
1973 * evmcs->host_ia32_int_ssp_table_addr = vmcs12->host_ia32_int_ssp_table_addr;
1974 * evmcs->guest_ia32_s_cet = vmcs12->guest_ia32_s_cet;
1975 * evmcs->guest_ia32_lbr_ctl = vmcs12->guest_ia32_lbr_ctl;
1976 * evmcs->guest_ia32_int_ssp_table_addr = vmcs12->guest_ia32_int_ssp_table_addr;
1977 * evmcs->guest_ssp = vmcs12->guest_ssp;
1978 */
1979
1980 evmcs->guest_es_selector = vmcs12->guest_es_selector;
1981 evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1982 evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1983 evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1984 evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1985 evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1986 evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1987 evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1988
1989 evmcs->guest_es_limit = vmcs12->guest_es_limit;
1990 evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1991 evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1992 evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1993 evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1994 evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1995 evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1996 evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1997 evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1998 evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1999
2000 evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
2001 evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
2002 evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
2003 evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
2004 evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
2005 evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
2006 evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
2007 evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
2008
2009 evmcs->guest_es_base = vmcs12->guest_es_base;
2010 evmcs->guest_cs_base = vmcs12->guest_cs_base;
2011 evmcs->guest_ss_base = vmcs12->guest_ss_base;
2012 evmcs->guest_ds_base = vmcs12->guest_ds_base;
2013 evmcs->guest_fs_base = vmcs12->guest_fs_base;
2014 evmcs->guest_gs_base = vmcs12->guest_gs_base;
2015 evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
2016 evmcs->guest_tr_base = vmcs12->guest_tr_base;
2017 evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
2018 evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
2019
2020 evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
2021 evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
2022
2023 evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
2024 evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
2025 evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
2026 evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
2027
2028 evmcs->guest_pending_dbg_exceptions =
2029 vmcs12->guest_pending_dbg_exceptions;
2030 evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
2031 evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
2032
2033 evmcs->guest_activity_state = vmcs12->guest_activity_state;
2034 evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
2035
2036 evmcs->guest_cr0 = vmcs12->guest_cr0;
2037 evmcs->guest_cr3 = vmcs12->guest_cr3;
2038 evmcs->guest_cr4 = vmcs12->guest_cr4;
2039 evmcs->guest_dr7 = vmcs12->guest_dr7;
2040
2041 evmcs->guest_physical_address = vmcs12->guest_physical_address;
2042
2043 evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
2044 evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
2045 evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
2046 evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
2047 evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
2048 evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
2049 evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
2050 evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
2051
2052 evmcs->exit_qualification = vmcs12->exit_qualification;
2053
2054 evmcs->guest_linear_address = vmcs12->guest_linear_address;
2055 evmcs->guest_rsp = vmcs12->guest_rsp;
2056 evmcs->guest_rflags = vmcs12->guest_rflags;
2057
2058 evmcs->guest_interruptibility_info =
2059 vmcs12->guest_interruptibility_info;
2060 evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
2061 evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
2062 evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
2063 evmcs->vm_entry_exception_error_code =
2064 vmcs12->vm_entry_exception_error_code;
2065 evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
2066
2067 evmcs->guest_rip = vmcs12->guest_rip;
2068
2069 evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
2070
2071 return;
2072 #else /* CONFIG_KVM_HYPERV */
2073 KVM_BUG_ON(1, vmx->vcpu.kvm);
2074 #endif /* CONFIG_KVM_HYPERV */
2075 }
2076
2077 /*
2078 * This is an equivalent of the nested hypervisor executing the vmptrld
2079 * instruction.
2080 */
nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu * vcpu,bool from_launch)2081 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
2082 struct kvm_vcpu *vcpu, bool from_launch)
2083 {
2084 #ifdef CONFIG_KVM_HYPERV
2085 struct vcpu_vmx *vmx = to_vmx(vcpu);
2086 bool evmcs_gpa_changed = false;
2087 u64 evmcs_gpa;
2088
2089 if (likely(!guest_cpuid_has_evmcs(vcpu)))
2090 return EVMPTRLD_DISABLED;
2091
2092 evmcs_gpa = nested_get_evmptr(vcpu);
2093 if (!evmptr_is_valid(evmcs_gpa)) {
2094 nested_release_evmcs(vcpu);
2095 return EVMPTRLD_DISABLED;
2096 }
2097
2098 if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2099 vmx->nested.current_vmptr = INVALID_GPA;
2100
2101 nested_release_evmcs(vcpu);
2102
2103 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2104 &vmx->nested.hv_evmcs_map))
2105 return EVMPTRLD_ERROR;
2106
2107 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2108
2109 /*
2110 * Currently, KVM only supports eVMCS version 1
2111 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2112 * value to first u32 field of eVMCS which should specify eVMCS
2113 * VersionNumber.
2114 *
2115 * Guest should be aware of supported eVMCS versions by host by
2116 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2117 * expected to set this CPUID leaf according to the value
2118 * returned in vmcs_version from nested_enable_evmcs().
2119 *
2120 * However, it turns out that Microsoft Hyper-V fails to comply
2121 * to their own invented interface: When Hyper-V use eVMCS, it
2122 * just sets first u32 field of eVMCS to revision_id specified
2123 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2124 * which is one of the supported versions specified in
2125 * CPUID.0x4000000A.EAX[0:15].
2126 *
2127 * To overcome Hyper-V bug, we accept here either a supported
2128 * eVMCS version or VMCS12 revision_id as valid values for first
2129 * u32 field of eVMCS.
2130 */
2131 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2132 (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2133 nested_release_evmcs(vcpu);
2134 return EVMPTRLD_VMFAIL;
2135 }
2136
2137 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2138
2139 evmcs_gpa_changed = true;
2140 /*
2141 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2142 * reloaded from guest's memory (read only fields, fields not
2143 * present in struct hv_enlightened_vmcs, ...). Make sure there
2144 * are no leftovers.
2145 */
2146 if (from_launch) {
2147 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2148 memset(vmcs12, 0, sizeof(*vmcs12));
2149 vmcs12->hdr.revision_id = VMCS12_REVISION;
2150 }
2151
2152 }
2153
2154 /*
2155 * Clean fields data can't be used on VMLAUNCH and when we switch
2156 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2157 */
2158 if (from_launch || evmcs_gpa_changed) {
2159 vmx->nested.hv_evmcs->hv_clean_fields &=
2160 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2161
2162 vmx->nested.force_msr_bitmap_recalc = true;
2163 }
2164
2165 return EVMPTRLD_SUCCEEDED;
2166 #else
2167 return EVMPTRLD_DISABLED;
2168 #endif
2169 }
2170
nested_sync_vmcs12_to_shadow(struct kvm_vcpu * vcpu)2171 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2172 {
2173 struct vcpu_vmx *vmx = to_vmx(vcpu);
2174
2175 if (nested_vmx_is_evmptr12_valid(vmx))
2176 copy_vmcs12_to_enlightened(vmx);
2177 else
2178 copy_vmcs12_to_shadow(vmx);
2179
2180 vmx->nested.need_vmcs12_to_shadow_sync = false;
2181 }
2182
vmx_preemption_timer_fn(struct hrtimer * timer)2183 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2184 {
2185 struct vcpu_vmx *vmx =
2186 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2187
2188 vmx->nested.preemption_timer_expired = true;
2189 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2190 kvm_vcpu_kick(&vmx->vcpu);
2191
2192 return HRTIMER_NORESTART;
2193 }
2194
vmx_calc_preemption_timer_value(struct kvm_vcpu * vcpu)2195 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2196 {
2197 struct vcpu_vmx *vmx = to_vmx(vcpu);
2198 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2199
2200 u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2201 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2202
2203 if (!vmx->nested.has_preemption_timer_deadline) {
2204 vmx->nested.preemption_timer_deadline =
2205 vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2206 vmx->nested.has_preemption_timer_deadline = true;
2207 }
2208 return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2209 }
2210
vmx_start_preemption_timer(struct kvm_vcpu * vcpu,u64 preemption_timeout)2211 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2212 u64 preemption_timeout)
2213 {
2214 struct vcpu_vmx *vmx = to_vmx(vcpu);
2215
2216 /*
2217 * A timer value of zero is architecturally guaranteed to cause
2218 * a VMExit prior to executing any instructions in the guest.
2219 */
2220 if (preemption_timeout == 0) {
2221 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2222 return;
2223 }
2224
2225 if (vcpu->arch.virtual_tsc_khz == 0)
2226 return;
2227
2228 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2229 preemption_timeout *= 1000000;
2230 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2231 hrtimer_start(&vmx->nested.preemption_timer,
2232 ktime_add_ns(ktime_get(), preemption_timeout),
2233 HRTIMER_MODE_ABS_PINNED);
2234 }
2235
nested_vmx_calc_efer(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2236 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2237 {
2238 if (vmx->nested.nested_run_pending &&
2239 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2240 return vmcs12->guest_ia32_efer;
2241 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2242 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2243 else
2244 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2245 }
2246
prepare_vmcs02_constant_state(struct vcpu_vmx * vmx)2247 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2248 {
2249 struct kvm *kvm = vmx->vcpu.kvm;
2250
2251 /*
2252 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2253 * according to L0's settings (vmcs12 is irrelevant here). Host
2254 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2255 * will be set as needed prior to VMLAUNCH/VMRESUME.
2256 */
2257 if (vmx->nested.vmcs02_initialized)
2258 return;
2259 vmx->nested.vmcs02_initialized = true;
2260
2261 /*
2262 * We don't care what the EPTP value is we just need to guarantee
2263 * it's valid so we don't get a false positive when doing early
2264 * consistency checks.
2265 */
2266 if (enable_ept && nested_early_check)
2267 vmcs_write64(EPT_POINTER,
2268 construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2269
2270 if (vmx->ve_info)
2271 vmcs_write64(VE_INFORMATION_ADDRESS, __pa(vmx->ve_info));
2272
2273 /* All VMFUNCs are currently emulated through L0 vmexits. */
2274 if (cpu_has_vmx_vmfunc())
2275 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2276
2277 if (cpu_has_vmx_posted_intr())
2278 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2279
2280 if (cpu_has_vmx_msr_bitmap())
2281 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2282
2283 /*
2284 * PML is emulated for L2, but never enabled in hardware as the MMU
2285 * handles A/D emulation. Disabling PML for L2 also avoids having to
2286 * deal with filtering out L2 GPAs from the buffer.
2287 */
2288 if (enable_pml) {
2289 vmcs_write64(PML_ADDRESS, 0);
2290 vmcs_write16(GUEST_PML_INDEX, -1);
2291 }
2292
2293 if (cpu_has_vmx_encls_vmexit())
2294 vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2295
2296 if (kvm_notify_vmexit_enabled(kvm))
2297 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
2298
2299 /*
2300 * Set the MSR load/store lists to match L0's settings. Only the
2301 * addresses are constant (for vmcs02), the counts can change based
2302 * on L2's behavior, e.g. switching to/from long mode.
2303 */
2304 vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2305 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2306 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2307
2308 vmx_set_constant_host_state(vmx);
2309 }
2310
prepare_vmcs02_early_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2311 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2312 struct vmcs12 *vmcs12)
2313 {
2314 prepare_vmcs02_constant_state(vmx);
2315
2316 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2317
2318 if (enable_vpid) {
2319 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2320 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2321 else
2322 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2323 }
2324 }
2325
prepare_vmcs02_early(struct vcpu_vmx * vmx,struct loaded_vmcs * vmcs01,struct vmcs12 * vmcs12)2326 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2327 struct vmcs12 *vmcs12)
2328 {
2329 u32 exec_control;
2330 u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2331
2332 if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx))
2333 prepare_vmcs02_early_rare(vmx, vmcs12);
2334
2335 /*
2336 * PIN CONTROLS
2337 */
2338 exec_control = __pin_controls_get(vmcs01);
2339 exec_control |= (vmcs12->pin_based_vm_exec_control &
2340 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2341
2342 /* Posted interrupts setting is only taken from vmcs12. */
2343 vmx->nested.pi_pending = false;
2344 if (nested_cpu_has_posted_intr(vmcs12)) {
2345 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2346 } else {
2347 vmx->nested.posted_intr_nv = -1;
2348 exec_control &= ~PIN_BASED_POSTED_INTR;
2349 }
2350 pin_controls_set(vmx, exec_control);
2351
2352 /*
2353 * EXEC CONTROLS
2354 */
2355 exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2356 exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2357 exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2358 exec_control &= ~CPU_BASED_TPR_SHADOW;
2359 exec_control |= vmcs12->cpu_based_vm_exec_control;
2360
2361 vmx->nested.l1_tpr_threshold = -1;
2362 if (exec_control & CPU_BASED_TPR_SHADOW)
2363 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2364 #ifdef CONFIG_X86_64
2365 else
2366 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2367 CPU_BASED_CR8_STORE_EXITING;
2368 #endif
2369
2370 /*
2371 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2372 * for I/O port accesses.
2373 */
2374 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2375 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2376
2377 /*
2378 * This bit will be computed in nested_get_vmcs12_pages, because
2379 * we do not have access to L1's MSR bitmap yet. For now, keep
2380 * the same bit as before, hoping to avoid multiple VMWRITEs that
2381 * only set/clear this bit.
2382 */
2383 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2384 exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2385
2386 exec_controls_set(vmx, exec_control);
2387
2388 /*
2389 * SECONDARY EXEC CONTROLS
2390 */
2391 if (cpu_has_secondary_exec_ctrls()) {
2392 exec_control = __secondary_exec_controls_get(vmcs01);
2393
2394 /* Take the following fields only from vmcs12 */
2395 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2396 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2397 SECONDARY_EXEC_ENABLE_INVPCID |
2398 SECONDARY_EXEC_ENABLE_RDTSCP |
2399 SECONDARY_EXEC_ENABLE_XSAVES |
2400 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2401 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2402 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2403 SECONDARY_EXEC_ENABLE_VMFUNC |
2404 SECONDARY_EXEC_DESC);
2405
2406 if (nested_cpu_has(vmcs12,
2407 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2408 exec_control |= vmcs12->secondary_vm_exec_control;
2409
2410 /* PML is emulated and never enabled in hardware for L2. */
2411 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2412
2413 /* VMCS shadowing for L2 is emulated for now */
2414 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2415
2416 /*
2417 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2418 * will not have to rewrite the controls just for this bit.
2419 */
2420 if (vmx_umip_emulated() && (vmcs12->guest_cr4 & X86_CR4_UMIP))
2421 exec_control |= SECONDARY_EXEC_DESC;
2422
2423 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2424 vmcs_write16(GUEST_INTR_STATUS,
2425 vmcs12->guest_intr_status);
2426
2427 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2428 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2429
2430 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2431 vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2432
2433 secondary_exec_controls_set(vmx, exec_control);
2434 }
2435
2436 /*
2437 * ENTRY CONTROLS
2438 *
2439 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2440 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2441 * on the related bits (if supported by the CPU) in the hope that
2442 * we can avoid VMWrites during vmx_set_efer().
2443 *
2444 * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is
2445 * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to
2446 * do the same for L2.
2447 */
2448 exec_control = __vm_entry_controls_get(vmcs01);
2449 exec_control |= (vmcs12->vm_entry_controls &
2450 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
2451 exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2452 if (cpu_has_load_ia32_efer()) {
2453 if (guest_efer & EFER_LMA)
2454 exec_control |= VM_ENTRY_IA32E_MODE;
2455 if (guest_efer != kvm_host.efer)
2456 exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2457 }
2458 vm_entry_controls_set(vmx, exec_control);
2459
2460 /*
2461 * EXIT CONTROLS
2462 *
2463 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2464 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2465 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2466 */
2467 exec_control = __vm_exit_controls_get(vmcs01);
2468 if (cpu_has_load_ia32_efer() && guest_efer != kvm_host.efer)
2469 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2470 else
2471 exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2472 vm_exit_controls_set(vmx, exec_control);
2473
2474 /*
2475 * Interrupt/Exception Fields
2476 */
2477 if (vmx->nested.nested_run_pending) {
2478 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2479 vmcs12->vm_entry_intr_info_field);
2480 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2481 vmcs12->vm_entry_exception_error_code);
2482 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2483 vmcs12->vm_entry_instruction_len);
2484 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2485 vmcs12->guest_interruptibility_info);
2486 vmx->loaded_vmcs->nmi_known_unmasked =
2487 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2488 } else {
2489 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2490 }
2491 }
2492
prepare_vmcs02_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2493 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2494 {
2495 struct hv_enlightened_vmcs *hv_evmcs = nested_vmx_evmcs(vmx);
2496
2497 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2498 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2499
2500 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2501 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2502 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2503 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2504 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2505 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2506 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2507 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2508 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2509 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2510 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2511 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2512 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2513 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2514 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2515 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2516 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2517 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2518 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2519 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2520 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2521 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2522 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2523 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2524 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2525 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2526 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2527 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2528 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2529 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2530 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2531 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2532 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2533 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2534 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2535 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2536
2537 vmx_segment_cache_clear(vmx);
2538 }
2539
2540 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2541 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2542 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2543 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2544 vmcs12->guest_pending_dbg_exceptions);
2545 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2546 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2547
2548 /*
2549 * L1 may access the L2's PDPTR, so save them to construct
2550 * vmcs12
2551 */
2552 if (enable_ept) {
2553 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2554 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2555 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2556 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2557 }
2558
2559 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2560 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2561 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2562 }
2563
2564 if (nested_cpu_has_xsaves(vmcs12))
2565 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2566
2567 /*
2568 * Whether page-faults are trapped is determined by a combination of
2569 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. If L0
2570 * doesn't care about page faults then we should set all of these to
2571 * L1's desires. However, if L0 does care about (some) page faults, it
2572 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2573 * simply ask to exit on each and every L2 page fault. This is done by
2574 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2575 * Note that below we don't need special code to set EB.PF beyond the
2576 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2577 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2578 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2579 */
2580 if (vmx_need_pf_intercept(&vmx->vcpu)) {
2581 /*
2582 * TODO: if both L0 and L1 need the same MASK and MATCH,
2583 * go ahead and use it?
2584 */
2585 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2586 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2587 } else {
2588 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2589 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2590 }
2591
2592 if (cpu_has_vmx_apicv()) {
2593 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2594 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2595 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2596 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2597 }
2598
2599 /*
2600 * Make sure the msr_autostore list is up to date before we set the
2601 * count in the vmcs02.
2602 */
2603 prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2604
2605 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2606 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2607 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2608
2609 set_cr4_guest_host_mask(vmx);
2610 }
2611
2612 /*
2613 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2614 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2615 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2616 * guest in a way that will both be appropriate to L1's requests, and our
2617 * needs. In addition to modifying the active vmcs (which is vmcs02), this
2618 * function also has additional necessary side-effects, like setting various
2619 * vcpu->arch fields.
2620 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2621 * is assigned to entry_failure_code on failure.
2622 */
prepare_vmcs02(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool from_vmentry,enum vm_entry_failure_code * entry_failure_code)2623 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2624 bool from_vmentry,
2625 enum vm_entry_failure_code *entry_failure_code)
2626 {
2627 struct vcpu_vmx *vmx = to_vmx(vcpu);
2628 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
2629 bool load_guest_pdptrs_vmcs12 = false;
2630
2631 if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx)) {
2632 prepare_vmcs02_rare(vmx, vmcs12);
2633 vmx->nested.dirty_vmcs12 = false;
2634
2635 load_guest_pdptrs_vmcs12 = !nested_vmx_is_evmptr12_valid(vmx) ||
2636 !(evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2637 }
2638
2639 if (vmx->nested.nested_run_pending &&
2640 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2641 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2642 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2643 } else {
2644 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2645 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.pre_vmenter_debugctl);
2646 }
2647 if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2648 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2649 vmcs_write64(GUEST_BNDCFGS, vmx->nested.pre_vmenter_bndcfgs);
2650 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2651
2652 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2653 * bitwise-or of what L1 wants to trap for L2, and what we want to
2654 * trap. Note that CR0.TS also needs updating - we do this later.
2655 */
2656 vmx_update_exception_bitmap(vcpu);
2657 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2658 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2659
2660 if (vmx->nested.nested_run_pending &&
2661 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2662 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2663 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2664 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2665 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2666 }
2667
2668 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2669 vcpu->arch.l1_tsc_offset,
2670 vmx_get_l2_tsc_offset(vcpu),
2671 vmx_get_l2_tsc_multiplier(vcpu));
2672
2673 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2674 vcpu->arch.l1_tsc_scaling_ratio,
2675 vmx_get_l2_tsc_multiplier(vcpu));
2676
2677 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2678 if (kvm_caps.has_tsc_control)
2679 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2680
2681 nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2682
2683 if (nested_cpu_has_ept(vmcs12))
2684 nested_ept_init_mmu_context(vcpu);
2685
2686 /*
2687 * Override the CR0/CR4 read shadows after setting the effective guest
2688 * CR0/CR4. The common helpers also set the shadows, but they don't
2689 * account for vmcs12's cr0/4_guest_host_mask.
2690 */
2691 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2692 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2693
2694 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2695 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2696
2697 vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2698 /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2699 vmx_set_efer(vcpu, vcpu->arch.efer);
2700
2701 /*
2702 * Guest state is invalid and unrestricted guest is disabled,
2703 * which means L1 attempted VMEntry to L2 with invalid state.
2704 * Fail the VMEntry.
2705 *
2706 * However when force loading the guest state (SMM exit or
2707 * loading nested state after migration, it is possible to
2708 * have invalid guest state now, which will be later fixed by
2709 * restoring L2 register state
2710 */
2711 if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2712 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2713 return -EINVAL;
2714 }
2715
2716 /* Shadow page tables on either EPT or shadow page tables. */
2717 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2718 from_vmentry, entry_failure_code))
2719 return -EINVAL;
2720
2721 /*
2722 * Immediately write vmcs02.GUEST_CR3. It will be propagated to vmcs12
2723 * on nested VM-Exit, which can occur without actually running L2 and
2724 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2725 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2726 * transition to HLT instead of running L2.
2727 */
2728 if (enable_ept)
2729 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2730
2731 /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2732 if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2733 is_pae_paging(vcpu)) {
2734 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2735 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2736 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2737 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2738 }
2739
2740 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2741 kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)) &&
2742 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2743 vmcs12->guest_ia32_perf_global_ctrl))) {
2744 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2745 return -EINVAL;
2746 }
2747
2748 kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2749 kvm_rip_write(vcpu, vmcs12->guest_rip);
2750
2751 /*
2752 * It was observed that genuine Hyper-V running in L1 doesn't reset
2753 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2754 * bits when it changes a field in eVMCS. Mark all fields as clean
2755 * here.
2756 */
2757 if (nested_vmx_is_evmptr12_valid(vmx))
2758 evmcs->hv_clean_fields |= HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2759
2760 return 0;
2761 }
2762
nested_vmx_check_nmi_controls(struct vmcs12 * vmcs12)2763 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2764 {
2765 if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2766 nested_cpu_has_virtual_nmis(vmcs12)))
2767 return -EINVAL;
2768
2769 if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2770 nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2771 return -EINVAL;
2772
2773 return 0;
2774 }
2775
nested_vmx_check_eptp(struct kvm_vcpu * vcpu,u64 new_eptp)2776 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2777 {
2778 struct vcpu_vmx *vmx = to_vmx(vcpu);
2779
2780 /* Check for memory type validity */
2781 switch (new_eptp & VMX_EPTP_MT_MASK) {
2782 case VMX_EPTP_MT_UC:
2783 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2784 return false;
2785 break;
2786 case VMX_EPTP_MT_WB:
2787 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2788 return false;
2789 break;
2790 default:
2791 return false;
2792 }
2793
2794 /* Page-walk levels validity. */
2795 switch (new_eptp & VMX_EPTP_PWL_MASK) {
2796 case VMX_EPTP_PWL_5:
2797 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2798 return false;
2799 break;
2800 case VMX_EPTP_PWL_4:
2801 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2802 return false;
2803 break;
2804 default:
2805 return false;
2806 }
2807
2808 /* Reserved bits should not be set */
2809 if (CC(!kvm_vcpu_is_legal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2810 return false;
2811
2812 /* AD, if set, should be supported */
2813 if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2814 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2815 return false;
2816 }
2817
2818 return true;
2819 }
2820
2821 /*
2822 * Checks related to VM-Execution Control Fields
2823 */
nested_check_vm_execution_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2824 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2825 struct vmcs12 *vmcs12)
2826 {
2827 struct vcpu_vmx *vmx = to_vmx(vcpu);
2828
2829 if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2830 vmx->nested.msrs.pinbased_ctls_low,
2831 vmx->nested.msrs.pinbased_ctls_high)) ||
2832 CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2833 vmx->nested.msrs.procbased_ctls_low,
2834 vmx->nested.msrs.procbased_ctls_high)))
2835 return -EINVAL;
2836
2837 if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2838 CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2839 vmx->nested.msrs.secondary_ctls_low,
2840 vmx->nested.msrs.secondary_ctls_high)))
2841 return -EINVAL;
2842
2843 if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2844 nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2845 nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2846 nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2847 nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2848 nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2849 nested_vmx_check_nmi_controls(vmcs12) ||
2850 nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2851 nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2852 nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2853 nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2854 CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2855 return -EINVAL;
2856
2857 if (!nested_cpu_has_preemption_timer(vmcs12) &&
2858 nested_cpu_has_save_preemption_timer(vmcs12))
2859 return -EINVAL;
2860
2861 if (nested_cpu_has_ept(vmcs12) &&
2862 CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2863 return -EINVAL;
2864
2865 if (nested_cpu_has_vmfunc(vmcs12)) {
2866 if (CC(vmcs12->vm_function_control &
2867 ~vmx->nested.msrs.vmfunc_controls))
2868 return -EINVAL;
2869
2870 if (nested_cpu_has_eptp_switching(vmcs12)) {
2871 if (CC(!nested_cpu_has_ept(vmcs12)) ||
2872 CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2873 return -EINVAL;
2874 }
2875 }
2876
2877 return 0;
2878 }
2879
2880 /*
2881 * Checks related to VM-Exit Control Fields
2882 */
nested_check_vm_exit_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2883 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2884 struct vmcs12 *vmcs12)
2885 {
2886 struct vcpu_vmx *vmx = to_vmx(vcpu);
2887
2888 if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2889 vmx->nested.msrs.exit_ctls_low,
2890 vmx->nested.msrs.exit_ctls_high)) ||
2891 CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2892 return -EINVAL;
2893
2894 return 0;
2895 }
2896
2897 /*
2898 * Checks related to VM-Entry Control Fields
2899 */
nested_check_vm_entry_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2900 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2901 struct vmcs12 *vmcs12)
2902 {
2903 struct vcpu_vmx *vmx = to_vmx(vcpu);
2904
2905 if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2906 vmx->nested.msrs.entry_ctls_low,
2907 vmx->nested.msrs.entry_ctls_high)))
2908 return -EINVAL;
2909
2910 /*
2911 * From the Intel SDM, volume 3:
2912 * Fields relevant to VM-entry event injection must be set properly.
2913 * These fields are the VM-entry interruption-information field, the
2914 * VM-entry exception error code, and the VM-entry instruction length.
2915 */
2916 if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2917 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2918 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2919 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2920 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2921 bool should_have_error_code;
2922 bool urg = nested_cpu_has2(vmcs12,
2923 SECONDARY_EXEC_UNRESTRICTED_GUEST);
2924 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2925
2926 /* VM-entry interruption-info field: interruption type */
2927 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2928 CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2929 !nested_cpu_supports_monitor_trap_flag(vcpu)))
2930 return -EINVAL;
2931
2932 /* VM-entry interruption-info field: vector */
2933 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2934 CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2935 CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2936 return -EINVAL;
2937
2938 /* VM-entry interruption-info field: deliver error code */
2939 should_have_error_code =
2940 intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2941 x86_exception_has_error_code(vector);
2942 if (CC(has_error_code != should_have_error_code))
2943 return -EINVAL;
2944
2945 /* VM-entry exception error code */
2946 if (CC(has_error_code &&
2947 vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2948 return -EINVAL;
2949
2950 /* VM-entry interruption-info field: reserved bits */
2951 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2952 return -EINVAL;
2953
2954 /* VM-entry instruction length */
2955 switch (intr_type) {
2956 case INTR_TYPE_SOFT_EXCEPTION:
2957 case INTR_TYPE_SOFT_INTR:
2958 case INTR_TYPE_PRIV_SW_EXCEPTION:
2959 if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2960 CC(vmcs12->vm_entry_instruction_len == 0 &&
2961 CC(!nested_cpu_has_zero_length_injection(vcpu))))
2962 return -EINVAL;
2963 }
2964 }
2965
2966 if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2967 return -EINVAL;
2968
2969 return 0;
2970 }
2971
nested_vmx_check_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2972 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2973 struct vmcs12 *vmcs12)
2974 {
2975 if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2976 nested_check_vm_exit_controls(vcpu, vmcs12) ||
2977 nested_check_vm_entry_controls(vcpu, vmcs12))
2978 return -EINVAL;
2979
2980 #ifdef CONFIG_KVM_HYPERV
2981 if (guest_cpuid_has_evmcs(vcpu))
2982 return nested_evmcs_check_controls(vmcs12);
2983 #endif
2984
2985 return 0;
2986 }
2987
nested_vmx_check_address_space_size(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2988 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
2989 struct vmcs12 *vmcs12)
2990 {
2991 #ifdef CONFIG_X86_64
2992 if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
2993 !!(vcpu->arch.efer & EFER_LMA)))
2994 return -EINVAL;
2995 #endif
2996 return 0;
2997 }
2998
nested_vmx_check_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2999 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
3000 struct vmcs12 *vmcs12)
3001 {
3002 bool ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
3003
3004 if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
3005 CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
3006 CC(!kvm_vcpu_is_legal_cr3(vcpu, vmcs12->host_cr3)))
3007 return -EINVAL;
3008
3009 if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
3010 CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
3011 return -EINVAL;
3012
3013 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
3014 CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
3015 return -EINVAL;
3016
3017 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3018 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3019 vmcs12->host_ia32_perf_global_ctrl)))
3020 return -EINVAL;
3021
3022 if (ia32e) {
3023 if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
3024 return -EINVAL;
3025 } else {
3026 if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
3027 CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
3028 CC((vmcs12->host_rip) >> 32))
3029 return -EINVAL;
3030 }
3031
3032 if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3033 CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3034 CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3035 CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3036 CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3037 CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3038 CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3039 CC(vmcs12->host_cs_selector == 0) ||
3040 CC(vmcs12->host_tr_selector == 0) ||
3041 CC(vmcs12->host_ss_selector == 0 && !ia32e))
3042 return -EINVAL;
3043
3044 if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
3045 CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
3046 CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
3047 CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
3048 CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
3049 CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
3050 return -EINVAL;
3051
3052 /*
3053 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
3054 * IA32_EFER MSR must be 0 in the field for that register. In addition,
3055 * the values of the LMA and LME bits in the field must each be that of
3056 * the host address-space size VM-exit control.
3057 */
3058 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
3059 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
3060 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
3061 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
3062 return -EINVAL;
3063 }
3064
3065 return 0;
3066 }
3067
nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3068 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
3069 struct vmcs12 *vmcs12)
3070 {
3071 struct vcpu_vmx *vmx = to_vmx(vcpu);
3072 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
3073 struct vmcs_hdr hdr;
3074
3075 if (vmcs12->vmcs_link_pointer == INVALID_GPA)
3076 return 0;
3077
3078 if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
3079 return -EINVAL;
3080
3081 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
3082 CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
3083 vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
3084 return -EINVAL;
3085
3086 if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
3087 offsetof(struct vmcs12, hdr),
3088 sizeof(hdr))))
3089 return -EINVAL;
3090
3091 if (CC(hdr.revision_id != VMCS12_REVISION) ||
3092 CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
3093 return -EINVAL;
3094
3095 return 0;
3096 }
3097
3098 /*
3099 * Checks related to Guest Non-register State
3100 */
nested_check_guest_non_reg_state(struct vmcs12 * vmcs12)3101 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
3102 {
3103 if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
3104 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
3105 vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
3106 return -EINVAL;
3107
3108 return 0;
3109 }
3110
nested_vmx_check_guest_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,enum vm_entry_failure_code * entry_failure_code)3111 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
3112 struct vmcs12 *vmcs12,
3113 enum vm_entry_failure_code *entry_failure_code)
3114 {
3115 bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE);
3116
3117 *entry_failure_code = ENTRY_FAIL_DEFAULT;
3118
3119 if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3120 CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3121 return -EINVAL;
3122
3123 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3124 CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
3125 return -EINVAL;
3126
3127 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3128 CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3129 return -EINVAL;
3130
3131 if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3132 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3133 return -EINVAL;
3134 }
3135
3136 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3137 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3138 vmcs12->guest_ia32_perf_global_ctrl)))
3139 return -EINVAL;
3140
3141 if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG))
3142 return -EINVAL;
3143
3144 if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) ||
3145 CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG)))
3146 return -EINVAL;
3147
3148 /*
3149 * If the load IA32_EFER VM-entry control is 1, the following checks
3150 * are performed on the field for the IA32_EFER MSR:
3151 * - Bits reserved in the IA32_EFER MSR must be 0.
3152 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3153 * the IA-32e mode guest VM-exit control. It must also be identical
3154 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3155 * CR0.PG) is 1.
3156 */
3157 if (to_vmx(vcpu)->nested.nested_run_pending &&
3158 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3159 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3160 CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3161 CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3162 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3163 return -EINVAL;
3164 }
3165
3166 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3167 (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3168 CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3169 return -EINVAL;
3170
3171 if (nested_check_guest_non_reg_state(vmcs12))
3172 return -EINVAL;
3173
3174 return 0;
3175 }
3176
nested_vmx_check_vmentry_hw(struct kvm_vcpu * vcpu)3177 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3178 {
3179 struct vcpu_vmx *vmx = to_vmx(vcpu);
3180 unsigned long cr3, cr4;
3181 bool vm_fail;
3182
3183 if (!nested_early_check)
3184 return 0;
3185
3186 if (vmx->msr_autoload.host.nr)
3187 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3188 if (vmx->msr_autoload.guest.nr)
3189 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3190
3191 preempt_disable();
3192
3193 vmx_prepare_switch_to_guest(vcpu);
3194
3195 /*
3196 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3197 * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
3198 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3199 * there is no need to preserve other bits or save/restore the field.
3200 */
3201 vmcs_writel(GUEST_RFLAGS, 0);
3202
3203 cr3 = __get_current_cr3_fast();
3204 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3205 vmcs_writel(HOST_CR3, cr3);
3206 vmx->loaded_vmcs->host_state.cr3 = cr3;
3207 }
3208
3209 cr4 = cr4_read_shadow();
3210 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3211 vmcs_writel(HOST_CR4, cr4);
3212 vmx->loaded_vmcs->host_state.cr4 = cr4;
3213 }
3214
3215 vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3216 __vmx_vcpu_run_flags(vmx));
3217
3218 if (vmx->msr_autoload.host.nr)
3219 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3220 if (vmx->msr_autoload.guest.nr)
3221 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3222
3223 if (vm_fail) {
3224 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3225
3226 preempt_enable();
3227
3228 trace_kvm_nested_vmenter_failed(
3229 "early hardware check VM-instruction error: ", error);
3230 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3231 return 1;
3232 }
3233
3234 /*
3235 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3236 */
3237 if (hw_breakpoint_active())
3238 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3239 local_irq_enable();
3240 preempt_enable();
3241
3242 /*
3243 * A non-failing VMEntry means we somehow entered guest mode with
3244 * an illegal RIP, and that's just the tip of the iceberg. There
3245 * is no telling what memory has been modified or what state has
3246 * been exposed to unknown code. Hitting this all but guarantees
3247 * a (very critical) hardware issue.
3248 */
3249 WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3250 VMX_EXIT_REASONS_FAILED_VMENTRY));
3251
3252 return 0;
3253 }
3254
3255 #ifdef CONFIG_KVM_HYPERV
nested_get_evmcs_page(struct kvm_vcpu * vcpu)3256 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3257 {
3258 struct vcpu_vmx *vmx = to_vmx(vcpu);
3259
3260 /*
3261 * hv_evmcs may end up being not mapped after migration (when
3262 * L2 was running), map it here to make sure vmcs12 changes are
3263 * properly reflected.
3264 */
3265 if (guest_cpuid_has_evmcs(vcpu) &&
3266 vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3267 enum nested_evmptrld_status evmptrld_status =
3268 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3269
3270 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3271 evmptrld_status == EVMPTRLD_ERROR)
3272 return false;
3273
3274 /*
3275 * Post migration VMCS12 always provides the most actual
3276 * information, copy it to eVMCS upon entry.
3277 */
3278 vmx->nested.need_vmcs12_to_shadow_sync = true;
3279 }
3280
3281 return true;
3282 }
3283 #endif
3284
nested_get_vmcs12_pages(struct kvm_vcpu * vcpu)3285 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3286 {
3287 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3288 struct vcpu_vmx *vmx = to_vmx(vcpu);
3289 struct kvm_host_map *map;
3290
3291 if (!vcpu->arch.pdptrs_from_userspace &&
3292 !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3293 /*
3294 * Reload the guest's PDPTRs since after a migration
3295 * the guest CR3 might be restored prior to setting the nested
3296 * state which can lead to a load of wrong PDPTRs.
3297 */
3298 if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3299 return false;
3300 }
3301
3302
3303 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3304 map = &vmx->nested.apic_access_page_map;
3305
3306 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->apic_access_addr), map)) {
3307 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(map->pfn));
3308 } else {
3309 pr_debug_ratelimited("%s: no backing for APIC-access address in vmcs12\n",
3310 __func__);
3311 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3312 vcpu->run->internal.suberror =
3313 KVM_INTERNAL_ERROR_EMULATION;
3314 vcpu->run->internal.ndata = 0;
3315 return false;
3316 }
3317 }
3318
3319 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3320 map = &vmx->nested.virtual_apic_map;
3321
3322 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3323 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3324 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3325 nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3326 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3327 /*
3328 * The processor will never use the TPR shadow, simply
3329 * clear the bit from the execution control. Such a
3330 * configuration is useless, but it happens in tests.
3331 * For any other configuration, failing the vm entry is
3332 * _not_ what the processor does but it's basically the
3333 * only possibility we have.
3334 */
3335 exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3336 } else {
3337 /*
3338 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3339 * force VM-Entry to fail.
3340 */
3341 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3342 }
3343 }
3344
3345 if (nested_cpu_has_posted_intr(vmcs12)) {
3346 map = &vmx->nested.pi_desc_map;
3347
3348 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3349 vmx->nested.pi_desc =
3350 (struct pi_desc *)(((void *)map->hva) +
3351 offset_in_page(vmcs12->posted_intr_desc_addr));
3352 vmcs_write64(POSTED_INTR_DESC_ADDR,
3353 pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3354 } else {
3355 /*
3356 * Defer the KVM_INTERNAL_EXIT until KVM tries to
3357 * access the contents of the VMCS12 posted interrupt
3358 * descriptor. (Note that KVM may do this when it
3359 * should not, per the architectural specification.)
3360 */
3361 vmx->nested.pi_desc = NULL;
3362 pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3363 }
3364 }
3365 if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3366 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3367 else
3368 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3369
3370 return true;
3371 }
3372
vmx_get_nested_state_pages(struct kvm_vcpu * vcpu)3373 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3374 {
3375 #ifdef CONFIG_KVM_HYPERV
3376 /*
3377 * Note: nested_get_evmcs_page() also updates 'vp_assist_page' copy
3378 * in 'struct kvm_vcpu_hv' in case eVMCS is in use, this is mandatory
3379 * to make nested_evmcs_l2_tlb_flush_enabled() work correctly post
3380 * migration.
3381 */
3382 if (!nested_get_evmcs_page(vcpu)) {
3383 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3384 __func__);
3385 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3386 vcpu->run->internal.suberror =
3387 KVM_INTERNAL_ERROR_EMULATION;
3388 vcpu->run->internal.ndata = 0;
3389
3390 return false;
3391 }
3392 #endif
3393
3394 if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3395 return false;
3396
3397 return true;
3398 }
3399
nested_vmx_write_pml_buffer(struct kvm_vcpu * vcpu,gpa_t gpa)3400 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3401 {
3402 struct vmcs12 *vmcs12;
3403 struct vcpu_vmx *vmx = to_vmx(vcpu);
3404 gpa_t dst;
3405
3406 if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3407 return 0;
3408
3409 if (WARN_ON_ONCE(vmx->nested.pml_full))
3410 return 1;
3411
3412 /*
3413 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3414 * set is already checked as part of A/D emulation.
3415 */
3416 vmcs12 = get_vmcs12(vcpu);
3417 if (!nested_cpu_has_pml(vmcs12))
3418 return 0;
3419
3420 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3421 vmx->nested.pml_full = true;
3422 return 1;
3423 }
3424
3425 gpa &= ~0xFFFull;
3426 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3427
3428 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3429 offset_in_page(dst), sizeof(gpa)))
3430 return 0;
3431
3432 vmcs12->guest_pml_index--;
3433
3434 return 0;
3435 }
3436
3437 /*
3438 * Intel's VMX Instruction Reference specifies a common set of prerequisites
3439 * for running VMX instructions (except VMXON, whose prerequisites are
3440 * slightly different). It also specifies what exception to inject otherwise.
3441 * Note that many of these exceptions have priority over VM exits, so they
3442 * don't have to be checked again here.
3443 */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)3444 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3445 {
3446 if (!to_vmx(vcpu)->nested.vmxon) {
3447 kvm_queue_exception(vcpu, UD_VECTOR);
3448 return 0;
3449 }
3450
3451 if (vmx_get_cpl(vcpu)) {
3452 kvm_inject_gp(vcpu, 0);
3453 return 0;
3454 }
3455
3456 return 1;
3457 }
3458
vmx_has_apicv_interrupt(struct kvm_vcpu * vcpu)3459 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3460 {
3461 u8 rvi = vmx_get_rvi();
3462 u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3463
3464 return ((rvi & 0xf0) > (vppr & 0xf0));
3465 }
3466
3467 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3468 struct vmcs12 *vmcs12);
3469
3470 /*
3471 * If from_vmentry is false, this is being called from state restore (either RSM
3472 * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
3473 *
3474 * Returns:
3475 * NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3476 * NVMX_VMENTRY_VMFAIL: Consistency check VMFail
3477 * NVMX_VMENTRY_VMEXIT: Consistency check VMExit
3478 * NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3479 */
nested_vmx_enter_non_root_mode(struct kvm_vcpu * vcpu,bool from_vmentry)3480 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3481 bool from_vmentry)
3482 {
3483 struct vcpu_vmx *vmx = to_vmx(vcpu);
3484 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3485 enum vm_entry_failure_code entry_failure_code;
3486 bool evaluate_pending_interrupts;
3487 union vmx_exit_reason exit_reason = {
3488 .basic = EXIT_REASON_INVALID_STATE,
3489 .failed_vmentry = 1,
3490 };
3491 u32 failed_index;
3492
3493 trace_kvm_nested_vmenter(kvm_rip_read(vcpu),
3494 vmx->nested.current_vmptr,
3495 vmcs12->guest_rip,
3496 vmcs12->guest_intr_status,
3497 vmcs12->vm_entry_intr_info_field,
3498 vmcs12->secondary_vm_exec_control & SECONDARY_EXEC_ENABLE_EPT,
3499 vmcs12->ept_pointer,
3500 vmcs12->guest_cr3,
3501 KVM_ISA_VMX);
3502
3503 kvm_service_local_tlb_flush_requests(vcpu);
3504
3505 evaluate_pending_interrupts = exec_controls_get(vmx) &
3506 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3507 if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3508 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3509 if (!evaluate_pending_interrupts)
3510 evaluate_pending_interrupts |= kvm_apic_has_pending_init_or_sipi(vcpu);
3511
3512 if (!vmx->nested.nested_run_pending ||
3513 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3514 vmx->nested.pre_vmenter_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3515 if (kvm_mpx_supported() &&
3516 (!vmx->nested.nested_run_pending ||
3517 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
3518 vmx->nested.pre_vmenter_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3519
3520 /*
3521 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3522 * nested early checks are disabled. In the event of a "late" VM-Fail,
3523 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3524 * software model to the pre-VMEntry host state. When EPT is disabled,
3525 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3526 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3. Stuffing
3527 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3528 * the correct value. Smashing vmcs01.GUEST_CR3 is safe because nested
3529 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3530 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3531 * L1. Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3532 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3533 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3534 * path would need to manually save/restore vmcs01.GUEST_CR3.
3535 */
3536 if (!enable_ept && !nested_early_check)
3537 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3538
3539 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3540
3541 prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3542
3543 if (from_vmentry) {
3544 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3545 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3546 return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3547 }
3548
3549 if (nested_vmx_check_vmentry_hw(vcpu)) {
3550 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3551 return NVMX_VMENTRY_VMFAIL;
3552 }
3553
3554 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3555 &entry_failure_code)) {
3556 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3557 vmcs12->exit_qualification = entry_failure_code;
3558 goto vmentry_fail_vmexit;
3559 }
3560 }
3561
3562 enter_guest_mode(vcpu);
3563
3564 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3565 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3566 vmcs12->exit_qualification = entry_failure_code;
3567 goto vmentry_fail_vmexit_guest_mode;
3568 }
3569
3570 if (from_vmentry) {
3571 failed_index = nested_vmx_load_msr(vcpu,
3572 vmcs12->vm_entry_msr_load_addr,
3573 vmcs12->vm_entry_msr_load_count);
3574 if (failed_index) {
3575 exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3576 vmcs12->exit_qualification = failed_index;
3577 goto vmentry_fail_vmexit_guest_mode;
3578 }
3579 } else {
3580 /*
3581 * The MMU is not initialized to point at the right entities yet and
3582 * "get pages" would need to read data from the guest (i.e. we will
3583 * need to perform gpa to hpa translation). Request a call
3584 * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
3585 * have already been set at vmentry time and should not be reset.
3586 */
3587 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3588 }
3589
3590 /*
3591 * Re-evaluate pending events if L1 had a pending IRQ/NMI/INIT/SIPI
3592 * when it executed VMLAUNCH/VMRESUME, as entering non-root mode can
3593 * effectively unblock various events, e.g. INIT/SIPI cause VM-Exit
3594 * unconditionally.
3595 */
3596 if (unlikely(evaluate_pending_interrupts))
3597 kvm_make_request(KVM_REQ_EVENT, vcpu);
3598
3599 /*
3600 * Do not start the preemption timer hrtimer until after we know
3601 * we are successful, so that only nested_vmx_vmexit needs to cancel
3602 * the timer.
3603 */
3604 vmx->nested.preemption_timer_expired = false;
3605 if (nested_cpu_has_preemption_timer(vmcs12)) {
3606 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3607 vmx_start_preemption_timer(vcpu, timer_value);
3608 }
3609
3610 /*
3611 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3612 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3613 * returned as far as L1 is concerned. It will only return (and set
3614 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3615 */
3616 return NVMX_VMENTRY_SUCCESS;
3617
3618 /*
3619 * A failed consistency check that leads to a VMExit during L1's
3620 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3621 * 26.7 "VM-entry failures during or after loading guest state".
3622 */
3623 vmentry_fail_vmexit_guest_mode:
3624 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3625 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3626 leave_guest_mode(vcpu);
3627
3628 vmentry_fail_vmexit:
3629 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3630
3631 if (!from_vmentry)
3632 return NVMX_VMENTRY_VMEXIT;
3633
3634 load_vmcs12_host_state(vcpu, vmcs12);
3635 vmcs12->vm_exit_reason = exit_reason.full;
3636 if (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx))
3637 vmx->nested.need_vmcs12_to_shadow_sync = true;
3638 return NVMX_VMENTRY_VMEXIT;
3639 }
3640
3641 /*
3642 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3643 * for running an L2 nested guest.
3644 */
nested_vmx_run(struct kvm_vcpu * vcpu,bool launch)3645 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3646 {
3647 struct vmcs12 *vmcs12;
3648 enum nvmx_vmentry_status status;
3649 struct vcpu_vmx *vmx = to_vmx(vcpu);
3650 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3651 enum nested_evmptrld_status evmptrld_status;
3652
3653 if (!nested_vmx_check_permission(vcpu))
3654 return 1;
3655
3656 evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3657 if (evmptrld_status == EVMPTRLD_ERROR) {
3658 kvm_queue_exception(vcpu, UD_VECTOR);
3659 return 1;
3660 }
3661
3662 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
3663
3664 if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
3665 return nested_vmx_failInvalid(vcpu);
3666
3667 if (CC(!nested_vmx_is_evmptr12_valid(vmx) &&
3668 vmx->nested.current_vmptr == INVALID_GPA))
3669 return nested_vmx_failInvalid(vcpu);
3670
3671 vmcs12 = get_vmcs12(vcpu);
3672
3673 /*
3674 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3675 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3676 * rather than RFLAGS.ZF, and no error number is stored to the
3677 * VM-instruction error field.
3678 */
3679 if (CC(vmcs12->hdr.shadow_vmcs))
3680 return nested_vmx_failInvalid(vcpu);
3681
3682 if (nested_vmx_is_evmptr12_valid(vmx)) {
3683 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
3684
3685 copy_enlightened_to_vmcs12(vmx, evmcs->hv_clean_fields);
3686 /* Enlightened VMCS doesn't have launch state */
3687 vmcs12->launch_state = !launch;
3688 } else if (enable_shadow_vmcs) {
3689 copy_shadow_to_vmcs12(vmx);
3690 }
3691
3692 /*
3693 * The nested entry process starts with enforcing various prerequisites
3694 * on vmcs12 as required by the Intel SDM, and act appropriately when
3695 * they fail: As the SDM explains, some conditions should cause the
3696 * instruction to fail, while others will cause the instruction to seem
3697 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3698 * To speed up the normal (success) code path, we should avoid checking
3699 * for misconfigurations which will anyway be caught by the processor
3700 * when using the merged vmcs02.
3701 */
3702 if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3703 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3704
3705 if (CC(vmcs12->launch_state == launch))
3706 return nested_vmx_fail(vcpu,
3707 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3708 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3709
3710 if (nested_vmx_check_controls(vcpu, vmcs12))
3711 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3712
3713 if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3714 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3715
3716 if (nested_vmx_check_host_state(vcpu, vmcs12))
3717 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3718
3719 /*
3720 * We're finally done with prerequisite checking, and can start with
3721 * the nested entry.
3722 */
3723 vmx->nested.nested_run_pending = 1;
3724 vmx->nested.has_preemption_timer_deadline = false;
3725 status = nested_vmx_enter_non_root_mode(vcpu, true);
3726 if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3727 goto vmentry_failed;
3728
3729 /* Emulate processing of posted interrupts on VM-Enter. */
3730 if (nested_cpu_has_posted_intr(vmcs12) &&
3731 kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3732 vmx->nested.pi_pending = true;
3733 kvm_make_request(KVM_REQ_EVENT, vcpu);
3734 kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3735 }
3736
3737 /* Hide L1D cache contents from the nested guest. */
3738 vmx->vcpu.arch.l1tf_flush_l1d = true;
3739
3740 /*
3741 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3742 * also be used as part of restoring nVMX state for
3743 * snapshot restore (migration).
3744 *
3745 * In this flow, it is assumed that vmcs12 cache was
3746 * transferred as part of captured nVMX state and should
3747 * therefore not be read from guest memory (which may not
3748 * exist on destination host yet).
3749 */
3750 nested_cache_shadow_vmcs12(vcpu, vmcs12);
3751
3752 switch (vmcs12->guest_activity_state) {
3753 case GUEST_ACTIVITY_HLT:
3754 /*
3755 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3756 * awakened by event injection or by an NMI-window VM-exit or
3757 * by an interrupt-window VM-exit, halt the vcpu.
3758 */
3759 if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3760 !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3761 !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3762 (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3763 vmx->nested.nested_run_pending = 0;
3764 return kvm_emulate_halt_noskip(vcpu);
3765 }
3766 break;
3767 case GUEST_ACTIVITY_WAIT_SIPI:
3768 vmx->nested.nested_run_pending = 0;
3769 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3770 break;
3771 default:
3772 break;
3773 }
3774
3775 return 1;
3776
3777 vmentry_failed:
3778 vmx->nested.nested_run_pending = 0;
3779 if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3780 return 0;
3781 if (status == NVMX_VMENTRY_VMEXIT)
3782 return 1;
3783 WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3784 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3785 }
3786
3787 /*
3788 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3789 * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3790 * This function returns the new value we should put in vmcs12.guest_cr0.
3791 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3792 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3793 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3794 * didn't trap the bit, because if L1 did, so would L0).
3795 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3796 * been modified by L2, and L1 knows it. So just leave the old value of
3797 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3798 * isn't relevant, because if L0 traps this bit it can set it to anything.
3799 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3800 * changed these bits, and therefore they need to be updated, but L0
3801 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3802 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3803 */
3804 static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3805 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3806 {
3807 return
3808 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3809 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3810 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3811 vcpu->arch.cr0_guest_owned_bits));
3812 }
3813
3814 static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3815 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3816 {
3817 return
3818 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3819 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3820 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3821 vcpu->arch.cr4_guest_owned_bits));
3822 }
3823
vmcs12_save_pending_event(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info)3824 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3825 struct vmcs12 *vmcs12,
3826 u32 vm_exit_reason, u32 exit_intr_info)
3827 {
3828 u32 idt_vectoring;
3829 unsigned int nr;
3830
3831 /*
3832 * Per the SDM, VM-Exits due to double and triple faults are never
3833 * considered to occur during event delivery, even if the double/triple
3834 * fault is the result of an escalating vectoring issue.
3835 *
3836 * Note, the SDM qualifies the double fault behavior with "The original
3837 * event results in a double-fault exception". It's unclear why the
3838 * qualification exists since exits due to double fault can occur only
3839 * while vectoring a different exception (injected events are never
3840 * subject to interception), i.e. there's _always_ an original event.
3841 *
3842 * The SDM also uses NMI as a confusing example for the "original event
3843 * causes the VM exit directly" clause. NMI isn't special in any way,
3844 * the same rule applies to all events that cause an exit directly.
3845 * NMI is an odd choice for the example because NMIs can only occur on
3846 * instruction boundaries, i.e. they _can't_ occur during vectoring.
3847 */
3848 if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3849 ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3850 is_double_fault(exit_intr_info))) {
3851 vmcs12->idt_vectoring_info_field = 0;
3852 } else if (vcpu->arch.exception.injected) {
3853 nr = vcpu->arch.exception.vector;
3854 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3855
3856 if (kvm_exception_is_soft(nr)) {
3857 vmcs12->vm_exit_instruction_len =
3858 vcpu->arch.event_exit_inst_len;
3859 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3860 } else
3861 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3862
3863 if (vcpu->arch.exception.has_error_code) {
3864 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3865 vmcs12->idt_vectoring_error_code =
3866 vcpu->arch.exception.error_code;
3867 }
3868
3869 vmcs12->idt_vectoring_info_field = idt_vectoring;
3870 } else if (vcpu->arch.nmi_injected) {
3871 vmcs12->idt_vectoring_info_field =
3872 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3873 } else if (vcpu->arch.interrupt.injected) {
3874 nr = vcpu->arch.interrupt.nr;
3875 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3876
3877 if (vcpu->arch.interrupt.soft) {
3878 idt_vectoring |= INTR_TYPE_SOFT_INTR;
3879 vmcs12->vm_entry_instruction_len =
3880 vcpu->arch.event_exit_inst_len;
3881 } else
3882 idt_vectoring |= INTR_TYPE_EXT_INTR;
3883
3884 vmcs12->idt_vectoring_info_field = idt_vectoring;
3885 } else {
3886 vmcs12->idt_vectoring_info_field = 0;
3887 }
3888 }
3889
3890
nested_mark_vmcs12_pages_dirty(struct kvm_vcpu * vcpu)3891 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3892 {
3893 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3894 gfn_t gfn;
3895
3896 /*
3897 * Don't need to mark the APIC access page dirty; it is never
3898 * written to by the CPU during APIC virtualization.
3899 */
3900
3901 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3902 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3903 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3904 }
3905
3906 if (nested_cpu_has_posted_intr(vmcs12)) {
3907 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3908 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3909 }
3910 }
3911
vmx_complete_nested_posted_interrupt(struct kvm_vcpu * vcpu)3912 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3913 {
3914 struct vcpu_vmx *vmx = to_vmx(vcpu);
3915 int max_irr;
3916 void *vapic_page;
3917 u16 status;
3918
3919 if (!vmx->nested.pi_pending)
3920 return 0;
3921
3922 if (!vmx->nested.pi_desc)
3923 goto mmio_needed;
3924
3925 vmx->nested.pi_pending = false;
3926
3927 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3928 return 0;
3929
3930 max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
3931 if (max_irr > 0) {
3932 vapic_page = vmx->nested.virtual_apic_map.hva;
3933 if (!vapic_page)
3934 goto mmio_needed;
3935
3936 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3937 vapic_page, &max_irr);
3938 status = vmcs_read16(GUEST_INTR_STATUS);
3939 if ((u8)max_irr > ((u8)status & 0xff)) {
3940 status &= ~0xff;
3941 status |= (u8)max_irr;
3942 vmcs_write16(GUEST_INTR_STATUS, status);
3943 }
3944 }
3945
3946 nested_mark_vmcs12_pages_dirty(vcpu);
3947 return 0;
3948
3949 mmio_needed:
3950 kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3951 return -ENXIO;
3952 }
3953
nested_vmx_inject_exception_vmexit(struct kvm_vcpu * vcpu)3954 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu)
3955 {
3956 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
3957 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
3958 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3959 unsigned long exit_qual;
3960
3961 if (ex->has_payload) {
3962 exit_qual = ex->payload;
3963 } else if (ex->vector == PF_VECTOR) {
3964 exit_qual = vcpu->arch.cr2;
3965 } else if (ex->vector == DB_VECTOR) {
3966 exit_qual = vcpu->arch.dr6;
3967 exit_qual &= ~DR6_BT;
3968 exit_qual ^= DR6_ACTIVE_LOW;
3969 } else {
3970 exit_qual = 0;
3971 }
3972
3973 /*
3974 * Unlike AMD's Paged Real Mode, which reports an error code on #PF
3975 * VM-Exits even if the CPU is in Real Mode, Intel VMX never sets the
3976 * "has error code" flags on VM-Exit if the CPU is in Real Mode.
3977 */
3978 if (ex->has_error_code && is_protmode(vcpu)) {
3979 /*
3980 * Intel CPUs do not generate error codes with bits 31:16 set,
3981 * and more importantly VMX disallows setting bits 31:16 in the
3982 * injected error code for VM-Entry. Drop the bits to mimic
3983 * hardware and avoid inducing failure on nested VM-Entry if L1
3984 * chooses to inject the exception back to L2. AMD CPUs _do_
3985 * generate "full" 32-bit error codes, so KVM allows userspace
3986 * to inject exception error codes with bits 31:16 set.
3987 */
3988 vmcs12->vm_exit_intr_error_code = (u16)ex->error_code;
3989 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3990 }
3991
3992 if (kvm_exception_is_soft(ex->vector))
3993 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3994 else
3995 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3996
3997 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3998 vmx_get_nmi_mask(vcpu))
3999 intr_info |= INTR_INFO_UNBLOCK_NMI;
4000
4001 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
4002 }
4003
4004 /*
4005 * Returns true if a debug trap is (likely) pending delivery. Infer the class
4006 * of a #DB (trap-like vs. fault-like) from the exception payload (to-be-DR6).
4007 * Using the payload is flawed because code breakpoints (fault-like) and data
4008 * breakpoints (trap-like) set the same bits in DR6 (breakpoint detected), i.e.
4009 * this will return false positives if a to-be-injected code breakpoint #DB is
4010 * pending (from KVM's perspective, but not "pending" across an instruction
4011 * boundary). ICEBP, a.k.a. INT1, is also not reflected here even though it
4012 * too is trap-like.
4013 *
4014 * KVM "works" despite these flaws as ICEBP isn't currently supported by the
4015 * emulator, Monitor Trap Flag is not marked pending on intercepted #DBs (the
4016 * #DB has already happened), and MTF isn't marked pending on code breakpoints
4017 * from the emulator (because such #DBs are fault-like and thus don't trigger
4018 * actions that fire on instruction retire).
4019 */
vmx_get_pending_dbg_trap(struct kvm_queued_exception * ex)4020 static unsigned long vmx_get_pending_dbg_trap(struct kvm_queued_exception *ex)
4021 {
4022 if (!ex->pending || ex->vector != DB_VECTOR)
4023 return 0;
4024
4025 /* General Detect #DBs are always fault-like. */
4026 return ex->payload & ~DR6_BD;
4027 }
4028
4029 /*
4030 * Returns true if there's a pending #DB exception that is lower priority than
4031 * a pending Monitor Trap Flag VM-Exit. TSS T-flag #DBs are not emulated by
4032 * KVM, but could theoretically be injected by userspace. Note, this code is
4033 * imperfect, see above.
4034 */
vmx_is_low_priority_db_trap(struct kvm_queued_exception * ex)4035 static bool vmx_is_low_priority_db_trap(struct kvm_queued_exception *ex)
4036 {
4037 return vmx_get_pending_dbg_trap(ex) & ~DR6_BT;
4038 }
4039
4040 /*
4041 * Certain VM-exits set the 'pending debug exceptions' field to indicate a
4042 * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
4043 * represents these debug traps with a payload that is said to be compatible
4044 * with the 'pending debug exceptions' field, write the payload to the VMCS
4045 * field if a VM-exit is delivered before the debug trap.
4046 */
nested_vmx_update_pending_dbg(struct kvm_vcpu * vcpu)4047 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
4048 {
4049 unsigned long pending_dbg;
4050
4051 pending_dbg = vmx_get_pending_dbg_trap(&vcpu->arch.exception);
4052 if (pending_dbg)
4053 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, pending_dbg);
4054 }
4055
nested_vmx_preemption_timer_pending(struct kvm_vcpu * vcpu)4056 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
4057 {
4058 return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
4059 to_vmx(vcpu)->nested.preemption_timer_expired;
4060 }
4061
vmx_has_nested_events(struct kvm_vcpu * vcpu,bool for_injection)4062 static bool vmx_has_nested_events(struct kvm_vcpu *vcpu, bool for_injection)
4063 {
4064 struct vcpu_vmx *vmx = to_vmx(vcpu);
4065 void *vapic = vmx->nested.virtual_apic_map.hva;
4066 int max_irr, vppr;
4067
4068 if (nested_vmx_preemption_timer_pending(vcpu) ||
4069 vmx->nested.mtf_pending)
4070 return true;
4071
4072 /*
4073 * Virtual Interrupt Delivery doesn't require manual injection. Either
4074 * the interrupt is already in GUEST_RVI and will be recognized by CPU
4075 * at VM-Entry, or there is a KVM_REQ_EVENT pending and KVM will move
4076 * the interrupt from the PIR to RVI prior to entering the guest.
4077 */
4078 if (for_injection)
4079 return false;
4080
4081 if (!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4082 __vmx_interrupt_blocked(vcpu))
4083 return false;
4084
4085 if (!vapic)
4086 return false;
4087
4088 vppr = *((u32 *)(vapic + APIC_PROCPRI));
4089
4090 max_irr = vmx_get_rvi();
4091 if ((max_irr & 0xf0) > (vppr & 0xf0))
4092 return true;
4093
4094 if (vmx->nested.pi_pending && vmx->nested.pi_desc &&
4095 pi_test_on(vmx->nested.pi_desc)) {
4096 max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
4097 if (max_irr > 0 && (max_irr & 0xf0) > (vppr & 0xf0))
4098 return true;
4099 }
4100
4101 return false;
4102 }
4103
4104 /*
4105 * Per the Intel SDM's table "Priority Among Concurrent Events", with minor
4106 * edits to fill in missing examples, e.g. #DB due to split-lock accesses,
4107 * and less minor edits to splice in the priority of VMX Non-Root specific
4108 * events, e.g. MTF and NMI/INTR-window exiting.
4109 *
4110 * 1 Hardware Reset and Machine Checks
4111 * - RESET
4112 * - Machine Check
4113 *
4114 * 2 Trap on Task Switch
4115 * - T flag in TSS is set (on task switch)
4116 *
4117 * 3 External Hardware Interventions
4118 * - FLUSH
4119 * - STOPCLK
4120 * - SMI
4121 * - INIT
4122 *
4123 * 3.5 Monitor Trap Flag (MTF) VM-exit[1]
4124 *
4125 * 4 Traps on Previous Instruction
4126 * - Breakpoints
4127 * - Trap-class Debug Exceptions (#DB due to TF flag set, data/I-O
4128 * breakpoint, or #DB due to a split-lock access)
4129 *
4130 * 4.3 VMX-preemption timer expired VM-exit
4131 *
4132 * 4.6 NMI-window exiting VM-exit[2]
4133 *
4134 * 5 Nonmaskable Interrupts (NMI)
4135 *
4136 * 5.5 Interrupt-window exiting VM-exit and Virtual-interrupt delivery
4137 *
4138 * 6 Maskable Hardware Interrupts
4139 *
4140 * 7 Code Breakpoint Fault
4141 *
4142 * 8 Faults from Fetching Next Instruction
4143 * - Code-Segment Limit Violation
4144 * - Code Page Fault
4145 * - Control protection exception (missing ENDBRANCH at target of indirect
4146 * call or jump)
4147 *
4148 * 9 Faults from Decoding Next Instruction
4149 * - Instruction length > 15 bytes
4150 * - Invalid Opcode
4151 * - Coprocessor Not Available
4152 *
4153 *10 Faults on Executing Instruction
4154 * - Overflow
4155 * - Bound error
4156 * - Invalid TSS
4157 * - Segment Not Present
4158 * - Stack fault
4159 * - General Protection
4160 * - Data Page Fault
4161 * - Alignment Check
4162 * - x86 FPU Floating-point exception
4163 * - SIMD floating-point exception
4164 * - Virtualization exception
4165 * - Control protection exception
4166 *
4167 * [1] Per the "Monitor Trap Flag" section: System-management interrupts (SMIs),
4168 * INIT signals, and higher priority events take priority over MTF VM exits.
4169 * MTF VM exits take priority over debug-trap exceptions and lower priority
4170 * events.
4171 *
4172 * [2] Debug-trap exceptions and higher priority events take priority over VM exits
4173 * caused by the VMX-preemption timer. VM exits caused by the VMX-preemption
4174 * timer take priority over VM exits caused by the "NMI-window exiting"
4175 * VM-execution control and lower priority events.
4176 *
4177 * [3] Debug-trap exceptions and higher priority events take priority over VM exits
4178 * caused by "NMI-window exiting". VM exits caused by this control take
4179 * priority over non-maskable interrupts (NMIs) and lower priority events.
4180 *
4181 * [4] Virtual-interrupt delivery has the same priority as that of VM exits due to
4182 * the 1-setting of the "interrupt-window exiting" VM-execution control. Thus,
4183 * non-maskable interrupts (NMIs) and higher priority events take priority over
4184 * delivery of a virtual interrupt; delivery of a virtual interrupt takes
4185 * priority over external interrupts and lower priority events.
4186 */
vmx_check_nested_events(struct kvm_vcpu * vcpu)4187 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
4188 {
4189 struct kvm_lapic *apic = vcpu->arch.apic;
4190 struct vcpu_vmx *vmx = to_vmx(vcpu);
4191 /*
4192 * Only a pending nested run blocks a pending exception. If there is a
4193 * previously injected event, the pending exception occurred while said
4194 * event was being delivered and thus needs to be handled.
4195 */
4196 bool block_nested_exceptions = vmx->nested.nested_run_pending;
4197 /*
4198 * New events (not exceptions) are only recognized at instruction
4199 * boundaries. If an event needs reinjection, then KVM is handling a
4200 * VM-Exit that occurred _during_ instruction execution; new events are
4201 * blocked until the instruction completes.
4202 */
4203 bool block_nested_events = block_nested_exceptions ||
4204 kvm_event_needs_reinjection(vcpu);
4205
4206 if (lapic_in_kernel(vcpu) &&
4207 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
4208 if (block_nested_events)
4209 return -EBUSY;
4210 nested_vmx_update_pending_dbg(vcpu);
4211 clear_bit(KVM_APIC_INIT, &apic->pending_events);
4212 if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
4213 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
4214
4215 /* MTF is discarded if the vCPU is in WFS. */
4216 vmx->nested.mtf_pending = false;
4217 return 0;
4218 }
4219
4220 if (lapic_in_kernel(vcpu) &&
4221 test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
4222 if (block_nested_events)
4223 return -EBUSY;
4224
4225 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
4226 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
4227 nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
4228 apic->sipi_vector & 0xFFUL);
4229 return 0;
4230 }
4231 /* Fallthrough, the SIPI is completely ignored. */
4232 }
4233
4234 /*
4235 * Process exceptions that are higher priority than Monitor Trap Flag:
4236 * fault-like exceptions, TSS T flag #DB (not emulated by KVM, but
4237 * could theoretically come in from userspace), and ICEBP (INT1).
4238 *
4239 * TODO: SMIs have higher priority than MTF and trap-like #DBs (except
4240 * for TSS T flag #DBs). KVM also doesn't save/restore pending MTF
4241 * across SMI/RSM as it should; that needs to be addressed in order to
4242 * prioritize SMI over MTF and trap-like #DBs.
4243 */
4244 if (vcpu->arch.exception_vmexit.pending &&
4245 !vmx_is_low_priority_db_trap(&vcpu->arch.exception_vmexit)) {
4246 if (block_nested_exceptions)
4247 return -EBUSY;
4248
4249 nested_vmx_inject_exception_vmexit(vcpu);
4250 return 0;
4251 }
4252
4253 if (vcpu->arch.exception.pending &&
4254 !vmx_is_low_priority_db_trap(&vcpu->arch.exception)) {
4255 if (block_nested_exceptions)
4256 return -EBUSY;
4257 goto no_vmexit;
4258 }
4259
4260 if (vmx->nested.mtf_pending) {
4261 if (block_nested_events)
4262 return -EBUSY;
4263 nested_vmx_update_pending_dbg(vcpu);
4264 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
4265 return 0;
4266 }
4267
4268 if (vcpu->arch.exception_vmexit.pending) {
4269 if (block_nested_exceptions)
4270 return -EBUSY;
4271
4272 nested_vmx_inject_exception_vmexit(vcpu);
4273 return 0;
4274 }
4275
4276 if (vcpu->arch.exception.pending) {
4277 if (block_nested_exceptions)
4278 return -EBUSY;
4279 goto no_vmexit;
4280 }
4281
4282 if (nested_vmx_preemption_timer_pending(vcpu)) {
4283 if (block_nested_events)
4284 return -EBUSY;
4285 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
4286 return 0;
4287 }
4288
4289 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
4290 if (block_nested_events)
4291 return -EBUSY;
4292 goto no_vmexit;
4293 }
4294
4295 if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
4296 if (block_nested_events)
4297 return -EBUSY;
4298 if (!nested_exit_on_nmi(vcpu))
4299 goto no_vmexit;
4300
4301 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
4302 NMI_VECTOR | INTR_TYPE_NMI_INTR |
4303 INTR_INFO_VALID_MASK, 0);
4304 /*
4305 * The NMI-triggered VM exit counts as injection:
4306 * clear this one and block further NMIs.
4307 */
4308 vcpu->arch.nmi_pending = 0;
4309 vmx_set_nmi_mask(vcpu, true);
4310 return 0;
4311 }
4312
4313 if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
4314 int irq;
4315
4316 if (block_nested_events)
4317 return -EBUSY;
4318 if (!nested_exit_on_intr(vcpu))
4319 goto no_vmexit;
4320
4321 if (!nested_exit_intr_ack_set(vcpu)) {
4322 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
4323 return 0;
4324 }
4325
4326 irq = kvm_cpu_get_extint(vcpu);
4327 if (irq != -1) {
4328 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT,
4329 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR | irq, 0);
4330 return 0;
4331 }
4332
4333 irq = kvm_apic_has_interrupt(vcpu);
4334 if (WARN_ON_ONCE(irq < 0))
4335 goto no_vmexit;
4336
4337 /*
4338 * If the IRQ is L2's PI notification vector, process posted
4339 * interrupts for L2 instead of injecting VM-Exit, as the
4340 * detection/morphing architecturally occurs when the IRQ is
4341 * delivered to the CPU. Note, only interrupts that are routed
4342 * through the local APIC trigger posted interrupt processing,
4343 * and enabling posted interrupts requires ACK-on-exit.
4344 */
4345 if (irq == vmx->nested.posted_intr_nv) {
4346 vmx->nested.pi_pending = true;
4347 kvm_apic_clear_irr(vcpu, irq);
4348 goto no_vmexit;
4349 }
4350
4351 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT,
4352 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR | irq, 0);
4353
4354 /*
4355 * ACK the interrupt _after_ emulating VM-Exit, as the IRQ must
4356 * be marked as in-service in vmcs01.GUEST_INTERRUPT_STATUS.SVI
4357 * if APICv is active.
4358 */
4359 kvm_apic_ack_interrupt(vcpu, irq);
4360 return 0;
4361 }
4362
4363 no_vmexit:
4364 return vmx_complete_nested_posted_interrupt(vcpu);
4365 }
4366
vmx_get_preemption_timer_value(struct kvm_vcpu * vcpu)4367 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
4368 {
4369 ktime_t remaining =
4370 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
4371 u64 value;
4372
4373 if (ktime_to_ns(remaining) <= 0)
4374 return 0;
4375
4376 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
4377 do_div(value, 1000000);
4378 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
4379 }
4380
is_vmcs12_ext_field(unsigned long field)4381 static bool is_vmcs12_ext_field(unsigned long field)
4382 {
4383 switch (field) {
4384 case GUEST_ES_SELECTOR:
4385 case GUEST_CS_SELECTOR:
4386 case GUEST_SS_SELECTOR:
4387 case GUEST_DS_SELECTOR:
4388 case GUEST_FS_SELECTOR:
4389 case GUEST_GS_SELECTOR:
4390 case GUEST_LDTR_SELECTOR:
4391 case GUEST_TR_SELECTOR:
4392 case GUEST_ES_LIMIT:
4393 case GUEST_CS_LIMIT:
4394 case GUEST_SS_LIMIT:
4395 case GUEST_DS_LIMIT:
4396 case GUEST_FS_LIMIT:
4397 case GUEST_GS_LIMIT:
4398 case GUEST_LDTR_LIMIT:
4399 case GUEST_TR_LIMIT:
4400 case GUEST_GDTR_LIMIT:
4401 case GUEST_IDTR_LIMIT:
4402 case GUEST_ES_AR_BYTES:
4403 case GUEST_DS_AR_BYTES:
4404 case GUEST_FS_AR_BYTES:
4405 case GUEST_GS_AR_BYTES:
4406 case GUEST_LDTR_AR_BYTES:
4407 case GUEST_TR_AR_BYTES:
4408 case GUEST_ES_BASE:
4409 case GUEST_CS_BASE:
4410 case GUEST_SS_BASE:
4411 case GUEST_DS_BASE:
4412 case GUEST_FS_BASE:
4413 case GUEST_GS_BASE:
4414 case GUEST_LDTR_BASE:
4415 case GUEST_TR_BASE:
4416 case GUEST_GDTR_BASE:
4417 case GUEST_IDTR_BASE:
4418 case GUEST_PENDING_DBG_EXCEPTIONS:
4419 case GUEST_BNDCFGS:
4420 return true;
4421 default:
4422 break;
4423 }
4424
4425 return false;
4426 }
4427
sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4428 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4429 struct vmcs12 *vmcs12)
4430 {
4431 struct vcpu_vmx *vmx = to_vmx(vcpu);
4432
4433 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4434 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4435 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4436 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4437 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4438 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4439 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4440 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4441 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4442 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4443 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4444 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4445 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4446 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4447 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4448 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4449 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4450 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4451 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4452 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4453 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4454 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4455 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4456 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4457 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4458 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4459 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4460 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4461 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4462 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4463 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4464 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4465 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4466 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4467 vmcs12->guest_pending_dbg_exceptions =
4468 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4469
4470 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4471 }
4472
copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4473 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4474 struct vmcs12 *vmcs12)
4475 {
4476 struct vcpu_vmx *vmx = to_vmx(vcpu);
4477 int cpu;
4478
4479 if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4480 return;
4481
4482
4483 WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4484
4485 cpu = get_cpu();
4486 vmx->loaded_vmcs = &vmx->nested.vmcs02;
4487 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4488
4489 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4490
4491 vmx->loaded_vmcs = &vmx->vmcs01;
4492 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4493 put_cpu();
4494 }
4495
4496 /*
4497 * Update the guest state fields of vmcs12 to reflect changes that
4498 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4499 * VM-entry controls is also updated, since this is really a guest
4500 * state bit.)
4501 */
sync_vmcs02_to_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4502 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4503 {
4504 struct vcpu_vmx *vmx = to_vmx(vcpu);
4505
4506 if (nested_vmx_is_evmptr12_valid(vmx))
4507 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4508
4509 vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4510 !nested_vmx_is_evmptr12_valid(vmx);
4511
4512 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4513 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4514
4515 vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4516 vmcs12->guest_rip = kvm_rip_read(vcpu);
4517 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4518
4519 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4520 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4521
4522 vmcs12->guest_interruptibility_info =
4523 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4524
4525 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4526 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4527 else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4528 vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4529 else
4530 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4531
4532 if (nested_cpu_has_preemption_timer(vmcs12) &&
4533 vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4534 !vmx->nested.nested_run_pending)
4535 vmcs12->vmx_preemption_timer_value =
4536 vmx_get_preemption_timer_value(vcpu);
4537
4538 /*
4539 * In some cases (usually, nested EPT), L2 is allowed to change its
4540 * own CR3 without exiting. If it has changed it, we must keep it.
4541 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4542 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4543 *
4544 * Additionally, restore L2's PDPTR to vmcs12.
4545 */
4546 if (enable_ept) {
4547 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4548 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4549 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4550 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4551 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4552 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4553 }
4554 }
4555
4556 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4557
4558 if (nested_cpu_has_vid(vmcs12))
4559 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4560
4561 vmcs12->vm_entry_controls =
4562 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4563 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4564
4565 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4566 vmcs12->guest_dr7 = vcpu->arch.dr7;
4567
4568 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4569 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4570 }
4571
4572 /*
4573 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4574 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4575 * and this function updates it to reflect the changes to the guest state while
4576 * L2 was running (and perhaps made some exits which were handled directly by L0
4577 * without going back to L1), and to reflect the exit reason.
4578 * Note that we do not have to copy here all VMCS fields, just those that
4579 * could have changed by the L2 guest or the exit - i.e., the guest-state and
4580 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4581 * which already writes to vmcs12 directly.
4582 */
prepare_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification)4583 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4584 u32 vm_exit_reason, u32 exit_intr_info,
4585 unsigned long exit_qualification)
4586 {
4587 /* update exit information fields: */
4588 vmcs12->vm_exit_reason = vm_exit_reason;
4589 if (to_vmx(vcpu)->exit_reason.enclave_mode)
4590 vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4591 vmcs12->exit_qualification = exit_qualification;
4592
4593 /*
4594 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4595 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4596 * exit info fields are unmodified.
4597 */
4598 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4599 vmcs12->launch_state = 1;
4600
4601 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4602 * instead of reading the real value. */
4603 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4604
4605 /*
4606 * Transfer the event that L0 or L1 may wanted to inject into
4607 * L2 to IDT_VECTORING_INFO_FIELD.
4608 */
4609 vmcs12_save_pending_event(vcpu, vmcs12,
4610 vm_exit_reason, exit_intr_info);
4611
4612 vmcs12->vm_exit_intr_info = exit_intr_info;
4613 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4614 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4615
4616 /*
4617 * According to spec, there's no need to store the guest's
4618 * MSRs if the exit is due to a VM-entry failure that occurs
4619 * during or after loading the guest state. Since this exit
4620 * does not fall in that category, we need to save the MSRs.
4621 */
4622 if (nested_vmx_store_msr(vcpu,
4623 vmcs12->vm_exit_msr_store_addr,
4624 vmcs12->vm_exit_msr_store_count))
4625 nested_vmx_abort(vcpu,
4626 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4627 }
4628 }
4629
4630 /*
4631 * A part of what we need to when the nested L2 guest exits and we want to
4632 * run its L1 parent, is to reset L1's guest state to the host state specified
4633 * in vmcs12.
4634 * This function is to be called not only on normal nested exit, but also on
4635 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4636 * Failures During or After Loading Guest State").
4637 * This function should be called when the active VMCS is L1's (vmcs01).
4638 */
load_vmcs12_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4639 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4640 struct vmcs12 *vmcs12)
4641 {
4642 enum vm_entry_failure_code ignored;
4643 struct kvm_segment seg;
4644
4645 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4646 vcpu->arch.efer = vmcs12->host_ia32_efer;
4647 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4648 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4649 else
4650 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4651 vmx_set_efer(vcpu, vcpu->arch.efer);
4652
4653 kvm_rsp_write(vcpu, vmcs12->host_rsp);
4654 kvm_rip_write(vcpu, vmcs12->host_rip);
4655 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4656 vmx_set_interrupt_shadow(vcpu, 0);
4657
4658 /*
4659 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4660 * actually changed, because vmx_set_cr0 refers to efer set above.
4661 *
4662 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4663 * (KVM doesn't change it);
4664 */
4665 vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4666 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4667
4668 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4669 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4670 vmx_set_cr4(vcpu, vmcs12->host_cr4);
4671
4672 nested_ept_uninit_mmu_context(vcpu);
4673
4674 /*
4675 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4676 * couldn't have changed.
4677 */
4678 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4679 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4680
4681 nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4682
4683 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4684 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4685 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4686 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4687 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4688 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4689 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4690
4691 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
4692 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4693 vmcs_write64(GUEST_BNDCFGS, 0);
4694
4695 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4696 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4697 vcpu->arch.pat = vmcs12->host_ia32_pat;
4698 }
4699 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
4700 kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)))
4701 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4702 vmcs12->host_ia32_perf_global_ctrl));
4703
4704 /* Set L1 segment info according to Intel SDM
4705 27.5.2 Loading Host Segment and Descriptor-Table Registers */
4706 seg = (struct kvm_segment) {
4707 .base = 0,
4708 .limit = 0xFFFFFFFF,
4709 .selector = vmcs12->host_cs_selector,
4710 .type = 11,
4711 .present = 1,
4712 .s = 1,
4713 .g = 1
4714 };
4715 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4716 seg.l = 1;
4717 else
4718 seg.db = 1;
4719 __vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4720 seg = (struct kvm_segment) {
4721 .base = 0,
4722 .limit = 0xFFFFFFFF,
4723 .type = 3,
4724 .present = 1,
4725 .s = 1,
4726 .db = 1,
4727 .g = 1
4728 };
4729 seg.selector = vmcs12->host_ds_selector;
4730 __vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4731 seg.selector = vmcs12->host_es_selector;
4732 __vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4733 seg.selector = vmcs12->host_ss_selector;
4734 __vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4735 seg.selector = vmcs12->host_fs_selector;
4736 seg.base = vmcs12->host_fs_base;
4737 __vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4738 seg.selector = vmcs12->host_gs_selector;
4739 seg.base = vmcs12->host_gs_base;
4740 __vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4741 seg = (struct kvm_segment) {
4742 .base = vmcs12->host_tr_base,
4743 .limit = 0x67,
4744 .selector = vmcs12->host_tr_selector,
4745 .type = 11,
4746 .present = 1
4747 };
4748 __vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4749
4750 memset(&seg, 0, sizeof(seg));
4751 seg.unusable = 1;
4752 __vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4753
4754 kvm_set_dr(vcpu, 7, 0x400);
4755 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4756
4757 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4758 vmcs12->vm_exit_msr_load_count))
4759 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4760
4761 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4762 }
4763
nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx * vmx)4764 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4765 {
4766 struct vmx_uret_msr *efer_msr;
4767 unsigned int i;
4768
4769 if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4770 return vmcs_read64(GUEST_IA32_EFER);
4771
4772 if (cpu_has_load_ia32_efer())
4773 return kvm_host.efer;
4774
4775 for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4776 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4777 return vmx->msr_autoload.guest.val[i].value;
4778 }
4779
4780 efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4781 if (efer_msr)
4782 return efer_msr->data;
4783
4784 return kvm_host.efer;
4785 }
4786
nested_vmx_restore_host_state(struct kvm_vcpu * vcpu)4787 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4788 {
4789 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4790 struct vcpu_vmx *vmx = to_vmx(vcpu);
4791 struct vmx_msr_entry g, h;
4792 gpa_t gpa;
4793 u32 i, j;
4794
4795 vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4796
4797 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4798 /*
4799 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4800 * as vmcs01.GUEST_DR7 contains a userspace defined value
4801 * and vcpu->arch.dr7 is not squirreled away before the
4802 * nested VMENTER (not worth adding a variable in nested_vmx).
4803 */
4804 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4805 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4806 else
4807 WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4808 }
4809
4810 /*
4811 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4812 * handle a variety of side effects to KVM's software model.
4813 */
4814 vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4815
4816 vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4817 vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4818
4819 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4820 vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4821
4822 nested_ept_uninit_mmu_context(vcpu);
4823 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4824 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4825
4826 /*
4827 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4828 * from vmcs01 (if necessary). The PDPTRs are not loaded on
4829 * VMFail, like everything else we just need to ensure our
4830 * software model is up-to-date.
4831 */
4832 if (enable_ept && is_pae_paging(vcpu))
4833 ept_save_pdptrs(vcpu);
4834
4835 kvm_mmu_reset_context(vcpu);
4836
4837 /*
4838 * This nasty bit of open coding is a compromise between blindly
4839 * loading L1's MSRs using the exit load lists (incorrect emulation
4840 * of VMFail), leaving the nested VM's MSRs in the software model
4841 * (incorrect behavior) and snapshotting the modified MSRs (too
4842 * expensive since the lists are unbound by hardware). For each
4843 * MSR that was (prematurely) loaded from the nested VMEntry load
4844 * list, reload it from the exit load list if it exists and differs
4845 * from the guest value. The intent is to stuff host state as
4846 * silently as possible, not to fully process the exit load list.
4847 */
4848 for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4849 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4850 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4851 pr_debug_ratelimited(
4852 "%s read MSR index failed (%u, 0x%08llx)\n",
4853 __func__, i, gpa);
4854 goto vmabort;
4855 }
4856
4857 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4858 gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4859 if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4860 pr_debug_ratelimited(
4861 "%s read MSR failed (%u, 0x%08llx)\n",
4862 __func__, j, gpa);
4863 goto vmabort;
4864 }
4865 if (h.index != g.index)
4866 continue;
4867 if (h.value == g.value)
4868 break;
4869
4870 if (nested_vmx_load_msr_check(vcpu, &h)) {
4871 pr_debug_ratelimited(
4872 "%s check failed (%u, 0x%x, 0x%x)\n",
4873 __func__, j, h.index, h.reserved);
4874 goto vmabort;
4875 }
4876
4877 if (kvm_set_msr_with_filter(vcpu, h.index, h.value)) {
4878 pr_debug_ratelimited(
4879 "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4880 __func__, j, h.index, h.value);
4881 goto vmabort;
4882 }
4883 }
4884 }
4885
4886 return;
4887
4888 vmabort:
4889 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4890 }
4891
4892 /*
4893 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4894 * and modify vmcs12 to make it see what it would expect to see there if
4895 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4896 */
nested_vmx_vmexit(struct kvm_vcpu * vcpu,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification)4897 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4898 u32 exit_intr_info, unsigned long exit_qualification)
4899 {
4900 struct vcpu_vmx *vmx = to_vmx(vcpu);
4901 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4902
4903 /* Pending MTF traps are discarded on VM-Exit. */
4904 vmx->nested.mtf_pending = false;
4905
4906 /* trying to cancel vmlaunch/vmresume is a bug */
4907 WARN_ON_ONCE(vmx->nested.nested_run_pending);
4908
4909 #ifdef CONFIG_KVM_HYPERV
4910 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4911 /*
4912 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4913 * Enlightened VMCS after migration and we still need to
4914 * do that when something is forcing L2->L1 exit prior to
4915 * the first L2 run.
4916 */
4917 (void)nested_get_evmcs_page(vcpu);
4918 }
4919 #endif
4920
4921 /* Service pending TLB flush requests for L2 before switching to L1. */
4922 kvm_service_local_tlb_flush_requests(vcpu);
4923
4924 /*
4925 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4926 * now and the new vmentry. Ensure that the VMCS02 PDPTR fields are
4927 * up-to-date before switching to L1.
4928 */
4929 if (enable_ept && is_pae_paging(vcpu))
4930 vmx_ept_load_pdptrs(vcpu);
4931
4932 leave_guest_mode(vcpu);
4933
4934 if (nested_cpu_has_preemption_timer(vmcs12))
4935 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4936
4937 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4938 vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4939 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4940 vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4941 }
4942
4943 if (likely(!vmx->fail)) {
4944 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4945
4946 if (vm_exit_reason != -1)
4947 prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4948 exit_intr_info, exit_qualification);
4949
4950 /*
4951 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4952 * also be used to capture vmcs12 cache as part of
4953 * capturing nVMX state for snapshot (migration).
4954 *
4955 * Otherwise, this flush will dirty guest memory at a
4956 * point it is already assumed by user-space to be
4957 * immutable.
4958 */
4959 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4960 } else {
4961 /*
4962 * The only expected VM-instruction error is "VM entry with
4963 * invalid control field(s)." Anything else indicates a
4964 * problem with L0. And we should never get here with a
4965 * VMFail of any type if early consistency checks are enabled.
4966 */
4967 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4968 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4969 WARN_ON_ONCE(nested_early_check);
4970 }
4971
4972 /*
4973 * Drop events/exceptions that were queued for re-injection to L2
4974 * (picked up via vmx_complete_interrupts()), as well as exceptions
4975 * that were pending for L2. Note, this must NOT be hoisted above
4976 * prepare_vmcs12(), events/exceptions queued for re-injection need to
4977 * be captured in vmcs12 (see vmcs12_save_pending_event()).
4978 */
4979 vcpu->arch.nmi_injected = false;
4980 kvm_clear_exception_queue(vcpu);
4981 kvm_clear_interrupt_queue(vcpu);
4982
4983 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4984
4985 /*
4986 * If IBRS is advertised to the vCPU, KVM must flush the indirect
4987 * branch predictors when transitioning from L2 to L1, as L1 expects
4988 * hardware (KVM in this case) to provide separate predictor modes.
4989 * Bare metal isolates VMX root (host) from VMX non-root (guest), but
4990 * doesn't isolate different VMCSs, i.e. in this case, doesn't provide
4991 * separate modes for L2 vs L1.
4992 */
4993 if (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
4994 indirect_branch_prediction_barrier();
4995
4996 /* Update any VMCS fields that might have changed while L2 ran */
4997 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4998 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4999 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
5000 if (kvm_caps.has_tsc_control)
5001 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
5002
5003 if (vmx->nested.l1_tpr_threshold != -1)
5004 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
5005
5006 if (vmx->nested.change_vmcs01_virtual_apic_mode) {
5007 vmx->nested.change_vmcs01_virtual_apic_mode = false;
5008 vmx_set_virtual_apic_mode(vcpu);
5009 }
5010
5011 if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
5012 vmx->nested.update_vmcs01_cpu_dirty_logging = false;
5013 vmx_update_cpu_dirty_logging(vcpu);
5014 }
5015
5016 /* Unpin physical memory we referred to in vmcs02 */
5017 kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
5018 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
5019 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
5020 vmx->nested.pi_desc = NULL;
5021
5022 if (vmx->nested.reload_vmcs01_apic_access_page) {
5023 vmx->nested.reload_vmcs01_apic_access_page = false;
5024 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5025 }
5026
5027 if (vmx->nested.update_vmcs01_apicv_status) {
5028 vmx->nested.update_vmcs01_apicv_status = false;
5029 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
5030 }
5031
5032 if ((vm_exit_reason != -1) &&
5033 (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx)))
5034 vmx->nested.need_vmcs12_to_shadow_sync = true;
5035
5036 /* in case we halted in L2 */
5037 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5038
5039 if (likely(!vmx->fail)) {
5040 if (vm_exit_reason != -1)
5041 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
5042 vmcs12->exit_qualification,
5043 vmcs12->idt_vectoring_info_field,
5044 vmcs12->vm_exit_intr_info,
5045 vmcs12->vm_exit_intr_error_code,
5046 KVM_ISA_VMX);
5047
5048 load_vmcs12_host_state(vcpu, vmcs12);
5049
5050 return;
5051 }
5052
5053 /*
5054 * After an early L2 VM-entry failure, we're now back
5055 * in L1 which thinks it just finished a VMLAUNCH or
5056 * VMRESUME instruction, so we need to set the failure
5057 * flag and the VM-instruction error field of the VMCS
5058 * accordingly, and skip the emulated instruction.
5059 */
5060 (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
5061
5062 /*
5063 * Restore L1's host state to KVM's software model. We're here
5064 * because a consistency check was caught by hardware, which
5065 * means some amount of guest state has been propagated to KVM's
5066 * model and needs to be unwound to the host's state.
5067 */
5068 nested_vmx_restore_host_state(vcpu);
5069
5070 vmx->fail = 0;
5071 }
5072
nested_vmx_triple_fault(struct kvm_vcpu * vcpu)5073 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
5074 {
5075 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5076 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
5077 }
5078
5079 /*
5080 * Decode the memory-address operand of a vmx instruction, as recorded on an
5081 * exit caused by such an instruction (run by a guest hypervisor).
5082 * On success, returns 0. When the operand is invalid, returns 1 and throws
5083 * #UD, #GP, or #SS.
5084 */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,bool wr,int len,gva_t * ret)5085 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
5086 u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
5087 {
5088 gva_t off;
5089 bool exn;
5090 struct kvm_segment s;
5091
5092 /*
5093 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5094 * Execution", on an exit, vmx_instruction_info holds most of the
5095 * addressing components of the operand. Only the displacement part
5096 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5097 * For how an actual address is calculated from all these components,
5098 * refer to Vol. 1, "Operand Addressing".
5099 */
5100 int scaling = vmx_instruction_info & 3;
5101 int addr_size = (vmx_instruction_info >> 7) & 7;
5102 bool is_reg = vmx_instruction_info & (1u << 10);
5103 int seg_reg = (vmx_instruction_info >> 15) & 7;
5104 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5105 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5106 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5107 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5108
5109 if (is_reg) {
5110 kvm_queue_exception(vcpu, UD_VECTOR);
5111 return 1;
5112 }
5113
5114 /* Addr = segment_base + offset */
5115 /* offset = base + [index * scale] + displacement */
5116 off = exit_qualification; /* holds the displacement */
5117 if (addr_size == 1)
5118 off = (gva_t)sign_extend64(off, 31);
5119 else if (addr_size == 0)
5120 off = (gva_t)sign_extend64(off, 15);
5121 if (base_is_valid)
5122 off += kvm_register_read(vcpu, base_reg);
5123 if (index_is_valid)
5124 off += kvm_register_read(vcpu, index_reg) << scaling;
5125 vmx_get_segment(vcpu, &s, seg_reg);
5126
5127 /*
5128 * The effective address, i.e. @off, of a memory operand is truncated
5129 * based on the address size of the instruction. Note that this is
5130 * the *effective address*, i.e. the address prior to accounting for
5131 * the segment's base.
5132 */
5133 if (addr_size == 1) /* 32 bit */
5134 off &= 0xffffffff;
5135 else if (addr_size == 0) /* 16 bit */
5136 off &= 0xffff;
5137
5138 /* Checks for #GP/#SS exceptions. */
5139 exn = false;
5140 if (is_long_mode(vcpu)) {
5141 /*
5142 * The virtual/linear address is never truncated in 64-bit
5143 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
5144 * address when using FS/GS with a non-zero base.
5145 */
5146 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
5147 *ret = s.base + off;
5148 else
5149 *ret = off;
5150
5151 *ret = vmx_get_untagged_addr(vcpu, *ret, 0);
5152 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
5153 * non-canonical form. This is the only check on the memory
5154 * destination for long mode!
5155 */
5156 exn = is_noncanonical_address(*ret, vcpu);
5157 } else {
5158 /*
5159 * When not in long mode, the virtual/linear address is
5160 * unconditionally truncated to 32 bits regardless of the
5161 * address size.
5162 */
5163 *ret = (s.base + off) & 0xffffffff;
5164
5165 /* Protected mode: apply checks for segment validity in the
5166 * following order:
5167 * - segment type check (#GP(0) may be thrown)
5168 * - usability check (#GP(0)/#SS(0))
5169 * - limit check (#GP(0)/#SS(0))
5170 */
5171 if (wr)
5172 /* #GP(0) if the destination operand is located in a
5173 * read-only data segment or any code segment.
5174 */
5175 exn = ((s.type & 0xa) == 0 || (s.type & 8));
5176 else
5177 /* #GP(0) if the source operand is located in an
5178 * execute-only code segment
5179 */
5180 exn = ((s.type & 0xa) == 8);
5181 if (exn) {
5182 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
5183 return 1;
5184 }
5185 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
5186 */
5187 exn = (s.unusable != 0);
5188
5189 /*
5190 * Protected mode: #GP(0)/#SS(0) if the memory operand is
5191 * outside the segment limit. All CPUs that support VMX ignore
5192 * limit checks for flat segments, i.e. segments with base==0,
5193 * limit==0xffffffff and of type expand-up data or code.
5194 */
5195 if (!(s.base == 0 && s.limit == 0xffffffff &&
5196 ((s.type & 8) || !(s.type & 4))))
5197 exn = exn || ((u64)off + len - 1 > s.limit);
5198 }
5199 if (exn) {
5200 kvm_queue_exception_e(vcpu,
5201 seg_reg == VCPU_SREG_SS ?
5202 SS_VECTOR : GP_VECTOR,
5203 0);
5204 return 1;
5205 }
5206
5207 return 0;
5208 }
5209
nested_vmx_get_vmptr(struct kvm_vcpu * vcpu,gpa_t * vmpointer,int * ret)5210 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
5211 int *ret)
5212 {
5213 gva_t gva;
5214 struct x86_exception e;
5215 int r;
5216
5217 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5218 vmcs_read32(VMX_INSTRUCTION_INFO), false,
5219 sizeof(*vmpointer), &gva)) {
5220 *ret = 1;
5221 return -EINVAL;
5222 }
5223
5224 r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
5225 if (r != X86EMUL_CONTINUE) {
5226 *ret = kvm_handle_memory_failure(vcpu, r, &e);
5227 return -EINVAL;
5228 }
5229
5230 return 0;
5231 }
5232
5233 /*
5234 * Allocate a shadow VMCS and associate it with the currently loaded
5235 * VMCS, unless such a shadow VMCS already exists. The newly allocated
5236 * VMCS is also VMCLEARed, so that it is ready for use.
5237 */
alloc_shadow_vmcs(struct kvm_vcpu * vcpu)5238 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
5239 {
5240 struct vcpu_vmx *vmx = to_vmx(vcpu);
5241 struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
5242
5243 /*
5244 * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
5245 * when L1 executes VMXOFF or the vCPU is forced out of nested
5246 * operation. VMXON faults if the CPU is already post-VMXON, so it
5247 * should be impossible to already have an allocated shadow VMCS. KVM
5248 * doesn't support virtualization of VMCS shadowing, so vmcs01 should
5249 * always be the loaded VMCS.
5250 */
5251 if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
5252 return loaded_vmcs->shadow_vmcs;
5253
5254 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
5255 if (loaded_vmcs->shadow_vmcs)
5256 vmcs_clear(loaded_vmcs->shadow_vmcs);
5257
5258 return loaded_vmcs->shadow_vmcs;
5259 }
5260
enter_vmx_operation(struct kvm_vcpu * vcpu)5261 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
5262 {
5263 struct vcpu_vmx *vmx = to_vmx(vcpu);
5264 int r;
5265
5266 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
5267 if (r < 0)
5268 goto out_vmcs02;
5269
5270 vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5271 if (!vmx->nested.cached_vmcs12)
5272 goto out_cached_vmcs12;
5273
5274 vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
5275 vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5276 if (!vmx->nested.cached_shadow_vmcs12)
5277 goto out_cached_shadow_vmcs12;
5278
5279 if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
5280 goto out_shadow_vmcs;
5281
5282 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
5283 HRTIMER_MODE_ABS_PINNED);
5284 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
5285
5286 vmx->nested.vpid02 = allocate_vpid();
5287
5288 vmx->nested.vmcs02_initialized = false;
5289 vmx->nested.vmxon = true;
5290
5291 if (vmx_pt_mode_is_host_guest()) {
5292 vmx->pt_desc.guest.ctl = 0;
5293 pt_update_intercept_for_msr(vcpu);
5294 }
5295
5296 return 0;
5297
5298 out_shadow_vmcs:
5299 kfree(vmx->nested.cached_shadow_vmcs12);
5300
5301 out_cached_shadow_vmcs12:
5302 kfree(vmx->nested.cached_vmcs12);
5303
5304 out_cached_vmcs12:
5305 free_loaded_vmcs(&vmx->nested.vmcs02);
5306
5307 out_vmcs02:
5308 return -ENOMEM;
5309 }
5310
5311 /* Emulate the VMXON instruction. */
handle_vmxon(struct kvm_vcpu * vcpu)5312 static int handle_vmxon(struct kvm_vcpu *vcpu)
5313 {
5314 int ret;
5315 gpa_t vmptr;
5316 uint32_t revision;
5317 struct vcpu_vmx *vmx = to_vmx(vcpu);
5318 const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
5319 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
5320
5321 /*
5322 * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter
5323 * the guest and so cannot rely on hardware to perform the check,
5324 * which has higher priority than VM-Exit (see Intel SDM's pseudocode
5325 * for VMXON).
5326 *
5327 * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86
5328 * and !COMPATIBILITY modes. For an unrestricted guest, KVM doesn't
5329 * force any of the relevant guest state. For a restricted guest, KVM
5330 * does force CR0.PE=1, but only to also force VM86 in order to emulate
5331 * Real Mode, and so there's no need to check CR0.PE manually.
5332 */
5333 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_VMXE)) {
5334 kvm_queue_exception(vcpu, UD_VECTOR);
5335 return 1;
5336 }
5337
5338 /*
5339 * The CPL is checked for "not in VMX operation" and for "in VMX root",
5340 * and has higher priority than the VM-Fail due to being post-VMXON,
5341 * i.e. VMXON #GPs outside of VMX non-root if CPL!=0. In VMX non-root,
5342 * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits
5343 * from L2 to L1, i.e. there's no need to check for the vCPU being in
5344 * VMX non-root.
5345 *
5346 * Forwarding the VM-Exit unconditionally, i.e. without performing the
5347 * #UD checks (see above), is functionally ok because KVM doesn't allow
5348 * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's
5349 * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are
5350 * missed by hardware due to shadowing CR0 and/or CR4.
5351 */
5352 if (vmx_get_cpl(vcpu)) {
5353 kvm_inject_gp(vcpu, 0);
5354 return 1;
5355 }
5356
5357 if (vmx->nested.vmxon)
5358 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5359
5360 /*
5361 * Invalid CR0/CR4 generates #GP. These checks are performed if and
5362 * only if the vCPU isn't already in VMX operation, i.e. effectively
5363 * have lower priority than the VM-Fail above.
5364 */
5365 if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) ||
5366 !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) {
5367 kvm_inject_gp(vcpu, 0);
5368 return 1;
5369 }
5370
5371 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5372 != VMXON_NEEDED_FEATURES) {
5373 kvm_inject_gp(vcpu, 0);
5374 return 1;
5375 }
5376
5377 if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
5378 return ret;
5379
5380 /*
5381 * SDM 3: 24.11.5
5382 * The first 4 bytes of VMXON region contain the supported
5383 * VMCS revision identifier
5384 *
5385 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
5386 * which replaces physical address width with 32
5387 */
5388 if (!page_address_valid(vcpu, vmptr))
5389 return nested_vmx_failInvalid(vcpu);
5390
5391 if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
5392 revision != VMCS12_REVISION)
5393 return nested_vmx_failInvalid(vcpu);
5394
5395 vmx->nested.vmxon_ptr = vmptr;
5396 ret = enter_vmx_operation(vcpu);
5397 if (ret)
5398 return ret;
5399
5400 return nested_vmx_succeed(vcpu);
5401 }
5402
nested_release_vmcs12(struct kvm_vcpu * vcpu)5403 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
5404 {
5405 struct vcpu_vmx *vmx = to_vmx(vcpu);
5406
5407 if (vmx->nested.current_vmptr == INVALID_GPA)
5408 return;
5409
5410 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
5411
5412 if (enable_shadow_vmcs) {
5413 /* copy to memory all shadowed fields in case
5414 they were modified */
5415 copy_shadow_to_vmcs12(vmx);
5416 vmx_disable_shadow_vmcs(vmx);
5417 }
5418 vmx->nested.posted_intr_nv = -1;
5419
5420 /* Flush VMCS12 to guest memory */
5421 kvm_vcpu_write_guest_page(vcpu,
5422 vmx->nested.current_vmptr >> PAGE_SHIFT,
5423 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5424
5425 kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5426
5427 vmx->nested.current_vmptr = INVALID_GPA;
5428 }
5429
5430 /* Emulate the VMXOFF instruction */
handle_vmxoff(struct kvm_vcpu * vcpu)5431 static int handle_vmxoff(struct kvm_vcpu *vcpu)
5432 {
5433 if (!nested_vmx_check_permission(vcpu))
5434 return 1;
5435
5436 free_nested(vcpu);
5437
5438 if (kvm_apic_has_pending_init_or_sipi(vcpu))
5439 kvm_make_request(KVM_REQ_EVENT, vcpu);
5440
5441 return nested_vmx_succeed(vcpu);
5442 }
5443
5444 /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)5445 static int handle_vmclear(struct kvm_vcpu *vcpu)
5446 {
5447 struct vcpu_vmx *vmx = to_vmx(vcpu);
5448 u32 zero = 0;
5449 gpa_t vmptr;
5450 int r;
5451
5452 if (!nested_vmx_check_permission(vcpu))
5453 return 1;
5454
5455 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5456 return r;
5457
5458 if (!page_address_valid(vcpu, vmptr))
5459 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5460
5461 if (vmptr == vmx->nested.vmxon_ptr)
5462 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5463
5464 if (likely(!nested_evmcs_handle_vmclear(vcpu, vmptr))) {
5465 if (vmptr == vmx->nested.current_vmptr)
5466 nested_release_vmcs12(vcpu);
5467
5468 /*
5469 * Silently ignore memory errors on VMCLEAR, Intel's pseudocode
5470 * for VMCLEAR includes a "ensure that data for VMCS referenced
5471 * by the operand is in memory" clause that guards writes to
5472 * memory, i.e. doing nothing for I/O is architecturally valid.
5473 *
5474 * FIXME: Suppress failures if and only if no memslot is found,
5475 * i.e. exit to userspace if __copy_to_user() fails.
5476 */
5477 (void)kvm_vcpu_write_guest(vcpu,
5478 vmptr + offsetof(struct vmcs12,
5479 launch_state),
5480 &zero, sizeof(zero));
5481 }
5482
5483 return nested_vmx_succeed(vcpu);
5484 }
5485
5486 /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)5487 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5488 {
5489 return nested_vmx_run(vcpu, true);
5490 }
5491
5492 /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)5493 static int handle_vmresume(struct kvm_vcpu *vcpu)
5494 {
5495
5496 return nested_vmx_run(vcpu, false);
5497 }
5498
handle_vmread(struct kvm_vcpu * vcpu)5499 static int handle_vmread(struct kvm_vcpu *vcpu)
5500 {
5501 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5502 : get_vmcs12(vcpu);
5503 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5504 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5505 struct vcpu_vmx *vmx = to_vmx(vcpu);
5506 struct x86_exception e;
5507 unsigned long field;
5508 u64 value;
5509 gva_t gva = 0;
5510 short offset;
5511 int len, r;
5512
5513 if (!nested_vmx_check_permission(vcpu))
5514 return 1;
5515
5516 /* Decode instruction info and find the field to read */
5517 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5518
5519 if (!nested_vmx_is_evmptr12_valid(vmx)) {
5520 /*
5521 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5522 * any VMREAD sets the ALU flags for VMfailInvalid.
5523 */
5524 if (vmx->nested.current_vmptr == INVALID_GPA ||
5525 (is_guest_mode(vcpu) &&
5526 get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5527 return nested_vmx_failInvalid(vcpu);
5528
5529 offset = get_vmcs12_field_offset(field);
5530 if (offset < 0)
5531 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5532
5533 if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5534 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5535
5536 /* Read the field, zero-extended to a u64 value */
5537 value = vmcs12_read_any(vmcs12, field, offset);
5538 } else {
5539 /*
5540 * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5541 * enlightened VMCS is active VMREAD/VMWRITE instructions are
5542 * unsupported. Unfortunately, certain versions of Windows 11
5543 * don't comply with this requirement which is not enforced in
5544 * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5545 * workaround, as misbehaving guests will panic on VM-Fail.
5546 * Note, enlightened VMCS is incompatible with shadow VMCS so
5547 * all VMREADs from L2 should go to L1.
5548 */
5549 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5550 return nested_vmx_failInvalid(vcpu);
5551
5552 offset = evmcs_field_offset(field, NULL);
5553 if (offset < 0)
5554 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5555
5556 /* Read the field, zero-extended to a u64 value */
5557 value = evmcs_read_any(nested_vmx_evmcs(vmx), field, offset);
5558 }
5559
5560 /*
5561 * Now copy part of this value to register or memory, as requested.
5562 * Note that the number of bits actually copied is 32 or 64 depending
5563 * on the guest's mode (32 or 64 bit), not on the given field's length.
5564 */
5565 if (instr_info & BIT(10)) {
5566 kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5567 } else {
5568 len = is_64_bit_mode(vcpu) ? 8 : 4;
5569 if (get_vmx_mem_address(vcpu, exit_qualification,
5570 instr_info, true, len, &gva))
5571 return 1;
5572 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5573 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5574 if (r != X86EMUL_CONTINUE)
5575 return kvm_handle_memory_failure(vcpu, r, &e);
5576 }
5577
5578 return nested_vmx_succeed(vcpu);
5579 }
5580
is_shadow_field_rw(unsigned long field)5581 static bool is_shadow_field_rw(unsigned long field)
5582 {
5583 switch (field) {
5584 #define SHADOW_FIELD_RW(x, y) case x:
5585 #include "vmcs_shadow_fields.h"
5586 return true;
5587 default:
5588 break;
5589 }
5590 return false;
5591 }
5592
is_shadow_field_ro(unsigned long field)5593 static bool is_shadow_field_ro(unsigned long field)
5594 {
5595 switch (field) {
5596 #define SHADOW_FIELD_RO(x, y) case x:
5597 #include "vmcs_shadow_fields.h"
5598 return true;
5599 default:
5600 break;
5601 }
5602 return false;
5603 }
5604
handle_vmwrite(struct kvm_vcpu * vcpu)5605 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5606 {
5607 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5608 : get_vmcs12(vcpu);
5609 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5610 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5611 struct vcpu_vmx *vmx = to_vmx(vcpu);
5612 struct x86_exception e;
5613 unsigned long field;
5614 short offset;
5615 gva_t gva;
5616 int len, r;
5617
5618 /*
5619 * The value to write might be 32 or 64 bits, depending on L1's long
5620 * mode, and eventually we need to write that into a field of several
5621 * possible lengths. The code below first zero-extends the value to 64
5622 * bit (value), and then copies only the appropriate number of
5623 * bits into the vmcs12 field.
5624 */
5625 u64 value = 0;
5626
5627 if (!nested_vmx_check_permission(vcpu))
5628 return 1;
5629
5630 /*
5631 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5632 * any VMWRITE sets the ALU flags for VMfailInvalid.
5633 */
5634 if (vmx->nested.current_vmptr == INVALID_GPA ||
5635 (is_guest_mode(vcpu) &&
5636 get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5637 return nested_vmx_failInvalid(vcpu);
5638
5639 if (instr_info & BIT(10))
5640 value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5641 else {
5642 len = is_64_bit_mode(vcpu) ? 8 : 4;
5643 if (get_vmx_mem_address(vcpu, exit_qualification,
5644 instr_info, false, len, &gva))
5645 return 1;
5646 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5647 if (r != X86EMUL_CONTINUE)
5648 return kvm_handle_memory_failure(vcpu, r, &e);
5649 }
5650
5651 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5652
5653 offset = get_vmcs12_field_offset(field);
5654 if (offset < 0)
5655 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5656
5657 /*
5658 * If the vCPU supports "VMWRITE to any supported field in the
5659 * VMCS," then the "read-only" fields are actually read/write.
5660 */
5661 if (vmcs_field_readonly(field) &&
5662 !nested_cpu_has_vmwrite_any_field(vcpu))
5663 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5664
5665 /*
5666 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5667 * vmcs12, else we may crush a field or consume a stale value.
5668 */
5669 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5670 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5671
5672 /*
5673 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5674 * fields on VMWRITE. Emulate this behavior to ensure consistent KVM
5675 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5676 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5677 * from L1 will return a different value than VMREAD from L2 (L1 sees
5678 * the stripped down value, L2 sees the full value as stored by KVM).
5679 */
5680 if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5681 value &= 0x1f0ff;
5682
5683 vmcs12_write_any(vmcs12, field, offset, value);
5684
5685 /*
5686 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5687 * dirty shadow vmcs12 instead of vmcs12. Fields that can be updated
5688 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5689 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5690 */
5691 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5692 /*
5693 * L1 can read these fields without exiting, ensure the
5694 * shadow VMCS is up-to-date.
5695 */
5696 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5697 preempt_disable();
5698 vmcs_load(vmx->vmcs01.shadow_vmcs);
5699
5700 __vmcs_writel(field, value);
5701
5702 vmcs_clear(vmx->vmcs01.shadow_vmcs);
5703 vmcs_load(vmx->loaded_vmcs->vmcs);
5704 preempt_enable();
5705 }
5706 vmx->nested.dirty_vmcs12 = true;
5707 }
5708
5709 return nested_vmx_succeed(vcpu);
5710 }
5711
set_current_vmptr(struct vcpu_vmx * vmx,gpa_t vmptr)5712 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5713 {
5714 vmx->nested.current_vmptr = vmptr;
5715 if (enable_shadow_vmcs) {
5716 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5717 vmcs_write64(VMCS_LINK_POINTER,
5718 __pa(vmx->vmcs01.shadow_vmcs));
5719 vmx->nested.need_vmcs12_to_shadow_sync = true;
5720 }
5721 vmx->nested.dirty_vmcs12 = true;
5722 vmx->nested.force_msr_bitmap_recalc = true;
5723 }
5724
5725 /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)5726 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5727 {
5728 struct vcpu_vmx *vmx = to_vmx(vcpu);
5729 gpa_t vmptr;
5730 int r;
5731
5732 if (!nested_vmx_check_permission(vcpu))
5733 return 1;
5734
5735 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5736 return r;
5737
5738 if (!page_address_valid(vcpu, vmptr))
5739 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5740
5741 if (vmptr == vmx->nested.vmxon_ptr)
5742 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5743
5744 /* Forbid normal VMPTRLD if Enlightened version was used */
5745 if (nested_vmx_is_evmptr12_valid(vmx))
5746 return 1;
5747
5748 if (vmx->nested.current_vmptr != vmptr) {
5749 struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5750 struct vmcs_hdr hdr;
5751
5752 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5753 /*
5754 * Reads from an unbacked page return all 1s,
5755 * which means that the 32 bits located at the
5756 * given physical address won't match the required
5757 * VMCS12_REVISION identifier.
5758 */
5759 return nested_vmx_fail(vcpu,
5760 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5761 }
5762
5763 if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
5764 offsetof(struct vmcs12, hdr),
5765 sizeof(hdr))) {
5766 return nested_vmx_fail(vcpu,
5767 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5768 }
5769
5770 if (hdr.revision_id != VMCS12_REVISION ||
5771 (hdr.shadow_vmcs &&
5772 !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5773 return nested_vmx_fail(vcpu,
5774 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5775 }
5776
5777 nested_release_vmcs12(vcpu);
5778
5779 /*
5780 * Load VMCS12 from guest memory since it is not already
5781 * cached.
5782 */
5783 if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
5784 VMCS12_SIZE)) {
5785 return nested_vmx_fail(vcpu,
5786 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5787 }
5788
5789 set_current_vmptr(vmx, vmptr);
5790 }
5791
5792 return nested_vmx_succeed(vcpu);
5793 }
5794
5795 /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)5796 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5797 {
5798 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5799 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5800 gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5801 struct x86_exception e;
5802 gva_t gva;
5803 int r;
5804
5805 if (!nested_vmx_check_permission(vcpu))
5806 return 1;
5807
5808 if (unlikely(nested_vmx_is_evmptr12_valid(to_vmx(vcpu))))
5809 return 1;
5810
5811 if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5812 true, sizeof(gpa_t), &gva))
5813 return 1;
5814 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5815 r = kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr,
5816 sizeof(gpa_t), &e);
5817 if (r != X86EMUL_CONTINUE)
5818 return kvm_handle_memory_failure(vcpu, r, &e);
5819
5820 return nested_vmx_succeed(vcpu);
5821 }
5822
5823 /* Emulate the INVEPT instruction */
handle_invept(struct kvm_vcpu * vcpu)5824 static int handle_invept(struct kvm_vcpu *vcpu)
5825 {
5826 struct vcpu_vmx *vmx = to_vmx(vcpu);
5827 u32 vmx_instruction_info, types;
5828 unsigned long type, roots_to_free;
5829 struct kvm_mmu *mmu;
5830 gva_t gva;
5831 struct x86_exception e;
5832 struct {
5833 u64 eptp, gpa;
5834 } operand;
5835 int i, r, gpr_index;
5836
5837 if (!(vmx->nested.msrs.secondary_ctls_high &
5838 SECONDARY_EXEC_ENABLE_EPT) ||
5839 !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5840 kvm_queue_exception(vcpu, UD_VECTOR);
5841 return 1;
5842 }
5843
5844 if (!nested_vmx_check_permission(vcpu))
5845 return 1;
5846
5847 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5848 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5849 type = kvm_register_read(vcpu, gpr_index);
5850
5851 types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5852
5853 if (type >= 32 || !(types & (1 << type)))
5854 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5855
5856 /* According to the Intel VMX instruction reference, the memory
5857 * operand is read even if it isn't needed (e.g., for type==global)
5858 */
5859 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5860 vmx_instruction_info, false, sizeof(operand), &gva))
5861 return 1;
5862 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5863 if (r != X86EMUL_CONTINUE)
5864 return kvm_handle_memory_failure(vcpu, r, &e);
5865
5866 /*
5867 * Nested EPT roots are always held through guest_mmu,
5868 * not root_mmu.
5869 */
5870 mmu = &vcpu->arch.guest_mmu;
5871
5872 switch (type) {
5873 case VMX_EPT_EXTENT_CONTEXT:
5874 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5875 return nested_vmx_fail(vcpu,
5876 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5877
5878 roots_to_free = 0;
5879 if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd,
5880 operand.eptp))
5881 roots_to_free |= KVM_MMU_ROOT_CURRENT;
5882
5883 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5884 if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5885 mmu->prev_roots[i].pgd,
5886 operand.eptp))
5887 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5888 }
5889 break;
5890 case VMX_EPT_EXTENT_GLOBAL:
5891 roots_to_free = KVM_MMU_ROOTS_ALL;
5892 break;
5893 default:
5894 BUG();
5895 break;
5896 }
5897
5898 if (roots_to_free)
5899 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
5900
5901 return nested_vmx_succeed(vcpu);
5902 }
5903
handle_invvpid(struct kvm_vcpu * vcpu)5904 static int handle_invvpid(struct kvm_vcpu *vcpu)
5905 {
5906 struct vcpu_vmx *vmx = to_vmx(vcpu);
5907 u32 vmx_instruction_info;
5908 unsigned long type, types;
5909 gva_t gva;
5910 struct x86_exception e;
5911 struct {
5912 u64 vpid;
5913 u64 gla;
5914 } operand;
5915 u16 vpid02;
5916 int r, gpr_index;
5917
5918 if (!(vmx->nested.msrs.secondary_ctls_high &
5919 SECONDARY_EXEC_ENABLE_VPID) ||
5920 !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5921 kvm_queue_exception(vcpu, UD_VECTOR);
5922 return 1;
5923 }
5924
5925 if (!nested_vmx_check_permission(vcpu))
5926 return 1;
5927
5928 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5929 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5930 type = kvm_register_read(vcpu, gpr_index);
5931
5932 types = (vmx->nested.msrs.vpid_caps &
5933 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5934
5935 if (type >= 32 || !(types & (1 << type)))
5936 return nested_vmx_fail(vcpu,
5937 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5938
5939 /* according to the intel vmx instruction reference, the memory
5940 * operand is read even if it isn't needed (e.g., for type==global)
5941 */
5942 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5943 vmx_instruction_info, false, sizeof(operand), &gva))
5944 return 1;
5945 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5946 if (r != X86EMUL_CONTINUE)
5947 return kvm_handle_memory_failure(vcpu, r, &e);
5948
5949 if (operand.vpid >> 16)
5950 return nested_vmx_fail(vcpu,
5951 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5952
5953 vpid02 = nested_get_vpid02(vcpu);
5954 switch (type) {
5955 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5956 /*
5957 * LAM doesn't apply to addresses that are inputs to TLB
5958 * invalidation.
5959 */
5960 if (!operand.vpid ||
5961 is_noncanonical_address(operand.gla, vcpu))
5962 return nested_vmx_fail(vcpu,
5963 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5964 vpid_sync_vcpu_addr(vpid02, operand.gla);
5965 break;
5966 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5967 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5968 if (!operand.vpid)
5969 return nested_vmx_fail(vcpu,
5970 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5971 vpid_sync_context(vpid02);
5972 break;
5973 case VMX_VPID_EXTENT_ALL_CONTEXT:
5974 vpid_sync_context(vpid02);
5975 break;
5976 default:
5977 WARN_ON_ONCE(1);
5978 return kvm_skip_emulated_instruction(vcpu);
5979 }
5980
5981 /*
5982 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5983 * linear mappings for L2 (tagged with L2's VPID). Free all guest
5984 * roots as VPIDs are not tracked in the MMU role.
5985 *
5986 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5987 * an MMU when EPT is disabled.
5988 *
5989 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5990 */
5991 if (!enable_ept)
5992 kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5993
5994 return nested_vmx_succeed(vcpu);
5995 }
5996
nested_vmx_eptp_switching(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5997 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5998 struct vmcs12 *vmcs12)
5999 {
6000 u32 index = kvm_rcx_read(vcpu);
6001 u64 new_eptp;
6002
6003 if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
6004 return 1;
6005 if (index >= VMFUNC_EPTP_ENTRIES)
6006 return 1;
6007
6008 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
6009 &new_eptp, index * 8, 8))
6010 return 1;
6011
6012 /*
6013 * If the (L2) guest does a vmfunc to the currently
6014 * active ept pointer, we don't have to do anything else
6015 */
6016 if (vmcs12->ept_pointer != new_eptp) {
6017 if (!nested_vmx_check_eptp(vcpu, new_eptp))
6018 return 1;
6019
6020 vmcs12->ept_pointer = new_eptp;
6021 nested_ept_new_eptp(vcpu);
6022
6023 if (!nested_cpu_has_vpid(vmcs12))
6024 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
6025 }
6026
6027 return 0;
6028 }
6029
handle_vmfunc(struct kvm_vcpu * vcpu)6030 static int handle_vmfunc(struct kvm_vcpu *vcpu)
6031 {
6032 struct vcpu_vmx *vmx = to_vmx(vcpu);
6033 struct vmcs12 *vmcs12;
6034 u32 function = kvm_rax_read(vcpu);
6035
6036 /*
6037 * VMFUNC should never execute cleanly while L1 is active; KVM supports
6038 * VMFUNC for nested VMs, but not for L1.
6039 */
6040 if (WARN_ON_ONCE(!is_guest_mode(vcpu))) {
6041 kvm_queue_exception(vcpu, UD_VECTOR);
6042 return 1;
6043 }
6044
6045 vmcs12 = get_vmcs12(vcpu);
6046
6047 /*
6048 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
6049 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
6050 */
6051 if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
6052 kvm_queue_exception(vcpu, UD_VECTOR);
6053 return 1;
6054 }
6055
6056 if (!(vmcs12->vm_function_control & BIT_ULL(function)))
6057 goto fail;
6058
6059 switch (function) {
6060 case 0:
6061 if (nested_vmx_eptp_switching(vcpu, vmcs12))
6062 goto fail;
6063 break;
6064 default:
6065 goto fail;
6066 }
6067 return kvm_skip_emulated_instruction(vcpu);
6068
6069 fail:
6070 /*
6071 * This is effectively a reflected VM-Exit, as opposed to a synthesized
6072 * nested VM-Exit. Pass the original exit reason, i.e. don't hardcode
6073 * EXIT_REASON_VMFUNC as the exit reason.
6074 */
6075 nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
6076 vmx_get_intr_info(vcpu),
6077 vmx_get_exit_qual(vcpu));
6078 return 1;
6079 }
6080
6081 /*
6082 * Return true if an IO instruction with the specified port and size should cause
6083 * a VM-exit into L1.
6084 */
nested_vmx_check_io_bitmaps(struct kvm_vcpu * vcpu,unsigned int port,int size)6085 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
6086 int size)
6087 {
6088 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6089 gpa_t bitmap, last_bitmap;
6090 u8 b;
6091
6092 last_bitmap = INVALID_GPA;
6093 b = -1;
6094
6095 while (size > 0) {
6096 if (port < 0x8000)
6097 bitmap = vmcs12->io_bitmap_a;
6098 else if (port < 0x10000)
6099 bitmap = vmcs12->io_bitmap_b;
6100 else
6101 return true;
6102 bitmap += (port & 0x7fff) / 8;
6103
6104 if (last_bitmap != bitmap)
6105 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
6106 return true;
6107 if (b & (1 << (port & 7)))
6108 return true;
6109
6110 port++;
6111 size--;
6112 last_bitmap = bitmap;
6113 }
6114
6115 return false;
6116 }
6117
nested_vmx_exit_handled_io(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6118 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6119 struct vmcs12 *vmcs12)
6120 {
6121 unsigned long exit_qualification;
6122 unsigned short port;
6123 int size;
6124
6125 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6126 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6127
6128 exit_qualification = vmx_get_exit_qual(vcpu);
6129
6130 port = exit_qualification >> 16;
6131 size = (exit_qualification & 7) + 1;
6132
6133 return nested_vmx_check_io_bitmaps(vcpu, port, size);
6134 }
6135
6136 /*
6137 * Return 1 if we should exit from L2 to L1 to handle an MSR access,
6138 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6139 * disinterest in the current event (read or write a specific MSR) by using an
6140 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6141 */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,union vmx_exit_reason exit_reason)6142 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6143 struct vmcs12 *vmcs12,
6144 union vmx_exit_reason exit_reason)
6145 {
6146 u32 msr_index = kvm_rcx_read(vcpu);
6147 gpa_t bitmap;
6148
6149 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6150 return true;
6151
6152 /*
6153 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6154 * for the four combinations of read/write and low/high MSR numbers.
6155 * First we need to figure out which of the four to use:
6156 */
6157 bitmap = vmcs12->msr_bitmap;
6158 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6159 bitmap += 2048;
6160 if (msr_index >= 0xc0000000) {
6161 msr_index -= 0xc0000000;
6162 bitmap += 1024;
6163 }
6164
6165 /* Then read the msr_index'th bit from this bitmap: */
6166 if (msr_index < 1024*8) {
6167 unsigned char b;
6168 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
6169 return true;
6170 return 1 & (b >> (msr_index & 7));
6171 } else
6172 return true; /* let L1 handle the wrong parameter */
6173 }
6174
6175 /*
6176 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6177 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6178 * intercept (via guest_host_mask etc.) the current event.
6179 */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6180 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6181 struct vmcs12 *vmcs12)
6182 {
6183 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
6184 int cr = exit_qualification & 15;
6185 int reg;
6186 unsigned long val;
6187
6188 switch ((exit_qualification >> 4) & 3) {
6189 case 0: /* mov to cr */
6190 reg = (exit_qualification >> 8) & 15;
6191 val = kvm_register_read(vcpu, reg);
6192 switch (cr) {
6193 case 0:
6194 if (vmcs12->cr0_guest_host_mask &
6195 (val ^ vmcs12->cr0_read_shadow))
6196 return true;
6197 break;
6198 case 3:
6199 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6200 return true;
6201 break;
6202 case 4:
6203 if (vmcs12->cr4_guest_host_mask &
6204 (vmcs12->cr4_read_shadow ^ val))
6205 return true;
6206 break;
6207 case 8:
6208 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6209 return true;
6210 break;
6211 }
6212 break;
6213 case 2: /* clts */
6214 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6215 (vmcs12->cr0_read_shadow & X86_CR0_TS))
6216 return true;
6217 break;
6218 case 1: /* mov from cr */
6219 switch (cr) {
6220 case 3:
6221 if (vmcs12->cpu_based_vm_exec_control &
6222 CPU_BASED_CR3_STORE_EXITING)
6223 return true;
6224 break;
6225 case 8:
6226 if (vmcs12->cpu_based_vm_exec_control &
6227 CPU_BASED_CR8_STORE_EXITING)
6228 return true;
6229 break;
6230 }
6231 break;
6232 case 3: /* lmsw */
6233 /*
6234 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6235 * cr0. Other attempted changes are ignored, with no exit.
6236 */
6237 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6238 if (vmcs12->cr0_guest_host_mask & 0xe &
6239 (val ^ vmcs12->cr0_read_shadow))
6240 return true;
6241 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6242 !(vmcs12->cr0_read_shadow & 0x1) &&
6243 (val & 0x1))
6244 return true;
6245 break;
6246 }
6247 return false;
6248 }
6249
nested_vmx_exit_handled_encls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6250 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
6251 struct vmcs12 *vmcs12)
6252 {
6253 u32 encls_leaf;
6254
6255 if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
6256 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
6257 return false;
6258
6259 encls_leaf = kvm_rax_read(vcpu);
6260 if (encls_leaf > 62)
6261 encls_leaf = 63;
6262 return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
6263 }
6264
nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,gpa_t bitmap)6265 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
6266 struct vmcs12 *vmcs12, gpa_t bitmap)
6267 {
6268 u32 vmx_instruction_info;
6269 unsigned long field;
6270 u8 b;
6271
6272 if (!nested_cpu_has_shadow_vmcs(vmcs12))
6273 return true;
6274
6275 /* Decode instruction info and find the field to access */
6276 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6277 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6278
6279 /* Out-of-range fields always cause a VM exit from L2 to L1 */
6280 if (field >> 15)
6281 return true;
6282
6283 if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
6284 return true;
6285
6286 return 1 & (b >> (field & 7));
6287 }
6288
nested_vmx_exit_handled_mtf(struct vmcs12 * vmcs12)6289 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
6290 {
6291 u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
6292
6293 if (nested_cpu_has_mtf(vmcs12))
6294 return true;
6295
6296 /*
6297 * An MTF VM-exit may be injected into the guest by setting the
6298 * interruption-type to 7 (other event) and the vector field to 0. Such
6299 * is the case regardless of the 'monitor trap flag' VM-execution
6300 * control.
6301 */
6302 return entry_intr_info == (INTR_INFO_VALID_MASK
6303 | INTR_TYPE_OTHER_EVENT);
6304 }
6305
6306 /*
6307 * Return true if L0 wants to handle an exit from L2 regardless of whether or not
6308 * L1 wants the exit. Only call this when in is_guest_mode (L2).
6309 */
nested_vmx_l0_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)6310 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
6311 union vmx_exit_reason exit_reason)
6312 {
6313 u32 intr_info;
6314
6315 switch ((u16)exit_reason.basic) {
6316 case EXIT_REASON_EXCEPTION_NMI:
6317 intr_info = vmx_get_intr_info(vcpu);
6318 if (is_nmi(intr_info))
6319 return true;
6320 else if (is_page_fault(intr_info))
6321 return vcpu->arch.apf.host_apf_flags ||
6322 vmx_need_pf_intercept(vcpu);
6323 else if (is_debug(intr_info) &&
6324 vcpu->guest_debug &
6325 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6326 return true;
6327 else if (is_breakpoint(intr_info) &&
6328 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
6329 return true;
6330 else if (is_alignment_check(intr_info) &&
6331 !vmx_guest_inject_ac(vcpu))
6332 return true;
6333 else if (is_ve_fault(intr_info))
6334 return true;
6335 return false;
6336 case EXIT_REASON_EXTERNAL_INTERRUPT:
6337 return true;
6338 case EXIT_REASON_MCE_DURING_VMENTRY:
6339 return true;
6340 case EXIT_REASON_EPT_VIOLATION:
6341 /*
6342 * L0 always deals with the EPT violation. If nested EPT is
6343 * used, and the nested mmu code discovers that the address is
6344 * missing in the guest EPT table (EPT12), the EPT violation
6345 * will be injected with nested_ept_inject_page_fault()
6346 */
6347 return true;
6348 case EXIT_REASON_EPT_MISCONFIG:
6349 /*
6350 * L2 never uses directly L1's EPT, but rather L0's own EPT
6351 * table (shadow on EPT) or a merged EPT table that L0 built
6352 * (EPT on EPT). So any problems with the structure of the
6353 * table is L0's fault.
6354 */
6355 return true;
6356 case EXIT_REASON_PREEMPTION_TIMER:
6357 return true;
6358 case EXIT_REASON_PML_FULL:
6359 /*
6360 * PML is emulated for an L1 VMM and should never be enabled in
6361 * vmcs02, always "handle" PML_FULL by exiting to userspace.
6362 */
6363 return true;
6364 case EXIT_REASON_VMFUNC:
6365 /* VM functions are emulated through L2->L0 vmexits. */
6366 return true;
6367 case EXIT_REASON_BUS_LOCK:
6368 /*
6369 * At present, bus lock VM exit is never exposed to L1.
6370 * Handle L2's bus locks in L0 directly.
6371 */
6372 return true;
6373 #ifdef CONFIG_KVM_HYPERV
6374 case EXIT_REASON_VMCALL:
6375 /* Hyper-V L2 TLB flush hypercall is handled by L0 */
6376 return guest_hv_cpuid_has_l2_tlb_flush(vcpu) &&
6377 nested_evmcs_l2_tlb_flush_enabled(vcpu) &&
6378 kvm_hv_is_tlb_flush_hcall(vcpu);
6379 #endif
6380 default:
6381 break;
6382 }
6383 return false;
6384 }
6385
6386 /*
6387 * Return 1 if L1 wants to intercept an exit from L2. Only call this when in
6388 * is_guest_mode (L2).
6389 */
nested_vmx_l1_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)6390 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
6391 union vmx_exit_reason exit_reason)
6392 {
6393 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6394 u32 intr_info;
6395
6396 switch ((u16)exit_reason.basic) {
6397 case EXIT_REASON_EXCEPTION_NMI:
6398 intr_info = vmx_get_intr_info(vcpu);
6399 if (is_nmi(intr_info))
6400 return true;
6401 else if (is_page_fault(intr_info))
6402 return true;
6403 return vmcs12->exception_bitmap &
6404 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6405 case EXIT_REASON_EXTERNAL_INTERRUPT:
6406 return nested_exit_on_intr(vcpu);
6407 case EXIT_REASON_TRIPLE_FAULT:
6408 return true;
6409 case EXIT_REASON_INTERRUPT_WINDOW:
6410 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
6411 case EXIT_REASON_NMI_WINDOW:
6412 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
6413 case EXIT_REASON_TASK_SWITCH:
6414 return true;
6415 case EXIT_REASON_CPUID:
6416 return true;
6417 case EXIT_REASON_HLT:
6418 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6419 case EXIT_REASON_INVD:
6420 return true;
6421 case EXIT_REASON_INVLPG:
6422 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6423 case EXIT_REASON_RDPMC:
6424 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6425 case EXIT_REASON_RDRAND:
6426 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6427 case EXIT_REASON_RDSEED:
6428 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6429 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6430 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6431 case EXIT_REASON_VMREAD:
6432 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6433 vmcs12->vmread_bitmap);
6434 case EXIT_REASON_VMWRITE:
6435 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6436 vmcs12->vmwrite_bitmap);
6437 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6438 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6439 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6440 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6441 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6442 /*
6443 * VMX instructions trap unconditionally. This allows L1 to
6444 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6445 */
6446 return true;
6447 case EXIT_REASON_CR_ACCESS:
6448 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6449 case EXIT_REASON_DR_ACCESS:
6450 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6451 case EXIT_REASON_IO_INSTRUCTION:
6452 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6453 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6454 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6455 case EXIT_REASON_MSR_READ:
6456 case EXIT_REASON_MSR_WRITE:
6457 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6458 case EXIT_REASON_INVALID_STATE:
6459 return true;
6460 case EXIT_REASON_MWAIT_INSTRUCTION:
6461 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6462 case EXIT_REASON_MONITOR_TRAP_FLAG:
6463 return nested_vmx_exit_handled_mtf(vmcs12);
6464 case EXIT_REASON_MONITOR_INSTRUCTION:
6465 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6466 case EXIT_REASON_PAUSE_INSTRUCTION:
6467 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6468 nested_cpu_has2(vmcs12,
6469 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6470 case EXIT_REASON_MCE_DURING_VMENTRY:
6471 return true;
6472 case EXIT_REASON_TPR_BELOW_THRESHOLD:
6473 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6474 case EXIT_REASON_APIC_ACCESS:
6475 case EXIT_REASON_APIC_WRITE:
6476 case EXIT_REASON_EOI_INDUCED:
6477 /*
6478 * The controls for "virtualize APIC accesses," "APIC-
6479 * register virtualization," and "virtual-interrupt
6480 * delivery" only come from vmcs12.
6481 */
6482 return true;
6483 case EXIT_REASON_INVPCID:
6484 return
6485 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6486 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6487 case EXIT_REASON_WBINVD:
6488 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6489 case EXIT_REASON_XSETBV:
6490 return true;
6491 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6492 /*
6493 * This should never happen, since it is not possible to
6494 * set XSS to a non-zero value---neither in L1 nor in L2.
6495 * If if it were, XSS would have to be checked against
6496 * the XSS exit bitmap in vmcs12.
6497 */
6498 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_XSAVES);
6499 case EXIT_REASON_UMWAIT:
6500 case EXIT_REASON_TPAUSE:
6501 return nested_cpu_has2(vmcs12,
6502 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6503 case EXIT_REASON_ENCLS:
6504 return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6505 case EXIT_REASON_NOTIFY:
6506 /* Notify VM exit is not exposed to L1 */
6507 return false;
6508 default:
6509 return true;
6510 }
6511 }
6512
6513 /*
6514 * Conditionally reflect a VM-Exit into L1. Returns %true if the VM-Exit was
6515 * reflected into L1.
6516 */
nested_vmx_reflect_vmexit(struct kvm_vcpu * vcpu)6517 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6518 {
6519 struct vcpu_vmx *vmx = to_vmx(vcpu);
6520 union vmx_exit_reason exit_reason = vmx->exit_reason;
6521 unsigned long exit_qual;
6522 u32 exit_intr_info;
6523
6524 WARN_ON_ONCE(vmx->nested.nested_run_pending);
6525
6526 /*
6527 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6528 * has already loaded L2's state.
6529 */
6530 if (unlikely(vmx->fail)) {
6531 trace_kvm_nested_vmenter_failed(
6532 "hardware VM-instruction error: ",
6533 vmcs_read32(VM_INSTRUCTION_ERROR));
6534 exit_intr_info = 0;
6535 exit_qual = 0;
6536 goto reflect_vmexit;
6537 }
6538
6539 trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6540
6541 /* If L0 (KVM) wants the exit, it trumps L1's desires. */
6542 if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6543 return false;
6544
6545 /* If L1 doesn't want the exit, handle it in L0. */
6546 if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6547 return false;
6548
6549 /*
6550 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits. For
6551 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6552 * need to be synthesized by querying the in-kernel LAPIC, but external
6553 * interrupts are never reflected to L1 so it's a non-issue.
6554 */
6555 exit_intr_info = vmx_get_intr_info(vcpu);
6556 if (is_exception_with_error_code(exit_intr_info)) {
6557 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6558
6559 vmcs12->vm_exit_intr_error_code =
6560 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6561 }
6562 exit_qual = vmx_get_exit_qual(vcpu);
6563
6564 reflect_vmexit:
6565 nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6566 return true;
6567 }
6568
vmx_get_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,u32 user_data_size)6569 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6570 struct kvm_nested_state __user *user_kvm_nested_state,
6571 u32 user_data_size)
6572 {
6573 struct vcpu_vmx *vmx;
6574 struct vmcs12 *vmcs12;
6575 struct kvm_nested_state kvm_state = {
6576 .flags = 0,
6577 .format = KVM_STATE_NESTED_FORMAT_VMX,
6578 .size = sizeof(kvm_state),
6579 .hdr.vmx.flags = 0,
6580 .hdr.vmx.vmxon_pa = INVALID_GPA,
6581 .hdr.vmx.vmcs12_pa = INVALID_GPA,
6582 .hdr.vmx.preemption_timer_deadline = 0,
6583 };
6584 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6585 &user_kvm_nested_state->data.vmx[0];
6586
6587 if (!vcpu)
6588 return kvm_state.size + sizeof(*user_vmx_nested_state);
6589
6590 vmx = to_vmx(vcpu);
6591 vmcs12 = get_vmcs12(vcpu);
6592
6593 if (guest_can_use(vcpu, X86_FEATURE_VMX) &&
6594 (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6595 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6596 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6597
6598 if (vmx_has_valid_vmcs12(vcpu)) {
6599 kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6600
6601 /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6602 if (nested_vmx_is_evmptr12_set(vmx))
6603 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6604
6605 if (is_guest_mode(vcpu) &&
6606 nested_cpu_has_shadow_vmcs(vmcs12) &&
6607 vmcs12->vmcs_link_pointer != INVALID_GPA)
6608 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6609 }
6610
6611 if (vmx->nested.smm.vmxon)
6612 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6613
6614 if (vmx->nested.smm.guest_mode)
6615 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6616
6617 if (is_guest_mode(vcpu)) {
6618 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6619
6620 if (vmx->nested.nested_run_pending)
6621 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6622
6623 if (vmx->nested.mtf_pending)
6624 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6625
6626 if (nested_cpu_has_preemption_timer(vmcs12) &&
6627 vmx->nested.has_preemption_timer_deadline) {
6628 kvm_state.hdr.vmx.flags |=
6629 KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6630 kvm_state.hdr.vmx.preemption_timer_deadline =
6631 vmx->nested.preemption_timer_deadline;
6632 }
6633 }
6634 }
6635
6636 if (user_data_size < kvm_state.size)
6637 goto out;
6638
6639 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6640 return -EFAULT;
6641
6642 if (!vmx_has_valid_vmcs12(vcpu))
6643 goto out;
6644
6645 /*
6646 * When running L2, the authoritative vmcs12 state is in the
6647 * vmcs02. When running L1, the authoritative vmcs12 state is
6648 * in the shadow or enlightened vmcs linked to vmcs01, unless
6649 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6650 * vmcs12 state is in the vmcs12 already.
6651 */
6652 if (is_guest_mode(vcpu)) {
6653 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6654 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6655 } else {
6656 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6657 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6658 if (nested_vmx_is_evmptr12_valid(vmx))
6659 /*
6660 * L1 hypervisor is not obliged to keep eVMCS
6661 * clean fields data always up-to-date while
6662 * not in guest mode, 'hv_clean_fields' is only
6663 * supposed to be actual upon vmentry so we need
6664 * to ignore it here and do full copy.
6665 */
6666 copy_enlightened_to_vmcs12(vmx, 0);
6667 else if (enable_shadow_vmcs)
6668 copy_shadow_to_vmcs12(vmx);
6669 }
6670 }
6671
6672 BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6673 BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6674
6675 /*
6676 * Copy over the full allocated size of vmcs12 rather than just the size
6677 * of the struct.
6678 */
6679 if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6680 return -EFAULT;
6681
6682 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6683 vmcs12->vmcs_link_pointer != INVALID_GPA) {
6684 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6685 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6686 return -EFAULT;
6687 }
6688 out:
6689 return kvm_state.size;
6690 }
6691
vmx_leave_nested(struct kvm_vcpu * vcpu)6692 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6693 {
6694 if (is_guest_mode(vcpu)) {
6695 to_vmx(vcpu)->nested.nested_run_pending = 0;
6696 nested_vmx_vmexit(vcpu, -1, 0, 0);
6697 }
6698 free_nested(vcpu);
6699 }
6700
vmx_set_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,struct kvm_nested_state * kvm_state)6701 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6702 struct kvm_nested_state __user *user_kvm_nested_state,
6703 struct kvm_nested_state *kvm_state)
6704 {
6705 struct vcpu_vmx *vmx = to_vmx(vcpu);
6706 struct vmcs12 *vmcs12;
6707 enum vm_entry_failure_code ignored;
6708 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6709 &user_kvm_nested_state->data.vmx[0];
6710 int ret;
6711
6712 if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6713 return -EINVAL;
6714
6715 if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6716 if (kvm_state->hdr.vmx.smm.flags)
6717 return -EINVAL;
6718
6719 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6720 return -EINVAL;
6721
6722 /*
6723 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6724 * enable eVMCS capability on vCPU. However, since then
6725 * code was changed such that flag signals vmcs12 should
6726 * be copied into eVMCS in guest memory.
6727 *
6728 * To preserve backwards compatibility, allow user
6729 * to set this flag even when there is no VMXON region.
6730 */
6731 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6732 return -EINVAL;
6733 } else {
6734 if (!guest_can_use(vcpu, X86_FEATURE_VMX))
6735 return -EINVAL;
6736
6737 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6738 return -EINVAL;
6739 }
6740
6741 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6742 (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6743 return -EINVAL;
6744
6745 if (kvm_state->hdr.vmx.smm.flags &
6746 ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6747 return -EINVAL;
6748
6749 if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6750 return -EINVAL;
6751
6752 /*
6753 * SMM temporarily disables VMX, so we cannot be in guest mode,
6754 * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
6755 * must be zero.
6756 */
6757 if (is_smm(vcpu) ?
6758 (kvm_state->flags &
6759 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6760 : kvm_state->hdr.vmx.smm.flags)
6761 return -EINVAL;
6762
6763 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6764 !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6765 return -EINVAL;
6766
6767 if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6768 (!guest_can_use(vcpu, X86_FEATURE_VMX) ||
6769 !vmx->nested.enlightened_vmcs_enabled))
6770 return -EINVAL;
6771
6772 vmx_leave_nested(vcpu);
6773
6774 if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6775 return 0;
6776
6777 vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6778 ret = enter_vmx_operation(vcpu);
6779 if (ret)
6780 return ret;
6781
6782 /* Empty 'VMXON' state is permitted if no VMCS loaded */
6783 if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6784 /* See vmx_has_valid_vmcs12. */
6785 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6786 (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6787 (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6788 return -EINVAL;
6789 else
6790 return 0;
6791 }
6792
6793 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6794 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6795 !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6796 return -EINVAL;
6797
6798 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6799 #ifdef CONFIG_KVM_HYPERV
6800 } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6801 /*
6802 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6803 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6804 * restored yet. EVMCS will be mapped from
6805 * nested_get_vmcs12_pages().
6806 */
6807 vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6808 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6809 #endif
6810 } else {
6811 return -EINVAL;
6812 }
6813
6814 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6815 vmx->nested.smm.vmxon = true;
6816 vmx->nested.vmxon = false;
6817
6818 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6819 vmx->nested.smm.guest_mode = true;
6820 }
6821
6822 vmcs12 = get_vmcs12(vcpu);
6823 if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6824 return -EFAULT;
6825
6826 if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6827 return -EINVAL;
6828
6829 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6830 return 0;
6831
6832 vmx->nested.nested_run_pending =
6833 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6834
6835 vmx->nested.mtf_pending =
6836 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6837
6838 ret = -EINVAL;
6839 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6840 vmcs12->vmcs_link_pointer != INVALID_GPA) {
6841 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6842
6843 if (kvm_state->size <
6844 sizeof(*kvm_state) +
6845 sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6846 goto error_guest_mode;
6847
6848 if (copy_from_user(shadow_vmcs12,
6849 user_vmx_nested_state->shadow_vmcs12,
6850 sizeof(*shadow_vmcs12))) {
6851 ret = -EFAULT;
6852 goto error_guest_mode;
6853 }
6854
6855 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6856 !shadow_vmcs12->hdr.shadow_vmcs)
6857 goto error_guest_mode;
6858 }
6859
6860 vmx->nested.has_preemption_timer_deadline = false;
6861 if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6862 vmx->nested.has_preemption_timer_deadline = true;
6863 vmx->nested.preemption_timer_deadline =
6864 kvm_state->hdr.vmx.preemption_timer_deadline;
6865 }
6866
6867 if (nested_vmx_check_controls(vcpu, vmcs12) ||
6868 nested_vmx_check_host_state(vcpu, vmcs12) ||
6869 nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6870 goto error_guest_mode;
6871
6872 vmx->nested.dirty_vmcs12 = true;
6873 vmx->nested.force_msr_bitmap_recalc = true;
6874 ret = nested_vmx_enter_non_root_mode(vcpu, false);
6875 if (ret)
6876 goto error_guest_mode;
6877
6878 if (vmx->nested.mtf_pending)
6879 kvm_make_request(KVM_REQ_EVENT, vcpu);
6880
6881 return 0;
6882
6883 error_guest_mode:
6884 vmx->nested.nested_run_pending = 0;
6885 return ret;
6886 }
6887
nested_vmx_set_vmcs_shadowing_bitmap(void)6888 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6889 {
6890 if (enable_shadow_vmcs) {
6891 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6892 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6893 }
6894 }
6895
6896 /*
6897 * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6. Undo
6898 * that madness to get the encoding for comparison.
6899 */
6900 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6901
nested_vmx_calc_vmcs_enum_msr(void)6902 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6903 {
6904 /*
6905 * Note these are the so called "index" of the VMCS field encoding, not
6906 * the index into vmcs12.
6907 */
6908 unsigned int max_idx, idx;
6909 int i;
6910
6911 /*
6912 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6913 * vmcs12, regardless of whether or not the associated feature is
6914 * exposed to L1. Simply find the field with the highest index.
6915 */
6916 max_idx = 0;
6917 for (i = 0; i < nr_vmcs12_fields; i++) {
6918 /* The vmcs12 table is very, very sparsely populated. */
6919 if (!vmcs12_field_offsets[i])
6920 continue;
6921
6922 idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6923 if (idx > max_idx)
6924 max_idx = idx;
6925 }
6926
6927 return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6928 }
6929
nested_vmx_setup_pinbased_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)6930 static void nested_vmx_setup_pinbased_ctls(struct vmcs_config *vmcs_conf,
6931 struct nested_vmx_msrs *msrs)
6932 {
6933 msrs->pinbased_ctls_low =
6934 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6935
6936 msrs->pinbased_ctls_high = vmcs_conf->pin_based_exec_ctrl;
6937 msrs->pinbased_ctls_high &=
6938 PIN_BASED_EXT_INTR_MASK |
6939 PIN_BASED_NMI_EXITING |
6940 PIN_BASED_VIRTUAL_NMIS |
6941 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6942 msrs->pinbased_ctls_high |=
6943 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6944 PIN_BASED_VMX_PREEMPTION_TIMER;
6945 }
6946
nested_vmx_setup_exit_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)6947 static void nested_vmx_setup_exit_ctls(struct vmcs_config *vmcs_conf,
6948 struct nested_vmx_msrs *msrs)
6949 {
6950 msrs->exit_ctls_low =
6951 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6952
6953 msrs->exit_ctls_high = vmcs_conf->vmexit_ctrl;
6954 msrs->exit_ctls_high &=
6955 #ifdef CONFIG_X86_64
6956 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6957 #endif
6958 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6959 VM_EXIT_CLEAR_BNDCFGS;
6960 msrs->exit_ctls_high |=
6961 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6962 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6963 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT |
6964 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6965
6966 /* We support free control of debug control saving. */
6967 msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6968 }
6969
nested_vmx_setup_entry_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)6970 static void nested_vmx_setup_entry_ctls(struct vmcs_config *vmcs_conf,
6971 struct nested_vmx_msrs *msrs)
6972 {
6973 msrs->entry_ctls_low =
6974 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6975
6976 msrs->entry_ctls_high = vmcs_conf->vmentry_ctrl;
6977 msrs->entry_ctls_high &=
6978 #ifdef CONFIG_X86_64
6979 VM_ENTRY_IA32E_MODE |
6980 #endif
6981 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
6982 msrs->entry_ctls_high |=
6983 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER |
6984 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
6985
6986 /* We support free control of debug control loading. */
6987 msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6988 }
6989
nested_vmx_setup_cpubased_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)6990 static void nested_vmx_setup_cpubased_ctls(struct vmcs_config *vmcs_conf,
6991 struct nested_vmx_msrs *msrs)
6992 {
6993 msrs->procbased_ctls_low =
6994 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6995
6996 msrs->procbased_ctls_high = vmcs_conf->cpu_based_exec_ctrl;
6997 msrs->procbased_ctls_high &=
6998 CPU_BASED_INTR_WINDOW_EXITING |
6999 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
7000 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
7001 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
7002 CPU_BASED_CR3_STORE_EXITING |
7003 #ifdef CONFIG_X86_64
7004 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
7005 #endif
7006 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
7007 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
7008 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
7009 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
7010 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
7011 /*
7012 * We can allow some features even when not supported by the
7013 * hardware. For example, L1 can specify an MSR bitmap - and we
7014 * can use it to avoid exits to L1 - even when L0 runs L2
7015 * without MSR bitmaps.
7016 */
7017 msrs->procbased_ctls_high |=
7018 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
7019 CPU_BASED_USE_MSR_BITMAPS;
7020
7021 /* We support free control of CR3 access interception. */
7022 msrs->procbased_ctls_low &=
7023 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
7024 }
7025
nested_vmx_setup_secondary_ctls(u32 ept_caps,struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7026 static void nested_vmx_setup_secondary_ctls(u32 ept_caps,
7027 struct vmcs_config *vmcs_conf,
7028 struct nested_vmx_msrs *msrs)
7029 {
7030 msrs->secondary_ctls_low = 0;
7031
7032 msrs->secondary_ctls_high = vmcs_conf->cpu_based_2nd_exec_ctrl;
7033 msrs->secondary_ctls_high &=
7034 SECONDARY_EXEC_DESC |
7035 SECONDARY_EXEC_ENABLE_RDTSCP |
7036 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7037 SECONDARY_EXEC_WBINVD_EXITING |
7038 SECONDARY_EXEC_APIC_REGISTER_VIRT |
7039 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
7040 SECONDARY_EXEC_RDRAND_EXITING |
7041 SECONDARY_EXEC_ENABLE_INVPCID |
7042 SECONDARY_EXEC_ENABLE_VMFUNC |
7043 SECONDARY_EXEC_RDSEED_EXITING |
7044 SECONDARY_EXEC_ENABLE_XSAVES |
7045 SECONDARY_EXEC_TSC_SCALING |
7046 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
7047
7048 /*
7049 * We can emulate "VMCS shadowing," even if the hardware
7050 * doesn't support it.
7051 */
7052 msrs->secondary_ctls_high |=
7053 SECONDARY_EXEC_SHADOW_VMCS;
7054
7055 if (enable_ept) {
7056 /* nested EPT: emulate EPT also to L1 */
7057 msrs->secondary_ctls_high |=
7058 SECONDARY_EXEC_ENABLE_EPT;
7059 msrs->ept_caps =
7060 VMX_EPT_PAGE_WALK_4_BIT |
7061 VMX_EPT_PAGE_WALK_5_BIT |
7062 VMX_EPTP_WB_BIT |
7063 VMX_EPT_INVEPT_BIT |
7064 VMX_EPT_EXECUTE_ONLY_BIT;
7065
7066 msrs->ept_caps &= ept_caps;
7067 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
7068 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
7069 VMX_EPT_1GB_PAGE_BIT;
7070 if (enable_ept_ad_bits) {
7071 msrs->secondary_ctls_high |=
7072 SECONDARY_EXEC_ENABLE_PML;
7073 msrs->ept_caps |= VMX_EPT_AD_BIT;
7074 }
7075
7076 /*
7077 * Advertise EPTP switching irrespective of hardware support,
7078 * KVM emulates it in software so long as VMFUNC is supported.
7079 */
7080 if (cpu_has_vmx_vmfunc())
7081 msrs->vmfunc_controls = VMX_VMFUNC_EPTP_SWITCHING;
7082 }
7083
7084 /*
7085 * Old versions of KVM use the single-context version without
7086 * checking for support, so declare that it is supported even
7087 * though it is treated as global context. The alternative is
7088 * not failing the single-context invvpid, and it is worse.
7089 */
7090 if (enable_vpid) {
7091 msrs->secondary_ctls_high |=
7092 SECONDARY_EXEC_ENABLE_VPID;
7093 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
7094 VMX_VPID_EXTENT_SUPPORTED_MASK;
7095 }
7096
7097 if (enable_unrestricted_guest)
7098 msrs->secondary_ctls_high |=
7099 SECONDARY_EXEC_UNRESTRICTED_GUEST;
7100
7101 if (flexpriority_enabled)
7102 msrs->secondary_ctls_high |=
7103 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7104
7105 if (enable_sgx)
7106 msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
7107 }
7108
nested_vmx_setup_misc_data(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7109 static void nested_vmx_setup_misc_data(struct vmcs_config *vmcs_conf,
7110 struct nested_vmx_msrs *msrs)
7111 {
7112 msrs->misc_low = (u32)vmcs_conf->misc & VMX_MISC_SAVE_EFER_LMA;
7113 msrs->misc_low |=
7114 VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
7115 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
7116 VMX_MISC_ACTIVITY_HLT |
7117 VMX_MISC_ACTIVITY_WAIT_SIPI;
7118 msrs->misc_high = 0;
7119 }
7120
nested_vmx_setup_basic(struct nested_vmx_msrs * msrs)7121 static void nested_vmx_setup_basic(struct nested_vmx_msrs *msrs)
7122 {
7123 /*
7124 * This MSR reports some information about VMX support. We
7125 * should return information about the VMX we emulate for the
7126 * guest, and the VMCS structure we give it - not about the
7127 * VMX support of the underlying hardware.
7128 */
7129 msrs->basic = vmx_basic_encode_vmcs_info(VMCS12_REVISION, VMCS12_SIZE,
7130 X86_MEMTYPE_WB);
7131
7132 msrs->basic |= VMX_BASIC_TRUE_CTLS;
7133 if (cpu_has_vmx_basic_inout())
7134 msrs->basic |= VMX_BASIC_INOUT;
7135 }
7136
nested_vmx_setup_cr_fixed(struct nested_vmx_msrs * msrs)7137 static void nested_vmx_setup_cr_fixed(struct nested_vmx_msrs *msrs)
7138 {
7139 /*
7140 * These MSRs specify bits which the guest must keep fixed on
7141 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
7142 * We picked the standard core2 setting.
7143 */
7144 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
7145 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
7146 msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
7147 msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
7148
7149 /* These MSRs specify bits which the guest must keep fixed off. */
7150 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
7151 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
7152
7153 if (vmx_umip_emulated())
7154 msrs->cr4_fixed1 |= X86_CR4_UMIP;
7155 }
7156
7157 /*
7158 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
7159 * returned for the various VMX controls MSRs when nested VMX is enabled.
7160 * The same values should also be used to verify that vmcs12 control fields are
7161 * valid during nested entry from L1 to L2.
7162 * Each of these control msrs has a low and high 32-bit half: A low bit is on
7163 * if the corresponding bit in the (32-bit) control field *must* be on, and a
7164 * bit in the high half is on if the corresponding bit in the control field
7165 * may be on. See also vmx_control_verify().
7166 */
nested_vmx_setup_ctls_msrs(struct vmcs_config * vmcs_conf,u32 ept_caps)7167 void nested_vmx_setup_ctls_msrs(struct vmcs_config *vmcs_conf, u32 ept_caps)
7168 {
7169 struct nested_vmx_msrs *msrs = &vmcs_conf->nested;
7170
7171 /*
7172 * Note that as a general rule, the high half of the MSRs (bits in
7173 * the control fields which may be 1) should be initialized by the
7174 * intersection of the underlying hardware's MSR (i.e., features which
7175 * can be supported) and the list of features we want to expose -
7176 * because they are known to be properly supported in our code.
7177 * Also, usually, the low half of the MSRs (bits which must be 1) can
7178 * be set to 0, meaning that L1 may turn off any of these bits. The
7179 * reason is that if one of these bits is necessary, it will appear
7180 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
7181 * fields of vmcs01 and vmcs02, will turn these bits off - and
7182 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
7183 * These rules have exceptions below.
7184 */
7185 nested_vmx_setup_pinbased_ctls(vmcs_conf, msrs);
7186
7187 nested_vmx_setup_exit_ctls(vmcs_conf, msrs);
7188
7189 nested_vmx_setup_entry_ctls(vmcs_conf, msrs);
7190
7191 nested_vmx_setup_cpubased_ctls(vmcs_conf, msrs);
7192
7193 nested_vmx_setup_secondary_ctls(ept_caps, vmcs_conf, msrs);
7194
7195 nested_vmx_setup_misc_data(vmcs_conf, msrs);
7196
7197 nested_vmx_setup_basic(msrs);
7198
7199 nested_vmx_setup_cr_fixed(msrs);
7200
7201 msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
7202 }
7203
nested_vmx_hardware_unsetup(void)7204 void nested_vmx_hardware_unsetup(void)
7205 {
7206 int i;
7207
7208 if (enable_shadow_vmcs) {
7209 for (i = 0; i < VMX_BITMAP_NR; i++)
7210 free_page((unsigned long)vmx_bitmap[i]);
7211 }
7212 }
7213
nested_vmx_hardware_setup(int (* exit_handlers[])(struct kvm_vcpu *))7214 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
7215 {
7216 int i;
7217
7218 if (!cpu_has_vmx_shadow_vmcs())
7219 enable_shadow_vmcs = 0;
7220 if (enable_shadow_vmcs) {
7221 for (i = 0; i < VMX_BITMAP_NR; i++) {
7222 /*
7223 * The vmx_bitmap is not tied to a VM and so should
7224 * not be charged to a memcg.
7225 */
7226 vmx_bitmap[i] = (unsigned long *)
7227 __get_free_page(GFP_KERNEL);
7228 if (!vmx_bitmap[i]) {
7229 nested_vmx_hardware_unsetup();
7230 return -ENOMEM;
7231 }
7232 }
7233
7234 init_vmcs_shadow_fields();
7235 }
7236
7237 exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear;
7238 exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch;
7239 exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld;
7240 exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst;
7241 exit_handlers[EXIT_REASON_VMREAD] = handle_vmread;
7242 exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume;
7243 exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite;
7244 exit_handlers[EXIT_REASON_VMOFF] = handle_vmxoff;
7245 exit_handlers[EXIT_REASON_VMON] = handle_vmxon;
7246 exit_handlers[EXIT_REASON_INVEPT] = handle_invept;
7247 exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid;
7248 exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc;
7249
7250 return 0;
7251 }
7252
7253 struct kvm_x86_nested_ops vmx_nested_ops = {
7254 .leave_nested = vmx_leave_nested,
7255 .is_exception_vmexit = nested_vmx_is_exception_vmexit,
7256 .check_events = vmx_check_nested_events,
7257 .has_events = vmx_has_nested_events,
7258 .triple_fault = nested_vmx_triple_fault,
7259 .get_state = vmx_get_nested_state,
7260 .set_state = vmx_set_nested_state,
7261 .get_nested_state_pages = vmx_get_nested_state_pages,
7262 .write_log_dirty = nested_vmx_write_pml_buffer,
7263 #ifdef CONFIG_KVM_HYPERV
7264 .enable_evmcs = nested_enable_evmcs,
7265 .get_evmcs_version = nested_get_evmcs_version,
7266 .hv_inject_synthetic_vmexit_post_tlb_flush = vmx_hv_inject_synthetic_vmexit_post_tlb_flush,
7267 #endif
7268 };
7269