1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /************************************************************************** 3 * 4 * Copyright (c) 2009-2025 Broadcom. All Rights Reserved. The term 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. 6 * 7 **************************************************************************/ 8 9 #include "vmwgfx_kms.h" 10 11 #include "vmwgfx_bo.h" 12 #include "vmwgfx_resource_priv.h" 13 #include "vmwgfx_vkms.h" 14 #include "vmw_surface_cache.h" 15 16 #include <drm/drm_atomic.h> 17 #include <drm/drm_atomic_helper.h> 18 #include <drm/drm_damage_helper.h> 19 #include <drm/drm_fourcc.h> 20 #include <drm/drm_rect.h> 21 #include <drm/drm_sysfs.h> 22 #include <drm/drm_edid.h> 23 24 void vmw_du_init(struct vmw_display_unit *du) 25 { 26 vmw_vkms_crtc_init(&du->crtc); 27 } 28 29 void vmw_du_cleanup(struct vmw_display_unit *du) 30 { 31 struct vmw_private *dev_priv = vmw_priv(du->primary.dev); 32 33 vmw_vkms_crtc_cleanup(&du->crtc); 34 drm_plane_cleanup(&du->primary); 35 if (vmw_cmd_supported(dev_priv)) 36 drm_plane_cleanup(&du->cursor.base); 37 38 drm_connector_unregister(&du->connector); 39 drm_crtc_cleanup(&du->crtc); 40 drm_encoder_cleanup(&du->encoder); 41 drm_connector_cleanup(&du->connector); 42 } 43 44 45 void vmw_du_primary_plane_destroy(struct drm_plane *plane) 46 { 47 drm_plane_cleanup(plane); 48 49 /* Planes are static in our case so we don't free it */ 50 } 51 52 53 /** 54 * vmw_du_plane_unpin_surf - unpins resource associated with a framebuffer surface 55 * 56 * @vps: plane state associated with the display surface 57 */ 58 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps) 59 { 60 struct vmw_surface *surf = vmw_user_object_surface(&vps->uo); 61 62 if (surf) { 63 if (vps->pinned) { 64 vmw_resource_unpin(&surf->res); 65 vps->pinned--; 66 } 67 } 68 } 69 70 71 /** 72 * vmw_du_plane_cleanup_fb - Unpins the plane surface 73 * 74 * @plane: display plane 75 * @old_state: Contains the FB to clean up 76 * 77 * Unpins the framebuffer surface 78 * 79 * Returns 0 on success 80 */ 81 void 82 vmw_du_plane_cleanup_fb(struct drm_plane *plane, 83 struct drm_plane_state *old_state) 84 { 85 struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state); 86 87 vmw_du_plane_unpin_surf(vps); 88 } 89 90 91 /** 92 * vmw_du_primary_plane_atomic_check - check if the new state is okay 93 * 94 * @plane: display plane 95 * @state: info on the new plane state, including the FB 96 * 97 * Check if the new state is settable given the current state. Other 98 * than what the atomic helper checks, we care about crtc fitting 99 * the FB and maintaining one active framebuffer. 100 * 101 * Returns 0 on success 102 */ 103 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane, 104 struct drm_atomic_state *state) 105 { 106 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, 107 plane); 108 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, 109 plane); 110 struct drm_crtc_state *crtc_state = NULL; 111 struct drm_framebuffer *new_fb = new_state->fb; 112 struct drm_framebuffer *old_fb = old_state->fb; 113 int ret; 114 115 /* 116 * Ignore damage clips if the framebuffer attached to the plane's state 117 * has changed since the last plane update (page-flip). In this case, a 118 * full plane update should happen because uploads are done per-buffer. 119 */ 120 if (old_fb != new_fb) 121 new_state->ignore_damage_clips = true; 122 123 if (new_state->crtc) 124 crtc_state = drm_atomic_get_new_crtc_state(state, 125 new_state->crtc); 126 127 ret = drm_atomic_helper_check_plane_state(new_state, crtc_state, 128 DRM_PLANE_NO_SCALING, 129 DRM_PLANE_NO_SCALING, 130 false, true); 131 return ret; 132 } 133 134 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc, 135 struct drm_atomic_state *state) 136 { 137 struct vmw_private *vmw = vmw_priv(crtc->dev); 138 struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state, 139 crtc); 140 struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc); 141 int connector_mask = drm_connector_mask(&du->connector); 142 bool has_primary = new_state->plane_mask & 143 drm_plane_mask(crtc->primary); 144 145 /* 146 * This is fine in general, but broken userspace might expect 147 * some actual rendering so give a clue as why it's blank. 148 */ 149 if (new_state->enable && !has_primary) 150 drm_dbg_driver(&vmw->drm, 151 "CRTC without a primary plane will be blank.\n"); 152 153 154 if (new_state->connector_mask != connector_mask && 155 new_state->connector_mask != 0) { 156 DRM_ERROR("Invalid connectors configuration\n"); 157 return -EINVAL; 158 } 159 160 /* 161 * Our virtual device does not have a dot clock, so use the logical 162 * clock value as the dot clock. 163 */ 164 if (new_state->mode.crtc_clock == 0) 165 new_state->adjusted_mode.crtc_clock = new_state->mode.clock; 166 167 return 0; 168 } 169 170 171 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc, 172 struct drm_atomic_state *state) 173 { 174 vmw_vkms_crtc_atomic_begin(crtc, state); 175 } 176 177 /** 178 * vmw_du_crtc_duplicate_state - duplicate crtc state 179 * @crtc: DRM crtc 180 * 181 * Allocates and returns a copy of the crtc state (both common and 182 * vmw-specific) for the specified crtc. 183 * 184 * Returns: The newly allocated crtc state, or NULL on failure. 185 */ 186 struct drm_crtc_state * 187 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc) 188 { 189 struct drm_crtc_state *state; 190 struct vmw_crtc_state *vcs; 191 192 if (WARN_ON(!crtc->state)) 193 return NULL; 194 195 vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL); 196 197 if (!vcs) 198 return NULL; 199 200 state = &vcs->base; 201 202 __drm_atomic_helper_crtc_duplicate_state(crtc, state); 203 204 return state; 205 } 206 207 208 /** 209 * vmw_du_crtc_reset - creates a blank vmw crtc state 210 * @crtc: DRM crtc 211 * 212 * Resets the atomic state for @crtc by freeing the state pointer (which 213 * might be NULL, e.g. at driver load time) and allocating a new empty state 214 * object. 215 */ 216 void vmw_du_crtc_reset(struct drm_crtc *crtc) 217 { 218 struct vmw_crtc_state *vcs; 219 220 221 if (crtc->state) { 222 __drm_atomic_helper_crtc_destroy_state(crtc->state); 223 224 kfree(vmw_crtc_state_to_vcs(crtc->state)); 225 } 226 227 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 228 229 if (!vcs) { 230 DRM_ERROR("Cannot allocate vmw_crtc_state\n"); 231 return; 232 } 233 234 __drm_atomic_helper_crtc_reset(crtc, &vcs->base); 235 } 236 237 238 /** 239 * vmw_du_crtc_destroy_state - destroy crtc state 240 * @crtc: DRM crtc 241 * @state: state object to destroy 242 * 243 * Destroys the crtc state (both common and vmw-specific) for the 244 * specified plane. 245 */ 246 void 247 vmw_du_crtc_destroy_state(struct drm_crtc *crtc, 248 struct drm_crtc_state *state) 249 { 250 drm_atomic_helper_crtc_destroy_state(crtc, state); 251 } 252 253 254 /** 255 * vmw_du_plane_duplicate_state - duplicate plane state 256 * @plane: drm plane 257 * 258 * Allocates and returns a copy of the plane state (both common and 259 * vmw-specific) for the specified plane. 260 * 261 * Returns: The newly allocated plane state, or NULL on failure. 262 */ 263 struct drm_plane_state * 264 vmw_du_plane_duplicate_state(struct drm_plane *plane) 265 { 266 struct drm_plane_state *state; 267 struct vmw_plane_state *vps; 268 269 vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL); 270 271 if (!vps) 272 return NULL; 273 274 vps->pinned = 0; 275 vps->cpp = 0; 276 277 vps->cursor.mob = NULL; 278 279 /* Each ref counted resource needs to be acquired again */ 280 vmw_user_object_ref(&vps->uo); 281 state = &vps->base; 282 283 __drm_atomic_helper_plane_duplicate_state(plane, state); 284 285 return state; 286 } 287 288 289 /** 290 * vmw_du_plane_reset - creates a blank vmw plane state 291 * @plane: drm plane 292 * 293 * Resets the atomic state for @plane by freeing the state pointer (which might 294 * be NULL, e.g. at driver load time) and allocating a new empty state object. 295 */ 296 void vmw_du_plane_reset(struct drm_plane *plane) 297 { 298 struct vmw_plane_state *vps; 299 300 if (plane->state) 301 vmw_du_plane_destroy_state(plane, plane->state); 302 303 vps = kzalloc(sizeof(*vps), GFP_KERNEL); 304 305 if (!vps) { 306 DRM_ERROR("Cannot allocate vmw_plane_state\n"); 307 return; 308 } 309 310 __drm_atomic_helper_plane_reset(plane, &vps->base); 311 } 312 313 314 /** 315 * vmw_du_plane_destroy_state - destroy plane state 316 * @plane: DRM plane 317 * @state: state object to destroy 318 * 319 * Destroys the plane state (both common and vmw-specific) for the 320 * specified plane. 321 */ 322 void 323 vmw_du_plane_destroy_state(struct drm_plane *plane, 324 struct drm_plane_state *state) 325 { 326 struct vmw_plane_state *vps = vmw_plane_state_to_vps(state); 327 328 /* Should have been freed by cleanup_fb */ 329 vmw_user_object_unref(&vps->uo); 330 331 drm_atomic_helper_plane_destroy_state(plane, state); 332 } 333 334 335 /** 336 * vmw_du_connector_duplicate_state - duplicate connector state 337 * @connector: DRM connector 338 * 339 * Allocates and returns a copy of the connector state (both common and 340 * vmw-specific) for the specified connector. 341 * 342 * Returns: The newly allocated connector state, or NULL on failure. 343 */ 344 struct drm_connector_state * 345 vmw_du_connector_duplicate_state(struct drm_connector *connector) 346 { 347 struct drm_connector_state *state; 348 struct vmw_connector_state *vcs; 349 350 if (WARN_ON(!connector->state)) 351 return NULL; 352 353 vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL); 354 355 if (!vcs) 356 return NULL; 357 358 state = &vcs->base; 359 360 __drm_atomic_helper_connector_duplicate_state(connector, state); 361 362 return state; 363 } 364 365 366 /** 367 * vmw_du_connector_reset - creates a blank vmw connector state 368 * @connector: DRM connector 369 * 370 * Resets the atomic state for @connector by freeing the state pointer (which 371 * might be NULL, e.g. at driver load time) and allocating a new empty state 372 * object. 373 */ 374 void vmw_du_connector_reset(struct drm_connector *connector) 375 { 376 struct vmw_connector_state *vcs; 377 378 379 if (connector->state) { 380 __drm_atomic_helper_connector_destroy_state(connector->state); 381 382 kfree(vmw_connector_state_to_vcs(connector->state)); 383 } 384 385 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 386 387 if (!vcs) { 388 DRM_ERROR("Cannot allocate vmw_connector_state\n"); 389 return; 390 } 391 392 __drm_atomic_helper_connector_reset(connector, &vcs->base); 393 } 394 395 396 /** 397 * vmw_du_connector_destroy_state - destroy connector state 398 * @connector: DRM connector 399 * @state: state object to destroy 400 * 401 * Destroys the connector state (both common and vmw-specific) for the 402 * specified plane. 403 */ 404 void 405 vmw_du_connector_destroy_state(struct drm_connector *connector, 406 struct drm_connector_state *state) 407 { 408 drm_atomic_helper_connector_destroy_state(connector, state); 409 } 410 /* 411 * Generic framebuffer code 412 */ 413 414 /* 415 * Surface framebuffer code 416 */ 417 418 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer) 419 { 420 struct vmw_framebuffer_surface *vfbs = 421 vmw_framebuffer_to_vfbs(framebuffer); 422 struct vmw_bo *bo = vmw_user_object_buffer(&vfbs->uo); 423 struct vmw_surface *surf = vmw_user_object_surface(&vfbs->uo); 424 425 if (bo) { 426 vmw_bo_dirty_release(bo); 427 /* 428 * bo->dirty is reference counted so it being NULL 429 * means that the surface wasn't coherent to begin 430 * with and so we have to free the dirty tracker 431 * in the vmw_resource 432 */ 433 if (!bo->dirty && surf && surf->res.dirty) 434 surf->res.func->dirty_free(&surf->res); 435 } 436 drm_framebuffer_cleanup(framebuffer); 437 vmw_user_object_unref(&vfbs->uo); 438 439 kfree(vfbs); 440 } 441 442 /** 443 * vmw_kms_readback - Perform a readback from the screen system to 444 * a buffer-object backed framebuffer. 445 * 446 * @dev_priv: Pointer to the device private structure. 447 * @file_priv: Pointer to a struct drm_file identifying the caller. 448 * Must be set to NULL if @user_fence_rep is NULL. 449 * @vfb: Pointer to the buffer-object backed framebuffer. 450 * @user_fence_rep: User-space provided structure for fence information. 451 * Must be set to non-NULL if @file_priv is non-NULL. 452 * @vclips: Array of clip rects. 453 * @num_clips: Number of clip rects in @vclips. 454 * 455 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if 456 * interrupted. 457 */ 458 int vmw_kms_readback(struct vmw_private *dev_priv, 459 struct drm_file *file_priv, 460 struct vmw_framebuffer *vfb, 461 struct drm_vmw_fence_rep __user *user_fence_rep, 462 struct drm_vmw_rect *vclips, 463 uint32_t num_clips) 464 { 465 switch (dev_priv->active_display_unit) { 466 case vmw_du_screen_object: 467 return vmw_kms_sou_readback(dev_priv, file_priv, vfb, 468 user_fence_rep, vclips, num_clips, 469 NULL); 470 case vmw_du_screen_target: 471 return vmw_kms_stdu_readback(dev_priv, file_priv, vfb, 472 user_fence_rep, NULL, vclips, num_clips, 473 1, NULL); 474 default: 475 WARN_ONCE(true, 476 "Readback called with invalid display system.\n"); 477 } 478 479 return -ENOSYS; 480 } 481 482 static int vmw_framebuffer_surface_create_handle(struct drm_framebuffer *fb, 483 struct drm_file *file_priv, 484 unsigned int *handle) 485 { 486 struct vmw_framebuffer_surface *vfbs = vmw_framebuffer_to_vfbs(fb); 487 struct vmw_bo *bo = vmw_user_object_buffer(&vfbs->uo); 488 489 if (WARN_ON(!bo)) 490 return -EINVAL; 491 return drm_gem_handle_create(file_priv, &bo->tbo.base, handle); 492 } 493 494 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = { 495 .create_handle = vmw_framebuffer_surface_create_handle, 496 .destroy = vmw_framebuffer_surface_destroy, 497 .dirty = drm_atomic_helper_dirtyfb, 498 }; 499 500 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv, 501 struct vmw_user_object *uo, 502 struct vmw_framebuffer **out, 503 const struct drm_format_info *info, 504 const struct drm_mode_fb_cmd2 505 *mode_cmd) 506 507 { 508 struct drm_device *dev = &dev_priv->drm; 509 struct vmw_framebuffer_surface *vfbs; 510 struct vmw_surface *surface; 511 int ret; 512 513 /* 3D is only supported on HWv8 and newer hosts */ 514 if (dev_priv->active_display_unit == vmw_du_legacy) 515 return -ENOSYS; 516 517 surface = vmw_user_object_surface(uo); 518 519 /* 520 * Sanity checks. 521 */ 522 523 if (!drm_any_plane_has_format(&dev_priv->drm, 524 mode_cmd->pixel_format, 525 mode_cmd->modifier[0])) { 526 drm_dbg(&dev_priv->drm, 527 "unsupported pixel format %p4cc / modifier 0x%llx\n", 528 &mode_cmd->pixel_format, mode_cmd->modifier[0]); 529 return -EINVAL; 530 } 531 532 /* Surface must be marked as a scanout. */ 533 if (unlikely(!surface->metadata.scanout)) 534 return -EINVAL; 535 536 if (unlikely(surface->metadata.mip_levels[0] != 1 || 537 surface->metadata.num_sizes != 1 || 538 surface->metadata.base_size.width < mode_cmd->width || 539 surface->metadata.base_size.height < mode_cmd->height || 540 surface->metadata.base_size.depth != 1)) { 541 DRM_ERROR("Incompatible surface dimensions " 542 "for requested mode.\n"); 543 return -EINVAL; 544 } 545 546 vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL); 547 if (!vfbs) { 548 ret = -ENOMEM; 549 goto out_err1; 550 } 551 552 drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, info, mode_cmd); 553 memcpy(&vfbs->uo, uo, sizeof(vfbs->uo)); 554 vmw_user_object_ref(&vfbs->uo); 555 556 if (vfbs->uo.buffer) 557 vfbs->base.base.obj[0] = &vfbs->uo.buffer->tbo.base; 558 559 *out = &vfbs->base; 560 561 ret = drm_framebuffer_init(dev, &vfbs->base.base, 562 &vmw_framebuffer_surface_funcs); 563 if (ret) 564 goto out_err2; 565 566 return 0; 567 568 out_err2: 569 vmw_user_object_unref(&vfbs->uo); 570 kfree(vfbs); 571 out_err1: 572 return ret; 573 } 574 575 /* 576 * Buffer-object framebuffer code 577 */ 578 579 static int vmw_framebuffer_bo_create_handle(struct drm_framebuffer *fb, 580 struct drm_file *file_priv, 581 unsigned int *handle) 582 { 583 struct vmw_framebuffer_bo *vfbd = 584 vmw_framebuffer_to_vfbd(fb); 585 return drm_gem_handle_create(file_priv, &vfbd->buffer->tbo.base, handle); 586 } 587 588 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer) 589 { 590 struct vmw_framebuffer_bo *vfbd = 591 vmw_framebuffer_to_vfbd(framebuffer); 592 593 vmw_bo_dirty_release(vfbd->buffer); 594 drm_framebuffer_cleanup(framebuffer); 595 vmw_bo_unreference(&vfbd->buffer); 596 597 kfree(vfbd); 598 } 599 600 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = { 601 .create_handle = vmw_framebuffer_bo_create_handle, 602 .destroy = vmw_framebuffer_bo_destroy, 603 .dirty = drm_atomic_helper_dirtyfb, 604 }; 605 606 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv, 607 struct vmw_bo *bo, 608 struct vmw_framebuffer **out, 609 const struct drm_format_info *info, 610 const struct drm_mode_fb_cmd2 611 *mode_cmd) 612 613 { 614 struct drm_device *dev = &dev_priv->drm; 615 struct vmw_framebuffer_bo *vfbd; 616 unsigned int requested_size; 617 int ret; 618 619 requested_size = mode_cmd->height * mode_cmd->pitches[0]; 620 if (unlikely(requested_size > bo->tbo.base.size)) { 621 DRM_ERROR("Screen buffer object size is too small " 622 "for requested mode.\n"); 623 return -EINVAL; 624 } 625 626 if (!drm_any_plane_has_format(&dev_priv->drm, 627 mode_cmd->pixel_format, 628 mode_cmd->modifier[0])) { 629 drm_dbg(&dev_priv->drm, 630 "unsupported pixel format %p4cc / modifier 0x%llx\n", 631 &mode_cmd->pixel_format, mode_cmd->modifier[0]); 632 return -EINVAL; 633 } 634 635 vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL); 636 if (!vfbd) { 637 ret = -ENOMEM; 638 goto out_err1; 639 } 640 641 vfbd->base.base.obj[0] = &bo->tbo.base; 642 drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, info, mode_cmd); 643 vfbd->base.bo = true; 644 vfbd->buffer = vmw_bo_reference(bo); 645 *out = &vfbd->base; 646 647 ret = drm_framebuffer_init(dev, &vfbd->base.base, 648 &vmw_framebuffer_bo_funcs); 649 if (ret) 650 goto out_err2; 651 652 return 0; 653 654 out_err2: 655 vmw_bo_unreference(&bo); 656 kfree(vfbd); 657 out_err1: 658 return ret; 659 } 660 661 662 /** 663 * vmw_kms_srf_ok - check if a surface can be created 664 * 665 * @dev_priv: Pointer to device private struct. 666 * @width: requested width 667 * @height: requested height 668 * 669 * Surfaces need to be less than texture size 670 */ 671 static bool 672 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height) 673 { 674 if (width > dev_priv->texture_max_width || 675 height > dev_priv->texture_max_height) 676 return false; 677 678 return true; 679 } 680 681 /** 682 * vmw_kms_new_framebuffer - Create a new framebuffer. 683 * 684 * @dev_priv: Pointer to device private struct. 685 * @uo: Pointer to user object to wrap the kms framebuffer around. 686 * Either the buffer or surface inside the user object must be NULL. 687 * @info: pixel format information. 688 * @mode_cmd: Frame-buffer metadata. 689 */ 690 struct vmw_framebuffer * 691 vmw_kms_new_framebuffer(struct vmw_private *dev_priv, 692 struct vmw_user_object *uo, 693 const struct drm_format_info *info, 694 const struct drm_mode_fb_cmd2 *mode_cmd) 695 { 696 struct vmw_framebuffer *vfb = NULL; 697 int ret; 698 699 /* Create the new framebuffer depending one what we have */ 700 if (vmw_user_object_surface(uo)) { 701 ret = vmw_kms_new_framebuffer_surface(dev_priv, uo, &vfb, 702 info, mode_cmd); 703 } else if (uo->buffer) { 704 ret = vmw_kms_new_framebuffer_bo(dev_priv, uo->buffer, &vfb, 705 info, mode_cmd); 706 } else { 707 BUG(); 708 } 709 710 if (ret) 711 return ERR_PTR(ret); 712 713 return vfb; 714 } 715 716 /* 717 * Generic Kernel modesetting functions 718 */ 719 720 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev, 721 struct drm_file *file_priv, 722 const struct drm_format_info *info, 723 const struct drm_mode_fb_cmd2 *mode_cmd) 724 { 725 struct vmw_private *dev_priv = vmw_priv(dev); 726 struct vmw_framebuffer *vfb = NULL; 727 struct vmw_user_object uo = {0}; 728 struct vmw_bo *bo; 729 struct vmw_surface *surface; 730 int ret; 731 732 /* returns either a bo or surface */ 733 ret = vmw_user_object_lookup(dev_priv, file_priv, mode_cmd->handles[0], 734 &uo); 735 if (ret) { 736 DRM_ERROR("Invalid buffer object handle %u (0x%x).\n", 737 mode_cmd->handles[0], mode_cmd->handles[0]); 738 goto err_out; 739 } 740 741 742 if (vmw_user_object_surface(&uo) && 743 !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) { 744 DRM_ERROR("Surface size cannot exceed %dx%d\n", 745 dev_priv->texture_max_width, 746 dev_priv->texture_max_height); 747 ret = -EINVAL; 748 goto err_out; 749 } 750 751 752 vfb = vmw_kms_new_framebuffer(dev_priv, &uo, info, mode_cmd); 753 if (IS_ERR(vfb)) { 754 ret = PTR_ERR(vfb); 755 goto err_out; 756 } 757 758 err_out: 759 bo = vmw_user_object_buffer(&uo); 760 surface = vmw_user_object_surface(&uo); 761 /* vmw_user_object_lookup takes one ref so does new_fb */ 762 vmw_user_object_unref(&uo); 763 764 if (ret) { 765 DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret); 766 return ERR_PTR(ret); 767 } 768 769 ttm_bo_reserve(&bo->tbo, false, false, NULL); 770 ret = vmw_bo_dirty_add(bo); 771 if (!ret && surface && surface->res.func->dirty_alloc) { 772 surface->res.coherent = true; 773 ret = surface->res.func->dirty_alloc(&surface->res); 774 } 775 ttm_bo_unreserve(&bo->tbo); 776 777 return &vfb->base; 778 } 779 780 /** 781 * vmw_kms_check_display_memory - Validates display memory required for a 782 * topology 783 * @dev: DRM device 784 * @num_rects: number of drm_rect in rects 785 * @rects: array of drm_rect representing the topology to validate indexed by 786 * crtc index. 787 * 788 * Returns: 789 * 0 on success otherwise negative error code 790 */ 791 static int vmw_kms_check_display_memory(struct drm_device *dev, 792 uint32_t num_rects, 793 struct drm_rect *rects) 794 { 795 struct vmw_private *dev_priv = vmw_priv(dev); 796 struct drm_rect bounding_box = {0}; 797 u64 total_pixels = 0, pixel_mem, bb_mem; 798 int i; 799 800 for (i = 0; i < num_rects; i++) { 801 /* 802 * For STDU only individual screen (screen target) is limited by 803 * SCREENTARGET_MAX_WIDTH/HEIGHT registers. 804 */ 805 if (dev_priv->active_display_unit == vmw_du_screen_target && 806 (drm_rect_width(&rects[i]) > dev_priv->stdu_max_width || 807 drm_rect_height(&rects[i]) > dev_priv->stdu_max_height)) { 808 VMW_DEBUG_KMS("Screen size not supported.\n"); 809 return -EINVAL; 810 } 811 812 /* Bounding box upper left is at (0,0). */ 813 if (rects[i].x2 > bounding_box.x2) 814 bounding_box.x2 = rects[i].x2; 815 816 if (rects[i].y2 > bounding_box.y2) 817 bounding_box.y2 = rects[i].y2; 818 819 total_pixels += (u64) drm_rect_width(&rects[i]) * 820 (u64) drm_rect_height(&rects[i]); 821 } 822 823 /* Virtual svga device primary limits are always in 32-bpp. */ 824 pixel_mem = total_pixels * 4; 825 826 /* 827 * For HV10 and below prim_bb_mem is vram size. When 828 * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is 829 * limit on primary bounding box 830 */ 831 if (pixel_mem > dev_priv->max_primary_mem) { 832 VMW_DEBUG_KMS("Combined output size too large.\n"); 833 return -EINVAL; 834 } 835 836 /* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */ 837 if (dev_priv->active_display_unit != vmw_du_screen_target || 838 !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) { 839 bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4; 840 841 if (bb_mem > dev_priv->max_primary_mem) { 842 VMW_DEBUG_KMS("Topology is beyond supported limits.\n"); 843 return -EINVAL; 844 } 845 } 846 847 return 0; 848 } 849 850 /** 851 * vmw_crtc_state_and_lock - Return new or current crtc state with locked 852 * crtc mutex 853 * @state: The atomic state pointer containing the new atomic state 854 * @crtc: The crtc 855 * 856 * This function returns the new crtc state if it's part of the state update. 857 * Otherwise returns the current crtc state. It also makes sure that the 858 * crtc mutex is locked. 859 * 860 * Returns: A valid crtc state pointer or NULL. It may also return a 861 * pointer error, in particular -EDEADLK if locking needs to be rerun. 862 */ 863 static struct drm_crtc_state * 864 vmw_crtc_state_and_lock(struct drm_atomic_state *state, struct drm_crtc *crtc) 865 { 866 struct drm_crtc_state *crtc_state; 867 868 crtc_state = drm_atomic_get_new_crtc_state(state, crtc); 869 if (crtc_state) { 870 lockdep_assert_held(&crtc->mutex.mutex.base); 871 } else { 872 int ret = drm_modeset_lock(&crtc->mutex, state->acquire_ctx); 873 874 if (ret != 0 && ret != -EALREADY) 875 return ERR_PTR(ret); 876 877 crtc_state = crtc->state; 878 } 879 880 return crtc_state; 881 } 882 883 /** 884 * vmw_kms_check_implicit - Verify that all implicit display units scan out 885 * from the same fb after the new state is committed. 886 * @dev: The drm_device. 887 * @state: The new state to be checked. 888 * 889 * Returns: 890 * Zero on success, 891 * -EINVAL on invalid state, 892 * -EDEADLK if modeset locking needs to be rerun. 893 */ 894 static int vmw_kms_check_implicit(struct drm_device *dev, 895 struct drm_atomic_state *state) 896 { 897 struct drm_framebuffer *implicit_fb = NULL; 898 struct drm_crtc *crtc; 899 struct drm_crtc_state *crtc_state; 900 struct drm_plane_state *plane_state; 901 902 drm_for_each_crtc(crtc, dev) { 903 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 904 905 if (!du->is_implicit) 906 continue; 907 908 crtc_state = vmw_crtc_state_and_lock(state, crtc); 909 if (IS_ERR(crtc_state)) 910 return PTR_ERR(crtc_state); 911 912 if (!crtc_state || !crtc_state->enable) 913 continue; 914 915 /* 916 * Can't move primary planes across crtcs, so this is OK. 917 * It also means we don't need to take the plane mutex. 918 */ 919 plane_state = du->primary.state; 920 if (plane_state->crtc != crtc) 921 continue; 922 923 if (!implicit_fb) 924 implicit_fb = plane_state->fb; 925 else if (implicit_fb != plane_state->fb) 926 return -EINVAL; 927 } 928 929 return 0; 930 } 931 932 /** 933 * vmw_kms_check_topology - Validates topology in drm_atomic_state 934 * @dev: DRM device 935 * @state: the driver state object 936 * 937 * Returns: 938 * 0 on success otherwise negative error code 939 */ 940 static int vmw_kms_check_topology(struct drm_device *dev, 941 struct drm_atomic_state *state) 942 { 943 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 944 struct drm_rect *rects; 945 struct drm_crtc *crtc; 946 uint32_t i; 947 int ret = 0; 948 949 rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect), 950 GFP_KERNEL); 951 if (!rects) 952 return -ENOMEM; 953 954 drm_for_each_crtc(crtc, dev) { 955 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 956 struct drm_crtc_state *crtc_state; 957 958 i = drm_crtc_index(crtc); 959 960 crtc_state = vmw_crtc_state_and_lock(state, crtc); 961 if (IS_ERR(crtc_state)) { 962 ret = PTR_ERR(crtc_state); 963 goto clean; 964 } 965 966 if (!crtc_state) 967 continue; 968 969 if (crtc_state->enable) { 970 rects[i].x1 = du->gui_x; 971 rects[i].y1 = du->gui_y; 972 rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay; 973 rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay; 974 } else { 975 rects[i].x1 = 0; 976 rects[i].y1 = 0; 977 rects[i].x2 = 0; 978 rects[i].y2 = 0; 979 } 980 } 981 982 /* Determine change to topology due to new atomic state */ 983 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, 984 new_crtc_state, i) { 985 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 986 struct drm_connector *connector; 987 struct drm_connector_state *conn_state; 988 struct vmw_connector_state *vmw_conn_state; 989 990 if (!du->pref_active && new_crtc_state->enable) { 991 VMW_DEBUG_KMS("Enabling a disabled display unit\n"); 992 ret = -EINVAL; 993 goto clean; 994 } 995 996 /* 997 * For vmwgfx each crtc has only one connector attached and it 998 * is not changed so don't really need to check the 999 * crtc->connector_mask and iterate over it. 1000 */ 1001 connector = &du->connector; 1002 conn_state = drm_atomic_get_connector_state(state, connector); 1003 if (IS_ERR(conn_state)) { 1004 ret = PTR_ERR(conn_state); 1005 goto clean; 1006 } 1007 1008 vmw_conn_state = vmw_connector_state_to_vcs(conn_state); 1009 vmw_conn_state->gui_x = du->gui_x; 1010 vmw_conn_state->gui_y = du->gui_y; 1011 } 1012 1013 ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc, 1014 rects); 1015 1016 clean: 1017 kfree(rects); 1018 return ret; 1019 } 1020 1021 /** 1022 * vmw_kms_atomic_check_modeset- validate state object for modeset changes 1023 * 1024 * @dev: DRM device 1025 * @state: the driver state object 1026 * 1027 * This is a simple wrapper around drm_atomic_helper_check_modeset() for 1028 * us to assign a value to mode->crtc_clock so that 1029 * drm_calc_timestamping_constants() won't throw an error message 1030 * 1031 * Returns: 1032 * Zero for success or -errno 1033 */ 1034 static int 1035 vmw_kms_atomic_check_modeset(struct drm_device *dev, 1036 struct drm_atomic_state *state) 1037 { 1038 struct drm_crtc *crtc; 1039 struct drm_crtc_state *crtc_state; 1040 bool need_modeset = false; 1041 int i, ret; 1042 1043 ret = drm_atomic_helper_check(dev, state); 1044 if (ret) 1045 return ret; 1046 1047 ret = vmw_kms_check_implicit(dev, state); 1048 if (ret) { 1049 VMW_DEBUG_KMS("Invalid implicit state\n"); 1050 return ret; 1051 } 1052 1053 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 1054 if (drm_atomic_crtc_needs_modeset(crtc_state)) 1055 need_modeset = true; 1056 } 1057 1058 if (need_modeset) 1059 return vmw_kms_check_topology(dev, state); 1060 1061 return ret; 1062 } 1063 1064 static const struct drm_mode_config_funcs vmw_kms_funcs = { 1065 .fb_create = vmw_kms_fb_create, 1066 .atomic_check = vmw_kms_atomic_check_modeset, 1067 .atomic_commit = drm_atomic_helper_commit, 1068 }; 1069 1070 static int vmw_kms_generic_present(struct vmw_private *dev_priv, 1071 struct drm_file *file_priv, 1072 struct vmw_framebuffer *vfb, 1073 struct vmw_surface *surface, 1074 uint32_t sid, 1075 int32_t destX, int32_t destY, 1076 struct drm_vmw_rect *clips, 1077 uint32_t num_clips) 1078 { 1079 return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips, 1080 &surface->res, destX, destY, 1081 num_clips, 1, NULL, NULL); 1082 } 1083 1084 1085 int vmw_kms_present(struct vmw_private *dev_priv, 1086 struct drm_file *file_priv, 1087 struct vmw_framebuffer *vfb, 1088 struct vmw_surface *surface, 1089 uint32_t sid, 1090 int32_t destX, int32_t destY, 1091 struct drm_vmw_rect *clips, 1092 uint32_t num_clips) 1093 { 1094 int ret; 1095 1096 switch (dev_priv->active_display_unit) { 1097 case vmw_du_screen_target: 1098 ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips, 1099 &surface->res, destX, destY, 1100 num_clips, 1, NULL, NULL); 1101 break; 1102 case vmw_du_screen_object: 1103 ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface, 1104 sid, destX, destY, clips, 1105 num_clips); 1106 break; 1107 default: 1108 WARN_ONCE(true, 1109 "Present called with invalid display system.\n"); 1110 ret = -ENOSYS; 1111 break; 1112 } 1113 if (ret) 1114 return ret; 1115 1116 vmw_cmd_flush(dev_priv, false); 1117 1118 return 0; 1119 } 1120 1121 static void 1122 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv) 1123 { 1124 if (dev_priv->hotplug_mode_update_property) 1125 return; 1126 1127 dev_priv->hotplug_mode_update_property = 1128 drm_property_create_range(&dev_priv->drm, 1129 DRM_MODE_PROP_IMMUTABLE, 1130 "hotplug_mode_update", 0, 1); 1131 } 1132 1133 static void 1134 vmw_atomic_commit_tail(struct drm_atomic_state *old_state) 1135 { 1136 struct vmw_private *vmw = vmw_priv(old_state->dev); 1137 struct drm_crtc *crtc; 1138 struct drm_crtc_state *old_crtc_state; 1139 int i; 1140 1141 drm_atomic_helper_commit_tail(old_state); 1142 1143 if (vmw->vkms_enabled) { 1144 for_each_old_crtc_in_state(old_state, crtc, old_crtc_state, i) { 1145 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1146 (void)old_crtc_state; 1147 flush_work(&du->vkms.crc_generator_work); 1148 } 1149 } 1150 } 1151 1152 static const struct drm_mode_config_helper_funcs vmw_mode_config_helpers = { 1153 .atomic_commit_tail = vmw_atomic_commit_tail, 1154 }; 1155 1156 int vmw_kms_init(struct vmw_private *dev_priv) 1157 { 1158 struct drm_device *dev = &dev_priv->drm; 1159 int ret; 1160 static const char *display_unit_names[] = { 1161 "Invalid", 1162 "Legacy", 1163 "Screen Object", 1164 "Screen Target", 1165 "Invalid (max)" 1166 }; 1167 1168 drm_mode_config_init(dev); 1169 dev->mode_config.funcs = &vmw_kms_funcs; 1170 dev->mode_config.min_width = 1; 1171 dev->mode_config.min_height = 1; 1172 dev->mode_config.max_width = dev_priv->texture_max_width; 1173 dev->mode_config.max_height = dev_priv->texture_max_height; 1174 dev->mode_config.preferred_depth = dev_priv->assume_16bpp ? 16 : 32; 1175 dev->mode_config.helper_private = &vmw_mode_config_helpers; 1176 1177 drm_mode_create_suggested_offset_properties(dev); 1178 vmw_kms_create_hotplug_mode_update_property(dev_priv); 1179 1180 ret = vmw_kms_stdu_init_display(dev_priv); 1181 if (ret) { 1182 ret = vmw_kms_sou_init_display(dev_priv); 1183 if (ret) /* Fallback */ 1184 ret = vmw_kms_ldu_init_display(dev_priv); 1185 } 1186 BUILD_BUG_ON(ARRAY_SIZE(display_unit_names) != (vmw_du_max + 1)); 1187 drm_info(&dev_priv->drm, "%s display unit initialized\n", 1188 display_unit_names[dev_priv->active_display_unit]); 1189 1190 return ret; 1191 } 1192 1193 int vmw_kms_close(struct vmw_private *dev_priv) 1194 { 1195 int ret = 0; 1196 1197 /* 1198 * Docs says we should take the lock before calling this function 1199 * but since it destroys encoders and our destructor calls 1200 * drm_encoder_cleanup which takes the lock we deadlock. 1201 */ 1202 drm_mode_config_cleanup(&dev_priv->drm); 1203 if (dev_priv->active_display_unit == vmw_du_legacy) 1204 ret = vmw_kms_ldu_close_display(dev_priv); 1205 1206 return ret; 1207 } 1208 1209 int vmw_kms_write_svga(struct vmw_private *vmw_priv, 1210 unsigned width, unsigned height, unsigned pitch, 1211 unsigned bpp, unsigned depth) 1212 { 1213 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1214 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch); 1215 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1216 vmw_fifo_mem_write(vmw_priv, SVGA_FIFO_PITCHLOCK, pitch); 1217 vmw_write(vmw_priv, SVGA_REG_WIDTH, width); 1218 vmw_write(vmw_priv, SVGA_REG_HEIGHT, height); 1219 if ((vmw_priv->capabilities & SVGA_CAP_8BIT_EMULATION) != 0) 1220 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp); 1221 1222 if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) { 1223 DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n", 1224 depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH)); 1225 return -EINVAL; 1226 } 1227 1228 return 0; 1229 } 1230 1231 static 1232 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv, 1233 u64 pitch, 1234 u64 height) 1235 { 1236 return (pitch * height) < (u64)dev_priv->vram_size; 1237 } 1238 1239 /** 1240 * vmw_du_update_layout - Update the display unit with topology from resolution 1241 * plugin and generate DRM uevent 1242 * @dev_priv: device private 1243 * @num_rects: number of drm_rect in rects 1244 * @rects: toplogy to update 1245 */ 1246 static int vmw_du_update_layout(struct vmw_private *dev_priv, 1247 unsigned int num_rects, struct drm_rect *rects) 1248 { 1249 struct drm_device *dev = &dev_priv->drm; 1250 struct vmw_display_unit *du; 1251 struct drm_connector *con; 1252 struct drm_connector_list_iter conn_iter; 1253 struct drm_modeset_acquire_ctx ctx; 1254 struct drm_crtc *crtc; 1255 int ret; 1256 1257 /* Currently gui_x/y is protected with the crtc mutex */ 1258 mutex_lock(&dev->mode_config.mutex); 1259 drm_modeset_acquire_init(&ctx, 0); 1260 retry: 1261 drm_for_each_crtc(crtc, dev) { 1262 ret = drm_modeset_lock(&crtc->mutex, &ctx); 1263 if (ret < 0) { 1264 if (ret == -EDEADLK) { 1265 drm_modeset_backoff(&ctx); 1266 goto retry; 1267 } 1268 goto out_fini; 1269 } 1270 } 1271 1272 drm_connector_list_iter_begin(dev, &conn_iter); 1273 drm_for_each_connector_iter(con, &conn_iter) { 1274 du = vmw_connector_to_du(con); 1275 if (num_rects > du->unit) { 1276 du->pref_width = drm_rect_width(&rects[du->unit]); 1277 du->pref_height = drm_rect_height(&rects[du->unit]); 1278 du->pref_active = true; 1279 du->gui_x = rects[du->unit].x1; 1280 du->gui_y = rects[du->unit].y1; 1281 } else { 1282 du->pref_width = VMWGFX_MIN_INITIAL_WIDTH; 1283 du->pref_height = VMWGFX_MIN_INITIAL_HEIGHT; 1284 du->pref_active = false; 1285 du->gui_x = 0; 1286 du->gui_y = 0; 1287 } 1288 } 1289 drm_connector_list_iter_end(&conn_iter); 1290 1291 list_for_each_entry(con, &dev->mode_config.connector_list, head) { 1292 du = vmw_connector_to_du(con); 1293 if (num_rects > du->unit) { 1294 drm_object_property_set_value 1295 (&con->base, dev->mode_config.suggested_x_property, 1296 du->gui_x); 1297 drm_object_property_set_value 1298 (&con->base, dev->mode_config.suggested_y_property, 1299 du->gui_y); 1300 } else { 1301 drm_object_property_set_value 1302 (&con->base, dev->mode_config.suggested_x_property, 1303 0); 1304 drm_object_property_set_value 1305 (&con->base, dev->mode_config.suggested_y_property, 1306 0); 1307 } 1308 con->status = vmw_du_connector_detect(con, true); 1309 } 1310 out_fini: 1311 drm_modeset_drop_locks(&ctx); 1312 drm_modeset_acquire_fini(&ctx); 1313 mutex_unlock(&dev->mode_config.mutex); 1314 1315 drm_sysfs_hotplug_event(dev); 1316 1317 return 0; 1318 } 1319 1320 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc, 1321 u16 *r, u16 *g, u16 *b, 1322 uint32_t size, 1323 struct drm_modeset_acquire_ctx *ctx) 1324 { 1325 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 1326 int i; 1327 1328 for (i = 0; i < size; i++) { 1329 DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i, 1330 r[i], g[i], b[i]); 1331 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8); 1332 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8); 1333 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8); 1334 } 1335 1336 return 0; 1337 } 1338 1339 int vmw_du_connector_dpms(struct drm_connector *connector, int mode) 1340 { 1341 return 0; 1342 } 1343 1344 enum drm_connector_status 1345 vmw_du_connector_detect(struct drm_connector *connector, bool force) 1346 { 1347 uint32_t num_displays; 1348 struct drm_device *dev = connector->dev; 1349 struct vmw_private *dev_priv = vmw_priv(dev); 1350 struct vmw_display_unit *du = vmw_connector_to_du(connector); 1351 1352 num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS); 1353 1354 return ((vmw_connector_to_du(connector)->unit < num_displays && 1355 du->pref_active) ? 1356 connector_status_connected : connector_status_disconnected); 1357 } 1358 1359 /** 1360 * vmw_guess_mode_timing - Provide fake timings for a 1361 * 60Hz vrefresh mode. 1362 * 1363 * @mode: Pointer to a struct drm_display_mode with hdisplay and vdisplay 1364 * members filled in. 1365 */ 1366 void vmw_guess_mode_timing(struct drm_display_mode *mode) 1367 { 1368 mode->hsync_start = mode->hdisplay + 50; 1369 mode->hsync_end = mode->hsync_start + 50; 1370 mode->htotal = mode->hsync_end + 50; 1371 1372 mode->vsync_start = mode->vdisplay + 50; 1373 mode->vsync_end = mode->vsync_start + 50; 1374 mode->vtotal = mode->vsync_end + 50; 1375 1376 mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6; 1377 } 1378 1379 1380 /** 1381 * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl 1382 * @dev: drm device for the ioctl 1383 * @data: data pointer for the ioctl 1384 * @file_priv: drm file for the ioctl call 1385 * 1386 * Update preferred topology of display unit as per ioctl request. The topology 1387 * is expressed as array of drm_vmw_rect. 1388 * e.g. 1389 * [0 0 640 480] [640 0 800 600] [0 480 640 480] 1390 * 1391 * NOTE: 1392 * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside 1393 * device limit on topology, x + w and y + h (lower right) cannot be greater 1394 * than INT_MAX. So topology beyond these limits will return with error. 1395 * 1396 * Returns: 1397 * Zero on success, negative errno on failure. 1398 */ 1399 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data, 1400 struct drm_file *file_priv) 1401 { 1402 struct vmw_private *dev_priv = vmw_priv(dev); 1403 struct drm_mode_config *mode_config = &dev->mode_config; 1404 struct drm_vmw_update_layout_arg *arg = 1405 (struct drm_vmw_update_layout_arg *)data; 1406 const void __user *user_rects; 1407 struct drm_vmw_rect *rects; 1408 struct drm_rect *drm_rects; 1409 unsigned rects_size; 1410 int ret, i; 1411 1412 if (!arg->num_outputs) { 1413 struct drm_rect def_rect = {0, 0, 1414 VMWGFX_MIN_INITIAL_WIDTH, 1415 VMWGFX_MIN_INITIAL_HEIGHT}; 1416 vmw_du_update_layout(dev_priv, 1, &def_rect); 1417 return 0; 1418 } else if (arg->num_outputs > VMWGFX_NUM_DISPLAY_UNITS) { 1419 return -E2BIG; 1420 } 1421 1422 rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect); 1423 rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect), 1424 GFP_KERNEL); 1425 if (unlikely(!rects)) 1426 return -ENOMEM; 1427 1428 user_rects = (void __user *)(unsigned long)arg->rects; 1429 ret = copy_from_user(rects, user_rects, rects_size); 1430 if (unlikely(ret != 0)) { 1431 DRM_ERROR("Failed to get rects.\n"); 1432 ret = -EFAULT; 1433 goto out_free; 1434 } 1435 1436 drm_rects = (struct drm_rect *)rects; 1437 1438 VMW_DEBUG_KMS("Layout count = %u\n", arg->num_outputs); 1439 for (i = 0; i < arg->num_outputs; i++) { 1440 struct drm_vmw_rect curr_rect; 1441 1442 /* Verify user-space for overflow as kernel use drm_rect */ 1443 if ((rects[i].x + rects[i].w > INT_MAX) || 1444 (rects[i].y + rects[i].h > INT_MAX)) { 1445 ret = -ERANGE; 1446 goto out_free; 1447 } 1448 1449 curr_rect = rects[i]; 1450 drm_rects[i].x1 = curr_rect.x; 1451 drm_rects[i].y1 = curr_rect.y; 1452 drm_rects[i].x2 = curr_rect.x + curr_rect.w; 1453 drm_rects[i].y2 = curr_rect.y + curr_rect.h; 1454 1455 VMW_DEBUG_KMS(" x1 = %d y1 = %d x2 = %d y2 = %d\n", 1456 drm_rects[i].x1, drm_rects[i].y1, 1457 drm_rects[i].x2, drm_rects[i].y2); 1458 1459 /* 1460 * Currently this check is limiting the topology within 1461 * mode_config->max (which actually is max texture size 1462 * supported by virtual device). This limit is here to address 1463 * window managers that create a big framebuffer for whole 1464 * topology. 1465 */ 1466 if (drm_rects[i].x1 < 0 || drm_rects[i].y1 < 0 || 1467 drm_rects[i].x2 > mode_config->max_width || 1468 drm_rects[i].y2 > mode_config->max_height) { 1469 VMW_DEBUG_KMS("Invalid layout %d %d %d %d\n", 1470 drm_rects[i].x1, drm_rects[i].y1, 1471 drm_rects[i].x2, drm_rects[i].y2); 1472 ret = -EINVAL; 1473 goto out_free; 1474 } 1475 } 1476 1477 ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects); 1478 1479 if (ret == 0) 1480 vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects); 1481 1482 out_free: 1483 kfree(rects); 1484 return ret; 1485 } 1486 1487 /** 1488 * vmw_kms_helper_dirty - Helper to build commands and perform actions based 1489 * on a set of cliprects and a set of display units. 1490 * 1491 * @dev_priv: Pointer to a device private structure. 1492 * @framebuffer: Pointer to the framebuffer on which to perform the actions. 1493 * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL. 1494 * Cliprects are given in framebuffer coordinates. 1495 * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must 1496 * be NULL. Cliprects are given in source coordinates. 1497 * @dest_x: X coordinate offset for the crtc / destination clip rects. 1498 * @dest_y: Y coordinate offset for the crtc / destination clip rects. 1499 * @num_clips: Number of cliprects in the @clips or @vclips array. 1500 * @increment: Integer with which to increment the clip counter when looping. 1501 * Used to skip a predetermined number of clip rects. 1502 * @dirty: Closure structure. See the description of struct vmw_kms_dirty. 1503 */ 1504 int vmw_kms_helper_dirty(struct vmw_private *dev_priv, 1505 struct vmw_framebuffer *framebuffer, 1506 const struct drm_clip_rect *clips, 1507 const struct drm_vmw_rect *vclips, 1508 s32 dest_x, s32 dest_y, 1509 int num_clips, 1510 int increment, 1511 struct vmw_kms_dirty *dirty) 1512 { 1513 struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS]; 1514 struct drm_crtc *crtc; 1515 u32 num_units = 0; 1516 u32 i, k; 1517 1518 dirty->dev_priv = dev_priv; 1519 1520 /* If crtc is passed, no need to iterate over other display units */ 1521 if (dirty->crtc) { 1522 units[num_units++] = vmw_crtc_to_du(dirty->crtc); 1523 } else { 1524 list_for_each_entry(crtc, &dev_priv->drm.mode_config.crtc_list, 1525 head) { 1526 struct drm_plane *plane = crtc->primary; 1527 1528 if (plane->state->fb == &framebuffer->base) 1529 units[num_units++] = vmw_crtc_to_du(crtc); 1530 } 1531 } 1532 1533 for (k = 0; k < num_units; k++) { 1534 struct vmw_display_unit *unit = units[k]; 1535 s32 crtc_x = unit->crtc.x; 1536 s32 crtc_y = unit->crtc.y; 1537 s32 crtc_width = unit->crtc.mode.hdisplay; 1538 s32 crtc_height = unit->crtc.mode.vdisplay; 1539 const struct drm_clip_rect *clips_ptr = clips; 1540 const struct drm_vmw_rect *vclips_ptr = vclips; 1541 1542 dirty->unit = unit; 1543 if (dirty->fifo_reserve_size > 0) { 1544 dirty->cmd = VMW_CMD_RESERVE(dev_priv, 1545 dirty->fifo_reserve_size); 1546 if (!dirty->cmd) 1547 return -ENOMEM; 1548 1549 memset(dirty->cmd, 0, dirty->fifo_reserve_size); 1550 } 1551 dirty->num_hits = 0; 1552 for (i = 0; i < num_clips; i++, clips_ptr += increment, 1553 vclips_ptr += increment) { 1554 s32 clip_left; 1555 s32 clip_top; 1556 1557 /* 1558 * Select clip array type. Note that integer type 1559 * in @clips is unsigned short, whereas in @vclips 1560 * it's 32-bit. 1561 */ 1562 if (clips) { 1563 dirty->fb_x = (s32) clips_ptr->x1; 1564 dirty->fb_y = (s32) clips_ptr->y1; 1565 dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x - 1566 crtc_x; 1567 dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y - 1568 crtc_y; 1569 } else { 1570 dirty->fb_x = vclips_ptr->x; 1571 dirty->fb_y = vclips_ptr->y; 1572 dirty->unit_x2 = dirty->fb_x + vclips_ptr->w + 1573 dest_x - crtc_x; 1574 dirty->unit_y2 = dirty->fb_y + vclips_ptr->h + 1575 dest_y - crtc_y; 1576 } 1577 1578 dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x; 1579 dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y; 1580 1581 /* Skip this clip if it's outside the crtc region */ 1582 if (dirty->unit_x1 >= crtc_width || 1583 dirty->unit_y1 >= crtc_height || 1584 dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0) 1585 continue; 1586 1587 /* Clip right and bottom to crtc limits */ 1588 dirty->unit_x2 = min_t(s32, dirty->unit_x2, 1589 crtc_width); 1590 dirty->unit_y2 = min_t(s32, dirty->unit_y2, 1591 crtc_height); 1592 1593 /* Clip left and top to crtc limits */ 1594 clip_left = min_t(s32, dirty->unit_x1, 0); 1595 clip_top = min_t(s32, dirty->unit_y1, 0); 1596 dirty->unit_x1 -= clip_left; 1597 dirty->unit_y1 -= clip_top; 1598 dirty->fb_x -= clip_left; 1599 dirty->fb_y -= clip_top; 1600 1601 dirty->clip(dirty); 1602 } 1603 1604 dirty->fifo_commit(dirty); 1605 } 1606 1607 return 0; 1608 } 1609 1610 /** 1611 * vmw_kms_helper_validation_finish - Helper for post KMS command submission 1612 * cleanup and fencing 1613 * @dev_priv: Pointer to the device-private struct 1614 * @file_priv: Pointer identifying the client when user-space fencing is used 1615 * @ctx: Pointer to the validation context 1616 * @out_fence: If non-NULL, returned refcounted fence-pointer 1617 * @user_fence_rep: If non-NULL, pointer to user-space address area 1618 * in which to copy user-space fence info 1619 */ 1620 void vmw_kms_helper_validation_finish(struct vmw_private *dev_priv, 1621 struct drm_file *file_priv, 1622 struct vmw_validation_context *ctx, 1623 struct vmw_fence_obj **out_fence, 1624 struct drm_vmw_fence_rep __user * 1625 user_fence_rep) 1626 { 1627 struct vmw_fence_obj *fence = NULL; 1628 uint32_t handle = 0; 1629 int ret = 0; 1630 1631 if (file_priv || user_fence_rep || vmw_validation_has_bos(ctx) || 1632 out_fence) 1633 ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence, 1634 file_priv ? &handle : NULL); 1635 vmw_validation_done(ctx, fence); 1636 if (file_priv) 1637 vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv), 1638 ret, user_fence_rep, fence, 1639 handle, -1); 1640 if (out_fence) 1641 *out_fence = fence; 1642 else 1643 vmw_fence_obj_unreference(&fence); 1644 } 1645 1646 /** 1647 * vmw_kms_create_implicit_placement_property - Set up the implicit placement 1648 * property. 1649 * 1650 * @dev_priv: Pointer to a device private struct. 1651 * 1652 * Sets up the implicit placement property unless it's already set up. 1653 */ 1654 void 1655 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv) 1656 { 1657 if (dev_priv->implicit_placement_property) 1658 return; 1659 1660 dev_priv->implicit_placement_property = 1661 drm_property_create_range(&dev_priv->drm, 1662 DRM_MODE_PROP_IMMUTABLE, 1663 "implicit_placement", 0, 1); 1664 } 1665 1666 /** 1667 * vmw_kms_suspend - Save modesetting state and turn modesetting off. 1668 * 1669 * @dev: Pointer to the drm device 1670 * Return: 0 on success. Negative error code on failure. 1671 */ 1672 int vmw_kms_suspend(struct drm_device *dev) 1673 { 1674 struct vmw_private *dev_priv = vmw_priv(dev); 1675 1676 dev_priv->suspend_state = drm_atomic_helper_suspend(dev); 1677 if (IS_ERR(dev_priv->suspend_state)) { 1678 int ret = PTR_ERR(dev_priv->suspend_state); 1679 1680 DRM_ERROR("Failed kms suspend: %d\n", ret); 1681 dev_priv->suspend_state = NULL; 1682 1683 return ret; 1684 } 1685 1686 return 0; 1687 } 1688 1689 1690 /** 1691 * vmw_kms_resume - Re-enable modesetting and restore state 1692 * 1693 * @dev: Pointer to the drm device 1694 * Return: 0 on success. Negative error code on failure. 1695 * 1696 * State is resumed from a previous vmw_kms_suspend(). It's illegal 1697 * to call this function without a previous vmw_kms_suspend(). 1698 */ 1699 int vmw_kms_resume(struct drm_device *dev) 1700 { 1701 struct vmw_private *dev_priv = vmw_priv(dev); 1702 int ret; 1703 1704 if (WARN_ON(!dev_priv->suspend_state)) 1705 return 0; 1706 1707 ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state); 1708 dev_priv->suspend_state = NULL; 1709 1710 return ret; 1711 } 1712 1713 /** 1714 * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost 1715 * 1716 * @dev: Pointer to the drm device 1717 */ 1718 void vmw_kms_lost_device(struct drm_device *dev) 1719 { 1720 drm_atomic_helper_shutdown(dev); 1721 } 1722 1723 /** 1724 * vmw_du_helper_plane_update - Helper to do plane update on a display unit. 1725 * @update: The closure structure. 1726 * 1727 * Call this helper after setting callbacks in &vmw_du_update_plane to do plane 1728 * update on display unit. 1729 * 1730 * Return: 0 on success or a negative error code on failure. 1731 */ 1732 int vmw_du_helper_plane_update(struct vmw_du_update_plane *update) 1733 { 1734 struct drm_plane_state *state = update->plane->state; 1735 struct drm_plane_state *old_state = update->old_state; 1736 struct drm_atomic_helper_damage_iter iter; 1737 struct drm_rect clip; 1738 struct drm_rect bb; 1739 DECLARE_VAL_CONTEXT(val_ctx, NULL, 0); 1740 uint32_t reserved_size = 0; 1741 uint32_t submit_size = 0; 1742 uint32_t curr_size = 0; 1743 uint32_t num_hits = 0; 1744 void *cmd_start; 1745 char *cmd_next; 1746 int ret; 1747 1748 /* 1749 * Iterate in advance to check if really need plane update and find the 1750 * number of clips that actually are in plane src for fifo allocation. 1751 */ 1752 drm_atomic_helper_damage_iter_init(&iter, old_state, state); 1753 drm_atomic_for_each_plane_damage(&iter, &clip) 1754 num_hits++; 1755 1756 if (num_hits == 0) 1757 return 0; 1758 1759 if (update->vfb->bo) { 1760 struct vmw_framebuffer_bo *vfbbo = 1761 container_of(update->vfb, typeof(*vfbbo), base); 1762 1763 /* 1764 * For screen targets we want a mappable bo, for everything else we want 1765 * accelerated i.e. host backed (vram or gmr) bo. If the display unit 1766 * is not screen target then mob's shouldn't be available. 1767 */ 1768 if (update->dev_priv->active_display_unit == vmw_du_screen_target) { 1769 vmw_bo_placement_set(vfbbo->buffer, 1770 VMW_BO_DOMAIN_SYS | VMW_BO_DOMAIN_MOB | VMW_BO_DOMAIN_GMR, 1771 VMW_BO_DOMAIN_SYS | VMW_BO_DOMAIN_MOB | VMW_BO_DOMAIN_GMR); 1772 } else { 1773 WARN_ON(update->dev_priv->has_mob); 1774 vmw_bo_placement_set_default_accelerated(vfbbo->buffer); 1775 } 1776 ret = vmw_validation_add_bo(&val_ctx, vfbbo->buffer); 1777 } else { 1778 struct vmw_framebuffer_surface *vfbs = 1779 container_of(update->vfb, typeof(*vfbs), base); 1780 struct vmw_surface *surf = vmw_user_object_surface(&vfbs->uo); 1781 1782 ret = vmw_validation_add_resource(&val_ctx, &surf->res, 1783 0, VMW_RES_DIRTY_NONE, NULL, 1784 NULL); 1785 } 1786 1787 if (ret) 1788 return ret; 1789 1790 ret = vmw_validation_prepare(&val_ctx, update->mutex, update->intr); 1791 if (ret) 1792 goto out_unref; 1793 1794 reserved_size = update->calc_fifo_size(update, num_hits); 1795 cmd_start = VMW_CMD_RESERVE(update->dev_priv, reserved_size); 1796 if (!cmd_start) { 1797 ret = -ENOMEM; 1798 goto out_revert; 1799 } 1800 1801 cmd_next = cmd_start; 1802 1803 if (update->post_prepare) { 1804 curr_size = update->post_prepare(update, cmd_next); 1805 cmd_next += curr_size; 1806 submit_size += curr_size; 1807 } 1808 1809 if (update->pre_clip) { 1810 curr_size = update->pre_clip(update, cmd_next, num_hits); 1811 cmd_next += curr_size; 1812 submit_size += curr_size; 1813 } 1814 1815 bb.x1 = INT_MAX; 1816 bb.y1 = INT_MAX; 1817 bb.x2 = INT_MIN; 1818 bb.y2 = INT_MIN; 1819 1820 drm_atomic_helper_damage_iter_init(&iter, old_state, state); 1821 drm_atomic_for_each_plane_damage(&iter, &clip) { 1822 uint32_t fb_x = clip.x1; 1823 uint32_t fb_y = clip.y1; 1824 1825 vmw_du_translate_to_crtc(state, &clip); 1826 if (update->clip) { 1827 curr_size = update->clip(update, cmd_next, &clip, fb_x, 1828 fb_y); 1829 cmd_next += curr_size; 1830 submit_size += curr_size; 1831 } 1832 bb.x1 = min_t(int, bb.x1, clip.x1); 1833 bb.y1 = min_t(int, bb.y1, clip.y1); 1834 bb.x2 = max_t(int, bb.x2, clip.x2); 1835 bb.y2 = max_t(int, bb.y2, clip.y2); 1836 } 1837 1838 curr_size = update->post_clip(update, cmd_next, &bb); 1839 submit_size += curr_size; 1840 1841 if (reserved_size < submit_size) 1842 submit_size = 0; 1843 1844 vmw_cmd_commit(update->dev_priv, submit_size); 1845 1846 vmw_kms_helper_validation_finish(update->dev_priv, NULL, &val_ctx, 1847 update->out_fence, NULL); 1848 return ret; 1849 1850 out_revert: 1851 vmw_validation_revert(&val_ctx); 1852 1853 out_unref: 1854 vmw_validation_unref_lists(&val_ctx); 1855 return ret; 1856 } 1857 1858 /** 1859 * vmw_connector_mode_valid - implements drm_connector_helper_funcs.mode_valid callback 1860 * 1861 * @connector: the drm connector, part of a DU container 1862 * @mode: drm mode to check 1863 * 1864 * Returns MODE_OK on success, or a drm_mode_status error code. 1865 */ 1866 enum drm_mode_status vmw_connector_mode_valid(struct drm_connector *connector, 1867 const struct drm_display_mode *mode) 1868 { 1869 enum drm_mode_status ret; 1870 struct drm_device *dev = connector->dev; 1871 struct vmw_private *dev_priv = vmw_priv(dev); 1872 u32 assumed_cpp = 4; 1873 1874 if (dev_priv->assume_16bpp) 1875 assumed_cpp = 2; 1876 1877 ret = drm_mode_validate_size(mode, dev_priv->texture_max_width, 1878 dev_priv->texture_max_height); 1879 if (ret != MODE_OK) 1880 return ret; 1881 1882 if (!vmw_kms_validate_mode_vram(dev_priv, 1883 mode->hdisplay * assumed_cpp, 1884 mode->vdisplay)) 1885 return MODE_MEM; 1886 1887 return MODE_OK; 1888 } 1889 1890 /** 1891 * vmw_connector_get_modes - implements drm_connector_helper_funcs.get_modes callback 1892 * 1893 * @connector: the drm connector, part of a DU container 1894 * 1895 * Returns the number of added modes. 1896 */ 1897 int vmw_connector_get_modes(struct drm_connector *connector) 1898 { 1899 struct vmw_display_unit *du = vmw_connector_to_du(connector); 1900 struct drm_device *dev = connector->dev; 1901 struct vmw_private *dev_priv = vmw_priv(dev); 1902 struct drm_display_mode *mode = NULL; 1903 struct drm_display_mode prefmode = { DRM_MODE("preferred", 1904 DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED, 1905 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1906 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) 1907 }; 1908 u32 max_width; 1909 u32 max_height; 1910 u32 num_modes; 1911 1912 /* Add preferred mode */ 1913 mode = drm_mode_duplicate(dev, &prefmode); 1914 if (!mode) 1915 return 0; 1916 1917 mode->hdisplay = du->pref_width; 1918 mode->vdisplay = du->pref_height; 1919 vmw_guess_mode_timing(mode); 1920 drm_mode_set_name(mode); 1921 1922 drm_mode_probed_add(connector, mode); 1923 drm_dbg_kms(dev, "preferred mode " DRM_MODE_FMT "\n", DRM_MODE_ARG(mode)); 1924 1925 /* Probe connector for all modes not exceeding our geom limits */ 1926 max_width = dev_priv->texture_max_width; 1927 max_height = dev_priv->texture_max_height; 1928 1929 if (dev_priv->active_display_unit == vmw_du_screen_target) { 1930 max_width = min(dev_priv->stdu_max_width, max_width); 1931 max_height = min(dev_priv->stdu_max_height, max_height); 1932 } 1933 1934 num_modes = 1 + drm_add_modes_noedid(connector, max_width, max_height); 1935 1936 return num_modes; 1937 } 1938 1939 struct vmw_user_object *vmw_user_object_ref(struct vmw_user_object *uo) 1940 { 1941 if (uo->buffer) 1942 vmw_user_bo_ref(uo->buffer); 1943 else if (uo->surface) 1944 vmw_surface_reference(uo->surface); 1945 return uo; 1946 } 1947 1948 void vmw_user_object_unref(struct vmw_user_object *uo) 1949 { 1950 if (uo->buffer) 1951 vmw_user_bo_unref(&uo->buffer); 1952 else if (uo->surface) 1953 vmw_surface_unreference(&uo->surface); 1954 } 1955 1956 struct vmw_bo * 1957 vmw_user_object_buffer(struct vmw_user_object *uo) 1958 { 1959 if (uo->buffer) 1960 return uo->buffer; 1961 else if (uo->surface) 1962 return uo->surface->res.guest_memory_bo; 1963 return NULL; 1964 } 1965 1966 struct vmw_surface * 1967 vmw_user_object_surface(struct vmw_user_object *uo) 1968 { 1969 if (uo->buffer) 1970 return uo->buffer->dumb_surface; 1971 return uo->surface; 1972 } 1973 1974 void *vmw_user_object_map(struct vmw_user_object *uo) 1975 { 1976 struct vmw_bo *bo = vmw_user_object_buffer(uo); 1977 1978 WARN_ON(!bo); 1979 return vmw_bo_map_and_cache(bo); 1980 } 1981 1982 void *vmw_user_object_map_size(struct vmw_user_object *uo, size_t size) 1983 { 1984 struct vmw_bo *bo = vmw_user_object_buffer(uo); 1985 1986 WARN_ON(!bo); 1987 return vmw_bo_map_and_cache_size(bo, size); 1988 } 1989 1990 void vmw_user_object_unmap(struct vmw_user_object *uo) 1991 { 1992 struct vmw_bo *bo = vmw_user_object_buffer(uo); 1993 int ret; 1994 1995 WARN_ON(!bo); 1996 1997 /* Fence the mob creation so we are guarateed to have the mob */ 1998 ret = ttm_bo_reserve(&bo->tbo, false, false, NULL); 1999 if (ret != 0) 2000 return; 2001 2002 vmw_bo_unmap(bo); 2003 vmw_bo_pin_reserved(bo, false); 2004 2005 ttm_bo_unreserve(&bo->tbo); 2006 } 2007 2008 bool vmw_user_object_is_mapped(struct vmw_user_object *uo) 2009 { 2010 struct vmw_bo *bo; 2011 2012 if (!uo || vmw_user_object_is_null(uo)) 2013 return false; 2014 2015 bo = vmw_user_object_buffer(uo); 2016 2017 if (WARN_ON(!bo)) 2018 return false; 2019 2020 WARN_ON(bo->map.bo && !bo->map.virtual); 2021 return bo->map.virtual; 2022 } 2023 2024 bool vmw_user_object_is_null(struct vmw_user_object *uo) 2025 { 2026 return !uo->buffer && !uo->surface; 2027 } 2028