1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28 #include <linux/cgroup-defs.h>
29 #include <linux/page_counter.h>
30 #include <linux/memcontrol.h>
31 #include <linux/cgroup.h>
32 #include <linux/cpuset.h>
33 #include <linux/sched/mm.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/hugetlb.h>
36 #include <linux/pagemap.h>
37 #include <linux/pagevec.h>
38 #include <linux/vm_event_item.h>
39 #include <linux/smp.h>
40 #include <linux/page-flags.h>
41 #include <linux/backing-dev.h>
42 #include <linux/bit_spinlock.h>
43 #include <linux/rcupdate.h>
44 #include <linux/limits.h>
45 #include <linux/export.h>
46 #include <linux/list.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swapops.h>
51 #include <linux/spinlock.h>
52 #include <linux/fs.h>
53 #include <linux/seq_file.h>
54 #include <linux/vmpressure.h>
55 #include <linux/memremap.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/resume_user_mode.h>
62 #include <linux/psi.h>
63 #include <linux/seq_buf.h>
64 #include <linux/sched/isolation.h>
65 #include <linux/kmemleak.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 #include "memcontrol-v1.h"
71
72 #include <linux/uaccess.h>
73
74 #define CREATE_TRACE_POINTS
75 #include <trace/events/memcg.h>
76 #undef CREATE_TRACE_POINTS
77
78 #include <trace/events/vmscan.h>
79
80 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
81 EXPORT_SYMBOL(memory_cgrp_subsys);
82
83 struct mem_cgroup *root_mem_cgroup __read_mostly;
84
85 /* Active memory cgroup to use from an interrupt context */
86 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
87 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
88
89 /* Socket memory accounting disabled? */
90 static bool cgroup_memory_nosocket __ro_after_init;
91
92 /* Kernel memory accounting disabled? */
93 static bool cgroup_memory_nokmem __ro_after_init;
94
95 /* BPF memory accounting disabled? */
96 static bool cgroup_memory_nobpf __ro_after_init;
97
98 static struct kmem_cache *memcg_cachep;
99 static struct kmem_cache *memcg_pn_cachep;
100
101 #ifdef CONFIG_CGROUP_WRITEBACK
102 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
103 #endif
104
task_is_dying(void)105 static inline bool task_is_dying(void)
106 {
107 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
108 (current->flags & PF_EXITING);
109 }
110
111 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)112 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
113 {
114 if (!memcg)
115 memcg = root_mem_cgroup;
116 return &memcg->vmpressure;
117 }
118
vmpressure_to_memcg(struct vmpressure * vmpr)119 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
120 {
121 return container_of(vmpr, struct mem_cgroup, vmpressure);
122 }
123
124 #define SEQ_BUF_SIZE SZ_4K
125 #define CURRENT_OBJCG_UPDATE_BIT 0
126 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
127
128 static DEFINE_SPINLOCK(objcg_lock);
129
mem_cgroup_kmem_disabled(void)130 bool mem_cgroup_kmem_disabled(void)
131 {
132 return cgroup_memory_nokmem;
133 }
134
135 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
136
obj_cgroup_release(struct percpu_ref * ref)137 static void obj_cgroup_release(struct percpu_ref *ref)
138 {
139 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
140 unsigned int nr_bytes;
141 unsigned int nr_pages;
142 unsigned long flags;
143
144 /*
145 * At this point all allocated objects are freed, and
146 * objcg->nr_charged_bytes can't have an arbitrary byte value.
147 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
148 *
149 * The following sequence can lead to it:
150 * 1) CPU0: objcg == stock->cached_objcg
151 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
152 * PAGE_SIZE bytes are charged
153 * 3) CPU1: a process from another memcg is allocating something,
154 * the stock if flushed,
155 * objcg->nr_charged_bytes = PAGE_SIZE - 92
156 * 5) CPU0: we do release this object,
157 * 92 bytes are added to stock->nr_bytes
158 * 6) CPU0: stock is flushed,
159 * 92 bytes are added to objcg->nr_charged_bytes
160 *
161 * In the result, nr_charged_bytes == PAGE_SIZE.
162 * This page will be uncharged in obj_cgroup_release().
163 */
164 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
165 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
166 nr_pages = nr_bytes >> PAGE_SHIFT;
167
168 if (nr_pages) {
169 struct mem_cgroup *memcg;
170
171 memcg = get_mem_cgroup_from_objcg(objcg);
172 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
173 memcg1_account_kmem(memcg, -nr_pages);
174 if (!mem_cgroup_is_root(memcg))
175 memcg_uncharge(memcg, nr_pages);
176 mem_cgroup_put(memcg);
177 }
178
179 spin_lock_irqsave(&objcg_lock, flags);
180 list_del(&objcg->list);
181 spin_unlock_irqrestore(&objcg_lock, flags);
182
183 percpu_ref_exit(ref);
184 kfree_rcu(objcg, rcu);
185 }
186
obj_cgroup_alloc(void)187 static struct obj_cgroup *obj_cgroup_alloc(void)
188 {
189 struct obj_cgroup *objcg;
190 int ret;
191
192 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
193 if (!objcg)
194 return NULL;
195
196 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
197 GFP_KERNEL);
198 if (ret) {
199 kfree(objcg);
200 return NULL;
201 }
202 INIT_LIST_HEAD(&objcg->list);
203 return objcg;
204 }
205
memcg_reparent_objcgs(struct mem_cgroup * memcg,struct mem_cgroup * parent)206 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
207 struct mem_cgroup *parent)
208 {
209 struct obj_cgroup *objcg, *iter;
210
211 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
212
213 spin_lock_irq(&objcg_lock);
214
215 /* 1) Ready to reparent active objcg. */
216 list_add(&objcg->list, &memcg->objcg_list);
217 /* 2) Reparent active objcg and already reparented objcgs to parent. */
218 list_for_each_entry(iter, &memcg->objcg_list, list)
219 WRITE_ONCE(iter->memcg, parent);
220 /* 3) Move already reparented objcgs to the parent's list */
221 list_splice(&memcg->objcg_list, &parent->objcg_list);
222
223 spin_unlock_irq(&objcg_lock);
224
225 percpu_ref_kill(&objcg->refcnt);
226 }
227
228 /*
229 * A lot of the calls to the cache allocation functions are expected to be
230 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
231 * conditional to this static branch, we'll have to allow modules that does
232 * kmem_cache_alloc and the such to see this symbol as well
233 */
234 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
235 EXPORT_SYMBOL(memcg_kmem_online_key);
236
237 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
238 EXPORT_SYMBOL(memcg_bpf_enabled_key);
239
240 /**
241 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
242 * @folio: folio of interest
243 *
244 * If memcg is bound to the default hierarchy, css of the memcg associated
245 * with @folio is returned. The returned css remains associated with @folio
246 * until it is released.
247 *
248 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
249 * is returned.
250 */
mem_cgroup_css_from_folio(struct folio * folio)251 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
252 {
253 struct mem_cgroup *memcg = folio_memcg(folio);
254
255 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
256 memcg = root_mem_cgroup;
257
258 return &memcg->css;
259 }
260
261 /**
262 * page_cgroup_ino - return inode number of the memcg a page is charged to
263 * @page: the page
264 *
265 * Look up the closest online ancestor of the memory cgroup @page is charged to
266 * and return its inode number or 0 if @page is not charged to any cgroup. It
267 * is safe to call this function without holding a reference to @page.
268 *
269 * Note, this function is inherently racy, because there is nothing to prevent
270 * the cgroup inode from getting torn down and potentially reallocated a moment
271 * after page_cgroup_ino() returns, so it only should be used by callers that
272 * do not care (such as procfs interfaces).
273 */
page_cgroup_ino(struct page * page)274 ino_t page_cgroup_ino(struct page *page)
275 {
276 struct mem_cgroup *memcg;
277 unsigned long ino = 0;
278
279 rcu_read_lock();
280 /* page_folio() is racy here, but the entire function is racy anyway */
281 memcg = folio_memcg_check(page_folio(page));
282
283 while (memcg && !(memcg->css.flags & CSS_ONLINE))
284 memcg = parent_mem_cgroup(memcg);
285 if (memcg)
286 ino = cgroup_ino(memcg->css.cgroup);
287 rcu_read_unlock();
288 return ino;
289 }
290 EXPORT_SYMBOL_GPL(page_cgroup_ino);
291
292 /* Subset of node_stat_item for memcg stats */
293 static const unsigned int memcg_node_stat_items[] = {
294 NR_INACTIVE_ANON,
295 NR_ACTIVE_ANON,
296 NR_INACTIVE_FILE,
297 NR_ACTIVE_FILE,
298 NR_UNEVICTABLE,
299 NR_SLAB_RECLAIMABLE_B,
300 NR_SLAB_UNRECLAIMABLE_B,
301 WORKINGSET_REFAULT_ANON,
302 WORKINGSET_REFAULT_FILE,
303 WORKINGSET_ACTIVATE_ANON,
304 WORKINGSET_ACTIVATE_FILE,
305 WORKINGSET_RESTORE_ANON,
306 WORKINGSET_RESTORE_FILE,
307 WORKINGSET_NODERECLAIM,
308 NR_ANON_MAPPED,
309 NR_FILE_MAPPED,
310 NR_FILE_PAGES,
311 NR_FILE_DIRTY,
312 NR_WRITEBACK,
313 NR_SHMEM,
314 NR_SHMEM_THPS,
315 NR_FILE_THPS,
316 NR_ANON_THPS,
317 NR_KERNEL_STACK_KB,
318 NR_PAGETABLE,
319 NR_SECONDARY_PAGETABLE,
320 #ifdef CONFIG_SWAP
321 NR_SWAPCACHE,
322 #endif
323 #ifdef CONFIG_NUMA_BALANCING
324 PGPROMOTE_SUCCESS,
325 #endif
326 PGDEMOTE_KSWAPD,
327 PGDEMOTE_DIRECT,
328 PGDEMOTE_KHUGEPAGED,
329 PGDEMOTE_PROACTIVE,
330 #ifdef CONFIG_HUGETLB_PAGE
331 NR_HUGETLB,
332 #endif
333 };
334
335 static const unsigned int memcg_stat_items[] = {
336 MEMCG_SWAP,
337 MEMCG_SOCK,
338 MEMCG_PERCPU_B,
339 MEMCG_VMALLOC,
340 MEMCG_KMEM,
341 MEMCG_ZSWAP_B,
342 MEMCG_ZSWAPPED,
343 };
344
345 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
346 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
347 ARRAY_SIZE(memcg_stat_items))
348 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX)
349 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
350
init_memcg_stats(void)351 static void init_memcg_stats(void)
352 {
353 u8 i, j = 0;
354
355 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX);
356
357 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index));
358
359 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j)
360 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j;
361
362 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j)
363 mem_cgroup_stats_index[memcg_stat_items[i]] = j;
364 }
365
memcg_stats_index(int idx)366 static inline int memcg_stats_index(int idx)
367 {
368 return mem_cgroup_stats_index[idx];
369 }
370
371 struct lruvec_stats_percpu {
372 /* Local (CPU and cgroup) state */
373 long state[NR_MEMCG_NODE_STAT_ITEMS];
374
375 /* Delta calculation for lockless upward propagation */
376 long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
377 };
378
379 struct lruvec_stats {
380 /* Aggregated (CPU and subtree) state */
381 long state[NR_MEMCG_NODE_STAT_ITEMS];
382
383 /* Non-hierarchical (CPU aggregated) state */
384 long state_local[NR_MEMCG_NODE_STAT_ITEMS];
385
386 /* Pending child counts during tree propagation */
387 long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
388 };
389
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)390 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
391 {
392 struct mem_cgroup_per_node *pn;
393 long x;
394 int i;
395
396 if (mem_cgroup_disabled())
397 return node_page_state(lruvec_pgdat(lruvec), idx);
398
399 i = memcg_stats_index(idx);
400 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
401 return 0;
402
403 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
404 x = READ_ONCE(pn->lruvec_stats->state[i]);
405 #ifdef CONFIG_SMP
406 if (x < 0)
407 x = 0;
408 #endif
409 return x;
410 }
411
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)412 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
413 enum node_stat_item idx)
414 {
415 struct mem_cgroup_per_node *pn;
416 long x;
417 int i;
418
419 if (mem_cgroup_disabled())
420 return node_page_state(lruvec_pgdat(lruvec), idx);
421
422 i = memcg_stats_index(idx);
423 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
424 return 0;
425
426 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
427 x = READ_ONCE(pn->lruvec_stats->state_local[i]);
428 #ifdef CONFIG_SMP
429 if (x < 0)
430 x = 0;
431 #endif
432 return x;
433 }
434
435 /* Subset of vm_event_item to report for memcg event stats */
436 static const unsigned int memcg_vm_event_stat[] = {
437 #ifdef CONFIG_MEMCG_V1
438 PGPGIN,
439 PGPGOUT,
440 #endif
441 PSWPIN,
442 PSWPOUT,
443 PGSCAN_KSWAPD,
444 PGSCAN_DIRECT,
445 PGSCAN_KHUGEPAGED,
446 PGSCAN_PROACTIVE,
447 PGSTEAL_KSWAPD,
448 PGSTEAL_DIRECT,
449 PGSTEAL_KHUGEPAGED,
450 PGSTEAL_PROACTIVE,
451 PGFAULT,
452 PGMAJFAULT,
453 PGREFILL,
454 PGACTIVATE,
455 PGDEACTIVATE,
456 PGLAZYFREE,
457 PGLAZYFREED,
458 #ifdef CONFIG_SWAP
459 SWPIN_ZERO,
460 SWPOUT_ZERO,
461 #endif
462 #ifdef CONFIG_ZSWAP
463 ZSWPIN,
464 ZSWPOUT,
465 ZSWPWB,
466 #endif
467 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
468 THP_FAULT_ALLOC,
469 THP_COLLAPSE_ALLOC,
470 THP_SWPOUT,
471 THP_SWPOUT_FALLBACK,
472 #endif
473 #ifdef CONFIG_NUMA_BALANCING
474 NUMA_PAGE_MIGRATE,
475 NUMA_PTE_UPDATES,
476 NUMA_HINT_FAULTS,
477 #endif
478 };
479
480 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
481 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
482
init_memcg_events(void)483 static void init_memcg_events(void)
484 {
485 u8 i;
486
487 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX);
488
489 memset(mem_cgroup_events_index, U8_MAX,
490 sizeof(mem_cgroup_events_index));
491
492 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
493 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i;
494 }
495
memcg_events_index(enum vm_event_item idx)496 static inline int memcg_events_index(enum vm_event_item idx)
497 {
498 return mem_cgroup_events_index[idx];
499 }
500
501 struct memcg_vmstats_percpu {
502 /* Stats updates since the last flush */
503 unsigned int stats_updates;
504
505 /* Cached pointers for fast iteration in memcg_rstat_updated() */
506 struct memcg_vmstats_percpu __percpu *parent_pcpu;
507 struct memcg_vmstats *vmstats;
508
509 /* The above should fit a single cacheline for memcg_rstat_updated() */
510
511 /* Local (CPU and cgroup) page state & events */
512 long state[MEMCG_VMSTAT_SIZE];
513 unsigned long events[NR_MEMCG_EVENTS];
514
515 /* Delta calculation for lockless upward propagation */
516 long state_prev[MEMCG_VMSTAT_SIZE];
517 unsigned long events_prev[NR_MEMCG_EVENTS];
518 } ____cacheline_aligned;
519
520 struct memcg_vmstats {
521 /* Aggregated (CPU and subtree) page state & events */
522 long state[MEMCG_VMSTAT_SIZE];
523 unsigned long events[NR_MEMCG_EVENTS];
524
525 /* Non-hierarchical (CPU aggregated) page state & events */
526 long state_local[MEMCG_VMSTAT_SIZE];
527 unsigned long events_local[NR_MEMCG_EVENTS];
528
529 /* Pending child counts during tree propagation */
530 long state_pending[MEMCG_VMSTAT_SIZE];
531 unsigned long events_pending[NR_MEMCG_EVENTS];
532
533 /* Stats updates since the last flush */
534 atomic_t stats_updates;
535 };
536
537 /*
538 * memcg and lruvec stats flushing
539 *
540 * Many codepaths leading to stats update or read are performance sensitive and
541 * adding stats flushing in such codepaths is not desirable. So, to optimize the
542 * flushing the kernel does:
543 *
544 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
545 * rstat update tree grow unbounded.
546 *
547 * 2) Flush the stats synchronously on reader side only when there are more than
548 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
549 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
550 * only for 2 seconds due to (1).
551 */
552 static void flush_memcg_stats_dwork(struct work_struct *w);
553 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
554 static u64 flush_last_time;
555
556 #define FLUSH_TIME (2UL*HZ)
557
memcg_vmstats_needs_flush(struct memcg_vmstats * vmstats)558 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
559 {
560 return atomic_read(&vmstats->stats_updates) >
561 MEMCG_CHARGE_BATCH * num_online_cpus();
562 }
563
memcg_rstat_updated(struct mem_cgroup * memcg,int val,int cpu)564 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val,
565 int cpu)
566 {
567 struct memcg_vmstats_percpu __percpu *statc_pcpu;
568 struct memcg_vmstats_percpu *statc;
569 unsigned int stats_updates;
570
571 if (!val)
572 return;
573
574 css_rstat_updated(&memcg->css, cpu);
575 statc_pcpu = memcg->vmstats_percpu;
576 for (; statc_pcpu; statc_pcpu = statc->parent_pcpu) {
577 statc = this_cpu_ptr(statc_pcpu);
578 /*
579 * If @memcg is already flushable then all its ancestors are
580 * flushable as well and also there is no need to increase
581 * stats_updates.
582 */
583 if (memcg_vmstats_needs_flush(statc->vmstats))
584 break;
585
586 stats_updates = this_cpu_add_return(statc_pcpu->stats_updates,
587 abs(val));
588 if (stats_updates < MEMCG_CHARGE_BATCH)
589 continue;
590
591 stats_updates = this_cpu_xchg(statc_pcpu->stats_updates, 0);
592 atomic_add(stats_updates, &statc->vmstats->stats_updates);
593 }
594 }
595
__mem_cgroup_flush_stats(struct mem_cgroup * memcg,bool force)596 static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force)
597 {
598 bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats);
599
600 trace_memcg_flush_stats(memcg, atomic_read(&memcg->vmstats->stats_updates),
601 force, needs_flush);
602
603 if (!force && !needs_flush)
604 return;
605
606 if (mem_cgroup_is_root(memcg))
607 WRITE_ONCE(flush_last_time, jiffies_64);
608
609 css_rstat_flush(&memcg->css);
610 }
611
612 /*
613 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
614 * @memcg: root of the subtree to flush
615 *
616 * Flushing is serialized by the underlying global rstat lock. There is also a
617 * minimum amount of work to be done even if there are no stat updates to flush.
618 * Hence, we only flush the stats if the updates delta exceeds a threshold. This
619 * avoids unnecessary work and contention on the underlying lock.
620 */
mem_cgroup_flush_stats(struct mem_cgroup * memcg)621 void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
622 {
623 if (mem_cgroup_disabled())
624 return;
625
626 if (!memcg)
627 memcg = root_mem_cgroup;
628
629 __mem_cgroup_flush_stats(memcg, false);
630 }
631
mem_cgroup_flush_stats_ratelimited(struct mem_cgroup * memcg)632 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
633 {
634 /* Only flush if the periodic flusher is one full cycle late */
635 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
636 mem_cgroup_flush_stats(memcg);
637 }
638
flush_memcg_stats_dwork(struct work_struct * w)639 static void flush_memcg_stats_dwork(struct work_struct *w)
640 {
641 /*
642 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
643 * in latency-sensitive paths is as cheap as possible.
644 */
645 __mem_cgroup_flush_stats(root_mem_cgroup, true);
646 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
647 }
648
memcg_page_state(struct mem_cgroup * memcg,int idx)649 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
650 {
651 long x;
652 int i = memcg_stats_index(idx);
653
654 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
655 return 0;
656
657 x = READ_ONCE(memcg->vmstats->state[i]);
658 #ifdef CONFIG_SMP
659 if (x < 0)
660 x = 0;
661 #endif
662 return x;
663 }
664
665 static int memcg_page_state_unit(int item);
666
667 /*
668 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
669 * up non-zero sub-page updates to 1 page as zero page updates are ignored.
670 */
memcg_state_val_in_pages(int idx,int val)671 static int memcg_state_val_in_pages(int idx, int val)
672 {
673 int unit = memcg_page_state_unit(idx);
674
675 if (!val || unit == PAGE_SIZE)
676 return val;
677 else
678 return max(val * unit / PAGE_SIZE, 1UL);
679 }
680
681 /**
682 * mod_memcg_state - update cgroup memory statistics
683 * @memcg: the memory cgroup
684 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
685 * @val: delta to add to the counter, can be negative
686 */
mod_memcg_state(struct mem_cgroup * memcg,enum memcg_stat_item idx,int val)687 void mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
688 int val)
689 {
690 int i = memcg_stats_index(idx);
691 int cpu;
692
693 if (mem_cgroup_disabled())
694 return;
695
696 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
697 return;
698
699 cpu = get_cpu();
700
701 this_cpu_add(memcg->vmstats_percpu->state[i], val);
702 val = memcg_state_val_in_pages(idx, val);
703 memcg_rstat_updated(memcg, val, cpu);
704 trace_mod_memcg_state(memcg, idx, val);
705
706 put_cpu();
707 }
708
709 #ifdef CONFIG_MEMCG_V1
710 /* idx can be of type enum memcg_stat_item or node_stat_item. */
memcg_page_state_local(struct mem_cgroup * memcg,int idx)711 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
712 {
713 long x;
714 int i = memcg_stats_index(idx);
715
716 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
717 return 0;
718
719 x = READ_ONCE(memcg->vmstats->state_local[i]);
720 #ifdef CONFIG_SMP
721 if (x < 0)
722 x = 0;
723 #endif
724 return x;
725 }
726 #endif
727
mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)728 static void mod_memcg_lruvec_state(struct lruvec *lruvec,
729 enum node_stat_item idx,
730 int val)
731 {
732 struct mem_cgroup_per_node *pn;
733 struct mem_cgroup *memcg;
734 int i = memcg_stats_index(idx);
735 int cpu;
736
737 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
738 return;
739
740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
741 memcg = pn->memcg;
742
743 cpu = get_cpu();
744
745 /* Update memcg */
746 this_cpu_add(memcg->vmstats_percpu->state[i], val);
747
748 /* Update lruvec */
749 this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
750
751 val = memcg_state_val_in_pages(idx, val);
752 memcg_rstat_updated(memcg, val, cpu);
753 trace_mod_memcg_lruvec_state(memcg, idx, val);
754
755 put_cpu();
756 }
757
758 /**
759 * __mod_lruvec_state - update lruvec memory statistics
760 * @lruvec: the lruvec
761 * @idx: the stat item
762 * @val: delta to add to the counter, can be negative
763 *
764 * The lruvec is the intersection of the NUMA node and a cgroup. This
765 * function updates the all three counters that are affected by a
766 * change of state at this level: per-node, per-cgroup, per-lruvec.
767 */
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)768 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
769 int val)
770 {
771 /* Update node */
772 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
773
774 /* Update memcg and lruvec */
775 if (!mem_cgroup_disabled())
776 mod_memcg_lruvec_state(lruvec, idx, val);
777 }
778
__lruvec_stat_mod_folio(struct folio * folio,enum node_stat_item idx,int val)779 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
780 int val)
781 {
782 struct mem_cgroup *memcg;
783 pg_data_t *pgdat = folio_pgdat(folio);
784 struct lruvec *lruvec;
785
786 rcu_read_lock();
787 memcg = folio_memcg(folio);
788 /* Untracked pages have no memcg, no lruvec. Update only the node */
789 if (!memcg) {
790 rcu_read_unlock();
791 __mod_node_page_state(pgdat, idx, val);
792 return;
793 }
794
795 lruvec = mem_cgroup_lruvec(memcg, pgdat);
796 __mod_lruvec_state(lruvec, idx, val);
797 rcu_read_unlock();
798 }
799 EXPORT_SYMBOL(__lruvec_stat_mod_folio);
800
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)801 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
802 {
803 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
804 struct mem_cgroup *memcg;
805 struct lruvec *lruvec;
806
807 rcu_read_lock();
808 memcg = mem_cgroup_from_slab_obj(p);
809
810 /*
811 * Untracked pages have no memcg, no lruvec. Update only the
812 * node. If we reparent the slab objects to the root memcg,
813 * when we free the slab object, we need to update the per-memcg
814 * vmstats to keep it correct for the root memcg.
815 */
816 if (!memcg) {
817 __mod_node_page_state(pgdat, idx, val);
818 } else {
819 lruvec = mem_cgroup_lruvec(memcg, pgdat);
820 __mod_lruvec_state(lruvec, idx, val);
821 }
822 rcu_read_unlock();
823 }
824
825 /**
826 * count_memcg_events - account VM events in a cgroup
827 * @memcg: the memory cgroup
828 * @idx: the event item
829 * @count: the number of events that occurred
830 */
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)831 void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
832 unsigned long count)
833 {
834 int i = memcg_events_index(idx);
835 int cpu;
836
837 if (mem_cgroup_disabled())
838 return;
839
840 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
841 return;
842
843 cpu = get_cpu();
844
845 this_cpu_add(memcg->vmstats_percpu->events[i], count);
846 memcg_rstat_updated(memcg, count, cpu);
847 trace_count_memcg_events(memcg, idx, count);
848
849 put_cpu();
850 }
851
memcg_events(struct mem_cgroup * memcg,int event)852 unsigned long memcg_events(struct mem_cgroup *memcg, int event)
853 {
854 int i = memcg_events_index(event);
855
856 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
857 return 0;
858
859 return READ_ONCE(memcg->vmstats->events[i]);
860 }
861
862 #ifdef CONFIG_MEMCG_V1
memcg_events_local(struct mem_cgroup * memcg,int event)863 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
864 {
865 int i = memcg_events_index(event);
866
867 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
868 return 0;
869
870 return READ_ONCE(memcg->vmstats->events_local[i]);
871 }
872 #endif
873
mem_cgroup_from_task(struct task_struct * p)874 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
875 {
876 /*
877 * mm_update_next_owner() may clear mm->owner to NULL
878 * if it races with swapoff, page migration, etc.
879 * So this can be called with p == NULL.
880 */
881 if (unlikely(!p))
882 return NULL;
883
884 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
885 }
886 EXPORT_SYMBOL(mem_cgroup_from_task);
887
active_memcg(void)888 static __always_inline struct mem_cgroup *active_memcg(void)
889 {
890 if (!in_task())
891 return this_cpu_read(int_active_memcg);
892 else
893 return current->active_memcg;
894 }
895
896 /**
897 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
898 * @mm: mm from which memcg should be extracted. It can be NULL.
899 *
900 * Obtain a reference on mm->memcg and returns it if successful. If mm
901 * is NULL, then the memcg is chosen as follows:
902 * 1) The active memcg, if set.
903 * 2) current->mm->memcg, if available
904 * 3) root memcg
905 * If mem_cgroup is disabled, NULL is returned.
906 */
get_mem_cgroup_from_mm(struct mm_struct * mm)907 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
908 {
909 struct mem_cgroup *memcg;
910
911 if (mem_cgroup_disabled())
912 return NULL;
913
914 /*
915 * Page cache insertions can happen without an
916 * actual mm context, e.g. during disk probing
917 * on boot, loopback IO, acct() writes etc.
918 *
919 * No need to css_get on root memcg as the reference
920 * counting is disabled on the root level in the
921 * cgroup core. See CSS_NO_REF.
922 */
923 if (unlikely(!mm)) {
924 memcg = active_memcg();
925 if (unlikely(memcg)) {
926 /* remote memcg must hold a ref */
927 css_get(&memcg->css);
928 return memcg;
929 }
930 mm = current->mm;
931 if (unlikely(!mm))
932 return root_mem_cgroup;
933 }
934
935 rcu_read_lock();
936 do {
937 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
938 if (unlikely(!memcg))
939 memcg = root_mem_cgroup;
940 } while (!css_tryget(&memcg->css));
941 rcu_read_unlock();
942 return memcg;
943 }
944 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
945
946 /**
947 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
948 */
get_mem_cgroup_from_current(void)949 struct mem_cgroup *get_mem_cgroup_from_current(void)
950 {
951 struct mem_cgroup *memcg;
952
953 if (mem_cgroup_disabled())
954 return NULL;
955
956 again:
957 rcu_read_lock();
958 memcg = mem_cgroup_from_task(current);
959 if (!css_tryget(&memcg->css)) {
960 rcu_read_unlock();
961 goto again;
962 }
963 rcu_read_unlock();
964 return memcg;
965 }
966
967 /**
968 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg.
969 * @folio: folio from which memcg should be extracted.
970 */
get_mem_cgroup_from_folio(struct folio * folio)971 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
972 {
973 struct mem_cgroup *memcg = folio_memcg(folio);
974
975 if (mem_cgroup_disabled())
976 return NULL;
977
978 rcu_read_lock();
979 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
980 memcg = root_mem_cgroup;
981 rcu_read_unlock();
982 return memcg;
983 }
984
985 /**
986 * mem_cgroup_iter - iterate over memory cgroup hierarchy
987 * @root: hierarchy root
988 * @prev: previously returned memcg, NULL on first invocation
989 * @reclaim: cookie for shared reclaim walks, NULL for full walks
990 *
991 * Returns references to children of the hierarchy below @root, or
992 * @root itself, or %NULL after a full round-trip.
993 *
994 * Caller must pass the return value in @prev on subsequent
995 * invocations for reference counting, or use mem_cgroup_iter_break()
996 * to cancel a hierarchy walk before the round-trip is complete.
997 *
998 * Reclaimers can specify a node in @reclaim to divide up the memcgs
999 * in the hierarchy among all concurrent reclaimers operating on the
1000 * same node.
1001 */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1002 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1003 struct mem_cgroup *prev,
1004 struct mem_cgroup_reclaim_cookie *reclaim)
1005 {
1006 struct mem_cgroup_reclaim_iter *iter;
1007 struct cgroup_subsys_state *css;
1008 struct mem_cgroup *pos;
1009 struct mem_cgroup *next;
1010
1011 if (mem_cgroup_disabled())
1012 return NULL;
1013
1014 if (!root)
1015 root = root_mem_cgroup;
1016
1017 rcu_read_lock();
1018 restart:
1019 next = NULL;
1020
1021 if (reclaim) {
1022 int gen;
1023 int nid = reclaim->pgdat->node_id;
1024
1025 iter = &root->nodeinfo[nid]->iter;
1026 gen = atomic_read(&iter->generation);
1027
1028 /*
1029 * On start, join the current reclaim iteration cycle.
1030 * Exit when a concurrent walker completes it.
1031 */
1032 if (!prev)
1033 reclaim->generation = gen;
1034 else if (reclaim->generation != gen)
1035 goto out_unlock;
1036
1037 pos = READ_ONCE(iter->position);
1038 } else
1039 pos = prev;
1040
1041 css = pos ? &pos->css : NULL;
1042
1043 while ((css = css_next_descendant_pre(css, &root->css))) {
1044 /*
1045 * Verify the css and acquire a reference. The root
1046 * is provided by the caller, so we know it's alive
1047 * and kicking, and don't take an extra reference.
1048 */
1049 if (css == &root->css || css_tryget(css))
1050 break;
1051 }
1052
1053 next = mem_cgroup_from_css(css);
1054
1055 if (reclaim) {
1056 /*
1057 * The position could have already been updated by a competing
1058 * thread, so check that the value hasn't changed since we read
1059 * it to avoid reclaiming from the same cgroup twice.
1060 */
1061 if (cmpxchg(&iter->position, pos, next) != pos) {
1062 if (css && css != &root->css)
1063 css_put(css);
1064 goto restart;
1065 }
1066
1067 if (!next) {
1068 atomic_inc(&iter->generation);
1069
1070 /*
1071 * Reclaimers share the hierarchy walk, and a
1072 * new one might jump in right at the end of
1073 * the hierarchy - make sure they see at least
1074 * one group and restart from the beginning.
1075 */
1076 if (!prev)
1077 goto restart;
1078 }
1079 }
1080
1081 out_unlock:
1082 rcu_read_unlock();
1083 if (prev && prev != root)
1084 css_put(&prev->css);
1085
1086 return next;
1087 }
1088
1089 /**
1090 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1091 * @root: hierarchy root
1092 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1093 */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1094 void mem_cgroup_iter_break(struct mem_cgroup *root,
1095 struct mem_cgroup *prev)
1096 {
1097 if (!root)
1098 root = root_mem_cgroup;
1099 if (prev && prev != root)
1100 css_put(&prev->css);
1101 }
1102
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1103 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1104 struct mem_cgroup *dead_memcg)
1105 {
1106 struct mem_cgroup_reclaim_iter *iter;
1107 struct mem_cgroup_per_node *mz;
1108 int nid;
1109
1110 for_each_node(nid) {
1111 mz = from->nodeinfo[nid];
1112 iter = &mz->iter;
1113 cmpxchg(&iter->position, dead_memcg, NULL);
1114 }
1115 }
1116
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1117 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1118 {
1119 struct mem_cgroup *memcg = dead_memcg;
1120 struct mem_cgroup *last;
1121
1122 do {
1123 __invalidate_reclaim_iterators(memcg, dead_memcg);
1124 last = memcg;
1125 } while ((memcg = parent_mem_cgroup(memcg)));
1126
1127 /*
1128 * When cgroup1 non-hierarchy mode is used,
1129 * parent_mem_cgroup() does not walk all the way up to the
1130 * cgroup root (root_mem_cgroup). So we have to handle
1131 * dead_memcg from cgroup root separately.
1132 */
1133 if (!mem_cgroup_is_root(last))
1134 __invalidate_reclaim_iterators(root_mem_cgroup,
1135 dead_memcg);
1136 }
1137
1138 /**
1139 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1140 * @memcg: hierarchy root
1141 * @fn: function to call for each task
1142 * @arg: argument passed to @fn
1143 *
1144 * This function iterates over tasks attached to @memcg or to any of its
1145 * descendants and calls @fn for each task. If @fn returns a non-zero
1146 * value, the function breaks the iteration loop. Otherwise, it will iterate
1147 * over all tasks and return 0.
1148 *
1149 * This function must not be called for the root memory cgroup.
1150 */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1151 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1152 int (*fn)(struct task_struct *, void *), void *arg)
1153 {
1154 struct mem_cgroup *iter;
1155 int ret = 0;
1156
1157 BUG_ON(mem_cgroup_is_root(memcg));
1158
1159 for_each_mem_cgroup_tree(iter, memcg) {
1160 struct css_task_iter it;
1161 struct task_struct *task;
1162
1163 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1164 while (!ret && (task = css_task_iter_next(&it))) {
1165 ret = fn(task, arg);
1166 /* Avoid potential softlockup warning */
1167 cond_resched();
1168 }
1169 css_task_iter_end(&it);
1170 if (ret) {
1171 mem_cgroup_iter_break(memcg, iter);
1172 break;
1173 }
1174 }
1175 }
1176
1177 #ifdef CONFIG_DEBUG_VM
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1178 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1179 {
1180 struct mem_cgroup *memcg;
1181
1182 if (mem_cgroup_disabled())
1183 return;
1184
1185 memcg = folio_memcg(folio);
1186
1187 if (!memcg)
1188 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1189 else
1190 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1191 }
1192 #endif
1193
1194 /**
1195 * folio_lruvec_lock - Lock the lruvec for a folio.
1196 * @folio: Pointer to the folio.
1197 *
1198 * These functions are safe to use under any of the following conditions:
1199 * - folio locked
1200 * - folio_test_lru false
1201 * - folio frozen (refcount of 0)
1202 *
1203 * Return: The lruvec this folio is on with its lock held.
1204 */
folio_lruvec_lock(struct folio * folio)1205 struct lruvec *folio_lruvec_lock(struct folio *folio)
1206 {
1207 struct lruvec *lruvec = folio_lruvec(folio);
1208
1209 spin_lock(&lruvec->lru_lock);
1210 lruvec_memcg_debug(lruvec, folio);
1211
1212 return lruvec;
1213 }
1214
1215 /**
1216 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1217 * @folio: Pointer to the folio.
1218 *
1219 * These functions are safe to use under any of the following conditions:
1220 * - folio locked
1221 * - folio_test_lru false
1222 * - folio frozen (refcount of 0)
1223 *
1224 * Return: The lruvec this folio is on with its lock held and interrupts
1225 * disabled.
1226 */
folio_lruvec_lock_irq(struct folio * folio)1227 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1228 {
1229 struct lruvec *lruvec = folio_lruvec(folio);
1230
1231 spin_lock_irq(&lruvec->lru_lock);
1232 lruvec_memcg_debug(lruvec, folio);
1233
1234 return lruvec;
1235 }
1236
1237 /**
1238 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1239 * @folio: Pointer to the folio.
1240 * @flags: Pointer to irqsave flags.
1241 *
1242 * These functions are safe to use under any of the following conditions:
1243 * - folio locked
1244 * - folio_test_lru false
1245 * - folio frozen (refcount of 0)
1246 *
1247 * Return: The lruvec this folio is on with its lock held and interrupts
1248 * disabled.
1249 */
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flags)1250 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1251 unsigned long *flags)
1252 {
1253 struct lruvec *lruvec = folio_lruvec(folio);
1254
1255 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1256 lruvec_memcg_debug(lruvec, folio);
1257
1258 return lruvec;
1259 }
1260
1261 /**
1262 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1263 * @lruvec: mem_cgroup per zone lru vector
1264 * @lru: index of lru list the page is sitting on
1265 * @zid: zone id of the accounted pages
1266 * @nr_pages: positive when adding or negative when removing
1267 *
1268 * This function must be called under lru_lock, just before a page is added
1269 * to or just after a page is removed from an lru list.
1270 */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1271 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1272 int zid, int nr_pages)
1273 {
1274 struct mem_cgroup_per_node *mz;
1275 unsigned long *lru_size;
1276 long size;
1277
1278 if (mem_cgroup_disabled())
1279 return;
1280
1281 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1282 lru_size = &mz->lru_zone_size[zid][lru];
1283
1284 if (nr_pages < 0)
1285 *lru_size += nr_pages;
1286
1287 size = *lru_size;
1288 if (WARN_ONCE(size < 0,
1289 "%s(%p, %d, %d): lru_size %ld\n",
1290 __func__, lruvec, lru, nr_pages, size)) {
1291 VM_BUG_ON(1);
1292 *lru_size = 0;
1293 }
1294
1295 if (nr_pages > 0)
1296 *lru_size += nr_pages;
1297 }
1298
1299 /**
1300 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1301 * @memcg: the memory cgroup
1302 *
1303 * Returns the maximum amount of memory @mem can be charged with, in
1304 * pages.
1305 */
mem_cgroup_margin(struct mem_cgroup * memcg)1306 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1307 {
1308 unsigned long margin = 0;
1309 unsigned long count;
1310 unsigned long limit;
1311
1312 count = page_counter_read(&memcg->memory);
1313 limit = READ_ONCE(memcg->memory.max);
1314 if (count < limit)
1315 margin = limit - count;
1316
1317 if (do_memsw_account()) {
1318 count = page_counter_read(&memcg->memsw);
1319 limit = READ_ONCE(memcg->memsw.max);
1320 if (count < limit)
1321 margin = min(margin, limit - count);
1322 else
1323 margin = 0;
1324 }
1325
1326 return margin;
1327 }
1328
1329 struct memory_stat {
1330 const char *name;
1331 unsigned int idx;
1332 };
1333
1334 static const struct memory_stat memory_stats[] = {
1335 { "anon", NR_ANON_MAPPED },
1336 { "file", NR_FILE_PAGES },
1337 { "kernel", MEMCG_KMEM },
1338 { "kernel_stack", NR_KERNEL_STACK_KB },
1339 { "pagetables", NR_PAGETABLE },
1340 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1341 { "percpu", MEMCG_PERCPU_B },
1342 { "sock", MEMCG_SOCK },
1343 { "vmalloc", MEMCG_VMALLOC },
1344 { "shmem", NR_SHMEM },
1345 #ifdef CONFIG_ZSWAP
1346 { "zswap", MEMCG_ZSWAP_B },
1347 { "zswapped", MEMCG_ZSWAPPED },
1348 #endif
1349 { "file_mapped", NR_FILE_MAPPED },
1350 { "file_dirty", NR_FILE_DIRTY },
1351 { "file_writeback", NR_WRITEBACK },
1352 #ifdef CONFIG_SWAP
1353 { "swapcached", NR_SWAPCACHE },
1354 #endif
1355 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1356 { "anon_thp", NR_ANON_THPS },
1357 { "file_thp", NR_FILE_THPS },
1358 { "shmem_thp", NR_SHMEM_THPS },
1359 #endif
1360 { "inactive_anon", NR_INACTIVE_ANON },
1361 { "active_anon", NR_ACTIVE_ANON },
1362 { "inactive_file", NR_INACTIVE_FILE },
1363 { "active_file", NR_ACTIVE_FILE },
1364 { "unevictable", NR_UNEVICTABLE },
1365 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1366 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1367 #ifdef CONFIG_HUGETLB_PAGE
1368 { "hugetlb", NR_HUGETLB },
1369 #endif
1370
1371 /* The memory events */
1372 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1373 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1374 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1375 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1376 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1377 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1378 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1379
1380 { "pgdemote_kswapd", PGDEMOTE_KSWAPD },
1381 { "pgdemote_direct", PGDEMOTE_DIRECT },
1382 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED },
1383 { "pgdemote_proactive", PGDEMOTE_PROACTIVE },
1384 #ifdef CONFIG_NUMA_BALANCING
1385 { "pgpromote_success", PGPROMOTE_SUCCESS },
1386 #endif
1387 };
1388
1389 /* The actual unit of the state item, not the same as the output unit */
memcg_page_state_unit(int item)1390 static int memcg_page_state_unit(int item)
1391 {
1392 switch (item) {
1393 case MEMCG_PERCPU_B:
1394 case MEMCG_ZSWAP_B:
1395 case NR_SLAB_RECLAIMABLE_B:
1396 case NR_SLAB_UNRECLAIMABLE_B:
1397 return 1;
1398 case NR_KERNEL_STACK_KB:
1399 return SZ_1K;
1400 default:
1401 return PAGE_SIZE;
1402 }
1403 }
1404
1405 /* Translate stat items to the correct unit for memory.stat output */
memcg_page_state_output_unit(int item)1406 static int memcg_page_state_output_unit(int item)
1407 {
1408 /*
1409 * Workingset state is actually in pages, but we export it to userspace
1410 * as a scalar count of events, so special case it here.
1411 *
1412 * Demotion and promotion activities are exported in pages, consistent
1413 * with their global counterparts.
1414 */
1415 switch (item) {
1416 case WORKINGSET_REFAULT_ANON:
1417 case WORKINGSET_REFAULT_FILE:
1418 case WORKINGSET_ACTIVATE_ANON:
1419 case WORKINGSET_ACTIVATE_FILE:
1420 case WORKINGSET_RESTORE_ANON:
1421 case WORKINGSET_RESTORE_FILE:
1422 case WORKINGSET_NODERECLAIM:
1423 case PGDEMOTE_KSWAPD:
1424 case PGDEMOTE_DIRECT:
1425 case PGDEMOTE_KHUGEPAGED:
1426 case PGDEMOTE_PROACTIVE:
1427 #ifdef CONFIG_NUMA_BALANCING
1428 case PGPROMOTE_SUCCESS:
1429 #endif
1430 return 1;
1431 default:
1432 return memcg_page_state_unit(item);
1433 }
1434 }
1435
memcg_page_state_output(struct mem_cgroup * memcg,int item)1436 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item)
1437 {
1438 return memcg_page_state(memcg, item) *
1439 memcg_page_state_output_unit(item);
1440 }
1441
1442 #ifdef CONFIG_MEMCG_V1
memcg_page_state_local_output(struct mem_cgroup * memcg,int item)1443 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item)
1444 {
1445 return memcg_page_state_local(memcg, item) *
1446 memcg_page_state_output_unit(item);
1447 }
1448 #endif
1449
1450 #ifdef CONFIG_HUGETLB_PAGE
memcg_accounts_hugetlb(void)1451 static bool memcg_accounts_hugetlb(void)
1452 {
1453 return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1454 }
1455 #else /* CONFIG_HUGETLB_PAGE */
memcg_accounts_hugetlb(void)1456 static bool memcg_accounts_hugetlb(void)
1457 {
1458 return false;
1459 }
1460 #endif /* CONFIG_HUGETLB_PAGE */
1461
memcg_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1462 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1463 {
1464 int i;
1465
1466 /*
1467 * Provide statistics on the state of the memory subsystem as
1468 * well as cumulative event counters that show past behavior.
1469 *
1470 * This list is ordered following a combination of these gradients:
1471 * 1) generic big picture -> specifics and details
1472 * 2) reflecting userspace activity -> reflecting kernel heuristics
1473 *
1474 * Current memory state:
1475 */
1476 mem_cgroup_flush_stats(memcg);
1477
1478 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1479 u64 size;
1480
1481 #ifdef CONFIG_HUGETLB_PAGE
1482 if (unlikely(memory_stats[i].idx == NR_HUGETLB) &&
1483 !memcg_accounts_hugetlb())
1484 continue;
1485 #endif
1486 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1487 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1488
1489 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1490 size += memcg_page_state_output(memcg,
1491 NR_SLAB_RECLAIMABLE_B);
1492 seq_buf_printf(s, "slab %llu\n", size);
1493 }
1494 }
1495
1496 /* Accumulated memory events */
1497 seq_buf_printf(s, "pgscan %lu\n",
1498 memcg_events(memcg, PGSCAN_KSWAPD) +
1499 memcg_events(memcg, PGSCAN_DIRECT) +
1500 memcg_events(memcg, PGSCAN_PROACTIVE) +
1501 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1502 seq_buf_printf(s, "pgsteal %lu\n",
1503 memcg_events(memcg, PGSTEAL_KSWAPD) +
1504 memcg_events(memcg, PGSTEAL_DIRECT) +
1505 memcg_events(memcg, PGSTEAL_PROACTIVE) +
1506 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1507
1508 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1509 #ifdef CONFIG_MEMCG_V1
1510 if (memcg_vm_event_stat[i] == PGPGIN ||
1511 memcg_vm_event_stat[i] == PGPGOUT)
1512 continue;
1513 #endif
1514 seq_buf_printf(s, "%s %lu\n",
1515 vm_event_name(memcg_vm_event_stat[i]),
1516 memcg_events(memcg, memcg_vm_event_stat[i]));
1517 }
1518 }
1519
memory_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1520 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1521 {
1522 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1523 memcg_stat_format(memcg, s);
1524 else
1525 memcg1_stat_format(memcg, s);
1526 if (seq_buf_has_overflowed(s))
1527 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__);
1528 }
1529
1530 /**
1531 * mem_cgroup_print_oom_context: Print OOM information relevant to
1532 * memory controller.
1533 * @memcg: The memory cgroup that went over limit
1534 * @p: Task that is going to be killed
1535 *
1536 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1537 * enabled
1538 */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1539 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1540 {
1541 rcu_read_lock();
1542
1543 if (memcg) {
1544 pr_cont(",oom_memcg=");
1545 pr_cont_cgroup_path(memcg->css.cgroup);
1546 } else
1547 pr_cont(",global_oom");
1548 if (p) {
1549 pr_cont(",task_memcg=");
1550 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1551 }
1552 rcu_read_unlock();
1553 }
1554
1555 /**
1556 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1557 * memory controller.
1558 * @memcg: The memory cgroup that went over limit
1559 */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1560 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1561 {
1562 /* Use static buffer, for the caller is holding oom_lock. */
1563 static char buf[SEQ_BUF_SIZE];
1564 struct seq_buf s;
1565 unsigned long memory_failcnt;
1566
1567 lockdep_assert_held(&oom_lock);
1568
1569 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1570 memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]);
1571 else
1572 memory_failcnt = memcg->memory.failcnt;
1573
1574 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1575 K((u64)page_counter_read(&memcg->memory)),
1576 K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt);
1577 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1578 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1579 K((u64)page_counter_read(&memcg->swap)),
1580 K((u64)READ_ONCE(memcg->swap.max)),
1581 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
1582 #ifdef CONFIG_MEMCG_V1
1583 else {
1584 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1585 K((u64)page_counter_read(&memcg->memsw)),
1586 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1587 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1588 K((u64)page_counter_read(&memcg->kmem)),
1589 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1590 }
1591 #endif
1592
1593 pr_info("Memory cgroup stats for ");
1594 pr_cont_cgroup_path(memcg->css.cgroup);
1595 pr_cont(":");
1596 seq_buf_init(&s, buf, SEQ_BUF_SIZE);
1597 memory_stat_format(memcg, &s);
1598 seq_buf_do_printk(&s, KERN_INFO);
1599 }
1600
1601 /*
1602 * Return the memory (and swap, if configured) limit for a memcg.
1603 */
mem_cgroup_get_max(struct mem_cgroup * memcg)1604 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1605 {
1606 unsigned long max = READ_ONCE(memcg->memory.max);
1607
1608 if (do_memsw_account()) {
1609 if (mem_cgroup_swappiness(memcg)) {
1610 /* Calculate swap excess capacity from memsw limit */
1611 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1612
1613 max += min(swap, (unsigned long)total_swap_pages);
1614 }
1615 } else {
1616 if (mem_cgroup_swappiness(memcg))
1617 max += min(READ_ONCE(memcg->swap.max),
1618 (unsigned long)total_swap_pages);
1619 }
1620 return max;
1621 }
1622
mem_cgroup_size(struct mem_cgroup * memcg)1623 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1624 {
1625 return page_counter_read(&memcg->memory);
1626 }
1627
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1628 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1629 int order)
1630 {
1631 struct oom_control oc = {
1632 .zonelist = NULL,
1633 .nodemask = NULL,
1634 .memcg = memcg,
1635 .gfp_mask = gfp_mask,
1636 .order = order,
1637 };
1638 bool ret = true;
1639
1640 if (mutex_lock_killable(&oom_lock))
1641 return true;
1642
1643 if (mem_cgroup_margin(memcg) >= (1 << order))
1644 goto unlock;
1645
1646 /*
1647 * A few threads which were not waiting at mutex_lock_killable() can
1648 * fail to bail out. Therefore, check again after holding oom_lock.
1649 */
1650 ret = out_of_memory(&oc);
1651
1652 unlock:
1653 mutex_unlock(&oom_lock);
1654 return ret;
1655 }
1656
1657 /*
1658 * Returns true if successfully killed one or more processes. Though in some
1659 * corner cases it can return true even without killing any process.
1660 */
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1661 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1662 {
1663 bool locked, ret;
1664
1665 if (order > PAGE_ALLOC_COSTLY_ORDER)
1666 return false;
1667
1668 memcg_memory_event(memcg, MEMCG_OOM);
1669
1670 if (!memcg1_oom_prepare(memcg, &locked))
1671 return false;
1672
1673 ret = mem_cgroup_out_of_memory(memcg, mask, order);
1674
1675 memcg1_oom_finish(memcg, locked);
1676
1677 return ret;
1678 }
1679
1680 /**
1681 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1682 * @victim: task to be killed by the OOM killer
1683 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1684 *
1685 * Returns a pointer to a memory cgroup, which has to be cleaned up
1686 * by killing all belonging OOM-killable tasks.
1687 *
1688 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1689 */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1690 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1691 struct mem_cgroup *oom_domain)
1692 {
1693 struct mem_cgroup *oom_group = NULL;
1694 struct mem_cgroup *memcg;
1695
1696 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1697 return NULL;
1698
1699 if (!oom_domain)
1700 oom_domain = root_mem_cgroup;
1701
1702 rcu_read_lock();
1703
1704 memcg = mem_cgroup_from_task(victim);
1705 if (mem_cgroup_is_root(memcg))
1706 goto out;
1707
1708 /*
1709 * If the victim task has been asynchronously moved to a different
1710 * memory cgroup, we might end up killing tasks outside oom_domain.
1711 * In this case it's better to ignore memory.group.oom.
1712 */
1713 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1714 goto out;
1715
1716 /*
1717 * Traverse the memory cgroup hierarchy from the victim task's
1718 * cgroup up to the OOMing cgroup (or root) to find the
1719 * highest-level memory cgroup with oom.group set.
1720 */
1721 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1722 if (READ_ONCE(memcg->oom_group))
1723 oom_group = memcg;
1724
1725 if (memcg == oom_domain)
1726 break;
1727 }
1728
1729 if (oom_group)
1730 css_get(&oom_group->css);
1731 out:
1732 rcu_read_unlock();
1733
1734 return oom_group;
1735 }
1736
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1737 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1738 {
1739 pr_info("Tasks in ");
1740 pr_cont_cgroup_path(memcg->css.cgroup);
1741 pr_cont(" are going to be killed due to memory.oom.group set\n");
1742 }
1743
1744 /*
1745 * The value of NR_MEMCG_STOCK is selected to keep the cached memcgs and their
1746 * nr_pages in a single cacheline. This may change in future.
1747 */
1748 #define NR_MEMCG_STOCK 7
1749 #define FLUSHING_CACHED_CHARGE 0
1750 struct memcg_stock_pcp {
1751 local_trylock_t lock;
1752 uint8_t nr_pages[NR_MEMCG_STOCK];
1753 struct mem_cgroup *cached[NR_MEMCG_STOCK];
1754
1755 struct work_struct work;
1756 unsigned long flags;
1757 };
1758
1759 static DEFINE_PER_CPU_ALIGNED(struct memcg_stock_pcp, memcg_stock) = {
1760 .lock = INIT_LOCAL_TRYLOCK(lock),
1761 };
1762
1763 struct obj_stock_pcp {
1764 local_trylock_t lock;
1765 unsigned int nr_bytes;
1766 struct obj_cgroup *cached_objcg;
1767 struct pglist_data *cached_pgdat;
1768 int nr_slab_reclaimable_b;
1769 int nr_slab_unreclaimable_b;
1770
1771 struct work_struct work;
1772 unsigned long flags;
1773 };
1774
1775 static DEFINE_PER_CPU_ALIGNED(struct obj_stock_pcp, obj_stock) = {
1776 .lock = INIT_LOCAL_TRYLOCK(lock),
1777 };
1778
1779 static DEFINE_MUTEX(percpu_charge_mutex);
1780
1781 static void drain_obj_stock(struct obj_stock_pcp *stock);
1782 static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
1783 struct mem_cgroup *root_memcg);
1784
1785 /**
1786 * consume_stock: Try to consume stocked charge on this cpu.
1787 * @memcg: memcg to consume from.
1788 * @nr_pages: how many pages to charge.
1789 *
1790 * Consume the cached charge if enough nr_pages are present otherwise return
1791 * failure. Also return failure for charge request larger than
1792 * MEMCG_CHARGE_BATCH or if the local lock is already taken.
1793 *
1794 * returns true if successful, false otherwise.
1795 */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1796 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1797 {
1798 struct memcg_stock_pcp *stock;
1799 uint8_t stock_pages;
1800 bool ret = false;
1801 int i;
1802
1803 if (nr_pages > MEMCG_CHARGE_BATCH ||
1804 !local_trylock(&memcg_stock.lock))
1805 return ret;
1806
1807 stock = this_cpu_ptr(&memcg_stock);
1808
1809 for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1810 if (memcg != READ_ONCE(stock->cached[i]))
1811 continue;
1812
1813 stock_pages = READ_ONCE(stock->nr_pages[i]);
1814 if (stock_pages >= nr_pages) {
1815 WRITE_ONCE(stock->nr_pages[i], stock_pages - nr_pages);
1816 ret = true;
1817 }
1818 break;
1819 }
1820
1821 local_unlock(&memcg_stock.lock);
1822
1823 return ret;
1824 }
1825
memcg_uncharge(struct mem_cgroup * memcg,unsigned int nr_pages)1826 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
1827 {
1828 page_counter_uncharge(&memcg->memory, nr_pages);
1829 if (do_memsw_account())
1830 page_counter_uncharge(&memcg->memsw, nr_pages);
1831 }
1832
1833 /*
1834 * Returns stocks cached in percpu and reset cached information.
1835 */
drain_stock(struct memcg_stock_pcp * stock,int i)1836 static void drain_stock(struct memcg_stock_pcp *stock, int i)
1837 {
1838 struct mem_cgroup *old = READ_ONCE(stock->cached[i]);
1839 uint8_t stock_pages;
1840
1841 if (!old)
1842 return;
1843
1844 stock_pages = READ_ONCE(stock->nr_pages[i]);
1845 if (stock_pages) {
1846 memcg_uncharge(old, stock_pages);
1847 WRITE_ONCE(stock->nr_pages[i], 0);
1848 }
1849
1850 css_put(&old->css);
1851 WRITE_ONCE(stock->cached[i], NULL);
1852 }
1853
drain_stock_fully(struct memcg_stock_pcp * stock)1854 static void drain_stock_fully(struct memcg_stock_pcp *stock)
1855 {
1856 int i;
1857
1858 for (i = 0; i < NR_MEMCG_STOCK; ++i)
1859 drain_stock(stock, i);
1860 }
1861
drain_local_memcg_stock(struct work_struct * dummy)1862 static void drain_local_memcg_stock(struct work_struct *dummy)
1863 {
1864 struct memcg_stock_pcp *stock;
1865
1866 if (WARN_ONCE(!in_task(), "drain in non-task context"))
1867 return;
1868
1869 local_lock(&memcg_stock.lock);
1870
1871 stock = this_cpu_ptr(&memcg_stock);
1872 drain_stock_fully(stock);
1873 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1874
1875 local_unlock(&memcg_stock.lock);
1876 }
1877
drain_local_obj_stock(struct work_struct * dummy)1878 static void drain_local_obj_stock(struct work_struct *dummy)
1879 {
1880 struct obj_stock_pcp *stock;
1881
1882 if (WARN_ONCE(!in_task(), "drain in non-task context"))
1883 return;
1884
1885 local_lock(&obj_stock.lock);
1886
1887 stock = this_cpu_ptr(&obj_stock);
1888 drain_obj_stock(stock);
1889 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1890
1891 local_unlock(&obj_stock.lock);
1892 }
1893
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1894 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1895 {
1896 struct memcg_stock_pcp *stock;
1897 struct mem_cgroup *cached;
1898 uint8_t stock_pages;
1899 bool success = false;
1900 int empty_slot = -1;
1901 int i;
1902
1903 /*
1904 * For now limit MEMCG_CHARGE_BATCH to 127 and less. In future if we
1905 * decide to increase it more than 127 then we will need more careful
1906 * handling of nr_pages[] in struct memcg_stock_pcp.
1907 */
1908 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S8_MAX);
1909
1910 VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg));
1911
1912 if (nr_pages > MEMCG_CHARGE_BATCH ||
1913 !local_trylock(&memcg_stock.lock)) {
1914 /*
1915 * In case of larger than batch refill or unlikely failure to
1916 * lock the percpu memcg_stock.lock, uncharge memcg directly.
1917 */
1918 memcg_uncharge(memcg, nr_pages);
1919 return;
1920 }
1921
1922 stock = this_cpu_ptr(&memcg_stock);
1923 for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1924 cached = READ_ONCE(stock->cached[i]);
1925 if (!cached && empty_slot == -1)
1926 empty_slot = i;
1927 if (memcg == READ_ONCE(stock->cached[i])) {
1928 stock_pages = READ_ONCE(stock->nr_pages[i]) + nr_pages;
1929 WRITE_ONCE(stock->nr_pages[i], stock_pages);
1930 if (stock_pages > MEMCG_CHARGE_BATCH)
1931 drain_stock(stock, i);
1932 success = true;
1933 break;
1934 }
1935 }
1936
1937 if (!success) {
1938 i = empty_slot;
1939 if (i == -1) {
1940 i = get_random_u32_below(NR_MEMCG_STOCK);
1941 drain_stock(stock, i);
1942 }
1943 css_get(&memcg->css);
1944 WRITE_ONCE(stock->cached[i], memcg);
1945 WRITE_ONCE(stock->nr_pages[i], nr_pages);
1946 }
1947
1948 local_unlock(&memcg_stock.lock);
1949 }
1950
is_memcg_drain_needed(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)1951 static bool is_memcg_drain_needed(struct memcg_stock_pcp *stock,
1952 struct mem_cgroup *root_memcg)
1953 {
1954 struct mem_cgroup *memcg;
1955 bool flush = false;
1956 int i;
1957
1958 rcu_read_lock();
1959 for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1960 memcg = READ_ONCE(stock->cached[i]);
1961 if (!memcg)
1962 continue;
1963
1964 if (READ_ONCE(stock->nr_pages[i]) &&
1965 mem_cgroup_is_descendant(memcg, root_memcg)) {
1966 flush = true;
1967 break;
1968 }
1969 }
1970 rcu_read_unlock();
1971 return flush;
1972 }
1973
1974 /*
1975 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1976 * of the hierarchy under it.
1977 */
drain_all_stock(struct mem_cgroup * root_memcg)1978 void drain_all_stock(struct mem_cgroup *root_memcg)
1979 {
1980 int cpu, curcpu;
1981
1982 /* If someone's already draining, avoid adding running more workers. */
1983 if (!mutex_trylock(&percpu_charge_mutex))
1984 return;
1985 /*
1986 * Notify other cpus that system-wide "drain" is running
1987 * We do not care about races with the cpu hotplug because cpu down
1988 * as well as workers from this path always operate on the local
1989 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1990 */
1991 migrate_disable();
1992 curcpu = smp_processor_id();
1993 for_each_online_cpu(cpu) {
1994 struct memcg_stock_pcp *memcg_st = &per_cpu(memcg_stock, cpu);
1995 struct obj_stock_pcp *obj_st = &per_cpu(obj_stock, cpu);
1996
1997 if (!test_bit(FLUSHING_CACHED_CHARGE, &memcg_st->flags) &&
1998 is_memcg_drain_needed(memcg_st, root_memcg) &&
1999 !test_and_set_bit(FLUSHING_CACHED_CHARGE,
2000 &memcg_st->flags)) {
2001 if (cpu == curcpu)
2002 drain_local_memcg_stock(&memcg_st->work);
2003 else if (!cpu_is_isolated(cpu))
2004 schedule_work_on(cpu, &memcg_st->work);
2005 }
2006
2007 if (!test_bit(FLUSHING_CACHED_CHARGE, &obj_st->flags) &&
2008 obj_stock_flush_required(obj_st, root_memcg) &&
2009 !test_and_set_bit(FLUSHING_CACHED_CHARGE,
2010 &obj_st->flags)) {
2011 if (cpu == curcpu)
2012 drain_local_obj_stock(&obj_st->work);
2013 else if (!cpu_is_isolated(cpu))
2014 schedule_work_on(cpu, &obj_st->work);
2015 }
2016 }
2017 migrate_enable();
2018 mutex_unlock(&percpu_charge_mutex);
2019 }
2020
memcg_hotplug_cpu_dead(unsigned int cpu)2021 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2022 {
2023 /* no need for the local lock */
2024 drain_obj_stock(&per_cpu(obj_stock, cpu));
2025 drain_stock_fully(&per_cpu(memcg_stock, cpu));
2026
2027 return 0;
2028 }
2029
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)2030 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2031 unsigned int nr_pages,
2032 gfp_t gfp_mask)
2033 {
2034 unsigned long nr_reclaimed = 0;
2035
2036 do {
2037 unsigned long pflags;
2038
2039 if (page_counter_read(&memcg->memory) <=
2040 READ_ONCE(memcg->memory.high))
2041 continue;
2042
2043 memcg_memory_event(memcg, MEMCG_HIGH);
2044
2045 psi_memstall_enter(&pflags);
2046 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2047 gfp_mask,
2048 MEMCG_RECLAIM_MAY_SWAP,
2049 NULL);
2050 psi_memstall_leave(&pflags);
2051 } while ((memcg = parent_mem_cgroup(memcg)) &&
2052 !mem_cgroup_is_root(memcg));
2053
2054 return nr_reclaimed;
2055 }
2056
high_work_func(struct work_struct * work)2057 static void high_work_func(struct work_struct *work)
2058 {
2059 struct mem_cgroup *memcg;
2060
2061 memcg = container_of(work, struct mem_cgroup, high_work);
2062 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2063 }
2064
2065 /*
2066 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2067 * enough to still cause a significant slowdown in most cases, while still
2068 * allowing diagnostics and tracing to proceed without becoming stuck.
2069 */
2070 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2071
2072 /*
2073 * When calculating the delay, we use these either side of the exponentiation to
2074 * maintain precision and scale to a reasonable number of jiffies (see the table
2075 * below.
2076 *
2077 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2078 * overage ratio to a delay.
2079 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2080 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2081 * to produce a reasonable delay curve.
2082 *
2083 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2084 * reasonable delay curve compared to precision-adjusted overage, not
2085 * penalising heavily at first, but still making sure that growth beyond the
2086 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2087 * example, with a high of 100 megabytes:
2088 *
2089 * +-------+------------------------+
2090 * | usage | time to allocate in ms |
2091 * +-------+------------------------+
2092 * | 100M | 0 |
2093 * | 101M | 6 |
2094 * | 102M | 25 |
2095 * | 103M | 57 |
2096 * | 104M | 102 |
2097 * | 105M | 159 |
2098 * | 106M | 230 |
2099 * | 107M | 313 |
2100 * | 108M | 409 |
2101 * | 109M | 518 |
2102 * | 110M | 639 |
2103 * | 111M | 774 |
2104 * | 112M | 921 |
2105 * | 113M | 1081 |
2106 * | 114M | 1254 |
2107 * | 115M | 1439 |
2108 * | 116M | 1638 |
2109 * | 117M | 1849 |
2110 * | 118M | 2000 |
2111 * | 119M | 2000 |
2112 * | 120M | 2000 |
2113 * +-------+------------------------+
2114 */
2115 #define MEMCG_DELAY_PRECISION_SHIFT 20
2116 #define MEMCG_DELAY_SCALING_SHIFT 14
2117
calculate_overage(unsigned long usage,unsigned long high)2118 static u64 calculate_overage(unsigned long usage, unsigned long high)
2119 {
2120 u64 overage;
2121
2122 if (usage <= high)
2123 return 0;
2124
2125 /*
2126 * Prevent division by 0 in overage calculation by acting as if
2127 * it was a threshold of 1 page
2128 */
2129 high = max(high, 1UL);
2130
2131 overage = usage - high;
2132 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2133 return div64_u64(overage, high);
2134 }
2135
mem_find_max_overage(struct mem_cgroup * memcg)2136 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2137 {
2138 u64 overage, max_overage = 0;
2139
2140 do {
2141 overage = calculate_overage(page_counter_read(&memcg->memory),
2142 READ_ONCE(memcg->memory.high));
2143 max_overage = max(overage, max_overage);
2144 } while ((memcg = parent_mem_cgroup(memcg)) &&
2145 !mem_cgroup_is_root(memcg));
2146
2147 return max_overage;
2148 }
2149
swap_find_max_overage(struct mem_cgroup * memcg)2150 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2151 {
2152 u64 overage, max_overage = 0;
2153
2154 do {
2155 overage = calculate_overage(page_counter_read(&memcg->swap),
2156 READ_ONCE(memcg->swap.high));
2157 if (overage)
2158 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2159 max_overage = max(overage, max_overage);
2160 } while ((memcg = parent_mem_cgroup(memcg)) &&
2161 !mem_cgroup_is_root(memcg));
2162
2163 return max_overage;
2164 }
2165
2166 /*
2167 * Get the number of jiffies that we should penalise a mischievous cgroup which
2168 * is exceeding its memory.high by checking both it and its ancestors.
2169 */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages,u64 max_overage)2170 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2171 unsigned int nr_pages,
2172 u64 max_overage)
2173 {
2174 unsigned long penalty_jiffies;
2175
2176 if (!max_overage)
2177 return 0;
2178
2179 /*
2180 * We use overage compared to memory.high to calculate the number of
2181 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2182 * fairly lenient on small overages, and increasingly harsh when the
2183 * memcg in question makes it clear that it has no intention of stopping
2184 * its crazy behaviour, so we exponentially increase the delay based on
2185 * overage amount.
2186 */
2187 penalty_jiffies = max_overage * max_overage * HZ;
2188 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2189 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2190
2191 /*
2192 * Factor in the task's own contribution to the overage, such that four
2193 * N-sized allocations are throttled approximately the same as one
2194 * 4N-sized allocation.
2195 *
2196 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2197 * larger the current charge patch is than that.
2198 */
2199 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2200 }
2201
2202 /*
2203 * Reclaims memory over the high limit. Called directly from
2204 * try_charge() (context permitting), as well as from the userland
2205 * return path where reclaim is always able to block.
2206 */
__mem_cgroup_handle_over_high(gfp_t gfp_mask)2207 void __mem_cgroup_handle_over_high(gfp_t gfp_mask)
2208 {
2209 unsigned long penalty_jiffies;
2210 unsigned long pflags;
2211 unsigned long nr_reclaimed;
2212 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2213 int nr_retries = MAX_RECLAIM_RETRIES;
2214 struct mem_cgroup *memcg;
2215 bool in_retry = false;
2216
2217 memcg = get_mem_cgroup_from_mm(current->mm);
2218 current->memcg_nr_pages_over_high = 0;
2219
2220 retry_reclaim:
2221 /*
2222 * Bail if the task is already exiting. Unlike memory.max,
2223 * memory.high enforcement isn't as strict, and there is no
2224 * OOM killer involved, which means the excess could already
2225 * be much bigger (and still growing) than it could for
2226 * memory.max; the dying task could get stuck in fruitless
2227 * reclaim for a long time, which isn't desirable.
2228 */
2229 if (task_is_dying())
2230 goto out;
2231
2232 /*
2233 * The allocating task should reclaim at least the batch size, but for
2234 * subsequent retries we only want to do what's necessary to prevent oom
2235 * or breaching resource isolation.
2236 *
2237 * This is distinct from memory.max or page allocator behaviour because
2238 * memory.high is currently batched, whereas memory.max and the page
2239 * allocator run every time an allocation is made.
2240 */
2241 nr_reclaimed = reclaim_high(memcg,
2242 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2243 gfp_mask);
2244
2245 /*
2246 * memory.high is breached and reclaim is unable to keep up. Throttle
2247 * allocators proactively to slow down excessive growth.
2248 */
2249 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2250 mem_find_max_overage(memcg));
2251
2252 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2253 swap_find_max_overage(memcg));
2254
2255 /*
2256 * Clamp the max delay per usermode return so as to still keep the
2257 * application moving forwards and also permit diagnostics, albeit
2258 * extremely slowly.
2259 */
2260 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2261
2262 /*
2263 * Don't sleep if the amount of jiffies this memcg owes us is so low
2264 * that it's not even worth doing, in an attempt to be nice to those who
2265 * go only a small amount over their memory.high value and maybe haven't
2266 * been aggressively reclaimed enough yet.
2267 */
2268 if (penalty_jiffies <= HZ / 100)
2269 goto out;
2270
2271 /*
2272 * If reclaim is making forward progress but we're still over
2273 * memory.high, we want to encourage that rather than doing allocator
2274 * throttling.
2275 */
2276 if (nr_reclaimed || nr_retries--) {
2277 in_retry = true;
2278 goto retry_reclaim;
2279 }
2280
2281 /*
2282 * Reclaim didn't manage to push usage below the limit, slow
2283 * this allocating task down.
2284 *
2285 * If we exit early, we're guaranteed to die (since
2286 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2287 * need to account for any ill-begotten jiffies to pay them off later.
2288 */
2289 psi_memstall_enter(&pflags);
2290 schedule_timeout_killable(penalty_jiffies);
2291 psi_memstall_leave(&pflags);
2292
2293 out:
2294 css_put(&memcg->css);
2295 }
2296
try_charge_memcg(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2297 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2298 unsigned int nr_pages)
2299 {
2300 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2301 int nr_retries = MAX_RECLAIM_RETRIES;
2302 struct mem_cgroup *mem_over_limit;
2303 struct page_counter *counter;
2304 unsigned long nr_reclaimed;
2305 bool passed_oom = false;
2306 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2307 bool drained = false;
2308 bool raised_max_event = false;
2309 unsigned long pflags;
2310 bool allow_spinning = gfpflags_allow_spinning(gfp_mask);
2311
2312 retry:
2313 if (consume_stock(memcg, nr_pages))
2314 return 0;
2315
2316 if (!allow_spinning)
2317 /* Avoid the refill and flush of the older stock */
2318 batch = nr_pages;
2319
2320 if (!do_memsw_account() ||
2321 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2322 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2323 goto done_restock;
2324 if (do_memsw_account())
2325 page_counter_uncharge(&memcg->memsw, batch);
2326 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2327 } else {
2328 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2329 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2330 }
2331
2332 if (batch > nr_pages) {
2333 batch = nr_pages;
2334 goto retry;
2335 }
2336
2337 /*
2338 * Prevent unbounded recursion when reclaim operations need to
2339 * allocate memory. This might exceed the limits temporarily,
2340 * but we prefer facilitating memory reclaim and getting back
2341 * under the limit over triggering OOM kills in these cases.
2342 */
2343 if (unlikely(current->flags & PF_MEMALLOC))
2344 goto force;
2345
2346 if (unlikely(task_in_memcg_oom(current)))
2347 goto nomem;
2348
2349 if (!gfpflags_allow_blocking(gfp_mask))
2350 goto nomem;
2351
2352 __memcg_memory_event(mem_over_limit, MEMCG_MAX, allow_spinning);
2353 raised_max_event = true;
2354
2355 psi_memstall_enter(&pflags);
2356 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2357 gfp_mask, reclaim_options, NULL);
2358 psi_memstall_leave(&pflags);
2359
2360 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2361 goto retry;
2362
2363 if (!drained) {
2364 drain_all_stock(mem_over_limit);
2365 drained = true;
2366 goto retry;
2367 }
2368
2369 if (gfp_mask & __GFP_NORETRY)
2370 goto nomem;
2371 /*
2372 * Even though the limit is exceeded at this point, reclaim
2373 * may have been able to free some pages. Retry the charge
2374 * before killing the task.
2375 *
2376 * Only for regular pages, though: huge pages are rather
2377 * unlikely to succeed so close to the limit, and we fall back
2378 * to regular pages anyway in case of failure.
2379 */
2380 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2381 goto retry;
2382
2383 if (nr_retries--)
2384 goto retry;
2385
2386 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2387 goto nomem;
2388
2389 /* Avoid endless loop for tasks bypassed by the oom killer */
2390 if (passed_oom && task_is_dying())
2391 goto nomem;
2392
2393 /*
2394 * keep retrying as long as the memcg oom killer is able to make
2395 * a forward progress or bypass the charge if the oom killer
2396 * couldn't make any progress.
2397 */
2398 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2399 get_order(nr_pages * PAGE_SIZE))) {
2400 passed_oom = true;
2401 nr_retries = MAX_RECLAIM_RETRIES;
2402 goto retry;
2403 }
2404 nomem:
2405 /*
2406 * Memcg doesn't have a dedicated reserve for atomic
2407 * allocations. But like the global atomic pool, we need to
2408 * put the burden of reclaim on regular allocation requests
2409 * and let these go through as privileged allocations.
2410 */
2411 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2412 return -ENOMEM;
2413 force:
2414 /*
2415 * If the allocation has to be enforced, don't forget to raise
2416 * a MEMCG_MAX event.
2417 */
2418 if (!raised_max_event)
2419 __memcg_memory_event(mem_over_limit, MEMCG_MAX, allow_spinning);
2420
2421 /*
2422 * The allocation either can't fail or will lead to more memory
2423 * being freed very soon. Allow memory usage go over the limit
2424 * temporarily by force charging it.
2425 */
2426 page_counter_charge(&memcg->memory, nr_pages);
2427 if (do_memsw_account())
2428 page_counter_charge(&memcg->memsw, nr_pages);
2429
2430 return 0;
2431
2432 done_restock:
2433 if (batch > nr_pages)
2434 refill_stock(memcg, batch - nr_pages);
2435
2436 /*
2437 * If the hierarchy is above the normal consumption range, schedule
2438 * reclaim on returning to userland. We can perform reclaim here
2439 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2440 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2441 * not recorded as it most likely matches current's and won't
2442 * change in the meantime. As high limit is checked again before
2443 * reclaim, the cost of mismatch is negligible.
2444 */
2445 do {
2446 bool mem_high, swap_high;
2447
2448 mem_high = page_counter_read(&memcg->memory) >
2449 READ_ONCE(memcg->memory.high);
2450 swap_high = page_counter_read(&memcg->swap) >
2451 READ_ONCE(memcg->swap.high);
2452
2453 /* Don't bother a random interrupted task */
2454 if (!in_task()) {
2455 if (mem_high) {
2456 schedule_work(&memcg->high_work);
2457 break;
2458 }
2459 continue;
2460 }
2461
2462 if (mem_high || swap_high) {
2463 /*
2464 * The allocating tasks in this cgroup will need to do
2465 * reclaim or be throttled to prevent further growth
2466 * of the memory or swap footprints.
2467 *
2468 * Target some best-effort fairness between the tasks,
2469 * and distribute reclaim work and delay penalties
2470 * based on how much each task is actually allocating.
2471 */
2472 current->memcg_nr_pages_over_high += batch;
2473 set_notify_resume(current);
2474 break;
2475 }
2476 } while ((memcg = parent_mem_cgroup(memcg)));
2477
2478 /*
2479 * Reclaim is set up above to be called from the userland
2480 * return path. But also attempt synchronous reclaim to avoid
2481 * excessive overrun while the task is still inside the
2482 * kernel. If this is successful, the return path will see it
2483 * when it rechecks the overage and simply bail out.
2484 */
2485 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2486 !(current->flags & PF_MEMALLOC) &&
2487 gfpflags_allow_blocking(gfp_mask))
2488 __mem_cgroup_handle_over_high(gfp_mask);
2489 return 0;
2490 }
2491
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2492 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2493 unsigned int nr_pages)
2494 {
2495 if (mem_cgroup_is_root(memcg))
2496 return 0;
2497
2498 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2499 }
2500
commit_charge(struct folio * folio,struct mem_cgroup * memcg)2501 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2502 {
2503 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio);
2504 /*
2505 * Any of the following ensures page's memcg stability:
2506 *
2507 * - the page lock
2508 * - LRU isolation
2509 * - exclusive reference
2510 */
2511 folio->memcg_data = (unsigned long)memcg;
2512 }
2513
2514 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
account_slab_nmi_safe(struct mem_cgroup * memcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2515 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
2516 struct pglist_data *pgdat,
2517 enum node_stat_item idx, int nr)
2518 {
2519 struct lruvec *lruvec;
2520
2521 if (likely(!in_nmi())) {
2522 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2523 mod_memcg_lruvec_state(lruvec, idx, nr);
2524 } else {
2525 struct mem_cgroup_per_node *pn = memcg->nodeinfo[pgdat->node_id];
2526
2527 /* preemption is disabled in_nmi(). */
2528 css_rstat_updated(&memcg->css, smp_processor_id());
2529 if (idx == NR_SLAB_RECLAIMABLE_B)
2530 atomic_add(nr, &pn->slab_reclaimable);
2531 else
2532 atomic_add(nr, &pn->slab_unreclaimable);
2533 }
2534 }
2535 #else
account_slab_nmi_safe(struct mem_cgroup * memcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2536 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
2537 struct pglist_data *pgdat,
2538 enum node_stat_item idx, int nr)
2539 {
2540 struct lruvec *lruvec;
2541
2542 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2543 mod_memcg_lruvec_state(lruvec, idx, nr);
2544 }
2545 #endif
2546
mod_objcg_mlstate(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2547 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2548 struct pglist_data *pgdat,
2549 enum node_stat_item idx, int nr)
2550 {
2551 struct mem_cgroup *memcg;
2552
2553 rcu_read_lock();
2554 memcg = obj_cgroup_memcg(objcg);
2555 account_slab_nmi_safe(memcg, pgdat, idx, nr);
2556 rcu_read_unlock();
2557 }
2558
2559 static __always_inline
mem_cgroup_from_obj_folio(struct folio * folio,void * p)2560 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2561 {
2562 /*
2563 * Slab objects are accounted individually, not per-page.
2564 * Memcg membership data for each individual object is saved in
2565 * slab->obj_exts.
2566 */
2567 if (folio_test_slab(folio)) {
2568 struct slabobj_ext *obj_exts;
2569 struct slab *slab;
2570 unsigned int off;
2571
2572 slab = folio_slab(folio);
2573 obj_exts = slab_obj_exts(slab);
2574 if (!obj_exts)
2575 return NULL;
2576
2577 off = obj_to_index(slab->slab_cache, slab, p);
2578 if (obj_exts[off].objcg)
2579 return obj_cgroup_memcg(obj_exts[off].objcg);
2580
2581 return NULL;
2582 }
2583
2584 /*
2585 * folio_memcg_check() is used here, because in theory we can encounter
2586 * a folio where the slab flag has been cleared already, but
2587 * slab->obj_exts has not been freed yet
2588 * folio_memcg_check() will guarantee that a proper memory
2589 * cgroup pointer or NULL will be returned.
2590 */
2591 return folio_memcg_check(folio);
2592 }
2593
2594 /*
2595 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2596 * It is not suitable for objects allocated using vmalloc().
2597 *
2598 * A passed kernel object must be a slab object or a generic kernel page.
2599 *
2600 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2601 * cgroup_mutex, etc.
2602 */
mem_cgroup_from_slab_obj(void * p)2603 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2604 {
2605 if (mem_cgroup_disabled())
2606 return NULL;
2607
2608 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2609 }
2610
__get_obj_cgroup_from_memcg(struct mem_cgroup * memcg)2611 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2612 {
2613 struct obj_cgroup *objcg = NULL;
2614
2615 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2616 objcg = rcu_dereference(memcg->objcg);
2617 if (likely(objcg && obj_cgroup_tryget(objcg)))
2618 break;
2619 objcg = NULL;
2620 }
2621 return objcg;
2622 }
2623
current_objcg_update(void)2624 static struct obj_cgroup *current_objcg_update(void)
2625 {
2626 struct mem_cgroup *memcg;
2627 struct obj_cgroup *old, *objcg = NULL;
2628
2629 do {
2630 /* Atomically drop the update bit. */
2631 old = xchg(¤t->objcg, NULL);
2632 if (old) {
2633 old = (struct obj_cgroup *)
2634 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
2635 obj_cgroup_put(old);
2636
2637 old = NULL;
2638 }
2639
2640 /* If new objcg is NULL, no reason for the second atomic update. */
2641 if (!current->mm || (current->flags & PF_KTHREAD))
2642 return NULL;
2643
2644 /*
2645 * Release the objcg pointer from the previous iteration,
2646 * if try_cmpxcg() below fails.
2647 */
2648 if (unlikely(objcg)) {
2649 obj_cgroup_put(objcg);
2650 objcg = NULL;
2651 }
2652
2653 /*
2654 * Obtain the new objcg pointer. The current task can be
2655 * asynchronously moved to another memcg and the previous
2656 * memcg can be offlined. So let's get the memcg pointer
2657 * and try get a reference to objcg under a rcu read lock.
2658 */
2659
2660 rcu_read_lock();
2661 memcg = mem_cgroup_from_task(current);
2662 objcg = __get_obj_cgroup_from_memcg(memcg);
2663 rcu_read_unlock();
2664
2665 /*
2666 * Try set up a new objcg pointer atomically. If it
2667 * fails, it means the update flag was set concurrently, so
2668 * the whole procedure should be repeated.
2669 */
2670 } while (!try_cmpxchg(¤t->objcg, &old, objcg));
2671
2672 return objcg;
2673 }
2674
current_obj_cgroup(void)2675 __always_inline struct obj_cgroup *current_obj_cgroup(void)
2676 {
2677 struct mem_cgroup *memcg;
2678 struct obj_cgroup *objcg;
2679
2680 if (IS_ENABLED(CONFIG_MEMCG_NMI_UNSAFE) && in_nmi())
2681 return NULL;
2682
2683 if (in_task()) {
2684 memcg = current->active_memcg;
2685 if (unlikely(memcg))
2686 goto from_memcg;
2687
2688 objcg = READ_ONCE(current->objcg);
2689 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
2690 objcg = current_objcg_update();
2691 /*
2692 * Objcg reference is kept by the task, so it's safe
2693 * to use the objcg by the current task.
2694 */
2695 return objcg;
2696 }
2697
2698 memcg = this_cpu_read(int_active_memcg);
2699 if (unlikely(memcg))
2700 goto from_memcg;
2701
2702 return NULL;
2703
2704 from_memcg:
2705 objcg = NULL;
2706 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2707 /*
2708 * Memcg pointer is protected by scope (see set_active_memcg())
2709 * and is pinning the corresponding objcg, so objcg can't go
2710 * away and can be used within the scope without any additional
2711 * protection.
2712 */
2713 objcg = rcu_dereference_check(memcg->objcg, 1);
2714 if (likely(objcg))
2715 break;
2716 }
2717
2718 return objcg;
2719 }
2720
get_obj_cgroup_from_folio(struct folio * folio)2721 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
2722 {
2723 struct obj_cgroup *objcg;
2724
2725 if (!memcg_kmem_online())
2726 return NULL;
2727
2728 if (folio_memcg_kmem(folio)) {
2729 objcg = __folio_objcg(folio);
2730 obj_cgroup_get(objcg);
2731 } else {
2732 struct mem_cgroup *memcg;
2733
2734 rcu_read_lock();
2735 memcg = __folio_memcg(folio);
2736 if (memcg)
2737 objcg = __get_obj_cgroup_from_memcg(memcg);
2738 else
2739 objcg = NULL;
2740 rcu_read_unlock();
2741 }
2742 return objcg;
2743 }
2744
2745 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
account_kmem_nmi_safe(struct mem_cgroup * memcg,int val)2746 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
2747 {
2748 if (likely(!in_nmi())) {
2749 mod_memcg_state(memcg, MEMCG_KMEM, val);
2750 } else {
2751 /* preemption is disabled in_nmi(). */
2752 css_rstat_updated(&memcg->css, smp_processor_id());
2753 atomic_add(val, &memcg->kmem_stat);
2754 }
2755 }
2756 #else
account_kmem_nmi_safe(struct mem_cgroup * memcg,int val)2757 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
2758 {
2759 mod_memcg_state(memcg, MEMCG_KMEM, val);
2760 }
2761 #endif
2762
2763 /*
2764 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2765 * @objcg: object cgroup to uncharge
2766 * @nr_pages: number of pages to uncharge
2767 */
obj_cgroup_uncharge_pages(struct obj_cgroup * objcg,unsigned int nr_pages)2768 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2769 unsigned int nr_pages)
2770 {
2771 struct mem_cgroup *memcg;
2772
2773 memcg = get_mem_cgroup_from_objcg(objcg);
2774
2775 account_kmem_nmi_safe(memcg, -nr_pages);
2776 memcg1_account_kmem(memcg, -nr_pages);
2777 if (!mem_cgroup_is_root(memcg))
2778 refill_stock(memcg, nr_pages);
2779
2780 css_put(&memcg->css);
2781 }
2782
2783 /*
2784 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2785 * @objcg: object cgroup to charge
2786 * @gfp: reclaim mode
2787 * @nr_pages: number of pages to charge
2788 *
2789 * Returns 0 on success, an error code on failure.
2790 */
obj_cgroup_charge_pages(struct obj_cgroup * objcg,gfp_t gfp,unsigned int nr_pages)2791 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2792 unsigned int nr_pages)
2793 {
2794 struct mem_cgroup *memcg;
2795 int ret;
2796
2797 memcg = get_mem_cgroup_from_objcg(objcg);
2798
2799 ret = try_charge_memcg(memcg, gfp, nr_pages);
2800 if (ret)
2801 goto out;
2802
2803 account_kmem_nmi_safe(memcg, nr_pages);
2804 memcg1_account_kmem(memcg, nr_pages);
2805 out:
2806 css_put(&memcg->css);
2807
2808 return ret;
2809 }
2810
page_objcg(const struct page * page)2811 static struct obj_cgroup *page_objcg(const struct page *page)
2812 {
2813 unsigned long memcg_data = page->memcg_data;
2814
2815 if (mem_cgroup_disabled() || !memcg_data)
2816 return NULL;
2817
2818 VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM,
2819 page);
2820 return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM);
2821 }
2822
page_set_objcg(struct page * page,const struct obj_cgroup * objcg)2823 static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg)
2824 {
2825 page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM;
2826 }
2827
2828 /**
2829 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2830 * @page: page to charge
2831 * @gfp: reclaim mode
2832 * @order: allocation order
2833 *
2834 * Returns 0 on success, an error code on failure.
2835 */
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)2836 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2837 {
2838 struct obj_cgroup *objcg;
2839 int ret = 0;
2840
2841 objcg = current_obj_cgroup();
2842 if (objcg) {
2843 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2844 if (!ret) {
2845 obj_cgroup_get(objcg);
2846 page_set_objcg(page, objcg);
2847 return 0;
2848 }
2849 }
2850 return ret;
2851 }
2852
2853 /**
2854 * __memcg_kmem_uncharge_page: uncharge a kmem page
2855 * @page: page to uncharge
2856 * @order: allocation order
2857 */
__memcg_kmem_uncharge_page(struct page * page,int order)2858 void __memcg_kmem_uncharge_page(struct page *page, int order)
2859 {
2860 struct obj_cgroup *objcg = page_objcg(page);
2861 unsigned int nr_pages = 1 << order;
2862
2863 if (!objcg)
2864 return;
2865
2866 obj_cgroup_uncharge_pages(objcg, nr_pages);
2867 page->memcg_data = 0;
2868 obj_cgroup_put(objcg);
2869 }
2870
__account_obj_stock(struct obj_cgroup * objcg,struct obj_stock_pcp * stock,int nr,struct pglist_data * pgdat,enum node_stat_item idx)2871 static void __account_obj_stock(struct obj_cgroup *objcg,
2872 struct obj_stock_pcp *stock, int nr,
2873 struct pglist_data *pgdat, enum node_stat_item idx)
2874 {
2875 int *bytes;
2876
2877 /*
2878 * Save vmstat data in stock and skip vmstat array update unless
2879 * accumulating over a page of vmstat data or when pgdat changes.
2880 */
2881 if (stock->cached_pgdat != pgdat) {
2882 /* Flush the existing cached vmstat data */
2883 struct pglist_data *oldpg = stock->cached_pgdat;
2884
2885 if (stock->nr_slab_reclaimable_b) {
2886 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
2887 stock->nr_slab_reclaimable_b);
2888 stock->nr_slab_reclaimable_b = 0;
2889 }
2890 if (stock->nr_slab_unreclaimable_b) {
2891 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
2892 stock->nr_slab_unreclaimable_b);
2893 stock->nr_slab_unreclaimable_b = 0;
2894 }
2895 stock->cached_pgdat = pgdat;
2896 }
2897
2898 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
2899 : &stock->nr_slab_unreclaimable_b;
2900 /*
2901 * Even for large object >= PAGE_SIZE, the vmstat data will still be
2902 * cached locally at least once before pushing it out.
2903 */
2904 if (!*bytes) {
2905 *bytes = nr;
2906 nr = 0;
2907 } else {
2908 *bytes += nr;
2909 if (abs(*bytes) > PAGE_SIZE) {
2910 nr = *bytes;
2911 *bytes = 0;
2912 } else {
2913 nr = 0;
2914 }
2915 }
2916 if (nr)
2917 mod_objcg_mlstate(objcg, pgdat, idx, nr);
2918 }
2919
consume_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,struct pglist_data * pgdat,enum node_stat_item idx)2920 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
2921 struct pglist_data *pgdat, enum node_stat_item idx)
2922 {
2923 struct obj_stock_pcp *stock;
2924 bool ret = false;
2925
2926 if (!local_trylock(&obj_stock.lock))
2927 return ret;
2928
2929 stock = this_cpu_ptr(&obj_stock);
2930 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
2931 stock->nr_bytes -= nr_bytes;
2932 ret = true;
2933
2934 if (pgdat)
2935 __account_obj_stock(objcg, stock, nr_bytes, pgdat, idx);
2936 }
2937
2938 local_unlock(&obj_stock.lock);
2939
2940 return ret;
2941 }
2942
drain_obj_stock(struct obj_stock_pcp * stock)2943 static void drain_obj_stock(struct obj_stock_pcp *stock)
2944 {
2945 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
2946
2947 if (!old)
2948 return;
2949
2950 if (stock->nr_bytes) {
2951 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2952 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
2953
2954 if (nr_pages) {
2955 struct mem_cgroup *memcg;
2956
2957 memcg = get_mem_cgroup_from_objcg(old);
2958
2959 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2960 memcg1_account_kmem(memcg, -nr_pages);
2961 if (!mem_cgroup_is_root(memcg))
2962 memcg_uncharge(memcg, nr_pages);
2963
2964 css_put(&memcg->css);
2965 }
2966
2967 /*
2968 * The leftover is flushed to the centralized per-memcg value.
2969 * On the next attempt to refill obj stock it will be moved
2970 * to a per-cpu stock (probably, on an other CPU), see
2971 * refill_obj_stock().
2972 *
2973 * How often it's flushed is a trade-off between the memory
2974 * limit enforcement accuracy and potential CPU contention,
2975 * so it might be changed in the future.
2976 */
2977 atomic_add(nr_bytes, &old->nr_charged_bytes);
2978 stock->nr_bytes = 0;
2979 }
2980
2981 /*
2982 * Flush the vmstat data in current stock
2983 */
2984 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
2985 if (stock->nr_slab_reclaimable_b) {
2986 mod_objcg_mlstate(old, stock->cached_pgdat,
2987 NR_SLAB_RECLAIMABLE_B,
2988 stock->nr_slab_reclaimable_b);
2989 stock->nr_slab_reclaimable_b = 0;
2990 }
2991 if (stock->nr_slab_unreclaimable_b) {
2992 mod_objcg_mlstate(old, stock->cached_pgdat,
2993 NR_SLAB_UNRECLAIMABLE_B,
2994 stock->nr_slab_unreclaimable_b);
2995 stock->nr_slab_unreclaimable_b = 0;
2996 }
2997 stock->cached_pgdat = NULL;
2998 }
2999
3000 WRITE_ONCE(stock->cached_objcg, NULL);
3001 obj_cgroup_put(old);
3002 }
3003
obj_stock_flush_required(struct obj_stock_pcp * stock,struct mem_cgroup * root_memcg)3004 static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
3005 struct mem_cgroup *root_memcg)
3006 {
3007 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3008 struct mem_cgroup *memcg;
3009 bool flush = false;
3010
3011 rcu_read_lock();
3012 if (objcg) {
3013 memcg = obj_cgroup_memcg(objcg);
3014 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3015 flush = true;
3016 }
3017 rcu_read_unlock();
3018
3019 return flush;
3020 }
3021
refill_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,bool allow_uncharge,int nr_acct,struct pglist_data * pgdat,enum node_stat_item idx)3022 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3023 bool allow_uncharge, int nr_acct, struct pglist_data *pgdat,
3024 enum node_stat_item idx)
3025 {
3026 struct obj_stock_pcp *stock;
3027 unsigned int nr_pages = 0;
3028
3029 if (!local_trylock(&obj_stock.lock)) {
3030 if (pgdat)
3031 mod_objcg_mlstate(objcg, pgdat, idx, nr_bytes);
3032 nr_pages = nr_bytes >> PAGE_SHIFT;
3033 nr_bytes = nr_bytes & (PAGE_SIZE - 1);
3034 atomic_add(nr_bytes, &objcg->nr_charged_bytes);
3035 goto out;
3036 }
3037
3038 stock = this_cpu_ptr(&obj_stock);
3039 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3040 drain_obj_stock(stock);
3041 obj_cgroup_get(objcg);
3042 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3043 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3044 WRITE_ONCE(stock->cached_objcg, objcg);
3045
3046 allow_uncharge = true; /* Allow uncharge when objcg changes */
3047 }
3048 stock->nr_bytes += nr_bytes;
3049
3050 if (pgdat)
3051 __account_obj_stock(objcg, stock, nr_acct, pgdat, idx);
3052
3053 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3054 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3055 stock->nr_bytes &= (PAGE_SIZE - 1);
3056 }
3057
3058 local_unlock(&obj_stock.lock);
3059 out:
3060 if (nr_pages)
3061 obj_cgroup_uncharge_pages(objcg, nr_pages);
3062 }
3063
obj_cgroup_charge_account(struct obj_cgroup * objcg,gfp_t gfp,size_t size,struct pglist_data * pgdat,enum node_stat_item idx)3064 static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size,
3065 struct pglist_data *pgdat, enum node_stat_item idx)
3066 {
3067 unsigned int nr_pages, nr_bytes;
3068 int ret;
3069
3070 if (likely(consume_obj_stock(objcg, size, pgdat, idx)))
3071 return 0;
3072
3073 /*
3074 * In theory, objcg->nr_charged_bytes can have enough
3075 * pre-charged bytes to satisfy the allocation. However,
3076 * flushing objcg->nr_charged_bytes requires two atomic
3077 * operations, and objcg->nr_charged_bytes can't be big.
3078 * The shared objcg->nr_charged_bytes can also become a
3079 * performance bottleneck if all tasks of the same memcg are
3080 * trying to update it. So it's better to ignore it and try
3081 * grab some new pages. The stock's nr_bytes will be flushed to
3082 * objcg->nr_charged_bytes later on when objcg changes.
3083 *
3084 * The stock's nr_bytes may contain enough pre-charged bytes
3085 * to allow one less page from being charged, but we can't rely
3086 * on the pre-charged bytes not being changed outside of
3087 * consume_obj_stock() or refill_obj_stock(). So ignore those
3088 * pre-charged bytes as well when charging pages. To avoid a
3089 * page uncharge right after a page charge, we set the
3090 * allow_uncharge flag to false when calling refill_obj_stock()
3091 * to temporarily allow the pre-charged bytes to exceed the page
3092 * size limit. The maximum reachable value of the pre-charged
3093 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3094 * race.
3095 */
3096 nr_pages = size >> PAGE_SHIFT;
3097 nr_bytes = size & (PAGE_SIZE - 1);
3098
3099 if (nr_bytes)
3100 nr_pages += 1;
3101
3102 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3103 if (!ret && (nr_bytes || pgdat))
3104 refill_obj_stock(objcg, nr_bytes ? PAGE_SIZE - nr_bytes : 0,
3105 false, size, pgdat, idx);
3106
3107 return ret;
3108 }
3109
obj_cgroup_charge(struct obj_cgroup * objcg,gfp_t gfp,size_t size)3110 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3111 {
3112 return obj_cgroup_charge_account(objcg, gfp, size, NULL, 0);
3113 }
3114
obj_cgroup_uncharge(struct obj_cgroup * objcg,size_t size)3115 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3116 {
3117 refill_obj_stock(objcg, size, true, 0, NULL, 0);
3118 }
3119
obj_full_size(struct kmem_cache * s)3120 static inline size_t obj_full_size(struct kmem_cache *s)
3121 {
3122 /*
3123 * For each accounted object there is an extra space which is used
3124 * to store obj_cgroup membership. Charge it too.
3125 */
3126 return s->size + sizeof(struct obj_cgroup *);
3127 }
3128
__memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)3129 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3130 gfp_t flags, size_t size, void **p)
3131 {
3132 struct obj_cgroup *objcg;
3133 struct slab *slab;
3134 unsigned long off;
3135 size_t i;
3136
3137 /*
3138 * The obtained objcg pointer is safe to use within the current scope,
3139 * defined by current task or set_active_memcg() pair.
3140 * obj_cgroup_get() is used to get a permanent reference.
3141 */
3142 objcg = current_obj_cgroup();
3143 if (!objcg)
3144 return true;
3145
3146 /*
3147 * slab_alloc_node() avoids the NULL check, so we might be called with a
3148 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
3149 * the whole requested size.
3150 * return success as there's nothing to free back
3151 */
3152 if (unlikely(*p == NULL))
3153 return true;
3154
3155 flags &= gfp_allowed_mask;
3156
3157 if (lru) {
3158 int ret;
3159 struct mem_cgroup *memcg;
3160
3161 memcg = get_mem_cgroup_from_objcg(objcg);
3162 ret = memcg_list_lru_alloc(memcg, lru, flags);
3163 css_put(&memcg->css);
3164
3165 if (ret)
3166 return false;
3167 }
3168
3169 for (i = 0; i < size; i++) {
3170 slab = virt_to_slab(p[i]);
3171
3172 if (!slab_obj_exts(slab) &&
3173 alloc_slab_obj_exts(slab, s, flags, false)) {
3174 continue;
3175 }
3176
3177 /*
3178 * if we fail and size is 1, memcg_alloc_abort_single() will
3179 * just free the object, which is ok as we have not assigned
3180 * objcg to its obj_ext yet
3181 *
3182 * for larger sizes, kmem_cache_free_bulk() will uncharge
3183 * any objects that were already charged and obj_ext assigned
3184 *
3185 * TODO: we could batch this until slab_pgdat(slab) changes
3186 * between iterations, with a more complicated undo
3187 */
3188 if (obj_cgroup_charge_account(objcg, flags, obj_full_size(s),
3189 slab_pgdat(slab), cache_vmstat_idx(s)))
3190 return false;
3191
3192 off = obj_to_index(s, slab, p[i]);
3193 obj_cgroup_get(objcg);
3194 slab_obj_exts(slab)[off].objcg = objcg;
3195 }
3196
3197 return true;
3198 }
3199
__memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects,struct slabobj_ext * obj_exts)3200 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
3201 void **p, int objects, struct slabobj_ext *obj_exts)
3202 {
3203 size_t obj_size = obj_full_size(s);
3204
3205 for (int i = 0; i < objects; i++) {
3206 struct obj_cgroup *objcg;
3207 unsigned int off;
3208
3209 off = obj_to_index(s, slab, p[i]);
3210 objcg = obj_exts[off].objcg;
3211 if (!objcg)
3212 continue;
3213
3214 obj_exts[off].objcg = NULL;
3215 refill_obj_stock(objcg, obj_size, true, -obj_size,
3216 slab_pgdat(slab), cache_vmstat_idx(s));
3217 obj_cgroup_put(objcg);
3218 }
3219 }
3220
3221 /*
3222 * The objcg is only set on the first page, so transfer it to all the
3223 * other pages.
3224 */
split_page_memcg(struct page * page,unsigned order)3225 void split_page_memcg(struct page *page, unsigned order)
3226 {
3227 struct obj_cgroup *objcg = page_objcg(page);
3228 unsigned int i, nr = 1 << order;
3229
3230 if (!objcg)
3231 return;
3232
3233 for (i = 1; i < nr; i++)
3234 page_set_objcg(&page[i], objcg);
3235
3236 obj_cgroup_get_many(objcg, nr - 1);
3237 }
3238
folio_split_memcg_refs(struct folio * folio,unsigned old_order,unsigned new_order)3239 void folio_split_memcg_refs(struct folio *folio, unsigned old_order,
3240 unsigned new_order)
3241 {
3242 unsigned new_refs;
3243
3244 if (mem_cgroup_disabled() || !folio_memcg_charged(folio))
3245 return;
3246
3247 new_refs = (1 << (old_order - new_order)) - 1;
3248 css_get_many(&__folio_memcg(folio)->css, new_refs);
3249 }
3250
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3251 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3252 {
3253 unsigned long val;
3254
3255 if (mem_cgroup_is_root(memcg)) {
3256 /*
3257 * Approximate root's usage from global state. This isn't
3258 * perfect, but the root usage was always an approximation.
3259 */
3260 val = global_node_page_state(NR_FILE_PAGES) +
3261 global_node_page_state(NR_ANON_MAPPED);
3262 if (swap)
3263 val += total_swap_pages - get_nr_swap_pages();
3264 } else {
3265 if (!swap)
3266 val = page_counter_read(&memcg->memory);
3267 else
3268 val = page_counter_read(&memcg->memsw);
3269 }
3270 return val;
3271 }
3272
memcg_online_kmem(struct mem_cgroup * memcg)3273 static int memcg_online_kmem(struct mem_cgroup *memcg)
3274 {
3275 struct obj_cgroup *objcg;
3276
3277 if (mem_cgroup_kmem_disabled())
3278 return 0;
3279
3280 if (unlikely(mem_cgroup_is_root(memcg)))
3281 return 0;
3282
3283 objcg = obj_cgroup_alloc();
3284 if (!objcg)
3285 return -ENOMEM;
3286
3287 objcg->memcg = memcg;
3288 rcu_assign_pointer(memcg->objcg, objcg);
3289 obj_cgroup_get(objcg);
3290 memcg->orig_objcg = objcg;
3291
3292 static_branch_enable(&memcg_kmem_online_key);
3293
3294 memcg->kmemcg_id = memcg->id.id;
3295
3296 return 0;
3297 }
3298
memcg_offline_kmem(struct mem_cgroup * memcg)3299 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3300 {
3301 struct mem_cgroup *parent;
3302
3303 if (mem_cgroup_kmem_disabled())
3304 return;
3305
3306 if (unlikely(mem_cgroup_is_root(memcg)))
3307 return;
3308
3309 parent = parent_mem_cgroup(memcg);
3310 if (!parent)
3311 parent = root_mem_cgroup;
3312
3313 memcg_reparent_list_lrus(memcg, parent);
3314
3315 /*
3316 * Objcg's reparenting must be after list_lru's, make sure list_lru
3317 * helpers won't use parent's list_lru until child is drained.
3318 */
3319 memcg_reparent_objcgs(memcg, parent);
3320 }
3321
3322 #ifdef CONFIG_CGROUP_WRITEBACK
3323
3324 #include <trace/events/writeback.h>
3325
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3326 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3327 {
3328 return wb_domain_init(&memcg->cgwb_domain, gfp);
3329 }
3330
memcg_wb_domain_exit(struct mem_cgroup * memcg)3331 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3332 {
3333 wb_domain_exit(&memcg->cgwb_domain);
3334 }
3335
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3336 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3337 {
3338 wb_domain_size_changed(&memcg->cgwb_domain);
3339 }
3340
mem_cgroup_wb_domain(struct bdi_writeback * wb)3341 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3342 {
3343 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3344
3345 if (!memcg->css.parent)
3346 return NULL;
3347
3348 return &memcg->cgwb_domain;
3349 }
3350
3351 /**
3352 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3353 * @wb: bdi_writeback in question
3354 * @pfilepages: out parameter for number of file pages
3355 * @pheadroom: out parameter for number of allocatable pages according to memcg
3356 * @pdirty: out parameter for number of dirty pages
3357 * @pwriteback: out parameter for number of pages under writeback
3358 *
3359 * Determine the numbers of file, headroom, dirty, and writeback pages in
3360 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3361 * is a bit more involved.
3362 *
3363 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3364 * headroom is calculated as the lowest headroom of itself and the
3365 * ancestors. Note that this doesn't consider the actual amount of
3366 * available memory in the system. The caller should further cap
3367 * *@pheadroom accordingly.
3368 */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)3369 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3370 unsigned long *pheadroom, unsigned long *pdirty,
3371 unsigned long *pwriteback)
3372 {
3373 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3374 struct mem_cgroup *parent;
3375
3376 mem_cgroup_flush_stats_ratelimited(memcg);
3377
3378 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3379 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3380 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
3381 memcg_page_state(memcg, NR_ACTIVE_FILE);
3382
3383 *pheadroom = PAGE_COUNTER_MAX;
3384 while ((parent = parent_mem_cgroup(memcg))) {
3385 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
3386 READ_ONCE(memcg->memory.high));
3387 unsigned long used = page_counter_read(&memcg->memory);
3388
3389 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3390 memcg = parent;
3391 }
3392 }
3393
3394 /*
3395 * Foreign dirty flushing
3396 *
3397 * There's an inherent mismatch between memcg and writeback. The former
3398 * tracks ownership per-page while the latter per-inode. This was a
3399 * deliberate design decision because honoring per-page ownership in the
3400 * writeback path is complicated, may lead to higher CPU and IO overheads
3401 * and deemed unnecessary given that write-sharing an inode across
3402 * different cgroups isn't a common use-case.
3403 *
3404 * Combined with inode majority-writer ownership switching, this works well
3405 * enough in most cases but there are some pathological cases. For
3406 * example, let's say there are two cgroups A and B which keep writing to
3407 * different but confined parts of the same inode. B owns the inode and
3408 * A's memory is limited far below B's. A's dirty ratio can rise enough to
3409 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
3410 * triggering background writeback. A will be slowed down without a way to
3411 * make writeback of the dirty pages happen.
3412 *
3413 * Conditions like the above can lead to a cgroup getting repeatedly and
3414 * severely throttled after making some progress after each
3415 * dirty_expire_interval while the underlying IO device is almost
3416 * completely idle.
3417 *
3418 * Solving this problem completely requires matching the ownership tracking
3419 * granularities between memcg and writeback in either direction. However,
3420 * the more egregious behaviors can be avoided by simply remembering the
3421 * most recent foreign dirtying events and initiating remote flushes on
3422 * them when local writeback isn't enough to keep the memory clean enough.
3423 *
3424 * The following two functions implement such mechanism. When a foreign
3425 * page - a page whose memcg and writeback ownerships don't match - is
3426 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
3427 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
3428 * decides that the memcg needs to sleep due to high dirty ratio, it calls
3429 * mem_cgroup_flush_foreign() which queues writeback on the recorded
3430 * foreign bdi_writebacks which haven't expired. Both the numbers of
3431 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
3432 * limited to MEMCG_CGWB_FRN_CNT.
3433 *
3434 * The mechanism only remembers IDs and doesn't hold any object references.
3435 * As being wrong occasionally doesn't matter, updates and accesses to the
3436 * records are lockless and racy.
3437 */
mem_cgroup_track_foreign_dirty_slowpath(struct folio * folio,struct bdi_writeback * wb)3438 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
3439 struct bdi_writeback *wb)
3440 {
3441 struct mem_cgroup *memcg = folio_memcg(folio);
3442 struct memcg_cgwb_frn *frn;
3443 u64 now = get_jiffies_64();
3444 u64 oldest_at = now;
3445 int oldest = -1;
3446 int i;
3447
3448 trace_track_foreign_dirty(folio, wb);
3449
3450 /*
3451 * Pick the slot to use. If there is already a slot for @wb, keep
3452 * using it. If not replace the oldest one which isn't being
3453 * written out.
3454 */
3455 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3456 frn = &memcg->cgwb_frn[i];
3457 if (frn->bdi_id == wb->bdi->id &&
3458 frn->memcg_id == wb->memcg_css->id)
3459 break;
3460 if (time_before64(frn->at, oldest_at) &&
3461 atomic_read(&frn->done.cnt) == 1) {
3462 oldest = i;
3463 oldest_at = frn->at;
3464 }
3465 }
3466
3467 if (i < MEMCG_CGWB_FRN_CNT) {
3468 /*
3469 * Re-using an existing one. Update timestamp lazily to
3470 * avoid making the cacheline hot. We want them to be
3471 * reasonably up-to-date and significantly shorter than
3472 * dirty_expire_interval as that's what expires the record.
3473 * Use the shorter of 1s and dirty_expire_interval / 8.
3474 */
3475 unsigned long update_intv =
3476 min_t(unsigned long, HZ,
3477 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
3478
3479 if (time_before64(frn->at, now - update_intv))
3480 frn->at = now;
3481 } else if (oldest >= 0) {
3482 /* replace the oldest free one */
3483 frn = &memcg->cgwb_frn[oldest];
3484 frn->bdi_id = wb->bdi->id;
3485 frn->memcg_id = wb->memcg_css->id;
3486 frn->at = now;
3487 }
3488 }
3489
3490 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)3491 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
3492 {
3493 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3494 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
3495 u64 now = jiffies_64;
3496 int i;
3497
3498 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3499 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
3500
3501 /*
3502 * If the record is older than dirty_expire_interval,
3503 * writeback on it has already started. No need to kick it
3504 * off again. Also, don't start a new one if there's
3505 * already one in flight.
3506 */
3507 if (time_after64(frn->at, now - intv) &&
3508 atomic_read(&frn->done.cnt) == 1) {
3509 frn->at = 0;
3510 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
3511 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
3512 WB_REASON_FOREIGN_FLUSH,
3513 &frn->done);
3514 }
3515 }
3516 }
3517
3518 #else /* CONFIG_CGROUP_WRITEBACK */
3519
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3520 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3521 {
3522 return 0;
3523 }
3524
memcg_wb_domain_exit(struct mem_cgroup * memcg)3525 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3526 {
3527 }
3528
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3529 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3530 {
3531 }
3532
3533 #endif /* CONFIG_CGROUP_WRITEBACK */
3534
3535 /*
3536 * Private memory cgroup IDR
3537 *
3538 * Swap-out records and page cache shadow entries need to store memcg
3539 * references in constrained space, so we maintain an ID space that is
3540 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
3541 * memory-controlled cgroups to 64k.
3542 *
3543 * However, there usually are many references to the offline CSS after
3544 * the cgroup has been destroyed, such as page cache or reclaimable
3545 * slab objects, that don't need to hang on to the ID. We want to keep
3546 * those dead CSS from occupying IDs, or we might quickly exhaust the
3547 * relatively small ID space and prevent the creation of new cgroups
3548 * even when there are much fewer than 64k cgroups - possibly none.
3549 *
3550 * Maintain a private 16-bit ID space for memcg, and allow the ID to
3551 * be freed and recycled when it's no longer needed, which is usually
3552 * when the CSS is offlined.
3553 *
3554 * The only exception to that are records of swapped out tmpfs/shmem
3555 * pages that need to be attributed to live ancestors on swapin. But
3556 * those references are manageable from userspace.
3557 */
3558
3559 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
3560 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids);
3561
mem_cgroup_id_remove(struct mem_cgroup * memcg)3562 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
3563 {
3564 if (memcg->id.id > 0) {
3565 xa_erase(&mem_cgroup_ids, memcg->id.id);
3566 memcg->id.id = 0;
3567 }
3568 }
3569
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)3570 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
3571 unsigned int n)
3572 {
3573 refcount_add(n, &memcg->id.ref);
3574 }
3575
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)3576 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
3577 {
3578 if (refcount_sub_and_test(n, &memcg->id.ref)) {
3579 mem_cgroup_id_remove(memcg);
3580
3581 /* Memcg ID pins CSS */
3582 css_put(&memcg->css);
3583 }
3584 }
3585
mem_cgroup_id_put(struct mem_cgroup * memcg)3586 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
3587 {
3588 mem_cgroup_id_put_many(memcg, 1);
3589 }
3590
mem_cgroup_id_get_online(struct mem_cgroup * memcg)3591 struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
3592 {
3593 while (!refcount_inc_not_zero(&memcg->id.ref)) {
3594 /*
3595 * The root cgroup cannot be destroyed, so it's refcount must
3596 * always be >= 1.
3597 */
3598 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
3599 VM_BUG_ON(1);
3600 break;
3601 }
3602 memcg = parent_mem_cgroup(memcg);
3603 if (!memcg)
3604 memcg = root_mem_cgroup;
3605 }
3606 return memcg;
3607 }
3608
3609 /**
3610 * mem_cgroup_from_id - look up a memcg from a memcg id
3611 * @id: the memcg id to look up
3612 *
3613 * Caller must hold rcu_read_lock().
3614 */
mem_cgroup_from_id(unsigned short id)3615 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
3616 {
3617 WARN_ON_ONCE(!rcu_read_lock_held());
3618 return xa_load(&mem_cgroup_ids, id);
3619 }
3620
3621 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_get_from_ino(unsigned long ino)3622 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
3623 {
3624 struct cgroup *cgrp;
3625 struct cgroup_subsys_state *css;
3626 struct mem_cgroup *memcg;
3627
3628 cgrp = cgroup_get_from_id(ino);
3629 if (IS_ERR(cgrp))
3630 return ERR_CAST(cgrp);
3631
3632 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
3633 if (css)
3634 memcg = container_of(css, struct mem_cgroup, css);
3635 else
3636 memcg = ERR_PTR(-ENOENT);
3637
3638 cgroup_put(cgrp);
3639
3640 return memcg;
3641 }
3642 #endif
3643
free_mem_cgroup_per_node_info(struct mem_cgroup_per_node * pn)3644 static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn)
3645 {
3646 if (!pn)
3647 return;
3648
3649 free_percpu(pn->lruvec_stats_percpu);
3650 kfree(pn->lruvec_stats);
3651 kfree(pn);
3652 }
3653
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)3654 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3655 {
3656 struct mem_cgroup_per_node *pn;
3657
3658 pn = kmem_cache_alloc_node(memcg_pn_cachep, GFP_KERNEL | __GFP_ZERO,
3659 node);
3660 if (!pn)
3661 return false;
3662
3663 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
3664 GFP_KERNEL_ACCOUNT, node);
3665 if (!pn->lruvec_stats)
3666 goto fail;
3667
3668 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
3669 GFP_KERNEL_ACCOUNT);
3670 if (!pn->lruvec_stats_percpu)
3671 goto fail;
3672
3673 lruvec_init(&pn->lruvec);
3674 pn->memcg = memcg;
3675
3676 memcg->nodeinfo[node] = pn;
3677 return true;
3678 fail:
3679 free_mem_cgroup_per_node_info(pn);
3680 return false;
3681 }
3682
__mem_cgroup_free(struct mem_cgroup * memcg)3683 static void __mem_cgroup_free(struct mem_cgroup *memcg)
3684 {
3685 int node;
3686
3687 obj_cgroup_put(memcg->orig_objcg);
3688
3689 for_each_node(node)
3690 free_mem_cgroup_per_node_info(memcg->nodeinfo[node]);
3691 memcg1_free_events(memcg);
3692 kfree(memcg->vmstats);
3693 free_percpu(memcg->vmstats_percpu);
3694 kfree(memcg);
3695 }
3696
mem_cgroup_free(struct mem_cgroup * memcg)3697 static void mem_cgroup_free(struct mem_cgroup *memcg)
3698 {
3699 lru_gen_exit_memcg(memcg);
3700 memcg_wb_domain_exit(memcg);
3701 __mem_cgroup_free(memcg);
3702 }
3703
mem_cgroup_alloc(struct mem_cgroup * parent)3704 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
3705 {
3706 struct memcg_vmstats_percpu *statc;
3707 struct memcg_vmstats_percpu __percpu *pstatc_pcpu;
3708 struct mem_cgroup *memcg;
3709 int node, cpu;
3710 int __maybe_unused i;
3711 long error;
3712
3713 memcg = kmem_cache_zalloc(memcg_cachep, GFP_KERNEL);
3714 if (!memcg)
3715 return ERR_PTR(-ENOMEM);
3716
3717 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL,
3718 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL);
3719 if (error)
3720 goto fail;
3721 error = -ENOMEM;
3722
3723 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
3724 GFP_KERNEL_ACCOUNT);
3725 if (!memcg->vmstats)
3726 goto fail;
3727
3728 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
3729 GFP_KERNEL_ACCOUNT);
3730 if (!memcg->vmstats_percpu)
3731 goto fail;
3732
3733 if (!memcg1_alloc_events(memcg))
3734 goto fail;
3735
3736 for_each_possible_cpu(cpu) {
3737 if (parent)
3738 pstatc_pcpu = parent->vmstats_percpu;
3739 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3740 statc->parent_pcpu = parent ? pstatc_pcpu : NULL;
3741 statc->vmstats = memcg->vmstats;
3742 }
3743
3744 for_each_node(node)
3745 if (!alloc_mem_cgroup_per_node_info(memcg, node))
3746 goto fail;
3747
3748 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
3749 goto fail;
3750
3751 INIT_WORK(&memcg->high_work, high_work_func);
3752 vmpressure_init(&memcg->vmpressure);
3753 INIT_LIST_HEAD(&memcg->memory_peaks);
3754 INIT_LIST_HEAD(&memcg->swap_peaks);
3755 spin_lock_init(&memcg->peaks_lock);
3756 memcg->socket_pressure = get_jiffies_64();
3757 #if BITS_PER_LONG < 64
3758 seqlock_init(&memcg->socket_pressure_seqlock);
3759 #endif
3760 memcg1_memcg_init(memcg);
3761 memcg->kmemcg_id = -1;
3762 INIT_LIST_HEAD(&memcg->objcg_list);
3763 #ifdef CONFIG_CGROUP_WRITEBACK
3764 INIT_LIST_HEAD(&memcg->cgwb_list);
3765 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3766 memcg->cgwb_frn[i].done =
3767 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
3768 #endif
3769 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3770 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
3771 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
3772 memcg->deferred_split_queue.split_queue_len = 0;
3773 #endif
3774 lru_gen_init_memcg(memcg);
3775 return memcg;
3776 fail:
3777 mem_cgroup_id_remove(memcg);
3778 __mem_cgroup_free(memcg);
3779 return ERR_PTR(error);
3780 }
3781
3782 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)3783 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
3784 {
3785 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
3786 struct mem_cgroup *memcg, *old_memcg;
3787 bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys);
3788
3789 old_memcg = set_active_memcg(parent);
3790 memcg = mem_cgroup_alloc(parent);
3791 set_active_memcg(old_memcg);
3792 if (IS_ERR(memcg))
3793 return ERR_CAST(memcg);
3794
3795 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3796 memcg1_soft_limit_reset(memcg);
3797 #ifdef CONFIG_ZSWAP
3798 memcg->zswap_max = PAGE_COUNTER_MAX;
3799 WRITE_ONCE(memcg->zswap_writeback, true);
3800 #endif
3801 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3802 if (parent) {
3803 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
3804
3805 page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl);
3806 page_counter_init(&memcg->swap, &parent->swap, false);
3807 #ifdef CONFIG_MEMCG_V1
3808 memcg->memory.track_failcnt = !memcg_on_dfl;
3809 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
3810 page_counter_init(&memcg->kmem, &parent->kmem, false);
3811 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false);
3812 #endif
3813 } else {
3814 init_memcg_stats();
3815 init_memcg_events();
3816 page_counter_init(&memcg->memory, NULL, true);
3817 page_counter_init(&memcg->swap, NULL, false);
3818 #ifdef CONFIG_MEMCG_V1
3819 page_counter_init(&memcg->kmem, NULL, false);
3820 page_counter_init(&memcg->tcpmem, NULL, false);
3821 #endif
3822 root_mem_cgroup = memcg;
3823 return &memcg->css;
3824 }
3825
3826 if (memcg_on_dfl && !cgroup_memory_nosocket)
3827 static_branch_inc(&memcg_sockets_enabled_key);
3828
3829 if (!cgroup_memory_nobpf)
3830 static_branch_inc(&memcg_bpf_enabled_key);
3831
3832 return &memcg->css;
3833 }
3834
mem_cgroup_css_online(struct cgroup_subsys_state * css)3835 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
3836 {
3837 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3838
3839 if (memcg_online_kmem(memcg))
3840 goto remove_id;
3841
3842 /*
3843 * A memcg must be visible for expand_shrinker_info()
3844 * by the time the maps are allocated. So, we allocate maps
3845 * here, when for_each_mem_cgroup() can't skip it.
3846 */
3847 if (alloc_shrinker_info(memcg))
3848 goto offline_kmem;
3849
3850 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
3851 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
3852 FLUSH_TIME);
3853 lru_gen_online_memcg(memcg);
3854
3855 /* Online state pins memcg ID, memcg ID pins CSS */
3856 refcount_set(&memcg->id.ref, 1);
3857 css_get(css);
3858
3859 /*
3860 * Ensure mem_cgroup_from_id() works once we're fully online.
3861 *
3862 * We could do this earlier and require callers to filter with
3863 * css_tryget_online(). But right now there are no users that
3864 * need earlier access, and the workingset code relies on the
3865 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
3866 * publish it here at the end of onlining. This matches the
3867 * regular ID destruction during offlining.
3868 */
3869 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL);
3870
3871 return 0;
3872 offline_kmem:
3873 memcg_offline_kmem(memcg);
3874 remove_id:
3875 mem_cgroup_id_remove(memcg);
3876 return -ENOMEM;
3877 }
3878
mem_cgroup_css_offline(struct cgroup_subsys_state * css)3879 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
3880 {
3881 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3882
3883 memcg1_css_offline(memcg);
3884
3885 page_counter_set_min(&memcg->memory, 0);
3886 page_counter_set_low(&memcg->memory, 0);
3887
3888 zswap_memcg_offline_cleanup(memcg);
3889
3890 memcg_offline_kmem(memcg);
3891 reparent_shrinker_deferred(memcg);
3892 wb_memcg_offline(memcg);
3893 lru_gen_offline_memcg(memcg);
3894
3895 drain_all_stock(memcg);
3896
3897 mem_cgroup_id_put(memcg);
3898 }
3899
mem_cgroup_css_released(struct cgroup_subsys_state * css)3900 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
3901 {
3902 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3903
3904 invalidate_reclaim_iterators(memcg);
3905 lru_gen_release_memcg(memcg);
3906 }
3907
mem_cgroup_css_free(struct cgroup_subsys_state * css)3908 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
3909 {
3910 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3911 int __maybe_unused i;
3912
3913 #ifdef CONFIG_CGROUP_WRITEBACK
3914 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3915 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
3916 #endif
3917 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3918 static_branch_dec(&memcg_sockets_enabled_key);
3919
3920 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg))
3921 static_branch_dec(&memcg_sockets_enabled_key);
3922
3923 if (!cgroup_memory_nobpf)
3924 static_branch_dec(&memcg_bpf_enabled_key);
3925
3926 vmpressure_cleanup(&memcg->vmpressure);
3927 cancel_work_sync(&memcg->high_work);
3928 memcg1_remove_from_trees(memcg);
3929 free_shrinker_info(memcg);
3930 mem_cgroup_free(memcg);
3931 }
3932
3933 /**
3934 * mem_cgroup_css_reset - reset the states of a mem_cgroup
3935 * @css: the target css
3936 *
3937 * Reset the states of the mem_cgroup associated with @css. This is
3938 * invoked when the userland requests disabling on the default hierarchy
3939 * but the memcg is pinned through dependency. The memcg should stop
3940 * applying policies and should revert to the vanilla state as it may be
3941 * made visible again.
3942 *
3943 * The current implementation only resets the essential configurations.
3944 * This needs to be expanded to cover all the visible parts.
3945 */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)3946 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
3947 {
3948 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3949
3950 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
3951 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
3952 #ifdef CONFIG_MEMCG_V1
3953 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
3954 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
3955 #endif
3956 page_counter_set_min(&memcg->memory, 0);
3957 page_counter_set_low(&memcg->memory, 0);
3958 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3959 memcg1_soft_limit_reset(memcg);
3960 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3961 memcg_wb_domain_size_changed(memcg);
3962 }
3963
3964 struct aggregate_control {
3965 /* pointer to the aggregated (CPU and subtree aggregated) counters */
3966 long *aggregate;
3967 /* pointer to the non-hierarchichal (CPU aggregated) counters */
3968 long *local;
3969 /* pointer to the pending child counters during tree propagation */
3970 long *pending;
3971 /* pointer to the parent's pending counters, could be NULL */
3972 long *ppending;
3973 /* pointer to the percpu counters to be aggregated */
3974 long *cstat;
3975 /* pointer to the percpu counters of the last aggregation*/
3976 long *cstat_prev;
3977 /* size of the above counters */
3978 int size;
3979 };
3980
mem_cgroup_stat_aggregate(struct aggregate_control * ac)3981 static void mem_cgroup_stat_aggregate(struct aggregate_control *ac)
3982 {
3983 int i;
3984 long delta, delta_cpu, v;
3985
3986 for (i = 0; i < ac->size; i++) {
3987 /*
3988 * Collect the aggregated propagation counts of groups
3989 * below us. We're in a per-cpu loop here and this is
3990 * a global counter, so the first cycle will get them.
3991 */
3992 delta = ac->pending[i];
3993 if (delta)
3994 ac->pending[i] = 0;
3995
3996 /* Add CPU changes on this level since the last flush */
3997 delta_cpu = 0;
3998 v = READ_ONCE(ac->cstat[i]);
3999 if (v != ac->cstat_prev[i]) {
4000 delta_cpu = v - ac->cstat_prev[i];
4001 delta += delta_cpu;
4002 ac->cstat_prev[i] = v;
4003 }
4004
4005 /* Aggregate counts on this level and propagate upwards */
4006 if (delta_cpu)
4007 ac->local[i] += delta_cpu;
4008
4009 if (delta) {
4010 ac->aggregate[i] += delta;
4011 if (ac->ppending)
4012 ac->ppending[i] += delta;
4013 }
4014 }
4015 }
4016
4017 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
flush_nmi_stats(struct mem_cgroup * memcg,struct mem_cgroup * parent,int cpu)4018 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
4019 int cpu)
4020 {
4021 int nid;
4022
4023 if (atomic_read(&memcg->kmem_stat)) {
4024 int kmem = atomic_xchg(&memcg->kmem_stat, 0);
4025 int index = memcg_stats_index(MEMCG_KMEM);
4026
4027 memcg->vmstats->state[index] += kmem;
4028 if (parent)
4029 parent->vmstats->state_pending[index] += kmem;
4030 }
4031
4032 for_each_node_state(nid, N_MEMORY) {
4033 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
4034 struct lruvec_stats *lstats = pn->lruvec_stats;
4035 struct lruvec_stats *plstats = NULL;
4036
4037 if (parent)
4038 plstats = parent->nodeinfo[nid]->lruvec_stats;
4039
4040 if (atomic_read(&pn->slab_reclaimable)) {
4041 int slab = atomic_xchg(&pn->slab_reclaimable, 0);
4042 int index = memcg_stats_index(NR_SLAB_RECLAIMABLE_B);
4043
4044 lstats->state[index] += slab;
4045 if (plstats)
4046 plstats->state_pending[index] += slab;
4047 }
4048 if (atomic_read(&pn->slab_unreclaimable)) {
4049 int slab = atomic_xchg(&pn->slab_unreclaimable, 0);
4050 int index = memcg_stats_index(NR_SLAB_UNRECLAIMABLE_B);
4051
4052 lstats->state[index] += slab;
4053 if (plstats)
4054 plstats->state_pending[index] += slab;
4055 }
4056 }
4057 }
4058 #else
flush_nmi_stats(struct mem_cgroup * memcg,struct mem_cgroup * parent,int cpu)4059 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
4060 int cpu)
4061 {}
4062 #endif
4063
mem_cgroup_css_rstat_flush(struct cgroup_subsys_state * css,int cpu)4064 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
4065 {
4066 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4067 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4068 struct memcg_vmstats_percpu *statc;
4069 struct aggregate_control ac;
4070 int nid;
4071
4072 flush_nmi_stats(memcg, parent, cpu);
4073
4074 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
4075
4076 ac = (struct aggregate_control) {
4077 .aggregate = memcg->vmstats->state,
4078 .local = memcg->vmstats->state_local,
4079 .pending = memcg->vmstats->state_pending,
4080 .ppending = parent ? parent->vmstats->state_pending : NULL,
4081 .cstat = statc->state,
4082 .cstat_prev = statc->state_prev,
4083 .size = MEMCG_VMSTAT_SIZE,
4084 };
4085 mem_cgroup_stat_aggregate(&ac);
4086
4087 ac = (struct aggregate_control) {
4088 .aggregate = memcg->vmstats->events,
4089 .local = memcg->vmstats->events_local,
4090 .pending = memcg->vmstats->events_pending,
4091 .ppending = parent ? parent->vmstats->events_pending : NULL,
4092 .cstat = statc->events,
4093 .cstat_prev = statc->events_prev,
4094 .size = NR_MEMCG_EVENTS,
4095 };
4096 mem_cgroup_stat_aggregate(&ac);
4097
4098 for_each_node_state(nid, N_MEMORY) {
4099 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
4100 struct lruvec_stats *lstats = pn->lruvec_stats;
4101 struct lruvec_stats *plstats = NULL;
4102 struct lruvec_stats_percpu *lstatc;
4103
4104 if (parent)
4105 plstats = parent->nodeinfo[nid]->lruvec_stats;
4106
4107 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
4108
4109 ac = (struct aggregate_control) {
4110 .aggregate = lstats->state,
4111 .local = lstats->state_local,
4112 .pending = lstats->state_pending,
4113 .ppending = plstats ? plstats->state_pending : NULL,
4114 .cstat = lstatc->state,
4115 .cstat_prev = lstatc->state_prev,
4116 .size = NR_MEMCG_NODE_STAT_ITEMS,
4117 };
4118 mem_cgroup_stat_aggregate(&ac);
4119
4120 }
4121 WRITE_ONCE(statc->stats_updates, 0);
4122 /* We are in a per-cpu loop here, only do the atomic write once */
4123 if (atomic_read(&memcg->vmstats->stats_updates))
4124 atomic_set(&memcg->vmstats->stats_updates, 0);
4125 }
4126
mem_cgroup_fork(struct task_struct * task)4127 static void mem_cgroup_fork(struct task_struct *task)
4128 {
4129 /*
4130 * Set the update flag to cause task->objcg to be initialized lazily
4131 * on the first allocation. It can be done without any synchronization
4132 * because it's always performed on the current task, so does
4133 * current_objcg_update().
4134 */
4135 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
4136 }
4137
mem_cgroup_exit(struct task_struct * task)4138 static void mem_cgroup_exit(struct task_struct *task)
4139 {
4140 struct obj_cgroup *objcg = task->objcg;
4141
4142 objcg = (struct obj_cgroup *)
4143 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
4144 obj_cgroup_put(objcg);
4145
4146 /*
4147 * Some kernel allocations can happen after this point,
4148 * but let's ignore them. It can be done without any synchronization
4149 * because it's always performed on the current task, so does
4150 * current_objcg_update().
4151 */
4152 task->objcg = NULL;
4153 }
4154
4155 #ifdef CONFIG_LRU_GEN
mem_cgroup_lru_gen_attach(struct cgroup_taskset * tset)4156 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
4157 {
4158 struct task_struct *task;
4159 struct cgroup_subsys_state *css;
4160
4161 /* find the first leader if there is any */
4162 cgroup_taskset_for_each_leader(task, css, tset)
4163 break;
4164
4165 if (!task)
4166 return;
4167
4168 task_lock(task);
4169 if (task->mm && READ_ONCE(task->mm->owner) == task)
4170 lru_gen_migrate_mm(task->mm);
4171 task_unlock(task);
4172 }
4173 #else
mem_cgroup_lru_gen_attach(struct cgroup_taskset * tset)4174 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
4175 #endif /* CONFIG_LRU_GEN */
4176
mem_cgroup_kmem_attach(struct cgroup_taskset * tset)4177 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
4178 {
4179 struct task_struct *task;
4180 struct cgroup_subsys_state *css;
4181
4182 cgroup_taskset_for_each(task, css, tset) {
4183 /* atomically set the update bit */
4184 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
4185 }
4186 }
4187
mem_cgroup_attach(struct cgroup_taskset * tset)4188 static void mem_cgroup_attach(struct cgroup_taskset *tset)
4189 {
4190 mem_cgroup_lru_gen_attach(tset);
4191 mem_cgroup_kmem_attach(tset);
4192 }
4193
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)4194 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
4195 {
4196 if (value == PAGE_COUNTER_MAX)
4197 seq_puts(m, "max\n");
4198 else
4199 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
4200
4201 return 0;
4202 }
4203
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)4204 static u64 memory_current_read(struct cgroup_subsys_state *css,
4205 struct cftype *cft)
4206 {
4207 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4208
4209 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4210 }
4211
4212 #define OFP_PEAK_UNSET (((-1UL)))
4213
peak_show(struct seq_file * sf,void * v,struct page_counter * pc)4214 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc)
4215 {
4216 struct cgroup_of_peak *ofp = of_peak(sf->private);
4217 u64 fd_peak = READ_ONCE(ofp->value), peak;
4218
4219 /* User wants global or local peak? */
4220 if (fd_peak == OFP_PEAK_UNSET)
4221 peak = pc->watermark;
4222 else
4223 peak = max(fd_peak, READ_ONCE(pc->local_watermark));
4224
4225 seq_printf(sf, "%llu\n", peak * PAGE_SIZE);
4226 return 0;
4227 }
4228
memory_peak_show(struct seq_file * sf,void * v)4229 static int memory_peak_show(struct seq_file *sf, void *v)
4230 {
4231 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4232
4233 return peak_show(sf, v, &memcg->memory);
4234 }
4235
peak_open(struct kernfs_open_file * of)4236 static int peak_open(struct kernfs_open_file *of)
4237 {
4238 struct cgroup_of_peak *ofp = of_peak(of);
4239
4240 ofp->value = OFP_PEAK_UNSET;
4241 return 0;
4242 }
4243
peak_release(struct kernfs_open_file * of)4244 static void peak_release(struct kernfs_open_file *of)
4245 {
4246 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4247 struct cgroup_of_peak *ofp = of_peak(of);
4248
4249 if (ofp->value == OFP_PEAK_UNSET) {
4250 /* fast path (no writes on this fd) */
4251 return;
4252 }
4253 spin_lock(&memcg->peaks_lock);
4254 list_del(&ofp->list);
4255 spin_unlock(&memcg->peaks_lock);
4256 }
4257
peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,struct page_counter * pc,struct list_head * watchers)4258 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
4259 loff_t off, struct page_counter *pc,
4260 struct list_head *watchers)
4261 {
4262 unsigned long usage;
4263 struct cgroup_of_peak *peer_ctx;
4264 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4265 struct cgroup_of_peak *ofp = of_peak(of);
4266
4267 spin_lock(&memcg->peaks_lock);
4268
4269 usage = page_counter_read(pc);
4270 WRITE_ONCE(pc->local_watermark, usage);
4271
4272 list_for_each_entry(peer_ctx, watchers, list)
4273 if (usage > peer_ctx->value)
4274 WRITE_ONCE(peer_ctx->value, usage);
4275
4276 /* initial write, register watcher */
4277 if (ofp->value == OFP_PEAK_UNSET)
4278 list_add(&ofp->list, watchers);
4279
4280 WRITE_ONCE(ofp->value, usage);
4281 spin_unlock(&memcg->peaks_lock);
4282
4283 return nbytes;
4284 }
4285
memory_peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4286 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf,
4287 size_t nbytes, loff_t off)
4288 {
4289 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4290
4291 return peak_write(of, buf, nbytes, off, &memcg->memory,
4292 &memcg->memory_peaks);
4293 }
4294
4295 #undef OFP_PEAK_UNSET
4296
memory_min_show(struct seq_file * m,void * v)4297 static int memory_min_show(struct seq_file *m, void *v)
4298 {
4299 return seq_puts_memcg_tunable(m,
4300 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
4301 }
4302
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4303 static ssize_t memory_min_write(struct kernfs_open_file *of,
4304 char *buf, size_t nbytes, loff_t off)
4305 {
4306 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4307 unsigned long min;
4308 int err;
4309
4310 buf = strstrip(buf);
4311 err = page_counter_memparse(buf, "max", &min);
4312 if (err)
4313 return err;
4314
4315 page_counter_set_min(&memcg->memory, min);
4316
4317 return nbytes;
4318 }
4319
memory_low_show(struct seq_file * m,void * v)4320 static int memory_low_show(struct seq_file *m, void *v)
4321 {
4322 return seq_puts_memcg_tunable(m,
4323 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
4324 }
4325
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4326 static ssize_t memory_low_write(struct kernfs_open_file *of,
4327 char *buf, size_t nbytes, loff_t off)
4328 {
4329 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4330 unsigned long low;
4331 int err;
4332
4333 buf = strstrip(buf);
4334 err = page_counter_memparse(buf, "max", &low);
4335 if (err)
4336 return err;
4337
4338 page_counter_set_low(&memcg->memory, low);
4339
4340 return nbytes;
4341 }
4342
memory_high_show(struct seq_file * m,void * v)4343 static int memory_high_show(struct seq_file *m, void *v)
4344 {
4345 return seq_puts_memcg_tunable(m,
4346 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
4347 }
4348
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4349 static ssize_t memory_high_write(struct kernfs_open_file *of,
4350 char *buf, size_t nbytes, loff_t off)
4351 {
4352 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4353 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4354 bool drained = false;
4355 unsigned long high;
4356 int err;
4357
4358 buf = strstrip(buf);
4359 err = page_counter_memparse(buf, "max", &high);
4360 if (err)
4361 return err;
4362
4363 page_counter_set_high(&memcg->memory, high);
4364
4365 if (of->file->f_flags & O_NONBLOCK)
4366 goto out;
4367
4368 for (;;) {
4369 unsigned long nr_pages = page_counter_read(&memcg->memory);
4370 unsigned long reclaimed;
4371
4372 if (nr_pages <= high)
4373 break;
4374
4375 if (signal_pending(current))
4376 break;
4377
4378 if (!drained) {
4379 drain_all_stock(memcg);
4380 drained = true;
4381 continue;
4382 }
4383
4384 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
4385 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL);
4386
4387 if (!reclaimed && !nr_retries--)
4388 break;
4389 }
4390 out:
4391 memcg_wb_domain_size_changed(memcg);
4392 return nbytes;
4393 }
4394
memory_max_show(struct seq_file * m,void * v)4395 static int memory_max_show(struct seq_file *m, void *v)
4396 {
4397 return seq_puts_memcg_tunable(m,
4398 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
4399 }
4400
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4401 static ssize_t memory_max_write(struct kernfs_open_file *of,
4402 char *buf, size_t nbytes, loff_t off)
4403 {
4404 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4405 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
4406 bool drained = false;
4407 unsigned long max;
4408 int err;
4409
4410 buf = strstrip(buf);
4411 err = page_counter_memparse(buf, "max", &max);
4412 if (err)
4413 return err;
4414
4415 xchg(&memcg->memory.max, max);
4416
4417 if (of->file->f_flags & O_NONBLOCK)
4418 goto out;
4419
4420 for (;;) {
4421 unsigned long nr_pages = page_counter_read(&memcg->memory);
4422
4423 if (nr_pages <= max)
4424 break;
4425
4426 if (signal_pending(current))
4427 break;
4428
4429 if (!drained) {
4430 drain_all_stock(memcg);
4431 drained = true;
4432 continue;
4433 }
4434
4435 if (nr_reclaims) {
4436 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
4437 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL))
4438 nr_reclaims--;
4439 continue;
4440 }
4441
4442 memcg_memory_event(memcg, MEMCG_OOM);
4443 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
4444 break;
4445 cond_resched();
4446 }
4447 out:
4448 memcg_wb_domain_size_changed(memcg);
4449 return nbytes;
4450 }
4451
4452 /*
4453 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
4454 * if any new events become available.
4455 */
__memory_events_show(struct seq_file * m,atomic_long_t * events)4456 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
4457 {
4458 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
4459 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
4460 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
4461 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
4462 seq_printf(m, "oom_kill %lu\n",
4463 atomic_long_read(&events[MEMCG_OOM_KILL]));
4464 seq_printf(m, "oom_group_kill %lu\n",
4465 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
4466 }
4467
memory_events_show(struct seq_file * m,void * v)4468 static int memory_events_show(struct seq_file *m, void *v)
4469 {
4470 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4471
4472 __memory_events_show(m, memcg->memory_events);
4473 return 0;
4474 }
4475
memory_events_local_show(struct seq_file * m,void * v)4476 static int memory_events_local_show(struct seq_file *m, void *v)
4477 {
4478 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4479
4480 __memory_events_show(m, memcg->memory_events_local);
4481 return 0;
4482 }
4483
memory_stat_show(struct seq_file * m,void * v)4484 int memory_stat_show(struct seq_file *m, void *v)
4485 {
4486 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4487 char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL);
4488 struct seq_buf s;
4489
4490 if (!buf)
4491 return -ENOMEM;
4492 seq_buf_init(&s, buf, SEQ_BUF_SIZE);
4493 memory_stat_format(memcg, &s);
4494 seq_puts(m, buf);
4495 kfree(buf);
4496 return 0;
4497 }
4498
4499 #ifdef CONFIG_NUMA
lruvec_page_state_output(struct lruvec * lruvec,int item)4500 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
4501 int item)
4502 {
4503 return lruvec_page_state(lruvec, item) *
4504 memcg_page_state_output_unit(item);
4505 }
4506
memory_numa_stat_show(struct seq_file * m,void * v)4507 static int memory_numa_stat_show(struct seq_file *m, void *v)
4508 {
4509 int i;
4510 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4511
4512 mem_cgroup_flush_stats(memcg);
4513
4514 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
4515 int nid;
4516
4517 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
4518 continue;
4519
4520 seq_printf(m, "%s", memory_stats[i].name);
4521 for_each_node_state(nid, N_MEMORY) {
4522 u64 size;
4523 struct lruvec *lruvec;
4524
4525 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4526 size = lruvec_page_state_output(lruvec,
4527 memory_stats[i].idx);
4528 seq_printf(m, " N%d=%llu", nid, size);
4529 }
4530 seq_putc(m, '\n');
4531 }
4532
4533 return 0;
4534 }
4535 #endif
4536
memory_oom_group_show(struct seq_file * m,void * v)4537 static int memory_oom_group_show(struct seq_file *m, void *v)
4538 {
4539 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4540
4541 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
4542
4543 return 0;
4544 }
4545
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4546 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
4547 char *buf, size_t nbytes, loff_t off)
4548 {
4549 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4550 int ret, oom_group;
4551
4552 buf = strstrip(buf);
4553 if (!buf)
4554 return -EINVAL;
4555
4556 ret = kstrtoint(buf, 0, &oom_group);
4557 if (ret)
4558 return ret;
4559
4560 if (oom_group != 0 && oom_group != 1)
4561 return -EINVAL;
4562
4563 WRITE_ONCE(memcg->oom_group, oom_group);
4564
4565 return nbytes;
4566 }
4567
memory_reclaim(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4568 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
4569 size_t nbytes, loff_t off)
4570 {
4571 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4572 int ret;
4573
4574 ret = user_proactive_reclaim(buf, memcg, NULL);
4575 if (ret)
4576 return ret;
4577
4578 return nbytes;
4579 }
4580
4581 static struct cftype memory_files[] = {
4582 {
4583 .name = "current",
4584 .flags = CFTYPE_NOT_ON_ROOT,
4585 .read_u64 = memory_current_read,
4586 },
4587 {
4588 .name = "peak",
4589 .flags = CFTYPE_NOT_ON_ROOT,
4590 .open = peak_open,
4591 .release = peak_release,
4592 .seq_show = memory_peak_show,
4593 .write = memory_peak_write,
4594 },
4595 {
4596 .name = "min",
4597 .flags = CFTYPE_NOT_ON_ROOT,
4598 .seq_show = memory_min_show,
4599 .write = memory_min_write,
4600 },
4601 {
4602 .name = "low",
4603 .flags = CFTYPE_NOT_ON_ROOT,
4604 .seq_show = memory_low_show,
4605 .write = memory_low_write,
4606 },
4607 {
4608 .name = "high",
4609 .flags = CFTYPE_NOT_ON_ROOT,
4610 .seq_show = memory_high_show,
4611 .write = memory_high_write,
4612 },
4613 {
4614 .name = "max",
4615 .flags = CFTYPE_NOT_ON_ROOT,
4616 .seq_show = memory_max_show,
4617 .write = memory_max_write,
4618 },
4619 {
4620 .name = "events",
4621 .flags = CFTYPE_NOT_ON_ROOT,
4622 .file_offset = offsetof(struct mem_cgroup, events_file),
4623 .seq_show = memory_events_show,
4624 },
4625 {
4626 .name = "events.local",
4627 .flags = CFTYPE_NOT_ON_ROOT,
4628 .file_offset = offsetof(struct mem_cgroup, events_local_file),
4629 .seq_show = memory_events_local_show,
4630 },
4631 {
4632 .name = "stat",
4633 .seq_show = memory_stat_show,
4634 },
4635 #ifdef CONFIG_NUMA
4636 {
4637 .name = "numa_stat",
4638 .seq_show = memory_numa_stat_show,
4639 },
4640 #endif
4641 {
4642 .name = "oom.group",
4643 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
4644 .seq_show = memory_oom_group_show,
4645 .write = memory_oom_group_write,
4646 },
4647 {
4648 .name = "reclaim",
4649 .flags = CFTYPE_NS_DELEGATABLE,
4650 .write = memory_reclaim,
4651 },
4652 { } /* terminate */
4653 };
4654
4655 struct cgroup_subsys memory_cgrp_subsys = {
4656 .css_alloc = mem_cgroup_css_alloc,
4657 .css_online = mem_cgroup_css_online,
4658 .css_offline = mem_cgroup_css_offline,
4659 .css_released = mem_cgroup_css_released,
4660 .css_free = mem_cgroup_css_free,
4661 .css_reset = mem_cgroup_css_reset,
4662 .css_rstat_flush = mem_cgroup_css_rstat_flush,
4663 .attach = mem_cgroup_attach,
4664 .fork = mem_cgroup_fork,
4665 .exit = mem_cgroup_exit,
4666 .dfl_cftypes = memory_files,
4667 #ifdef CONFIG_MEMCG_V1
4668 .legacy_cftypes = mem_cgroup_legacy_files,
4669 #endif
4670 .early_init = 0,
4671 };
4672
4673 /**
4674 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
4675 * @root: the top ancestor of the sub-tree being checked
4676 * @memcg: the memory cgroup to check
4677 *
4678 * WARNING: This function is not stateless! It can only be used as part
4679 * of a top-down tree iteration, not for isolated queries.
4680 */
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)4681 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
4682 struct mem_cgroup *memcg)
4683 {
4684 bool recursive_protection =
4685 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT;
4686
4687 if (mem_cgroup_disabled())
4688 return;
4689
4690 if (!root)
4691 root = root_mem_cgroup;
4692
4693 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection);
4694 }
4695
charge_memcg(struct folio * folio,struct mem_cgroup * memcg,gfp_t gfp)4696 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
4697 gfp_t gfp)
4698 {
4699 int ret;
4700
4701 ret = try_charge(memcg, gfp, folio_nr_pages(folio));
4702 if (ret)
4703 goto out;
4704
4705 css_get(&memcg->css);
4706 commit_charge(folio, memcg);
4707 memcg1_commit_charge(folio, memcg);
4708 out:
4709 return ret;
4710 }
4711
__mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)4712 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
4713 {
4714 struct mem_cgroup *memcg;
4715 int ret;
4716
4717 memcg = get_mem_cgroup_from_mm(mm);
4718 ret = charge_memcg(folio, memcg, gfp);
4719 css_put(&memcg->css);
4720
4721 return ret;
4722 }
4723
4724 /**
4725 * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio
4726 * @folio: folio being charged
4727 * @gfp: reclaim mode
4728 *
4729 * This function is called when allocating a huge page folio, after the page has
4730 * already been obtained and charged to the appropriate hugetlb cgroup
4731 * controller (if it is enabled).
4732 *
4733 * Returns ENOMEM if the memcg is already full.
4734 * Returns 0 if either the charge was successful, or if we skip the charging.
4735 */
mem_cgroup_charge_hugetlb(struct folio * folio,gfp_t gfp)4736 int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp)
4737 {
4738 struct mem_cgroup *memcg = get_mem_cgroup_from_current();
4739 int ret = 0;
4740
4741 /*
4742 * Even memcg does not account for hugetlb, we still want to update
4743 * system-level stats via lruvec_stat_mod_folio. Return 0, and skip
4744 * charging the memcg.
4745 */
4746 if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() ||
4747 !memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
4748 goto out;
4749
4750 if (charge_memcg(folio, memcg, gfp))
4751 ret = -ENOMEM;
4752
4753 out:
4754 mem_cgroup_put(memcg);
4755 return ret;
4756 }
4757
4758 /**
4759 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
4760 * @folio: folio to charge.
4761 * @mm: mm context of the victim
4762 * @gfp: reclaim mode
4763 * @entry: swap entry for which the folio is allocated
4764 *
4765 * This function charges a folio allocated for swapin. Please call this before
4766 * adding the folio to the swapcache.
4767 *
4768 * Returns 0 on success. Otherwise, an error code is returned.
4769 */
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)4770 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
4771 gfp_t gfp, swp_entry_t entry)
4772 {
4773 struct mem_cgroup *memcg;
4774 unsigned short id;
4775 int ret;
4776
4777 if (mem_cgroup_disabled())
4778 return 0;
4779
4780 id = lookup_swap_cgroup_id(entry);
4781 rcu_read_lock();
4782 memcg = mem_cgroup_from_id(id);
4783 if (!memcg || !css_tryget_online(&memcg->css))
4784 memcg = get_mem_cgroup_from_mm(mm);
4785 rcu_read_unlock();
4786
4787 ret = charge_memcg(folio, memcg, gfp);
4788
4789 css_put(&memcg->css);
4790 return ret;
4791 }
4792
4793 struct uncharge_gather {
4794 struct mem_cgroup *memcg;
4795 unsigned long nr_memory;
4796 unsigned long pgpgout;
4797 unsigned long nr_kmem;
4798 int nid;
4799 };
4800
uncharge_gather_clear(struct uncharge_gather * ug)4801 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
4802 {
4803 memset(ug, 0, sizeof(*ug));
4804 }
4805
uncharge_batch(const struct uncharge_gather * ug)4806 static void uncharge_batch(const struct uncharge_gather *ug)
4807 {
4808 if (ug->nr_memory) {
4809 memcg_uncharge(ug->memcg, ug->nr_memory);
4810 if (ug->nr_kmem) {
4811 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem);
4812 memcg1_account_kmem(ug->memcg, -ug->nr_kmem);
4813 }
4814 memcg1_oom_recover(ug->memcg);
4815 }
4816
4817 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid);
4818
4819 /* drop reference from uncharge_folio */
4820 css_put(&ug->memcg->css);
4821 }
4822
uncharge_folio(struct folio * folio,struct uncharge_gather * ug)4823 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
4824 {
4825 long nr_pages;
4826 struct mem_cgroup *memcg;
4827 struct obj_cgroup *objcg;
4828
4829 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4830
4831 /*
4832 * Nobody should be changing or seriously looking at
4833 * folio memcg or objcg at this point, we have fully
4834 * exclusive access to the folio.
4835 */
4836 if (folio_memcg_kmem(folio)) {
4837 objcg = __folio_objcg(folio);
4838 /*
4839 * This get matches the put at the end of the function and
4840 * kmem pages do not hold memcg references anymore.
4841 */
4842 memcg = get_mem_cgroup_from_objcg(objcg);
4843 } else {
4844 memcg = __folio_memcg(folio);
4845 }
4846
4847 if (!memcg)
4848 return;
4849
4850 if (ug->memcg != memcg) {
4851 if (ug->memcg) {
4852 uncharge_batch(ug);
4853 uncharge_gather_clear(ug);
4854 }
4855 ug->memcg = memcg;
4856 ug->nid = folio_nid(folio);
4857
4858 /* pairs with css_put in uncharge_batch */
4859 css_get(&memcg->css);
4860 }
4861
4862 nr_pages = folio_nr_pages(folio);
4863
4864 if (folio_memcg_kmem(folio)) {
4865 ug->nr_memory += nr_pages;
4866 ug->nr_kmem += nr_pages;
4867
4868 folio->memcg_data = 0;
4869 obj_cgroup_put(objcg);
4870 } else {
4871 /* LRU pages aren't accounted at the root level */
4872 if (!mem_cgroup_is_root(memcg))
4873 ug->nr_memory += nr_pages;
4874 ug->pgpgout++;
4875
4876 WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
4877 folio->memcg_data = 0;
4878 }
4879
4880 css_put(&memcg->css);
4881 }
4882
__mem_cgroup_uncharge(struct folio * folio)4883 void __mem_cgroup_uncharge(struct folio *folio)
4884 {
4885 struct uncharge_gather ug;
4886
4887 /* Don't touch folio->lru of any random page, pre-check: */
4888 if (!folio_memcg_charged(folio))
4889 return;
4890
4891 uncharge_gather_clear(&ug);
4892 uncharge_folio(folio, &ug);
4893 uncharge_batch(&ug);
4894 }
4895
__mem_cgroup_uncharge_folios(struct folio_batch * folios)4896 void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
4897 {
4898 struct uncharge_gather ug;
4899 unsigned int i;
4900
4901 uncharge_gather_clear(&ug);
4902 for (i = 0; i < folios->nr; i++)
4903 uncharge_folio(folios->folios[i], &ug);
4904 if (ug.memcg)
4905 uncharge_batch(&ug);
4906 }
4907
4908 /**
4909 * mem_cgroup_replace_folio - Charge a folio's replacement.
4910 * @old: Currently circulating folio.
4911 * @new: Replacement folio.
4912 *
4913 * Charge @new as a replacement folio for @old. @old will
4914 * be uncharged upon free.
4915 *
4916 * Both folios must be locked, @new->mapping must be set up.
4917 */
mem_cgroup_replace_folio(struct folio * old,struct folio * new)4918 void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
4919 {
4920 struct mem_cgroup *memcg;
4921 long nr_pages = folio_nr_pages(new);
4922
4923 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4924 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4925 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4926 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
4927
4928 if (mem_cgroup_disabled())
4929 return;
4930
4931 /* Page cache replacement: new folio already charged? */
4932 if (folio_memcg_charged(new))
4933 return;
4934
4935 memcg = folio_memcg(old);
4936 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
4937 if (!memcg)
4938 return;
4939
4940 /* Force-charge the new page. The old one will be freed soon */
4941 if (!mem_cgroup_is_root(memcg)) {
4942 page_counter_charge(&memcg->memory, nr_pages);
4943 if (do_memsw_account())
4944 page_counter_charge(&memcg->memsw, nr_pages);
4945 }
4946
4947 css_get(&memcg->css);
4948 commit_charge(new, memcg);
4949 memcg1_commit_charge(new, memcg);
4950 }
4951
4952 /**
4953 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
4954 * @old: Currently circulating folio.
4955 * @new: Replacement folio.
4956 *
4957 * Transfer the memcg data from the old folio to the new folio for migration.
4958 * The old folio's data info will be cleared. Note that the memory counters
4959 * will remain unchanged throughout the process.
4960 *
4961 * Both folios must be locked, @new->mapping must be set up.
4962 */
mem_cgroup_migrate(struct folio * old,struct folio * new)4963 void mem_cgroup_migrate(struct folio *old, struct folio *new)
4964 {
4965 struct mem_cgroup *memcg;
4966
4967 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4968 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4969 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4970 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
4971 VM_BUG_ON_FOLIO(folio_test_lru(old), old);
4972
4973 if (mem_cgroup_disabled())
4974 return;
4975
4976 memcg = folio_memcg(old);
4977 /*
4978 * Note that it is normal to see !memcg for a hugetlb folio.
4979 * For e.g, itt could have been allocated when memory_hugetlb_accounting
4980 * was not selected.
4981 */
4982 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
4983 if (!memcg)
4984 return;
4985
4986 /* Transfer the charge and the css ref */
4987 commit_charge(new, memcg);
4988
4989 /* Warning should never happen, so don't worry about refcount non-0 */
4990 WARN_ON_ONCE(folio_unqueue_deferred_split(old));
4991 old->memcg_data = 0;
4992 }
4993
4994 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
4995 EXPORT_SYMBOL(memcg_sockets_enabled_key);
4996
mem_cgroup_sk_alloc(struct sock * sk)4997 void mem_cgroup_sk_alloc(struct sock *sk)
4998 {
4999 struct mem_cgroup *memcg;
5000
5001 if (!mem_cgroup_sockets_enabled)
5002 return;
5003
5004 /* Do not associate the sock with unrelated interrupted task's memcg. */
5005 if (!in_task())
5006 return;
5007
5008 rcu_read_lock();
5009 memcg = mem_cgroup_from_task(current);
5010 if (mem_cgroup_is_root(memcg))
5011 goto out;
5012 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg))
5013 goto out;
5014 if (css_tryget(&memcg->css))
5015 sk->sk_memcg = memcg;
5016 out:
5017 rcu_read_unlock();
5018 }
5019
mem_cgroup_sk_free(struct sock * sk)5020 void mem_cgroup_sk_free(struct sock *sk)
5021 {
5022 struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
5023
5024 if (memcg)
5025 css_put(&memcg->css);
5026 }
5027
mem_cgroup_sk_inherit(const struct sock * sk,struct sock * newsk)5028 void mem_cgroup_sk_inherit(const struct sock *sk, struct sock *newsk)
5029 {
5030 struct mem_cgroup *memcg;
5031
5032 if (sk->sk_memcg == newsk->sk_memcg)
5033 return;
5034
5035 mem_cgroup_sk_free(newsk);
5036
5037 memcg = mem_cgroup_from_sk(sk);
5038 if (memcg)
5039 css_get(&memcg->css);
5040
5041 newsk->sk_memcg = sk->sk_memcg;
5042 }
5043
5044 /**
5045 * mem_cgroup_sk_charge - charge socket memory
5046 * @sk: socket in memcg to charge
5047 * @nr_pages: number of pages to charge
5048 * @gfp_mask: reclaim mode
5049 *
5050 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5051 * @memcg's configured limit, %false if it doesn't.
5052 */
mem_cgroup_sk_charge(const struct sock * sk,unsigned int nr_pages,gfp_t gfp_mask)5053 bool mem_cgroup_sk_charge(const struct sock *sk, unsigned int nr_pages,
5054 gfp_t gfp_mask)
5055 {
5056 struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
5057
5058 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5059 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask);
5060
5061 if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) {
5062 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
5063 return true;
5064 }
5065
5066 return false;
5067 }
5068
5069 /**
5070 * mem_cgroup_sk_uncharge - uncharge socket memory
5071 * @sk: socket in memcg to uncharge
5072 * @nr_pages: number of pages to uncharge
5073 */
mem_cgroup_sk_uncharge(const struct sock * sk,unsigned int nr_pages)5074 void mem_cgroup_sk_uncharge(const struct sock *sk, unsigned int nr_pages)
5075 {
5076 struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
5077
5078 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5079 memcg1_uncharge_skmem(memcg, nr_pages);
5080 return;
5081 }
5082
5083 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
5084
5085 refill_stock(memcg, nr_pages);
5086 }
5087
cgroup_memory(char * s)5088 static int __init cgroup_memory(char *s)
5089 {
5090 char *token;
5091
5092 while ((token = strsep(&s, ",")) != NULL) {
5093 if (!*token)
5094 continue;
5095 if (!strcmp(token, "nosocket"))
5096 cgroup_memory_nosocket = true;
5097 if (!strcmp(token, "nokmem"))
5098 cgroup_memory_nokmem = true;
5099 if (!strcmp(token, "nobpf"))
5100 cgroup_memory_nobpf = true;
5101 }
5102 return 1;
5103 }
5104 __setup("cgroup.memory=", cgroup_memory);
5105
5106 /*
5107 * Memory controller init before cgroup_init() initialize root_mem_cgroup.
5108 *
5109 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5110 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5111 * basically everything that doesn't depend on a specific mem_cgroup structure
5112 * should be initialized from here.
5113 */
mem_cgroup_init(void)5114 int __init mem_cgroup_init(void)
5115 {
5116 unsigned int memcg_size;
5117 int cpu;
5118
5119 /*
5120 * Currently s32 type (can refer to struct batched_lruvec_stat) is
5121 * used for per-memcg-per-cpu caching of per-node statistics. In order
5122 * to work fine, we should make sure that the overfill threshold can't
5123 * exceed S32_MAX / PAGE_SIZE.
5124 */
5125 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
5126
5127 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5128 memcg_hotplug_cpu_dead);
5129
5130 for_each_possible_cpu(cpu) {
5131 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5132 drain_local_memcg_stock);
5133 INIT_WORK(&per_cpu_ptr(&obj_stock, cpu)->work,
5134 drain_local_obj_stock);
5135 }
5136
5137 memcg_size = struct_size_t(struct mem_cgroup, nodeinfo, nr_node_ids);
5138 memcg_cachep = kmem_cache_create("mem_cgroup", memcg_size, 0,
5139 SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL);
5140
5141 memcg_pn_cachep = KMEM_CACHE(mem_cgroup_per_node,
5142 SLAB_PANIC | SLAB_HWCACHE_ALIGN);
5143
5144 return 0;
5145 }
5146
5147 #ifdef CONFIG_SWAP
5148 /**
5149 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
5150 * @folio: folio being added to swap
5151 * @entry: swap entry to charge
5152 *
5153 * Try to charge @folio's memcg for the swap space at @entry.
5154 *
5155 * Returns 0 on success, -ENOMEM on failure.
5156 */
__mem_cgroup_try_charge_swap(struct folio * folio,swp_entry_t entry)5157 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
5158 {
5159 unsigned int nr_pages = folio_nr_pages(folio);
5160 struct page_counter *counter;
5161 struct mem_cgroup *memcg;
5162
5163 if (do_memsw_account())
5164 return 0;
5165
5166 memcg = folio_memcg(folio);
5167
5168 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
5169 if (!memcg)
5170 return 0;
5171
5172 if (!entry.val) {
5173 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5174 return 0;
5175 }
5176
5177 memcg = mem_cgroup_id_get_online(memcg);
5178
5179 if (!mem_cgroup_is_root(memcg) &&
5180 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5181 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
5182 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5183 mem_cgroup_id_put(memcg);
5184 return -ENOMEM;
5185 }
5186
5187 /* Get references for the tail pages, too */
5188 if (nr_pages > 1)
5189 mem_cgroup_id_get_many(memcg, nr_pages - 1);
5190 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
5191
5192 swap_cgroup_record(folio, mem_cgroup_id(memcg), entry);
5193
5194 return 0;
5195 }
5196
5197 /**
5198 * __mem_cgroup_uncharge_swap - uncharge swap space
5199 * @entry: swap entry to uncharge
5200 * @nr_pages: the amount of swap space to uncharge
5201 */
__mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)5202 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
5203 {
5204 struct mem_cgroup *memcg;
5205 unsigned short id;
5206
5207 id = swap_cgroup_clear(entry, nr_pages);
5208 rcu_read_lock();
5209 memcg = mem_cgroup_from_id(id);
5210 if (memcg) {
5211 if (!mem_cgroup_is_root(memcg)) {
5212 if (do_memsw_account())
5213 page_counter_uncharge(&memcg->memsw, nr_pages);
5214 else
5215 page_counter_uncharge(&memcg->swap, nr_pages);
5216 }
5217 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
5218 mem_cgroup_id_put_many(memcg, nr_pages);
5219 }
5220 rcu_read_unlock();
5221 }
5222
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)5223 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5224 {
5225 long nr_swap_pages = get_nr_swap_pages();
5226
5227 if (mem_cgroup_disabled() || do_memsw_account())
5228 return nr_swap_pages;
5229 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
5230 nr_swap_pages = min_t(long, nr_swap_pages,
5231 READ_ONCE(memcg->swap.max) -
5232 page_counter_read(&memcg->swap));
5233 return nr_swap_pages;
5234 }
5235
mem_cgroup_swap_full(struct folio * folio)5236 bool mem_cgroup_swap_full(struct folio *folio)
5237 {
5238 struct mem_cgroup *memcg;
5239
5240 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5241
5242 if (vm_swap_full())
5243 return true;
5244 if (do_memsw_account())
5245 return false;
5246
5247 memcg = folio_memcg(folio);
5248 if (!memcg)
5249 return false;
5250
5251 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
5252 unsigned long usage = page_counter_read(&memcg->swap);
5253
5254 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
5255 usage * 2 >= READ_ONCE(memcg->swap.max))
5256 return true;
5257 }
5258
5259 return false;
5260 }
5261
setup_swap_account(char * s)5262 static int __init setup_swap_account(char *s)
5263 {
5264 bool res;
5265
5266 if (!kstrtobool(s, &res) && !res)
5267 pr_warn_once("The swapaccount=0 commandline option is deprecated "
5268 "in favor of configuring swap control via cgroupfs. "
5269 "Please report your usecase to linux-mm@kvack.org if you "
5270 "depend on this functionality.\n");
5271 return 1;
5272 }
5273 __setup("swapaccount=", setup_swap_account);
5274
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5275 static u64 swap_current_read(struct cgroup_subsys_state *css,
5276 struct cftype *cft)
5277 {
5278 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5279
5280 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5281 }
5282
swap_peak_show(struct seq_file * sf,void * v)5283 static int swap_peak_show(struct seq_file *sf, void *v)
5284 {
5285 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5286
5287 return peak_show(sf, v, &memcg->swap);
5288 }
5289
swap_peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5290 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf,
5291 size_t nbytes, loff_t off)
5292 {
5293 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5294
5295 return peak_write(of, buf, nbytes, off, &memcg->swap,
5296 &memcg->swap_peaks);
5297 }
5298
swap_high_show(struct seq_file * m,void * v)5299 static int swap_high_show(struct seq_file *m, void *v)
5300 {
5301 return seq_puts_memcg_tunable(m,
5302 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
5303 }
5304
swap_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5305 static ssize_t swap_high_write(struct kernfs_open_file *of,
5306 char *buf, size_t nbytes, loff_t off)
5307 {
5308 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5309 unsigned long high;
5310 int err;
5311
5312 buf = strstrip(buf);
5313 err = page_counter_memparse(buf, "max", &high);
5314 if (err)
5315 return err;
5316
5317 page_counter_set_high(&memcg->swap, high);
5318
5319 return nbytes;
5320 }
5321
swap_max_show(struct seq_file * m,void * v)5322 static int swap_max_show(struct seq_file *m, void *v)
5323 {
5324 return seq_puts_memcg_tunable(m,
5325 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
5326 }
5327
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5328 static ssize_t swap_max_write(struct kernfs_open_file *of,
5329 char *buf, size_t nbytes, loff_t off)
5330 {
5331 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5332 unsigned long max;
5333 int err;
5334
5335 buf = strstrip(buf);
5336 err = page_counter_memparse(buf, "max", &max);
5337 if (err)
5338 return err;
5339
5340 xchg(&memcg->swap.max, max);
5341
5342 return nbytes;
5343 }
5344
swap_events_show(struct seq_file * m,void * v)5345 static int swap_events_show(struct seq_file *m, void *v)
5346 {
5347 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5348
5349 seq_printf(m, "high %lu\n",
5350 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
5351 seq_printf(m, "max %lu\n",
5352 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
5353 seq_printf(m, "fail %lu\n",
5354 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
5355
5356 return 0;
5357 }
5358
5359 static struct cftype swap_files[] = {
5360 {
5361 .name = "swap.current",
5362 .flags = CFTYPE_NOT_ON_ROOT,
5363 .read_u64 = swap_current_read,
5364 },
5365 {
5366 .name = "swap.high",
5367 .flags = CFTYPE_NOT_ON_ROOT,
5368 .seq_show = swap_high_show,
5369 .write = swap_high_write,
5370 },
5371 {
5372 .name = "swap.max",
5373 .flags = CFTYPE_NOT_ON_ROOT,
5374 .seq_show = swap_max_show,
5375 .write = swap_max_write,
5376 },
5377 {
5378 .name = "swap.peak",
5379 .flags = CFTYPE_NOT_ON_ROOT,
5380 .open = peak_open,
5381 .release = peak_release,
5382 .seq_show = swap_peak_show,
5383 .write = swap_peak_write,
5384 },
5385 {
5386 .name = "swap.events",
5387 .flags = CFTYPE_NOT_ON_ROOT,
5388 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
5389 .seq_show = swap_events_show,
5390 },
5391 { } /* terminate */
5392 };
5393
5394 #ifdef CONFIG_ZSWAP
5395 /**
5396 * obj_cgroup_may_zswap - check if this cgroup can zswap
5397 * @objcg: the object cgroup
5398 *
5399 * Check if the hierarchical zswap limit has been reached.
5400 *
5401 * This doesn't check for specific headroom, and it is not atomic
5402 * either. But with zswap, the size of the allocation is only known
5403 * once compression has occurred, and this optimistic pre-check avoids
5404 * spending cycles on compression when there is already no room left
5405 * or zswap is disabled altogether somewhere in the hierarchy.
5406 */
obj_cgroup_may_zswap(struct obj_cgroup * objcg)5407 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
5408 {
5409 struct mem_cgroup *memcg, *original_memcg;
5410 bool ret = true;
5411
5412 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5413 return true;
5414
5415 original_memcg = get_mem_cgroup_from_objcg(objcg);
5416 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
5417 memcg = parent_mem_cgroup(memcg)) {
5418 unsigned long max = READ_ONCE(memcg->zswap_max);
5419 unsigned long pages;
5420
5421 if (max == PAGE_COUNTER_MAX)
5422 continue;
5423 if (max == 0) {
5424 ret = false;
5425 break;
5426 }
5427
5428 /* Force flush to get accurate stats for charging */
5429 __mem_cgroup_flush_stats(memcg, true);
5430 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
5431 if (pages < max)
5432 continue;
5433 ret = false;
5434 break;
5435 }
5436 mem_cgroup_put(original_memcg);
5437 return ret;
5438 }
5439
5440 /**
5441 * obj_cgroup_charge_zswap - charge compression backend memory
5442 * @objcg: the object cgroup
5443 * @size: size of compressed object
5444 *
5445 * This forces the charge after obj_cgroup_may_zswap() allowed
5446 * compression and storage in zwap for this cgroup to go ahead.
5447 */
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)5448 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
5449 {
5450 struct mem_cgroup *memcg;
5451
5452 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5453 return;
5454
5455 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
5456
5457 /* PF_MEMALLOC context, charging must succeed */
5458 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
5459 VM_WARN_ON_ONCE(1);
5460
5461 rcu_read_lock();
5462 memcg = obj_cgroup_memcg(objcg);
5463 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
5464 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
5465 rcu_read_unlock();
5466 }
5467
5468 /**
5469 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
5470 * @objcg: the object cgroup
5471 * @size: size of compressed object
5472 *
5473 * Uncharges zswap memory on page in.
5474 */
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)5475 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
5476 {
5477 struct mem_cgroup *memcg;
5478
5479 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5480 return;
5481
5482 obj_cgroup_uncharge(objcg, size);
5483
5484 rcu_read_lock();
5485 memcg = obj_cgroup_memcg(objcg);
5486 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
5487 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
5488 rcu_read_unlock();
5489 }
5490
mem_cgroup_zswap_writeback_enabled(struct mem_cgroup * memcg)5491 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
5492 {
5493 /* if zswap is disabled, do not block pages going to the swapping device */
5494 if (!zswap_is_enabled())
5495 return true;
5496
5497 for (; memcg; memcg = parent_mem_cgroup(memcg))
5498 if (!READ_ONCE(memcg->zswap_writeback))
5499 return false;
5500
5501 return true;
5502 }
5503
zswap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5504 static u64 zswap_current_read(struct cgroup_subsys_state *css,
5505 struct cftype *cft)
5506 {
5507 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5508
5509 mem_cgroup_flush_stats(memcg);
5510 return memcg_page_state(memcg, MEMCG_ZSWAP_B);
5511 }
5512
zswap_max_show(struct seq_file * m,void * v)5513 static int zswap_max_show(struct seq_file *m, void *v)
5514 {
5515 return seq_puts_memcg_tunable(m,
5516 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
5517 }
5518
zswap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5519 static ssize_t zswap_max_write(struct kernfs_open_file *of,
5520 char *buf, size_t nbytes, loff_t off)
5521 {
5522 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5523 unsigned long max;
5524 int err;
5525
5526 buf = strstrip(buf);
5527 err = page_counter_memparse(buf, "max", &max);
5528 if (err)
5529 return err;
5530
5531 xchg(&memcg->zswap_max, max);
5532
5533 return nbytes;
5534 }
5535
zswap_writeback_show(struct seq_file * m,void * v)5536 static int zswap_writeback_show(struct seq_file *m, void *v)
5537 {
5538 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5539
5540 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
5541 return 0;
5542 }
5543
zswap_writeback_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5544 static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
5545 char *buf, size_t nbytes, loff_t off)
5546 {
5547 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5548 int zswap_writeback;
5549 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
5550
5551 if (parse_ret)
5552 return parse_ret;
5553
5554 if (zswap_writeback != 0 && zswap_writeback != 1)
5555 return -EINVAL;
5556
5557 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
5558 return nbytes;
5559 }
5560
5561 static struct cftype zswap_files[] = {
5562 {
5563 .name = "zswap.current",
5564 .flags = CFTYPE_NOT_ON_ROOT,
5565 .read_u64 = zswap_current_read,
5566 },
5567 {
5568 .name = "zswap.max",
5569 .flags = CFTYPE_NOT_ON_ROOT,
5570 .seq_show = zswap_max_show,
5571 .write = zswap_max_write,
5572 },
5573 {
5574 .name = "zswap.writeback",
5575 .seq_show = zswap_writeback_show,
5576 .write = zswap_writeback_write,
5577 },
5578 { } /* terminate */
5579 };
5580 #endif /* CONFIG_ZSWAP */
5581
mem_cgroup_swap_init(void)5582 static int __init mem_cgroup_swap_init(void)
5583 {
5584 if (mem_cgroup_disabled())
5585 return 0;
5586
5587 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
5588 #ifdef CONFIG_MEMCG_V1
5589 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
5590 #endif
5591 #ifdef CONFIG_ZSWAP
5592 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
5593 #endif
5594 return 0;
5595 }
5596 subsys_initcall(mem_cgroup_swap_init);
5597
5598 #endif /* CONFIG_SWAP */
5599
mem_cgroup_node_allowed(struct mem_cgroup * memcg,int nid)5600 bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid)
5601 {
5602 return memcg ? cpuset_node_allowed(memcg->css.cgroup, nid) : true;
5603 }
5604