1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3 *
4 * Copyright 2009-2023 VMware, Inc., Palo Alto, CA., USA
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "vmwgfx_bo.h"
29 #include "vmwgfx_drv.h"
30 #include <drm/ttm/ttm_placement.h>
31
32 static const struct ttm_place vram_placement_flags = {
33 .fpfn = 0,
34 .lpfn = 0,
35 .mem_type = TTM_PL_VRAM,
36 .flags = 0
37 };
38
39 static const struct ttm_place sys_placement_flags = {
40 .fpfn = 0,
41 .lpfn = 0,
42 .mem_type = TTM_PL_SYSTEM,
43 .flags = 0
44 };
45
46 struct ttm_placement vmw_vram_placement = {
47 .num_placement = 1,
48 .placement = &vram_placement_flags,
49 };
50
51 struct ttm_placement vmw_sys_placement = {
52 .num_placement = 1,
53 .placement = &sys_placement_flags,
54 };
55
56 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
57
58 /**
59 * __vmw_piter_non_sg_next: Helper functions to advance
60 * a struct vmw_piter iterator.
61 *
62 * @viter: Pointer to the iterator.
63 *
64 * These functions return false if past the end of the list,
65 * true otherwise. Functions are selected depending on the current
66 * DMA mapping mode.
67 */
__vmw_piter_non_sg_next(struct vmw_piter * viter)68 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
69 {
70 return ++(viter->i) < viter->num_pages;
71 }
72
__vmw_piter_sg_next(struct vmw_piter * viter)73 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
74 {
75 bool ret = __vmw_piter_non_sg_next(viter);
76
77 return __sg_page_iter_dma_next(&viter->iter) && ret;
78 }
79
80
__vmw_piter_dma_addr(struct vmw_piter * viter)81 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
82 {
83 return viter->addrs[viter->i];
84 }
85
__vmw_piter_sg_addr(struct vmw_piter * viter)86 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
87 {
88 return sg_page_iter_dma_address(&viter->iter);
89 }
90
91
92 /**
93 * vmw_piter_start - Initialize a struct vmw_piter.
94 *
95 * @viter: Pointer to the iterator to initialize
96 * @vsgt: Pointer to a struct vmw_sg_table to initialize from
97 * @p_offset: Pointer offset used to update current array position
98 *
99 * Note that we're following the convention of __sg_page_iter_start, so that
100 * the iterator doesn't point to a valid page after initialization; it has
101 * to be advanced one step first.
102 */
vmw_piter_start(struct vmw_piter * viter,const struct vmw_sg_table * vsgt,unsigned long p_offset)103 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
104 unsigned long p_offset)
105 {
106 viter->i = p_offset - 1;
107 viter->num_pages = vsgt->num_pages;
108 viter->pages = vsgt->pages;
109 switch (vsgt->mode) {
110 case vmw_dma_alloc_coherent:
111 viter->next = &__vmw_piter_non_sg_next;
112 viter->dma_address = &__vmw_piter_dma_addr;
113 viter->addrs = vsgt->addrs;
114 break;
115 case vmw_dma_map_populate:
116 case vmw_dma_map_bind:
117 viter->next = &__vmw_piter_sg_next;
118 viter->dma_address = &__vmw_piter_sg_addr;
119 __sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl,
120 vsgt->sgt->orig_nents, p_offset);
121 break;
122 default:
123 BUG();
124 }
125 }
126
127 /**
128 * vmw_ttm_unmap_from_dma - unmap device addresses previsouly mapped for
129 * TTM pages
130 *
131 * @vmw_tt: Pointer to a struct vmw_ttm_backend
132 *
133 * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
134 */
vmw_ttm_unmap_from_dma(struct vmw_ttm_tt * vmw_tt)135 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
136 {
137 struct device *dev = vmw_tt->dev_priv->drm.dev;
138
139 dma_unmap_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
140 vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
141 }
142
143 /**
144 * vmw_ttm_map_for_dma - map TTM pages to get device addresses
145 *
146 * @vmw_tt: Pointer to a struct vmw_ttm_backend
147 *
148 * This function is used to get device addresses from the kernel DMA layer.
149 * However, it's violating the DMA API in that when this operation has been
150 * performed, it's illegal for the CPU to write to the pages without first
151 * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
152 * therefore only legal to call this function if we know that the function
153 * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
154 * a CPU write buffer flush.
155 */
vmw_ttm_map_for_dma(struct vmw_ttm_tt * vmw_tt)156 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
157 {
158 struct device *dev = vmw_tt->dev_priv->drm.dev;
159
160 return dma_map_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
161 }
162
163 /**
164 * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
165 *
166 * @vmw_tt: Pointer to a struct vmw_ttm_tt
167 *
168 * Select the correct function for and make sure the TTM pages are
169 * visible to the device. Allocate storage for the device mappings.
170 * If a mapping has already been performed, indicated by the storage
171 * pointer being non NULL, the function returns success.
172 */
vmw_ttm_map_dma(struct vmw_ttm_tt * vmw_tt)173 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
174 {
175 struct vmw_private *dev_priv = vmw_tt->dev_priv;
176 struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
177 int ret = 0;
178
179 if (vmw_tt->mapped)
180 return 0;
181
182 vsgt->mode = dev_priv->map_mode;
183 vsgt->pages = vmw_tt->dma_ttm.pages;
184 vsgt->num_pages = vmw_tt->dma_ttm.num_pages;
185 vsgt->addrs = vmw_tt->dma_ttm.dma_address;
186 vsgt->sgt = NULL;
187
188 switch (dev_priv->map_mode) {
189 case vmw_dma_map_bind:
190 case vmw_dma_map_populate:
191 if (vmw_tt->dma_ttm.page_flags & TTM_TT_FLAG_EXTERNAL) {
192 vsgt->sgt = vmw_tt->dma_ttm.sg;
193 } else {
194 vsgt->sgt = &vmw_tt->sgt;
195 ret = sg_alloc_table_from_pages_segment(&vmw_tt->sgt,
196 vsgt->pages, vsgt->num_pages, 0,
197 (unsigned long)vsgt->num_pages << PAGE_SHIFT,
198 dma_get_max_seg_size(dev_priv->drm.dev),
199 GFP_KERNEL);
200 if (ret)
201 goto out_sg_alloc_fail;
202 }
203
204 ret = vmw_ttm_map_for_dma(vmw_tt);
205 if (unlikely(ret != 0))
206 goto out_map_fail;
207
208 break;
209 default:
210 break;
211 }
212
213 vmw_tt->mapped = true;
214 return 0;
215
216 out_map_fail:
217 drm_warn(&dev_priv->drm, "VSG table map failed!");
218 sg_free_table(vsgt->sgt);
219 vsgt->sgt = NULL;
220 out_sg_alloc_fail:
221 return ret;
222 }
223
224 /**
225 * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
226 *
227 * @vmw_tt: Pointer to a struct vmw_ttm_tt
228 *
229 * Tear down any previously set up device DMA mappings and free
230 * any storage space allocated for them. If there are no mappings set up,
231 * this function is a NOP.
232 */
vmw_ttm_unmap_dma(struct vmw_ttm_tt * vmw_tt)233 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
234 {
235 struct vmw_private *dev_priv = vmw_tt->dev_priv;
236
237 if (!vmw_tt->vsgt.sgt)
238 return;
239
240 switch (dev_priv->map_mode) {
241 case vmw_dma_map_bind:
242 case vmw_dma_map_populate:
243 vmw_ttm_unmap_from_dma(vmw_tt);
244 sg_free_table(vmw_tt->vsgt.sgt);
245 vmw_tt->vsgt.sgt = NULL;
246 break;
247 default:
248 break;
249 }
250 vmw_tt->mapped = false;
251 }
252
253 /**
254 * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
255 * TTM buffer object
256 *
257 * @bo: Pointer to a struct ttm_buffer_object
258 *
259 * Returns a pointer to a struct vmw_sg_table object. The object should
260 * not be freed after use.
261 * Note that for the device addresses to be valid, the buffer object must
262 * either be reserved or pinned.
263 */
vmw_bo_sg_table(struct ttm_buffer_object * bo)264 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
265 {
266 struct vmw_ttm_tt *vmw_tt =
267 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
268
269 return &vmw_tt->vsgt;
270 }
271
272
vmw_ttm_bind(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_resource * bo_mem)273 static int vmw_ttm_bind(struct ttm_device *bdev,
274 struct ttm_tt *ttm, struct ttm_resource *bo_mem)
275 {
276 struct vmw_ttm_tt *vmw_be =
277 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
278 int ret = 0;
279
280 if (!bo_mem)
281 return -EINVAL;
282
283 if (vmw_be->bound)
284 return 0;
285
286 ret = vmw_ttm_map_dma(vmw_be);
287 if (unlikely(ret != 0))
288 return ret;
289
290 vmw_be->gmr_id = bo_mem->start;
291 vmw_be->mem_type = bo_mem->mem_type;
292
293 switch (bo_mem->mem_type) {
294 case VMW_PL_GMR:
295 ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
296 ttm->num_pages, vmw_be->gmr_id);
297 break;
298 case VMW_PL_MOB:
299 if (unlikely(vmw_be->mob == NULL)) {
300 vmw_be->mob =
301 vmw_mob_create(ttm->num_pages);
302 if (unlikely(vmw_be->mob == NULL))
303 return -ENOMEM;
304 }
305
306 ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
307 &vmw_be->vsgt, ttm->num_pages,
308 vmw_be->gmr_id);
309 break;
310 case VMW_PL_SYSTEM:
311 /* Nothing to be done for a system bind */
312 break;
313 default:
314 BUG();
315 }
316 vmw_be->bound = true;
317 return ret;
318 }
319
vmw_ttm_unbind(struct ttm_device * bdev,struct ttm_tt * ttm)320 static void vmw_ttm_unbind(struct ttm_device *bdev,
321 struct ttm_tt *ttm)
322 {
323 struct vmw_ttm_tt *vmw_be =
324 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
325
326 if (!vmw_be->bound)
327 return;
328
329 switch (vmw_be->mem_type) {
330 case VMW_PL_GMR:
331 vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
332 break;
333 case VMW_PL_MOB:
334 vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
335 break;
336 case VMW_PL_SYSTEM:
337 break;
338 default:
339 BUG();
340 }
341
342 if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
343 vmw_ttm_unmap_dma(vmw_be);
344 vmw_be->bound = false;
345 }
346
347
vmw_ttm_destroy(struct ttm_device * bdev,struct ttm_tt * ttm)348 static void vmw_ttm_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
349 {
350 struct vmw_ttm_tt *vmw_be =
351 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
352
353 vmw_ttm_unmap_dma(vmw_be);
354 ttm_tt_fini(ttm);
355 if (vmw_be->mob)
356 vmw_mob_destroy(vmw_be->mob);
357
358 kfree(vmw_be);
359 }
360
361
vmw_ttm_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)362 static int vmw_ttm_populate(struct ttm_device *bdev,
363 struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
364 {
365 bool external = (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) != 0;
366
367 if (ttm_tt_is_populated(ttm))
368 return 0;
369
370 if (external && ttm->sg)
371 return drm_prime_sg_to_dma_addr_array(ttm->sg,
372 ttm->dma_address,
373 ttm->num_pages);
374
375 return ttm_pool_alloc(&bdev->pool, ttm, ctx);
376 }
377
vmw_ttm_unpopulate(struct ttm_device * bdev,struct ttm_tt * ttm)378 static void vmw_ttm_unpopulate(struct ttm_device *bdev,
379 struct ttm_tt *ttm)
380 {
381 struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
382 dma_ttm);
383 bool external = (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) != 0;
384
385 if (external)
386 return;
387
388 vmw_ttm_unbind(bdev, ttm);
389
390 if (vmw_tt->mob) {
391 vmw_mob_destroy(vmw_tt->mob);
392 vmw_tt->mob = NULL;
393 }
394
395 vmw_ttm_unmap_dma(vmw_tt);
396
397 ttm_pool_free(&bdev->pool, ttm);
398 }
399
vmw_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)400 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo,
401 uint32_t page_flags)
402 {
403 struct vmw_ttm_tt *vmw_be;
404 int ret;
405 bool external = bo->type == ttm_bo_type_sg;
406
407 vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
408 if (!vmw_be)
409 return NULL;
410
411 vmw_be->dev_priv = vmw_priv_from_ttm(bo->bdev);
412 vmw_be->mob = NULL;
413
414 if (external)
415 page_flags |= TTM_TT_FLAG_EXTERNAL | TTM_TT_FLAG_EXTERNAL_MAPPABLE;
416
417 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent || external)
418 ret = ttm_sg_tt_init(&vmw_be->dma_ttm, bo, page_flags,
419 ttm_cached);
420 else
421 ret = ttm_tt_init(&vmw_be->dma_ttm, bo, page_flags,
422 ttm_cached, 0);
423 if (unlikely(ret != 0))
424 goto out_no_init;
425
426 return &vmw_be->dma_ttm;
427 out_no_init:
428 kfree(vmw_be);
429 return NULL;
430 }
431
vmw_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)432 static void vmw_evict_flags(struct ttm_buffer_object *bo,
433 struct ttm_placement *placement)
434 {
435 *placement = vmw_sys_placement;
436 }
437
vmw_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)438 static int vmw_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
439 {
440 struct vmw_private *dev_priv = vmw_priv_from_ttm(bdev);
441
442 switch (mem->mem_type) {
443 case TTM_PL_SYSTEM:
444 case VMW_PL_SYSTEM:
445 case VMW_PL_GMR:
446 case VMW_PL_MOB:
447 return 0;
448 case TTM_PL_VRAM:
449 mem->bus.offset = (mem->start << PAGE_SHIFT) +
450 dev_priv->vram_start;
451 mem->bus.is_iomem = true;
452 mem->bus.caching = ttm_cached;
453 break;
454 default:
455 return -EINVAL;
456 }
457 return 0;
458 }
459
460 /**
461 * vmw_move_notify - TTM move_notify_callback
462 *
463 * @bo: The TTM buffer object about to move.
464 * @old_mem: The old memory where we move from
465 * @new_mem: The struct ttm_resource indicating to what memory
466 * region the move is taking place.
467 *
468 * Calls move_notify for all subsystems needing it.
469 * (currently only resources).
470 */
vmw_move_notify(struct ttm_buffer_object * bo,struct ttm_resource * old_mem,struct ttm_resource * new_mem)471 static void vmw_move_notify(struct ttm_buffer_object *bo,
472 struct ttm_resource *old_mem,
473 struct ttm_resource *new_mem)
474 {
475 vmw_bo_move_notify(bo, new_mem);
476 vmw_query_move_notify(bo, old_mem, new_mem);
477 }
478
479
480 /**
481 * vmw_swap_notify - TTM move_notify_callback
482 *
483 * @bo: The TTM buffer object about to be swapped out.
484 */
vmw_swap_notify(struct ttm_buffer_object * bo)485 static void vmw_swap_notify(struct ttm_buffer_object *bo)
486 {
487 vmw_bo_swap_notify(bo);
488 (void) ttm_bo_wait(bo, false, false);
489 }
490
vmw_memtype_is_system(uint32_t mem_type)491 static bool vmw_memtype_is_system(uint32_t mem_type)
492 {
493 return mem_type == TTM_PL_SYSTEM || mem_type == VMW_PL_SYSTEM;
494 }
495
vmw_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_mem,struct ttm_place * hop)496 static int vmw_move(struct ttm_buffer_object *bo,
497 bool evict,
498 struct ttm_operation_ctx *ctx,
499 struct ttm_resource *new_mem,
500 struct ttm_place *hop)
501 {
502 struct ttm_resource_manager *new_man;
503 struct ttm_resource_manager *old_man = NULL;
504 int ret = 0;
505
506 new_man = ttm_manager_type(bo->bdev, new_mem->mem_type);
507 if (bo->resource)
508 old_man = ttm_manager_type(bo->bdev, bo->resource->mem_type);
509
510 if (new_man->use_tt && !vmw_memtype_is_system(new_mem->mem_type)) {
511 ret = vmw_ttm_bind(bo->bdev, bo->ttm, new_mem);
512 if (ret)
513 return ret;
514 }
515
516 if (!bo->resource || (bo->resource->mem_type == TTM_PL_SYSTEM &&
517 bo->ttm == NULL)) {
518 ttm_bo_move_null(bo, new_mem);
519 return 0;
520 }
521
522 vmw_move_notify(bo, bo->resource, new_mem);
523
524 if (old_man && old_man->use_tt && new_man->use_tt) {
525 if (vmw_memtype_is_system(bo->resource->mem_type)) {
526 ttm_bo_move_null(bo, new_mem);
527 return 0;
528 }
529 ret = ttm_bo_wait_ctx(bo, ctx);
530 if (ret)
531 goto fail;
532
533 vmw_ttm_unbind(bo->bdev, bo->ttm);
534 ttm_resource_free(bo, &bo->resource);
535 ttm_bo_assign_mem(bo, new_mem);
536 return 0;
537 } else {
538 ret = ttm_bo_move_memcpy(bo, ctx, new_mem);
539 if (ret)
540 goto fail;
541 }
542 return 0;
543 fail:
544 vmw_move_notify(bo, new_mem, bo->resource);
545 return ret;
546 }
547
548 struct ttm_device_funcs vmw_bo_driver = {
549 .ttm_tt_create = &vmw_ttm_tt_create,
550 .ttm_tt_populate = &vmw_ttm_populate,
551 .ttm_tt_unpopulate = &vmw_ttm_unpopulate,
552 .ttm_tt_destroy = &vmw_ttm_destroy,
553 .eviction_valuable = ttm_bo_eviction_valuable,
554 .evict_flags = vmw_evict_flags,
555 .move = vmw_move,
556 .swap_notify = vmw_swap_notify,
557 .io_mem_reserve = &vmw_ttm_io_mem_reserve,
558 };
559
vmw_bo_create_and_populate(struct vmw_private * dev_priv,size_t bo_size,u32 domain,struct vmw_bo ** bo_p)560 int vmw_bo_create_and_populate(struct vmw_private *dev_priv,
561 size_t bo_size, u32 domain,
562 struct vmw_bo **bo_p)
563 {
564 struct ttm_operation_ctx ctx = {
565 .interruptible = false,
566 .no_wait_gpu = false
567 };
568 struct vmw_bo *vbo;
569 int ret;
570 struct vmw_bo_params bo_params = {
571 .domain = domain,
572 .busy_domain = domain,
573 .bo_type = ttm_bo_type_kernel,
574 .size = bo_size,
575 .pin = true
576 };
577
578 ret = vmw_bo_create(dev_priv, &bo_params, &vbo);
579 if (unlikely(ret != 0))
580 return ret;
581
582 ret = ttm_bo_reserve(&vbo->tbo, false, true, NULL);
583 BUG_ON(ret != 0);
584 ret = vmw_ttm_populate(vbo->tbo.bdev, vbo->tbo.ttm, &ctx);
585 if (likely(ret == 0)) {
586 struct vmw_ttm_tt *vmw_tt =
587 container_of(vbo->tbo.ttm, struct vmw_ttm_tt, dma_ttm);
588 ret = vmw_ttm_map_dma(vmw_tt);
589 }
590
591 ttm_bo_unreserve(&vbo->tbo);
592
593 if (likely(ret == 0))
594 *bo_p = vbo;
595 return ret;
596 }
597