xref: /linux/drivers/gpu/drm/vmwgfx/vmwgfx_kms.c (revision 6dfafbd0299a60bfb5d5e277fdf100037c7ded07)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright (c) 2009-2025 Broadcom. All Rights Reserved. The term
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.
6  *
7  **************************************************************************/
8 
9 #include "vmwgfx_kms.h"
10 
11 #include "vmwgfx_bo.h"
12 #include "vmwgfx_resource_priv.h"
13 #include "vmwgfx_vkms.h"
14 #include "vmw_surface_cache.h"
15 
16 #include <drm/drm_atomic.h>
17 #include <drm/drm_atomic_helper.h>
18 #include <drm/drm_damage_helper.h>
19 #include <drm/drm_fourcc.h>
20 #include <drm/drm_rect.h>
21 #include <drm/drm_sysfs.h>
22 #include <drm/drm_edid.h>
23 
24 void vmw_du_init(struct vmw_display_unit *du)
25 {
26 	vmw_vkms_crtc_init(&du->crtc);
27 }
28 
29 void vmw_du_cleanup(struct vmw_display_unit *du)
30 {
31 	struct vmw_private *dev_priv = vmw_priv(du->primary.dev);
32 
33 	vmw_vkms_crtc_cleanup(&du->crtc);
34 	drm_plane_cleanup(&du->primary);
35 	if (vmw_cmd_supported(dev_priv))
36 		drm_plane_cleanup(&du->cursor.base);
37 
38 	drm_connector_unregister(&du->connector);
39 	drm_crtc_cleanup(&du->crtc);
40 	drm_encoder_cleanup(&du->encoder);
41 	drm_connector_cleanup(&du->connector);
42 }
43 
44 
45 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
46 {
47 	drm_plane_cleanup(plane);
48 
49 	/* Planes are static in our case so we don't free it */
50 }
51 
52 
53 /**
54  * vmw_du_plane_unpin_surf - unpins resource associated with a framebuffer surface
55  *
56  * @vps: plane state associated with the display surface
57  */
58 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps)
59 {
60 	struct vmw_surface *surf = vmw_user_object_surface(&vps->uo);
61 
62 	if (surf) {
63 		if (vps->pinned) {
64 			vmw_resource_unpin(&surf->res);
65 			vps->pinned--;
66 		}
67 	}
68 }
69 
70 
71 /**
72  * vmw_du_plane_cleanup_fb - Unpins the plane surface
73  *
74  * @plane:  display plane
75  * @old_state: Contains the FB to clean up
76  *
77  * Unpins the framebuffer surface
78  *
79  * Returns 0 on success
80  */
81 void
82 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
83 			struct drm_plane_state *old_state)
84 {
85 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
86 
87 	vmw_du_plane_unpin_surf(vps);
88 }
89 
90 
91 /**
92  * vmw_du_primary_plane_atomic_check - check if the new state is okay
93  *
94  * @plane: display plane
95  * @state: info on the new plane state, including the FB
96  *
97  * Check if the new state is settable given the current state.  Other
98  * than what the atomic helper checks, we care about crtc fitting
99  * the FB and maintaining one active framebuffer.
100  *
101  * Returns 0 on success
102  */
103 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
104 				      struct drm_atomic_state *state)
105 {
106 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
107 									   plane);
108 	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
109 									   plane);
110 	struct drm_crtc_state *crtc_state = NULL;
111 	struct drm_framebuffer *new_fb = new_state->fb;
112 	struct drm_framebuffer *old_fb = old_state->fb;
113 	int ret;
114 
115 	/*
116 	 * Ignore damage clips if the framebuffer attached to the plane's state
117 	 * has changed since the last plane update (page-flip). In this case, a
118 	 * full plane update should happen because uploads are done per-buffer.
119 	 */
120 	if (old_fb != new_fb)
121 		new_state->ignore_damage_clips = true;
122 
123 	if (new_state->crtc)
124 		crtc_state = drm_atomic_get_new_crtc_state(state,
125 							   new_state->crtc);
126 
127 	ret = drm_atomic_helper_check_plane_state(new_state, crtc_state,
128 						  DRM_PLANE_NO_SCALING,
129 						  DRM_PLANE_NO_SCALING,
130 						  false, true);
131 	return ret;
132 }
133 
134 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
135 			     struct drm_atomic_state *state)
136 {
137 	struct vmw_private *vmw = vmw_priv(crtc->dev);
138 	struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
139 									 crtc);
140 	struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
141 	int connector_mask = drm_connector_mask(&du->connector);
142 	bool has_primary = new_state->plane_mask &
143 			   drm_plane_mask(crtc->primary);
144 
145 	/*
146 	 * This is fine in general, but broken userspace might expect
147 	 * some actual rendering so give a clue as why it's blank.
148 	 */
149 	if (new_state->enable && !has_primary)
150 		drm_dbg_driver(&vmw->drm,
151 			       "CRTC without a primary plane will be blank.\n");
152 
153 
154 	if (new_state->connector_mask != connector_mask &&
155 	    new_state->connector_mask != 0) {
156 		DRM_ERROR("Invalid connectors configuration\n");
157 		return -EINVAL;
158 	}
159 
160 	/*
161 	 * Our virtual device does not have a dot clock, so use the logical
162 	 * clock value as the dot clock.
163 	 */
164 	if (new_state->mode.crtc_clock == 0)
165 		new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
166 
167 	return 0;
168 }
169 
170 
171 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
172 			      struct drm_atomic_state *state)
173 {
174 	vmw_vkms_crtc_atomic_begin(crtc, state);
175 }
176 
177 /**
178  * vmw_du_crtc_duplicate_state - duplicate crtc state
179  * @crtc: DRM crtc
180  *
181  * Allocates and returns a copy of the crtc state (both common and
182  * vmw-specific) for the specified crtc.
183  *
184  * Returns: The newly allocated crtc state, or NULL on failure.
185  */
186 struct drm_crtc_state *
187 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
188 {
189 	struct drm_crtc_state *state;
190 	struct vmw_crtc_state *vcs;
191 
192 	if (WARN_ON(!crtc->state))
193 		return NULL;
194 
195 	vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
196 
197 	if (!vcs)
198 		return NULL;
199 
200 	state = &vcs->base;
201 
202 	__drm_atomic_helper_crtc_duplicate_state(crtc, state);
203 
204 	return state;
205 }
206 
207 
208 /**
209  * vmw_du_crtc_reset - creates a blank vmw crtc state
210  * @crtc: DRM crtc
211  *
212  * Resets the atomic state for @crtc by freeing the state pointer (which
213  * might be NULL, e.g. at driver load time) and allocating a new empty state
214  * object.
215  */
216 void vmw_du_crtc_reset(struct drm_crtc *crtc)
217 {
218 	struct vmw_crtc_state *vcs;
219 
220 
221 	if (crtc->state) {
222 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
223 
224 		kfree(vmw_crtc_state_to_vcs(crtc->state));
225 	}
226 
227 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
228 
229 	if (!vcs) {
230 		DRM_ERROR("Cannot allocate vmw_crtc_state\n");
231 		return;
232 	}
233 
234 	__drm_atomic_helper_crtc_reset(crtc, &vcs->base);
235 }
236 
237 
238 /**
239  * vmw_du_crtc_destroy_state - destroy crtc state
240  * @crtc: DRM crtc
241  * @state: state object to destroy
242  *
243  * Destroys the crtc state (both common and vmw-specific) for the
244  * specified plane.
245  */
246 void
247 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
248 			  struct drm_crtc_state *state)
249 {
250 	drm_atomic_helper_crtc_destroy_state(crtc, state);
251 }
252 
253 
254 /**
255  * vmw_du_plane_duplicate_state - duplicate plane state
256  * @plane: drm plane
257  *
258  * Allocates and returns a copy of the plane state (both common and
259  * vmw-specific) for the specified plane.
260  *
261  * Returns: The newly allocated plane state, or NULL on failure.
262  */
263 struct drm_plane_state *
264 vmw_du_plane_duplicate_state(struct drm_plane *plane)
265 {
266 	struct drm_plane_state *state;
267 	struct vmw_plane_state *vps;
268 
269 	vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
270 
271 	if (!vps)
272 		return NULL;
273 
274 	vps->pinned = 0;
275 	vps->cpp = 0;
276 
277 	vps->cursor.mob = NULL;
278 
279 	/* Each ref counted resource needs to be acquired again */
280 	vmw_user_object_ref(&vps->uo);
281 	state = &vps->base;
282 
283 	__drm_atomic_helper_plane_duplicate_state(plane, state);
284 
285 	return state;
286 }
287 
288 
289 /**
290  * vmw_du_plane_reset - creates a blank vmw plane state
291  * @plane: drm plane
292  *
293  * Resets the atomic state for @plane by freeing the state pointer (which might
294  * be NULL, e.g. at driver load time) and allocating a new empty state object.
295  */
296 void vmw_du_plane_reset(struct drm_plane *plane)
297 {
298 	struct vmw_plane_state *vps;
299 
300 	if (plane->state)
301 		vmw_du_plane_destroy_state(plane, plane->state);
302 
303 	vps = kzalloc(sizeof(*vps), GFP_KERNEL);
304 
305 	if (!vps) {
306 		DRM_ERROR("Cannot allocate vmw_plane_state\n");
307 		return;
308 	}
309 
310 	__drm_atomic_helper_plane_reset(plane, &vps->base);
311 }
312 
313 
314 /**
315  * vmw_du_plane_destroy_state - destroy plane state
316  * @plane: DRM plane
317  * @state: state object to destroy
318  *
319  * Destroys the plane state (both common and vmw-specific) for the
320  * specified plane.
321  */
322 void
323 vmw_du_plane_destroy_state(struct drm_plane *plane,
324 			   struct drm_plane_state *state)
325 {
326 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
327 
328 	/* Should have been freed by cleanup_fb */
329 	vmw_user_object_unref(&vps->uo);
330 
331 	drm_atomic_helper_plane_destroy_state(plane, state);
332 }
333 
334 
335 /**
336  * vmw_du_connector_duplicate_state - duplicate connector state
337  * @connector: DRM connector
338  *
339  * Allocates and returns a copy of the connector state (both common and
340  * vmw-specific) for the specified connector.
341  *
342  * Returns: The newly allocated connector state, or NULL on failure.
343  */
344 struct drm_connector_state *
345 vmw_du_connector_duplicate_state(struct drm_connector *connector)
346 {
347 	struct drm_connector_state *state;
348 	struct vmw_connector_state *vcs;
349 
350 	if (WARN_ON(!connector->state))
351 		return NULL;
352 
353 	vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
354 
355 	if (!vcs)
356 		return NULL;
357 
358 	state = &vcs->base;
359 
360 	__drm_atomic_helper_connector_duplicate_state(connector, state);
361 
362 	return state;
363 }
364 
365 
366 /**
367  * vmw_du_connector_reset - creates a blank vmw connector state
368  * @connector: DRM connector
369  *
370  * Resets the atomic state for @connector by freeing the state pointer (which
371  * might be NULL, e.g. at driver load time) and allocating a new empty state
372  * object.
373  */
374 void vmw_du_connector_reset(struct drm_connector *connector)
375 {
376 	struct vmw_connector_state *vcs;
377 
378 
379 	if (connector->state) {
380 		__drm_atomic_helper_connector_destroy_state(connector->state);
381 
382 		kfree(vmw_connector_state_to_vcs(connector->state));
383 	}
384 
385 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
386 
387 	if (!vcs) {
388 		DRM_ERROR("Cannot allocate vmw_connector_state\n");
389 		return;
390 	}
391 
392 	__drm_atomic_helper_connector_reset(connector, &vcs->base);
393 }
394 
395 
396 /**
397  * vmw_du_connector_destroy_state - destroy connector state
398  * @connector: DRM connector
399  * @state: state object to destroy
400  *
401  * Destroys the connector state (both common and vmw-specific) for the
402  * specified plane.
403  */
404 void
405 vmw_du_connector_destroy_state(struct drm_connector *connector,
406 			  struct drm_connector_state *state)
407 {
408 	drm_atomic_helper_connector_destroy_state(connector, state);
409 }
410 /*
411  * Generic framebuffer code
412  */
413 
414 /*
415  * Surface framebuffer code
416  */
417 
418 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
419 {
420 	struct vmw_framebuffer_surface *vfbs =
421 		vmw_framebuffer_to_vfbs(framebuffer);
422 	struct vmw_bo *bo = vmw_user_object_buffer(&vfbs->uo);
423 	struct vmw_surface *surf = vmw_user_object_surface(&vfbs->uo);
424 
425 	if (bo) {
426 		vmw_bo_dirty_release(bo);
427 		/*
428 		 * bo->dirty is reference counted so it being NULL
429 		 * means that the surface wasn't coherent to begin
430 		 * with and so we have to free the dirty tracker
431 		 * in the vmw_resource
432 		 */
433 		if (!bo->dirty && surf && surf->res.dirty)
434 			surf->res.func->dirty_free(&surf->res);
435 	}
436 	drm_framebuffer_cleanup(framebuffer);
437 	vmw_user_object_unref(&vfbs->uo);
438 
439 	kfree(vfbs);
440 }
441 
442 /**
443  * vmw_kms_readback - Perform a readback from the screen system to
444  * a buffer-object backed framebuffer.
445  *
446  * @dev_priv: Pointer to the device private structure.
447  * @file_priv: Pointer to a struct drm_file identifying the caller.
448  * Must be set to NULL if @user_fence_rep is NULL.
449  * @vfb: Pointer to the buffer-object backed framebuffer.
450  * @user_fence_rep: User-space provided structure for fence information.
451  * Must be set to non-NULL if @file_priv is non-NULL.
452  * @vclips: Array of clip rects.
453  * @num_clips: Number of clip rects in @vclips.
454  *
455  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
456  * interrupted.
457  */
458 int vmw_kms_readback(struct vmw_private *dev_priv,
459 		     struct drm_file *file_priv,
460 		     struct vmw_framebuffer *vfb,
461 		     struct drm_vmw_fence_rep __user *user_fence_rep,
462 		     struct drm_vmw_rect *vclips,
463 		     uint32_t num_clips)
464 {
465 	switch (dev_priv->active_display_unit) {
466 	case vmw_du_screen_object:
467 		return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
468 					    user_fence_rep, vclips, num_clips,
469 					    NULL);
470 	case vmw_du_screen_target:
471 		return vmw_kms_stdu_readback(dev_priv, file_priv, vfb,
472 					     user_fence_rep, NULL, vclips, num_clips,
473 					     1, NULL);
474 	default:
475 		WARN_ONCE(true,
476 			  "Readback called with invalid display system.\n");
477 }
478 
479 	return -ENOSYS;
480 }
481 
482 static int vmw_framebuffer_surface_create_handle(struct drm_framebuffer *fb,
483 						 struct drm_file *file_priv,
484 						 unsigned int *handle)
485 {
486 	struct vmw_framebuffer_surface *vfbs = vmw_framebuffer_to_vfbs(fb);
487 	struct vmw_bo *bo = vmw_user_object_buffer(&vfbs->uo);
488 
489 	if (WARN_ON(!bo))
490 		return -EINVAL;
491 	return drm_gem_handle_create(file_priv, &bo->tbo.base, handle);
492 }
493 
494 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
495 	.create_handle = vmw_framebuffer_surface_create_handle,
496 	.destroy = vmw_framebuffer_surface_destroy,
497 	.dirty = drm_atomic_helper_dirtyfb,
498 };
499 
500 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
501 					   struct vmw_user_object *uo,
502 					   struct vmw_framebuffer **out,
503 					   const struct drm_format_info *info,
504 					   const struct drm_mode_fb_cmd2
505 					   *mode_cmd)
506 
507 {
508 	struct drm_device *dev = &dev_priv->drm;
509 	struct vmw_framebuffer_surface *vfbs;
510 	struct vmw_surface *surface;
511 	int ret;
512 
513 	/* 3D is only supported on HWv8 and newer hosts */
514 	if (dev_priv->active_display_unit == vmw_du_legacy)
515 		return -ENOSYS;
516 
517 	surface = vmw_user_object_surface(uo);
518 
519 	/*
520 	 * Sanity checks.
521 	 */
522 
523 	if (!drm_any_plane_has_format(&dev_priv->drm,
524 				      mode_cmd->pixel_format,
525 				      mode_cmd->modifier[0])) {
526 		drm_dbg(&dev_priv->drm,
527 			"unsupported pixel format %p4cc / modifier 0x%llx\n",
528 			&mode_cmd->pixel_format, mode_cmd->modifier[0]);
529 		return -EINVAL;
530 	}
531 
532 	/* Surface must be marked as a scanout. */
533 	if (unlikely(!surface->metadata.scanout))
534 		return -EINVAL;
535 
536 	if (unlikely(surface->metadata.mip_levels[0] != 1 ||
537 		     surface->metadata.num_sizes != 1 ||
538 		     surface->metadata.base_size.width < mode_cmd->width ||
539 		     surface->metadata.base_size.height < mode_cmd->height ||
540 		     surface->metadata.base_size.depth != 1)) {
541 		DRM_ERROR("Incompatible surface dimensions "
542 			  "for requested mode.\n");
543 		return -EINVAL;
544 	}
545 
546 	vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
547 	if (!vfbs) {
548 		ret = -ENOMEM;
549 		goto out_err1;
550 	}
551 
552 	drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, info, mode_cmd);
553 	memcpy(&vfbs->uo, uo, sizeof(vfbs->uo));
554 	vmw_user_object_ref(&vfbs->uo);
555 
556 	if (vfbs->uo.buffer)
557 		vfbs->base.base.obj[0] = &vfbs->uo.buffer->tbo.base;
558 
559 	*out = &vfbs->base;
560 
561 	ret = drm_framebuffer_init(dev, &vfbs->base.base,
562 				   &vmw_framebuffer_surface_funcs);
563 	if (ret)
564 		goto out_err2;
565 
566 	return 0;
567 
568 out_err2:
569 	vmw_user_object_unref(&vfbs->uo);
570 	kfree(vfbs);
571 out_err1:
572 	return ret;
573 }
574 
575 /*
576  * Buffer-object framebuffer code
577  */
578 
579 static int vmw_framebuffer_bo_create_handle(struct drm_framebuffer *fb,
580 					    struct drm_file *file_priv,
581 					    unsigned int *handle)
582 {
583 	struct vmw_framebuffer_bo *vfbd =
584 			vmw_framebuffer_to_vfbd(fb);
585 	return drm_gem_handle_create(file_priv, &vfbd->buffer->tbo.base, handle);
586 }
587 
588 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer)
589 {
590 	struct vmw_framebuffer_bo *vfbd =
591 		vmw_framebuffer_to_vfbd(framebuffer);
592 
593 	vmw_bo_dirty_release(vfbd->buffer);
594 	drm_framebuffer_cleanup(framebuffer);
595 	vmw_bo_unreference(&vfbd->buffer);
596 
597 	kfree(vfbd);
598 }
599 
600 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = {
601 	.create_handle = vmw_framebuffer_bo_create_handle,
602 	.destroy = vmw_framebuffer_bo_destroy,
603 	.dirty = drm_atomic_helper_dirtyfb,
604 };
605 
606 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv,
607 				      struct vmw_bo *bo,
608 				      struct vmw_framebuffer **out,
609 				      const struct drm_format_info *info,
610 				      const struct drm_mode_fb_cmd2
611 				      *mode_cmd)
612 
613 {
614 	struct drm_device *dev = &dev_priv->drm;
615 	struct vmw_framebuffer_bo *vfbd;
616 	unsigned int requested_size;
617 	int ret;
618 
619 	requested_size = mode_cmd->height * mode_cmd->pitches[0];
620 	if (unlikely(requested_size > bo->tbo.base.size)) {
621 		DRM_ERROR("Screen buffer object size is too small "
622 			  "for requested mode.\n");
623 		return -EINVAL;
624 	}
625 
626 	if (!drm_any_plane_has_format(&dev_priv->drm,
627 				      mode_cmd->pixel_format,
628 				      mode_cmd->modifier[0])) {
629 		drm_dbg(&dev_priv->drm,
630 			"unsupported pixel format %p4cc / modifier 0x%llx\n",
631 			&mode_cmd->pixel_format, mode_cmd->modifier[0]);
632 		return -EINVAL;
633 	}
634 
635 	vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
636 	if (!vfbd) {
637 		ret = -ENOMEM;
638 		goto out_err1;
639 	}
640 
641 	vfbd->base.base.obj[0] = &bo->tbo.base;
642 	drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, info, mode_cmd);
643 	vfbd->base.bo = true;
644 	vfbd->buffer = vmw_bo_reference(bo);
645 	*out = &vfbd->base;
646 
647 	ret = drm_framebuffer_init(dev, &vfbd->base.base,
648 				   &vmw_framebuffer_bo_funcs);
649 	if (ret)
650 		goto out_err2;
651 
652 	return 0;
653 
654 out_err2:
655 	vmw_bo_unreference(&bo);
656 	kfree(vfbd);
657 out_err1:
658 	return ret;
659 }
660 
661 
662 /**
663  * vmw_kms_srf_ok - check if a surface can be created
664  *
665  * @dev_priv: Pointer to device private struct.
666  * @width: requested width
667  * @height: requested height
668  *
669  * Surfaces need to be less than texture size
670  */
671 static bool
672 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
673 {
674 	if (width  > dev_priv->texture_max_width ||
675 	    height > dev_priv->texture_max_height)
676 		return false;
677 
678 	return true;
679 }
680 
681 /**
682  * vmw_kms_new_framebuffer - Create a new framebuffer.
683  *
684  * @dev_priv: Pointer to device private struct.
685  * @uo: Pointer to user object to wrap the kms framebuffer around.
686  * Either the buffer or surface inside the user object must be NULL.
687  * @info: pixel format information.
688  * @mode_cmd: Frame-buffer metadata.
689  */
690 struct vmw_framebuffer *
691 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
692 			struct vmw_user_object *uo,
693 			const struct drm_format_info *info,
694 			const struct drm_mode_fb_cmd2 *mode_cmd)
695 {
696 	struct vmw_framebuffer *vfb = NULL;
697 	int ret;
698 
699 	/* Create the new framebuffer depending one what we have */
700 	if (vmw_user_object_surface(uo)) {
701 		ret = vmw_kms_new_framebuffer_surface(dev_priv, uo, &vfb,
702 						      info, mode_cmd);
703 	} else if (uo->buffer) {
704 		ret = vmw_kms_new_framebuffer_bo(dev_priv, uo->buffer, &vfb,
705 						 info, mode_cmd);
706 	} else {
707 		BUG();
708 	}
709 
710 	if (ret)
711 		return ERR_PTR(ret);
712 
713 	return vfb;
714 }
715 
716 /*
717  * Generic Kernel modesetting functions
718  */
719 
720 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
721 						 struct drm_file *file_priv,
722 						 const struct drm_format_info *info,
723 						 const struct drm_mode_fb_cmd2 *mode_cmd)
724 {
725 	struct vmw_private *dev_priv = vmw_priv(dev);
726 	struct vmw_framebuffer *vfb = NULL;
727 	struct vmw_user_object uo = {0};
728 	struct vmw_bo *bo;
729 	struct vmw_surface *surface;
730 	int ret;
731 
732 	/* returns either a bo or surface */
733 	ret = vmw_user_object_lookup(dev_priv, file_priv, mode_cmd->handles[0],
734 				     &uo);
735 	if (ret) {
736 		DRM_ERROR("Invalid buffer object handle %u (0x%x).\n",
737 			  mode_cmd->handles[0], mode_cmd->handles[0]);
738 		goto err_out;
739 	}
740 
741 
742 	if (vmw_user_object_surface(&uo) &&
743 	    !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
744 		DRM_ERROR("Surface size cannot exceed %dx%d\n",
745 			dev_priv->texture_max_width,
746 			dev_priv->texture_max_height);
747 		ret = -EINVAL;
748 		goto err_out;
749 	}
750 
751 
752 	vfb = vmw_kms_new_framebuffer(dev_priv, &uo, info, mode_cmd);
753 	if (IS_ERR(vfb)) {
754 		ret = PTR_ERR(vfb);
755 		goto err_out;
756 	}
757 
758 err_out:
759 	bo = vmw_user_object_buffer(&uo);
760 	surface = vmw_user_object_surface(&uo);
761 	/* vmw_user_object_lookup takes one ref so does new_fb */
762 	vmw_user_object_unref(&uo);
763 
764 	if (ret) {
765 		DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
766 		return ERR_PTR(ret);
767 	}
768 
769 	ttm_bo_reserve(&bo->tbo, false, false, NULL);
770 	ret = vmw_bo_dirty_add(bo);
771 	if (!ret && surface && surface->res.func->dirty_alloc) {
772 		surface->res.coherent = true;
773 		ret = surface->res.func->dirty_alloc(&surface->res);
774 	}
775 	ttm_bo_unreserve(&bo->tbo);
776 
777 	return &vfb->base;
778 }
779 
780 /**
781  * vmw_kms_check_display_memory - Validates display memory required for a
782  * topology
783  * @dev: DRM device
784  * @num_rects: number of drm_rect in rects
785  * @rects: array of drm_rect representing the topology to validate indexed by
786  * crtc index.
787  *
788  * Returns:
789  * 0 on success otherwise negative error code
790  */
791 static int vmw_kms_check_display_memory(struct drm_device *dev,
792 					uint32_t num_rects,
793 					struct drm_rect *rects)
794 {
795 	struct vmw_private *dev_priv = vmw_priv(dev);
796 	struct drm_rect bounding_box = {0};
797 	u64 total_pixels = 0, pixel_mem, bb_mem;
798 	int i;
799 
800 	for (i = 0; i < num_rects; i++) {
801 		/*
802 		 * For STDU only individual screen (screen target) is limited by
803 		 * SCREENTARGET_MAX_WIDTH/HEIGHT registers.
804 		 */
805 		if (dev_priv->active_display_unit == vmw_du_screen_target &&
806 		    (drm_rect_width(&rects[i]) > dev_priv->stdu_max_width ||
807 		     drm_rect_height(&rects[i]) > dev_priv->stdu_max_height)) {
808 			VMW_DEBUG_KMS("Screen size not supported.\n");
809 			return -EINVAL;
810 		}
811 
812 		/* Bounding box upper left is at (0,0). */
813 		if (rects[i].x2 > bounding_box.x2)
814 			bounding_box.x2 = rects[i].x2;
815 
816 		if (rects[i].y2 > bounding_box.y2)
817 			bounding_box.y2 = rects[i].y2;
818 
819 		total_pixels += (u64) drm_rect_width(&rects[i]) *
820 			(u64) drm_rect_height(&rects[i]);
821 	}
822 
823 	/* Virtual svga device primary limits are always in 32-bpp. */
824 	pixel_mem = total_pixels * 4;
825 
826 	/*
827 	 * For HV10 and below prim_bb_mem is vram size. When
828 	 * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is
829 	 * limit on primary bounding box
830 	 */
831 	if (pixel_mem > dev_priv->max_primary_mem) {
832 		VMW_DEBUG_KMS("Combined output size too large.\n");
833 		return -EINVAL;
834 	}
835 
836 	/* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */
837 	if (dev_priv->active_display_unit != vmw_du_screen_target ||
838 	    !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) {
839 		bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4;
840 
841 		if (bb_mem > dev_priv->max_primary_mem) {
842 			VMW_DEBUG_KMS("Topology is beyond supported limits.\n");
843 			return -EINVAL;
844 		}
845 	}
846 
847 	return 0;
848 }
849 
850 /**
851  * vmw_crtc_state_and_lock - Return new or current crtc state with locked
852  * crtc mutex
853  * @state: The atomic state pointer containing the new atomic state
854  * @crtc: The crtc
855  *
856  * This function returns the new crtc state if it's part of the state update.
857  * Otherwise returns the current crtc state. It also makes sure that the
858  * crtc mutex is locked.
859  *
860  * Returns: A valid crtc state pointer or NULL. It may also return a
861  * pointer error, in particular -EDEADLK if locking needs to be rerun.
862  */
863 static struct drm_crtc_state *
864 vmw_crtc_state_and_lock(struct drm_atomic_state *state, struct drm_crtc *crtc)
865 {
866 	struct drm_crtc_state *crtc_state;
867 
868 	crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
869 	if (crtc_state) {
870 		lockdep_assert_held(&crtc->mutex.mutex.base);
871 	} else {
872 		int ret = drm_modeset_lock(&crtc->mutex, state->acquire_ctx);
873 
874 		if (ret != 0 && ret != -EALREADY)
875 			return ERR_PTR(ret);
876 
877 		crtc_state = crtc->state;
878 	}
879 
880 	return crtc_state;
881 }
882 
883 /**
884  * vmw_kms_check_implicit - Verify that all implicit display units scan out
885  * from the same fb after the new state is committed.
886  * @dev: The drm_device.
887  * @state: The new state to be checked.
888  *
889  * Returns:
890  *   Zero on success,
891  *   -EINVAL on invalid state,
892  *   -EDEADLK if modeset locking needs to be rerun.
893  */
894 static int vmw_kms_check_implicit(struct drm_device *dev,
895 				  struct drm_atomic_state *state)
896 {
897 	struct drm_framebuffer *implicit_fb = NULL;
898 	struct drm_crtc *crtc;
899 	struct drm_crtc_state *crtc_state;
900 	struct drm_plane_state *plane_state;
901 
902 	drm_for_each_crtc(crtc, dev) {
903 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
904 
905 		if (!du->is_implicit)
906 			continue;
907 
908 		crtc_state = vmw_crtc_state_and_lock(state, crtc);
909 		if (IS_ERR(crtc_state))
910 			return PTR_ERR(crtc_state);
911 
912 		if (!crtc_state || !crtc_state->enable)
913 			continue;
914 
915 		/*
916 		 * Can't move primary planes across crtcs, so this is OK.
917 		 * It also means we don't need to take the plane mutex.
918 		 */
919 		plane_state = du->primary.state;
920 		if (plane_state->crtc != crtc)
921 			continue;
922 
923 		if (!implicit_fb)
924 			implicit_fb = plane_state->fb;
925 		else if (implicit_fb != plane_state->fb)
926 			return -EINVAL;
927 	}
928 
929 	return 0;
930 }
931 
932 /**
933  * vmw_kms_check_topology - Validates topology in drm_atomic_state
934  * @dev: DRM device
935  * @state: the driver state object
936  *
937  * Returns:
938  * 0 on success otherwise negative error code
939  */
940 static int vmw_kms_check_topology(struct drm_device *dev,
941 				  struct drm_atomic_state *state)
942 {
943 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
944 	struct drm_rect *rects;
945 	struct drm_crtc *crtc;
946 	uint32_t i;
947 	int ret = 0;
948 
949 	rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect),
950 			GFP_KERNEL);
951 	if (!rects)
952 		return -ENOMEM;
953 
954 	drm_for_each_crtc(crtc, dev) {
955 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
956 		struct drm_crtc_state *crtc_state;
957 
958 		i = drm_crtc_index(crtc);
959 
960 		crtc_state = vmw_crtc_state_and_lock(state, crtc);
961 		if (IS_ERR(crtc_state)) {
962 			ret = PTR_ERR(crtc_state);
963 			goto clean;
964 		}
965 
966 		if (!crtc_state)
967 			continue;
968 
969 		if (crtc_state->enable) {
970 			rects[i].x1 = du->gui_x;
971 			rects[i].y1 = du->gui_y;
972 			rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay;
973 			rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay;
974 		} else {
975 			rects[i].x1 = 0;
976 			rects[i].y1 = 0;
977 			rects[i].x2 = 0;
978 			rects[i].y2 = 0;
979 		}
980 	}
981 
982 	/* Determine change to topology due to new atomic state */
983 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state,
984 				      new_crtc_state, i) {
985 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
986 		struct drm_connector *connector;
987 		struct drm_connector_state *conn_state;
988 		struct vmw_connector_state *vmw_conn_state;
989 
990 		if (!du->pref_active && new_crtc_state->enable) {
991 			VMW_DEBUG_KMS("Enabling a disabled display unit\n");
992 			ret = -EINVAL;
993 			goto clean;
994 		}
995 
996 		/*
997 		 * For vmwgfx each crtc has only one connector attached and it
998 		 * is not changed so don't really need to check the
999 		 * crtc->connector_mask and iterate over it.
1000 		 */
1001 		connector = &du->connector;
1002 		conn_state = drm_atomic_get_connector_state(state, connector);
1003 		if (IS_ERR(conn_state)) {
1004 			ret = PTR_ERR(conn_state);
1005 			goto clean;
1006 		}
1007 
1008 		vmw_conn_state = vmw_connector_state_to_vcs(conn_state);
1009 		vmw_conn_state->gui_x = du->gui_x;
1010 		vmw_conn_state->gui_y = du->gui_y;
1011 	}
1012 
1013 	ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc,
1014 					   rects);
1015 
1016 clean:
1017 	kfree(rects);
1018 	return ret;
1019 }
1020 
1021 /**
1022  * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1023  *
1024  * @dev: DRM device
1025  * @state: the driver state object
1026  *
1027  * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1028  * us to assign a value to mode->crtc_clock so that
1029  * drm_calc_timestamping_constants() won't throw an error message
1030  *
1031  * Returns:
1032  * Zero for success or -errno
1033  */
1034 static int
1035 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1036 			     struct drm_atomic_state *state)
1037 {
1038 	struct drm_crtc *crtc;
1039 	struct drm_crtc_state *crtc_state;
1040 	bool need_modeset = false;
1041 	int i, ret;
1042 
1043 	ret = drm_atomic_helper_check(dev, state);
1044 	if (ret)
1045 		return ret;
1046 
1047 	ret = vmw_kms_check_implicit(dev, state);
1048 	if (ret) {
1049 		VMW_DEBUG_KMS("Invalid implicit state\n");
1050 		return ret;
1051 	}
1052 
1053 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
1054 		if (drm_atomic_crtc_needs_modeset(crtc_state))
1055 			need_modeset = true;
1056 	}
1057 
1058 	if (need_modeset)
1059 		return vmw_kms_check_topology(dev, state);
1060 
1061 	return ret;
1062 }
1063 
1064 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1065 	.fb_create = vmw_kms_fb_create,
1066 	.atomic_check = vmw_kms_atomic_check_modeset,
1067 	.atomic_commit = drm_atomic_helper_commit,
1068 };
1069 
1070 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1071 				   struct drm_file *file_priv,
1072 				   struct vmw_framebuffer *vfb,
1073 				   struct vmw_surface *surface,
1074 				   uint32_t sid,
1075 				   int32_t destX, int32_t destY,
1076 				   struct drm_vmw_rect *clips,
1077 				   uint32_t num_clips)
1078 {
1079 	return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1080 					    &surface->res, destX, destY,
1081 					    num_clips, 1, NULL, NULL);
1082 }
1083 
1084 
1085 int vmw_kms_present(struct vmw_private *dev_priv,
1086 		    struct drm_file *file_priv,
1087 		    struct vmw_framebuffer *vfb,
1088 		    struct vmw_surface *surface,
1089 		    uint32_t sid,
1090 		    int32_t destX, int32_t destY,
1091 		    struct drm_vmw_rect *clips,
1092 		    uint32_t num_clips)
1093 {
1094 	int ret;
1095 
1096 	switch (dev_priv->active_display_unit) {
1097 	case vmw_du_screen_target:
1098 		ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
1099 						 &surface->res, destX, destY,
1100 						 num_clips, 1, NULL, NULL);
1101 		break;
1102 	case vmw_du_screen_object:
1103 		ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
1104 					      sid, destX, destY, clips,
1105 					      num_clips);
1106 		break;
1107 	default:
1108 		WARN_ONCE(true,
1109 			  "Present called with invalid display system.\n");
1110 		ret = -ENOSYS;
1111 		break;
1112 	}
1113 	if (ret)
1114 		return ret;
1115 
1116 	vmw_cmd_flush(dev_priv, false);
1117 
1118 	return 0;
1119 }
1120 
1121 static void
1122 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
1123 {
1124 	if (dev_priv->hotplug_mode_update_property)
1125 		return;
1126 
1127 	dev_priv->hotplug_mode_update_property =
1128 		drm_property_create_range(&dev_priv->drm,
1129 					  DRM_MODE_PROP_IMMUTABLE,
1130 					  "hotplug_mode_update", 0, 1);
1131 }
1132 
1133 static void
1134 vmw_atomic_commit_tail(struct drm_atomic_state *old_state)
1135 {
1136 	struct vmw_private *vmw = vmw_priv(old_state->dev);
1137 	struct drm_crtc *crtc;
1138 	struct drm_crtc_state *old_crtc_state;
1139 	int i;
1140 
1141 	drm_atomic_helper_commit_tail(old_state);
1142 
1143 	if (vmw->vkms_enabled) {
1144 		for_each_old_crtc_in_state(old_state, crtc, old_crtc_state, i) {
1145 			struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1146 			(void)old_crtc_state;
1147 			flush_work(&du->vkms.crc_generator_work);
1148 		}
1149 	}
1150 }
1151 
1152 static const struct drm_mode_config_helper_funcs vmw_mode_config_helpers = {
1153 	.atomic_commit_tail = vmw_atomic_commit_tail,
1154 };
1155 
1156 int vmw_kms_init(struct vmw_private *dev_priv)
1157 {
1158 	struct drm_device *dev = &dev_priv->drm;
1159 	int ret;
1160 	static const char *display_unit_names[] = {
1161 		"Invalid",
1162 		"Legacy",
1163 		"Screen Object",
1164 		"Screen Target",
1165 		"Invalid (max)"
1166 	};
1167 
1168 	drm_mode_config_init(dev);
1169 	dev->mode_config.funcs = &vmw_kms_funcs;
1170 	dev->mode_config.min_width = 1;
1171 	dev->mode_config.min_height = 1;
1172 	dev->mode_config.max_width = dev_priv->texture_max_width;
1173 	dev->mode_config.max_height = dev_priv->texture_max_height;
1174 	dev->mode_config.preferred_depth = dev_priv->assume_16bpp ? 16 : 32;
1175 	dev->mode_config.helper_private = &vmw_mode_config_helpers;
1176 
1177 	drm_mode_create_suggested_offset_properties(dev);
1178 	vmw_kms_create_hotplug_mode_update_property(dev_priv);
1179 
1180 	ret = vmw_kms_stdu_init_display(dev_priv);
1181 	if (ret) {
1182 		ret = vmw_kms_sou_init_display(dev_priv);
1183 		if (ret) /* Fallback */
1184 			ret = vmw_kms_ldu_init_display(dev_priv);
1185 	}
1186 	BUILD_BUG_ON(ARRAY_SIZE(display_unit_names) != (vmw_du_max + 1));
1187 	drm_info(&dev_priv->drm, "%s display unit initialized\n",
1188 		 display_unit_names[dev_priv->active_display_unit]);
1189 
1190 	return ret;
1191 }
1192 
1193 int vmw_kms_close(struct vmw_private *dev_priv)
1194 {
1195 	int ret = 0;
1196 
1197 	/*
1198 	 * Docs says we should take the lock before calling this function
1199 	 * but since it destroys encoders and our destructor calls
1200 	 * drm_encoder_cleanup which takes the lock we deadlock.
1201 	 */
1202 	drm_mode_config_cleanup(&dev_priv->drm);
1203 	if (dev_priv->active_display_unit == vmw_du_legacy)
1204 		ret = vmw_kms_ldu_close_display(dev_priv);
1205 
1206 	return ret;
1207 }
1208 
1209 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
1210 			unsigned width, unsigned height, unsigned pitch,
1211 			unsigned bpp, unsigned depth)
1212 {
1213 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1214 		vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
1215 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1216 		vmw_fifo_mem_write(vmw_priv, SVGA_FIFO_PITCHLOCK, pitch);
1217 	vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
1218 	vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
1219 	if ((vmw_priv->capabilities & SVGA_CAP_8BIT_EMULATION) != 0)
1220 		vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
1221 
1222 	if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
1223 		DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
1224 			  depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
1225 		return -EINVAL;
1226 	}
1227 
1228 	return 0;
1229 }
1230 
1231 static
1232 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
1233 				u64 pitch,
1234 				u64 height)
1235 {
1236 	return (pitch * height) < (u64)dev_priv->vram_size;
1237 }
1238 
1239 /**
1240  * vmw_du_update_layout - Update the display unit with topology from resolution
1241  * plugin and generate DRM uevent
1242  * @dev_priv: device private
1243  * @num_rects: number of drm_rect in rects
1244  * @rects: toplogy to update
1245  */
1246 static int vmw_du_update_layout(struct vmw_private *dev_priv,
1247 				unsigned int num_rects, struct drm_rect *rects)
1248 {
1249 	struct drm_device *dev = &dev_priv->drm;
1250 	struct vmw_display_unit *du;
1251 	struct drm_connector *con;
1252 	struct drm_connector_list_iter conn_iter;
1253 	struct drm_modeset_acquire_ctx ctx;
1254 	struct drm_crtc *crtc;
1255 	int ret;
1256 
1257 	/* Currently gui_x/y is protected with the crtc mutex */
1258 	mutex_lock(&dev->mode_config.mutex);
1259 	drm_modeset_acquire_init(&ctx, 0);
1260 retry:
1261 	drm_for_each_crtc(crtc, dev) {
1262 		ret = drm_modeset_lock(&crtc->mutex, &ctx);
1263 		if (ret < 0) {
1264 			if (ret == -EDEADLK) {
1265 				drm_modeset_backoff(&ctx);
1266 				goto retry;
1267 		}
1268 			goto out_fini;
1269 		}
1270 	}
1271 
1272 	drm_connector_list_iter_begin(dev, &conn_iter);
1273 	drm_for_each_connector_iter(con, &conn_iter) {
1274 		du = vmw_connector_to_du(con);
1275 		if (num_rects > du->unit) {
1276 			du->pref_width = drm_rect_width(&rects[du->unit]);
1277 			du->pref_height = drm_rect_height(&rects[du->unit]);
1278 			du->pref_active = true;
1279 			du->gui_x = rects[du->unit].x1;
1280 			du->gui_y = rects[du->unit].y1;
1281 		} else {
1282 			du->pref_width  = VMWGFX_MIN_INITIAL_WIDTH;
1283 			du->pref_height = VMWGFX_MIN_INITIAL_HEIGHT;
1284 			du->pref_active = false;
1285 			du->gui_x = 0;
1286 			du->gui_y = 0;
1287 		}
1288 	}
1289 	drm_connector_list_iter_end(&conn_iter);
1290 
1291 	list_for_each_entry(con, &dev->mode_config.connector_list, head) {
1292 		du = vmw_connector_to_du(con);
1293 		if (num_rects > du->unit) {
1294 			drm_object_property_set_value
1295 			  (&con->base, dev->mode_config.suggested_x_property,
1296 			   du->gui_x);
1297 			drm_object_property_set_value
1298 			  (&con->base, dev->mode_config.suggested_y_property,
1299 			   du->gui_y);
1300 		} else {
1301 			drm_object_property_set_value
1302 			  (&con->base, dev->mode_config.suggested_x_property,
1303 			   0);
1304 			drm_object_property_set_value
1305 			  (&con->base, dev->mode_config.suggested_y_property,
1306 			   0);
1307 		}
1308 		con->status = vmw_du_connector_detect(con, true);
1309 	}
1310 out_fini:
1311 	drm_modeset_drop_locks(&ctx);
1312 	drm_modeset_acquire_fini(&ctx);
1313 	mutex_unlock(&dev->mode_config.mutex);
1314 
1315 	drm_sysfs_hotplug_event(dev);
1316 
1317 	return 0;
1318 }
1319 
1320 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
1321 			  u16 *r, u16 *g, u16 *b,
1322 			  uint32_t size,
1323 			  struct drm_modeset_acquire_ctx *ctx)
1324 {
1325 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
1326 	int i;
1327 
1328 	for (i = 0; i < size; i++) {
1329 		DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
1330 			  r[i], g[i], b[i]);
1331 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
1332 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
1333 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
1334 	}
1335 
1336 	return 0;
1337 }
1338 
1339 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
1340 {
1341 	return 0;
1342 }
1343 
1344 enum drm_connector_status
1345 vmw_du_connector_detect(struct drm_connector *connector, bool force)
1346 {
1347 	uint32_t num_displays;
1348 	struct drm_device *dev = connector->dev;
1349 	struct vmw_private *dev_priv = vmw_priv(dev);
1350 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
1351 
1352 	num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
1353 
1354 	return ((vmw_connector_to_du(connector)->unit < num_displays &&
1355 		 du->pref_active) ?
1356 		connector_status_connected : connector_status_disconnected);
1357 }
1358 
1359 /**
1360  * vmw_guess_mode_timing - Provide fake timings for a
1361  * 60Hz vrefresh mode.
1362  *
1363  * @mode: Pointer to a struct drm_display_mode with hdisplay and vdisplay
1364  * members filled in.
1365  */
1366 void vmw_guess_mode_timing(struct drm_display_mode *mode)
1367 {
1368 	mode->hsync_start = mode->hdisplay + 50;
1369 	mode->hsync_end = mode->hsync_start + 50;
1370 	mode->htotal = mode->hsync_end + 50;
1371 
1372 	mode->vsync_start = mode->vdisplay + 50;
1373 	mode->vsync_end = mode->vsync_start + 50;
1374 	mode->vtotal = mode->vsync_end + 50;
1375 
1376 	mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
1377 }
1378 
1379 
1380 /**
1381  * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl
1382  * @dev: drm device for the ioctl
1383  * @data: data pointer for the ioctl
1384  * @file_priv: drm file for the ioctl call
1385  *
1386  * Update preferred topology of display unit as per ioctl request. The topology
1387  * is expressed as array of drm_vmw_rect.
1388  * e.g.
1389  * [0 0 640 480] [640 0 800 600] [0 480 640 480]
1390  *
1391  * NOTE:
1392  * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside
1393  * device limit on topology, x + w and y + h (lower right) cannot be greater
1394  * than INT_MAX. So topology beyond these limits will return with error.
1395  *
1396  * Returns:
1397  * Zero on success, negative errno on failure.
1398  */
1399 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
1400 				struct drm_file *file_priv)
1401 {
1402 	struct vmw_private *dev_priv = vmw_priv(dev);
1403 	struct drm_mode_config *mode_config = &dev->mode_config;
1404 	struct drm_vmw_update_layout_arg *arg =
1405 		(struct drm_vmw_update_layout_arg *)data;
1406 	const void __user *user_rects;
1407 	struct drm_vmw_rect *rects;
1408 	struct drm_rect *drm_rects;
1409 	unsigned rects_size;
1410 	int ret, i;
1411 
1412 	if (!arg->num_outputs) {
1413 		struct drm_rect def_rect = {0, 0,
1414 					    VMWGFX_MIN_INITIAL_WIDTH,
1415 					    VMWGFX_MIN_INITIAL_HEIGHT};
1416 		vmw_du_update_layout(dev_priv, 1, &def_rect);
1417 		return 0;
1418 	} else if (arg->num_outputs > VMWGFX_NUM_DISPLAY_UNITS) {
1419 		return -E2BIG;
1420 	}
1421 
1422 	rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
1423 	rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
1424 			GFP_KERNEL);
1425 	if (unlikely(!rects))
1426 		return -ENOMEM;
1427 
1428 	user_rects = (void __user *)(unsigned long)arg->rects;
1429 	ret = copy_from_user(rects, user_rects, rects_size);
1430 	if (unlikely(ret != 0)) {
1431 		DRM_ERROR("Failed to get rects.\n");
1432 		ret = -EFAULT;
1433 		goto out_free;
1434 	}
1435 
1436 	drm_rects = (struct drm_rect *)rects;
1437 
1438 	VMW_DEBUG_KMS("Layout count = %u\n", arg->num_outputs);
1439 	for (i = 0; i < arg->num_outputs; i++) {
1440 		struct drm_vmw_rect curr_rect;
1441 
1442 		/* Verify user-space for overflow as kernel use drm_rect */
1443 		if ((rects[i].x + rects[i].w > INT_MAX) ||
1444 		    (rects[i].y + rects[i].h > INT_MAX)) {
1445 			ret = -ERANGE;
1446 			goto out_free;
1447 		}
1448 
1449 		curr_rect = rects[i];
1450 		drm_rects[i].x1 = curr_rect.x;
1451 		drm_rects[i].y1 = curr_rect.y;
1452 		drm_rects[i].x2 = curr_rect.x + curr_rect.w;
1453 		drm_rects[i].y2 = curr_rect.y + curr_rect.h;
1454 
1455 		VMW_DEBUG_KMS("  x1 = %d y1 = %d x2 = %d y2 = %d\n",
1456 			      drm_rects[i].x1, drm_rects[i].y1,
1457 			      drm_rects[i].x2, drm_rects[i].y2);
1458 
1459 		/*
1460 		 * Currently this check is limiting the topology within
1461 		 * mode_config->max (which actually is max texture size
1462 		 * supported by virtual device). This limit is here to address
1463 		 * window managers that create a big framebuffer for whole
1464 		 * topology.
1465 		 */
1466 		if (drm_rects[i].x1 < 0 ||  drm_rects[i].y1 < 0 ||
1467 		    drm_rects[i].x2 > mode_config->max_width ||
1468 		    drm_rects[i].y2 > mode_config->max_height) {
1469 			VMW_DEBUG_KMS("Invalid layout %d %d %d %d\n",
1470 				      drm_rects[i].x1, drm_rects[i].y1,
1471 				      drm_rects[i].x2, drm_rects[i].y2);
1472 			ret = -EINVAL;
1473 			goto out_free;
1474 		}
1475 	}
1476 
1477 	ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects);
1478 
1479 	if (ret == 0)
1480 		vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects);
1481 
1482 out_free:
1483 	kfree(rects);
1484 	return ret;
1485 }
1486 
1487 /**
1488  * vmw_kms_helper_dirty - Helper to build commands and perform actions based
1489  * on a set of cliprects and a set of display units.
1490  *
1491  * @dev_priv: Pointer to a device private structure.
1492  * @framebuffer: Pointer to the framebuffer on which to perform the actions.
1493  * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
1494  * Cliprects are given in framebuffer coordinates.
1495  * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
1496  * be NULL. Cliprects are given in source coordinates.
1497  * @dest_x: X coordinate offset for the crtc / destination clip rects.
1498  * @dest_y: Y coordinate offset for the crtc / destination clip rects.
1499  * @num_clips: Number of cliprects in the @clips or @vclips array.
1500  * @increment: Integer with which to increment the clip counter when looping.
1501  * Used to skip a predetermined number of clip rects.
1502  * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
1503  */
1504 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
1505 			 struct vmw_framebuffer *framebuffer,
1506 			 const struct drm_clip_rect *clips,
1507 			 const struct drm_vmw_rect *vclips,
1508 			 s32 dest_x, s32 dest_y,
1509 			 int num_clips,
1510 			 int increment,
1511 			 struct vmw_kms_dirty *dirty)
1512 {
1513 	struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
1514 	struct drm_crtc *crtc;
1515 	u32 num_units = 0;
1516 	u32 i, k;
1517 
1518 	dirty->dev_priv = dev_priv;
1519 
1520 	/* If crtc is passed, no need to iterate over other display units */
1521 	if (dirty->crtc) {
1522 		units[num_units++] = vmw_crtc_to_du(dirty->crtc);
1523 	} else {
1524 		list_for_each_entry(crtc, &dev_priv->drm.mode_config.crtc_list,
1525 				    head) {
1526 			struct drm_plane *plane = crtc->primary;
1527 
1528 			if (plane->state->fb == &framebuffer->base)
1529 				units[num_units++] = vmw_crtc_to_du(crtc);
1530 		}
1531 	}
1532 
1533 	for (k = 0; k < num_units; k++) {
1534 		struct vmw_display_unit *unit = units[k];
1535 		s32 crtc_x = unit->crtc.x;
1536 		s32 crtc_y = unit->crtc.y;
1537 		s32 crtc_width = unit->crtc.mode.hdisplay;
1538 		s32 crtc_height = unit->crtc.mode.vdisplay;
1539 		const struct drm_clip_rect *clips_ptr = clips;
1540 		const struct drm_vmw_rect *vclips_ptr = vclips;
1541 
1542 		dirty->unit = unit;
1543 		if (dirty->fifo_reserve_size > 0) {
1544 			dirty->cmd = VMW_CMD_RESERVE(dev_priv,
1545 						      dirty->fifo_reserve_size);
1546 			if (!dirty->cmd)
1547 				return -ENOMEM;
1548 
1549 			memset(dirty->cmd, 0, dirty->fifo_reserve_size);
1550 		}
1551 		dirty->num_hits = 0;
1552 		for (i = 0; i < num_clips; i++, clips_ptr += increment,
1553 		       vclips_ptr += increment) {
1554 			s32 clip_left;
1555 			s32 clip_top;
1556 
1557 			/*
1558 			 * Select clip array type. Note that integer type
1559 			 * in @clips is unsigned short, whereas in @vclips
1560 			 * it's 32-bit.
1561 			 */
1562 			if (clips) {
1563 				dirty->fb_x = (s32) clips_ptr->x1;
1564 				dirty->fb_y = (s32) clips_ptr->y1;
1565 				dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
1566 					crtc_x;
1567 				dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
1568 					crtc_y;
1569 			} else {
1570 				dirty->fb_x = vclips_ptr->x;
1571 				dirty->fb_y = vclips_ptr->y;
1572 				dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
1573 					dest_x - crtc_x;
1574 				dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
1575 					dest_y - crtc_y;
1576 			}
1577 
1578 			dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
1579 			dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
1580 
1581 			/* Skip this clip if it's outside the crtc region */
1582 			if (dirty->unit_x1 >= crtc_width ||
1583 			    dirty->unit_y1 >= crtc_height ||
1584 			    dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
1585 				continue;
1586 
1587 			/* Clip right and bottom to crtc limits */
1588 			dirty->unit_x2 = min_t(s32, dirty->unit_x2,
1589 					       crtc_width);
1590 			dirty->unit_y2 = min_t(s32, dirty->unit_y2,
1591 					       crtc_height);
1592 
1593 			/* Clip left and top to crtc limits */
1594 			clip_left = min_t(s32, dirty->unit_x1, 0);
1595 			clip_top = min_t(s32, dirty->unit_y1, 0);
1596 			dirty->unit_x1 -= clip_left;
1597 			dirty->unit_y1 -= clip_top;
1598 			dirty->fb_x -= clip_left;
1599 			dirty->fb_y -= clip_top;
1600 
1601 			dirty->clip(dirty);
1602 		}
1603 
1604 		dirty->fifo_commit(dirty);
1605 	}
1606 
1607 	return 0;
1608 }
1609 
1610 /**
1611  * vmw_kms_helper_validation_finish - Helper for post KMS command submission
1612  * cleanup and fencing
1613  * @dev_priv: Pointer to the device-private struct
1614  * @file_priv: Pointer identifying the client when user-space fencing is used
1615  * @ctx: Pointer to the validation context
1616  * @out_fence: If non-NULL, returned refcounted fence-pointer
1617  * @user_fence_rep: If non-NULL, pointer to user-space address area
1618  * in which to copy user-space fence info
1619  */
1620 void vmw_kms_helper_validation_finish(struct vmw_private *dev_priv,
1621 				      struct drm_file *file_priv,
1622 				      struct vmw_validation_context *ctx,
1623 				      struct vmw_fence_obj **out_fence,
1624 				      struct drm_vmw_fence_rep __user *
1625 				      user_fence_rep)
1626 {
1627 	struct vmw_fence_obj *fence = NULL;
1628 	uint32_t handle = 0;
1629 	int ret = 0;
1630 
1631 	if (file_priv || user_fence_rep || vmw_validation_has_bos(ctx) ||
1632 	    out_fence)
1633 		ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
1634 						 file_priv ? &handle : NULL);
1635 	vmw_validation_done(ctx, fence);
1636 	if (file_priv)
1637 		vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
1638 					    ret, user_fence_rep, fence,
1639 					    handle, -1);
1640 	if (out_fence)
1641 		*out_fence = fence;
1642 	else
1643 		vmw_fence_obj_unreference(&fence);
1644 }
1645 
1646 /**
1647  * vmw_kms_create_implicit_placement_property - Set up the implicit placement
1648  * property.
1649  *
1650  * @dev_priv: Pointer to a device private struct.
1651  *
1652  * Sets up the implicit placement property unless it's already set up.
1653  */
1654 void
1655 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv)
1656 {
1657 	if (dev_priv->implicit_placement_property)
1658 		return;
1659 
1660 	dev_priv->implicit_placement_property =
1661 		drm_property_create_range(&dev_priv->drm,
1662 					  DRM_MODE_PROP_IMMUTABLE,
1663 					  "implicit_placement", 0, 1);
1664 }
1665 
1666 /**
1667  * vmw_kms_suspend - Save modesetting state and turn modesetting off.
1668  *
1669  * @dev: Pointer to the drm device
1670  * Return: 0 on success. Negative error code on failure.
1671  */
1672 int vmw_kms_suspend(struct drm_device *dev)
1673 {
1674 	struct vmw_private *dev_priv = vmw_priv(dev);
1675 
1676 	dev_priv->suspend_state = drm_atomic_helper_suspend(dev);
1677 	if (IS_ERR(dev_priv->suspend_state)) {
1678 		int ret = PTR_ERR(dev_priv->suspend_state);
1679 
1680 		DRM_ERROR("Failed kms suspend: %d\n", ret);
1681 		dev_priv->suspend_state = NULL;
1682 
1683 		return ret;
1684 	}
1685 
1686 	return 0;
1687 }
1688 
1689 
1690 /**
1691  * vmw_kms_resume - Re-enable modesetting and restore state
1692  *
1693  * @dev: Pointer to the drm device
1694  * Return: 0 on success. Negative error code on failure.
1695  *
1696  * State is resumed from a previous vmw_kms_suspend(). It's illegal
1697  * to call this function without a previous vmw_kms_suspend().
1698  */
1699 int vmw_kms_resume(struct drm_device *dev)
1700 {
1701 	struct vmw_private *dev_priv = vmw_priv(dev);
1702 	int ret;
1703 
1704 	if (WARN_ON(!dev_priv->suspend_state))
1705 		return 0;
1706 
1707 	ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state);
1708 	dev_priv->suspend_state = NULL;
1709 
1710 	return ret;
1711 }
1712 
1713 /**
1714  * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost
1715  *
1716  * @dev: Pointer to the drm device
1717  */
1718 void vmw_kms_lost_device(struct drm_device *dev)
1719 {
1720 	drm_atomic_helper_shutdown(dev);
1721 }
1722 
1723 /**
1724  * vmw_du_helper_plane_update - Helper to do plane update on a display unit.
1725  * @update: The closure structure.
1726  *
1727  * Call this helper after setting callbacks in &vmw_du_update_plane to do plane
1728  * update on display unit.
1729  *
1730  * Return: 0 on success or a negative error code on failure.
1731  */
1732 int vmw_du_helper_plane_update(struct vmw_du_update_plane *update)
1733 {
1734 	struct drm_plane_state *state = update->plane->state;
1735 	struct drm_plane_state *old_state = update->old_state;
1736 	struct drm_atomic_helper_damage_iter iter;
1737 	struct drm_rect clip;
1738 	struct drm_rect bb;
1739 	DECLARE_VAL_CONTEXT(val_ctx, NULL, 0);
1740 	uint32_t reserved_size = 0;
1741 	uint32_t submit_size = 0;
1742 	uint32_t curr_size = 0;
1743 	uint32_t num_hits = 0;
1744 	void *cmd_start;
1745 	char *cmd_next;
1746 	int ret;
1747 
1748 	/*
1749 	 * Iterate in advance to check if really need plane update and find the
1750 	 * number of clips that actually are in plane src for fifo allocation.
1751 	 */
1752 	drm_atomic_helper_damage_iter_init(&iter, old_state, state);
1753 	drm_atomic_for_each_plane_damage(&iter, &clip)
1754 		num_hits++;
1755 
1756 	if (num_hits == 0)
1757 		return 0;
1758 
1759 	if (update->vfb->bo) {
1760 		struct vmw_framebuffer_bo *vfbbo =
1761 			container_of(update->vfb, typeof(*vfbbo), base);
1762 
1763 		/*
1764 		 * For screen targets we want a mappable bo, for everything else we want
1765 		 * accelerated i.e. host backed (vram or gmr) bo. If the display unit
1766 		 * is not screen target then mob's shouldn't be available.
1767 		 */
1768 		if (update->dev_priv->active_display_unit == vmw_du_screen_target) {
1769 			vmw_bo_placement_set(vfbbo->buffer,
1770 					     VMW_BO_DOMAIN_SYS | VMW_BO_DOMAIN_MOB | VMW_BO_DOMAIN_GMR,
1771 					     VMW_BO_DOMAIN_SYS | VMW_BO_DOMAIN_MOB | VMW_BO_DOMAIN_GMR);
1772 		} else {
1773 			WARN_ON(update->dev_priv->has_mob);
1774 			vmw_bo_placement_set_default_accelerated(vfbbo->buffer);
1775 		}
1776 		ret = vmw_validation_add_bo(&val_ctx, vfbbo->buffer);
1777 	} else {
1778 		struct vmw_framebuffer_surface *vfbs =
1779 			container_of(update->vfb, typeof(*vfbs), base);
1780 		struct vmw_surface *surf = vmw_user_object_surface(&vfbs->uo);
1781 
1782 		ret = vmw_validation_add_resource(&val_ctx, &surf->res,
1783 						  0, VMW_RES_DIRTY_NONE, NULL,
1784 						  NULL);
1785 	}
1786 
1787 	if (ret)
1788 		return ret;
1789 
1790 	ret = vmw_validation_prepare(&val_ctx, update->mutex, update->intr);
1791 	if (ret)
1792 		goto out_unref;
1793 
1794 	reserved_size = update->calc_fifo_size(update, num_hits);
1795 	cmd_start = VMW_CMD_RESERVE(update->dev_priv, reserved_size);
1796 	if (!cmd_start) {
1797 		ret = -ENOMEM;
1798 		goto out_revert;
1799 	}
1800 
1801 	cmd_next = cmd_start;
1802 
1803 	if (update->post_prepare) {
1804 		curr_size = update->post_prepare(update, cmd_next);
1805 		cmd_next += curr_size;
1806 		submit_size += curr_size;
1807 	}
1808 
1809 	if (update->pre_clip) {
1810 		curr_size = update->pre_clip(update, cmd_next, num_hits);
1811 		cmd_next += curr_size;
1812 		submit_size += curr_size;
1813 	}
1814 
1815 	bb.x1 = INT_MAX;
1816 	bb.y1 = INT_MAX;
1817 	bb.x2 = INT_MIN;
1818 	bb.y2 = INT_MIN;
1819 
1820 	drm_atomic_helper_damage_iter_init(&iter, old_state, state);
1821 	drm_atomic_for_each_plane_damage(&iter, &clip) {
1822 		uint32_t fb_x = clip.x1;
1823 		uint32_t fb_y = clip.y1;
1824 
1825 		vmw_du_translate_to_crtc(state, &clip);
1826 		if (update->clip) {
1827 			curr_size = update->clip(update, cmd_next, &clip, fb_x,
1828 						 fb_y);
1829 			cmd_next += curr_size;
1830 			submit_size += curr_size;
1831 		}
1832 		bb.x1 = min_t(int, bb.x1, clip.x1);
1833 		bb.y1 = min_t(int, bb.y1, clip.y1);
1834 		bb.x2 = max_t(int, bb.x2, clip.x2);
1835 		bb.y2 = max_t(int, bb.y2, clip.y2);
1836 	}
1837 
1838 	curr_size = update->post_clip(update, cmd_next, &bb);
1839 	submit_size += curr_size;
1840 
1841 	if (reserved_size < submit_size)
1842 		submit_size = 0;
1843 
1844 	vmw_cmd_commit(update->dev_priv, submit_size);
1845 
1846 	vmw_kms_helper_validation_finish(update->dev_priv, NULL, &val_ctx,
1847 					 update->out_fence, NULL);
1848 	return ret;
1849 
1850 out_revert:
1851 	vmw_validation_revert(&val_ctx);
1852 
1853 out_unref:
1854 	vmw_validation_unref_lists(&val_ctx);
1855 	return ret;
1856 }
1857 
1858 /**
1859  * vmw_connector_mode_valid - implements drm_connector_helper_funcs.mode_valid callback
1860  *
1861  * @connector: the drm connector, part of a DU container
1862  * @mode: drm mode to check
1863  *
1864  * Returns MODE_OK on success, or a drm_mode_status error code.
1865  */
1866 enum drm_mode_status vmw_connector_mode_valid(struct drm_connector *connector,
1867 					      const struct drm_display_mode *mode)
1868 {
1869 	enum drm_mode_status ret;
1870 	struct drm_device *dev = connector->dev;
1871 	struct vmw_private *dev_priv = vmw_priv(dev);
1872 	u32 assumed_cpp = 4;
1873 
1874 	if (dev_priv->assume_16bpp)
1875 		assumed_cpp = 2;
1876 
1877 	ret = drm_mode_validate_size(mode, dev_priv->texture_max_width,
1878 				     dev_priv->texture_max_height);
1879 	if (ret != MODE_OK)
1880 		return ret;
1881 
1882 	if (!vmw_kms_validate_mode_vram(dev_priv,
1883 					mode->hdisplay * assumed_cpp,
1884 					mode->vdisplay))
1885 		return MODE_MEM;
1886 
1887 	return MODE_OK;
1888 }
1889 
1890 /**
1891  * vmw_connector_get_modes - implements drm_connector_helper_funcs.get_modes callback
1892  *
1893  * @connector: the drm connector, part of a DU container
1894  *
1895  * Returns the number of added modes.
1896  */
1897 int vmw_connector_get_modes(struct drm_connector *connector)
1898 {
1899 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
1900 	struct drm_device *dev = connector->dev;
1901 	struct vmw_private *dev_priv = vmw_priv(dev);
1902 	struct drm_display_mode *mode = NULL;
1903 	struct drm_display_mode prefmode = { DRM_MODE("preferred",
1904 		DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
1905 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1906 		DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
1907 	};
1908 	u32 max_width;
1909 	u32 max_height;
1910 	u32 num_modes;
1911 
1912 	/* Add preferred mode */
1913 	mode = drm_mode_duplicate(dev, &prefmode);
1914 	if (!mode)
1915 		return 0;
1916 
1917 	mode->hdisplay = du->pref_width;
1918 	mode->vdisplay = du->pref_height;
1919 	vmw_guess_mode_timing(mode);
1920 	drm_mode_set_name(mode);
1921 
1922 	drm_mode_probed_add(connector, mode);
1923 	drm_dbg_kms(dev, "preferred mode " DRM_MODE_FMT "\n", DRM_MODE_ARG(mode));
1924 
1925 	/* Probe connector for all modes not exceeding our geom limits */
1926 	max_width  = dev_priv->texture_max_width;
1927 	max_height = dev_priv->texture_max_height;
1928 
1929 	if (dev_priv->active_display_unit == vmw_du_screen_target) {
1930 		max_width  = min(dev_priv->stdu_max_width,  max_width);
1931 		max_height = min(dev_priv->stdu_max_height, max_height);
1932 	}
1933 
1934 	num_modes = 1 + drm_add_modes_noedid(connector, max_width, max_height);
1935 
1936 	return num_modes;
1937 }
1938 
1939 struct vmw_user_object *vmw_user_object_ref(struct vmw_user_object *uo)
1940 {
1941 	if (uo->buffer)
1942 		vmw_user_bo_ref(uo->buffer);
1943 	else if (uo->surface)
1944 		vmw_surface_reference(uo->surface);
1945 	return uo;
1946 }
1947 
1948 void vmw_user_object_unref(struct vmw_user_object *uo)
1949 {
1950 	if (uo->buffer)
1951 		vmw_user_bo_unref(&uo->buffer);
1952 	else if (uo->surface)
1953 		vmw_surface_unreference(&uo->surface);
1954 }
1955 
1956 struct vmw_bo *
1957 vmw_user_object_buffer(struct vmw_user_object *uo)
1958 {
1959 	if (uo->buffer)
1960 		return uo->buffer;
1961 	else if (uo->surface)
1962 		return uo->surface->res.guest_memory_bo;
1963 	return NULL;
1964 }
1965 
1966 struct vmw_surface *
1967 vmw_user_object_surface(struct vmw_user_object *uo)
1968 {
1969 	if (uo->buffer)
1970 		return uo->buffer->dumb_surface;
1971 	return uo->surface;
1972 }
1973 
1974 void *vmw_user_object_map(struct vmw_user_object *uo)
1975 {
1976 	struct vmw_bo *bo = vmw_user_object_buffer(uo);
1977 
1978 	WARN_ON(!bo);
1979 	return vmw_bo_map_and_cache(bo);
1980 }
1981 
1982 void *vmw_user_object_map_size(struct vmw_user_object *uo, size_t size)
1983 {
1984 	struct vmw_bo *bo = vmw_user_object_buffer(uo);
1985 
1986 	WARN_ON(!bo);
1987 	return vmw_bo_map_and_cache_size(bo, size);
1988 }
1989 
1990 void vmw_user_object_unmap(struct vmw_user_object *uo)
1991 {
1992 	struct vmw_bo *bo = vmw_user_object_buffer(uo);
1993 	int ret;
1994 
1995 	WARN_ON(!bo);
1996 
1997 	/* Fence the mob creation so we are guarateed to have the mob */
1998 	ret = ttm_bo_reserve(&bo->tbo, false, false, NULL);
1999 	if (ret != 0)
2000 		return;
2001 
2002 	vmw_bo_unmap(bo);
2003 	vmw_bo_pin_reserved(bo, false);
2004 
2005 	ttm_bo_unreserve(&bo->tbo);
2006 }
2007 
2008 bool vmw_user_object_is_mapped(struct vmw_user_object *uo)
2009 {
2010 	struct vmw_bo *bo;
2011 
2012 	if (!uo || vmw_user_object_is_null(uo))
2013 		return false;
2014 
2015 	bo = vmw_user_object_buffer(uo);
2016 
2017 	if (WARN_ON(!bo))
2018 		return false;
2019 
2020 	WARN_ON(bo->map.bo && !bo->map.virtual);
2021 	return bo->map.virtual;
2022 }
2023 
2024 bool vmw_user_object_is_null(struct vmw_user_object *uo)
2025 {
2026 	return !uo->buffer && !uo->surface;
2027 }
2028