1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Facebook */
3
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/bpf.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/skmsg.h>
25 #include <linux/perf_event.h>
26 #include <linux/bsearch.h>
27 #include <linux/kobject.h>
28 #include <linux/string.h>
29 #include <linux/sysfs.h>
30 #include <linux/overflow.h>
31
32 #include <net/netfilter/nf_bpf_link.h>
33
34 #include <net/sock.h>
35 #include <net/xdp.h>
36 #include "../tools/lib/bpf/relo_core.h"
37
38 /* BTF (BPF Type Format) is the meta data format which describes
39 * the data types of BPF program/map. Hence, it basically focus
40 * on the C programming language which the modern BPF is primary
41 * using.
42 *
43 * ELF Section:
44 * ~~~~~~~~~~~
45 * The BTF data is stored under the ".BTF" ELF section
46 *
47 * struct btf_type:
48 * ~~~~~~~~~~~~~~~
49 * Each 'struct btf_type' object describes a C data type.
50 * Depending on the type it is describing, a 'struct btf_type'
51 * object may be followed by more data. F.e.
52 * To describe an array, 'struct btf_type' is followed by
53 * 'struct btf_array'.
54 *
55 * 'struct btf_type' and any extra data following it are
56 * 4 bytes aligned.
57 *
58 * Type section:
59 * ~~~~~~~~~~~~~
60 * The BTF type section contains a list of 'struct btf_type' objects.
61 * Each one describes a C type. Recall from the above section
62 * that a 'struct btf_type' object could be immediately followed by extra
63 * data in order to describe some particular C types.
64 *
65 * type_id:
66 * ~~~~~~~
67 * Each btf_type object is identified by a type_id. The type_id
68 * is implicitly implied by the location of the btf_type object in
69 * the BTF type section. The first one has type_id 1. The second
70 * one has type_id 2...etc. Hence, an earlier btf_type has
71 * a smaller type_id.
72 *
73 * A btf_type object may refer to another btf_type object by using
74 * type_id (i.e. the "type" in the "struct btf_type").
75 *
76 * NOTE that we cannot assume any reference-order.
77 * A btf_type object can refer to an earlier btf_type object
78 * but it can also refer to a later btf_type object.
79 *
80 * For example, to describe "const void *". A btf_type
81 * object describing "const" may refer to another btf_type
82 * object describing "void *". This type-reference is done
83 * by specifying type_id:
84 *
85 * [1] CONST (anon) type_id=2
86 * [2] PTR (anon) type_id=0
87 *
88 * The above is the btf_verifier debug log:
89 * - Each line started with "[?]" is a btf_type object
90 * - [?] is the type_id of the btf_type object.
91 * - CONST/PTR is the BTF_KIND_XXX
92 * - "(anon)" is the name of the type. It just
93 * happens that CONST and PTR has no name.
94 * - type_id=XXX is the 'u32 type' in btf_type
95 *
96 * NOTE: "void" has type_id 0
97 *
98 * String section:
99 * ~~~~~~~~~~~~~~
100 * The BTF string section contains the names used by the type section.
101 * Each string is referred by an "offset" from the beginning of the
102 * string section.
103 *
104 * Each string is '\0' terminated.
105 *
106 * The first character in the string section must be '\0'
107 * which is used to mean 'anonymous'. Some btf_type may not
108 * have a name.
109 */
110
111 /* BTF verification:
112 *
113 * To verify BTF data, two passes are needed.
114 *
115 * Pass #1
116 * ~~~~~~~
117 * The first pass is to collect all btf_type objects to
118 * an array: "btf->types".
119 *
120 * Depending on the C type that a btf_type is describing,
121 * a btf_type may be followed by extra data. We don't know
122 * how many btf_type is there, and more importantly we don't
123 * know where each btf_type is located in the type section.
124 *
125 * Without knowing the location of each type_id, most verifications
126 * cannot be done. e.g. an earlier btf_type may refer to a later
127 * btf_type (recall the "const void *" above), so we cannot
128 * check this type-reference in the first pass.
129 *
130 * In the first pass, it still does some verifications (e.g.
131 * checking the name is a valid offset to the string section).
132 *
133 * Pass #2
134 * ~~~~~~~
135 * The main focus is to resolve a btf_type that is referring
136 * to another type.
137 *
138 * We have to ensure the referring type:
139 * 1) does exist in the BTF (i.e. in btf->types[])
140 * 2) does not cause a loop:
141 * struct A {
142 * struct B b;
143 * };
144 *
145 * struct B {
146 * struct A a;
147 * };
148 *
149 * btf_type_needs_resolve() decides if a btf_type needs
150 * to be resolved.
151 *
152 * The needs_resolve type implements the "resolve()" ops which
153 * essentially does a DFS and detects backedge.
154 *
155 * During resolve (or DFS), different C types have different
156 * "RESOLVED" conditions.
157 *
158 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
159 * members because a member is always referring to another
160 * type. A struct's member can be treated as "RESOLVED" if
161 * it is referring to a BTF_KIND_PTR. Otherwise, the
162 * following valid C struct would be rejected:
163 *
164 * struct A {
165 * int m;
166 * struct A *a;
167 * };
168 *
169 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
170 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot
171 * detect a pointer loop, e.g.:
172 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
173 * ^ |
174 * +-----------------------------------------+
175 *
176 */
177
178 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
179 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
180 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
181 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
182 #define BITS_ROUNDUP_BYTES(bits) \
183 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
184
185 #define BTF_INFO_MASK 0x9f00ffff
186 #define BTF_INT_MASK 0x0fffffff
187 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
188 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
189
190 /* 16MB for 64k structs and each has 16 members and
191 * a few MB spaces for the string section.
192 * The hard limit is S32_MAX.
193 */
194 #define BTF_MAX_SIZE (16 * 1024 * 1024)
195
196 #define for_each_member_from(i, from, struct_type, member) \
197 for (i = from, member = btf_type_member(struct_type) + from; \
198 i < btf_type_vlen(struct_type); \
199 i++, member++)
200
201 #define for_each_vsi_from(i, from, struct_type, member) \
202 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
203 i < btf_type_vlen(struct_type); \
204 i++, member++)
205
206 DEFINE_IDR(btf_idr);
207 DEFINE_SPINLOCK(btf_idr_lock);
208
209 enum btf_kfunc_hook {
210 BTF_KFUNC_HOOK_COMMON,
211 BTF_KFUNC_HOOK_XDP,
212 BTF_KFUNC_HOOK_TC,
213 BTF_KFUNC_HOOK_STRUCT_OPS,
214 BTF_KFUNC_HOOK_TRACING,
215 BTF_KFUNC_HOOK_SYSCALL,
216 BTF_KFUNC_HOOK_FMODRET,
217 BTF_KFUNC_HOOK_CGROUP,
218 BTF_KFUNC_HOOK_SCHED_ACT,
219 BTF_KFUNC_HOOK_SK_SKB,
220 BTF_KFUNC_HOOK_SOCKET_FILTER,
221 BTF_KFUNC_HOOK_LWT,
222 BTF_KFUNC_HOOK_NETFILTER,
223 BTF_KFUNC_HOOK_KPROBE,
224 BTF_KFUNC_HOOK_MAX,
225 };
226
227 enum {
228 BTF_KFUNC_SET_MAX_CNT = 256,
229 BTF_DTOR_KFUNC_MAX_CNT = 256,
230 BTF_KFUNC_FILTER_MAX_CNT = 16,
231 };
232
233 struct btf_kfunc_hook_filter {
234 btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT];
235 u32 nr_filters;
236 };
237
238 struct btf_kfunc_set_tab {
239 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
240 struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX];
241 };
242
243 struct btf_id_dtor_kfunc_tab {
244 u32 cnt;
245 struct btf_id_dtor_kfunc dtors[];
246 };
247
248 struct btf_struct_ops_tab {
249 u32 cnt;
250 u32 capacity;
251 struct bpf_struct_ops_desc ops[];
252 };
253
254 struct btf {
255 void *data;
256 struct btf_type **types;
257 u32 *resolved_ids;
258 u32 *resolved_sizes;
259 const char *strings;
260 void *nohdr_data;
261 struct btf_header hdr;
262 u32 nr_types; /* includes VOID for base BTF */
263 u32 named_start_id;
264 u32 types_size;
265 u32 data_size;
266 refcount_t refcnt;
267 u32 id;
268 struct rcu_head rcu;
269 struct btf_kfunc_set_tab *kfunc_set_tab;
270 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
271 struct btf_struct_metas *struct_meta_tab;
272 struct btf_struct_ops_tab *struct_ops_tab;
273
274 /* split BTF support */
275 struct btf *base_btf;
276 u32 start_id; /* first type ID in this BTF (0 for base BTF) */
277 u32 start_str_off; /* first string offset (0 for base BTF) */
278 char name[MODULE_NAME_LEN];
279 bool kernel_btf;
280 __u32 *base_id_map; /* map from distilled base BTF -> vmlinux BTF ids */
281 };
282
283 enum verifier_phase {
284 CHECK_META,
285 CHECK_TYPE,
286 };
287
288 struct resolve_vertex {
289 const struct btf_type *t;
290 u32 type_id;
291 u16 next_member;
292 };
293
294 enum visit_state {
295 NOT_VISITED,
296 VISITED,
297 RESOLVED,
298 };
299
300 enum resolve_mode {
301 RESOLVE_TBD, /* To Be Determined */
302 RESOLVE_PTR, /* Resolving for Pointer */
303 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
304 * or array
305 */
306 };
307
308 #define MAX_RESOLVE_DEPTH 32
309
310 struct btf_sec_info {
311 u32 off;
312 u32 len;
313 };
314
315 struct btf_verifier_env {
316 struct btf *btf;
317 u8 *visit_states;
318 struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
319 struct bpf_verifier_log log;
320 u32 log_type_id;
321 u32 top_stack;
322 enum verifier_phase phase;
323 enum resolve_mode resolve_mode;
324 };
325
326 static const char * const btf_kind_str[NR_BTF_KINDS] = {
327 [BTF_KIND_UNKN] = "UNKNOWN",
328 [BTF_KIND_INT] = "INT",
329 [BTF_KIND_PTR] = "PTR",
330 [BTF_KIND_ARRAY] = "ARRAY",
331 [BTF_KIND_STRUCT] = "STRUCT",
332 [BTF_KIND_UNION] = "UNION",
333 [BTF_KIND_ENUM] = "ENUM",
334 [BTF_KIND_FWD] = "FWD",
335 [BTF_KIND_TYPEDEF] = "TYPEDEF",
336 [BTF_KIND_VOLATILE] = "VOLATILE",
337 [BTF_KIND_CONST] = "CONST",
338 [BTF_KIND_RESTRICT] = "RESTRICT",
339 [BTF_KIND_FUNC] = "FUNC",
340 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
341 [BTF_KIND_VAR] = "VAR",
342 [BTF_KIND_DATASEC] = "DATASEC",
343 [BTF_KIND_FLOAT] = "FLOAT",
344 [BTF_KIND_DECL_TAG] = "DECL_TAG",
345 [BTF_KIND_TYPE_TAG] = "TYPE_TAG",
346 [BTF_KIND_ENUM64] = "ENUM64",
347 };
348
btf_type_str(const struct btf_type * t)349 const char *btf_type_str(const struct btf_type *t)
350 {
351 return btf_kind_str[BTF_INFO_KIND(t->info)];
352 }
353
354 /* Chunk size we use in safe copy of data to be shown. */
355 #define BTF_SHOW_OBJ_SAFE_SIZE 32
356
357 /*
358 * This is the maximum size of a base type value (equivalent to a
359 * 128-bit int); if we are at the end of our safe buffer and have
360 * less than 16 bytes space we can't be assured of being able
361 * to copy the next type safely, so in such cases we will initiate
362 * a new copy.
363 */
364 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16
365
366 /* Type name size */
367 #define BTF_SHOW_NAME_SIZE 80
368
369 /*
370 * The suffix of a type that indicates it cannot alias another type when
371 * comparing BTF IDs for kfunc invocations.
372 */
373 #define NOCAST_ALIAS_SUFFIX "___init"
374
375 /*
376 * Common data to all BTF show operations. Private show functions can add
377 * their own data to a structure containing a struct btf_show and consult it
378 * in the show callback. See btf_type_show() below.
379 *
380 * One challenge with showing nested data is we want to skip 0-valued
381 * data, but in order to figure out whether a nested object is all zeros
382 * we need to walk through it. As a result, we need to make two passes
383 * when handling structs, unions and arrays; the first path simply looks
384 * for nonzero data, while the second actually does the display. The first
385 * pass is signalled by show->state.depth_check being set, and if we
386 * encounter a non-zero value we set show->state.depth_to_show to
387 * the depth at which we encountered it. When we have completed the
388 * first pass, we will know if anything needs to be displayed if
389 * depth_to_show > depth. See btf_[struct,array]_show() for the
390 * implementation of this.
391 *
392 * Another problem is we want to ensure the data for display is safe to
393 * access. To support this, the anonymous "struct {} obj" tracks the data
394 * object and our safe copy of it. We copy portions of the data needed
395 * to the object "copy" buffer, but because its size is limited to
396 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
397 * traverse larger objects for display.
398 *
399 * The various data type show functions all start with a call to
400 * btf_show_start_type() which returns a pointer to the safe copy
401 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
402 * raw data itself). btf_show_obj_safe() is responsible for
403 * using copy_from_kernel_nofault() to update the safe data if necessary
404 * as we traverse the object's data. skbuff-like semantics are
405 * used:
406 *
407 * - obj.head points to the start of the toplevel object for display
408 * - obj.size is the size of the toplevel object
409 * - obj.data points to the current point in the original data at
410 * which our safe data starts. obj.data will advance as we copy
411 * portions of the data.
412 *
413 * In most cases a single copy will suffice, but larger data structures
414 * such as "struct task_struct" will require many copies. The logic in
415 * btf_show_obj_safe() handles the logic that determines if a new
416 * copy_from_kernel_nofault() is needed.
417 */
418 struct btf_show {
419 u64 flags;
420 void *target; /* target of show operation (seq file, buffer) */
421 __printf(2, 0) void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
422 const struct btf *btf;
423 /* below are used during iteration */
424 struct {
425 u8 depth;
426 u8 depth_to_show;
427 u8 depth_check;
428 u8 array_member:1,
429 array_terminated:1;
430 u16 array_encoding;
431 u32 type_id;
432 int status; /* non-zero for error */
433 const struct btf_type *type;
434 const struct btf_member *member;
435 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */
436 } state;
437 struct {
438 u32 size;
439 void *head;
440 void *data;
441 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
442 } obj;
443 };
444
445 struct btf_kind_operations {
446 s32 (*check_meta)(struct btf_verifier_env *env,
447 const struct btf_type *t,
448 u32 meta_left);
449 int (*resolve)(struct btf_verifier_env *env,
450 const struct resolve_vertex *v);
451 int (*check_member)(struct btf_verifier_env *env,
452 const struct btf_type *struct_type,
453 const struct btf_member *member,
454 const struct btf_type *member_type);
455 int (*check_kflag_member)(struct btf_verifier_env *env,
456 const struct btf_type *struct_type,
457 const struct btf_member *member,
458 const struct btf_type *member_type);
459 void (*log_details)(struct btf_verifier_env *env,
460 const struct btf_type *t);
461 void (*show)(const struct btf *btf, const struct btf_type *t,
462 u32 type_id, void *data, u8 bits_offsets,
463 struct btf_show *show);
464 };
465
466 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
467 static struct btf_type btf_void;
468
469 static int btf_resolve(struct btf_verifier_env *env,
470 const struct btf_type *t, u32 type_id);
471
472 static int btf_func_check(struct btf_verifier_env *env,
473 const struct btf_type *t);
474
btf_type_is_modifier(const struct btf_type * t)475 static bool btf_type_is_modifier(const struct btf_type *t)
476 {
477 /* Some of them is not strictly a C modifier
478 * but they are grouped into the same bucket
479 * for BTF concern:
480 * A type (t) that refers to another
481 * type through t->type AND its size cannot
482 * be determined without following the t->type.
483 *
484 * ptr does not fall into this bucket
485 * because its size is always sizeof(void *).
486 */
487 switch (BTF_INFO_KIND(t->info)) {
488 case BTF_KIND_TYPEDEF:
489 case BTF_KIND_VOLATILE:
490 case BTF_KIND_CONST:
491 case BTF_KIND_RESTRICT:
492 case BTF_KIND_TYPE_TAG:
493 return true;
494 }
495
496 return false;
497 }
498
btf_start_id(const struct btf * btf)499 static int btf_start_id(const struct btf *btf)
500 {
501 return btf->start_id + (btf->base_btf ? 0 : 1);
502 }
503
btf_type_is_void(const struct btf_type * t)504 bool btf_type_is_void(const struct btf_type *t)
505 {
506 return t == &btf_void;
507 }
508
btf_type_is_datasec(const struct btf_type * t)509 static bool btf_type_is_datasec(const struct btf_type *t)
510 {
511 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
512 }
513
btf_type_is_decl_tag(const struct btf_type * t)514 static bool btf_type_is_decl_tag(const struct btf_type *t)
515 {
516 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
517 }
518
btf_type_nosize(const struct btf_type * t)519 static bool btf_type_nosize(const struct btf_type *t)
520 {
521 return btf_type_is_void(t) || btf_type_is_fwd(t) ||
522 btf_type_is_func(t) || btf_type_is_func_proto(t) ||
523 btf_type_is_decl_tag(t);
524 }
525
btf_type_nosize_or_null(const struct btf_type * t)526 static bool btf_type_nosize_or_null(const struct btf_type *t)
527 {
528 return !t || btf_type_nosize(t);
529 }
530
btf_type_is_decl_tag_target(const struct btf_type * t)531 static bool btf_type_is_decl_tag_target(const struct btf_type *t)
532 {
533 return btf_type_is_func(t) || btf_type_is_struct(t) ||
534 btf_type_is_var(t) || btf_type_is_typedef(t);
535 }
536
btf_is_vmlinux(const struct btf * btf)537 bool btf_is_vmlinux(const struct btf *btf)
538 {
539 return btf->kernel_btf && !btf->base_btf;
540 }
541
btf_nr_types(const struct btf * btf)542 u32 btf_nr_types(const struct btf *btf)
543 {
544 u32 total = 0;
545
546 while (btf) {
547 total += btf->nr_types;
548 btf = btf->base_btf;
549 }
550
551 return total;
552 }
553
554 /*
555 * Note that vmlinux and kernel module BTFs are always sorted
556 * during the building phase.
557 */
btf_check_sorted(struct btf * btf)558 static void btf_check_sorted(struct btf *btf)
559 {
560 u32 i, n, named_start_id = 0;
561
562 n = btf_nr_types(btf);
563 if (btf_is_vmlinux(btf)) {
564 for (i = btf_start_id(btf); i < n; i++) {
565 const struct btf_type *t = btf_type_by_id(btf, i);
566 const char *n = btf_name_by_offset(btf, t->name_off);
567
568 if (n[0] != '\0') {
569 btf->named_start_id = i;
570 return;
571 }
572 }
573 return;
574 }
575
576 for (i = btf_start_id(btf) + 1; i < n; i++) {
577 const struct btf_type *ta = btf_type_by_id(btf, i - 1);
578 const struct btf_type *tb = btf_type_by_id(btf, i);
579 const char *na = btf_name_by_offset(btf, ta->name_off);
580 const char *nb = btf_name_by_offset(btf, tb->name_off);
581
582 if (strcmp(na, nb) > 0)
583 return;
584
585 if (named_start_id == 0 && na[0] != '\0')
586 named_start_id = i - 1;
587 if (named_start_id == 0 && nb[0] != '\0')
588 named_start_id = i;
589 }
590
591 if (named_start_id)
592 btf->named_start_id = named_start_id;
593 }
594
595 /*
596 * btf_named_start_id - Get the named starting ID for the BTF
597 * @btf: Pointer to the target BTF object
598 * @own: Flag indicating whether to query only the current BTF (true = current BTF only,
599 * false = recursively traverse the base BTF chain)
600 *
601 * Return value rules:
602 * 1. For a sorted btf, return its named_start_id
603 * 2. Else for a split BTF, return its start_id
604 * 3. Else for a base BTF, return 1
605 */
btf_named_start_id(const struct btf * btf,bool own)606 u32 btf_named_start_id(const struct btf *btf, bool own)
607 {
608 const struct btf *base_btf = btf;
609
610 while (!own && base_btf->base_btf)
611 base_btf = base_btf->base_btf;
612
613 return base_btf->named_start_id ?: (base_btf->start_id ?: 1);
614 }
615
btf_find_by_name_kind_bsearch(const struct btf * btf,const char * name)616 static s32 btf_find_by_name_kind_bsearch(const struct btf *btf, const char *name)
617 {
618 const struct btf_type *t;
619 const char *tname;
620 s32 l, r, m;
621
622 l = btf_named_start_id(btf, true);
623 r = btf_nr_types(btf) - 1;
624 while (l <= r) {
625 m = l + (r - l) / 2;
626 t = btf_type_by_id(btf, m);
627 tname = btf_name_by_offset(btf, t->name_off);
628 if (strcmp(tname, name) >= 0) {
629 if (l == r)
630 return r;
631 r = m;
632 } else {
633 l = m + 1;
634 }
635 }
636
637 return btf_nr_types(btf);
638 }
639
btf_find_by_name_kind(const struct btf * btf,const char * name,u8 kind)640 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
641 {
642 const struct btf *base_btf = btf_base_btf(btf);
643 const struct btf_type *t;
644 const char *tname;
645 s32 id, total;
646
647 if (base_btf) {
648 id = btf_find_by_name_kind(base_btf, name, kind);
649 if (id > 0)
650 return id;
651 }
652
653 total = btf_nr_types(btf);
654 if (btf->named_start_id > 0 && name[0]) {
655 id = btf_find_by_name_kind_bsearch(btf, name);
656 for (; id < total; id++) {
657 t = btf_type_by_id(btf, id);
658 tname = btf_name_by_offset(btf, t->name_off);
659 if (strcmp(tname, name) != 0)
660 return -ENOENT;
661 if (BTF_INFO_KIND(t->info) == kind)
662 return id;
663 }
664 } else {
665 for (id = btf_start_id(btf); id < total; id++) {
666 t = btf_type_by_id(btf, id);
667 if (BTF_INFO_KIND(t->info) != kind)
668 continue;
669 tname = btf_name_by_offset(btf, t->name_off);
670 if (strcmp(tname, name) == 0)
671 return id;
672 }
673 }
674
675 return -ENOENT;
676 }
677
bpf_find_btf_id(const char * name,u32 kind,struct btf ** btf_p)678 s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
679 {
680 struct btf *btf;
681 s32 ret;
682 int id;
683
684 btf = bpf_get_btf_vmlinux();
685 if (IS_ERR(btf))
686 return PTR_ERR(btf);
687 if (!btf)
688 return -EINVAL;
689
690 ret = btf_find_by_name_kind(btf, name, kind);
691 /* ret is never zero, since btf_find_by_name_kind returns
692 * positive btf_id or negative error.
693 */
694 if (ret > 0) {
695 btf_get(btf);
696 *btf_p = btf;
697 return ret;
698 }
699
700 /* If name is not found in vmlinux's BTF then search in module's BTFs */
701 spin_lock_bh(&btf_idr_lock);
702 idr_for_each_entry(&btf_idr, btf, id) {
703 if (!btf_is_module(btf))
704 continue;
705 /* linear search could be slow hence unlock/lock
706 * the IDR to avoiding holding it for too long
707 */
708 btf_get(btf);
709 spin_unlock_bh(&btf_idr_lock);
710 ret = btf_find_by_name_kind(btf, name, kind);
711 if (ret > 0) {
712 *btf_p = btf;
713 return ret;
714 }
715 btf_put(btf);
716 spin_lock_bh(&btf_idr_lock);
717 }
718 spin_unlock_bh(&btf_idr_lock);
719 return ret;
720 }
721 EXPORT_SYMBOL_GPL(bpf_find_btf_id);
722
btf_type_skip_modifiers(const struct btf * btf,u32 id,u32 * res_id)723 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
724 u32 id, u32 *res_id)
725 {
726 const struct btf_type *t = btf_type_by_id(btf, id);
727
728 while (btf_type_is_modifier(t)) {
729 id = t->type;
730 t = btf_type_by_id(btf, t->type);
731 }
732
733 if (res_id)
734 *res_id = id;
735
736 return t;
737 }
738
btf_type_resolve_ptr(const struct btf * btf,u32 id,u32 * res_id)739 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
740 u32 id, u32 *res_id)
741 {
742 const struct btf_type *t;
743
744 t = btf_type_skip_modifiers(btf, id, NULL);
745 if (!btf_type_is_ptr(t))
746 return NULL;
747
748 return btf_type_skip_modifiers(btf, t->type, res_id);
749 }
750
btf_type_resolve_func_ptr(const struct btf * btf,u32 id,u32 * res_id)751 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
752 u32 id, u32 *res_id)
753 {
754 const struct btf_type *ptype;
755
756 ptype = btf_type_resolve_ptr(btf, id, res_id);
757 if (ptype && btf_type_is_func_proto(ptype))
758 return ptype;
759
760 return NULL;
761 }
762
763 /* Types that act only as a source, not sink or intermediate
764 * type when resolving.
765 */
btf_type_is_resolve_source_only(const struct btf_type * t)766 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
767 {
768 return btf_type_is_var(t) ||
769 btf_type_is_decl_tag(t) ||
770 btf_type_is_datasec(t);
771 }
772
773 /* What types need to be resolved?
774 *
775 * btf_type_is_modifier() is an obvious one.
776 *
777 * btf_type_is_struct() because its member refers to
778 * another type (through member->type).
779 *
780 * btf_type_is_var() because the variable refers to
781 * another type. btf_type_is_datasec() holds multiple
782 * btf_type_is_var() types that need resolving.
783 *
784 * btf_type_is_array() because its element (array->type)
785 * refers to another type. Array can be thought of a
786 * special case of struct while array just has the same
787 * member-type repeated by array->nelems of times.
788 */
btf_type_needs_resolve(const struct btf_type * t)789 static bool btf_type_needs_resolve(const struct btf_type *t)
790 {
791 return btf_type_is_modifier(t) ||
792 btf_type_is_ptr(t) ||
793 btf_type_is_struct(t) ||
794 btf_type_is_array(t) ||
795 btf_type_is_var(t) ||
796 btf_type_is_func(t) ||
797 btf_type_is_decl_tag(t) ||
798 btf_type_is_datasec(t);
799 }
800
801 /* t->size can be used */
btf_type_has_size(const struct btf_type * t)802 static bool btf_type_has_size(const struct btf_type *t)
803 {
804 switch (BTF_INFO_KIND(t->info)) {
805 case BTF_KIND_INT:
806 case BTF_KIND_STRUCT:
807 case BTF_KIND_UNION:
808 case BTF_KIND_ENUM:
809 case BTF_KIND_DATASEC:
810 case BTF_KIND_FLOAT:
811 case BTF_KIND_ENUM64:
812 return true;
813 }
814
815 return false;
816 }
817
btf_int_encoding_str(u8 encoding)818 static const char *btf_int_encoding_str(u8 encoding)
819 {
820 if (encoding == 0)
821 return "(none)";
822 else if (encoding == BTF_INT_SIGNED)
823 return "SIGNED";
824 else if (encoding == BTF_INT_CHAR)
825 return "CHAR";
826 else if (encoding == BTF_INT_BOOL)
827 return "BOOL";
828 else
829 return "UNKN";
830 }
831
btf_type_int(const struct btf_type * t)832 static u32 btf_type_int(const struct btf_type *t)
833 {
834 return *(u32 *)(t + 1);
835 }
836
btf_type_array(const struct btf_type * t)837 static const struct btf_array *btf_type_array(const struct btf_type *t)
838 {
839 return (const struct btf_array *)(t + 1);
840 }
841
btf_type_enum(const struct btf_type * t)842 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
843 {
844 return (const struct btf_enum *)(t + 1);
845 }
846
btf_type_var(const struct btf_type * t)847 static const struct btf_var *btf_type_var(const struct btf_type *t)
848 {
849 return (const struct btf_var *)(t + 1);
850 }
851
btf_type_decl_tag(const struct btf_type * t)852 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
853 {
854 return (const struct btf_decl_tag *)(t + 1);
855 }
856
btf_type_enum64(const struct btf_type * t)857 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
858 {
859 return (const struct btf_enum64 *)(t + 1);
860 }
861
btf_type_ops(const struct btf_type * t)862 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
863 {
864 return kind_ops[BTF_INFO_KIND(t->info)];
865 }
866
btf_name_offset_valid(const struct btf * btf,u32 offset)867 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
868 {
869 if (!BTF_STR_OFFSET_VALID(offset))
870 return false;
871
872 while (offset < btf->start_str_off)
873 btf = btf->base_btf;
874
875 offset -= btf->start_str_off;
876 return offset < btf->hdr.str_len;
877 }
878
__btf_name_char_ok(char c,bool first)879 static bool __btf_name_char_ok(char c, bool first)
880 {
881 if ((first ? !isalpha(c) :
882 !isalnum(c)) &&
883 c != '_' &&
884 c != '.')
885 return false;
886 return true;
887 }
888
btf_str_by_offset(const struct btf * btf,u32 offset)889 const char *btf_str_by_offset(const struct btf *btf, u32 offset)
890 {
891 while (offset < btf->start_str_off)
892 btf = btf->base_btf;
893
894 offset -= btf->start_str_off;
895 if (offset < btf->hdr.str_len)
896 return &btf->strings[offset];
897
898 return NULL;
899 }
900
btf_name_valid_identifier(const struct btf * btf,u32 offset)901 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
902 {
903 /* offset must be valid */
904 const char *src = btf_str_by_offset(btf, offset);
905 const char *src_limit;
906
907 if (!__btf_name_char_ok(*src, true))
908 return false;
909
910 /* set a limit on identifier length */
911 src_limit = src + KSYM_NAME_LEN;
912 src++;
913 while (*src && src < src_limit) {
914 if (!__btf_name_char_ok(*src, false))
915 return false;
916 src++;
917 }
918
919 return !*src;
920 }
921
922 /* Allow any printable character in DATASEC names */
btf_name_valid_section(const struct btf * btf,u32 offset)923 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
924 {
925 /* offset must be valid */
926 const char *src = btf_str_by_offset(btf, offset);
927 const char *src_limit;
928
929 if (!*src)
930 return false;
931
932 /* set a limit on identifier length */
933 src_limit = src + KSYM_NAME_LEN;
934 while (*src && src < src_limit) {
935 if (!isprint(*src))
936 return false;
937 src++;
938 }
939
940 return !*src;
941 }
942
__btf_name_by_offset(const struct btf * btf,u32 offset)943 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
944 {
945 const char *name;
946
947 if (!offset)
948 return "(anon)";
949
950 name = btf_str_by_offset(btf, offset);
951 return name ?: "(invalid-name-offset)";
952 }
953
btf_name_by_offset(const struct btf * btf,u32 offset)954 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
955 {
956 return btf_str_by_offset(btf, offset);
957 }
958
btf_type_by_id(const struct btf * btf,u32 type_id)959 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
960 {
961 while (type_id < btf->start_id)
962 btf = btf->base_btf;
963
964 type_id -= btf->start_id;
965 if (type_id >= btf->nr_types)
966 return NULL;
967 return btf->types[type_id];
968 }
969 EXPORT_SYMBOL_GPL(btf_type_by_id);
970
971 /*
972 * Check that the type @t is a regular int. This means that @t is not
973 * a bit field and it has the same size as either of u8/u16/u32/u64
974 * or __int128. If @expected_size is not zero, then size of @t should
975 * be the same. A caller should already have checked that the type @t
976 * is an integer.
977 */
__btf_type_int_is_regular(const struct btf_type * t,size_t expected_size)978 static bool __btf_type_int_is_regular(const struct btf_type *t, size_t expected_size)
979 {
980 u32 int_data = btf_type_int(t);
981 u8 nr_bits = BTF_INT_BITS(int_data);
982 u8 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
983
984 return BITS_PER_BYTE_MASKED(nr_bits) == 0 &&
985 BTF_INT_OFFSET(int_data) == 0 &&
986 (nr_bytes <= 16 && is_power_of_2(nr_bytes)) &&
987 (expected_size == 0 || nr_bytes == expected_size);
988 }
989
btf_type_int_is_regular(const struct btf_type * t)990 static bool btf_type_int_is_regular(const struct btf_type *t)
991 {
992 return __btf_type_int_is_regular(t, 0);
993 }
994
btf_type_is_i32(const struct btf_type * t)995 bool btf_type_is_i32(const struct btf_type *t)
996 {
997 return btf_type_is_int(t) && __btf_type_int_is_regular(t, 4);
998 }
999
btf_type_is_i64(const struct btf_type * t)1000 bool btf_type_is_i64(const struct btf_type *t)
1001 {
1002 return btf_type_is_int(t) && __btf_type_int_is_regular(t, 8);
1003 }
1004
btf_type_is_primitive(const struct btf_type * t)1005 bool btf_type_is_primitive(const struct btf_type *t)
1006 {
1007 return (btf_type_is_int(t) && btf_type_int_is_regular(t)) ||
1008 btf_is_any_enum(t);
1009 }
1010
1011 /*
1012 * Check that given struct member is a regular int with expected
1013 * offset and size.
1014 */
btf_member_is_reg_int(const struct btf * btf,const struct btf_type * s,const struct btf_member * m,u32 expected_offset,u32 expected_size)1015 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
1016 const struct btf_member *m,
1017 u32 expected_offset, u32 expected_size)
1018 {
1019 const struct btf_type *t;
1020 u32 id, int_data;
1021 u8 nr_bits;
1022
1023 id = m->type;
1024 t = btf_type_id_size(btf, &id, NULL);
1025 if (!t || !btf_type_is_int(t))
1026 return false;
1027
1028 int_data = btf_type_int(t);
1029 nr_bits = BTF_INT_BITS(int_data);
1030 if (btf_type_kflag(s)) {
1031 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
1032 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
1033
1034 /* if kflag set, int should be a regular int and
1035 * bit offset should be at byte boundary.
1036 */
1037 return !bitfield_size &&
1038 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
1039 BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
1040 }
1041
1042 if (BTF_INT_OFFSET(int_data) ||
1043 BITS_PER_BYTE_MASKED(m->offset) ||
1044 BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
1045 BITS_PER_BYTE_MASKED(nr_bits) ||
1046 BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
1047 return false;
1048
1049 return true;
1050 }
1051
1052 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
btf_type_skip_qualifiers(const struct btf * btf,u32 id)1053 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
1054 u32 id)
1055 {
1056 const struct btf_type *t = btf_type_by_id(btf, id);
1057
1058 while (btf_type_is_modifier(t) &&
1059 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
1060 t = btf_type_by_id(btf, t->type);
1061 }
1062
1063 return t;
1064 }
1065
1066 #define BTF_SHOW_MAX_ITER 10
1067
1068 #define BTF_KIND_BIT(kind) (1ULL << kind)
1069
1070 /*
1071 * Populate show->state.name with type name information.
1072 * Format of type name is
1073 *
1074 * [.member_name = ] (type_name)
1075 */
btf_show_name(struct btf_show * show)1076 static const char *btf_show_name(struct btf_show *show)
1077 {
1078 /* BTF_MAX_ITER array suffixes "[]" */
1079 const char *array_suffixes = "[][][][][][][][][][]";
1080 const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
1081 /* BTF_MAX_ITER pointer suffixes "*" */
1082 const char *ptr_suffixes = "**********";
1083 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
1084 const char *name = NULL, *prefix = "", *parens = "";
1085 const struct btf_member *m = show->state.member;
1086 const struct btf_type *t;
1087 const struct btf_array *array;
1088 u32 id = show->state.type_id;
1089 const char *member = NULL;
1090 bool show_member = false;
1091 u64 kinds = 0;
1092 int i;
1093
1094 show->state.name[0] = '\0';
1095
1096 /*
1097 * Don't show type name if we're showing an array member;
1098 * in that case we show the array type so don't need to repeat
1099 * ourselves for each member.
1100 */
1101 if (show->state.array_member)
1102 return "";
1103
1104 /* Retrieve member name, if any. */
1105 if (m) {
1106 member = btf_name_by_offset(show->btf, m->name_off);
1107 show_member = strlen(member) > 0;
1108 id = m->type;
1109 }
1110
1111 /*
1112 * Start with type_id, as we have resolved the struct btf_type *
1113 * via btf_modifier_show() past the parent typedef to the child
1114 * struct, int etc it is defined as. In such cases, the type_id
1115 * still represents the starting type while the struct btf_type *
1116 * in our show->state points at the resolved type of the typedef.
1117 */
1118 t = btf_type_by_id(show->btf, id);
1119 if (!t)
1120 return "";
1121
1122 /*
1123 * The goal here is to build up the right number of pointer and
1124 * array suffixes while ensuring the type name for a typedef
1125 * is represented. Along the way we accumulate a list of
1126 * BTF kinds we have encountered, since these will inform later
1127 * display; for example, pointer types will not require an
1128 * opening "{" for struct, we will just display the pointer value.
1129 *
1130 * We also want to accumulate the right number of pointer or array
1131 * indices in the format string while iterating until we get to
1132 * the typedef/pointee/array member target type.
1133 *
1134 * We start by pointing at the end of pointer and array suffix
1135 * strings; as we accumulate pointers and arrays we move the pointer
1136 * or array string backwards so it will show the expected number of
1137 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers
1138 * and/or arrays and typedefs are supported as a precaution.
1139 *
1140 * We also want to get typedef name while proceeding to resolve
1141 * type it points to so that we can add parentheses if it is a
1142 * "typedef struct" etc.
1143 */
1144 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
1145
1146 switch (BTF_INFO_KIND(t->info)) {
1147 case BTF_KIND_TYPEDEF:
1148 if (!name)
1149 name = btf_name_by_offset(show->btf,
1150 t->name_off);
1151 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
1152 id = t->type;
1153 break;
1154 case BTF_KIND_ARRAY:
1155 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
1156 parens = "[";
1157 if (!t)
1158 return "";
1159 array = btf_type_array(t);
1160 if (array_suffix > array_suffixes)
1161 array_suffix -= 2;
1162 id = array->type;
1163 break;
1164 case BTF_KIND_PTR:
1165 kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1166 if (ptr_suffix > ptr_suffixes)
1167 ptr_suffix -= 1;
1168 id = t->type;
1169 break;
1170 default:
1171 id = 0;
1172 break;
1173 }
1174 if (!id)
1175 break;
1176 t = btf_type_skip_qualifiers(show->btf, id);
1177 }
1178 /* We may not be able to represent this type; bail to be safe */
1179 if (i == BTF_SHOW_MAX_ITER)
1180 return "";
1181
1182 if (!name)
1183 name = btf_name_by_offset(show->btf, t->name_off);
1184
1185 switch (BTF_INFO_KIND(t->info)) {
1186 case BTF_KIND_STRUCT:
1187 case BTF_KIND_UNION:
1188 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1189 "struct" : "union";
1190 /* if it's an array of struct/union, parens is already set */
1191 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1192 parens = "{";
1193 break;
1194 case BTF_KIND_ENUM:
1195 case BTF_KIND_ENUM64:
1196 prefix = "enum";
1197 break;
1198 default:
1199 break;
1200 }
1201
1202 /* pointer does not require parens */
1203 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1204 parens = "";
1205 /* typedef does not require struct/union/enum prefix */
1206 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1207 prefix = "";
1208
1209 if (!name)
1210 name = "";
1211
1212 /* Even if we don't want type name info, we want parentheses etc */
1213 if (show->flags & BTF_SHOW_NONAME)
1214 snprintf(show->state.name, sizeof(show->state.name), "%s",
1215 parens);
1216 else
1217 snprintf(show->state.name, sizeof(show->state.name),
1218 "%s%s%s(%s%s%s%s%s%s)%s",
1219 /* first 3 strings comprise ".member = " */
1220 show_member ? "." : "",
1221 show_member ? member : "",
1222 show_member ? " = " : "",
1223 /* ...next is our prefix (struct, enum, etc) */
1224 prefix,
1225 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1226 /* ...this is the type name itself */
1227 name,
1228 /* ...suffixed by the appropriate '*', '[]' suffixes */
1229 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1230 array_suffix, parens);
1231
1232 return show->state.name;
1233 }
1234
__btf_show_indent(struct btf_show * show)1235 static const char *__btf_show_indent(struct btf_show *show)
1236 {
1237 const char *indents = " ";
1238 const char *indent = &indents[strlen(indents)];
1239
1240 if ((indent - show->state.depth) >= indents)
1241 return indent - show->state.depth;
1242 return indents;
1243 }
1244
btf_show_indent(struct btf_show * show)1245 static const char *btf_show_indent(struct btf_show *show)
1246 {
1247 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1248 }
1249
btf_show_newline(struct btf_show * show)1250 static const char *btf_show_newline(struct btf_show *show)
1251 {
1252 return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1253 }
1254
btf_show_delim(struct btf_show * show)1255 static const char *btf_show_delim(struct btf_show *show)
1256 {
1257 if (show->state.depth == 0)
1258 return "";
1259
1260 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1261 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1262 return "|";
1263
1264 return ",";
1265 }
1266
btf_show(struct btf_show * show,const char * fmt,...)1267 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1268 {
1269 va_list args;
1270
1271 if (!show->state.depth_check) {
1272 va_start(args, fmt);
1273 show->showfn(show, fmt, args);
1274 va_end(args);
1275 }
1276 }
1277
1278 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1279 * format specifiers to the format specifier passed in; these do the work of
1280 * adding indentation, delimiters etc while the caller simply has to specify
1281 * the type value(s) in the format specifier + value(s).
1282 */
1283 #define btf_show_type_value(show, fmt, value) \
1284 do { \
1285 if ((value) != (__typeof__(value))0 || \
1286 (show->flags & BTF_SHOW_ZERO) || \
1287 show->state.depth == 0) { \
1288 btf_show(show, "%s%s" fmt "%s%s", \
1289 btf_show_indent(show), \
1290 btf_show_name(show), \
1291 value, btf_show_delim(show), \
1292 btf_show_newline(show)); \
1293 if (show->state.depth > show->state.depth_to_show) \
1294 show->state.depth_to_show = show->state.depth; \
1295 } \
1296 } while (0)
1297
1298 #define btf_show_type_values(show, fmt, ...) \
1299 do { \
1300 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \
1301 btf_show_name(show), \
1302 __VA_ARGS__, btf_show_delim(show), \
1303 btf_show_newline(show)); \
1304 if (show->state.depth > show->state.depth_to_show) \
1305 show->state.depth_to_show = show->state.depth; \
1306 } while (0)
1307
1308 /* How much is left to copy to safe buffer after @data? */
btf_show_obj_size_left(struct btf_show * show,void * data)1309 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1310 {
1311 return show->obj.head + show->obj.size - data;
1312 }
1313
1314 /* Is object pointed to by @data of @size already copied to our safe buffer? */
btf_show_obj_is_safe(struct btf_show * show,void * data,int size)1315 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1316 {
1317 return data >= show->obj.data &&
1318 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1319 }
1320
1321 /*
1322 * If object pointed to by @data of @size falls within our safe buffer, return
1323 * the equivalent pointer to the same safe data. Assumes
1324 * copy_from_kernel_nofault() has already happened and our safe buffer is
1325 * populated.
1326 */
__btf_show_obj_safe(struct btf_show * show,void * data,int size)1327 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1328 {
1329 if (btf_show_obj_is_safe(show, data, size))
1330 return show->obj.safe + (data - show->obj.data);
1331 return NULL;
1332 }
1333
1334 /*
1335 * Return a safe-to-access version of data pointed to by @data.
1336 * We do this by copying the relevant amount of information
1337 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1338 *
1339 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1340 * safe copy is needed.
1341 *
1342 * Otherwise we need to determine if we have the required amount
1343 * of data (determined by the @data pointer and the size of the
1344 * largest base type we can encounter (represented by
1345 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1346 * that we will be able to print some of the current object,
1347 * and if more is needed a copy will be triggered.
1348 * Some objects such as structs will not fit into the buffer;
1349 * in such cases additional copies when we iterate over their
1350 * members may be needed.
1351 *
1352 * btf_show_obj_safe() is used to return a safe buffer for
1353 * btf_show_start_type(); this ensures that as we recurse into
1354 * nested types we always have safe data for the given type.
1355 * This approach is somewhat wasteful; it's possible for example
1356 * that when iterating over a large union we'll end up copying the
1357 * same data repeatedly, but the goal is safety not performance.
1358 * We use stack data as opposed to per-CPU buffers because the
1359 * iteration over a type can take some time, and preemption handling
1360 * would greatly complicate use of the safe buffer.
1361 */
btf_show_obj_safe(struct btf_show * show,const struct btf_type * t,void * data)1362 static void *btf_show_obj_safe(struct btf_show *show,
1363 const struct btf_type *t,
1364 void *data)
1365 {
1366 const struct btf_type *rt;
1367 int size_left, size;
1368 void *safe = NULL;
1369
1370 if (show->flags & BTF_SHOW_UNSAFE)
1371 return data;
1372
1373 rt = btf_resolve_size(show->btf, t, &size);
1374 if (IS_ERR(rt)) {
1375 show->state.status = PTR_ERR(rt);
1376 return NULL;
1377 }
1378
1379 /*
1380 * Is this toplevel object? If so, set total object size and
1381 * initialize pointers. Otherwise check if we still fall within
1382 * our safe object data.
1383 */
1384 if (show->state.depth == 0) {
1385 show->obj.size = size;
1386 show->obj.head = data;
1387 } else {
1388 /*
1389 * If the size of the current object is > our remaining
1390 * safe buffer we _may_ need to do a new copy. However
1391 * consider the case of a nested struct; it's size pushes
1392 * us over the safe buffer limit, but showing any individual
1393 * struct members does not. In such cases, we don't need
1394 * to initiate a fresh copy yet; however we definitely need
1395 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1396 * in our buffer, regardless of the current object size.
1397 * The logic here is that as we resolve types we will
1398 * hit a base type at some point, and we need to be sure
1399 * the next chunk of data is safely available to display
1400 * that type info safely. We cannot rely on the size of
1401 * the current object here because it may be much larger
1402 * than our current buffer (e.g. task_struct is 8k).
1403 * All we want to do here is ensure that we can print the
1404 * next basic type, which we can if either
1405 * - the current type size is within the safe buffer; or
1406 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1407 * the safe buffer.
1408 */
1409 safe = __btf_show_obj_safe(show, data,
1410 min(size,
1411 BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1412 }
1413
1414 /*
1415 * We need a new copy to our safe object, either because we haven't
1416 * yet copied and are initializing safe data, or because the data
1417 * we want falls outside the boundaries of the safe object.
1418 */
1419 if (!safe) {
1420 size_left = btf_show_obj_size_left(show, data);
1421 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1422 size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1423 show->state.status = copy_from_kernel_nofault(show->obj.safe,
1424 data, size_left);
1425 if (!show->state.status) {
1426 show->obj.data = data;
1427 safe = show->obj.safe;
1428 }
1429 }
1430
1431 return safe;
1432 }
1433
1434 /*
1435 * Set the type we are starting to show and return a safe data pointer
1436 * to be used for showing the associated data.
1437 */
btf_show_start_type(struct btf_show * show,const struct btf_type * t,u32 type_id,void * data)1438 static void *btf_show_start_type(struct btf_show *show,
1439 const struct btf_type *t,
1440 u32 type_id, void *data)
1441 {
1442 show->state.type = t;
1443 show->state.type_id = type_id;
1444 show->state.name[0] = '\0';
1445
1446 return btf_show_obj_safe(show, t, data);
1447 }
1448
btf_show_end_type(struct btf_show * show)1449 static void btf_show_end_type(struct btf_show *show)
1450 {
1451 show->state.type = NULL;
1452 show->state.type_id = 0;
1453 show->state.name[0] = '\0';
1454 }
1455
btf_show_start_aggr_type(struct btf_show * show,const struct btf_type * t,u32 type_id,void * data)1456 static void *btf_show_start_aggr_type(struct btf_show *show,
1457 const struct btf_type *t,
1458 u32 type_id, void *data)
1459 {
1460 void *safe_data = btf_show_start_type(show, t, type_id, data);
1461
1462 if (!safe_data)
1463 return safe_data;
1464
1465 btf_show(show, "%s%s%s", btf_show_indent(show),
1466 btf_show_name(show),
1467 btf_show_newline(show));
1468 show->state.depth++;
1469 return safe_data;
1470 }
1471
btf_show_end_aggr_type(struct btf_show * show,const char * suffix)1472 static void btf_show_end_aggr_type(struct btf_show *show,
1473 const char *suffix)
1474 {
1475 show->state.depth--;
1476 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1477 btf_show_delim(show), btf_show_newline(show));
1478 btf_show_end_type(show);
1479 }
1480
btf_show_start_member(struct btf_show * show,const struct btf_member * m)1481 static void btf_show_start_member(struct btf_show *show,
1482 const struct btf_member *m)
1483 {
1484 show->state.member = m;
1485 }
1486
btf_show_start_array_member(struct btf_show * show)1487 static void btf_show_start_array_member(struct btf_show *show)
1488 {
1489 show->state.array_member = 1;
1490 btf_show_start_member(show, NULL);
1491 }
1492
btf_show_end_member(struct btf_show * show)1493 static void btf_show_end_member(struct btf_show *show)
1494 {
1495 show->state.member = NULL;
1496 }
1497
btf_show_end_array_member(struct btf_show * show)1498 static void btf_show_end_array_member(struct btf_show *show)
1499 {
1500 show->state.array_member = 0;
1501 btf_show_end_member(show);
1502 }
1503
btf_show_start_array_type(struct btf_show * show,const struct btf_type * t,u32 type_id,u16 array_encoding,void * data)1504 static void *btf_show_start_array_type(struct btf_show *show,
1505 const struct btf_type *t,
1506 u32 type_id,
1507 u16 array_encoding,
1508 void *data)
1509 {
1510 show->state.array_encoding = array_encoding;
1511 show->state.array_terminated = 0;
1512 return btf_show_start_aggr_type(show, t, type_id, data);
1513 }
1514
btf_show_end_array_type(struct btf_show * show)1515 static void btf_show_end_array_type(struct btf_show *show)
1516 {
1517 show->state.array_encoding = 0;
1518 show->state.array_terminated = 0;
1519 btf_show_end_aggr_type(show, "]");
1520 }
1521
btf_show_start_struct_type(struct btf_show * show,const struct btf_type * t,u32 type_id,void * data)1522 static void *btf_show_start_struct_type(struct btf_show *show,
1523 const struct btf_type *t,
1524 u32 type_id,
1525 void *data)
1526 {
1527 return btf_show_start_aggr_type(show, t, type_id, data);
1528 }
1529
btf_show_end_struct_type(struct btf_show * show)1530 static void btf_show_end_struct_type(struct btf_show *show)
1531 {
1532 btf_show_end_aggr_type(show, "}");
1533 }
1534
__btf_verifier_log(struct bpf_verifier_log * log,const char * fmt,...)1535 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1536 const char *fmt, ...)
1537 {
1538 va_list args;
1539
1540 va_start(args, fmt);
1541 bpf_verifier_vlog(log, fmt, args);
1542 va_end(args);
1543 }
1544
btf_verifier_log(struct btf_verifier_env * env,const char * fmt,...)1545 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1546 const char *fmt, ...)
1547 {
1548 struct bpf_verifier_log *log = &env->log;
1549 va_list args;
1550
1551 if (!bpf_verifier_log_needed(log))
1552 return;
1553
1554 va_start(args, fmt);
1555 bpf_verifier_vlog(log, fmt, args);
1556 va_end(args);
1557 }
1558
__btf_verifier_log_type(struct btf_verifier_env * env,const struct btf_type * t,bool log_details,const char * fmt,...)1559 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1560 const struct btf_type *t,
1561 bool log_details,
1562 const char *fmt, ...)
1563 {
1564 struct bpf_verifier_log *log = &env->log;
1565 struct btf *btf = env->btf;
1566 va_list args;
1567
1568 if (!bpf_verifier_log_needed(log))
1569 return;
1570
1571 if (log->level == BPF_LOG_KERNEL) {
1572 /* btf verifier prints all types it is processing via
1573 * btf_verifier_log_type(..., fmt = NULL).
1574 * Skip those prints for in-kernel BTF verification.
1575 */
1576 if (!fmt)
1577 return;
1578
1579 /* Skip logging when loading module BTF with mismatches permitted */
1580 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1581 return;
1582 }
1583
1584 __btf_verifier_log(log, "[%u] %s %s%s",
1585 env->log_type_id,
1586 btf_type_str(t),
1587 __btf_name_by_offset(btf, t->name_off),
1588 log_details ? " " : "");
1589
1590 if (log_details)
1591 btf_type_ops(t)->log_details(env, t);
1592
1593 if (fmt && *fmt) {
1594 __btf_verifier_log(log, " ");
1595 va_start(args, fmt);
1596 bpf_verifier_vlog(log, fmt, args);
1597 va_end(args);
1598 }
1599
1600 __btf_verifier_log(log, "\n");
1601 }
1602
1603 #define btf_verifier_log_type(env, t, ...) \
1604 __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1605 #define btf_verifier_log_basic(env, t, ...) \
1606 __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1607
1608 __printf(4, 5)
btf_verifier_log_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const char * fmt,...)1609 static void btf_verifier_log_member(struct btf_verifier_env *env,
1610 const struct btf_type *struct_type,
1611 const struct btf_member *member,
1612 const char *fmt, ...)
1613 {
1614 struct bpf_verifier_log *log = &env->log;
1615 struct btf *btf = env->btf;
1616 va_list args;
1617
1618 if (!bpf_verifier_log_needed(log))
1619 return;
1620
1621 if (log->level == BPF_LOG_KERNEL) {
1622 if (!fmt)
1623 return;
1624
1625 /* Skip logging when loading module BTF with mismatches permitted */
1626 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1627 return;
1628 }
1629
1630 /* The CHECK_META phase already did a btf dump.
1631 *
1632 * If member is logged again, it must hit an error in
1633 * parsing this member. It is useful to print out which
1634 * struct this member belongs to.
1635 */
1636 if (env->phase != CHECK_META)
1637 btf_verifier_log_type(env, struct_type, NULL);
1638
1639 if (btf_type_kflag(struct_type))
1640 __btf_verifier_log(log,
1641 "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1642 __btf_name_by_offset(btf, member->name_off),
1643 member->type,
1644 BTF_MEMBER_BITFIELD_SIZE(member->offset),
1645 BTF_MEMBER_BIT_OFFSET(member->offset));
1646 else
1647 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1648 __btf_name_by_offset(btf, member->name_off),
1649 member->type, member->offset);
1650
1651 if (fmt && *fmt) {
1652 __btf_verifier_log(log, " ");
1653 va_start(args, fmt);
1654 bpf_verifier_vlog(log, fmt, args);
1655 va_end(args);
1656 }
1657
1658 __btf_verifier_log(log, "\n");
1659 }
1660
1661 __printf(4, 5)
btf_verifier_log_vsi(struct btf_verifier_env * env,const struct btf_type * datasec_type,const struct btf_var_secinfo * vsi,const char * fmt,...)1662 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1663 const struct btf_type *datasec_type,
1664 const struct btf_var_secinfo *vsi,
1665 const char *fmt, ...)
1666 {
1667 struct bpf_verifier_log *log = &env->log;
1668 va_list args;
1669
1670 if (!bpf_verifier_log_needed(log))
1671 return;
1672 if (log->level == BPF_LOG_KERNEL && !fmt)
1673 return;
1674 if (env->phase != CHECK_META)
1675 btf_verifier_log_type(env, datasec_type, NULL);
1676
1677 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1678 vsi->type, vsi->offset, vsi->size);
1679 if (fmt && *fmt) {
1680 __btf_verifier_log(log, " ");
1681 va_start(args, fmt);
1682 bpf_verifier_vlog(log, fmt, args);
1683 va_end(args);
1684 }
1685
1686 __btf_verifier_log(log, "\n");
1687 }
1688
btf_verifier_log_hdr(struct btf_verifier_env * env,u32 btf_data_size)1689 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1690 u32 btf_data_size)
1691 {
1692 struct bpf_verifier_log *log = &env->log;
1693 const struct btf *btf = env->btf;
1694 const struct btf_header *hdr;
1695
1696 if (!bpf_verifier_log_needed(log))
1697 return;
1698
1699 if (log->level == BPF_LOG_KERNEL)
1700 return;
1701 hdr = &btf->hdr;
1702 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1703 __btf_verifier_log(log, "version: %u\n", hdr->version);
1704 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1705 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1706 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1707 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1708 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1709 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1710 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1711 }
1712
btf_add_type(struct btf_verifier_env * env,struct btf_type * t)1713 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1714 {
1715 struct btf *btf = env->btf;
1716
1717 if (btf->types_size == btf->nr_types) {
1718 /* Expand 'types' array */
1719
1720 struct btf_type **new_types;
1721 u32 expand_by, new_size;
1722
1723 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1724 btf_verifier_log(env, "Exceeded max num of types");
1725 return -E2BIG;
1726 }
1727
1728 expand_by = max_t(u32, btf->types_size >> 2, 16);
1729 new_size = min_t(u32, BTF_MAX_TYPE,
1730 btf->types_size + expand_by);
1731
1732 new_types = kvzalloc_objs(*new_types, new_size,
1733 GFP_KERNEL | __GFP_NOWARN);
1734 if (!new_types)
1735 return -ENOMEM;
1736
1737 if (btf->nr_types == 0) {
1738 if (!btf->base_btf) {
1739 /* lazily init VOID type */
1740 new_types[0] = &btf_void;
1741 btf->nr_types++;
1742 }
1743 } else {
1744 memcpy(new_types, btf->types,
1745 sizeof(*btf->types) * btf->nr_types);
1746 }
1747
1748 kvfree(btf->types);
1749 btf->types = new_types;
1750 btf->types_size = new_size;
1751 }
1752
1753 btf->types[btf->nr_types++] = t;
1754
1755 return 0;
1756 }
1757
btf_alloc_id(struct btf * btf)1758 static int btf_alloc_id(struct btf *btf)
1759 {
1760 int id;
1761
1762 idr_preload(GFP_KERNEL);
1763 spin_lock_bh(&btf_idr_lock);
1764 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1765 if (id > 0)
1766 btf->id = id;
1767 spin_unlock_bh(&btf_idr_lock);
1768 idr_preload_end();
1769
1770 if (WARN_ON_ONCE(!id))
1771 return -ENOSPC;
1772
1773 return id > 0 ? 0 : id;
1774 }
1775
btf_free_id(struct btf * btf)1776 static void btf_free_id(struct btf *btf)
1777 {
1778 unsigned long flags;
1779
1780 /*
1781 * In map-in-map, calling map_delete_elem() on outer
1782 * map will call bpf_map_put on the inner map.
1783 * It will then eventually call btf_free_id()
1784 * on the inner map. Some of the map_delete_elem()
1785 * implementation may have irq disabled, so
1786 * we need to use the _irqsave() version instead
1787 * of the _bh() version.
1788 */
1789 spin_lock_irqsave(&btf_idr_lock, flags);
1790 idr_remove(&btf_idr, btf->id);
1791 spin_unlock_irqrestore(&btf_idr_lock, flags);
1792 }
1793
btf_free_kfunc_set_tab(struct btf * btf)1794 static void btf_free_kfunc_set_tab(struct btf *btf)
1795 {
1796 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1797 int hook;
1798
1799 if (!tab)
1800 return;
1801 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1802 kfree(tab->sets[hook]);
1803 kfree(tab);
1804 btf->kfunc_set_tab = NULL;
1805 }
1806
btf_free_dtor_kfunc_tab(struct btf * btf)1807 static void btf_free_dtor_kfunc_tab(struct btf *btf)
1808 {
1809 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1810
1811 if (!tab)
1812 return;
1813 kfree(tab);
1814 btf->dtor_kfunc_tab = NULL;
1815 }
1816
btf_struct_metas_free(struct btf_struct_metas * tab)1817 static void btf_struct_metas_free(struct btf_struct_metas *tab)
1818 {
1819 int i;
1820
1821 if (!tab)
1822 return;
1823 for (i = 0; i < tab->cnt; i++)
1824 btf_record_free(tab->types[i].record);
1825 kfree(tab);
1826 }
1827
btf_free_struct_meta_tab(struct btf * btf)1828 static void btf_free_struct_meta_tab(struct btf *btf)
1829 {
1830 struct btf_struct_metas *tab = btf->struct_meta_tab;
1831
1832 btf_struct_metas_free(tab);
1833 btf->struct_meta_tab = NULL;
1834 }
1835
btf_free_struct_ops_tab(struct btf * btf)1836 static void btf_free_struct_ops_tab(struct btf *btf)
1837 {
1838 struct btf_struct_ops_tab *tab = btf->struct_ops_tab;
1839 u32 i;
1840
1841 if (!tab)
1842 return;
1843
1844 for (i = 0; i < tab->cnt; i++)
1845 bpf_struct_ops_desc_release(&tab->ops[i]);
1846
1847 kfree(tab);
1848 btf->struct_ops_tab = NULL;
1849 }
1850
btf_free(struct btf * btf)1851 static void btf_free(struct btf *btf)
1852 {
1853 btf_free_struct_meta_tab(btf);
1854 btf_free_dtor_kfunc_tab(btf);
1855 btf_free_kfunc_set_tab(btf);
1856 btf_free_struct_ops_tab(btf);
1857 kvfree(btf->types);
1858 kvfree(btf->resolved_sizes);
1859 kvfree(btf->resolved_ids);
1860 /* vmlinux does not allocate btf->data, it simply points it at
1861 * __start_BTF.
1862 */
1863 if (!btf_is_vmlinux(btf))
1864 kvfree(btf->data);
1865 kvfree(btf->base_id_map);
1866 kfree(btf);
1867 }
1868
btf_free_rcu(struct rcu_head * rcu)1869 static void btf_free_rcu(struct rcu_head *rcu)
1870 {
1871 struct btf *btf = container_of(rcu, struct btf, rcu);
1872
1873 btf_free(btf);
1874 }
1875
btf_get_name(const struct btf * btf)1876 const char *btf_get_name(const struct btf *btf)
1877 {
1878 return btf->name;
1879 }
1880
btf_get(struct btf * btf)1881 void btf_get(struct btf *btf)
1882 {
1883 refcount_inc(&btf->refcnt);
1884 }
1885
btf_put(struct btf * btf)1886 void btf_put(struct btf *btf)
1887 {
1888 if (btf && refcount_dec_and_test(&btf->refcnt)) {
1889 btf_free_id(btf);
1890 call_rcu(&btf->rcu, btf_free_rcu);
1891 }
1892 }
1893
btf_base_btf(const struct btf * btf)1894 struct btf *btf_base_btf(const struct btf *btf)
1895 {
1896 return btf->base_btf;
1897 }
1898
btf_header(const struct btf * btf)1899 const struct btf_header *btf_header(const struct btf *btf)
1900 {
1901 return &btf->hdr;
1902 }
1903
btf_set_base_btf(struct btf * btf,const struct btf * base_btf)1904 void btf_set_base_btf(struct btf *btf, const struct btf *base_btf)
1905 {
1906 btf->base_btf = (struct btf *)base_btf;
1907 btf->start_id = btf_nr_types(base_btf);
1908 btf->start_str_off = base_btf->hdr.str_len;
1909 }
1910
env_resolve_init(struct btf_verifier_env * env)1911 static int env_resolve_init(struct btf_verifier_env *env)
1912 {
1913 struct btf *btf = env->btf;
1914 u32 nr_types = btf->nr_types;
1915 u32 *resolved_sizes = NULL;
1916 u32 *resolved_ids = NULL;
1917 u8 *visit_states = NULL;
1918
1919 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1920 GFP_KERNEL | __GFP_NOWARN);
1921 if (!resolved_sizes)
1922 goto nomem;
1923
1924 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1925 GFP_KERNEL | __GFP_NOWARN);
1926 if (!resolved_ids)
1927 goto nomem;
1928
1929 visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1930 GFP_KERNEL | __GFP_NOWARN);
1931 if (!visit_states)
1932 goto nomem;
1933
1934 btf->resolved_sizes = resolved_sizes;
1935 btf->resolved_ids = resolved_ids;
1936 env->visit_states = visit_states;
1937
1938 return 0;
1939
1940 nomem:
1941 kvfree(resolved_sizes);
1942 kvfree(resolved_ids);
1943 kvfree(visit_states);
1944 return -ENOMEM;
1945 }
1946
btf_verifier_env_free(struct btf_verifier_env * env)1947 static void btf_verifier_env_free(struct btf_verifier_env *env)
1948 {
1949 kvfree(env->visit_states);
1950 kfree(env);
1951 }
1952
env_type_is_resolve_sink(const struct btf_verifier_env * env,const struct btf_type * next_type)1953 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1954 const struct btf_type *next_type)
1955 {
1956 switch (env->resolve_mode) {
1957 case RESOLVE_TBD:
1958 /* int, enum or void is a sink */
1959 return !btf_type_needs_resolve(next_type);
1960 case RESOLVE_PTR:
1961 /* int, enum, void, struct, array, func or func_proto is a sink
1962 * for ptr
1963 */
1964 return !btf_type_is_modifier(next_type) &&
1965 !btf_type_is_ptr(next_type);
1966 case RESOLVE_STRUCT_OR_ARRAY:
1967 /* int, enum, void, ptr, func or func_proto is a sink
1968 * for struct and array
1969 */
1970 return !btf_type_is_modifier(next_type) &&
1971 !btf_type_is_array(next_type) &&
1972 !btf_type_is_struct(next_type);
1973 default:
1974 BUG();
1975 }
1976 }
1977
env_type_is_resolved(const struct btf_verifier_env * env,u32 type_id)1978 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1979 u32 type_id)
1980 {
1981 /* base BTF types should be resolved by now */
1982 if (type_id < env->btf->start_id)
1983 return true;
1984
1985 return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1986 }
1987
env_stack_push(struct btf_verifier_env * env,const struct btf_type * t,u32 type_id)1988 static int env_stack_push(struct btf_verifier_env *env,
1989 const struct btf_type *t, u32 type_id)
1990 {
1991 const struct btf *btf = env->btf;
1992 struct resolve_vertex *v;
1993
1994 if (env->top_stack == MAX_RESOLVE_DEPTH)
1995 return -E2BIG;
1996
1997 if (type_id < btf->start_id
1998 || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1999 return -EEXIST;
2000
2001 env->visit_states[type_id - btf->start_id] = VISITED;
2002
2003 v = &env->stack[env->top_stack++];
2004 v->t = t;
2005 v->type_id = type_id;
2006 v->next_member = 0;
2007
2008 if (env->resolve_mode == RESOLVE_TBD) {
2009 if (btf_type_is_ptr(t))
2010 env->resolve_mode = RESOLVE_PTR;
2011 else if (btf_type_is_struct(t) || btf_type_is_array(t))
2012 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
2013 }
2014
2015 return 0;
2016 }
2017
env_stack_set_next_member(struct btf_verifier_env * env,u16 next_member)2018 static void env_stack_set_next_member(struct btf_verifier_env *env,
2019 u16 next_member)
2020 {
2021 env->stack[env->top_stack - 1].next_member = next_member;
2022 }
2023
env_stack_pop_resolved(struct btf_verifier_env * env,u32 resolved_type_id,u32 resolved_size)2024 static void env_stack_pop_resolved(struct btf_verifier_env *env,
2025 u32 resolved_type_id,
2026 u32 resolved_size)
2027 {
2028 u32 type_id = env->stack[--(env->top_stack)].type_id;
2029 struct btf *btf = env->btf;
2030
2031 type_id -= btf->start_id; /* adjust to local type id */
2032 btf->resolved_sizes[type_id] = resolved_size;
2033 btf->resolved_ids[type_id] = resolved_type_id;
2034 env->visit_states[type_id] = RESOLVED;
2035 }
2036
env_stack_peak(struct btf_verifier_env * env)2037 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
2038 {
2039 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
2040 }
2041
2042 /* Resolve the size of a passed-in "type"
2043 *
2044 * type: is an array (e.g. u32 array[x][y])
2045 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
2046 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always
2047 * corresponds to the return type.
2048 * *elem_type: u32
2049 * *elem_id: id of u32
2050 * *total_nelems: (x * y). Hence, individual elem size is
2051 * (*type_size / *total_nelems)
2052 * *type_id: id of type if it's changed within the function, 0 if not
2053 *
2054 * type: is not an array (e.g. const struct X)
2055 * return type: type "struct X"
2056 * *type_size: sizeof(struct X)
2057 * *elem_type: same as return type ("struct X")
2058 * *elem_id: 0
2059 * *total_nelems: 1
2060 * *type_id: id of type if it's changed within the function, 0 if not
2061 */
2062 static const struct btf_type *
__btf_resolve_size(const struct btf * btf,const struct btf_type * type,u32 * type_size,const struct btf_type ** elem_type,u32 * elem_id,u32 * total_nelems,u32 * type_id)2063 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
2064 u32 *type_size, const struct btf_type **elem_type,
2065 u32 *elem_id, u32 *total_nelems, u32 *type_id)
2066 {
2067 const struct btf_type *array_type = NULL;
2068 const struct btf_array *array = NULL;
2069 u32 i, size, nelems = 1, id = 0;
2070
2071 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
2072 switch (BTF_INFO_KIND(type->info)) {
2073 /* type->size can be used */
2074 case BTF_KIND_INT:
2075 case BTF_KIND_STRUCT:
2076 case BTF_KIND_UNION:
2077 case BTF_KIND_ENUM:
2078 case BTF_KIND_FLOAT:
2079 case BTF_KIND_ENUM64:
2080 size = type->size;
2081 goto resolved;
2082
2083 case BTF_KIND_PTR:
2084 size = sizeof(void *);
2085 goto resolved;
2086
2087 /* Modifiers */
2088 case BTF_KIND_TYPEDEF:
2089 case BTF_KIND_VOLATILE:
2090 case BTF_KIND_CONST:
2091 case BTF_KIND_RESTRICT:
2092 case BTF_KIND_TYPE_TAG:
2093 id = type->type;
2094 type = btf_type_by_id(btf, type->type);
2095 break;
2096
2097 case BTF_KIND_ARRAY:
2098 if (!array_type)
2099 array_type = type;
2100 array = btf_type_array(type);
2101 if (nelems && array->nelems > U32_MAX / nelems)
2102 return ERR_PTR(-EINVAL);
2103 nelems *= array->nelems;
2104 type = btf_type_by_id(btf, array->type);
2105 break;
2106
2107 /* type without size */
2108 default:
2109 return ERR_PTR(-EINVAL);
2110 }
2111 }
2112
2113 return ERR_PTR(-EINVAL);
2114
2115 resolved:
2116 if (nelems && size > U32_MAX / nelems)
2117 return ERR_PTR(-EINVAL);
2118
2119 *type_size = nelems * size;
2120 if (total_nelems)
2121 *total_nelems = nelems;
2122 if (elem_type)
2123 *elem_type = type;
2124 if (elem_id)
2125 *elem_id = array ? array->type : 0;
2126 if (type_id && id)
2127 *type_id = id;
2128
2129 return array_type ? : type;
2130 }
2131
2132 const struct btf_type *
btf_resolve_size(const struct btf * btf,const struct btf_type * type,u32 * type_size)2133 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
2134 u32 *type_size)
2135 {
2136 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
2137 }
2138
btf_resolved_type_id(const struct btf * btf,u32 type_id)2139 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
2140 {
2141 while (type_id < btf->start_id)
2142 btf = btf->base_btf;
2143
2144 return btf->resolved_ids[type_id - btf->start_id];
2145 }
2146
2147 /* The input param "type_id" must point to a needs_resolve type */
btf_type_id_resolve(const struct btf * btf,u32 * type_id)2148 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
2149 u32 *type_id)
2150 {
2151 *type_id = btf_resolved_type_id(btf, *type_id);
2152 return btf_type_by_id(btf, *type_id);
2153 }
2154
btf_resolved_type_size(const struct btf * btf,u32 type_id)2155 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
2156 {
2157 while (type_id < btf->start_id)
2158 btf = btf->base_btf;
2159
2160 return btf->resolved_sizes[type_id - btf->start_id];
2161 }
2162
btf_type_id_size(const struct btf * btf,u32 * type_id,u32 * ret_size)2163 const struct btf_type *btf_type_id_size(const struct btf *btf,
2164 u32 *type_id, u32 *ret_size)
2165 {
2166 const struct btf_type *size_type;
2167 u32 size_type_id = *type_id;
2168 u32 size = 0;
2169
2170 size_type = btf_type_by_id(btf, size_type_id);
2171 if (btf_type_nosize_or_null(size_type))
2172 return NULL;
2173
2174 if (btf_type_has_size(size_type)) {
2175 size = size_type->size;
2176 } else if (btf_type_is_array(size_type)) {
2177 size = btf_resolved_type_size(btf, size_type_id);
2178 } else if (btf_type_is_ptr(size_type)) {
2179 size = sizeof(void *);
2180 } else {
2181 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
2182 !btf_type_is_var(size_type)))
2183 return NULL;
2184
2185 size_type_id = btf_resolved_type_id(btf, size_type_id);
2186 size_type = btf_type_by_id(btf, size_type_id);
2187 if (btf_type_nosize_or_null(size_type))
2188 return NULL;
2189 else if (btf_type_has_size(size_type))
2190 size = size_type->size;
2191 else if (btf_type_is_array(size_type))
2192 size = btf_resolved_type_size(btf, size_type_id);
2193 else if (btf_type_is_ptr(size_type))
2194 size = sizeof(void *);
2195 else
2196 return NULL;
2197 }
2198
2199 *type_id = size_type_id;
2200 if (ret_size)
2201 *ret_size = size;
2202
2203 return size_type;
2204 }
2205
btf_df_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2206 static int btf_df_check_member(struct btf_verifier_env *env,
2207 const struct btf_type *struct_type,
2208 const struct btf_member *member,
2209 const struct btf_type *member_type)
2210 {
2211 btf_verifier_log_basic(env, struct_type,
2212 "Unsupported check_member");
2213 return -EINVAL;
2214 }
2215
btf_df_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2216 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
2217 const struct btf_type *struct_type,
2218 const struct btf_member *member,
2219 const struct btf_type *member_type)
2220 {
2221 btf_verifier_log_basic(env, struct_type,
2222 "Unsupported check_kflag_member");
2223 return -EINVAL;
2224 }
2225
2226 /* Used for ptr, array struct/union and float type members.
2227 * int, enum and modifier types have their specific callback functions.
2228 */
btf_generic_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2229 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2230 const struct btf_type *struct_type,
2231 const struct btf_member *member,
2232 const struct btf_type *member_type)
2233 {
2234 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2235 btf_verifier_log_member(env, struct_type, member,
2236 "Invalid member bitfield_size");
2237 return -EINVAL;
2238 }
2239
2240 /* bitfield size is 0, so member->offset represents bit offset only.
2241 * It is safe to call non kflag check_member variants.
2242 */
2243 return btf_type_ops(member_type)->check_member(env, struct_type,
2244 member,
2245 member_type);
2246 }
2247
btf_df_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2248 static int btf_df_resolve(struct btf_verifier_env *env,
2249 const struct resolve_vertex *v)
2250 {
2251 btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2252 return -EINVAL;
2253 }
2254
btf_df_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offsets,struct btf_show * show)2255 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2256 u32 type_id, void *data, u8 bits_offsets,
2257 struct btf_show *show)
2258 {
2259 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2260 }
2261
btf_int_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2262 static int btf_int_check_member(struct btf_verifier_env *env,
2263 const struct btf_type *struct_type,
2264 const struct btf_member *member,
2265 const struct btf_type *member_type)
2266 {
2267 u32 int_data = btf_type_int(member_type);
2268 u32 struct_bits_off = member->offset;
2269 u32 struct_size = struct_type->size;
2270 u32 nr_copy_bits;
2271 u32 bytes_offset;
2272
2273 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2274 btf_verifier_log_member(env, struct_type, member,
2275 "bits_offset exceeds U32_MAX");
2276 return -EINVAL;
2277 }
2278
2279 struct_bits_off += BTF_INT_OFFSET(int_data);
2280 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2281 nr_copy_bits = BTF_INT_BITS(int_data) +
2282 BITS_PER_BYTE_MASKED(struct_bits_off);
2283
2284 if (nr_copy_bits > BITS_PER_U128) {
2285 btf_verifier_log_member(env, struct_type, member,
2286 "nr_copy_bits exceeds 128");
2287 return -EINVAL;
2288 }
2289
2290 if (struct_size < bytes_offset ||
2291 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2292 btf_verifier_log_member(env, struct_type, member,
2293 "Member exceeds struct_size");
2294 return -EINVAL;
2295 }
2296
2297 return 0;
2298 }
2299
btf_int_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2300 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2301 const struct btf_type *struct_type,
2302 const struct btf_member *member,
2303 const struct btf_type *member_type)
2304 {
2305 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2306 u32 int_data = btf_type_int(member_type);
2307 u32 struct_size = struct_type->size;
2308 u32 nr_copy_bits;
2309
2310 /* a regular int type is required for the kflag int member */
2311 if (!btf_type_int_is_regular(member_type)) {
2312 btf_verifier_log_member(env, struct_type, member,
2313 "Invalid member base type");
2314 return -EINVAL;
2315 }
2316
2317 /* check sanity of bitfield size */
2318 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2319 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2320 nr_int_data_bits = BTF_INT_BITS(int_data);
2321 if (!nr_bits) {
2322 /* Not a bitfield member, member offset must be at byte
2323 * boundary.
2324 */
2325 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2326 btf_verifier_log_member(env, struct_type, member,
2327 "Invalid member offset");
2328 return -EINVAL;
2329 }
2330
2331 nr_bits = nr_int_data_bits;
2332 } else if (nr_bits > nr_int_data_bits) {
2333 btf_verifier_log_member(env, struct_type, member,
2334 "Invalid member bitfield_size");
2335 return -EINVAL;
2336 }
2337
2338 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2339 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2340 if (nr_copy_bits > BITS_PER_U128) {
2341 btf_verifier_log_member(env, struct_type, member,
2342 "nr_copy_bits exceeds 128");
2343 return -EINVAL;
2344 }
2345
2346 if (struct_size < bytes_offset ||
2347 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2348 btf_verifier_log_member(env, struct_type, member,
2349 "Member exceeds struct_size");
2350 return -EINVAL;
2351 }
2352
2353 return 0;
2354 }
2355
btf_int_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2356 static s32 btf_int_check_meta(struct btf_verifier_env *env,
2357 const struct btf_type *t,
2358 u32 meta_left)
2359 {
2360 u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2361 u16 encoding;
2362
2363 if (meta_left < meta_needed) {
2364 btf_verifier_log_basic(env, t,
2365 "meta_left:%u meta_needed:%u",
2366 meta_left, meta_needed);
2367 return -EINVAL;
2368 }
2369
2370 if (btf_type_vlen(t)) {
2371 btf_verifier_log_type(env, t, "vlen != 0");
2372 return -EINVAL;
2373 }
2374
2375 if (btf_type_kflag(t)) {
2376 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2377 return -EINVAL;
2378 }
2379
2380 int_data = btf_type_int(t);
2381 if (int_data & ~BTF_INT_MASK) {
2382 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2383 int_data);
2384 return -EINVAL;
2385 }
2386
2387 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2388
2389 if (nr_bits > BITS_PER_U128) {
2390 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2391 BITS_PER_U128);
2392 return -EINVAL;
2393 }
2394
2395 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2396 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2397 return -EINVAL;
2398 }
2399
2400 /*
2401 * Only one of the encoding bits is allowed and it
2402 * should be sufficient for the pretty print purpose (i.e. decoding).
2403 * Multiple bits can be allowed later if it is found
2404 * to be insufficient.
2405 */
2406 encoding = BTF_INT_ENCODING(int_data);
2407 if (encoding &&
2408 encoding != BTF_INT_SIGNED &&
2409 encoding != BTF_INT_CHAR &&
2410 encoding != BTF_INT_BOOL) {
2411 btf_verifier_log_type(env, t, "Unsupported encoding");
2412 return -ENOTSUPP;
2413 }
2414
2415 btf_verifier_log_type(env, t, NULL);
2416
2417 return meta_needed;
2418 }
2419
btf_int_log(struct btf_verifier_env * env,const struct btf_type * t)2420 static void btf_int_log(struct btf_verifier_env *env,
2421 const struct btf_type *t)
2422 {
2423 int int_data = btf_type_int(t);
2424
2425 btf_verifier_log(env,
2426 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2427 t->size, BTF_INT_OFFSET(int_data),
2428 BTF_INT_BITS(int_data),
2429 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2430 }
2431
btf_int128_print(struct btf_show * show,void * data)2432 static void btf_int128_print(struct btf_show *show, void *data)
2433 {
2434 /* data points to a __int128 number.
2435 * Suppose
2436 * int128_num = *(__int128 *)data;
2437 * The below formulas shows what upper_num and lower_num represents:
2438 * upper_num = int128_num >> 64;
2439 * lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2440 */
2441 u64 upper_num, lower_num;
2442
2443 #ifdef __BIG_ENDIAN_BITFIELD
2444 upper_num = *(u64 *)data;
2445 lower_num = *(u64 *)(data + 8);
2446 #else
2447 upper_num = *(u64 *)(data + 8);
2448 lower_num = *(u64 *)data;
2449 #endif
2450 if (upper_num == 0)
2451 btf_show_type_value(show, "0x%llx", lower_num);
2452 else
2453 btf_show_type_values(show, "0x%llx%016llx", upper_num,
2454 lower_num);
2455 }
2456
btf_int128_shift(u64 * print_num,u16 left_shift_bits,u16 right_shift_bits)2457 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2458 u16 right_shift_bits)
2459 {
2460 u64 upper_num, lower_num;
2461
2462 #ifdef __BIG_ENDIAN_BITFIELD
2463 upper_num = print_num[0];
2464 lower_num = print_num[1];
2465 #else
2466 upper_num = print_num[1];
2467 lower_num = print_num[0];
2468 #endif
2469
2470 /* shake out un-needed bits by shift/or operations */
2471 if (left_shift_bits >= 64) {
2472 upper_num = lower_num << (left_shift_bits - 64);
2473 lower_num = 0;
2474 } else {
2475 upper_num = (upper_num << left_shift_bits) |
2476 (lower_num >> (64 - left_shift_bits));
2477 lower_num = lower_num << left_shift_bits;
2478 }
2479
2480 if (right_shift_bits >= 64) {
2481 lower_num = upper_num >> (right_shift_bits - 64);
2482 upper_num = 0;
2483 } else {
2484 lower_num = (lower_num >> right_shift_bits) |
2485 (upper_num << (64 - right_shift_bits));
2486 upper_num = upper_num >> right_shift_bits;
2487 }
2488
2489 #ifdef __BIG_ENDIAN_BITFIELD
2490 print_num[0] = upper_num;
2491 print_num[1] = lower_num;
2492 #else
2493 print_num[0] = lower_num;
2494 print_num[1] = upper_num;
2495 #endif
2496 }
2497
btf_bitfield_show(void * data,u8 bits_offset,u8 nr_bits,struct btf_show * show)2498 static void btf_bitfield_show(void *data, u8 bits_offset,
2499 u8 nr_bits, struct btf_show *show)
2500 {
2501 u16 left_shift_bits, right_shift_bits;
2502 u8 nr_copy_bytes;
2503 u8 nr_copy_bits;
2504 u64 print_num[2] = {};
2505
2506 nr_copy_bits = nr_bits + bits_offset;
2507 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2508
2509 memcpy(print_num, data, nr_copy_bytes);
2510
2511 #ifdef __BIG_ENDIAN_BITFIELD
2512 left_shift_bits = bits_offset;
2513 #else
2514 left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2515 #endif
2516 right_shift_bits = BITS_PER_U128 - nr_bits;
2517
2518 btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2519 btf_int128_print(show, print_num);
2520 }
2521
2522
btf_int_bits_show(const struct btf * btf,const struct btf_type * t,void * data,u8 bits_offset,struct btf_show * show)2523 static void btf_int_bits_show(const struct btf *btf,
2524 const struct btf_type *t,
2525 void *data, u8 bits_offset,
2526 struct btf_show *show)
2527 {
2528 u32 int_data = btf_type_int(t);
2529 u8 nr_bits = BTF_INT_BITS(int_data);
2530 u8 total_bits_offset;
2531
2532 /*
2533 * bits_offset is at most 7.
2534 * BTF_INT_OFFSET() cannot exceed 128 bits.
2535 */
2536 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2537 data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2538 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2539 btf_bitfield_show(data, bits_offset, nr_bits, show);
2540 }
2541
btf_int_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2542 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2543 u32 type_id, void *data, u8 bits_offset,
2544 struct btf_show *show)
2545 {
2546 u32 int_data = btf_type_int(t);
2547 u8 encoding = BTF_INT_ENCODING(int_data);
2548 bool sign = encoding & BTF_INT_SIGNED;
2549 u8 nr_bits = BTF_INT_BITS(int_data);
2550 void *safe_data;
2551
2552 safe_data = btf_show_start_type(show, t, type_id, data);
2553 if (!safe_data)
2554 return;
2555
2556 if (bits_offset || BTF_INT_OFFSET(int_data) ||
2557 BITS_PER_BYTE_MASKED(nr_bits)) {
2558 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2559 goto out;
2560 }
2561
2562 switch (nr_bits) {
2563 case 128:
2564 btf_int128_print(show, safe_data);
2565 break;
2566 case 64:
2567 if (sign)
2568 btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2569 else
2570 btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2571 break;
2572 case 32:
2573 if (sign)
2574 btf_show_type_value(show, "%d", *(s32 *)safe_data);
2575 else
2576 btf_show_type_value(show, "%u", *(u32 *)safe_data);
2577 break;
2578 case 16:
2579 if (sign)
2580 btf_show_type_value(show, "%d", *(s16 *)safe_data);
2581 else
2582 btf_show_type_value(show, "%u", *(u16 *)safe_data);
2583 break;
2584 case 8:
2585 if (show->state.array_encoding == BTF_INT_CHAR) {
2586 /* check for null terminator */
2587 if (show->state.array_terminated)
2588 break;
2589 if (*(char *)data == '\0') {
2590 show->state.array_terminated = 1;
2591 break;
2592 }
2593 if (isprint(*(char *)data)) {
2594 btf_show_type_value(show, "'%c'",
2595 *(char *)safe_data);
2596 break;
2597 }
2598 }
2599 if (sign)
2600 btf_show_type_value(show, "%d", *(s8 *)safe_data);
2601 else
2602 btf_show_type_value(show, "%u", *(u8 *)safe_data);
2603 break;
2604 default:
2605 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2606 break;
2607 }
2608 out:
2609 btf_show_end_type(show);
2610 }
2611
2612 static const struct btf_kind_operations int_ops = {
2613 .check_meta = btf_int_check_meta,
2614 .resolve = btf_df_resolve,
2615 .check_member = btf_int_check_member,
2616 .check_kflag_member = btf_int_check_kflag_member,
2617 .log_details = btf_int_log,
2618 .show = btf_int_show,
2619 };
2620
btf_modifier_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2621 static int btf_modifier_check_member(struct btf_verifier_env *env,
2622 const struct btf_type *struct_type,
2623 const struct btf_member *member,
2624 const struct btf_type *member_type)
2625 {
2626 const struct btf_type *resolved_type;
2627 u32 resolved_type_id = member->type;
2628 struct btf_member resolved_member;
2629 struct btf *btf = env->btf;
2630
2631 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2632 if (!resolved_type) {
2633 btf_verifier_log_member(env, struct_type, member,
2634 "Invalid member");
2635 return -EINVAL;
2636 }
2637
2638 resolved_member = *member;
2639 resolved_member.type = resolved_type_id;
2640
2641 return btf_type_ops(resolved_type)->check_member(env, struct_type,
2642 &resolved_member,
2643 resolved_type);
2644 }
2645
btf_modifier_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2646 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2647 const struct btf_type *struct_type,
2648 const struct btf_member *member,
2649 const struct btf_type *member_type)
2650 {
2651 const struct btf_type *resolved_type;
2652 u32 resolved_type_id = member->type;
2653 struct btf_member resolved_member;
2654 struct btf *btf = env->btf;
2655
2656 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2657 if (!resolved_type) {
2658 btf_verifier_log_member(env, struct_type, member,
2659 "Invalid member");
2660 return -EINVAL;
2661 }
2662
2663 resolved_member = *member;
2664 resolved_member.type = resolved_type_id;
2665
2666 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2667 &resolved_member,
2668 resolved_type);
2669 }
2670
btf_ptr_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2671 static int btf_ptr_check_member(struct btf_verifier_env *env,
2672 const struct btf_type *struct_type,
2673 const struct btf_member *member,
2674 const struct btf_type *member_type)
2675 {
2676 u32 struct_size, struct_bits_off, bytes_offset;
2677
2678 struct_size = struct_type->size;
2679 struct_bits_off = member->offset;
2680 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2681
2682 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2683 btf_verifier_log_member(env, struct_type, member,
2684 "Member is not byte aligned");
2685 return -EINVAL;
2686 }
2687
2688 if (struct_size - bytes_offset < sizeof(void *)) {
2689 btf_verifier_log_member(env, struct_type, member,
2690 "Member exceeds struct_size");
2691 return -EINVAL;
2692 }
2693
2694 return 0;
2695 }
2696
btf_ref_type_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2697 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2698 const struct btf_type *t,
2699 u32 meta_left)
2700 {
2701 const char *value;
2702
2703 if (btf_type_vlen(t)) {
2704 btf_verifier_log_type(env, t, "vlen != 0");
2705 return -EINVAL;
2706 }
2707
2708 if (btf_type_kflag(t) && !btf_type_is_type_tag(t)) {
2709 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2710 return -EINVAL;
2711 }
2712
2713 if (!BTF_TYPE_ID_VALID(t->type)) {
2714 btf_verifier_log_type(env, t, "Invalid type_id");
2715 return -EINVAL;
2716 }
2717
2718 /* typedef/type_tag type must have a valid name, and other ref types,
2719 * volatile, const, restrict, should have a null name.
2720 */
2721 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2722 if (!t->name_off ||
2723 !btf_name_valid_identifier(env->btf, t->name_off)) {
2724 btf_verifier_log_type(env, t, "Invalid name");
2725 return -EINVAL;
2726 }
2727 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2728 value = btf_name_by_offset(env->btf, t->name_off);
2729 if (!value || !value[0]) {
2730 btf_verifier_log_type(env, t, "Invalid name");
2731 return -EINVAL;
2732 }
2733 } else {
2734 if (t->name_off) {
2735 btf_verifier_log_type(env, t, "Invalid name");
2736 return -EINVAL;
2737 }
2738 }
2739
2740 btf_verifier_log_type(env, t, NULL);
2741
2742 return 0;
2743 }
2744
btf_modifier_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2745 static int btf_modifier_resolve(struct btf_verifier_env *env,
2746 const struct resolve_vertex *v)
2747 {
2748 const struct btf_type *t = v->t;
2749 const struct btf_type *next_type;
2750 u32 next_type_id = t->type;
2751 struct btf *btf = env->btf;
2752
2753 next_type = btf_type_by_id(btf, next_type_id);
2754 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2755 btf_verifier_log_type(env, v->t, "Invalid type_id");
2756 return -EINVAL;
2757 }
2758
2759 if (!env_type_is_resolve_sink(env, next_type) &&
2760 !env_type_is_resolved(env, next_type_id))
2761 return env_stack_push(env, next_type, next_type_id);
2762
2763 /* Figure out the resolved next_type_id with size.
2764 * They will be stored in the current modifier's
2765 * resolved_ids and resolved_sizes such that it can
2766 * save us a few type-following when we use it later (e.g. in
2767 * pretty print).
2768 */
2769 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2770 if (env_type_is_resolved(env, next_type_id))
2771 next_type = btf_type_id_resolve(btf, &next_type_id);
2772
2773 /* "typedef void new_void", "const void"...etc */
2774 if (!btf_type_is_void(next_type) &&
2775 !btf_type_is_fwd(next_type) &&
2776 !btf_type_is_func_proto(next_type)) {
2777 btf_verifier_log_type(env, v->t, "Invalid type_id");
2778 return -EINVAL;
2779 }
2780 }
2781
2782 env_stack_pop_resolved(env, next_type_id, 0);
2783
2784 return 0;
2785 }
2786
btf_var_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2787 static int btf_var_resolve(struct btf_verifier_env *env,
2788 const struct resolve_vertex *v)
2789 {
2790 const struct btf_type *next_type;
2791 const struct btf_type *t = v->t;
2792 u32 next_type_id = t->type;
2793 struct btf *btf = env->btf;
2794
2795 next_type = btf_type_by_id(btf, next_type_id);
2796 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2797 btf_verifier_log_type(env, v->t, "Invalid type_id");
2798 return -EINVAL;
2799 }
2800
2801 if (!env_type_is_resolve_sink(env, next_type) &&
2802 !env_type_is_resolved(env, next_type_id))
2803 return env_stack_push(env, next_type, next_type_id);
2804
2805 if (btf_type_is_modifier(next_type)) {
2806 const struct btf_type *resolved_type;
2807 u32 resolved_type_id;
2808
2809 resolved_type_id = next_type_id;
2810 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2811
2812 if (btf_type_is_ptr(resolved_type) &&
2813 !env_type_is_resolve_sink(env, resolved_type) &&
2814 !env_type_is_resolved(env, resolved_type_id))
2815 return env_stack_push(env, resolved_type,
2816 resolved_type_id);
2817 }
2818
2819 /* We must resolve to something concrete at this point, no
2820 * forward types or similar that would resolve to size of
2821 * zero is allowed.
2822 */
2823 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2824 btf_verifier_log_type(env, v->t, "Invalid type_id");
2825 return -EINVAL;
2826 }
2827
2828 env_stack_pop_resolved(env, next_type_id, 0);
2829
2830 return 0;
2831 }
2832
btf_ptr_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2833 static int btf_ptr_resolve(struct btf_verifier_env *env,
2834 const struct resolve_vertex *v)
2835 {
2836 const struct btf_type *next_type;
2837 const struct btf_type *t = v->t;
2838 u32 next_type_id = t->type;
2839 struct btf *btf = env->btf;
2840
2841 next_type = btf_type_by_id(btf, next_type_id);
2842 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2843 btf_verifier_log_type(env, v->t, "Invalid type_id");
2844 return -EINVAL;
2845 }
2846
2847 if (!env_type_is_resolve_sink(env, next_type) &&
2848 !env_type_is_resolved(env, next_type_id))
2849 return env_stack_push(env, next_type, next_type_id);
2850
2851 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2852 * the modifier may have stopped resolving when it was resolved
2853 * to a ptr (last-resolved-ptr).
2854 *
2855 * We now need to continue from the last-resolved-ptr to
2856 * ensure the last-resolved-ptr will not referring back to
2857 * the current ptr (t).
2858 */
2859 if (btf_type_is_modifier(next_type)) {
2860 const struct btf_type *resolved_type;
2861 u32 resolved_type_id;
2862
2863 resolved_type_id = next_type_id;
2864 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2865
2866 if (btf_type_is_ptr(resolved_type) &&
2867 !env_type_is_resolve_sink(env, resolved_type) &&
2868 !env_type_is_resolved(env, resolved_type_id))
2869 return env_stack_push(env, resolved_type,
2870 resolved_type_id);
2871 }
2872
2873 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2874 if (env_type_is_resolved(env, next_type_id))
2875 next_type = btf_type_id_resolve(btf, &next_type_id);
2876
2877 if (!btf_type_is_void(next_type) &&
2878 !btf_type_is_fwd(next_type) &&
2879 !btf_type_is_func_proto(next_type)) {
2880 btf_verifier_log_type(env, v->t, "Invalid type_id");
2881 return -EINVAL;
2882 }
2883 }
2884
2885 env_stack_pop_resolved(env, next_type_id, 0);
2886
2887 return 0;
2888 }
2889
btf_modifier_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2890 static void btf_modifier_show(const struct btf *btf,
2891 const struct btf_type *t,
2892 u32 type_id, void *data,
2893 u8 bits_offset, struct btf_show *show)
2894 {
2895 if (btf->resolved_ids)
2896 t = btf_type_id_resolve(btf, &type_id);
2897 else
2898 t = btf_type_skip_modifiers(btf, type_id, NULL);
2899
2900 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2901 }
2902
btf_var_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2903 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2904 u32 type_id, void *data, u8 bits_offset,
2905 struct btf_show *show)
2906 {
2907 t = btf_type_id_resolve(btf, &type_id);
2908
2909 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2910 }
2911
btf_ptr_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2912 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2913 u32 type_id, void *data, u8 bits_offset,
2914 struct btf_show *show)
2915 {
2916 void *safe_data;
2917
2918 safe_data = btf_show_start_type(show, t, type_id, data);
2919 if (!safe_data)
2920 return;
2921
2922 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2923 if (show->flags & BTF_SHOW_PTR_RAW)
2924 btf_show_type_value(show, "0x%px", *(void **)safe_data);
2925 else
2926 btf_show_type_value(show, "0x%p", *(void **)safe_data);
2927 btf_show_end_type(show);
2928 }
2929
btf_ref_type_log(struct btf_verifier_env * env,const struct btf_type * t)2930 static void btf_ref_type_log(struct btf_verifier_env *env,
2931 const struct btf_type *t)
2932 {
2933 btf_verifier_log(env, "type_id=%u", t->type);
2934 }
2935
2936 static const struct btf_kind_operations modifier_ops = {
2937 .check_meta = btf_ref_type_check_meta,
2938 .resolve = btf_modifier_resolve,
2939 .check_member = btf_modifier_check_member,
2940 .check_kflag_member = btf_modifier_check_kflag_member,
2941 .log_details = btf_ref_type_log,
2942 .show = btf_modifier_show,
2943 };
2944
2945 static const struct btf_kind_operations ptr_ops = {
2946 .check_meta = btf_ref_type_check_meta,
2947 .resolve = btf_ptr_resolve,
2948 .check_member = btf_ptr_check_member,
2949 .check_kflag_member = btf_generic_check_kflag_member,
2950 .log_details = btf_ref_type_log,
2951 .show = btf_ptr_show,
2952 };
2953
btf_fwd_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2954 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2955 const struct btf_type *t,
2956 u32 meta_left)
2957 {
2958 if (btf_type_vlen(t)) {
2959 btf_verifier_log_type(env, t, "vlen != 0");
2960 return -EINVAL;
2961 }
2962
2963 if (t->type) {
2964 btf_verifier_log_type(env, t, "type != 0");
2965 return -EINVAL;
2966 }
2967
2968 /* fwd type must have a valid name */
2969 if (!t->name_off ||
2970 !btf_name_valid_identifier(env->btf, t->name_off)) {
2971 btf_verifier_log_type(env, t, "Invalid name");
2972 return -EINVAL;
2973 }
2974
2975 btf_verifier_log_type(env, t, NULL);
2976
2977 return 0;
2978 }
2979
btf_fwd_type_log(struct btf_verifier_env * env,const struct btf_type * t)2980 static void btf_fwd_type_log(struct btf_verifier_env *env,
2981 const struct btf_type *t)
2982 {
2983 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2984 }
2985
2986 static const struct btf_kind_operations fwd_ops = {
2987 .check_meta = btf_fwd_check_meta,
2988 .resolve = btf_df_resolve,
2989 .check_member = btf_df_check_member,
2990 .check_kflag_member = btf_df_check_kflag_member,
2991 .log_details = btf_fwd_type_log,
2992 .show = btf_df_show,
2993 };
2994
btf_array_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2995 static int btf_array_check_member(struct btf_verifier_env *env,
2996 const struct btf_type *struct_type,
2997 const struct btf_member *member,
2998 const struct btf_type *member_type)
2999 {
3000 u32 struct_bits_off = member->offset;
3001 u32 struct_size, bytes_offset;
3002 u32 array_type_id, array_size;
3003 struct btf *btf = env->btf;
3004
3005 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3006 btf_verifier_log_member(env, struct_type, member,
3007 "Member is not byte aligned");
3008 return -EINVAL;
3009 }
3010
3011 array_type_id = member->type;
3012 btf_type_id_size(btf, &array_type_id, &array_size);
3013 struct_size = struct_type->size;
3014 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3015 if (struct_size - bytes_offset < array_size) {
3016 btf_verifier_log_member(env, struct_type, member,
3017 "Member exceeds struct_size");
3018 return -EINVAL;
3019 }
3020
3021 return 0;
3022 }
3023
btf_array_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3024 static s32 btf_array_check_meta(struct btf_verifier_env *env,
3025 const struct btf_type *t,
3026 u32 meta_left)
3027 {
3028 const struct btf_array *array = btf_type_array(t);
3029 u32 meta_needed = sizeof(*array);
3030
3031 if (meta_left < meta_needed) {
3032 btf_verifier_log_basic(env, t,
3033 "meta_left:%u meta_needed:%u",
3034 meta_left, meta_needed);
3035 return -EINVAL;
3036 }
3037
3038 /* array type should not have a name */
3039 if (t->name_off) {
3040 btf_verifier_log_type(env, t, "Invalid name");
3041 return -EINVAL;
3042 }
3043
3044 if (btf_type_vlen(t)) {
3045 btf_verifier_log_type(env, t, "vlen != 0");
3046 return -EINVAL;
3047 }
3048
3049 if (btf_type_kflag(t)) {
3050 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3051 return -EINVAL;
3052 }
3053
3054 if (t->size) {
3055 btf_verifier_log_type(env, t, "size != 0");
3056 return -EINVAL;
3057 }
3058
3059 /* Array elem type and index type cannot be in type void,
3060 * so !array->type and !array->index_type are not allowed.
3061 */
3062 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
3063 btf_verifier_log_type(env, t, "Invalid elem");
3064 return -EINVAL;
3065 }
3066
3067 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
3068 btf_verifier_log_type(env, t, "Invalid index");
3069 return -EINVAL;
3070 }
3071
3072 btf_verifier_log_type(env, t, NULL);
3073
3074 return meta_needed;
3075 }
3076
btf_array_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)3077 static int btf_array_resolve(struct btf_verifier_env *env,
3078 const struct resolve_vertex *v)
3079 {
3080 const struct btf_array *array = btf_type_array(v->t);
3081 const struct btf_type *elem_type, *index_type;
3082 u32 elem_type_id, index_type_id;
3083 struct btf *btf = env->btf;
3084 u32 elem_size;
3085
3086 /* Check array->index_type */
3087 index_type_id = array->index_type;
3088 index_type = btf_type_by_id(btf, index_type_id);
3089 if (btf_type_nosize_or_null(index_type) ||
3090 btf_type_is_resolve_source_only(index_type)) {
3091 btf_verifier_log_type(env, v->t, "Invalid index");
3092 return -EINVAL;
3093 }
3094
3095 if (!env_type_is_resolve_sink(env, index_type) &&
3096 !env_type_is_resolved(env, index_type_id))
3097 return env_stack_push(env, index_type, index_type_id);
3098
3099 index_type = btf_type_id_size(btf, &index_type_id, NULL);
3100 if (!index_type || !btf_type_is_int(index_type) ||
3101 !btf_type_int_is_regular(index_type)) {
3102 btf_verifier_log_type(env, v->t, "Invalid index");
3103 return -EINVAL;
3104 }
3105
3106 /* Check array->type */
3107 elem_type_id = array->type;
3108 elem_type = btf_type_by_id(btf, elem_type_id);
3109 if (btf_type_nosize_or_null(elem_type) ||
3110 btf_type_is_resolve_source_only(elem_type)) {
3111 btf_verifier_log_type(env, v->t,
3112 "Invalid elem");
3113 return -EINVAL;
3114 }
3115
3116 if (!env_type_is_resolve_sink(env, elem_type) &&
3117 !env_type_is_resolved(env, elem_type_id))
3118 return env_stack_push(env, elem_type, elem_type_id);
3119
3120 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3121 if (!elem_type) {
3122 btf_verifier_log_type(env, v->t, "Invalid elem");
3123 return -EINVAL;
3124 }
3125
3126 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
3127 btf_verifier_log_type(env, v->t, "Invalid array of int");
3128 return -EINVAL;
3129 }
3130
3131 if (array->nelems && elem_size > U32_MAX / array->nelems) {
3132 btf_verifier_log_type(env, v->t,
3133 "Array size overflows U32_MAX");
3134 return -EINVAL;
3135 }
3136
3137 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
3138
3139 return 0;
3140 }
3141
btf_array_log(struct btf_verifier_env * env,const struct btf_type * t)3142 static void btf_array_log(struct btf_verifier_env *env,
3143 const struct btf_type *t)
3144 {
3145 const struct btf_array *array = btf_type_array(t);
3146
3147 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
3148 array->type, array->index_type, array->nelems);
3149 }
3150
__btf_array_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)3151 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
3152 u32 type_id, void *data, u8 bits_offset,
3153 struct btf_show *show)
3154 {
3155 const struct btf_array *array = btf_type_array(t);
3156 const struct btf_kind_operations *elem_ops;
3157 const struct btf_type *elem_type;
3158 u32 i, elem_size = 0, elem_type_id;
3159 u16 encoding = 0;
3160
3161 elem_type_id = array->type;
3162 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
3163 if (elem_type && btf_type_has_size(elem_type))
3164 elem_size = elem_type->size;
3165
3166 if (elem_type && btf_type_is_int(elem_type)) {
3167 u32 int_type = btf_type_int(elem_type);
3168
3169 encoding = BTF_INT_ENCODING(int_type);
3170
3171 /*
3172 * BTF_INT_CHAR encoding never seems to be set for
3173 * char arrays, so if size is 1 and element is
3174 * printable as a char, we'll do that.
3175 */
3176 if (elem_size == 1)
3177 encoding = BTF_INT_CHAR;
3178 }
3179
3180 if (!btf_show_start_array_type(show, t, type_id, encoding, data))
3181 return;
3182
3183 if (!elem_type)
3184 goto out;
3185 elem_ops = btf_type_ops(elem_type);
3186
3187 for (i = 0; i < array->nelems; i++) {
3188
3189 btf_show_start_array_member(show);
3190
3191 elem_ops->show(btf, elem_type, elem_type_id, data,
3192 bits_offset, show);
3193 data += elem_size;
3194
3195 btf_show_end_array_member(show);
3196
3197 if (show->state.array_terminated)
3198 break;
3199 }
3200 out:
3201 btf_show_end_array_type(show);
3202 }
3203
btf_array_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)3204 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
3205 u32 type_id, void *data, u8 bits_offset,
3206 struct btf_show *show)
3207 {
3208 const struct btf_member *m = show->state.member;
3209
3210 /*
3211 * First check if any members would be shown (are non-zero).
3212 * See comments above "struct btf_show" definition for more
3213 * details on how this works at a high-level.
3214 */
3215 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3216 if (!show->state.depth_check) {
3217 show->state.depth_check = show->state.depth + 1;
3218 show->state.depth_to_show = 0;
3219 }
3220 __btf_array_show(btf, t, type_id, data, bits_offset, show);
3221 show->state.member = m;
3222
3223 if (show->state.depth_check != show->state.depth + 1)
3224 return;
3225 show->state.depth_check = 0;
3226
3227 if (show->state.depth_to_show <= show->state.depth)
3228 return;
3229 /*
3230 * Reaching here indicates we have recursed and found
3231 * non-zero array member(s).
3232 */
3233 }
3234 __btf_array_show(btf, t, type_id, data, bits_offset, show);
3235 }
3236
3237 static const struct btf_kind_operations array_ops = {
3238 .check_meta = btf_array_check_meta,
3239 .resolve = btf_array_resolve,
3240 .check_member = btf_array_check_member,
3241 .check_kflag_member = btf_generic_check_kflag_member,
3242 .log_details = btf_array_log,
3243 .show = btf_array_show,
3244 };
3245
btf_struct_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)3246 static int btf_struct_check_member(struct btf_verifier_env *env,
3247 const struct btf_type *struct_type,
3248 const struct btf_member *member,
3249 const struct btf_type *member_type)
3250 {
3251 u32 struct_bits_off = member->offset;
3252 u32 struct_size, bytes_offset;
3253
3254 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3255 btf_verifier_log_member(env, struct_type, member,
3256 "Member is not byte aligned");
3257 return -EINVAL;
3258 }
3259
3260 struct_size = struct_type->size;
3261 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3262 if (struct_size - bytes_offset < member_type->size) {
3263 btf_verifier_log_member(env, struct_type, member,
3264 "Member exceeds struct_size");
3265 return -EINVAL;
3266 }
3267
3268 return 0;
3269 }
3270
btf_struct_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3271 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3272 const struct btf_type *t,
3273 u32 meta_left)
3274 {
3275 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3276 const struct btf_member *member;
3277 u32 meta_needed, last_offset;
3278 struct btf *btf = env->btf;
3279 u32 struct_size = t->size;
3280 u32 offset;
3281 u16 i;
3282
3283 meta_needed = btf_type_vlen(t) * sizeof(*member);
3284 if (meta_left < meta_needed) {
3285 btf_verifier_log_basic(env, t,
3286 "meta_left:%u meta_needed:%u",
3287 meta_left, meta_needed);
3288 return -EINVAL;
3289 }
3290
3291 /* struct type either no name or a valid one */
3292 if (t->name_off &&
3293 !btf_name_valid_identifier(env->btf, t->name_off)) {
3294 btf_verifier_log_type(env, t, "Invalid name");
3295 return -EINVAL;
3296 }
3297
3298 btf_verifier_log_type(env, t, NULL);
3299
3300 last_offset = 0;
3301 for_each_member(i, t, member) {
3302 if (!btf_name_offset_valid(btf, member->name_off)) {
3303 btf_verifier_log_member(env, t, member,
3304 "Invalid member name_offset:%u",
3305 member->name_off);
3306 return -EINVAL;
3307 }
3308
3309 /* struct member either no name or a valid one */
3310 if (member->name_off &&
3311 !btf_name_valid_identifier(btf, member->name_off)) {
3312 btf_verifier_log_member(env, t, member, "Invalid name");
3313 return -EINVAL;
3314 }
3315 /* A member cannot be in type void */
3316 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3317 btf_verifier_log_member(env, t, member,
3318 "Invalid type_id");
3319 return -EINVAL;
3320 }
3321
3322 offset = __btf_member_bit_offset(t, member);
3323 if (is_union && offset) {
3324 btf_verifier_log_member(env, t, member,
3325 "Invalid member bits_offset");
3326 return -EINVAL;
3327 }
3328
3329 /*
3330 * ">" instead of ">=" because the last member could be
3331 * "char a[0];"
3332 */
3333 if (last_offset > offset) {
3334 btf_verifier_log_member(env, t, member,
3335 "Invalid member bits_offset");
3336 return -EINVAL;
3337 }
3338
3339 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3340 btf_verifier_log_member(env, t, member,
3341 "Member bits_offset exceeds its struct size");
3342 return -EINVAL;
3343 }
3344
3345 btf_verifier_log_member(env, t, member, NULL);
3346 last_offset = offset;
3347 }
3348
3349 return meta_needed;
3350 }
3351
btf_struct_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)3352 static int btf_struct_resolve(struct btf_verifier_env *env,
3353 const struct resolve_vertex *v)
3354 {
3355 const struct btf_member *member;
3356 int err;
3357 u16 i;
3358
3359 /* Before continue resolving the next_member,
3360 * ensure the last member is indeed resolved to a
3361 * type with size info.
3362 */
3363 if (v->next_member) {
3364 const struct btf_type *last_member_type;
3365 const struct btf_member *last_member;
3366 u32 last_member_type_id;
3367
3368 last_member = btf_type_member(v->t) + v->next_member - 1;
3369 last_member_type_id = last_member->type;
3370 if (WARN_ON_ONCE(!env_type_is_resolved(env,
3371 last_member_type_id)))
3372 return -EINVAL;
3373
3374 last_member_type = btf_type_by_id(env->btf,
3375 last_member_type_id);
3376 if (btf_type_kflag(v->t))
3377 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3378 last_member,
3379 last_member_type);
3380 else
3381 err = btf_type_ops(last_member_type)->check_member(env, v->t,
3382 last_member,
3383 last_member_type);
3384 if (err)
3385 return err;
3386 }
3387
3388 for_each_member_from(i, v->next_member, v->t, member) {
3389 u32 member_type_id = member->type;
3390 const struct btf_type *member_type = btf_type_by_id(env->btf,
3391 member_type_id);
3392
3393 if (btf_type_nosize_or_null(member_type) ||
3394 btf_type_is_resolve_source_only(member_type)) {
3395 btf_verifier_log_member(env, v->t, member,
3396 "Invalid member");
3397 return -EINVAL;
3398 }
3399
3400 if (!env_type_is_resolve_sink(env, member_type) &&
3401 !env_type_is_resolved(env, member_type_id)) {
3402 env_stack_set_next_member(env, i + 1);
3403 return env_stack_push(env, member_type, member_type_id);
3404 }
3405
3406 if (btf_type_kflag(v->t))
3407 err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3408 member,
3409 member_type);
3410 else
3411 err = btf_type_ops(member_type)->check_member(env, v->t,
3412 member,
3413 member_type);
3414 if (err)
3415 return err;
3416 }
3417
3418 env_stack_pop_resolved(env, 0, 0);
3419
3420 return 0;
3421 }
3422
btf_struct_log(struct btf_verifier_env * env,const struct btf_type * t)3423 static void btf_struct_log(struct btf_verifier_env *env,
3424 const struct btf_type *t)
3425 {
3426 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3427 }
3428
3429 enum {
3430 BTF_FIELD_IGNORE = 0,
3431 BTF_FIELD_FOUND = 1,
3432 };
3433
3434 struct btf_field_info {
3435 enum btf_field_type type;
3436 u32 off;
3437 union {
3438 struct {
3439 u32 type_id;
3440 } kptr;
3441 struct {
3442 const char *node_name;
3443 u32 value_btf_id;
3444 } graph_root;
3445 };
3446 };
3447
btf_find_struct(const struct btf * btf,const struct btf_type * t,u32 off,int sz,enum btf_field_type field_type,struct btf_field_info * info)3448 static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3449 u32 off, int sz, enum btf_field_type field_type,
3450 struct btf_field_info *info)
3451 {
3452 if (!__btf_type_is_struct(t))
3453 return BTF_FIELD_IGNORE;
3454 if (t->size != sz)
3455 return BTF_FIELD_IGNORE;
3456 info->type = field_type;
3457 info->off = off;
3458 return BTF_FIELD_FOUND;
3459 }
3460
btf_find_kptr(const struct btf * btf,const struct btf_type * t,u32 off,int sz,struct btf_field_info * info,u32 field_mask)3461 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3462 u32 off, int sz, struct btf_field_info *info, u32 field_mask)
3463 {
3464 enum btf_field_type type;
3465 const char *tag_value;
3466 bool is_type_tag;
3467 u32 res_id;
3468
3469 /* Permit modifiers on the pointer itself */
3470 if (btf_type_is_volatile(t))
3471 t = btf_type_by_id(btf, t->type);
3472 /* For PTR, sz is always == 8 */
3473 if (!btf_type_is_ptr(t))
3474 return BTF_FIELD_IGNORE;
3475 t = btf_type_by_id(btf, t->type);
3476 is_type_tag = btf_type_is_type_tag(t) && !btf_type_kflag(t);
3477 if (!is_type_tag)
3478 return BTF_FIELD_IGNORE;
3479 /* Reject extra tags */
3480 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3481 return -EINVAL;
3482 tag_value = __btf_name_by_offset(btf, t->name_off);
3483 if (!strcmp("kptr_untrusted", tag_value))
3484 type = BPF_KPTR_UNREF;
3485 else if (!strcmp("kptr", tag_value))
3486 type = BPF_KPTR_REF;
3487 else if (!strcmp("percpu_kptr", tag_value))
3488 type = BPF_KPTR_PERCPU;
3489 else if (!strcmp("uptr", tag_value))
3490 type = BPF_UPTR;
3491 else
3492 return -EINVAL;
3493
3494 if (!(type & field_mask))
3495 return BTF_FIELD_IGNORE;
3496
3497 /* Get the base type */
3498 t = btf_type_skip_modifiers(btf, t->type, &res_id);
3499 /* Only pointer to struct is allowed */
3500 if (!__btf_type_is_struct(t))
3501 return -EINVAL;
3502
3503 info->type = type;
3504 info->off = off;
3505 info->kptr.type_id = res_id;
3506 return BTF_FIELD_FOUND;
3507 }
3508
btf_find_next_decl_tag(const struct btf * btf,const struct btf_type * pt,int comp_idx,const char * tag_key,int last_id)3509 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
3510 int comp_idx, const char *tag_key, int last_id)
3511 {
3512 int len = strlen(tag_key);
3513 int i, n;
3514
3515 for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) {
3516 const struct btf_type *t = btf_type_by_id(btf, i);
3517
3518 if (!btf_type_is_decl_tag(t))
3519 continue;
3520 if (pt != btf_type_by_id(btf, t->type))
3521 continue;
3522 if (btf_type_decl_tag(t)->component_idx != comp_idx)
3523 continue;
3524 if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3525 continue;
3526 return i;
3527 }
3528 return -ENOENT;
3529 }
3530
btf_find_decl_tag_value(const struct btf * btf,const struct btf_type * pt,int comp_idx,const char * tag_key)3531 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
3532 int comp_idx, const char *tag_key)
3533 {
3534 const char *value = NULL;
3535 const struct btf_type *t;
3536 int len, id;
3537
3538 id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key,
3539 btf_named_start_id(btf, false) - 1);
3540 if (id < 0)
3541 return ERR_PTR(id);
3542
3543 t = btf_type_by_id(btf, id);
3544 len = strlen(tag_key);
3545 value = __btf_name_by_offset(btf, t->name_off) + len;
3546
3547 /* Prevent duplicate entries for same type */
3548 id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id);
3549 if (id >= 0)
3550 return ERR_PTR(-EEXIST);
3551
3552 return value;
3553 }
3554
3555 static int
btf_find_graph_root(const struct btf * btf,const struct btf_type * pt,const struct btf_type * t,int comp_idx,u32 off,int sz,struct btf_field_info * info,enum btf_field_type head_type)3556 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt,
3557 const struct btf_type *t, int comp_idx, u32 off,
3558 int sz, struct btf_field_info *info,
3559 enum btf_field_type head_type)
3560 {
3561 const char *node_field_name;
3562 const char *value_type;
3563 s32 id;
3564
3565 if (!__btf_type_is_struct(t))
3566 return BTF_FIELD_IGNORE;
3567 if (t->size != sz)
3568 return BTF_FIELD_IGNORE;
3569 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3570 if (IS_ERR(value_type))
3571 return -EINVAL;
3572 node_field_name = strstr(value_type, ":");
3573 if (!node_field_name)
3574 return -EINVAL;
3575 value_type = kstrndup(value_type, node_field_name - value_type,
3576 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
3577 if (!value_type)
3578 return -ENOMEM;
3579 id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3580 kfree(value_type);
3581 if (id < 0)
3582 return id;
3583 node_field_name++;
3584 if (str_is_empty(node_field_name))
3585 return -EINVAL;
3586 info->type = head_type;
3587 info->off = off;
3588 info->graph_root.value_btf_id = id;
3589 info->graph_root.node_name = node_field_name;
3590 return BTF_FIELD_FOUND;
3591 }
3592
btf_get_field_type(const struct btf * btf,const struct btf_type * var_type,u32 field_mask,u32 * seen_mask,int * align,int * sz)3593 static int btf_get_field_type(const struct btf *btf, const struct btf_type *var_type,
3594 u32 field_mask, u32 *seen_mask, int *align, int *sz)
3595 {
3596 const struct {
3597 enum btf_field_type type;
3598 const char *const name;
3599 const bool is_unique;
3600 } field_types[] = {
3601 { BPF_SPIN_LOCK, "bpf_spin_lock", true },
3602 { BPF_RES_SPIN_LOCK, "bpf_res_spin_lock", true },
3603 { BPF_TIMER, "bpf_timer", true },
3604 { BPF_WORKQUEUE, "bpf_wq", true },
3605 { BPF_TASK_WORK, "bpf_task_work", true },
3606 { BPF_LIST_HEAD, "bpf_list_head", false },
3607 { BPF_LIST_NODE, "bpf_list_node", false },
3608 { BPF_RB_ROOT, "bpf_rb_root", false },
3609 { BPF_RB_NODE, "bpf_rb_node", false },
3610 { BPF_REFCOUNT, "bpf_refcount", false },
3611 };
3612 int type = 0, i;
3613 const char *name = __btf_name_by_offset(btf, var_type->name_off);
3614 const char *field_type_name;
3615 enum btf_field_type field_type;
3616 bool is_unique;
3617
3618 for (i = 0; i < ARRAY_SIZE(field_types); ++i) {
3619 field_type = field_types[i].type;
3620 field_type_name = field_types[i].name;
3621 is_unique = field_types[i].is_unique;
3622 if (!(field_mask & field_type) || strcmp(name, field_type_name))
3623 continue;
3624 if (is_unique) {
3625 if (*seen_mask & field_type)
3626 return -E2BIG;
3627 *seen_mask |= field_type;
3628 }
3629 type = field_type;
3630 goto end;
3631 }
3632
3633 /* Only return BPF_KPTR when all other types with matchable names fail */
3634 if (field_mask & (BPF_KPTR | BPF_UPTR) && !__btf_type_is_struct(var_type)) {
3635 type = BPF_KPTR_REF;
3636 goto end;
3637 }
3638 return 0;
3639 end:
3640 *sz = btf_field_type_size(type);
3641 *align = btf_field_type_align(type);
3642 return type;
3643 }
3644
3645 /* Repeat a number of fields for a specified number of times.
3646 *
3647 * Copy the fields starting from the first field and repeat them for
3648 * repeat_cnt times. The fields are repeated by adding the offset of each
3649 * field with
3650 * (i + 1) * elem_size
3651 * where i is the repeat index and elem_size is the size of an element.
3652 */
btf_repeat_fields(struct btf_field_info * info,int info_cnt,u32 field_cnt,u32 repeat_cnt,u32 elem_size)3653 static int btf_repeat_fields(struct btf_field_info *info, int info_cnt,
3654 u32 field_cnt, u32 repeat_cnt, u32 elem_size)
3655 {
3656 u32 i, j;
3657 u32 cur;
3658
3659 /* Ensure not repeating fields that should not be repeated. */
3660 for (i = 0; i < field_cnt; i++) {
3661 switch (info[i].type) {
3662 case BPF_KPTR_UNREF:
3663 case BPF_KPTR_REF:
3664 case BPF_KPTR_PERCPU:
3665 case BPF_UPTR:
3666 case BPF_LIST_HEAD:
3667 case BPF_RB_ROOT:
3668 break;
3669 default:
3670 return -EINVAL;
3671 }
3672 }
3673
3674 /* The type of struct size or variable size is u32,
3675 * so the multiplication will not overflow.
3676 */
3677 if (field_cnt * (repeat_cnt + 1) > info_cnt)
3678 return -E2BIG;
3679
3680 cur = field_cnt;
3681 for (i = 0; i < repeat_cnt; i++) {
3682 memcpy(&info[cur], &info[0], field_cnt * sizeof(info[0]));
3683 for (j = 0; j < field_cnt; j++)
3684 info[cur++].off += (i + 1) * elem_size;
3685 }
3686
3687 return 0;
3688 }
3689
3690 static int btf_find_struct_field(const struct btf *btf,
3691 const struct btf_type *t, u32 field_mask,
3692 struct btf_field_info *info, int info_cnt,
3693 u32 level);
3694
3695 /* Find special fields in the struct type of a field.
3696 *
3697 * This function is used to find fields of special types that is not a
3698 * global variable or a direct field of a struct type. It also handles the
3699 * repetition if it is the element type of an array.
3700 */
btf_find_nested_struct(const struct btf * btf,const struct btf_type * t,u32 off,u32 nelems,u32 field_mask,struct btf_field_info * info,int info_cnt,u32 level)3701 static int btf_find_nested_struct(const struct btf *btf, const struct btf_type *t,
3702 u32 off, u32 nelems,
3703 u32 field_mask, struct btf_field_info *info,
3704 int info_cnt, u32 level)
3705 {
3706 int ret, err, i;
3707
3708 level++;
3709 if (level >= MAX_RESOLVE_DEPTH)
3710 return -E2BIG;
3711
3712 ret = btf_find_struct_field(btf, t, field_mask, info, info_cnt, level);
3713
3714 if (ret <= 0)
3715 return ret;
3716
3717 /* Shift the offsets of the nested struct fields to the offsets
3718 * related to the container.
3719 */
3720 for (i = 0; i < ret; i++)
3721 info[i].off += off;
3722
3723 if (nelems > 1) {
3724 err = btf_repeat_fields(info, info_cnt, ret, nelems - 1, t->size);
3725 if (err == 0)
3726 ret *= nelems;
3727 else
3728 ret = err;
3729 }
3730
3731 return ret;
3732 }
3733
btf_find_field_one(const struct btf * btf,const struct btf_type * var,const struct btf_type * var_type,int var_idx,u32 off,u32 expected_size,u32 field_mask,u32 * seen_mask,struct btf_field_info * info,int info_cnt,u32 level)3734 static int btf_find_field_one(const struct btf *btf,
3735 const struct btf_type *var,
3736 const struct btf_type *var_type,
3737 int var_idx,
3738 u32 off, u32 expected_size,
3739 u32 field_mask, u32 *seen_mask,
3740 struct btf_field_info *info, int info_cnt,
3741 u32 level)
3742 {
3743 int ret, align, sz, field_type;
3744 struct btf_field_info tmp;
3745 const struct btf_array *array;
3746 u32 i, nelems = 1;
3747
3748 /* Walk into array types to find the element type and the number of
3749 * elements in the (flattened) array.
3750 */
3751 for (i = 0; i < MAX_RESOLVE_DEPTH && btf_type_is_array(var_type); i++) {
3752 array = btf_array(var_type);
3753 nelems *= array->nelems;
3754 var_type = btf_type_by_id(btf, array->type);
3755 }
3756 if (i == MAX_RESOLVE_DEPTH)
3757 return -E2BIG;
3758 if (nelems == 0)
3759 return 0;
3760
3761 field_type = btf_get_field_type(btf, var_type,
3762 field_mask, seen_mask, &align, &sz);
3763 /* Look into variables of struct types */
3764 if (!field_type && __btf_type_is_struct(var_type)) {
3765 sz = var_type->size;
3766 if (expected_size && expected_size != sz * nelems)
3767 return 0;
3768 ret = btf_find_nested_struct(btf, var_type, off, nelems, field_mask,
3769 &info[0], info_cnt, level);
3770 return ret;
3771 }
3772
3773 if (field_type == 0)
3774 return 0;
3775 if (field_type < 0)
3776 return field_type;
3777
3778 if (expected_size && expected_size != sz * nelems)
3779 return 0;
3780 if (off % align)
3781 return 0;
3782
3783 switch (field_type) {
3784 case BPF_SPIN_LOCK:
3785 case BPF_RES_SPIN_LOCK:
3786 case BPF_TIMER:
3787 case BPF_WORKQUEUE:
3788 case BPF_LIST_NODE:
3789 case BPF_RB_NODE:
3790 case BPF_REFCOUNT:
3791 case BPF_TASK_WORK:
3792 ret = btf_find_struct(btf, var_type, off, sz, field_type,
3793 info_cnt ? &info[0] : &tmp);
3794 if (ret < 0)
3795 return ret;
3796 break;
3797 case BPF_KPTR_UNREF:
3798 case BPF_KPTR_REF:
3799 case BPF_KPTR_PERCPU:
3800 case BPF_UPTR:
3801 ret = btf_find_kptr(btf, var_type, off, sz,
3802 info_cnt ? &info[0] : &tmp, field_mask);
3803 if (ret < 0)
3804 return ret;
3805 break;
3806 case BPF_LIST_HEAD:
3807 case BPF_RB_ROOT:
3808 ret = btf_find_graph_root(btf, var, var_type,
3809 var_idx, off, sz,
3810 info_cnt ? &info[0] : &tmp,
3811 field_type);
3812 if (ret < 0)
3813 return ret;
3814 break;
3815 default:
3816 return -EFAULT;
3817 }
3818
3819 if (ret == BTF_FIELD_IGNORE)
3820 return 0;
3821 if (!info_cnt)
3822 return -E2BIG;
3823 if (nelems > 1) {
3824 ret = btf_repeat_fields(info, info_cnt, 1, nelems - 1, sz);
3825 if (ret < 0)
3826 return ret;
3827 }
3828 return nelems;
3829 }
3830
btf_find_struct_field(const struct btf * btf,const struct btf_type * t,u32 field_mask,struct btf_field_info * info,int info_cnt,u32 level)3831 static int btf_find_struct_field(const struct btf *btf,
3832 const struct btf_type *t, u32 field_mask,
3833 struct btf_field_info *info, int info_cnt,
3834 u32 level)
3835 {
3836 int ret, idx = 0;
3837 const struct btf_member *member;
3838 u32 i, off, seen_mask = 0;
3839
3840 for_each_member(i, t, member) {
3841 const struct btf_type *member_type = btf_type_by_id(btf,
3842 member->type);
3843
3844 off = __btf_member_bit_offset(t, member);
3845 if (off % 8)
3846 /* valid C code cannot generate such BTF */
3847 return -EINVAL;
3848 off /= 8;
3849
3850 ret = btf_find_field_one(btf, t, member_type, i,
3851 off, 0,
3852 field_mask, &seen_mask,
3853 &info[idx], info_cnt - idx, level);
3854 if (ret < 0)
3855 return ret;
3856 idx += ret;
3857 }
3858 return idx;
3859 }
3860
btf_find_datasec_var(const struct btf * btf,const struct btf_type * t,u32 field_mask,struct btf_field_info * info,int info_cnt,u32 level)3861 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3862 u32 field_mask, struct btf_field_info *info,
3863 int info_cnt, u32 level)
3864 {
3865 int ret, idx = 0;
3866 const struct btf_var_secinfo *vsi;
3867 u32 i, off, seen_mask = 0;
3868
3869 for_each_vsi(i, t, vsi) {
3870 const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3871 const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3872
3873 off = vsi->offset;
3874 ret = btf_find_field_one(btf, var, var_type, -1, off, vsi->size,
3875 field_mask, &seen_mask,
3876 &info[idx], info_cnt - idx,
3877 level);
3878 if (ret < 0)
3879 return ret;
3880 idx += ret;
3881 }
3882 return idx;
3883 }
3884
btf_find_field(const struct btf * btf,const struct btf_type * t,u32 field_mask,struct btf_field_info * info,int info_cnt)3885 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3886 u32 field_mask, struct btf_field_info *info,
3887 int info_cnt)
3888 {
3889 if (__btf_type_is_struct(t))
3890 return btf_find_struct_field(btf, t, field_mask, info, info_cnt, 0);
3891 else if (btf_type_is_datasec(t))
3892 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt, 0);
3893 return -EINVAL;
3894 }
3895
3896 /* Callers have to ensure the life cycle of btf if it is program BTF */
btf_parse_kptr(const struct btf * btf,struct btf_field * field,struct btf_field_info * info)3897 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3898 struct btf_field_info *info)
3899 {
3900 struct module *mod = NULL;
3901 const struct btf_type *t;
3902 /* If a matching btf type is found in kernel or module BTFs, kptr_ref
3903 * is that BTF, otherwise it's program BTF
3904 */
3905 struct btf *kptr_btf;
3906 int ret;
3907 s32 id;
3908
3909 /* Find type in map BTF, and use it to look up the matching type
3910 * in vmlinux or module BTFs, by name and kind.
3911 */
3912 t = btf_type_by_id(btf, info->kptr.type_id);
3913 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3914 &kptr_btf);
3915 if (id == -ENOENT) {
3916 /* btf_parse_kptr should only be called w/ btf = program BTF */
3917 WARN_ON_ONCE(btf_is_kernel(btf));
3918
3919 /* Type exists only in program BTF. Assume that it's a MEM_ALLOC
3920 * kptr allocated via bpf_obj_new
3921 */
3922 field->kptr.dtor = NULL;
3923 id = info->kptr.type_id;
3924 kptr_btf = (struct btf *)btf;
3925 goto found_dtor;
3926 }
3927 if (id < 0)
3928 return id;
3929
3930 /* Find and stash the function pointer for the destruction function that
3931 * needs to be eventually invoked from the map free path.
3932 */
3933 if (info->type == BPF_KPTR_REF) {
3934 const struct btf_type *dtor_func;
3935 const char *dtor_func_name;
3936 unsigned long addr;
3937 s32 dtor_btf_id;
3938
3939 /* This call also serves as a whitelist of allowed objects that
3940 * can be used as a referenced pointer and be stored in a map at
3941 * the same time.
3942 */
3943 dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id);
3944 if (dtor_btf_id < 0) {
3945 ret = dtor_btf_id;
3946 goto end_btf;
3947 }
3948
3949 dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id);
3950 if (!dtor_func) {
3951 ret = -ENOENT;
3952 goto end_btf;
3953 }
3954
3955 if (btf_is_module(kptr_btf)) {
3956 mod = btf_try_get_module(kptr_btf);
3957 if (!mod) {
3958 ret = -ENXIO;
3959 goto end_btf;
3960 }
3961 }
3962
3963 /* We already verified dtor_func to be btf_type_is_func
3964 * in register_btf_id_dtor_kfuncs.
3965 */
3966 dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off);
3967 addr = kallsyms_lookup_name(dtor_func_name);
3968 if (!addr) {
3969 ret = -EINVAL;
3970 goto end_mod;
3971 }
3972 field->kptr.dtor = (void *)addr;
3973 }
3974
3975 found_dtor:
3976 field->kptr.btf_id = id;
3977 field->kptr.btf = kptr_btf;
3978 field->kptr.module = mod;
3979 return 0;
3980 end_mod:
3981 module_put(mod);
3982 end_btf:
3983 btf_put(kptr_btf);
3984 return ret;
3985 }
3986
btf_parse_graph_root(const struct btf * btf,struct btf_field * field,struct btf_field_info * info,const char * node_type_name,size_t node_type_align)3987 static int btf_parse_graph_root(const struct btf *btf,
3988 struct btf_field *field,
3989 struct btf_field_info *info,
3990 const char *node_type_name,
3991 size_t node_type_align)
3992 {
3993 const struct btf_type *t, *n = NULL;
3994 const struct btf_member *member;
3995 u32 offset;
3996 int i;
3997
3998 t = btf_type_by_id(btf, info->graph_root.value_btf_id);
3999 /* We've already checked that value_btf_id is a struct type. We
4000 * just need to figure out the offset of the list_node, and
4001 * verify its type.
4002 */
4003 for_each_member(i, t, member) {
4004 if (strcmp(info->graph_root.node_name,
4005 __btf_name_by_offset(btf, member->name_off)))
4006 continue;
4007 /* Invalid BTF, two members with same name */
4008 if (n)
4009 return -EINVAL;
4010 n = btf_type_by_id(btf, member->type);
4011 if (!__btf_type_is_struct(n))
4012 return -EINVAL;
4013 if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off)))
4014 return -EINVAL;
4015 offset = __btf_member_bit_offset(n, member);
4016 if (offset % 8)
4017 return -EINVAL;
4018 offset /= 8;
4019 if (offset % node_type_align)
4020 return -EINVAL;
4021
4022 field->graph_root.btf = (struct btf *)btf;
4023 field->graph_root.value_btf_id = info->graph_root.value_btf_id;
4024 field->graph_root.node_offset = offset;
4025 }
4026 if (!n)
4027 return -ENOENT;
4028 return 0;
4029 }
4030
btf_parse_list_head(const struct btf * btf,struct btf_field * field,struct btf_field_info * info)4031 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
4032 struct btf_field_info *info)
4033 {
4034 return btf_parse_graph_root(btf, field, info, "bpf_list_node",
4035 __alignof__(struct bpf_list_node));
4036 }
4037
btf_parse_rb_root(const struct btf * btf,struct btf_field * field,struct btf_field_info * info)4038 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field,
4039 struct btf_field_info *info)
4040 {
4041 return btf_parse_graph_root(btf, field, info, "bpf_rb_node",
4042 __alignof__(struct bpf_rb_node));
4043 }
4044
btf_field_cmp(const void * _a,const void * _b,const void * priv)4045 static int btf_field_cmp(const void *_a, const void *_b, const void *priv)
4046 {
4047 const struct btf_field *a = (const struct btf_field *)_a;
4048 const struct btf_field *b = (const struct btf_field *)_b;
4049
4050 if (a->offset < b->offset)
4051 return -1;
4052 else if (a->offset > b->offset)
4053 return 1;
4054 return 0;
4055 }
4056
btf_parse_fields(const struct btf * btf,const struct btf_type * t,u32 field_mask,u32 value_size)4057 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
4058 u32 field_mask, u32 value_size)
4059 {
4060 struct btf_field_info info_arr[BTF_FIELDS_MAX];
4061 u32 next_off = 0, field_type_size;
4062 struct btf_record *rec;
4063 int ret, i, cnt;
4064
4065 ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
4066 if (ret < 0)
4067 return ERR_PTR(ret);
4068 if (!ret)
4069 return NULL;
4070
4071 cnt = ret;
4072 /* This needs to be kzalloc to zero out padding and unused fields, see
4073 * comment in btf_record_equal.
4074 */
4075 rec = kzalloc_flex(*rec, fields, cnt, GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
4076 if (!rec)
4077 return ERR_PTR(-ENOMEM);
4078
4079 rec->spin_lock_off = -EINVAL;
4080 rec->res_spin_lock_off = -EINVAL;
4081 rec->timer_off = -EINVAL;
4082 rec->wq_off = -EINVAL;
4083 rec->refcount_off = -EINVAL;
4084 rec->task_work_off = -EINVAL;
4085 for (i = 0; i < cnt; i++) {
4086 field_type_size = btf_field_type_size(info_arr[i].type);
4087 if (info_arr[i].off + field_type_size > value_size) {
4088 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
4089 ret = -EFAULT;
4090 goto end;
4091 }
4092 if (info_arr[i].off < next_off) {
4093 ret = -EEXIST;
4094 goto end;
4095 }
4096 next_off = info_arr[i].off + field_type_size;
4097
4098 rec->field_mask |= info_arr[i].type;
4099 rec->fields[i].offset = info_arr[i].off;
4100 rec->fields[i].type = info_arr[i].type;
4101 rec->fields[i].size = field_type_size;
4102
4103 switch (info_arr[i].type) {
4104 case BPF_SPIN_LOCK:
4105 WARN_ON_ONCE(rec->spin_lock_off >= 0);
4106 /* Cache offset for faster lookup at runtime */
4107 rec->spin_lock_off = rec->fields[i].offset;
4108 break;
4109 case BPF_RES_SPIN_LOCK:
4110 WARN_ON_ONCE(rec->spin_lock_off >= 0);
4111 /* Cache offset for faster lookup at runtime */
4112 rec->res_spin_lock_off = rec->fields[i].offset;
4113 break;
4114 case BPF_TIMER:
4115 WARN_ON_ONCE(rec->timer_off >= 0);
4116 /* Cache offset for faster lookup at runtime */
4117 rec->timer_off = rec->fields[i].offset;
4118 break;
4119 case BPF_WORKQUEUE:
4120 WARN_ON_ONCE(rec->wq_off >= 0);
4121 /* Cache offset for faster lookup at runtime */
4122 rec->wq_off = rec->fields[i].offset;
4123 break;
4124 case BPF_TASK_WORK:
4125 WARN_ON_ONCE(rec->task_work_off >= 0);
4126 rec->task_work_off = rec->fields[i].offset;
4127 break;
4128 case BPF_REFCOUNT:
4129 WARN_ON_ONCE(rec->refcount_off >= 0);
4130 /* Cache offset for faster lookup at runtime */
4131 rec->refcount_off = rec->fields[i].offset;
4132 break;
4133 case BPF_KPTR_UNREF:
4134 case BPF_KPTR_REF:
4135 case BPF_KPTR_PERCPU:
4136 case BPF_UPTR:
4137 ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
4138 if (ret < 0)
4139 goto end;
4140 break;
4141 case BPF_LIST_HEAD:
4142 ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
4143 if (ret < 0)
4144 goto end;
4145 break;
4146 case BPF_RB_ROOT:
4147 ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]);
4148 if (ret < 0)
4149 goto end;
4150 break;
4151 case BPF_LIST_NODE:
4152 case BPF_RB_NODE:
4153 break;
4154 default:
4155 ret = -EFAULT;
4156 goto end;
4157 }
4158 rec->cnt++;
4159 }
4160
4161 if (rec->spin_lock_off >= 0 && rec->res_spin_lock_off >= 0) {
4162 ret = -EINVAL;
4163 goto end;
4164 }
4165
4166 /* bpf_{list_head, rb_node} require bpf_spin_lock */
4167 if ((btf_record_has_field(rec, BPF_LIST_HEAD) ||
4168 btf_record_has_field(rec, BPF_RB_ROOT)) &&
4169 (rec->spin_lock_off < 0 && rec->res_spin_lock_off < 0)) {
4170 ret = -EINVAL;
4171 goto end;
4172 }
4173
4174 if (rec->refcount_off < 0 &&
4175 btf_record_has_field(rec, BPF_LIST_NODE) &&
4176 btf_record_has_field(rec, BPF_RB_NODE)) {
4177 ret = -EINVAL;
4178 goto end;
4179 }
4180
4181 sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp,
4182 NULL, rec);
4183
4184 return rec;
4185 end:
4186 btf_record_free(rec);
4187 return ERR_PTR(ret);
4188 }
4189
btf_check_and_fixup_fields(const struct btf * btf,struct btf_record * rec)4190 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
4191 {
4192 int i;
4193
4194 /* There are three types that signify ownership of some other type:
4195 * kptr_ref, bpf_list_head, bpf_rb_root.
4196 * kptr_ref only supports storing kernel types, which can't store
4197 * references to program allocated local types.
4198 *
4199 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership
4200 * does not form cycles.
4201 */
4202 if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & (BPF_GRAPH_ROOT | BPF_UPTR)))
4203 return 0;
4204 for (i = 0; i < rec->cnt; i++) {
4205 struct btf_struct_meta *meta;
4206 const struct btf_type *t;
4207 u32 btf_id;
4208
4209 if (rec->fields[i].type == BPF_UPTR) {
4210 /* The uptr only supports pinning one page and cannot
4211 * point to a kernel struct
4212 */
4213 if (btf_is_kernel(rec->fields[i].kptr.btf))
4214 return -EINVAL;
4215 t = btf_type_by_id(rec->fields[i].kptr.btf,
4216 rec->fields[i].kptr.btf_id);
4217 if (!t->size)
4218 return -EINVAL;
4219 if (t->size > PAGE_SIZE)
4220 return -E2BIG;
4221 continue;
4222 }
4223
4224 if (!(rec->fields[i].type & BPF_GRAPH_ROOT))
4225 continue;
4226 btf_id = rec->fields[i].graph_root.value_btf_id;
4227 meta = btf_find_struct_meta(btf, btf_id);
4228 if (!meta)
4229 return -EFAULT;
4230 rec->fields[i].graph_root.value_rec = meta->record;
4231
4232 /* We need to set value_rec for all root types, but no need
4233 * to check ownership cycle for a type unless it's also a
4234 * node type.
4235 */
4236 if (!(rec->field_mask & BPF_GRAPH_NODE))
4237 continue;
4238
4239 /* We need to ensure ownership acyclicity among all types. The
4240 * proper way to do it would be to topologically sort all BTF
4241 * IDs based on the ownership edges, since there can be multiple
4242 * bpf_{list_head,rb_node} in a type. Instead, we use the
4243 * following resaoning:
4244 *
4245 * - A type can only be owned by another type in user BTF if it
4246 * has a bpf_{list,rb}_node. Let's call these node types.
4247 * - A type can only _own_ another type in user BTF if it has a
4248 * bpf_{list_head,rb_root}. Let's call these root types.
4249 *
4250 * We ensure that if a type is both a root and node, its
4251 * element types cannot be root types.
4252 *
4253 * To ensure acyclicity:
4254 *
4255 * When A is an root type but not a node, its ownership
4256 * chain can be:
4257 * A -> B -> C
4258 * Where:
4259 * - A is an root, e.g. has bpf_rb_root.
4260 * - B is both a root and node, e.g. has bpf_rb_node and
4261 * bpf_list_head.
4262 * - C is only an root, e.g. has bpf_list_node
4263 *
4264 * When A is both a root and node, some other type already
4265 * owns it in the BTF domain, hence it can not own
4266 * another root type through any of the ownership edges.
4267 * A -> B
4268 * Where:
4269 * - A is both an root and node.
4270 * - B is only an node.
4271 */
4272 if (meta->record->field_mask & BPF_GRAPH_ROOT)
4273 return -ELOOP;
4274 }
4275 return 0;
4276 }
4277
__btf_struct_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)4278 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
4279 u32 type_id, void *data, u8 bits_offset,
4280 struct btf_show *show)
4281 {
4282 const struct btf_member *member;
4283 void *safe_data;
4284 u32 i;
4285
4286 safe_data = btf_show_start_struct_type(show, t, type_id, data);
4287 if (!safe_data)
4288 return;
4289
4290 for_each_member(i, t, member) {
4291 const struct btf_type *member_type = btf_type_by_id(btf,
4292 member->type);
4293 const struct btf_kind_operations *ops;
4294 u32 member_offset, bitfield_size;
4295 u32 bytes_offset;
4296 u8 bits8_offset;
4297
4298 btf_show_start_member(show, member);
4299
4300 member_offset = __btf_member_bit_offset(t, member);
4301 bitfield_size = __btf_member_bitfield_size(t, member);
4302 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
4303 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
4304 if (bitfield_size) {
4305 safe_data = btf_show_start_type(show, member_type,
4306 member->type,
4307 data + bytes_offset);
4308 if (safe_data)
4309 btf_bitfield_show(safe_data,
4310 bits8_offset,
4311 bitfield_size, show);
4312 btf_show_end_type(show);
4313 } else {
4314 ops = btf_type_ops(member_type);
4315 ops->show(btf, member_type, member->type,
4316 data + bytes_offset, bits8_offset, show);
4317 }
4318
4319 btf_show_end_member(show);
4320 }
4321
4322 btf_show_end_struct_type(show);
4323 }
4324
btf_struct_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)4325 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
4326 u32 type_id, void *data, u8 bits_offset,
4327 struct btf_show *show)
4328 {
4329 const struct btf_member *m = show->state.member;
4330
4331 /*
4332 * First check if any members would be shown (are non-zero).
4333 * See comments above "struct btf_show" definition for more
4334 * details on how this works at a high-level.
4335 */
4336 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
4337 if (!show->state.depth_check) {
4338 show->state.depth_check = show->state.depth + 1;
4339 show->state.depth_to_show = 0;
4340 }
4341 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
4342 /* Restore saved member data here */
4343 show->state.member = m;
4344 if (show->state.depth_check != show->state.depth + 1)
4345 return;
4346 show->state.depth_check = 0;
4347
4348 if (show->state.depth_to_show <= show->state.depth)
4349 return;
4350 /*
4351 * Reaching here indicates we have recursed and found
4352 * non-zero child values.
4353 */
4354 }
4355
4356 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
4357 }
4358
4359 static const struct btf_kind_operations struct_ops = {
4360 .check_meta = btf_struct_check_meta,
4361 .resolve = btf_struct_resolve,
4362 .check_member = btf_struct_check_member,
4363 .check_kflag_member = btf_generic_check_kflag_member,
4364 .log_details = btf_struct_log,
4365 .show = btf_struct_show,
4366 };
4367
btf_enum_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)4368 static int btf_enum_check_member(struct btf_verifier_env *env,
4369 const struct btf_type *struct_type,
4370 const struct btf_member *member,
4371 const struct btf_type *member_type)
4372 {
4373 u32 struct_bits_off = member->offset;
4374 u32 struct_size, bytes_offset;
4375
4376 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4377 btf_verifier_log_member(env, struct_type, member,
4378 "Member is not byte aligned");
4379 return -EINVAL;
4380 }
4381
4382 struct_size = struct_type->size;
4383 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
4384 if (struct_size - bytes_offset < member_type->size) {
4385 btf_verifier_log_member(env, struct_type, member,
4386 "Member exceeds struct_size");
4387 return -EINVAL;
4388 }
4389
4390 return 0;
4391 }
4392
btf_enum_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)4393 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
4394 const struct btf_type *struct_type,
4395 const struct btf_member *member,
4396 const struct btf_type *member_type)
4397 {
4398 u32 struct_bits_off, nr_bits, bytes_end, struct_size;
4399 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
4400
4401 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
4402 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
4403 if (!nr_bits) {
4404 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4405 btf_verifier_log_member(env, struct_type, member,
4406 "Member is not byte aligned");
4407 return -EINVAL;
4408 }
4409
4410 nr_bits = int_bitsize;
4411 } else if (nr_bits > int_bitsize) {
4412 btf_verifier_log_member(env, struct_type, member,
4413 "Invalid member bitfield_size");
4414 return -EINVAL;
4415 }
4416
4417 struct_size = struct_type->size;
4418 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
4419 if (struct_size < bytes_end) {
4420 btf_verifier_log_member(env, struct_type, member,
4421 "Member exceeds struct_size");
4422 return -EINVAL;
4423 }
4424
4425 return 0;
4426 }
4427
btf_enum_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4428 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
4429 const struct btf_type *t,
4430 u32 meta_left)
4431 {
4432 const struct btf_enum *enums = btf_type_enum(t);
4433 struct btf *btf = env->btf;
4434 const char *fmt_str;
4435 u16 i, nr_enums;
4436 u32 meta_needed;
4437
4438 nr_enums = btf_type_vlen(t);
4439 meta_needed = nr_enums * sizeof(*enums);
4440
4441 if (meta_left < meta_needed) {
4442 btf_verifier_log_basic(env, t,
4443 "meta_left:%u meta_needed:%u",
4444 meta_left, meta_needed);
4445 return -EINVAL;
4446 }
4447
4448 if (t->size > 8 || !is_power_of_2(t->size)) {
4449 btf_verifier_log_type(env, t, "Unexpected size");
4450 return -EINVAL;
4451 }
4452
4453 /* enum type either no name or a valid one */
4454 if (t->name_off &&
4455 !btf_name_valid_identifier(env->btf, t->name_off)) {
4456 btf_verifier_log_type(env, t, "Invalid name");
4457 return -EINVAL;
4458 }
4459
4460 btf_verifier_log_type(env, t, NULL);
4461
4462 for (i = 0; i < nr_enums; i++) {
4463 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4464 btf_verifier_log(env, "\tInvalid name_offset:%u",
4465 enums[i].name_off);
4466 return -EINVAL;
4467 }
4468
4469 /* enum member must have a valid name */
4470 if (!enums[i].name_off ||
4471 !btf_name_valid_identifier(btf, enums[i].name_off)) {
4472 btf_verifier_log_type(env, t, "Invalid name");
4473 return -EINVAL;
4474 }
4475
4476 if (env->log.level == BPF_LOG_KERNEL)
4477 continue;
4478 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4479 btf_verifier_log(env, fmt_str,
4480 __btf_name_by_offset(btf, enums[i].name_off),
4481 enums[i].val);
4482 }
4483
4484 return meta_needed;
4485 }
4486
btf_enum_log(struct btf_verifier_env * env,const struct btf_type * t)4487 static void btf_enum_log(struct btf_verifier_env *env,
4488 const struct btf_type *t)
4489 {
4490 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4491 }
4492
btf_enum_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)4493 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4494 u32 type_id, void *data, u8 bits_offset,
4495 struct btf_show *show)
4496 {
4497 const struct btf_enum *enums = btf_type_enum(t);
4498 u32 i, nr_enums = btf_type_vlen(t);
4499 void *safe_data;
4500 int v;
4501
4502 safe_data = btf_show_start_type(show, t, type_id, data);
4503 if (!safe_data)
4504 return;
4505
4506 v = *(int *)safe_data;
4507
4508 for (i = 0; i < nr_enums; i++) {
4509 if (v != enums[i].val)
4510 continue;
4511
4512 btf_show_type_value(show, "%s",
4513 __btf_name_by_offset(btf,
4514 enums[i].name_off));
4515
4516 btf_show_end_type(show);
4517 return;
4518 }
4519
4520 if (btf_type_kflag(t))
4521 btf_show_type_value(show, "%d", v);
4522 else
4523 btf_show_type_value(show, "%u", v);
4524 btf_show_end_type(show);
4525 }
4526
4527 static const struct btf_kind_operations enum_ops = {
4528 .check_meta = btf_enum_check_meta,
4529 .resolve = btf_df_resolve,
4530 .check_member = btf_enum_check_member,
4531 .check_kflag_member = btf_enum_check_kflag_member,
4532 .log_details = btf_enum_log,
4533 .show = btf_enum_show,
4534 };
4535
btf_enum64_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4536 static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4537 const struct btf_type *t,
4538 u32 meta_left)
4539 {
4540 const struct btf_enum64 *enums = btf_type_enum64(t);
4541 struct btf *btf = env->btf;
4542 const char *fmt_str;
4543 u16 i, nr_enums;
4544 u32 meta_needed;
4545
4546 nr_enums = btf_type_vlen(t);
4547 meta_needed = nr_enums * sizeof(*enums);
4548
4549 if (meta_left < meta_needed) {
4550 btf_verifier_log_basic(env, t,
4551 "meta_left:%u meta_needed:%u",
4552 meta_left, meta_needed);
4553 return -EINVAL;
4554 }
4555
4556 if (t->size > 8 || !is_power_of_2(t->size)) {
4557 btf_verifier_log_type(env, t, "Unexpected size");
4558 return -EINVAL;
4559 }
4560
4561 /* enum type either no name or a valid one */
4562 if (t->name_off &&
4563 !btf_name_valid_identifier(env->btf, t->name_off)) {
4564 btf_verifier_log_type(env, t, "Invalid name");
4565 return -EINVAL;
4566 }
4567
4568 btf_verifier_log_type(env, t, NULL);
4569
4570 for (i = 0; i < nr_enums; i++) {
4571 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4572 btf_verifier_log(env, "\tInvalid name_offset:%u",
4573 enums[i].name_off);
4574 return -EINVAL;
4575 }
4576
4577 /* enum member must have a valid name */
4578 if (!enums[i].name_off ||
4579 !btf_name_valid_identifier(btf, enums[i].name_off)) {
4580 btf_verifier_log_type(env, t, "Invalid name");
4581 return -EINVAL;
4582 }
4583
4584 if (env->log.level == BPF_LOG_KERNEL)
4585 continue;
4586
4587 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4588 btf_verifier_log(env, fmt_str,
4589 __btf_name_by_offset(btf, enums[i].name_off),
4590 btf_enum64_value(enums + i));
4591 }
4592
4593 return meta_needed;
4594 }
4595
btf_enum64_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)4596 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4597 u32 type_id, void *data, u8 bits_offset,
4598 struct btf_show *show)
4599 {
4600 const struct btf_enum64 *enums = btf_type_enum64(t);
4601 u32 i, nr_enums = btf_type_vlen(t);
4602 void *safe_data;
4603 s64 v;
4604
4605 safe_data = btf_show_start_type(show, t, type_id, data);
4606 if (!safe_data)
4607 return;
4608
4609 v = *(u64 *)safe_data;
4610
4611 for (i = 0; i < nr_enums; i++) {
4612 if (v != btf_enum64_value(enums + i))
4613 continue;
4614
4615 btf_show_type_value(show, "%s",
4616 __btf_name_by_offset(btf,
4617 enums[i].name_off));
4618
4619 btf_show_end_type(show);
4620 return;
4621 }
4622
4623 if (btf_type_kflag(t))
4624 btf_show_type_value(show, "%lld", v);
4625 else
4626 btf_show_type_value(show, "%llu", v);
4627 btf_show_end_type(show);
4628 }
4629
4630 static const struct btf_kind_operations enum64_ops = {
4631 .check_meta = btf_enum64_check_meta,
4632 .resolve = btf_df_resolve,
4633 .check_member = btf_enum_check_member,
4634 .check_kflag_member = btf_enum_check_kflag_member,
4635 .log_details = btf_enum_log,
4636 .show = btf_enum64_show,
4637 };
4638
btf_func_proto_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4639 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4640 const struct btf_type *t,
4641 u32 meta_left)
4642 {
4643 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4644
4645 if (meta_left < meta_needed) {
4646 btf_verifier_log_basic(env, t,
4647 "meta_left:%u meta_needed:%u",
4648 meta_left, meta_needed);
4649 return -EINVAL;
4650 }
4651
4652 if (t->name_off) {
4653 btf_verifier_log_type(env, t, "Invalid name");
4654 return -EINVAL;
4655 }
4656
4657 if (btf_type_kflag(t)) {
4658 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4659 return -EINVAL;
4660 }
4661
4662 btf_verifier_log_type(env, t, NULL);
4663
4664 return meta_needed;
4665 }
4666
btf_func_proto_log(struct btf_verifier_env * env,const struct btf_type * t)4667 static void btf_func_proto_log(struct btf_verifier_env *env,
4668 const struct btf_type *t)
4669 {
4670 const struct btf_param *args = (const struct btf_param *)(t + 1);
4671 u16 nr_args = btf_type_vlen(t), i;
4672
4673 btf_verifier_log(env, "return=%u args=(", t->type);
4674 if (!nr_args) {
4675 btf_verifier_log(env, "void");
4676 goto done;
4677 }
4678
4679 if (nr_args == 1 && !args[0].type) {
4680 /* Only one vararg */
4681 btf_verifier_log(env, "vararg");
4682 goto done;
4683 }
4684
4685 btf_verifier_log(env, "%u %s", args[0].type,
4686 __btf_name_by_offset(env->btf,
4687 args[0].name_off));
4688 for (i = 1; i < nr_args - 1; i++)
4689 btf_verifier_log(env, ", %u %s", args[i].type,
4690 __btf_name_by_offset(env->btf,
4691 args[i].name_off));
4692
4693 if (nr_args > 1) {
4694 const struct btf_param *last_arg = &args[nr_args - 1];
4695
4696 if (last_arg->type)
4697 btf_verifier_log(env, ", %u %s", last_arg->type,
4698 __btf_name_by_offset(env->btf,
4699 last_arg->name_off));
4700 else
4701 btf_verifier_log(env, ", vararg");
4702 }
4703
4704 done:
4705 btf_verifier_log(env, ")");
4706 }
4707
4708 static const struct btf_kind_operations func_proto_ops = {
4709 .check_meta = btf_func_proto_check_meta,
4710 .resolve = btf_df_resolve,
4711 /*
4712 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4713 * a struct's member.
4714 *
4715 * It should be a function pointer instead.
4716 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4717 *
4718 * Hence, there is no btf_func_check_member().
4719 */
4720 .check_member = btf_df_check_member,
4721 .check_kflag_member = btf_df_check_kflag_member,
4722 .log_details = btf_func_proto_log,
4723 .show = btf_df_show,
4724 };
4725
btf_func_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4726 static s32 btf_func_check_meta(struct btf_verifier_env *env,
4727 const struct btf_type *t,
4728 u32 meta_left)
4729 {
4730 if (!t->name_off ||
4731 !btf_name_valid_identifier(env->btf, t->name_off)) {
4732 btf_verifier_log_type(env, t, "Invalid name");
4733 return -EINVAL;
4734 }
4735
4736 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4737 btf_verifier_log_type(env, t, "Invalid func linkage");
4738 return -EINVAL;
4739 }
4740
4741 if (btf_type_kflag(t)) {
4742 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4743 return -EINVAL;
4744 }
4745
4746 btf_verifier_log_type(env, t, NULL);
4747
4748 return 0;
4749 }
4750
btf_func_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)4751 static int btf_func_resolve(struct btf_verifier_env *env,
4752 const struct resolve_vertex *v)
4753 {
4754 const struct btf_type *t = v->t;
4755 u32 next_type_id = t->type;
4756 int err;
4757
4758 err = btf_func_check(env, t);
4759 if (err)
4760 return err;
4761
4762 env_stack_pop_resolved(env, next_type_id, 0);
4763 return 0;
4764 }
4765
4766 static const struct btf_kind_operations func_ops = {
4767 .check_meta = btf_func_check_meta,
4768 .resolve = btf_func_resolve,
4769 .check_member = btf_df_check_member,
4770 .check_kflag_member = btf_df_check_kflag_member,
4771 .log_details = btf_ref_type_log,
4772 .show = btf_df_show,
4773 };
4774
btf_var_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4775 static s32 btf_var_check_meta(struct btf_verifier_env *env,
4776 const struct btf_type *t,
4777 u32 meta_left)
4778 {
4779 const struct btf_var *var;
4780 u32 meta_needed = sizeof(*var);
4781
4782 if (meta_left < meta_needed) {
4783 btf_verifier_log_basic(env, t,
4784 "meta_left:%u meta_needed:%u",
4785 meta_left, meta_needed);
4786 return -EINVAL;
4787 }
4788
4789 if (btf_type_vlen(t)) {
4790 btf_verifier_log_type(env, t, "vlen != 0");
4791 return -EINVAL;
4792 }
4793
4794 if (btf_type_kflag(t)) {
4795 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4796 return -EINVAL;
4797 }
4798
4799 if (!t->name_off ||
4800 !btf_name_valid_identifier(env->btf, t->name_off)) {
4801 btf_verifier_log_type(env, t, "Invalid name");
4802 return -EINVAL;
4803 }
4804
4805 /* A var cannot be in type void */
4806 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4807 btf_verifier_log_type(env, t, "Invalid type_id");
4808 return -EINVAL;
4809 }
4810
4811 var = btf_type_var(t);
4812 if (var->linkage != BTF_VAR_STATIC &&
4813 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4814 btf_verifier_log_type(env, t, "Linkage not supported");
4815 return -EINVAL;
4816 }
4817
4818 btf_verifier_log_type(env, t, NULL);
4819
4820 return meta_needed;
4821 }
4822
btf_var_log(struct btf_verifier_env * env,const struct btf_type * t)4823 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4824 {
4825 const struct btf_var *var = btf_type_var(t);
4826
4827 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4828 }
4829
4830 static const struct btf_kind_operations var_ops = {
4831 .check_meta = btf_var_check_meta,
4832 .resolve = btf_var_resolve,
4833 .check_member = btf_df_check_member,
4834 .check_kflag_member = btf_df_check_kflag_member,
4835 .log_details = btf_var_log,
4836 .show = btf_var_show,
4837 };
4838
btf_datasec_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4839 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4840 const struct btf_type *t,
4841 u32 meta_left)
4842 {
4843 const struct btf_var_secinfo *vsi;
4844 u64 last_vsi_end_off = 0, sum = 0;
4845 u32 i, meta_needed;
4846
4847 meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4848 if (meta_left < meta_needed) {
4849 btf_verifier_log_basic(env, t,
4850 "meta_left:%u meta_needed:%u",
4851 meta_left, meta_needed);
4852 return -EINVAL;
4853 }
4854
4855 if (!t->size) {
4856 btf_verifier_log_type(env, t, "size == 0");
4857 return -EINVAL;
4858 }
4859
4860 if (btf_type_kflag(t)) {
4861 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4862 return -EINVAL;
4863 }
4864
4865 if (!t->name_off ||
4866 !btf_name_valid_section(env->btf, t->name_off)) {
4867 btf_verifier_log_type(env, t, "Invalid name");
4868 return -EINVAL;
4869 }
4870
4871 btf_verifier_log_type(env, t, NULL);
4872
4873 for_each_vsi(i, t, vsi) {
4874 /* A var cannot be in type void */
4875 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4876 btf_verifier_log_vsi(env, t, vsi,
4877 "Invalid type_id");
4878 return -EINVAL;
4879 }
4880
4881 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4882 btf_verifier_log_vsi(env, t, vsi,
4883 "Invalid offset");
4884 return -EINVAL;
4885 }
4886
4887 if (!vsi->size || vsi->size > t->size) {
4888 btf_verifier_log_vsi(env, t, vsi,
4889 "Invalid size");
4890 return -EINVAL;
4891 }
4892
4893 last_vsi_end_off = vsi->offset + vsi->size;
4894 if (last_vsi_end_off > t->size) {
4895 btf_verifier_log_vsi(env, t, vsi,
4896 "Invalid offset+size");
4897 return -EINVAL;
4898 }
4899
4900 btf_verifier_log_vsi(env, t, vsi, NULL);
4901 sum += vsi->size;
4902 }
4903
4904 if (t->size < sum) {
4905 btf_verifier_log_type(env, t, "Invalid btf_info size");
4906 return -EINVAL;
4907 }
4908
4909 return meta_needed;
4910 }
4911
btf_datasec_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)4912 static int btf_datasec_resolve(struct btf_verifier_env *env,
4913 const struct resolve_vertex *v)
4914 {
4915 const struct btf_var_secinfo *vsi;
4916 struct btf *btf = env->btf;
4917 u16 i;
4918
4919 env->resolve_mode = RESOLVE_TBD;
4920 for_each_vsi_from(i, v->next_member, v->t, vsi) {
4921 u32 var_type_id = vsi->type, type_id, type_size = 0;
4922 const struct btf_type *var_type = btf_type_by_id(env->btf,
4923 var_type_id);
4924 if (!var_type || !btf_type_is_var(var_type)) {
4925 btf_verifier_log_vsi(env, v->t, vsi,
4926 "Not a VAR kind member");
4927 return -EINVAL;
4928 }
4929
4930 if (!env_type_is_resolve_sink(env, var_type) &&
4931 !env_type_is_resolved(env, var_type_id)) {
4932 env_stack_set_next_member(env, i + 1);
4933 return env_stack_push(env, var_type, var_type_id);
4934 }
4935
4936 type_id = var_type->type;
4937 if (!btf_type_id_size(btf, &type_id, &type_size)) {
4938 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4939 return -EINVAL;
4940 }
4941
4942 if (vsi->size < type_size) {
4943 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4944 return -EINVAL;
4945 }
4946 }
4947
4948 env_stack_pop_resolved(env, 0, 0);
4949 return 0;
4950 }
4951
btf_datasec_log(struct btf_verifier_env * env,const struct btf_type * t)4952 static void btf_datasec_log(struct btf_verifier_env *env,
4953 const struct btf_type *t)
4954 {
4955 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4956 }
4957
btf_datasec_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)4958 static void btf_datasec_show(const struct btf *btf,
4959 const struct btf_type *t, u32 type_id,
4960 void *data, u8 bits_offset,
4961 struct btf_show *show)
4962 {
4963 const struct btf_var_secinfo *vsi;
4964 const struct btf_type *var;
4965 u32 i;
4966
4967 if (!btf_show_start_type(show, t, type_id, data))
4968 return;
4969
4970 btf_show_type_value(show, "section (\"%s\") = {",
4971 __btf_name_by_offset(btf, t->name_off));
4972 for_each_vsi(i, t, vsi) {
4973 var = btf_type_by_id(btf, vsi->type);
4974 if (i)
4975 btf_show(show, ",");
4976 btf_type_ops(var)->show(btf, var, vsi->type,
4977 data + vsi->offset, bits_offset, show);
4978 }
4979 btf_show_end_type(show);
4980 }
4981
4982 static const struct btf_kind_operations datasec_ops = {
4983 .check_meta = btf_datasec_check_meta,
4984 .resolve = btf_datasec_resolve,
4985 .check_member = btf_df_check_member,
4986 .check_kflag_member = btf_df_check_kflag_member,
4987 .log_details = btf_datasec_log,
4988 .show = btf_datasec_show,
4989 };
4990
btf_float_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4991 static s32 btf_float_check_meta(struct btf_verifier_env *env,
4992 const struct btf_type *t,
4993 u32 meta_left)
4994 {
4995 if (btf_type_vlen(t)) {
4996 btf_verifier_log_type(env, t, "vlen != 0");
4997 return -EINVAL;
4998 }
4999
5000 if (btf_type_kflag(t)) {
5001 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
5002 return -EINVAL;
5003 }
5004
5005 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
5006 t->size != 16) {
5007 btf_verifier_log_type(env, t, "Invalid type_size");
5008 return -EINVAL;
5009 }
5010
5011 btf_verifier_log_type(env, t, NULL);
5012
5013 return 0;
5014 }
5015
btf_float_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)5016 static int btf_float_check_member(struct btf_verifier_env *env,
5017 const struct btf_type *struct_type,
5018 const struct btf_member *member,
5019 const struct btf_type *member_type)
5020 {
5021 u64 start_offset_bytes;
5022 u64 end_offset_bytes;
5023 u64 misalign_bits;
5024 u64 align_bytes;
5025 u64 align_bits;
5026
5027 /* Different architectures have different alignment requirements, so
5028 * here we check only for the reasonable minimum. This way we ensure
5029 * that types after CO-RE can pass the kernel BTF verifier.
5030 */
5031 align_bytes = min_t(u64, sizeof(void *), member_type->size);
5032 align_bits = align_bytes * BITS_PER_BYTE;
5033 div64_u64_rem(member->offset, align_bits, &misalign_bits);
5034 if (misalign_bits) {
5035 btf_verifier_log_member(env, struct_type, member,
5036 "Member is not properly aligned");
5037 return -EINVAL;
5038 }
5039
5040 start_offset_bytes = member->offset / BITS_PER_BYTE;
5041 end_offset_bytes = start_offset_bytes + member_type->size;
5042 if (end_offset_bytes > struct_type->size) {
5043 btf_verifier_log_member(env, struct_type, member,
5044 "Member exceeds struct_size");
5045 return -EINVAL;
5046 }
5047
5048 return 0;
5049 }
5050
btf_float_log(struct btf_verifier_env * env,const struct btf_type * t)5051 static void btf_float_log(struct btf_verifier_env *env,
5052 const struct btf_type *t)
5053 {
5054 btf_verifier_log(env, "size=%u", t->size);
5055 }
5056
5057 static const struct btf_kind_operations float_ops = {
5058 .check_meta = btf_float_check_meta,
5059 .resolve = btf_df_resolve,
5060 .check_member = btf_float_check_member,
5061 .check_kflag_member = btf_generic_check_kflag_member,
5062 .log_details = btf_float_log,
5063 .show = btf_df_show,
5064 };
5065
btf_decl_tag_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)5066 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
5067 const struct btf_type *t,
5068 u32 meta_left)
5069 {
5070 const struct btf_decl_tag *tag;
5071 u32 meta_needed = sizeof(*tag);
5072 s32 component_idx;
5073 const char *value;
5074
5075 if (meta_left < meta_needed) {
5076 btf_verifier_log_basic(env, t,
5077 "meta_left:%u meta_needed:%u",
5078 meta_left, meta_needed);
5079 return -EINVAL;
5080 }
5081
5082 value = btf_name_by_offset(env->btf, t->name_off);
5083 if (!value || !value[0]) {
5084 btf_verifier_log_type(env, t, "Invalid value");
5085 return -EINVAL;
5086 }
5087
5088 if (btf_type_vlen(t)) {
5089 btf_verifier_log_type(env, t, "vlen != 0");
5090 return -EINVAL;
5091 }
5092
5093 component_idx = btf_type_decl_tag(t)->component_idx;
5094 if (component_idx < -1) {
5095 btf_verifier_log_type(env, t, "Invalid component_idx");
5096 return -EINVAL;
5097 }
5098
5099 btf_verifier_log_type(env, t, NULL);
5100
5101 return meta_needed;
5102 }
5103
btf_decl_tag_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)5104 static int btf_decl_tag_resolve(struct btf_verifier_env *env,
5105 const struct resolve_vertex *v)
5106 {
5107 const struct btf_type *next_type;
5108 const struct btf_type *t = v->t;
5109 u32 next_type_id = t->type;
5110 struct btf *btf = env->btf;
5111 s32 component_idx;
5112 u32 vlen;
5113
5114 next_type = btf_type_by_id(btf, next_type_id);
5115 if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
5116 btf_verifier_log_type(env, v->t, "Invalid type_id");
5117 return -EINVAL;
5118 }
5119
5120 if (!env_type_is_resolve_sink(env, next_type) &&
5121 !env_type_is_resolved(env, next_type_id))
5122 return env_stack_push(env, next_type, next_type_id);
5123
5124 component_idx = btf_type_decl_tag(t)->component_idx;
5125 if (component_idx != -1) {
5126 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
5127 btf_verifier_log_type(env, v->t, "Invalid component_idx");
5128 return -EINVAL;
5129 }
5130
5131 if (btf_type_is_struct(next_type)) {
5132 vlen = btf_type_vlen(next_type);
5133 } else {
5134 /* next_type should be a function */
5135 next_type = btf_type_by_id(btf, next_type->type);
5136 vlen = btf_type_vlen(next_type);
5137 }
5138
5139 if ((u32)component_idx >= vlen) {
5140 btf_verifier_log_type(env, v->t, "Invalid component_idx");
5141 return -EINVAL;
5142 }
5143 }
5144
5145 env_stack_pop_resolved(env, next_type_id, 0);
5146
5147 return 0;
5148 }
5149
btf_decl_tag_log(struct btf_verifier_env * env,const struct btf_type * t)5150 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
5151 {
5152 btf_verifier_log(env, "type=%u component_idx=%d", t->type,
5153 btf_type_decl_tag(t)->component_idx);
5154 }
5155
5156 static const struct btf_kind_operations decl_tag_ops = {
5157 .check_meta = btf_decl_tag_check_meta,
5158 .resolve = btf_decl_tag_resolve,
5159 .check_member = btf_df_check_member,
5160 .check_kflag_member = btf_df_check_kflag_member,
5161 .log_details = btf_decl_tag_log,
5162 .show = btf_df_show,
5163 };
5164
btf_func_proto_check(struct btf_verifier_env * env,const struct btf_type * t)5165 static int btf_func_proto_check(struct btf_verifier_env *env,
5166 const struct btf_type *t)
5167 {
5168 const struct btf_type *ret_type;
5169 const struct btf_param *args;
5170 const struct btf *btf;
5171 u16 nr_args, i;
5172 int err;
5173
5174 btf = env->btf;
5175 args = (const struct btf_param *)(t + 1);
5176 nr_args = btf_type_vlen(t);
5177
5178 /* Check func return type which could be "void" (t->type == 0) */
5179 if (t->type) {
5180 u32 ret_type_id = t->type;
5181
5182 ret_type = btf_type_by_id(btf, ret_type_id);
5183 if (!ret_type) {
5184 btf_verifier_log_type(env, t, "Invalid return type");
5185 return -EINVAL;
5186 }
5187
5188 if (btf_type_is_resolve_source_only(ret_type)) {
5189 btf_verifier_log_type(env, t, "Invalid return type");
5190 return -EINVAL;
5191 }
5192
5193 if (btf_type_needs_resolve(ret_type) &&
5194 !env_type_is_resolved(env, ret_type_id)) {
5195 err = btf_resolve(env, ret_type, ret_type_id);
5196 if (err)
5197 return err;
5198 }
5199
5200 /* Ensure the return type is a type that has a size */
5201 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
5202 btf_verifier_log_type(env, t, "Invalid return type");
5203 return -EINVAL;
5204 }
5205 }
5206
5207 if (!nr_args)
5208 return 0;
5209
5210 /* Last func arg type_id could be 0 if it is a vararg */
5211 if (!args[nr_args - 1].type) {
5212 if (args[nr_args - 1].name_off) {
5213 btf_verifier_log_type(env, t, "Invalid arg#%u",
5214 nr_args);
5215 return -EINVAL;
5216 }
5217 nr_args--;
5218 }
5219
5220 for (i = 0; i < nr_args; i++) {
5221 const struct btf_type *arg_type;
5222 u32 arg_type_id;
5223
5224 arg_type_id = args[i].type;
5225 arg_type = btf_type_by_id(btf, arg_type_id);
5226 if (!arg_type) {
5227 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5228 return -EINVAL;
5229 }
5230
5231 if (btf_type_is_resolve_source_only(arg_type)) {
5232 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5233 return -EINVAL;
5234 }
5235
5236 if (args[i].name_off &&
5237 (!btf_name_offset_valid(btf, args[i].name_off) ||
5238 !btf_name_valid_identifier(btf, args[i].name_off))) {
5239 btf_verifier_log_type(env, t,
5240 "Invalid arg#%u", i + 1);
5241 return -EINVAL;
5242 }
5243
5244 if (btf_type_needs_resolve(arg_type) &&
5245 !env_type_is_resolved(env, arg_type_id)) {
5246 err = btf_resolve(env, arg_type, arg_type_id);
5247 if (err)
5248 return err;
5249 }
5250
5251 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
5252 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5253 return -EINVAL;
5254 }
5255 }
5256
5257 return 0;
5258 }
5259
btf_func_check(struct btf_verifier_env * env,const struct btf_type * t)5260 static int btf_func_check(struct btf_verifier_env *env,
5261 const struct btf_type *t)
5262 {
5263 const struct btf_type *proto_type;
5264 const struct btf_param *args;
5265 const struct btf *btf;
5266 u16 nr_args, i;
5267
5268 btf = env->btf;
5269 proto_type = btf_type_by_id(btf, t->type);
5270
5271 if (!proto_type || !btf_type_is_func_proto(proto_type)) {
5272 btf_verifier_log_type(env, t, "Invalid type_id");
5273 return -EINVAL;
5274 }
5275
5276 args = (const struct btf_param *)(proto_type + 1);
5277 nr_args = btf_type_vlen(proto_type);
5278 for (i = 0; i < nr_args; i++) {
5279 if (!args[i].name_off && args[i].type) {
5280 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5281 return -EINVAL;
5282 }
5283 }
5284
5285 return 0;
5286 }
5287
5288 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
5289 [BTF_KIND_INT] = &int_ops,
5290 [BTF_KIND_PTR] = &ptr_ops,
5291 [BTF_KIND_ARRAY] = &array_ops,
5292 [BTF_KIND_STRUCT] = &struct_ops,
5293 [BTF_KIND_UNION] = &struct_ops,
5294 [BTF_KIND_ENUM] = &enum_ops,
5295 [BTF_KIND_FWD] = &fwd_ops,
5296 [BTF_KIND_TYPEDEF] = &modifier_ops,
5297 [BTF_KIND_VOLATILE] = &modifier_ops,
5298 [BTF_KIND_CONST] = &modifier_ops,
5299 [BTF_KIND_RESTRICT] = &modifier_ops,
5300 [BTF_KIND_FUNC] = &func_ops,
5301 [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
5302 [BTF_KIND_VAR] = &var_ops,
5303 [BTF_KIND_DATASEC] = &datasec_ops,
5304 [BTF_KIND_FLOAT] = &float_ops,
5305 [BTF_KIND_DECL_TAG] = &decl_tag_ops,
5306 [BTF_KIND_TYPE_TAG] = &modifier_ops,
5307 [BTF_KIND_ENUM64] = &enum64_ops,
5308 };
5309
btf_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)5310 static s32 btf_check_meta(struct btf_verifier_env *env,
5311 const struct btf_type *t,
5312 u32 meta_left)
5313 {
5314 u32 saved_meta_left = meta_left;
5315 s32 var_meta_size;
5316
5317 if (meta_left < sizeof(*t)) {
5318 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
5319 env->log_type_id, meta_left, sizeof(*t));
5320 return -EINVAL;
5321 }
5322 meta_left -= sizeof(*t);
5323
5324 if (t->info & ~BTF_INFO_MASK) {
5325 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
5326 env->log_type_id, t->info);
5327 return -EINVAL;
5328 }
5329
5330 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
5331 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
5332 btf_verifier_log(env, "[%u] Invalid kind:%u",
5333 env->log_type_id, BTF_INFO_KIND(t->info));
5334 return -EINVAL;
5335 }
5336
5337 if (!btf_name_offset_valid(env->btf, t->name_off)) {
5338 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
5339 env->log_type_id, t->name_off);
5340 return -EINVAL;
5341 }
5342
5343 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
5344 if (var_meta_size < 0)
5345 return var_meta_size;
5346
5347 meta_left -= var_meta_size;
5348
5349 return saved_meta_left - meta_left;
5350 }
5351
btf_check_all_metas(struct btf_verifier_env * env)5352 static int btf_check_all_metas(struct btf_verifier_env *env)
5353 {
5354 struct btf *btf = env->btf;
5355 struct btf_header *hdr;
5356 void *cur, *end;
5357
5358 hdr = &btf->hdr;
5359 cur = btf->nohdr_data + hdr->type_off;
5360 end = cur + hdr->type_len;
5361
5362 env->log_type_id = btf->base_btf ? btf->start_id : 1;
5363 while (cur < end) {
5364 struct btf_type *t = cur;
5365 s32 meta_size;
5366
5367 meta_size = btf_check_meta(env, t, end - cur);
5368 if (meta_size < 0)
5369 return meta_size;
5370
5371 btf_add_type(env, t);
5372 cur += meta_size;
5373 env->log_type_id++;
5374 }
5375
5376 return 0;
5377 }
5378
btf_resolve_valid(struct btf_verifier_env * env,const struct btf_type * t,u32 type_id)5379 static bool btf_resolve_valid(struct btf_verifier_env *env,
5380 const struct btf_type *t,
5381 u32 type_id)
5382 {
5383 struct btf *btf = env->btf;
5384
5385 if (!env_type_is_resolved(env, type_id))
5386 return false;
5387
5388 if (btf_type_is_struct(t) || btf_type_is_datasec(t))
5389 return !btf_resolved_type_id(btf, type_id) &&
5390 !btf_resolved_type_size(btf, type_id);
5391
5392 if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
5393 return btf_resolved_type_id(btf, type_id) &&
5394 !btf_resolved_type_size(btf, type_id);
5395
5396 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
5397 btf_type_is_var(t)) {
5398 t = btf_type_id_resolve(btf, &type_id);
5399 return t &&
5400 !btf_type_is_modifier(t) &&
5401 !btf_type_is_var(t) &&
5402 !btf_type_is_datasec(t);
5403 }
5404
5405 if (btf_type_is_array(t)) {
5406 const struct btf_array *array = btf_type_array(t);
5407 const struct btf_type *elem_type;
5408 u32 elem_type_id = array->type;
5409 u32 elem_size;
5410
5411 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
5412 return elem_type && !btf_type_is_modifier(elem_type) &&
5413 (array->nelems * elem_size ==
5414 btf_resolved_type_size(btf, type_id));
5415 }
5416
5417 return false;
5418 }
5419
btf_resolve(struct btf_verifier_env * env,const struct btf_type * t,u32 type_id)5420 static int btf_resolve(struct btf_verifier_env *env,
5421 const struct btf_type *t, u32 type_id)
5422 {
5423 u32 save_log_type_id = env->log_type_id;
5424 const struct resolve_vertex *v;
5425 int err = 0;
5426
5427 env->resolve_mode = RESOLVE_TBD;
5428 env_stack_push(env, t, type_id);
5429 while (!err && (v = env_stack_peak(env))) {
5430 env->log_type_id = v->type_id;
5431 err = btf_type_ops(v->t)->resolve(env, v);
5432 }
5433
5434 env->log_type_id = type_id;
5435 if (err == -E2BIG) {
5436 btf_verifier_log_type(env, t,
5437 "Exceeded max resolving depth:%u",
5438 MAX_RESOLVE_DEPTH);
5439 } else if (err == -EEXIST) {
5440 btf_verifier_log_type(env, t, "Loop detected");
5441 }
5442
5443 /* Final sanity check */
5444 if (!err && !btf_resolve_valid(env, t, type_id)) {
5445 btf_verifier_log_type(env, t, "Invalid resolve state");
5446 err = -EINVAL;
5447 }
5448
5449 env->log_type_id = save_log_type_id;
5450 return err;
5451 }
5452
btf_check_all_types(struct btf_verifier_env * env)5453 static int btf_check_all_types(struct btf_verifier_env *env)
5454 {
5455 struct btf *btf = env->btf;
5456 const struct btf_type *t;
5457 u32 type_id, i;
5458 int err;
5459
5460 err = env_resolve_init(env);
5461 if (err)
5462 return err;
5463
5464 env->phase++;
5465 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5466 type_id = btf->start_id + i;
5467 t = btf_type_by_id(btf, type_id);
5468
5469 env->log_type_id = type_id;
5470 if (btf_type_needs_resolve(t) &&
5471 !env_type_is_resolved(env, type_id)) {
5472 err = btf_resolve(env, t, type_id);
5473 if (err)
5474 return err;
5475 }
5476
5477 if (btf_type_is_func_proto(t)) {
5478 err = btf_func_proto_check(env, t);
5479 if (err)
5480 return err;
5481 }
5482 }
5483
5484 return 0;
5485 }
5486
btf_parse_type_sec(struct btf_verifier_env * env)5487 static int btf_parse_type_sec(struct btf_verifier_env *env)
5488 {
5489 const struct btf_header *hdr = &env->btf->hdr;
5490 int err;
5491
5492 /* Type section must align to 4 bytes */
5493 if (hdr->type_off & (sizeof(u32) - 1)) {
5494 btf_verifier_log(env, "Unaligned type_off");
5495 return -EINVAL;
5496 }
5497
5498 if (!env->btf->base_btf && !hdr->type_len) {
5499 btf_verifier_log(env, "No type found");
5500 return -EINVAL;
5501 }
5502
5503 err = btf_check_all_metas(env);
5504 if (err)
5505 return err;
5506
5507 return btf_check_all_types(env);
5508 }
5509
btf_parse_str_sec(struct btf_verifier_env * env)5510 static int btf_parse_str_sec(struct btf_verifier_env *env)
5511 {
5512 const struct btf_header *hdr;
5513 struct btf *btf = env->btf;
5514 const char *start, *end;
5515
5516 hdr = &btf->hdr;
5517 start = btf->nohdr_data + hdr->str_off;
5518 end = start + hdr->str_len;
5519
5520 if (end != btf->data + btf->data_size) {
5521 btf_verifier_log(env, "String section is not at the end");
5522 return -EINVAL;
5523 }
5524
5525 btf->strings = start;
5526
5527 if (btf->base_btf && !hdr->str_len)
5528 return 0;
5529 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5530 btf_verifier_log(env, "Invalid string section");
5531 return -EINVAL;
5532 }
5533 if (!btf->base_btf && start[0]) {
5534 btf_verifier_log(env, "Invalid string section");
5535 return -EINVAL;
5536 }
5537
5538 return 0;
5539 }
5540
5541 static const size_t btf_sec_info_offset[] = {
5542 offsetof(struct btf_header, type_off),
5543 offsetof(struct btf_header, str_off),
5544 };
5545
btf_sec_info_cmp(const void * a,const void * b)5546 static int btf_sec_info_cmp(const void *a, const void *b)
5547 {
5548 const struct btf_sec_info *x = a;
5549 const struct btf_sec_info *y = b;
5550
5551 return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5552 }
5553
btf_check_sec_info(struct btf_verifier_env * env,u32 btf_data_size)5554 static int btf_check_sec_info(struct btf_verifier_env *env,
5555 u32 btf_data_size)
5556 {
5557 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
5558 u32 total, expected_total, i;
5559 const struct btf_header *hdr;
5560 const struct btf *btf;
5561
5562 btf = env->btf;
5563 hdr = &btf->hdr;
5564
5565 /* Populate the secs from hdr */
5566 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
5567 secs[i] = *(struct btf_sec_info *)((void *)hdr +
5568 btf_sec_info_offset[i]);
5569
5570 sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5571 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
5572
5573 /* Check for gaps and overlap among sections */
5574 total = 0;
5575 expected_total = btf_data_size - hdr->hdr_len;
5576 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
5577 if (expected_total < secs[i].off) {
5578 btf_verifier_log(env, "Invalid section offset");
5579 return -EINVAL;
5580 }
5581 if (total < secs[i].off) {
5582 /* gap */
5583 btf_verifier_log(env, "Unsupported section found");
5584 return -EINVAL;
5585 }
5586 if (total > secs[i].off) {
5587 btf_verifier_log(env, "Section overlap found");
5588 return -EINVAL;
5589 }
5590 if (expected_total - total < secs[i].len) {
5591 btf_verifier_log(env,
5592 "Total section length too long");
5593 return -EINVAL;
5594 }
5595 total += secs[i].len;
5596 }
5597
5598 /* There is data other than hdr and known sections */
5599 if (expected_total != total) {
5600 btf_verifier_log(env, "Unsupported section found");
5601 return -EINVAL;
5602 }
5603
5604 return 0;
5605 }
5606
btf_parse_hdr(struct btf_verifier_env * env)5607 static int btf_parse_hdr(struct btf_verifier_env *env)
5608 {
5609 u32 hdr_len, hdr_copy, btf_data_size;
5610 const struct btf_header *hdr;
5611 struct btf *btf;
5612
5613 btf = env->btf;
5614 btf_data_size = btf->data_size;
5615
5616 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
5617 btf_verifier_log(env, "hdr_len not found");
5618 return -EINVAL;
5619 }
5620
5621 hdr = btf->data;
5622 hdr_len = hdr->hdr_len;
5623 if (btf_data_size < hdr_len) {
5624 btf_verifier_log(env, "btf_header not found");
5625 return -EINVAL;
5626 }
5627
5628 /* Ensure the unsupported header fields are zero */
5629 if (hdr_len > sizeof(btf->hdr)) {
5630 u8 *expected_zero = btf->data + sizeof(btf->hdr);
5631 u8 *end = btf->data + hdr_len;
5632
5633 for (; expected_zero < end; expected_zero++) {
5634 if (*expected_zero) {
5635 btf_verifier_log(env, "Unsupported btf_header");
5636 return -E2BIG;
5637 }
5638 }
5639 }
5640
5641 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
5642 memcpy(&btf->hdr, btf->data, hdr_copy);
5643
5644 hdr = &btf->hdr;
5645
5646 btf_verifier_log_hdr(env, btf_data_size);
5647
5648 if (hdr->magic != BTF_MAGIC) {
5649 btf_verifier_log(env, "Invalid magic");
5650 return -EINVAL;
5651 }
5652
5653 if (hdr->version != BTF_VERSION) {
5654 btf_verifier_log(env, "Unsupported version");
5655 return -ENOTSUPP;
5656 }
5657
5658 if (hdr->flags) {
5659 btf_verifier_log(env, "Unsupported flags");
5660 return -ENOTSUPP;
5661 }
5662
5663 if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
5664 btf_verifier_log(env, "No data");
5665 return -EINVAL;
5666 }
5667
5668 return btf_check_sec_info(env, btf_data_size);
5669 }
5670
5671 static const char *alloc_obj_fields[] = {
5672 "bpf_spin_lock",
5673 "bpf_list_head",
5674 "bpf_list_node",
5675 "bpf_rb_root",
5676 "bpf_rb_node",
5677 "bpf_refcount",
5678 };
5679
5680 static struct btf_struct_metas *
btf_parse_struct_metas(struct bpf_verifier_log * log,struct btf * btf)5681 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5682 {
5683 struct btf_struct_metas *tab = NULL;
5684 struct btf_id_set *aof;
5685 int i, n, id, ret;
5686
5687 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5688 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5689
5690 aof = kmalloc_obj(*aof, GFP_KERNEL | __GFP_NOWARN);
5691 if (!aof)
5692 return ERR_PTR(-ENOMEM);
5693 aof->cnt = 0;
5694
5695 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5696 /* Try to find whether this special type exists in user BTF, and
5697 * if so remember its ID so we can easily find it among members
5698 * of structs that we iterate in the next loop.
5699 */
5700 struct btf_id_set *new_aof;
5701
5702 id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5703 if (id < 0)
5704 continue;
5705
5706 new_aof = krealloc(aof, struct_size(new_aof, ids, aof->cnt + 1),
5707 GFP_KERNEL | __GFP_NOWARN);
5708 if (!new_aof) {
5709 ret = -ENOMEM;
5710 goto free_aof;
5711 }
5712 aof = new_aof;
5713 aof->ids[aof->cnt++] = id;
5714 }
5715
5716 n = btf_nr_types(btf);
5717 for (i = 1; i < n; i++) {
5718 /* Try to find if there are kptrs in user BTF and remember their ID */
5719 struct btf_id_set *new_aof;
5720 struct btf_field_info tmp;
5721 const struct btf_type *t;
5722
5723 t = btf_type_by_id(btf, i);
5724 if (!t) {
5725 ret = -EINVAL;
5726 goto free_aof;
5727 }
5728
5729 ret = btf_find_kptr(btf, t, 0, 0, &tmp, BPF_KPTR);
5730 if (ret != BTF_FIELD_FOUND)
5731 continue;
5732
5733 new_aof = krealloc(aof, struct_size(new_aof, ids, aof->cnt + 1),
5734 GFP_KERNEL | __GFP_NOWARN);
5735 if (!new_aof) {
5736 ret = -ENOMEM;
5737 goto free_aof;
5738 }
5739 aof = new_aof;
5740 aof->ids[aof->cnt++] = i;
5741 }
5742
5743 if (!aof->cnt) {
5744 kfree(aof);
5745 return NULL;
5746 }
5747 sort(&aof->ids, aof->cnt, sizeof(aof->ids[0]), btf_id_cmp_func, NULL);
5748
5749 for (i = 1; i < n; i++) {
5750 struct btf_struct_metas *new_tab;
5751 const struct btf_member *member;
5752 struct btf_struct_meta *type;
5753 struct btf_record *record;
5754 const struct btf_type *t;
5755 int j, tab_cnt;
5756
5757 t = btf_type_by_id(btf, i);
5758 if (!__btf_type_is_struct(t))
5759 continue;
5760
5761 cond_resched();
5762
5763 for_each_member(j, t, member) {
5764 if (btf_id_set_contains(aof, member->type))
5765 goto parse;
5766 }
5767 continue;
5768 parse:
5769 tab_cnt = tab ? tab->cnt : 0;
5770 new_tab = krealloc(tab, struct_size(new_tab, types, tab_cnt + 1),
5771 GFP_KERNEL | __GFP_NOWARN);
5772 if (!new_tab) {
5773 ret = -ENOMEM;
5774 goto free;
5775 }
5776 if (!tab)
5777 new_tab->cnt = 0;
5778 tab = new_tab;
5779
5780 type = &tab->types[tab->cnt];
5781 type->btf_id = i;
5782 record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE |
5783 BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT |
5784 BPF_KPTR, t->size);
5785 /* The record cannot be unset, treat it as an error if so */
5786 if (IS_ERR_OR_NULL(record)) {
5787 ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5788 goto free;
5789 }
5790 type->record = record;
5791 tab->cnt++;
5792 }
5793 kfree(aof);
5794 return tab;
5795 free:
5796 btf_struct_metas_free(tab);
5797 free_aof:
5798 kfree(aof);
5799 return ERR_PTR(ret);
5800 }
5801
btf_find_struct_meta(const struct btf * btf,u32 btf_id)5802 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5803 {
5804 struct btf_struct_metas *tab;
5805
5806 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5807 tab = btf->struct_meta_tab;
5808 if (!tab)
5809 return NULL;
5810 return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5811 }
5812
btf_check_type_tags(struct btf_verifier_env * env,struct btf * btf,int start_id)5813 static int btf_check_type_tags(struct btf_verifier_env *env,
5814 struct btf *btf, int start_id)
5815 {
5816 int i, n, good_id = start_id - 1;
5817 bool in_tags;
5818
5819 n = btf_nr_types(btf);
5820 for (i = start_id; i < n; i++) {
5821 const struct btf_type *t;
5822 int chain_limit = 32;
5823 u32 cur_id = i;
5824
5825 t = btf_type_by_id(btf, i);
5826 if (!t)
5827 return -EINVAL;
5828 if (!btf_type_is_modifier(t))
5829 continue;
5830
5831 cond_resched();
5832
5833 in_tags = btf_type_is_type_tag(t);
5834 while (btf_type_is_modifier(t)) {
5835 if (!chain_limit--) {
5836 btf_verifier_log(env, "Max chain length or cycle detected");
5837 return -ELOOP;
5838 }
5839 if (btf_type_is_type_tag(t)) {
5840 if (!in_tags) {
5841 btf_verifier_log(env, "Type tags don't precede modifiers");
5842 return -EINVAL;
5843 }
5844 } else if (in_tags) {
5845 in_tags = false;
5846 }
5847 if (cur_id <= good_id)
5848 break;
5849 /* Move to next type */
5850 cur_id = t->type;
5851 t = btf_type_by_id(btf, cur_id);
5852 if (!t)
5853 return -EINVAL;
5854 }
5855 good_id = i;
5856 }
5857 return 0;
5858 }
5859
finalize_log(struct bpf_verifier_log * log,bpfptr_t uattr,u32 uattr_size)5860 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size)
5861 {
5862 u32 log_true_size;
5863 int err;
5864
5865 err = bpf_vlog_finalize(log, &log_true_size);
5866
5867 if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) &&
5868 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size),
5869 &log_true_size, sizeof(log_true_size)))
5870 err = -EFAULT;
5871
5872 return err;
5873 }
5874
btf_parse(const union bpf_attr * attr,bpfptr_t uattr,u32 uattr_size)5875 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
5876 {
5877 bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel);
5878 char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf);
5879 struct btf_struct_metas *struct_meta_tab;
5880 struct btf_verifier_env *env = NULL;
5881 struct btf *btf = NULL;
5882 u8 *data;
5883 int err, ret;
5884
5885 if (attr->btf_size > BTF_MAX_SIZE)
5886 return ERR_PTR(-E2BIG);
5887
5888 env = kzalloc_obj(*env, GFP_KERNEL | __GFP_NOWARN);
5889 if (!env)
5890 return ERR_PTR(-ENOMEM);
5891
5892 /* user could have requested verbose verifier output
5893 * and supplied buffer to store the verification trace
5894 */
5895 err = bpf_vlog_init(&env->log, attr->btf_log_level,
5896 log_ubuf, attr->btf_log_size);
5897 if (err)
5898 goto errout_free;
5899
5900 btf = kzalloc_obj(*btf, GFP_KERNEL | __GFP_NOWARN);
5901 if (!btf) {
5902 err = -ENOMEM;
5903 goto errout;
5904 }
5905 env->btf = btf;
5906 btf->named_start_id = 0;
5907
5908 data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN);
5909 if (!data) {
5910 err = -ENOMEM;
5911 goto errout;
5912 }
5913
5914 btf->data = data;
5915 btf->data_size = attr->btf_size;
5916
5917 if (copy_from_bpfptr(data, btf_data, attr->btf_size)) {
5918 err = -EFAULT;
5919 goto errout;
5920 }
5921
5922 err = btf_parse_hdr(env);
5923 if (err)
5924 goto errout;
5925
5926 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5927
5928 err = btf_parse_str_sec(env);
5929 if (err)
5930 goto errout;
5931
5932 err = btf_parse_type_sec(env);
5933 if (err)
5934 goto errout;
5935
5936 err = btf_check_type_tags(env, btf, 1);
5937 if (err)
5938 goto errout;
5939
5940 struct_meta_tab = btf_parse_struct_metas(&env->log, btf);
5941 if (IS_ERR(struct_meta_tab)) {
5942 err = PTR_ERR(struct_meta_tab);
5943 goto errout;
5944 }
5945 btf->struct_meta_tab = struct_meta_tab;
5946
5947 if (struct_meta_tab) {
5948 int i;
5949
5950 for (i = 0; i < struct_meta_tab->cnt; i++) {
5951 err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5952 if (err < 0)
5953 goto errout_meta;
5954 }
5955 }
5956
5957 err = finalize_log(&env->log, uattr, uattr_size);
5958 if (err)
5959 goto errout_free;
5960
5961 btf_verifier_env_free(env);
5962 refcount_set(&btf->refcnt, 1);
5963 return btf;
5964
5965 errout_meta:
5966 btf_free_struct_meta_tab(btf);
5967 errout:
5968 /* overwrite err with -ENOSPC or -EFAULT */
5969 ret = finalize_log(&env->log, uattr, uattr_size);
5970 if (ret)
5971 err = ret;
5972 errout_free:
5973 btf_verifier_env_free(env);
5974 if (btf)
5975 btf_free(btf);
5976 return ERR_PTR(err);
5977 }
5978
5979 extern char __start_BTF[];
5980 extern char __stop_BTF[];
5981 extern struct btf *btf_vmlinux;
5982
5983 #define BPF_MAP_TYPE(_id, _ops)
5984 #define BPF_LINK_TYPE(_id, _name)
5985 static union {
5986 struct bpf_ctx_convert {
5987 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5988 prog_ctx_type _id##_prog; \
5989 kern_ctx_type _id##_kern;
5990 #include <linux/bpf_types.h>
5991 #undef BPF_PROG_TYPE
5992 } *__t;
5993 /* 't' is written once under lock. Read many times. */
5994 const struct btf_type *t;
5995 } bpf_ctx_convert;
5996 enum {
5997 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5998 __ctx_convert##_id,
5999 #include <linux/bpf_types.h>
6000 #undef BPF_PROG_TYPE
6001 __ctx_convert_unused, /* to avoid empty enum in extreme .config */
6002 };
6003 static u8 bpf_ctx_convert_map[] = {
6004 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
6005 [_id] = __ctx_convert##_id,
6006 #include <linux/bpf_types.h>
6007 #undef BPF_PROG_TYPE
6008 0, /* avoid empty array */
6009 };
6010 #undef BPF_MAP_TYPE
6011 #undef BPF_LINK_TYPE
6012
find_canonical_prog_ctx_type(enum bpf_prog_type prog_type)6013 static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type)
6014 {
6015 const struct btf_type *conv_struct;
6016 const struct btf_member *ctx_type;
6017
6018 conv_struct = bpf_ctx_convert.t;
6019 if (!conv_struct)
6020 return NULL;
6021 /* prog_type is valid bpf program type. No need for bounds check. */
6022 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
6023 /* ctx_type is a pointer to prog_ctx_type in vmlinux.
6024 * Like 'struct __sk_buff'
6025 */
6026 return btf_type_by_id(btf_vmlinux, ctx_type->type);
6027 }
6028
find_kern_ctx_type_id(enum bpf_prog_type prog_type)6029 static int find_kern_ctx_type_id(enum bpf_prog_type prog_type)
6030 {
6031 const struct btf_type *conv_struct;
6032 const struct btf_member *ctx_type;
6033
6034 conv_struct = bpf_ctx_convert.t;
6035 if (!conv_struct)
6036 return -EFAULT;
6037 /* prog_type is valid bpf program type. No need for bounds check. */
6038 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
6039 /* ctx_type is a pointer to prog_ctx_type in vmlinux.
6040 * Like 'struct sk_buff'
6041 */
6042 return ctx_type->type;
6043 }
6044
btf_is_projection_of(const char * pname,const char * tname)6045 bool btf_is_projection_of(const char *pname, const char *tname)
6046 {
6047 if (strcmp(pname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0)
6048 return true;
6049 if (strcmp(pname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0)
6050 return true;
6051 return false;
6052 }
6053
btf_is_prog_ctx_type(struct bpf_verifier_log * log,const struct btf * btf,const struct btf_type * t,enum bpf_prog_type prog_type,int arg)6054 bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
6055 const struct btf_type *t, enum bpf_prog_type prog_type,
6056 int arg)
6057 {
6058 const struct btf_type *ctx_type;
6059 const char *tname, *ctx_tname;
6060
6061 t = btf_type_by_id(btf, t->type);
6062
6063 /* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to
6064 * check before we skip all the typedef below.
6065 */
6066 if (prog_type == BPF_PROG_TYPE_KPROBE) {
6067 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
6068 t = btf_type_by_id(btf, t->type);
6069
6070 if (btf_type_is_typedef(t)) {
6071 tname = btf_name_by_offset(btf, t->name_off);
6072 if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
6073 return true;
6074 }
6075 }
6076
6077 while (btf_type_is_modifier(t))
6078 t = btf_type_by_id(btf, t->type);
6079 if (!btf_type_is_struct(t)) {
6080 /* Only pointer to struct is supported for now.
6081 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
6082 * is not supported yet.
6083 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
6084 */
6085 return false;
6086 }
6087 tname = btf_name_by_offset(btf, t->name_off);
6088 if (!tname) {
6089 bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
6090 return false;
6091 }
6092
6093 ctx_type = find_canonical_prog_ctx_type(prog_type);
6094 if (!ctx_type) {
6095 bpf_log(log, "btf_vmlinux is malformed\n");
6096 /* should not happen */
6097 return false;
6098 }
6099 again:
6100 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
6101 if (!ctx_tname) {
6102 /* should not happen */
6103 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
6104 return false;
6105 }
6106 /* program types without named context types work only with arg:ctx tag */
6107 if (ctx_tname[0] == '\0')
6108 return false;
6109 /* only compare that prog's ctx type name is the same as
6110 * kernel expects. No need to compare field by field.
6111 * It's ok for bpf prog to do:
6112 * struct __sk_buff {};
6113 * int socket_filter_bpf_prog(struct __sk_buff *skb)
6114 * { // no fields of skb are ever used }
6115 */
6116 if (btf_is_projection_of(ctx_tname, tname))
6117 return true;
6118 if (strcmp(ctx_tname, tname)) {
6119 /* bpf_user_pt_regs_t is a typedef, so resolve it to
6120 * underlying struct and check name again
6121 */
6122 if (!btf_type_is_modifier(ctx_type))
6123 return false;
6124 while (btf_type_is_modifier(ctx_type))
6125 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
6126 goto again;
6127 }
6128 return true;
6129 }
6130
6131 /* forward declarations for arch-specific underlying types of
6132 * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef
6133 * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still
6134 * works correctly with __builtin_types_compatible_p() on respective
6135 * architectures
6136 */
6137 struct user_regs_struct;
6138 struct user_pt_regs;
6139
btf_validate_prog_ctx_type(struct bpf_verifier_log * log,const struct btf * btf,const struct btf_type * t,int arg,enum bpf_prog_type prog_type,enum bpf_attach_type attach_type)6140 static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
6141 const struct btf_type *t, int arg,
6142 enum bpf_prog_type prog_type,
6143 enum bpf_attach_type attach_type)
6144 {
6145 const struct btf_type *ctx_type;
6146 const char *tname, *ctx_tname;
6147
6148 if (!btf_is_ptr(t)) {
6149 bpf_log(log, "arg#%d type isn't a pointer\n", arg);
6150 return -EINVAL;
6151 }
6152 t = btf_type_by_id(btf, t->type);
6153
6154 /* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */
6155 if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) {
6156 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
6157 t = btf_type_by_id(btf, t->type);
6158
6159 if (btf_type_is_typedef(t)) {
6160 tname = btf_name_by_offset(btf, t->name_off);
6161 if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
6162 return 0;
6163 }
6164 }
6165
6166 /* all other program types don't use typedefs for context type */
6167 while (btf_type_is_modifier(t))
6168 t = btf_type_by_id(btf, t->type);
6169
6170 /* `void *ctx __arg_ctx` is always valid */
6171 if (btf_type_is_void(t))
6172 return 0;
6173
6174 tname = btf_name_by_offset(btf, t->name_off);
6175 if (str_is_empty(tname)) {
6176 bpf_log(log, "arg#%d type doesn't have a name\n", arg);
6177 return -EINVAL;
6178 }
6179
6180 /* special cases */
6181 switch (prog_type) {
6182 case BPF_PROG_TYPE_KPROBE:
6183 if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6184 return 0;
6185 break;
6186 case BPF_PROG_TYPE_PERF_EVENT:
6187 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
6188 __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6189 return 0;
6190 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
6191 __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
6192 return 0;
6193 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
6194 __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
6195 return 0;
6196 break;
6197 case BPF_PROG_TYPE_RAW_TRACEPOINT:
6198 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
6199 /* allow u64* as ctx */
6200 if (btf_is_int(t) && t->size == 8)
6201 return 0;
6202 break;
6203 case BPF_PROG_TYPE_TRACING:
6204 switch (attach_type) {
6205 case BPF_TRACE_RAW_TP:
6206 /* tp_btf program is TRACING, so need special case here */
6207 if (__btf_type_is_struct(t) &&
6208 strcmp(tname, "bpf_raw_tracepoint_args") == 0)
6209 return 0;
6210 /* allow u64* as ctx */
6211 if (btf_is_int(t) && t->size == 8)
6212 return 0;
6213 break;
6214 case BPF_TRACE_ITER:
6215 /* allow struct bpf_iter__xxx types only */
6216 if (__btf_type_is_struct(t) &&
6217 strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0)
6218 return 0;
6219 break;
6220 case BPF_TRACE_FENTRY:
6221 case BPF_TRACE_FEXIT:
6222 case BPF_MODIFY_RETURN:
6223 case BPF_TRACE_FSESSION:
6224 /* allow u64* as ctx */
6225 if (btf_is_int(t) && t->size == 8)
6226 return 0;
6227 break;
6228 default:
6229 break;
6230 }
6231 break;
6232 case BPF_PROG_TYPE_LSM:
6233 case BPF_PROG_TYPE_STRUCT_OPS:
6234 /* allow u64* as ctx */
6235 if (btf_is_int(t) && t->size == 8)
6236 return 0;
6237 break;
6238 case BPF_PROG_TYPE_TRACEPOINT:
6239 case BPF_PROG_TYPE_SYSCALL:
6240 case BPF_PROG_TYPE_EXT:
6241 return 0; /* anything goes */
6242 default:
6243 break;
6244 }
6245
6246 ctx_type = find_canonical_prog_ctx_type(prog_type);
6247 if (!ctx_type) {
6248 /* should not happen */
6249 bpf_log(log, "btf_vmlinux is malformed\n");
6250 return -EINVAL;
6251 }
6252
6253 /* resolve typedefs and check that underlying structs are matching as well */
6254 while (btf_type_is_modifier(ctx_type))
6255 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
6256
6257 /* if program type doesn't have distinctly named struct type for
6258 * context, then __arg_ctx argument can only be `void *`, which we
6259 * already checked above
6260 */
6261 if (!__btf_type_is_struct(ctx_type)) {
6262 bpf_log(log, "arg#%d should be void pointer\n", arg);
6263 return -EINVAL;
6264 }
6265
6266 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
6267 if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) {
6268 bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname);
6269 return -EINVAL;
6270 }
6271
6272 return 0;
6273 }
6274
btf_translate_to_vmlinux(struct bpf_verifier_log * log,struct btf * btf,const struct btf_type * t,enum bpf_prog_type prog_type,int arg)6275 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
6276 struct btf *btf,
6277 const struct btf_type *t,
6278 enum bpf_prog_type prog_type,
6279 int arg)
6280 {
6281 if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg))
6282 return -ENOENT;
6283 return find_kern_ctx_type_id(prog_type);
6284 }
6285
get_kern_ctx_btf_id(struct bpf_verifier_log * log,enum bpf_prog_type prog_type)6286 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
6287 {
6288 const struct btf_member *kctx_member;
6289 const struct btf_type *conv_struct;
6290 const struct btf_type *kctx_type;
6291 u32 kctx_type_id;
6292
6293 conv_struct = bpf_ctx_convert.t;
6294 /* get member for kernel ctx type */
6295 kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
6296 kctx_type_id = kctx_member->type;
6297 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
6298 if (!btf_type_is_struct(kctx_type)) {
6299 bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
6300 return -EINVAL;
6301 }
6302
6303 return kctx_type_id;
6304 }
6305
BTF_ID_LIST_SINGLE(bpf_ctx_convert_btf_id,struct,bpf_ctx_convert)6306 BTF_ID_LIST_SINGLE(bpf_ctx_convert_btf_id, struct, bpf_ctx_convert)
6307
6308 static struct btf *btf_parse_base(struct btf_verifier_env *env, const char *name,
6309 void *data, unsigned int data_size)
6310 {
6311 struct btf *btf = NULL;
6312 int err;
6313
6314 if (!IS_ENABLED(CONFIG_DEBUG_INFO_BTF))
6315 return ERR_PTR(-ENOENT);
6316
6317 btf = kzalloc_obj(*btf, GFP_KERNEL | __GFP_NOWARN);
6318 if (!btf) {
6319 err = -ENOMEM;
6320 goto errout;
6321 }
6322 env->btf = btf;
6323
6324 btf->data = data;
6325 btf->data_size = data_size;
6326 btf->kernel_btf = true;
6327 btf->named_start_id = 0;
6328 strscpy(btf->name, name);
6329
6330 err = btf_parse_hdr(env);
6331 if (err)
6332 goto errout;
6333
6334 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6335
6336 err = btf_parse_str_sec(env);
6337 if (err)
6338 goto errout;
6339
6340 err = btf_check_all_metas(env);
6341 if (err)
6342 goto errout;
6343
6344 err = btf_check_type_tags(env, btf, 1);
6345 if (err)
6346 goto errout;
6347
6348 btf_check_sorted(btf);
6349 refcount_set(&btf->refcnt, 1);
6350
6351 return btf;
6352
6353 errout:
6354 if (btf) {
6355 kvfree(btf->types);
6356 kfree(btf);
6357 }
6358 return ERR_PTR(err);
6359 }
6360
btf_parse_vmlinux(void)6361 struct btf *btf_parse_vmlinux(void)
6362 {
6363 struct btf_verifier_env *env = NULL;
6364 struct bpf_verifier_log *log;
6365 struct btf *btf;
6366 int err;
6367
6368 env = kzalloc_obj(*env, GFP_KERNEL | __GFP_NOWARN);
6369 if (!env)
6370 return ERR_PTR(-ENOMEM);
6371
6372 log = &env->log;
6373 log->level = BPF_LOG_KERNEL;
6374 btf = btf_parse_base(env, "vmlinux", __start_BTF, __stop_BTF - __start_BTF);
6375 if (IS_ERR(btf))
6376 goto err_out;
6377
6378 /* btf_parse_vmlinux() runs under bpf_verifier_lock */
6379 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
6380 err = btf_alloc_id(btf);
6381 if (err) {
6382 btf_free(btf);
6383 btf = ERR_PTR(err);
6384 }
6385 err_out:
6386 btf_verifier_env_free(env);
6387 return btf;
6388 }
6389
6390 /* If .BTF_ids section was created with distilled base BTF, both base and
6391 * split BTF ids will need to be mapped to actual base/split ids for
6392 * BTF now that it has been relocated.
6393 */
btf_relocate_id(const struct btf * btf,__u32 id)6394 static __u32 btf_relocate_id(const struct btf *btf, __u32 id)
6395 {
6396 if (!btf->base_btf || !btf->base_id_map)
6397 return id;
6398 return btf->base_id_map[id];
6399 }
6400
6401 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6402
btf_parse_module(const char * module_name,const void * data,unsigned int data_size,void * base_data,unsigned int base_data_size)6403 static struct btf *btf_parse_module(const char *module_name, const void *data,
6404 unsigned int data_size, void *base_data,
6405 unsigned int base_data_size)
6406 {
6407 struct btf *btf = NULL, *vmlinux_btf, *base_btf = NULL;
6408 struct btf_verifier_env *env = NULL;
6409 struct bpf_verifier_log *log;
6410 int err = 0;
6411
6412 vmlinux_btf = bpf_get_btf_vmlinux();
6413 if (IS_ERR(vmlinux_btf))
6414 return vmlinux_btf;
6415 if (!vmlinux_btf)
6416 return ERR_PTR(-EINVAL);
6417
6418 env = kzalloc_obj(*env, GFP_KERNEL | __GFP_NOWARN);
6419 if (!env)
6420 return ERR_PTR(-ENOMEM);
6421
6422 log = &env->log;
6423 log->level = BPF_LOG_KERNEL;
6424
6425 if (base_data) {
6426 base_btf = btf_parse_base(env, ".BTF.base", base_data, base_data_size);
6427 if (IS_ERR(base_btf)) {
6428 err = PTR_ERR(base_btf);
6429 goto errout;
6430 }
6431 } else {
6432 base_btf = vmlinux_btf;
6433 }
6434
6435 btf = kzalloc_obj(*btf, GFP_KERNEL | __GFP_NOWARN);
6436 if (!btf) {
6437 err = -ENOMEM;
6438 goto errout;
6439 }
6440 env->btf = btf;
6441
6442 btf->base_btf = base_btf;
6443 btf->start_id = base_btf->nr_types;
6444 btf->start_str_off = base_btf->hdr.str_len;
6445 btf->kernel_btf = true;
6446 btf->named_start_id = 0;
6447 strscpy(btf->name, module_name);
6448
6449 btf->data = kvmemdup(data, data_size, GFP_KERNEL | __GFP_NOWARN);
6450 if (!btf->data) {
6451 err = -ENOMEM;
6452 goto errout;
6453 }
6454 btf->data_size = data_size;
6455
6456 err = btf_parse_hdr(env);
6457 if (err)
6458 goto errout;
6459
6460 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6461
6462 err = btf_parse_str_sec(env);
6463 if (err)
6464 goto errout;
6465
6466 err = btf_check_all_metas(env);
6467 if (err)
6468 goto errout;
6469
6470 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
6471 if (err)
6472 goto errout;
6473
6474 if (base_btf != vmlinux_btf) {
6475 err = btf_relocate(btf, vmlinux_btf, &btf->base_id_map);
6476 if (err)
6477 goto errout;
6478 btf_free(base_btf);
6479 base_btf = vmlinux_btf;
6480 }
6481
6482 btf_verifier_env_free(env);
6483 btf_check_sorted(btf);
6484 refcount_set(&btf->refcnt, 1);
6485 return btf;
6486
6487 errout:
6488 btf_verifier_env_free(env);
6489 if (!IS_ERR(base_btf) && base_btf != vmlinux_btf)
6490 btf_free(base_btf);
6491 if (btf) {
6492 kvfree(btf->data);
6493 kvfree(btf->types);
6494 kfree(btf);
6495 }
6496 return ERR_PTR(err);
6497 }
6498
6499 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
6500
bpf_prog_get_target_btf(const struct bpf_prog * prog)6501 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
6502 {
6503 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6504
6505 if (tgt_prog)
6506 return tgt_prog->aux->btf;
6507 else
6508 return prog->aux->attach_btf;
6509 }
6510
is_void_or_int_ptr(struct btf * btf,const struct btf_type * t)6511 static bool is_void_or_int_ptr(struct btf *btf, const struct btf_type *t)
6512 {
6513 /* skip modifiers */
6514 t = btf_type_skip_modifiers(btf, t->type, NULL);
6515 return btf_type_is_void(t) || btf_type_is_int(t);
6516 }
6517
btf_ctx_arg_idx(struct btf * btf,const struct btf_type * func_proto,int off)6518 u32 btf_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
6519 int off)
6520 {
6521 const struct btf_param *args;
6522 const struct btf_type *t;
6523 u32 offset = 0, nr_args;
6524 int i;
6525
6526 if (!func_proto)
6527 return off / 8;
6528
6529 nr_args = btf_type_vlen(func_proto);
6530 args = (const struct btf_param *)(func_proto + 1);
6531 for (i = 0; i < nr_args; i++) {
6532 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6533 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6534 if (off < offset)
6535 return i;
6536 }
6537
6538 t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
6539 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6540 if (off < offset)
6541 return nr_args;
6542
6543 return nr_args + 1;
6544 }
6545
prog_args_trusted(const struct bpf_prog * prog)6546 static bool prog_args_trusted(const struct bpf_prog *prog)
6547 {
6548 enum bpf_attach_type atype = prog->expected_attach_type;
6549
6550 switch (prog->type) {
6551 case BPF_PROG_TYPE_TRACING:
6552 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
6553 case BPF_PROG_TYPE_LSM:
6554 return bpf_lsm_is_trusted(prog);
6555 case BPF_PROG_TYPE_STRUCT_OPS:
6556 return true;
6557 default:
6558 return false;
6559 }
6560 }
6561
btf_ctx_arg_offset(const struct btf * btf,const struct btf_type * func_proto,u32 arg_no)6562 int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto,
6563 u32 arg_no)
6564 {
6565 const struct btf_param *args;
6566 const struct btf_type *t;
6567 int off = 0, i;
6568 u32 sz;
6569
6570 args = btf_params(func_proto);
6571 for (i = 0; i < arg_no; i++) {
6572 t = btf_type_by_id(btf, args[i].type);
6573 t = btf_resolve_size(btf, t, &sz);
6574 if (IS_ERR(t))
6575 return PTR_ERR(t);
6576 off += roundup(sz, 8);
6577 }
6578
6579 return off;
6580 }
6581
6582 struct bpf_raw_tp_null_args {
6583 const char *func;
6584 u64 mask;
6585 };
6586
6587 static const struct bpf_raw_tp_null_args raw_tp_null_args[] = {
6588 /* sched */
6589 { "sched_pi_setprio", 0x10 },
6590 /* ... from sched_numa_pair_template event class */
6591 { "sched_stick_numa", 0x100 },
6592 { "sched_swap_numa", 0x100 },
6593 /* afs */
6594 { "afs_make_fs_call", 0x10 },
6595 { "afs_make_fs_calli", 0x10 },
6596 { "afs_make_fs_call1", 0x10 },
6597 { "afs_make_fs_call2", 0x10 },
6598 { "afs_protocol_error", 0x1 },
6599 { "afs_flock_ev", 0x10 },
6600 /* cachefiles */
6601 { "cachefiles_lookup", 0x1 | 0x200 },
6602 { "cachefiles_unlink", 0x1 },
6603 { "cachefiles_rename", 0x1 },
6604 { "cachefiles_prep_read", 0x1 },
6605 { "cachefiles_mark_active", 0x1 },
6606 { "cachefiles_mark_failed", 0x1 },
6607 { "cachefiles_mark_inactive", 0x1 },
6608 { "cachefiles_vfs_error", 0x1 },
6609 { "cachefiles_io_error", 0x1 },
6610 { "cachefiles_ondemand_open", 0x1 },
6611 { "cachefiles_ondemand_copen", 0x1 },
6612 { "cachefiles_ondemand_close", 0x1 },
6613 { "cachefiles_ondemand_read", 0x1 },
6614 { "cachefiles_ondemand_cread", 0x1 },
6615 { "cachefiles_ondemand_fd_write", 0x1 },
6616 { "cachefiles_ondemand_fd_release", 0x1 },
6617 /* ext4, from ext4__mballoc event class */
6618 { "ext4_mballoc_discard", 0x10 },
6619 { "ext4_mballoc_free", 0x10 },
6620 /* fib */
6621 { "fib_table_lookup", 0x100 },
6622 /* filelock */
6623 /* ... from filelock_lock event class */
6624 { "posix_lock_inode", 0x10 },
6625 { "fcntl_setlk", 0x10 },
6626 { "locks_remove_posix", 0x10 },
6627 { "flock_lock_inode", 0x10 },
6628 /* ... from filelock_lease event class */
6629 { "break_lease_noblock", 0x10 },
6630 { "break_lease_block", 0x10 },
6631 { "break_lease_unblock", 0x10 },
6632 { "generic_delete_lease", 0x10 },
6633 { "time_out_leases", 0x10 },
6634 /* host1x */
6635 { "host1x_cdma_push_gather", 0x10000 },
6636 /* huge_memory */
6637 { "mm_khugepaged_scan_pmd", 0x10 },
6638 { "mm_collapse_huge_page_isolate", 0x1 },
6639 { "mm_khugepaged_scan_file", 0x10 },
6640 { "mm_khugepaged_collapse_file", 0x10 },
6641 /* kmem */
6642 { "mm_page_alloc", 0x1 },
6643 { "mm_page_pcpu_drain", 0x1 },
6644 /* .. from mm_page event class */
6645 { "mm_page_alloc_zone_locked", 0x1 },
6646 /* netfs */
6647 { "netfs_failure", 0x10 },
6648 /* power */
6649 { "device_pm_callback_start", 0x10 },
6650 /* qdisc */
6651 { "qdisc_dequeue", 0x1000 },
6652 /* rxrpc */
6653 { "rxrpc_recvdata", 0x1 },
6654 { "rxrpc_resend", 0x10 },
6655 { "rxrpc_tq", 0x10 },
6656 { "rxrpc_client", 0x1 },
6657 /* skb */
6658 {"kfree_skb", 0x1000},
6659 /* sunrpc */
6660 { "xs_stream_read_data", 0x1 },
6661 /* ... from xprt_cong_event event class */
6662 { "xprt_reserve_cong", 0x10 },
6663 { "xprt_release_cong", 0x10 },
6664 { "xprt_get_cong", 0x10 },
6665 { "xprt_put_cong", 0x10 },
6666 /* tcp */
6667 { "tcp_send_reset", 0x11 },
6668 { "tcp_sendmsg_locked", 0x100 },
6669 /* tegra_apb_dma */
6670 { "tegra_dma_tx_status", 0x100 },
6671 /* timer_migration */
6672 { "tmigr_update_events", 0x1 },
6673 /* writeback, from writeback_folio_template event class */
6674 { "writeback_dirty_folio", 0x10 },
6675 { "folio_wait_writeback", 0x10 },
6676 /* rdma */
6677 { "mr_integ_alloc", 0x2000 },
6678 /* bpf_testmod */
6679 { "bpf_testmod_test_read", 0x0 },
6680 /* amdgpu */
6681 { "amdgpu_vm_bo_map", 0x1 },
6682 { "amdgpu_vm_bo_unmap", 0x1 },
6683 /* netfs */
6684 { "netfs_folioq", 0x1 },
6685 /* xfs from xfs_defer_pending_class */
6686 { "xfs_defer_create_intent", 0x1 },
6687 { "xfs_defer_cancel_list", 0x1 },
6688 { "xfs_defer_pending_finish", 0x1 },
6689 { "xfs_defer_pending_abort", 0x1 },
6690 { "xfs_defer_relog_intent", 0x1 },
6691 { "xfs_defer_isolate_paused", 0x1 },
6692 { "xfs_defer_item_pause", 0x1 },
6693 { "xfs_defer_item_unpause", 0x1 },
6694 /* xfs from xfs_defer_pending_item_class */
6695 { "xfs_defer_add_item", 0x1 },
6696 { "xfs_defer_cancel_item", 0x1 },
6697 { "xfs_defer_finish_item", 0x1 },
6698 /* xfs from xfs_icwalk_class */
6699 { "xfs_ioc_free_eofblocks", 0x10 },
6700 { "xfs_blockgc_free_space", 0x10 },
6701 /* xfs from xfs_btree_cur_class */
6702 { "xfs_btree_updkeys", 0x100 },
6703 { "xfs_btree_overlapped_query_range", 0x100 },
6704 /* xfs from xfs_imap_class*/
6705 { "xfs_map_blocks_found", 0x10000 },
6706 { "xfs_map_blocks_alloc", 0x10000 },
6707 { "xfs_iomap_alloc", 0x1000 },
6708 { "xfs_iomap_found", 0x1000 },
6709 /* xfs from xfs_fs_class */
6710 { "xfs_inodegc_flush", 0x1 },
6711 { "xfs_inodegc_push", 0x1 },
6712 { "xfs_inodegc_start", 0x1 },
6713 { "xfs_inodegc_stop", 0x1 },
6714 { "xfs_inodegc_queue", 0x1 },
6715 { "xfs_inodegc_throttle", 0x1 },
6716 { "xfs_fs_sync_fs", 0x1 },
6717 { "xfs_blockgc_start", 0x1 },
6718 { "xfs_blockgc_stop", 0x1 },
6719 { "xfs_blockgc_worker", 0x1 },
6720 { "xfs_blockgc_flush_all", 0x1 },
6721 /* xfs_scrub */
6722 { "xchk_nlinks_live_update", 0x10 },
6723 /* xfs_scrub from xchk_metapath_class */
6724 { "xchk_metapath_lookup", 0x100 },
6725 /* nfsd */
6726 { "nfsd_dirent", 0x1 },
6727 { "nfsd_file_acquire", 0x1001 },
6728 { "nfsd_file_insert_err", 0x1 },
6729 { "nfsd_file_cons_err", 0x1 },
6730 /* nfs4 */
6731 { "nfs4_setup_sequence", 0x1 },
6732 { "pnfs_update_layout", 0x10000 },
6733 { "nfs4_inode_callback_event", 0x200 },
6734 { "nfs4_inode_stateid_callback_event", 0x200 },
6735 /* nfs from pnfs_layout_event */
6736 { "pnfs_mds_fallback_pg_init_read", 0x10000 },
6737 { "pnfs_mds_fallback_pg_init_write", 0x10000 },
6738 { "pnfs_mds_fallback_pg_get_mirror_count", 0x10000 },
6739 { "pnfs_mds_fallback_read_done", 0x10000 },
6740 { "pnfs_mds_fallback_write_done", 0x10000 },
6741 { "pnfs_mds_fallback_read_pagelist", 0x10000 },
6742 { "pnfs_mds_fallback_write_pagelist", 0x10000 },
6743 /* coda */
6744 { "coda_dec_pic_run", 0x10 },
6745 { "coda_dec_pic_done", 0x10 },
6746 /* cfg80211 */
6747 { "cfg80211_scan_done", 0x11 },
6748 { "rdev_set_coalesce", 0x10 },
6749 { "cfg80211_report_wowlan_wakeup", 0x100 },
6750 { "cfg80211_inform_bss_frame", 0x100 },
6751 { "cfg80211_michael_mic_failure", 0x10000 },
6752 /* cfg80211 from wiphy_work_event */
6753 { "wiphy_work_queue", 0x10 },
6754 { "wiphy_work_run", 0x10 },
6755 { "wiphy_work_cancel", 0x10 },
6756 { "wiphy_work_flush", 0x10 },
6757 /* hugetlbfs */
6758 { "hugetlbfs_alloc_inode", 0x10 },
6759 /* spufs */
6760 { "spufs_context", 0x10 },
6761 /* kvm_hv */
6762 { "kvm_page_fault_enter", 0x100 },
6763 /* dpu */
6764 { "dpu_crtc_setup_mixer", 0x100 },
6765 /* binder */
6766 { "binder_transaction", 0x100 },
6767 /* bcachefs */
6768 { "btree_path_free", 0x100 },
6769 /* hfi1_tx */
6770 { "hfi1_sdma_progress", 0x1000 },
6771 /* iptfs */
6772 { "iptfs_ingress_postq_event", 0x1000 },
6773 /* neigh */
6774 { "neigh_update", 0x10 },
6775 /* snd_firewire_lib */
6776 { "amdtp_packet", 0x100 },
6777 };
6778
btf_ctx_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)6779 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
6780 const struct bpf_prog *prog,
6781 struct bpf_insn_access_aux *info)
6782 {
6783 const struct btf_type *t = prog->aux->attach_func_proto;
6784 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6785 struct btf *btf = bpf_prog_get_target_btf(prog);
6786 const char *tname = prog->aux->attach_func_name;
6787 struct bpf_verifier_log *log = info->log;
6788 const struct btf_param *args;
6789 bool ptr_err_raw_tp = false;
6790 const char *tag_value;
6791 u32 nr_args, arg;
6792 int i, ret;
6793
6794 if (off % 8) {
6795 bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
6796 tname, off);
6797 return false;
6798 }
6799 arg = btf_ctx_arg_idx(btf, t, off);
6800 args = (const struct btf_param *)(t + 1);
6801 /* if (t == NULL) Fall back to default BPF prog with
6802 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
6803 */
6804 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
6805 if (prog->aux->attach_btf_trace) {
6806 /* skip first 'void *__data' argument in btf_trace_##name typedef */
6807 args++;
6808 nr_args--;
6809 }
6810
6811 if (arg > nr_args) {
6812 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6813 tname, arg + 1);
6814 return false;
6815 }
6816
6817 if (arg == nr_args) {
6818 switch (prog->expected_attach_type) {
6819 case BPF_LSM_MAC:
6820 /* mark we are accessing the return value */
6821 info->is_retval = true;
6822 fallthrough;
6823 case BPF_LSM_CGROUP:
6824 case BPF_TRACE_FEXIT:
6825 case BPF_TRACE_FSESSION:
6826 /* When LSM programs are attached to void LSM hooks
6827 * they use FEXIT trampolines and when attached to
6828 * int LSM hooks, they use MODIFY_RETURN trampolines.
6829 *
6830 * While the LSM programs are BPF_MODIFY_RETURN-like
6831 * the check:
6832 *
6833 * if (ret_type != 'int')
6834 * return -EINVAL;
6835 *
6836 * is _not_ done here. This is still safe as LSM hooks
6837 * have only void and int return types.
6838 */
6839 if (!t)
6840 return true;
6841 t = btf_type_by_id(btf, t->type);
6842 break;
6843 case BPF_MODIFY_RETURN:
6844 /* For now the BPF_MODIFY_RETURN can only be attached to
6845 * functions that return an int.
6846 */
6847 if (!t)
6848 return false;
6849
6850 t = btf_type_skip_modifiers(btf, t->type, NULL);
6851 if (!btf_type_is_small_int(t)) {
6852 bpf_log(log,
6853 "ret type %s not allowed for fmod_ret\n",
6854 btf_type_str(t));
6855 return false;
6856 }
6857 break;
6858 default:
6859 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6860 tname, arg + 1);
6861 return false;
6862 }
6863 } else {
6864 if (!t)
6865 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */
6866 return true;
6867 t = btf_type_by_id(btf, args[arg].type);
6868 }
6869
6870 /* skip modifiers */
6871 while (btf_type_is_modifier(t))
6872 t = btf_type_by_id(btf, t->type);
6873 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || btf_type_is_struct(t))
6874 /* accessing a scalar */
6875 return true;
6876 if (!btf_type_is_ptr(t)) {
6877 bpf_log(log,
6878 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
6879 tname, arg,
6880 __btf_name_by_offset(btf, t->name_off),
6881 btf_type_str(t));
6882 return false;
6883 }
6884
6885 if (size != sizeof(u64)) {
6886 bpf_log(log, "func '%s' size %d must be 8\n",
6887 tname, size);
6888 return false;
6889 }
6890
6891 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
6892 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6893 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6894 u32 type, flag;
6895
6896 type = base_type(ctx_arg_info->reg_type);
6897 flag = type_flag(ctx_arg_info->reg_type);
6898 if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
6899 (flag & PTR_MAYBE_NULL)) {
6900 info->reg_type = ctx_arg_info->reg_type;
6901 return true;
6902 }
6903 }
6904
6905 /*
6906 * If it's a pointer to void, it's the same as scalar from the verifier
6907 * safety POV. Either way, no futher pointer walking is allowed.
6908 */
6909 if (is_void_or_int_ptr(btf, t))
6910 return true;
6911
6912 /* this is a pointer to another type */
6913 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6914 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6915
6916 if (ctx_arg_info->offset == off) {
6917 if (!ctx_arg_info->btf_id) {
6918 bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
6919 return false;
6920 }
6921
6922 info->reg_type = ctx_arg_info->reg_type;
6923 info->btf = ctx_arg_info->btf ? : btf_vmlinux;
6924 info->btf_id = ctx_arg_info->btf_id;
6925 info->ref_obj_id = ctx_arg_info->ref_obj_id;
6926 return true;
6927 }
6928 }
6929
6930 info->reg_type = PTR_TO_BTF_ID;
6931 if (prog_args_trusted(prog))
6932 info->reg_type |= PTR_TRUSTED;
6933
6934 if (btf_param_match_suffix(btf, &args[arg], "__nullable"))
6935 info->reg_type |= PTR_MAYBE_NULL;
6936
6937 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
6938 struct btf *btf = prog->aux->attach_btf;
6939 const struct btf_type *t;
6940 const char *tname;
6941
6942 /* BTF lookups cannot fail, return false on error */
6943 t = btf_type_by_id(btf, prog->aux->attach_btf_id);
6944 if (!t)
6945 return false;
6946 tname = btf_name_by_offset(btf, t->name_off);
6947 if (!tname)
6948 return false;
6949 /* Checked by bpf_check_attach_target */
6950 tname += sizeof("btf_trace_") - 1;
6951 for (i = 0; i < ARRAY_SIZE(raw_tp_null_args); i++) {
6952 /* Is this a func with potential NULL args? */
6953 if (strcmp(tname, raw_tp_null_args[i].func))
6954 continue;
6955 if (raw_tp_null_args[i].mask & (0x1ULL << (arg * 4)))
6956 info->reg_type |= PTR_MAYBE_NULL;
6957 /* Is the current arg IS_ERR? */
6958 if (raw_tp_null_args[i].mask & (0x2ULL << (arg * 4)))
6959 ptr_err_raw_tp = true;
6960 break;
6961 }
6962 /* If we don't know NULL-ness specification and the tracepoint
6963 * is coming from a loadable module, be conservative and mark
6964 * argument as PTR_MAYBE_NULL.
6965 */
6966 if (i == ARRAY_SIZE(raw_tp_null_args) && btf_is_module(btf))
6967 info->reg_type |= PTR_MAYBE_NULL;
6968 }
6969
6970 if (tgt_prog) {
6971 enum bpf_prog_type tgt_type;
6972
6973 if (tgt_prog->type == BPF_PROG_TYPE_EXT)
6974 tgt_type = tgt_prog->aux->saved_dst_prog_type;
6975 else
6976 tgt_type = tgt_prog->type;
6977
6978 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
6979 if (ret > 0) {
6980 info->btf = btf_vmlinux;
6981 info->btf_id = ret;
6982 return true;
6983 } else {
6984 return false;
6985 }
6986 }
6987
6988 info->btf = btf;
6989 info->btf_id = t->type;
6990 t = btf_type_by_id(btf, t->type);
6991
6992 if (btf_type_is_type_tag(t) && !btf_type_kflag(t)) {
6993 tag_value = __btf_name_by_offset(btf, t->name_off);
6994 if (strcmp(tag_value, "user") == 0)
6995 info->reg_type |= MEM_USER;
6996 if (strcmp(tag_value, "percpu") == 0)
6997 info->reg_type |= MEM_PERCPU;
6998 }
6999
7000 /* skip modifiers */
7001 while (btf_type_is_modifier(t)) {
7002 info->btf_id = t->type;
7003 t = btf_type_by_id(btf, t->type);
7004 }
7005 if (!btf_type_is_struct(t)) {
7006 bpf_log(log,
7007 "func '%s' arg%d type %s is not a struct\n",
7008 tname, arg, btf_type_str(t));
7009 return false;
7010 }
7011 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
7012 tname, arg, info->btf_id, btf_type_str(t),
7013 __btf_name_by_offset(btf, t->name_off));
7014
7015 /* Perform all checks on the validity of type for this argument, but if
7016 * we know it can be IS_ERR at runtime, scrub pointer type and mark as
7017 * scalar.
7018 */
7019 if (ptr_err_raw_tp) {
7020 bpf_log(log, "marking pointer arg%d as scalar as it may encode error", arg);
7021 info->reg_type = SCALAR_VALUE;
7022 }
7023 return true;
7024 }
7025 EXPORT_SYMBOL_GPL(btf_ctx_access);
7026
7027 enum bpf_struct_walk_result {
7028 /* < 0 error */
7029 WALK_SCALAR = 0,
7030 WALK_PTR,
7031 WALK_PTR_UNTRUSTED,
7032 WALK_STRUCT,
7033 };
7034
btf_struct_walk(struct bpf_verifier_log * log,const struct btf * btf,const struct btf_type * t,int off,int size,u32 * next_btf_id,enum bpf_type_flag * flag,const char ** field_name)7035 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
7036 const struct btf_type *t, int off, int size,
7037 u32 *next_btf_id, enum bpf_type_flag *flag,
7038 const char **field_name)
7039 {
7040 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
7041 const struct btf_type *mtype, *elem_type = NULL;
7042 const struct btf_member *member;
7043 const char *tname, *mname, *tag_value;
7044 u32 vlen, elem_id, mid;
7045
7046 again:
7047 if (btf_type_is_modifier(t))
7048 t = btf_type_skip_modifiers(btf, t->type, NULL);
7049 tname = __btf_name_by_offset(btf, t->name_off);
7050 if (!btf_type_is_struct(t)) {
7051 bpf_log(log, "Type '%s' is not a struct\n", tname);
7052 return -EINVAL;
7053 }
7054
7055 vlen = btf_type_vlen(t);
7056 if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED))
7057 /*
7058 * walking unions yields untrusted pointers
7059 * with exception of __bpf_md_ptr and other
7060 * unions with a single member
7061 */
7062 *flag |= PTR_UNTRUSTED;
7063
7064 if (off + size > t->size) {
7065 /* If the last element is a variable size array, we may
7066 * need to relax the rule.
7067 */
7068 struct btf_array *array_elem;
7069
7070 if (vlen == 0)
7071 goto error;
7072
7073 member = btf_type_member(t) + vlen - 1;
7074 mtype = btf_type_skip_modifiers(btf, member->type,
7075 NULL);
7076 if (!btf_type_is_array(mtype))
7077 goto error;
7078
7079 array_elem = (struct btf_array *)(mtype + 1);
7080 if (array_elem->nelems != 0)
7081 goto error;
7082
7083 moff = __btf_member_bit_offset(t, member) / 8;
7084 if (off < moff)
7085 goto error;
7086
7087 /* allow structure and integer */
7088 t = btf_type_skip_modifiers(btf, array_elem->type,
7089 NULL);
7090
7091 if (btf_type_is_int(t))
7092 return WALK_SCALAR;
7093
7094 if (!btf_type_is_struct(t))
7095 goto error;
7096
7097 off = (off - moff) % t->size;
7098 goto again;
7099
7100 error:
7101 bpf_log(log, "access beyond struct %s at off %u size %u\n",
7102 tname, off, size);
7103 return -EACCES;
7104 }
7105
7106 for_each_member(i, t, member) {
7107 /* offset of the field in bytes */
7108 moff = __btf_member_bit_offset(t, member) / 8;
7109 if (off + size <= moff)
7110 /* won't find anything, field is already too far */
7111 break;
7112
7113 if (__btf_member_bitfield_size(t, member)) {
7114 u32 end_bit = __btf_member_bit_offset(t, member) +
7115 __btf_member_bitfield_size(t, member);
7116
7117 /* off <= moff instead of off == moff because clang
7118 * does not generate a BTF member for anonymous
7119 * bitfield like the ":16" here:
7120 * struct {
7121 * int :16;
7122 * int x:8;
7123 * };
7124 */
7125 if (off <= moff &&
7126 BITS_ROUNDUP_BYTES(end_bit) <= off + size)
7127 return WALK_SCALAR;
7128
7129 /* off may be accessing a following member
7130 *
7131 * or
7132 *
7133 * Doing partial access at either end of this
7134 * bitfield. Continue on this case also to
7135 * treat it as not accessing this bitfield
7136 * and eventually error out as field not
7137 * found to keep it simple.
7138 * It could be relaxed if there was a legit
7139 * partial access case later.
7140 */
7141 continue;
7142 }
7143
7144 /* In case of "off" is pointing to holes of a struct */
7145 if (off < moff)
7146 break;
7147
7148 /* type of the field */
7149 mid = member->type;
7150 mtype = btf_type_by_id(btf, member->type);
7151 mname = __btf_name_by_offset(btf, member->name_off);
7152
7153 mtype = __btf_resolve_size(btf, mtype, &msize,
7154 &elem_type, &elem_id, &total_nelems,
7155 &mid);
7156 if (IS_ERR(mtype)) {
7157 bpf_log(log, "field %s doesn't have size\n", mname);
7158 return -EFAULT;
7159 }
7160
7161 mtrue_end = moff + msize;
7162 if (off >= mtrue_end)
7163 /* no overlap with member, keep iterating */
7164 continue;
7165
7166 if (btf_type_is_array(mtype)) {
7167 u32 elem_idx;
7168
7169 /* __btf_resolve_size() above helps to
7170 * linearize a multi-dimensional array.
7171 *
7172 * The logic here is treating an array
7173 * in a struct as the following way:
7174 *
7175 * struct outer {
7176 * struct inner array[2][2];
7177 * };
7178 *
7179 * looks like:
7180 *
7181 * struct outer {
7182 * struct inner array_elem0;
7183 * struct inner array_elem1;
7184 * struct inner array_elem2;
7185 * struct inner array_elem3;
7186 * };
7187 *
7188 * When accessing outer->array[1][0], it moves
7189 * moff to "array_elem2", set mtype to
7190 * "struct inner", and msize also becomes
7191 * sizeof(struct inner). Then most of the
7192 * remaining logic will fall through without
7193 * caring the current member is an array or
7194 * not.
7195 *
7196 * Unlike mtype/msize/moff, mtrue_end does not
7197 * change. The naming difference ("_true") tells
7198 * that it is not always corresponding to
7199 * the current mtype/msize/moff.
7200 * It is the true end of the current
7201 * member (i.e. array in this case). That
7202 * will allow an int array to be accessed like
7203 * a scratch space,
7204 * i.e. allow access beyond the size of
7205 * the array's element as long as it is
7206 * within the mtrue_end boundary.
7207 */
7208
7209 /* skip empty array */
7210 if (moff == mtrue_end)
7211 continue;
7212
7213 msize /= total_nelems;
7214 elem_idx = (off - moff) / msize;
7215 moff += elem_idx * msize;
7216 mtype = elem_type;
7217 mid = elem_id;
7218 }
7219
7220 /* the 'off' we're looking for is either equal to start
7221 * of this field or inside of this struct
7222 */
7223 if (btf_type_is_struct(mtype)) {
7224 /* our field must be inside that union or struct */
7225 t = mtype;
7226
7227 /* return if the offset matches the member offset */
7228 if (off == moff) {
7229 *next_btf_id = mid;
7230 return WALK_STRUCT;
7231 }
7232
7233 /* adjust offset we're looking for */
7234 off -= moff;
7235 goto again;
7236 }
7237
7238 if (btf_type_is_ptr(mtype)) {
7239 const struct btf_type *stype, *t;
7240 enum bpf_type_flag tmp_flag = 0;
7241 u32 id;
7242
7243 if (msize != size || off != moff) {
7244 bpf_log(log,
7245 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
7246 mname, moff, tname, off, size);
7247 return -EACCES;
7248 }
7249
7250 /* check type tag */
7251 t = btf_type_by_id(btf, mtype->type);
7252 if (btf_type_is_type_tag(t) && !btf_type_kflag(t)) {
7253 tag_value = __btf_name_by_offset(btf, t->name_off);
7254 /* check __user tag */
7255 if (strcmp(tag_value, "user") == 0)
7256 tmp_flag = MEM_USER;
7257 /* check __percpu tag */
7258 if (strcmp(tag_value, "percpu") == 0)
7259 tmp_flag = MEM_PERCPU;
7260 /* check __rcu tag */
7261 if (strcmp(tag_value, "rcu") == 0)
7262 tmp_flag = MEM_RCU;
7263 }
7264
7265 stype = btf_type_skip_modifiers(btf, mtype->type, &id);
7266 if (btf_type_is_struct(stype)) {
7267 *next_btf_id = id;
7268 *flag |= tmp_flag;
7269 if (field_name)
7270 *field_name = mname;
7271 return WALK_PTR;
7272 }
7273
7274 return WALK_PTR_UNTRUSTED;
7275 }
7276
7277 /* Allow more flexible access within an int as long as
7278 * it is within mtrue_end.
7279 * Since mtrue_end could be the end of an array,
7280 * that also allows using an array of int as a scratch
7281 * space. e.g. skb->cb[].
7282 */
7283 if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) {
7284 bpf_log(log,
7285 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
7286 mname, mtrue_end, tname, off, size);
7287 return -EACCES;
7288 }
7289
7290 return WALK_SCALAR;
7291 }
7292 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
7293 return -EINVAL;
7294 }
7295
btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size,enum bpf_access_type atype __maybe_unused,u32 * next_btf_id,enum bpf_type_flag * flag,const char ** field_name)7296 int btf_struct_access(struct bpf_verifier_log *log,
7297 const struct bpf_reg_state *reg,
7298 int off, int size, enum bpf_access_type atype __maybe_unused,
7299 u32 *next_btf_id, enum bpf_type_flag *flag,
7300 const char **field_name)
7301 {
7302 const struct btf *btf = reg->btf;
7303 enum bpf_type_flag tmp_flag = 0;
7304 const struct btf_type *t;
7305 u32 id = reg->btf_id;
7306 int err;
7307
7308 while (type_is_alloc(reg->type)) {
7309 struct btf_struct_meta *meta;
7310 struct btf_record *rec;
7311 int i;
7312
7313 meta = btf_find_struct_meta(btf, id);
7314 if (!meta)
7315 break;
7316 rec = meta->record;
7317 for (i = 0; i < rec->cnt; i++) {
7318 struct btf_field *field = &rec->fields[i];
7319 u32 offset = field->offset;
7320 if (off < offset + field->size && offset < off + size) {
7321 bpf_log(log,
7322 "direct access to %s is disallowed\n",
7323 btf_field_type_name(field->type));
7324 return -EACCES;
7325 }
7326 }
7327 break;
7328 }
7329
7330 t = btf_type_by_id(btf, id);
7331 do {
7332 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name);
7333
7334 switch (err) {
7335 case WALK_PTR:
7336 /* For local types, the destination register cannot
7337 * become a pointer again.
7338 */
7339 if (type_is_alloc(reg->type))
7340 return SCALAR_VALUE;
7341 /* If we found the pointer or scalar on t+off,
7342 * we're done.
7343 */
7344 *next_btf_id = id;
7345 *flag = tmp_flag;
7346 return PTR_TO_BTF_ID;
7347 case WALK_PTR_UNTRUSTED:
7348 *flag = MEM_RDONLY | PTR_UNTRUSTED;
7349 return PTR_TO_MEM;
7350 case WALK_SCALAR:
7351 return SCALAR_VALUE;
7352 case WALK_STRUCT:
7353 /* We found nested struct, so continue the search
7354 * by diving in it. At this point the offset is
7355 * aligned with the new type, so set it to 0.
7356 */
7357 t = btf_type_by_id(btf, id);
7358 off = 0;
7359 break;
7360 default:
7361 /* It's either error or unknown return value..
7362 * scream and leave.
7363 */
7364 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
7365 return -EINVAL;
7366 return err;
7367 }
7368 } while (t);
7369
7370 return -EINVAL;
7371 }
7372
7373 /* Check that two BTF types, each specified as an BTF object + id, are exactly
7374 * the same. Trivial ID check is not enough due to module BTFs, because we can
7375 * end up with two different module BTFs, but IDs point to the common type in
7376 * vmlinux BTF.
7377 */
btf_types_are_same(const struct btf * btf1,u32 id1,const struct btf * btf2,u32 id2)7378 bool btf_types_are_same(const struct btf *btf1, u32 id1,
7379 const struct btf *btf2, u32 id2)
7380 {
7381 if (id1 != id2)
7382 return false;
7383 if (btf1 == btf2)
7384 return true;
7385 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
7386 }
7387
btf_struct_ids_match(struct bpf_verifier_log * log,const struct btf * btf,u32 id,int off,const struct btf * need_btf,u32 need_type_id,bool strict)7388 bool btf_struct_ids_match(struct bpf_verifier_log *log,
7389 const struct btf *btf, u32 id, int off,
7390 const struct btf *need_btf, u32 need_type_id,
7391 bool strict)
7392 {
7393 const struct btf_type *type;
7394 enum bpf_type_flag flag = 0;
7395 int err;
7396
7397 /* Are we already done? */
7398 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
7399 return true;
7400 /* In case of strict type match, we do not walk struct, the top level
7401 * type match must succeed. When strict is true, off should have already
7402 * been 0.
7403 */
7404 if (strict)
7405 return false;
7406 again:
7407 type = btf_type_by_id(btf, id);
7408 if (!type)
7409 return false;
7410 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL);
7411 if (err != WALK_STRUCT)
7412 return false;
7413
7414 /* We found nested struct object. If it matches
7415 * the requested ID, we're done. Otherwise let's
7416 * continue the search with offset 0 in the new
7417 * type.
7418 */
7419 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
7420 off = 0;
7421 goto again;
7422 }
7423
7424 return true;
7425 }
7426
__get_type_size(struct btf * btf,u32 btf_id,const struct btf_type ** ret_type)7427 static int __get_type_size(struct btf *btf, u32 btf_id,
7428 const struct btf_type **ret_type)
7429 {
7430 const struct btf_type *t;
7431
7432 *ret_type = btf_type_by_id(btf, 0);
7433 if (!btf_id)
7434 /* void */
7435 return 0;
7436 t = btf_type_by_id(btf, btf_id);
7437 while (t && btf_type_is_modifier(t))
7438 t = btf_type_by_id(btf, t->type);
7439 if (!t)
7440 return -EINVAL;
7441 *ret_type = t;
7442 if (btf_type_is_ptr(t))
7443 /* kernel size of pointer. Not BPF's size of pointer*/
7444 return sizeof(void *);
7445 if (btf_type_is_int(t) || btf_is_any_enum(t) || btf_type_is_struct(t))
7446 return t->size;
7447 return -EINVAL;
7448 }
7449
__get_type_fmodel_flags(const struct btf_type * t)7450 static u8 __get_type_fmodel_flags(const struct btf_type *t)
7451 {
7452 u8 flags = 0;
7453
7454 if (btf_type_is_struct(t))
7455 flags |= BTF_FMODEL_STRUCT_ARG;
7456 if (btf_type_is_signed_int(t))
7457 flags |= BTF_FMODEL_SIGNED_ARG;
7458
7459 return flags;
7460 }
7461
btf_distill_func_proto(struct bpf_verifier_log * log,struct btf * btf,const struct btf_type * func,const char * tname,struct btf_func_model * m)7462 int btf_distill_func_proto(struct bpf_verifier_log *log,
7463 struct btf *btf,
7464 const struct btf_type *func,
7465 const char *tname,
7466 struct btf_func_model *m)
7467 {
7468 const struct btf_param *args;
7469 const struct btf_type *t;
7470 u32 i, nargs;
7471 int ret;
7472
7473 if (!func) {
7474 /* BTF function prototype doesn't match the verifier types.
7475 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
7476 */
7477 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7478 m->arg_size[i] = 8;
7479 m->arg_flags[i] = 0;
7480 }
7481 m->ret_size = 8;
7482 m->ret_flags = 0;
7483 m->nr_args = MAX_BPF_FUNC_REG_ARGS;
7484 return 0;
7485 }
7486 args = (const struct btf_param *)(func + 1);
7487 nargs = btf_type_vlen(func);
7488 if (nargs > MAX_BPF_FUNC_ARGS) {
7489 bpf_log(log,
7490 "The function %s has %d arguments. Too many.\n",
7491 tname, nargs);
7492 return -EINVAL;
7493 }
7494 ret = __get_type_size(btf, func->type, &t);
7495 if (ret < 0 || btf_type_is_struct(t)) {
7496 bpf_log(log,
7497 "The function %s return type %s is unsupported.\n",
7498 tname, btf_type_str(t));
7499 return -EINVAL;
7500 }
7501 m->ret_size = ret;
7502 m->ret_flags = __get_type_fmodel_flags(t);
7503
7504 for (i = 0; i < nargs; i++) {
7505 if (i == nargs - 1 && args[i].type == 0) {
7506 bpf_log(log,
7507 "The function %s with variable args is unsupported.\n",
7508 tname);
7509 return -EINVAL;
7510 }
7511 ret = __get_type_size(btf, args[i].type, &t);
7512
7513 /* No support of struct argument size greater than 16 bytes */
7514 if (ret < 0 || ret > 16) {
7515 bpf_log(log,
7516 "The function %s arg%d type %s is unsupported.\n",
7517 tname, i, btf_type_str(t));
7518 return -EINVAL;
7519 }
7520 if (ret == 0) {
7521 bpf_log(log,
7522 "The function %s has malformed void argument.\n",
7523 tname);
7524 return -EINVAL;
7525 }
7526 m->arg_size[i] = ret;
7527 m->arg_flags[i] = __get_type_fmodel_flags(t);
7528 }
7529 m->nr_args = nargs;
7530 return 0;
7531 }
7532
7533 /* Compare BTFs of two functions assuming only scalars and pointers to context.
7534 * t1 points to BTF_KIND_FUNC in btf1
7535 * t2 points to BTF_KIND_FUNC in btf2
7536 * Returns:
7537 * EINVAL - function prototype mismatch
7538 * EFAULT - verifier bug
7539 * 0 - 99% match. The last 1% is validated by the verifier.
7540 */
btf_check_func_type_match(struct bpf_verifier_log * log,struct btf * btf1,const struct btf_type * t1,struct btf * btf2,const struct btf_type * t2)7541 static int btf_check_func_type_match(struct bpf_verifier_log *log,
7542 struct btf *btf1, const struct btf_type *t1,
7543 struct btf *btf2, const struct btf_type *t2)
7544 {
7545 const struct btf_param *args1, *args2;
7546 const char *fn1, *fn2, *s1, *s2;
7547 u32 nargs1, nargs2, i;
7548
7549 fn1 = btf_name_by_offset(btf1, t1->name_off);
7550 fn2 = btf_name_by_offset(btf2, t2->name_off);
7551
7552 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
7553 bpf_log(log, "%s() is not a global function\n", fn1);
7554 return -EINVAL;
7555 }
7556 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
7557 bpf_log(log, "%s() is not a global function\n", fn2);
7558 return -EINVAL;
7559 }
7560
7561 t1 = btf_type_by_id(btf1, t1->type);
7562 if (!t1 || !btf_type_is_func_proto(t1))
7563 return -EFAULT;
7564 t2 = btf_type_by_id(btf2, t2->type);
7565 if (!t2 || !btf_type_is_func_proto(t2))
7566 return -EFAULT;
7567
7568 args1 = (const struct btf_param *)(t1 + 1);
7569 nargs1 = btf_type_vlen(t1);
7570 args2 = (const struct btf_param *)(t2 + 1);
7571 nargs2 = btf_type_vlen(t2);
7572
7573 if (nargs1 != nargs2) {
7574 bpf_log(log, "%s() has %d args while %s() has %d args\n",
7575 fn1, nargs1, fn2, nargs2);
7576 return -EINVAL;
7577 }
7578
7579 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
7580 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
7581 if (t1->info != t2->info) {
7582 bpf_log(log,
7583 "Return type %s of %s() doesn't match type %s of %s()\n",
7584 btf_type_str(t1), fn1,
7585 btf_type_str(t2), fn2);
7586 return -EINVAL;
7587 }
7588
7589 for (i = 0; i < nargs1; i++) {
7590 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
7591 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
7592
7593 if (t1->info != t2->info) {
7594 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
7595 i, fn1, btf_type_str(t1),
7596 fn2, btf_type_str(t2));
7597 return -EINVAL;
7598 }
7599 if (btf_type_has_size(t1) && t1->size != t2->size) {
7600 bpf_log(log,
7601 "arg%d in %s() has size %d while %s() has %d\n",
7602 i, fn1, t1->size,
7603 fn2, t2->size);
7604 return -EINVAL;
7605 }
7606
7607 /* global functions are validated with scalars and pointers
7608 * to context only. And only global functions can be replaced.
7609 * Hence type check only those types.
7610 */
7611 if (btf_type_is_int(t1) || btf_is_any_enum(t1))
7612 continue;
7613 if (!btf_type_is_ptr(t1)) {
7614 bpf_log(log,
7615 "arg%d in %s() has unrecognized type\n",
7616 i, fn1);
7617 return -EINVAL;
7618 }
7619 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
7620 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
7621 if (!btf_type_is_struct(t1)) {
7622 bpf_log(log,
7623 "arg%d in %s() is not a pointer to context\n",
7624 i, fn1);
7625 return -EINVAL;
7626 }
7627 if (!btf_type_is_struct(t2)) {
7628 bpf_log(log,
7629 "arg%d in %s() is not a pointer to context\n",
7630 i, fn2);
7631 return -EINVAL;
7632 }
7633 /* This is an optional check to make program writing easier.
7634 * Compare names of structs and report an error to the user.
7635 * btf_prepare_func_args() already checked that t2 struct
7636 * is a context type. btf_prepare_func_args() will check
7637 * later that t1 struct is a context type as well.
7638 */
7639 s1 = btf_name_by_offset(btf1, t1->name_off);
7640 s2 = btf_name_by_offset(btf2, t2->name_off);
7641 if (strcmp(s1, s2)) {
7642 bpf_log(log,
7643 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
7644 i, fn1, s1, fn2, s2);
7645 return -EINVAL;
7646 }
7647 }
7648 return 0;
7649 }
7650
7651 /* Compare BTFs of given program with BTF of target program */
btf_check_type_match(struct bpf_verifier_log * log,const struct bpf_prog * prog,struct btf * btf2,const struct btf_type * t2)7652 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
7653 struct btf *btf2, const struct btf_type *t2)
7654 {
7655 struct btf *btf1 = prog->aux->btf;
7656 const struct btf_type *t1;
7657 u32 btf_id = 0;
7658
7659 if (!prog->aux->func_info) {
7660 bpf_log(log, "Program extension requires BTF\n");
7661 return -EINVAL;
7662 }
7663
7664 btf_id = prog->aux->func_info[0].type_id;
7665 if (!btf_id)
7666 return -EFAULT;
7667
7668 t1 = btf_type_by_id(btf1, btf_id);
7669 if (!t1 || !btf_type_is_func(t1))
7670 return -EFAULT;
7671
7672 return btf_check_func_type_match(log, btf1, t1, btf2, t2);
7673 }
7674
btf_is_dynptr_ptr(const struct btf * btf,const struct btf_type * t)7675 static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t)
7676 {
7677 const char *name;
7678
7679 t = btf_type_by_id(btf, t->type); /* skip PTR */
7680
7681 while (btf_type_is_modifier(t))
7682 t = btf_type_by_id(btf, t->type);
7683
7684 /* allow either struct or struct forward declaration */
7685 if (btf_type_is_struct(t) ||
7686 (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) {
7687 name = btf_str_by_offset(btf, t->name_off);
7688 return name && strcmp(name, "bpf_dynptr") == 0;
7689 }
7690
7691 return false;
7692 }
7693
7694 struct bpf_cand_cache {
7695 const char *name;
7696 u32 name_len;
7697 u16 kind;
7698 u16 cnt;
7699 struct {
7700 const struct btf *btf;
7701 u32 id;
7702 } cands[];
7703 };
7704
7705 static DEFINE_MUTEX(cand_cache_mutex);
7706
7707 static struct bpf_cand_cache *
7708 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id);
7709
btf_get_ptr_to_btf_id(struct bpf_verifier_log * log,int arg_idx,const struct btf * btf,const struct btf_type * t)7710 static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx,
7711 const struct btf *btf, const struct btf_type *t)
7712 {
7713 struct bpf_cand_cache *cc;
7714 struct bpf_core_ctx ctx = {
7715 .btf = btf,
7716 .log = log,
7717 };
7718 u32 kern_type_id, type_id;
7719 int err = 0;
7720
7721 /* skip PTR and modifiers */
7722 type_id = t->type;
7723 t = btf_type_by_id(btf, t->type);
7724 while (btf_type_is_modifier(t)) {
7725 type_id = t->type;
7726 t = btf_type_by_id(btf, t->type);
7727 }
7728
7729 mutex_lock(&cand_cache_mutex);
7730 cc = bpf_core_find_cands(&ctx, type_id);
7731 if (IS_ERR(cc)) {
7732 err = PTR_ERR(cc);
7733 bpf_log(log, "arg#%d reference type('%s %s') candidate matching error: %d\n",
7734 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7735 err);
7736 goto cand_cache_unlock;
7737 }
7738 if (cc->cnt != 1) {
7739 bpf_log(log, "arg#%d reference type('%s %s') %s\n",
7740 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7741 cc->cnt == 0 ? "has no matches" : "is ambiguous");
7742 err = cc->cnt == 0 ? -ENOENT : -ESRCH;
7743 goto cand_cache_unlock;
7744 }
7745 if (btf_is_module(cc->cands[0].btf)) {
7746 bpf_log(log, "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n",
7747 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off));
7748 err = -EOPNOTSUPP;
7749 goto cand_cache_unlock;
7750 }
7751 kern_type_id = cc->cands[0].id;
7752
7753 cand_cache_unlock:
7754 mutex_unlock(&cand_cache_mutex);
7755 if (err)
7756 return err;
7757
7758 return kern_type_id;
7759 }
7760
7761 enum btf_arg_tag {
7762 ARG_TAG_CTX = BIT_ULL(0),
7763 ARG_TAG_NONNULL = BIT_ULL(1),
7764 ARG_TAG_TRUSTED = BIT_ULL(2),
7765 ARG_TAG_UNTRUSTED = BIT_ULL(3),
7766 ARG_TAG_NULLABLE = BIT_ULL(4),
7767 ARG_TAG_ARENA = BIT_ULL(5),
7768 };
7769
7770 /* Process BTF of a function to produce high-level expectation of function
7771 * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information
7772 * is cached in subprog info for reuse.
7773 * Returns:
7774 * EFAULT - there is a verifier bug. Abort verification.
7775 * EINVAL - cannot convert BTF.
7776 * 0 - Successfully processed BTF and constructed argument expectations.
7777 */
btf_prepare_func_args(struct bpf_verifier_env * env,int subprog)7778 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog)
7779 {
7780 bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL;
7781 struct bpf_subprog_info *sub = subprog_info(env, subprog);
7782 struct bpf_verifier_log *log = &env->log;
7783 struct bpf_prog *prog = env->prog;
7784 enum bpf_prog_type prog_type = prog->type;
7785 struct btf *btf = prog->aux->btf;
7786 const struct btf_param *args;
7787 const struct btf_type *t, *ref_t, *fn_t;
7788 u32 i, nargs, btf_id;
7789 const char *tname;
7790
7791 if (sub->args_cached)
7792 return 0;
7793
7794 if (!prog->aux->func_info) {
7795 verifier_bug(env, "func_info undefined");
7796 return -EFAULT;
7797 }
7798
7799 btf_id = prog->aux->func_info[subprog].type_id;
7800 if (!btf_id) {
7801 if (!is_global) /* not fatal for static funcs */
7802 return -EINVAL;
7803 bpf_log(log, "Global functions need valid BTF\n");
7804 return -EFAULT;
7805 }
7806
7807 fn_t = btf_type_by_id(btf, btf_id);
7808 if (!fn_t || !btf_type_is_func(fn_t)) {
7809 /* These checks were already done by the verifier while loading
7810 * struct bpf_func_info
7811 */
7812 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
7813 subprog);
7814 return -EFAULT;
7815 }
7816 tname = btf_name_by_offset(btf, fn_t->name_off);
7817
7818 if (prog->aux->func_info_aux[subprog].unreliable) {
7819 verifier_bug(env, "unreliable BTF for function %s()", tname);
7820 return -EFAULT;
7821 }
7822 if (prog_type == BPF_PROG_TYPE_EXT)
7823 prog_type = prog->aux->dst_prog->type;
7824
7825 t = btf_type_by_id(btf, fn_t->type);
7826 if (!t || !btf_type_is_func_proto(t)) {
7827 bpf_log(log, "Invalid type of function %s()\n", tname);
7828 return -EFAULT;
7829 }
7830 args = (const struct btf_param *)(t + 1);
7831 nargs = btf_type_vlen(t);
7832 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
7833 if (!is_global)
7834 return -EINVAL;
7835 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
7836 tname, nargs, MAX_BPF_FUNC_REG_ARGS);
7837 return -EINVAL;
7838 }
7839 /* check that function returns int, exception cb also requires this */
7840 t = btf_type_by_id(btf, t->type);
7841 while (btf_type_is_modifier(t))
7842 t = btf_type_by_id(btf, t->type);
7843 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
7844 if (!is_global)
7845 return -EINVAL;
7846 bpf_log(log,
7847 "Global function %s() doesn't return scalar. Only those are supported.\n",
7848 tname);
7849 return -EINVAL;
7850 }
7851
7852 /* Convert BTF function arguments into verifier types.
7853 * Only PTR_TO_CTX and SCALAR are supported atm.
7854 */
7855 for (i = 0; i < nargs; i++) {
7856 u32 tags = 0;
7857 int id = btf_named_start_id(btf, false) - 1;
7858
7859 /* 'arg:<tag>' decl_tag takes precedence over derivation of
7860 * register type from BTF type itself
7861 */
7862 while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) {
7863 const struct btf_type *tag_t = btf_type_by_id(btf, id);
7864 const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4;
7865
7866 /* disallow arg tags in static subprogs */
7867 if (!is_global) {
7868 bpf_log(log, "arg#%d type tag is not supported in static functions\n", i);
7869 return -EOPNOTSUPP;
7870 }
7871
7872 if (strcmp(tag, "ctx") == 0) {
7873 tags |= ARG_TAG_CTX;
7874 } else if (strcmp(tag, "trusted") == 0) {
7875 tags |= ARG_TAG_TRUSTED;
7876 } else if (strcmp(tag, "untrusted") == 0) {
7877 tags |= ARG_TAG_UNTRUSTED;
7878 } else if (strcmp(tag, "nonnull") == 0) {
7879 tags |= ARG_TAG_NONNULL;
7880 } else if (strcmp(tag, "nullable") == 0) {
7881 tags |= ARG_TAG_NULLABLE;
7882 } else if (strcmp(tag, "arena") == 0) {
7883 tags |= ARG_TAG_ARENA;
7884 } else {
7885 bpf_log(log, "arg#%d has unsupported set of tags\n", i);
7886 return -EOPNOTSUPP;
7887 }
7888 }
7889 if (id != -ENOENT) {
7890 bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id);
7891 return id;
7892 }
7893
7894 t = btf_type_by_id(btf, args[i].type);
7895 while (btf_type_is_modifier(t))
7896 t = btf_type_by_id(btf, t->type);
7897 if (!btf_type_is_ptr(t))
7898 goto skip_pointer;
7899
7900 if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, i)) {
7901 if (tags & ~ARG_TAG_CTX) {
7902 bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7903 return -EINVAL;
7904 }
7905 if ((tags & ARG_TAG_CTX) &&
7906 btf_validate_prog_ctx_type(log, btf, t, i, prog_type,
7907 prog->expected_attach_type))
7908 return -EINVAL;
7909 sub->args[i].arg_type = ARG_PTR_TO_CTX;
7910 continue;
7911 }
7912 if (btf_is_dynptr_ptr(btf, t)) {
7913 if (tags) {
7914 bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7915 return -EINVAL;
7916 }
7917 sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY;
7918 continue;
7919 }
7920 if (tags & ARG_TAG_TRUSTED) {
7921 int kern_type_id;
7922
7923 if (tags & ARG_TAG_NONNULL) {
7924 bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7925 return -EINVAL;
7926 }
7927
7928 kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t);
7929 if (kern_type_id < 0)
7930 return kern_type_id;
7931
7932 sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED;
7933 if (tags & ARG_TAG_NULLABLE)
7934 sub->args[i].arg_type |= PTR_MAYBE_NULL;
7935 sub->args[i].btf_id = kern_type_id;
7936 continue;
7937 }
7938 if (tags & ARG_TAG_UNTRUSTED) {
7939 struct btf *vmlinux_btf;
7940 int kern_type_id;
7941
7942 if (tags & ~ARG_TAG_UNTRUSTED) {
7943 bpf_log(log, "arg#%d untrusted cannot be combined with any other tags\n", i);
7944 return -EINVAL;
7945 }
7946
7947 ref_t = btf_type_skip_modifiers(btf, t->type, NULL);
7948 if (btf_type_is_void(ref_t) || btf_type_is_primitive(ref_t)) {
7949 sub->args[i].arg_type = ARG_PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED;
7950 sub->args[i].mem_size = 0;
7951 continue;
7952 }
7953
7954 kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t);
7955 if (kern_type_id < 0)
7956 return kern_type_id;
7957
7958 vmlinux_btf = bpf_get_btf_vmlinux();
7959 ref_t = btf_type_by_id(vmlinux_btf, kern_type_id);
7960 if (!btf_type_is_struct(ref_t)) {
7961 tname = __btf_name_by_offset(vmlinux_btf, t->name_off);
7962 bpf_log(log, "arg#%d has type %s '%s', but only struct or primitive types are allowed\n",
7963 i, btf_type_str(ref_t), tname);
7964 return -EINVAL;
7965 }
7966 sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_UNTRUSTED;
7967 sub->args[i].btf_id = kern_type_id;
7968 continue;
7969 }
7970 if (tags & ARG_TAG_ARENA) {
7971 if (tags & ~ARG_TAG_ARENA) {
7972 bpf_log(log, "arg#%d arena cannot be combined with any other tags\n", i);
7973 return -EINVAL;
7974 }
7975 sub->args[i].arg_type = ARG_PTR_TO_ARENA;
7976 continue;
7977 }
7978 if (is_global) { /* generic user data pointer */
7979 u32 mem_size;
7980
7981 if (tags & ARG_TAG_NULLABLE) {
7982 bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7983 return -EINVAL;
7984 }
7985
7986 t = btf_type_skip_modifiers(btf, t->type, NULL);
7987 ref_t = btf_resolve_size(btf, t, &mem_size);
7988 if (IS_ERR(ref_t)) {
7989 bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
7990 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
7991 PTR_ERR(ref_t));
7992 return -EINVAL;
7993 }
7994
7995 sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL;
7996 if (tags & ARG_TAG_NONNULL)
7997 sub->args[i].arg_type &= ~PTR_MAYBE_NULL;
7998 sub->args[i].mem_size = mem_size;
7999 continue;
8000 }
8001
8002 skip_pointer:
8003 if (tags) {
8004 bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i);
8005 return -EINVAL;
8006 }
8007 if (btf_type_is_int(t) || btf_is_any_enum(t)) {
8008 sub->args[i].arg_type = ARG_ANYTHING;
8009 continue;
8010 }
8011 if (!is_global)
8012 return -EINVAL;
8013 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
8014 i, btf_type_str(t), tname);
8015 return -EINVAL;
8016 }
8017
8018 sub->arg_cnt = nargs;
8019 sub->args_cached = true;
8020
8021 return 0;
8022 }
8023
btf_type_show(const struct btf * btf,u32 type_id,void * obj,struct btf_show * show)8024 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
8025 struct btf_show *show)
8026 {
8027 const struct btf_type *t = btf_type_by_id(btf, type_id);
8028
8029 show->btf = btf;
8030 memset(&show->state, 0, sizeof(show->state));
8031 memset(&show->obj, 0, sizeof(show->obj));
8032
8033 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
8034 }
8035
btf_seq_show(struct btf_show * show,const char * fmt,va_list args)8036 __printf(2, 0) static void btf_seq_show(struct btf_show *show, const char *fmt,
8037 va_list args)
8038 {
8039 seq_vprintf((struct seq_file *)show->target, fmt, args);
8040 }
8041
btf_type_seq_show_flags(const struct btf * btf,u32 type_id,void * obj,struct seq_file * m,u64 flags)8042 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
8043 void *obj, struct seq_file *m, u64 flags)
8044 {
8045 struct btf_show sseq;
8046
8047 sseq.target = m;
8048 sseq.showfn = btf_seq_show;
8049 sseq.flags = flags;
8050
8051 btf_type_show(btf, type_id, obj, &sseq);
8052
8053 return sseq.state.status;
8054 }
8055
btf_type_seq_show(const struct btf * btf,u32 type_id,void * obj,struct seq_file * m)8056 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
8057 struct seq_file *m)
8058 {
8059 (void) btf_type_seq_show_flags(btf, type_id, obj, m,
8060 BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
8061 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
8062 }
8063
8064 struct btf_show_snprintf {
8065 struct btf_show show;
8066 int len_left; /* space left in string */
8067 int len; /* length we would have written */
8068 };
8069
btf_snprintf_show(struct btf_show * show,const char * fmt,va_list args)8070 __printf(2, 0) static void btf_snprintf_show(struct btf_show *show, const char *fmt,
8071 va_list args)
8072 {
8073 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
8074 int len;
8075
8076 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
8077
8078 if (len < 0) {
8079 ssnprintf->len_left = 0;
8080 ssnprintf->len = len;
8081 } else if (len >= ssnprintf->len_left) {
8082 /* no space, drive on to get length we would have written */
8083 ssnprintf->len_left = 0;
8084 ssnprintf->len += len;
8085 } else {
8086 ssnprintf->len_left -= len;
8087 ssnprintf->len += len;
8088 show->target += len;
8089 }
8090 }
8091
btf_type_snprintf_show(const struct btf * btf,u32 type_id,void * obj,char * buf,int len,u64 flags)8092 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
8093 char *buf, int len, u64 flags)
8094 {
8095 struct btf_show_snprintf ssnprintf;
8096
8097 ssnprintf.show.target = buf;
8098 ssnprintf.show.flags = flags;
8099 ssnprintf.show.showfn = btf_snprintf_show;
8100 ssnprintf.len_left = len;
8101 ssnprintf.len = 0;
8102
8103 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
8104
8105 /* If we encountered an error, return it. */
8106 if (ssnprintf.show.state.status)
8107 return ssnprintf.show.state.status;
8108
8109 /* Otherwise return length we would have written */
8110 return ssnprintf.len;
8111 }
8112
8113 #ifdef CONFIG_PROC_FS
bpf_btf_show_fdinfo(struct seq_file * m,struct file * filp)8114 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
8115 {
8116 const struct btf *btf = filp->private_data;
8117
8118 seq_printf(m, "btf_id:\t%u\n", btf->id);
8119 }
8120 #endif
8121
btf_release(struct inode * inode,struct file * filp)8122 static int btf_release(struct inode *inode, struct file *filp)
8123 {
8124 btf_put(filp->private_data);
8125 return 0;
8126 }
8127
8128 const struct file_operations btf_fops = {
8129 #ifdef CONFIG_PROC_FS
8130 .show_fdinfo = bpf_btf_show_fdinfo,
8131 #endif
8132 .release = btf_release,
8133 };
8134
__btf_new_fd(struct btf * btf)8135 static int __btf_new_fd(struct btf *btf)
8136 {
8137 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
8138 }
8139
btf_new_fd(const union bpf_attr * attr,bpfptr_t uattr,u32 uattr_size)8140 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
8141 {
8142 struct btf *btf;
8143 int ret;
8144
8145 btf = btf_parse(attr, uattr, uattr_size);
8146 if (IS_ERR(btf))
8147 return PTR_ERR(btf);
8148
8149 ret = btf_alloc_id(btf);
8150 if (ret) {
8151 btf_free(btf);
8152 return ret;
8153 }
8154
8155 /*
8156 * The BTF ID is published to the userspace.
8157 * All BTF free must go through call_rcu() from
8158 * now on (i.e. free by calling btf_put()).
8159 */
8160
8161 ret = __btf_new_fd(btf);
8162 if (ret < 0)
8163 btf_put(btf);
8164
8165 return ret;
8166 }
8167
btf_get_by_fd(int fd)8168 struct btf *btf_get_by_fd(int fd)
8169 {
8170 struct btf *btf;
8171 CLASS(fd, f)(fd);
8172
8173 btf = __btf_get_by_fd(f);
8174 if (!IS_ERR(btf))
8175 refcount_inc(&btf->refcnt);
8176
8177 return btf;
8178 }
8179
btf_get_info_by_fd(const struct btf * btf,const union bpf_attr * attr,union bpf_attr __user * uattr)8180 int btf_get_info_by_fd(const struct btf *btf,
8181 const union bpf_attr *attr,
8182 union bpf_attr __user *uattr)
8183 {
8184 struct bpf_btf_info __user *uinfo;
8185 struct bpf_btf_info info;
8186 u32 info_copy, btf_copy;
8187 void __user *ubtf;
8188 char __user *uname;
8189 u32 uinfo_len, uname_len, name_len;
8190 int ret = 0;
8191
8192 uinfo = u64_to_user_ptr(attr->info.info);
8193 uinfo_len = attr->info.info_len;
8194
8195 info_copy = min_t(u32, uinfo_len, sizeof(info));
8196 memset(&info, 0, sizeof(info));
8197 if (copy_from_user(&info, uinfo, info_copy))
8198 return -EFAULT;
8199
8200 info.id = btf->id;
8201 ubtf = u64_to_user_ptr(info.btf);
8202 btf_copy = min_t(u32, btf->data_size, info.btf_size);
8203 if (copy_to_user(ubtf, btf->data, btf_copy))
8204 return -EFAULT;
8205 info.btf_size = btf->data_size;
8206
8207 info.kernel_btf = btf->kernel_btf;
8208
8209 uname = u64_to_user_ptr(info.name);
8210 uname_len = info.name_len;
8211 if (!uname ^ !uname_len)
8212 return -EINVAL;
8213
8214 name_len = strlen(btf->name);
8215 info.name_len = name_len;
8216
8217 if (uname) {
8218 if (uname_len >= name_len + 1) {
8219 if (copy_to_user(uname, btf->name, name_len + 1))
8220 return -EFAULT;
8221 } else {
8222 char zero = '\0';
8223
8224 if (copy_to_user(uname, btf->name, uname_len - 1))
8225 return -EFAULT;
8226 if (put_user(zero, uname + uname_len - 1))
8227 return -EFAULT;
8228 /* let user-space know about too short buffer */
8229 ret = -ENOSPC;
8230 }
8231 }
8232
8233 if (copy_to_user(uinfo, &info, info_copy) ||
8234 put_user(info_copy, &uattr->info.info_len))
8235 return -EFAULT;
8236
8237 return ret;
8238 }
8239
btf_get_fd_by_id(u32 id)8240 int btf_get_fd_by_id(u32 id)
8241 {
8242 struct btf *btf;
8243 int fd;
8244
8245 rcu_read_lock();
8246 btf = idr_find(&btf_idr, id);
8247 if (!btf || !refcount_inc_not_zero(&btf->refcnt))
8248 btf = ERR_PTR(-ENOENT);
8249 rcu_read_unlock();
8250
8251 if (IS_ERR(btf))
8252 return PTR_ERR(btf);
8253
8254 fd = __btf_new_fd(btf);
8255 if (fd < 0)
8256 btf_put(btf);
8257
8258 return fd;
8259 }
8260
btf_obj_id(const struct btf * btf)8261 u32 btf_obj_id(const struct btf *btf)
8262 {
8263 return btf->id;
8264 }
8265
btf_is_kernel(const struct btf * btf)8266 bool btf_is_kernel(const struct btf *btf)
8267 {
8268 return btf->kernel_btf;
8269 }
8270
btf_is_module(const struct btf * btf)8271 bool btf_is_module(const struct btf *btf)
8272 {
8273 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
8274 }
8275
8276 enum {
8277 BTF_MODULE_F_LIVE = (1 << 0),
8278 };
8279
8280 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8281 struct btf_module {
8282 struct list_head list;
8283 struct module *module;
8284 struct btf *btf;
8285 struct bin_attribute *sysfs_attr;
8286 int flags;
8287 };
8288
8289 static LIST_HEAD(btf_modules);
8290 static DEFINE_MUTEX(btf_module_mutex);
8291
8292 static void purge_cand_cache(struct btf *btf);
8293
btf_module_notify(struct notifier_block * nb,unsigned long op,void * module)8294 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
8295 void *module)
8296 {
8297 struct btf_module *btf_mod, *tmp;
8298 struct module *mod = module;
8299 struct btf *btf;
8300 int err = 0;
8301
8302 if (mod->btf_data_size == 0 ||
8303 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
8304 op != MODULE_STATE_GOING))
8305 goto out;
8306
8307 switch (op) {
8308 case MODULE_STATE_COMING:
8309 btf_mod = kzalloc_obj(*btf_mod, GFP_KERNEL);
8310 if (!btf_mod) {
8311 err = -ENOMEM;
8312 goto out;
8313 }
8314 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size,
8315 mod->btf_base_data, mod->btf_base_data_size);
8316 if (IS_ERR(btf)) {
8317 kfree(btf_mod);
8318 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
8319 pr_warn("failed to validate module [%s] BTF: %ld\n",
8320 mod->name, PTR_ERR(btf));
8321 err = PTR_ERR(btf);
8322 } else {
8323 pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
8324 }
8325 goto out;
8326 }
8327 err = btf_alloc_id(btf);
8328 if (err) {
8329 btf_free(btf);
8330 kfree(btf_mod);
8331 goto out;
8332 }
8333
8334 purge_cand_cache(NULL);
8335 mutex_lock(&btf_module_mutex);
8336 btf_mod->module = module;
8337 btf_mod->btf = btf;
8338 list_add(&btf_mod->list, &btf_modules);
8339 mutex_unlock(&btf_module_mutex);
8340
8341 if (IS_ENABLED(CONFIG_SYSFS)) {
8342 struct bin_attribute *attr;
8343
8344 attr = kzalloc_obj(*attr, GFP_KERNEL);
8345 if (!attr)
8346 goto out;
8347
8348 sysfs_bin_attr_init(attr);
8349 attr->attr.name = btf->name;
8350 attr->attr.mode = 0444;
8351 attr->size = btf->data_size;
8352 attr->private = btf->data;
8353 attr->read = sysfs_bin_attr_simple_read;
8354
8355 err = sysfs_create_bin_file(btf_kobj, attr);
8356 if (err) {
8357 pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
8358 mod->name, err);
8359 kfree(attr);
8360 err = 0;
8361 goto out;
8362 }
8363
8364 btf_mod->sysfs_attr = attr;
8365 }
8366
8367 break;
8368 case MODULE_STATE_LIVE:
8369 mutex_lock(&btf_module_mutex);
8370 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8371 if (btf_mod->module != module)
8372 continue;
8373
8374 btf_mod->flags |= BTF_MODULE_F_LIVE;
8375 break;
8376 }
8377 mutex_unlock(&btf_module_mutex);
8378 break;
8379 case MODULE_STATE_GOING:
8380 mutex_lock(&btf_module_mutex);
8381 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8382 if (btf_mod->module != module)
8383 continue;
8384
8385 list_del(&btf_mod->list);
8386 if (btf_mod->sysfs_attr)
8387 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
8388 purge_cand_cache(btf_mod->btf);
8389 btf_put(btf_mod->btf);
8390 kfree(btf_mod->sysfs_attr);
8391 kfree(btf_mod);
8392 break;
8393 }
8394 mutex_unlock(&btf_module_mutex);
8395 break;
8396 }
8397 out:
8398 return notifier_from_errno(err);
8399 }
8400
8401 static struct notifier_block btf_module_nb = {
8402 .notifier_call = btf_module_notify,
8403 };
8404
btf_module_init(void)8405 static int __init btf_module_init(void)
8406 {
8407 register_module_notifier(&btf_module_nb);
8408 return 0;
8409 }
8410
8411 fs_initcall(btf_module_init);
8412 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
8413
btf_try_get_module(const struct btf * btf)8414 struct module *btf_try_get_module(const struct btf *btf)
8415 {
8416 struct module *res = NULL;
8417 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8418 struct btf_module *btf_mod, *tmp;
8419
8420 mutex_lock(&btf_module_mutex);
8421 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8422 if (btf_mod->btf != btf)
8423 continue;
8424
8425 /* We must only consider module whose __init routine has
8426 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
8427 * which is set from the notifier callback for
8428 * MODULE_STATE_LIVE.
8429 */
8430 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
8431 res = btf_mod->module;
8432
8433 break;
8434 }
8435 mutex_unlock(&btf_module_mutex);
8436 #endif
8437
8438 return res;
8439 }
8440
8441 /* Returns struct btf corresponding to the struct module.
8442 * This function can return NULL or ERR_PTR.
8443 */
btf_get_module_btf(const struct module * module)8444 static struct btf *btf_get_module_btf(const struct module *module)
8445 {
8446 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8447 struct btf_module *btf_mod, *tmp;
8448 #endif
8449 struct btf *btf = NULL;
8450
8451 if (!module) {
8452 btf = bpf_get_btf_vmlinux();
8453 if (!IS_ERR_OR_NULL(btf))
8454 btf_get(btf);
8455 return btf;
8456 }
8457
8458 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8459 mutex_lock(&btf_module_mutex);
8460 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8461 if (btf_mod->module != module)
8462 continue;
8463
8464 btf_get(btf_mod->btf);
8465 btf = btf_mod->btf;
8466 break;
8467 }
8468 mutex_unlock(&btf_module_mutex);
8469 #endif
8470
8471 return btf;
8472 }
8473
check_btf_kconfigs(const struct module * module,const char * feature)8474 static int check_btf_kconfigs(const struct module *module, const char *feature)
8475 {
8476 if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
8477 pr_err("missing vmlinux BTF, cannot register %s\n", feature);
8478 return -ENOENT;
8479 }
8480 if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
8481 pr_warn("missing module BTF, cannot register %s\n", feature);
8482 return 0;
8483 }
8484
BPF_CALL_4(bpf_btf_find_by_name_kind,char *,name,int,name_sz,u32,kind,int,flags)8485 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
8486 {
8487 struct btf *btf = NULL;
8488 int btf_obj_fd = 0;
8489 long ret;
8490
8491 if (flags)
8492 return -EINVAL;
8493
8494 if (name_sz <= 1 || name[name_sz - 1])
8495 return -EINVAL;
8496
8497 ret = bpf_find_btf_id(name, kind, &btf);
8498 if (ret > 0 && btf_is_module(btf)) {
8499 btf_obj_fd = __btf_new_fd(btf);
8500 if (btf_obj_fd < 0) {
8501 btf_put(btf);
8502 return btf_obj_fd;
8503 }
8504 return ret | (((u64)btf_obj_fd) << 32);
8505 }
8506 if (ret > 0)
8507 btf_put(btf);
8508 return ret;
8509 }
8510
8511 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
8512 .func = bpf_btf_find_by_name_kind,
8513 .gpl_only = false,
8514 .ret_type = RET_INTEGER,
8515 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
8516 .arg2_type = ARG_CONST_SIZE,
8517 .arg3_type = ARG_ANYTHING,
8518 .arg4_type = ARG_ANYTHING,
8519 };
8520
BTF_ID_LIST_GLOBAL(btf_tracing_ids,MAX_BTF_TRACING_TYPE)8521 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
8522 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
8523 BTF_TRACING_TYPE_xxx
8524 #undef BTF_TRACING_TYPE
8525
8526 /* Validate well-formedness of iter argument type.
8527 * On success, return positive BTF ID of iter state's STRUCT type.
8528 * On error, negative error is returned.
8529 */
8530 int btf_check_iter_arg(struct btf *btf, const struct btf_type *func, int arg_idx)
8531 {
8532 const struct btf_param *arg;
8533 const struct btf_type *t;
8534 const char *name;
8535 int btf_id;
8536
8537 if (btf_type_vlen(func) <= arg_idx)
8538 return -EINVAL;
8539
8540 arg = &btf_params(func)[arg_idx];
8541 t = btf_type_skip_modifiers(btf, arg->type, NULL);
8542 if (!t || !btf_type_is_ptr(t))
8543 return -EINVAL;
8544 t = btf_type_skip_modifiers(btf, t->type, &btf_id);
8545 if (!t || !__btf_type_is_struct(t))
8546 return -EINVAL;
8547
8548 name = btf_name_by_offset(btf, t->name_off);
8549 if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1))
8550 return -EINVAL;
8551
8552 return btf_id;
8553 }
8554
btf_check_iter_kfuncs(struct btf * btf,const char * func_name,const struct btf_type * func,u32 func_flags)8555 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name,
8556 const struct btf_type *func, u32 func_flags)
8557 {
8558 u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
8559 const char *sfx, *iter_name;
8560 const struct btf_type *t;
8561 char exp_name[128];
8562 u32 nr_args;
8563 int btf_id;
8564
8565 /* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */
8566 if (!flags || (flags & (flags - 1)))
8567 return -EINVAL;
8568
8569 /* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */
8570 nr_args = btf_type_vlen(func);
8571 if (nr_args < 1)
8572 return -EINVAL;
8573
8574 btf_id = btf_check_iter_arg(btf, func, 0);
8575 if (btf_id < 0)
8576 return btf_id;
8577
8578 /* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to
8579 * fit nicely in stack slots
8580 */
8581 t = btf_type_by_id(btf, btf_id);
8582 if (t->size == 0 || (t->size % 8))
8583 return -EINVAL;
8584
8585 /* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *)
8586 * naming pattern
8587 */
8588 iter_name = btf_name_by_offset(btf, t->name_off) + sizeof(ITER_PREFIX) - 1;
8589 if (flags & KF_ITER_NEW)
8590 sfx = "new";
8591 else if (flags & KF_ITER_NEXT)
8592 sfx = "next";
8593 else /* (flags & KF_ITER_DESTROY) */
8594 sfx = "destroy";
8595
8596 snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx);
8597 if (strcmp(func_name, exp_name))
8598 return -EINVAL;
8599
8600 /* only iter constructor should have extra arguments */
8601 if (!(flags & KF_ITER_NEW) && nr_args != 1)
8602 return -EINVAL;
8603
8604 if (flags & KF_ITER_NEXT) {
8605 /* bpf_iter_<type>_next() should return pointer */
8606 t = btf_type_skip_modifiers(btf, func->type, NULL);
8607 if (!t || !btf_type_is_ptr(t))
8608 return -EINVAL;
8609 }
8610
8611 if (flags & KF_ITER_DESTROY) {
8612 /* bpf_iter_<type>_destroy() should return void */
8613 t = btf_type_by_id(btf, func->type);
8614 if (!t || !btf_type_is_void(t))
8615 return -EINVAL;
8616 }
8617
8618 return 0;
8619 }
8620
btf_check_kfunc_protos(struct btf * btf,u32 func_id,u32 func_flags)8621 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags)
8622 {
8623 const struct btf_type *func;
8624 const char *func_name;
8625 int err;
8626
8627 /* any kfunc should be FUNC -> FUNC_PROTO */
8628 func = btf_type_by_id(btf, func_id);
8629 if (!func || !btf_type_is_func(func))
8630 return -EINVAL;
8631
8632 /* sanity check kfunc name */
8633 func_name = btf_name_by_offset(btf, func->name_off);
8634 if (!func_name || !func_name[0])
8635 return -EINVAL;
8636
8637 func = btf_type_by_id(btf, func->type);
8638 if (!func || !btf_type_is_func_proto(func))
8639 return -EINVAL;
8640
8641 if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) {
8642 err = btf_check_iter_kfuncs(btf, func_name, func, func_flags);
8643 if (err)
8644 return err;
8645 }
8646
8647 return 0;
8648 }
8649
8650 /* Kernel Function (kfunc) BTF ID set registration API */
8651
btf_populate_kfunc_set(struct btf * btf,enum btf_kfunc_hook hook,const struct btf_kfunc_id_set * kset)8652 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
8653 const struct btf_kfunc_id_set *kset)
8654 {
8655 struct btf_kfunc_hook_filter *hook_filter;
8656 struct btf_id_set8 *add_set = kset->set;
8657 bool vmlinux_set = !btf_is_module(btf);
8658 bool add_filter = !!kset->filter;
8659 struct btf_kfunc_set_tab *tab;
8660 struct btf_id_set8 *set;
8661 u32 set_cnt, i;
8662 int ret;
8663
8664 if (hook >= BTF_KFUNC_HOOK_MAX) {
8665 ret = -EINVAL;
8666 goto end;
8667 }
8668
8669 if (!add_set->cnt)
8670 return 0;
8671
8672 tab = btf->kfunc_set_tab;
8673
8674 if (tab && add_filter) {
8675 u32 i;
8676
8677 hook_filter = &tab->hook_filters[hook];
8678 for (i = 0; i < hook_filter->nr_filters; i++) {
8679 if (hook_filter->filters[i] == kset->filter) {
8680 add_filter = false;
8681 break;
8682 }
8683 }
8684
8685 if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) {
8686 ret = -E2BIG;
8687 goto end;
8688 }
8689 }
8690
8691 if (!tab) {
8692 tab = kzalloc_obj(*tab, GFP_KERNEL | __GFP_NOWARN);
8693 if (!tab)
8694 return -ENOMEM;
8695 btf->kfunc_set_tab = tab;
8696 }
8697
8698 set = tab->sets[hook];
8699 /* Warn when register_btf_kfunc_id_set is called twice for the same hook
8700 * for module sets.
8701 */
8702 if (WARN_ON_ONCE(set && !vmlinux_set)) {
8703 ret = -EINVAL;
8704 goto end;
8705 }
8706
8707 /* In case of vmlinux sets, there may be more than one set being
8708 * registered per hook. To create a unified set, we allocate a new set
8709 * and concatenate all individual sets being registered. While each set
8710 * is individually sorted, they may become unsorted when concatenated,
8711 * hence re-sorting the final set again is required to make binary
8712 * searching the set using btf_id_set8_contains function work.
8713 *
8714 * For module sets, we need to allocate as we may need to relocate
8715 * BTF ids.
8716 */
8717 set_cnt = set ? set->cnt : 0;
8718
8719 if (set_cnt > U32_MAX - add_set->cnt) {
8720 ret = -EOVERFLOW;
8721 goto end;
8722 }
8723
8724 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
8725 ret = -E2BIG;
8726 goto end;
8727 }
8728
8729 /* Grow set */
8730 set = krealloc(tab->sets[hook],
8731 struct_size(set, pairs, set_cnt + add_set->cnt),
8732 GFP_KERNEL | __GFP_NOWARN);
8733 if (!set) {
8734 ret = -ENOMEM;
8735 goto end;
8736 }
8737
8738 /* For newly allocated set, initialize set->cnt to 0 */
8739 if (!tab->sets[hook])
8740 set->cnt = 0;
8741 tab->sets[hook] = set;
8742
8743 /* Concatenate the two sets */
8744 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
8745 /* Now that the set is copied, update with relocated BTF ids */
8746 for (i = set->cnt; i < set->cnt + add_set->cnt; i++)
8747 set->pairs[i].id = btf_relocate_id(btf, set->pairs[i].id);
8748
8749 set->cnt += add_set->cnt;
8750
8751 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
8752
8753 if (add_filter) {
8754 hook_filter = &tab->hook_filters[hook];
8755 hook_filter->filters[hook_filter->nr_filters++] = kset->filter;
8756 }
8757 return 0;
8758 end:
8759 btf_free_kfunc_set_tab(btf);
8760 return ret;
8761 }
8762
btf_kfunc_id_set_contains(const struct btf * btf,enum btf_kfunc_hook hook,u32 kfunc_btf_id)8763 static u32 *btf_kfunc_id_set_contains(const struct btf *btf,
8764 enum btf_kfunc_hook hook,
8765 u32 kfunc_btf_id)
8766 {
8767 struct btf_id_set8 *set;
8768 u32 *id;
8769
8770 if (hook >= BTF_KFUNC_HOOK_MAX)
8771 return NULL;
8772 if (!btf->kfunc_set_tab)
8773 return NULL;
8774 set = btf->kfunc_set_tab->sets[hook];
8775 if (!set)
8776 return NULL;
8777 id = btf_id_set8_contains(set, kfunc_btf_id);
8778 if (!id)
8779 return NULL;
8780 /* The flags for BTF ID are located next to it */
8781 return id + 1;
8782 }
8783
__btf_kfunc_is_allowed(const struct btf * btf,enum btf_kfunc_hook hook,u32 kfunc_btf_id,const struct bpf_prog * prog)8784 static bool __btf_kfunc_is_allowed(const struct btf *btf,
8785 enum btf_kfunc_hook hook,
8786 u32 kfunc_btf_id,
8787 const struct bpf_prog *prog)
8788 {
8789 struct btf_kfunc_hook_filter *hook_filter;
8790 int i;
8791
8792 if (hook >= BTF_KFUNC_HOOK_MAX)
8793 return false;
8794 if (!btf->kfunc_set_tab)
8795 return false;
8796
8797 hook_filter = &btf->kfunc_set_tab->hook_filters[hook];
8798 for (i = 0; i < hook_filter->nr_filters; i++) {
8799 if (hook_filter->filters[i](prog, kfunc_btf_id))
8800 return false;
8801 }
8802
8803 return true;
8804 }
8805
bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)8806 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
8807 {
8808 switch (prog_type) {
8809 case BPF_PROG_TYPE_UNSPEC:
8810 return BTF_KFUNC_HOOK_COMMON;
8811 case BPF_PROG_TYPE_XDP:
8812 return BTF_KFUNC_HOOK_XDP;
8813 case BPF_PROG_TYPE_SCHED_CLS:
8814 return BTF_KFUNC_HOOK_TC;
8815 case BPF_PROG_TYPE_STRUCT_OPS:
8816 return BTF_KFUNC_HOOK_STRUCT_OPS;
8817 case BPF_PROG_TYPE_TRACING:
8818 case BPF_PROG_TYPE_TRACEPOINT:
8819 case BPF_PROG_TYPE_RAW_TRACEPOINT:
8820 case BPF_PROG_TYPE_PERF_EVENT:
8821 case BPF_PROG_TYPE_LSM:
8822 return BTF_KFUNC_HOOK_TRACING;
8823 case BPF_PROG_TYPE_SYSCALL:
8824 return BTF_KFUNC_HOOK_SYSCALL;
8825 case BPF_PROG_TYPE_CGROUP_SKB:
8826 case BPF_PROG_TYPE_CGROUP_SOCK:
8827 case BPF_PROG_TYPE_CGROUP_DEVICE:
8828 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8829 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
8830 case BPF_PROG_TYPE_CGROUP_SYSCTL:
8831 case BPF_PROG_TYPE_SOCK_OPS:
8832 return BTF_KFUNC_HOOK_CGROUP;
8833 case BPF_PROG_TYPE_SCHED_ACT:
8834 return BTF_KFUNC_HOOK_SCHED_ACT;
8835 case BPF_PROG_TYPE_SK_SKB:
8836 return BTF_KFUNC_HOOK_SK_SKB;
8837 case BPF_PROG_TYPE_SOCKET_FILTER:
8838 return BTF_KFUNC_HOOK_SOCKET_FILTER;
8839 case BPF_PROG_TYPE_LWT_OUT:
8840 case BPF_PROG_TYPE_LWT_IN:
8841 case BPF_PROG_TYPE_LWT_XMIT:
8842 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
8843 return BTF_KFUNC_HOOK_LWT;
8844 case BPF_PROG_TYPE_NETFILTER:
8845 return BTF_KFUNC_HOOK_NETFILTER;
8846 case BPF_PROG_TYPE_KPROBE:
8847 return BTF_KFUNC_HOOK_KPROBE;
8848 default:
8849 return BTF_KFUNC_HOOK_MAX;
8850 }
8851 }
8852
btf_kfunc_is_allowed(const struct btf * btf,u32 kfunc_btf_id,const struct bpf_prog * prog)8853 bool btf_kfunc_is_allowed(const struct btf *btf,
8854 u32 kfunc_btf_id,
8855 const struct bpf_prog *prog)
8856 {
8857 enum bpf_prog_type prog_type = resolve_prog_type(prog);
8858 enum btf_kfunc_hook hook;
8859 u32 *kfunc_flags;
8860
8861 kfunc_flags = btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id);
8862 if (kfunc_flags && __btf_kfunc_is_allowed(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog))
8863 return true;
8864
8865 hook = bpf_prog_type_to_kfunc_hook(prog_type);
8866 kfunc_flags = btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id);
8867 if (kfunc_flags && __btf_kfunc_is_allowed(btf, hook, kfunc_btf_id, prog))
8868 return true;
8869
8870 return false;
8871 }
8872
8873 /* Caution:
8874 * Reference to the module (obtained using btf_try_get_module) corresponding to
8875 * the struct btf *MUST* be held when calling this function from verifier
8876 * context. This is usually true as we stash references in prog's kfunc_btf_tab;
8877 * keeping the reference for the duration of the call provides the necessary
8878 * protection for looking up a well-formed btf->kfunc_set_tab.
8879 */
btf_kfunc_flags(const struct btf * btf,u32 kfunc_btf_id,const struct bpf_prog * prog)8880 u32 *btf_kfunc_flags(const struct btf *btf, u32 kfunc_btf_id, const struct bpf_prog *prog)
8881 {
8882 enum bpf_prog_type prog_type = resolve_prog_type(prog);
8883 enum btf_kfunc_hook hook;
8884 u32 *kfunc_flags;
8885
8886 kfunc_flags = btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id);
8887 if (kfunc_flags)
8888 return kfunc_flags;
8889
8890 hook = bpf_prog_type_to_kfunc_hook(prog_type);
8891 return btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id);
8892 }
8893
btf_kfunc_is_modify_return(const struct btf * btf,u32 kfunc_btf_id,const struct bpf_prog * prog)8894 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id,
8895 const struct bpf_prog *prog)
8896 {
8897 if (!__btf_kfunc_is_allowed(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog))
8898 return NULL;
8899
8900 return btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id);
8901 }
8902
__register_btf_kfunc_id_set(enum btf_kfunc_hook hook,const struct btf_kfunc_id_set * kset)8903 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
8904 const struct btf_kfunc_id_set *kset)
8905 {
8906 struct btf *btf;
8907 int ret, i;
8908
8909 btf = btf_get_module_btf(kset->owner);
8910 if (!btf)
8911 return check_btf_kconfigs(kset->owner, "kfunc");
8912 if (IS_ERR(btf))
8913 return PTR_ERR(btf);
8914
8915 for (i = 0; i < kset->set->cnt; i++) {
8916 ret = btf_check_kfunc_protos(btf, btf_relocate_id(btf, kset->set->pairs[i].id),
8917 kset->set->pairs[i].flags);
8918 if (ret)
8919 goto err_out;
8920 }
8921
8922 ret = btf_populate_kfunc_set(btf, hook, kset);
8923
8924 err_out:
8925 btf_put(btf);
8926 return ret;
8927 }
8928
8929 /* This function must be invoked only from initcalls/module init functions */
register_btf_kfunc_id_set(enum bpf_prog_type prog_type,const struct btf_kfunc_id_set * kset)8930 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
8931 const struct btf_kfunc_id_set *kset)
8932 {
8933 enum btf_kfunc_hook hook;
8934
8935 /* All kfuncs need to be tagged as such in BTF.
8936 * WARN() for initcall registrations that do not check errors.
8937 */
8938 if (!(kset->set->flags & BTF_SET8_KFUNCS)) {
8939 WARN_ON(!kset->owner);
8940 return -EINVAL;
8941 }
8942
8943 hook = bpf_prog_type_to_kfunc_hook(prog_type);
8944 return __register_btf_kfunc_id_set(hook, kset);
8945 }
8946 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
8947
8948 /* This function must be invoked only from initcalls/module init functions */
register_btf_fmodret_id_set(const struct btf_kfunc_id_set * kset)8949 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
8950 {
8951 return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
8952 }
8953 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
8954
btf_find_dtor_kfunc(struct btf * btf,u32 btf_id)8955 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
8956 {
8957 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
8958 struct btf_id_dtor_kfunc *dtor;
8959
8960 if (!tab)
8961 return -ENOENT;
8962 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
8963 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
8964 */
8965 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
8966 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
8967 if (!dtor)
8968 return -ENOENT;
8969 return dtor->kfunc_btf_id;
8970 }
8971
btf_check_dtor_kfuncs(struct btf * btf,const struct btf_id_dtor_kfunc * dtors,u32 cnt)8972 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
8973 {
8974 const struct btf_type *dtor_func, *dtor_func_proto, *t;
8975 const struct btf_param *args;
8976 s32 dtor_btf_id;
8977 u32 nr_args, i;
8978
8979 for (i = 0; i < cnt; i++) {
8980 dtor_btf_id = btf_relocate_id(btf, dtors[i].kfunc_btf_id);
8981
8982 dtor_func = btf_type_by_id(btf, dtor_btf_id);
8983 if (!dtor_func || !btf_type_is_func(dtor_func))
8984 return -EINVAL;
8985
8986 dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
8987 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
8988 return -EINVAL;
8989
8990 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
8991 t = btf_type_by_id(btf, dtor_func_proto->type);
8992 if (!t || !btf_type_is_void(t))
8993 return -EINVAL;
8994
8995 nr_args = btf_type_vlen(dtor_func_proto);
8996 if (nr_args != 1)
8997 return -EINVAL;
8998 args = btf_params(dtor_func_proto);
8999 t = btf_type_by_id(btf, args[0].type);
9000 /* Allow any pointer type, as width on targets Linux supports
9001 * will be same for all pointer types (i.e. sizeof(void *))
9002 */
9003 if (!t || !btf_type_is_ptr(t))
9004 return -EINVAL;
9005
9006 if (IS_ENABLED(CONFIG_CFI_CLANG)) {
9007 /* Ensure the destructor kfunc type matches btf_dtor_kfunc_t */
9008 t = btf_type_by_id(btf, t->type);
9009 if (!btf_type_is_void(t))
9010 return -EINVAL;
9011 }
9012 }
9013 return 0;
9014 }
9015
9016 /* This function must be invoked only from initcalls/module init functions */
register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc * dtors,u32 add_cnt,struct module * owner)9017 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
9018 struct module *owner)
9019 {
9020 struct btf_id_dtor_kfunc_tab *tab;
9021 struct btf *btf;
9022 u32 tab_cnt, i;
9023 int ret;
9024
9025 btf = btf_get_module_btf(owner);
9026 if (!btf)
9027 return check_btf_kconfigs(owner, "dtor kfuncs");
9028 if (IS_ERR(btf))
9029 return PTR_ERR(btf);
9030
9031 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
9032 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
9033 ret = -E2BIG;
9034 goto end;
9035 }
9036
9037 /* Ensure that the prototype of dtor kfuncs being registered is sane */
9038 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
9039 if (ret < 0)
9040 goto end;
9041
9042 tab = btf->dtor_kfunc_tab;
9043 /* Only one call allowed for modules */
9044 if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
9045 ret = -EINVAL;
9046 goto end;
9047 }
9048
9049 tab_cnt = tab ? tab->cnt : 0;
9050 if (tab_cnt > U32_MAX - add_cnt) {
9051 ret = -EOVERFLOW;
9052 goto end;
9053 }
9054 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
9055 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
9056 ret = -E2BIG;
9057 goto end;
9058 }
9059
9060 tab = krealloc(btf->dtor_kfunc_tab,
9061 struct_size(tab, dtors, tab_cnt + add_cnt),
9062 GFP_KERNEL | __GFP_NOWARN);
9063 if (!tab) {
9064 ret = -ENOMEM;
9065 goto end;
9066 }
9067
9068 if (!btf->dtor_kfunc_tab)
9069 tab->cnt = 0;
9070 btf->dtor_kfunc_tab = tab;
9071
9072 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
9073
9074 /* remap BTF ids based on BTF relocation (if any) */
9075 for (i = tab_cnt; i < tab_cnt + add_cnt; i++) {
9076 tab->dtors[i].btf_id = btf_relocate_id(btf, tab->dtors[i].btf_id);
9077 tab->dtors[i].kfunc_btf_id = btf_relocate_id(btf, tab->dtors[i].kfunc_btf_id);
9078 }
9079
9080 tab->cnt += add_cnt;
9081
9082 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
9083
9084 end:
9085 if (ret)
9086 btf_free_dtor_kfunc_tab(btf);
9087 btf_put(btf);
9088 return ret;
9089 }
9090 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
9091
9092 #define MAX_TYPES_ARE_COMPAT_DEPTH 2
9093
9094 /* Check local and target types for compatibility. This check is used for
9095 * type-based CO-RE relocations and follow slightly different rules than
9096 * field-based relocations. This function assumes that root types were already
9097 * checked for name match. Beyond that initial root-level name check, names
9098 * are completely ignored. Compatibility rules are as follows:
9099 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
9100 * kind should match for local and target types (i.e., STRUCT is not
9101 * compatible with UNION);
9102 * - for ENUMs/ENUM64s, the size is ignored;
9103 * - for INT, size and signedness are ignored;
9104 * - for ARRAY, dimensionality is ignored, element types are checked for
9105 * compatibility recursively;
9106 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
9107 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
9108 * - FUNC_PROTOs are compatible if they have compatible signature: same
9109 * number of input args and compatible return and argument types.
9110 * These rules are not set in stone and probably will be adjusted as we get
9111 * more experience with using BPF CO-RE relocations.
9112 */
bpf_core_types_are_compat(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)9113 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
9114 const struct btf *targ_btf, __u32 targ_id)
9115 {
9116 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
9117 MAX_TYPES_ARE_COMPAT_DEPTH);
9118 }
9119
9120 #define MAX_TYPES_MATCH_DEPTH 2
9121
bpf_core_types_match(const struct btf * local_btf,u32 local_id,const struct btf * targ_btf,u32 targ_id)9122 int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
9123 const struct btf *targ_btf, u32 targ_id)
9124 {
9125 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
9126 MAX_TYPES_MATCH_DEPTH);
9127 }
9128
bpf_core_is_flavor_sep(const char * s)9129 static bool bpf_core_is_flavor_sep(const char *s)
9130 {
9131 /* check X___Y name pattern, where X and Y are not underscores */
9132 return s[0] != '_' && /* X */
9133 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
9134 s[4] != '_'; /* Y */
9135 }
9136
bpf_core_essential_name_len(const char * name)9137 size_t bpf_core_essential_name_len(const char *name)
9138 {
9139 size_t n = strlen(name);
9140 int i;
9141
9142 for (i = n - 5; i >= 0; i--) {
9143 if (bpf_core_is_flavor_sep(name + i))
9144 return i + 1;
9145 }
9146 return n;
9147 }
9148
bpf_free_cands(struct bpf_cand_cache * cands)9149 static void bpf_free_cands(struct bpf_cand_cache *cands)
9150 {
9151 if (!cands->cnt)
9152 /* empty candidate array was allocated on stack */
9153 return;
9154 kfree(cands);
9155 }
9156
bpf_free_cands_from_cache(struct bpf_cand_cache * cands)9157 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
9158 {
9159 kfree(cands->name);
9160 kfree(cands);
9161 }
9162
9163 #define VMLINUX_CAND_CACHE_SIZE 31
9164 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
9165
9166 #define MODULE_CAND_CACHE_SIZE 31
9167 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
9168
__print_cand_cache(struct bpf_verifier_log * log,struct bpf_cand_cache ** cache,int cache_size)9169 static void __print_cand_cache(struct bpf_verifier_log *log,
9170 struct bpf_cand_cache **cache,
9171 int cache_size)
9172 {
9173 struct bpf_cand_cache *cc;
9174 int i, j;
9175
9176 for (i = 0; i < cache_size; i++) {
9177 cc = cache[i];
9178 if (!cc)
9179 continue;
9180 bpf_log(log, "[%d]%s(", i, cc->name);
9181 for (j = 0; j < cc->cnt; j++) {
9182 bpf_log(log, "%d", cc->cands[j].id);
9183 if (j < cc->cnt - 1)
9184 bpf_log(log, " ");
9185 }
9186 bpf_log(log, "), ");
9187 }
9188 }
9189
print_cand_cache(struct bpf_verifier_log * log)9190 static void print_cand_cache(struct bpf_verifier_log *log)
9191 {
9192 mutex_lock(&cand_cache_mutex);
9193 bpf_log(log, "vmlinux_cand_cache:");
9194 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
9195 bpf_log(log, "\nmodule_cand_cache:");
9196 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
9197 bpf_log(log, "\n");
9198 mutex_unlock(&cand_cache_mutex);
9199 }
9200
hash_cands(struct bpf_cand_cache * cands)9201 static u32 hash_cands(struct bpf_cand_cache *cands)
9202 {
9203 return jhash(cands->name, cands->name_len, 0);
9204 }
9205
check_cand_cache(struct bpf_cand_cache * cands,struct bpf_cand_cache ** cache,int cache_size)9206 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
9207 struct bpf_cand_cache **cache,
9208 int cache_size)
9209 {
9210 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
9211
9212 if (cc && cc->name_len == cands->name_len &&
9213 !strncmp(cc->name, cands->name, cands->name_len))
9214 return cc;
9215 return NULL;
9216 }
9217
sizeof_cands(int cnt)9218 static size_t sizeof_cands(int cnt)
9219 {
9220 return offsetof(struct bpf_cand_cache, cands[cnt]);
9221 }
9222
populate_cand_cache(struct bpf_cand_cache * cands,struct bpf_cand_cache ** cache,int cache_size)9223 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
9224 struct bpf_cand_cache **cache,
9225 int cache_size)
9226 {
9227 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
9228
9229 if (*cc) {
9230 bpf_free_cands_from_cache(*cc);
9231 *cc = NULL;
9232 }
9233 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL_ACCOUNT);
9234 if (!new_cands) {
9235 bpf_free_cands(cands);
9236 return ERR_PTR(-ENOMEM);
9237 }
9238 /* strdup the name, since it will stay in cache.
9239 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
9240 */
9241 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL_ACCOUNT);
9242 bpf_free_cands(cands);
9243 if (!new_cands->name) {
9244 kfree(new_cands);
9245 return ERR_PTR(-ENOMEM);
9246 }
9247 *cc = new_cands;
9248 return new_cands;
9249 }
9250
9251 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
__purge_cand_cache(struct btf * btf,struct bpf_cand_cache ** cache,int cache_size)9252 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
9253 int cache_size)
9254 {
9255 struct bpf_cand_cache *cc;
9256 int i, j;
9257
9258 for (i = 0; i < cache_size; i++) {
9259 cc = cache[i];
9260 if (!cc)
9261 continue;
9262 if (!btf) {
9263 /* when new module is loaded purge all of module_cand_cache,
9264 * since new module might have candidates with the name
9265 * that matches cached cands.
9266 */
9267 bpf_free_cands_from_cache(cc);
9268 cache[i] = NULL;
9269 continue;
9270 }
9271 /* when module is unloaded purge cache entries
9272 * that match module's btf
9273 */
9274 for (j = 0; j < cc->cnt; j++)
9275 if (cc->cands[j].btf == btf) {
9276 bpf_free_cands_from_cache(cc);
9277 cache[i] = NULL;
9278 break;
9279 }
9280 }
9281
9282 }
9283
purge_cand_cache(struct btf * btf)9284 static void purge_cand_cache(struct btf *btf)
9285 {
9286 mutex_lock(&cand_cache_mutex);
9287 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
9288 mutex_unlock(&cand_cache_mutex);
9289 }
9290 #endif
9291
9292 static struct bpf_cand_cache *
bpf_core_add_cands(struct bpf_cand_cache * cands,const struct btf * targ_btf,int targ_start_id)9293 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
9294 int targ_start_id)
9295 {
9296 struct bpf_cand_cache *new_cands;
9297 const struct btf_type *t;
9298 const char *targ_name;
9299 size_t targ_essent_len;
9300 int n, i;
9301
9302 n = btf_nr_types(targ_btf);
9303 for (i = targ_start_id; i < n; i++) {
9304 t = btf_type_by_id(targ_btf, i);
9305 if (btf_kind(t) != cands->kind)
9306 continue;
9307
9308 targ_name = btf_name_by_offset(targ_btf, t->name_off);
9309 if (!targ_name)
9310 continue;
9311
9312 /* the resched point is before strncmp to make sure that search
9313 * for non-existing name will have a chance to schedule().
9314 */
9315 cond_resched();
9316
9317 if (strncmp(cands->name, targ_name, cands->name_len) != 0)
9318 continue;
9319
9320 targ_essent_len = bpf_core_essential_name_len(targ_name);
9321 if (targ_essent_len != cands->name_len)
9322 continue;
9323
9324 /* most of the time there is only one candidate for a given kind+name pair */
9325 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL_ACCOUNT);
9326 if (!new_cands) {
9327 bpf_free_cands(cands);
9328 return ERR_PTR(-ENOMEM);
9329 }
9330
9331 memcpy(new_cands, cands, sizeof_cands(cands->cnt));
9332 bpf_free_cands(cands);
9333 cands = new_cands;
9334 cands->cands[cands->cnt].btf = targ_btf;
9335 cands->cands[cands->cnt].id = i;
9336 cands->cnt++;
9337 }
9338 return cands;
9339 }
9340
9341 static struct bpf_cand_cache *
bpf_core_find_cands(struct bpf_core_ctx * ctx,u32 local_type_id)9342 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
9343 {
9344 struct bpf_cand_cache *cands, *cc, local_cand = {};
9345 const struct btf *local_btf = ctx->btf;
9346 const struct btf_type *local_type;
9347 const struct btf *main_btf;
9348 size_t local_essent_len;
9349 struct btf *mod_btf;
9350 const char *name;
9351 int id;
9352
9353 main_btf = bpf_get_btf_vmlinux();
9354 if (IS_ERR(main_btf))
9355 return ERR_CAST(main_btf);
9356 if (!main_btf)
9357 return ERR_PTR(-EINVAL);
9358
9359 local_type = btf_type_by_id(local_btf, local_type_id);
9360 if (!local_type)
9361 return ERR_PTR(-EINVAL);
9362
9363 name = btf_name_by_offset(local_btf, local_type->name_off);
9364 if (str_is_empty(name))
9365 return ERR_PTR(-EINVAL);
9366 local_essent_len = bpf_core_essential_name_len(name);
9367
9368 cands = &local_cand;
9369 cands->name = name;
9370 cands->kind = btf_kind(local_type);
9371 cands->name_len = local_essent_len;
9372
9373 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
9374 /* cands is a pointer to stack here */
9375 if (cc) {
9376 if (cc->cnt)
9377 return cc;
9378 goto check_modules;
9379 }
9380
9381 /* Attempt to find target candidates in vmlinux BTF first */
9382 cands = bpf_core_add_cands(cands, main_btf, btf_named_start_id(main_btf, true));
9383 if (IS_ERR(cands))
9384 return ERR_CAST(cands);
9385
9386 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
9387
9388 /* populate cache even when cands->cnt == 0 */
9389 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
9390 if (IS_ERR(cc))
9391 return ERR_CAST(cc);
9392
9393 /* if vmlinux BTF has any candidate, don't go for module BTFs */
9394 if (cc->cnt)
9395 return cc;
9396
9397 check_modules:
9398 /* cands is a pointer to stack here and cands->cnt == 0 */
9399 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
9400 if (cc)
9401 /* if cache has it return it even if cc->cnt == 0 */
9402 return cc;
9403
9404 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */
9405 spin_lock_bh(&btf_idr_lock);
9406 idr_for_each_entry(&btf_idr, mod_btf, id) {
9407 if (!btf_is_module(mod_btf))
9408 continue;
9409 /* linear search could be slow hence unlock/lock
9410 * the IDR to avoiding holding it for too long
9411 */
9412 btf_get(mod_btf);
9413 spin_unlock_bh(&btf_idr_lock);
9414 cands = bpf_core_add_cands(cands, mod_btf, btf_named_start_id(mod_btf, true));
9415 btf_put(mod_btf);
9416 if (IS_ERR(cands))
9417 return ERR_CAST(cands);
9418 spin_lock_bh(&btf_idr_lock);
9419 }
9420 spin_unlock_bh(&btf_idr_lock);
9421 /* cands is a pointer to kmalloced memory here if cands->cnt > 0
9422 * or pointer to stack if cands->cnd == 0.
9423 * Copy it into the cache even when cands->cnt == 0 and
9424 * return the result.
9425 */
9426 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
9427 }
9428
bpf_core_apply(struct bpf_core_ctx * ctx,const struct bpf_core_relo * relo,int relo_idx,void * insn)9429 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
9430 int relo_idx, void *insn)
9431 {
9432 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
9433 struct bpf_core_cand_list cands = {};
9434 struct bpf_core_relo_res targ_res;
9435 struct bpf_core_spec *specs;
9436 const struct btf_type *type;
9437 int err;
9438
9439 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
9440 * into arrays of btf_ids of struct fields and array indices.
9441 */
9442 specs = kzalloc_objs(*specs, 3, GFP_KERNEL_ACCOUNT);
9443 if (!specs)
9444 return -ENOMEM;
9445
9446 type = btf_type_by_id(ctx->btf, relo->type_id);
9447 if (!type) {
9448 bpf_log(ctx->log, "relo #%u: bad type id %u\n",
9449 relo_idx, relo->type_id);
9450 kfree(specs);
9451 return -EINVAL;
9452 }
9453
9454 if (need_cands) {
9455 struct bpf_cand_cache *cc;
9456 int i;
9457
9458 mutex_lock(&cand_cache_mutex);
9459 cc = bpf_core_find_cands(ctx, relo->type_id);
9460 if (IS_ERR(cc)) {
9461 bpf_log(ctx->log, "target candidate search failed for %d\n",
9462 relo->type_id);
9463 err = PTR_ERR(cc);
9464 goto out;
9465 }
9466 if (cc->cnt) {
9467 cands.cands = kzalloc_objs(*cands.cands, cc->cnt,
9468 GFP_KERNEL_ACCOUNT);
9469 if (!cands.cands) {
9470 err = -ENOMEM;
9471 goto out;
9472 }
9473 }
9474 for (i = 0; i < cc->cnt; i++) {
9475 bpf_log(ctx->log,
9476 "CO-RE relocating %s %s: found target candidate [%d]\n",
9477 btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
9478 cands.cands[i].btf = cc->cands[i].btf;
9479 cands.cands[i].id = cc->cands[i].id;
9480 }
9481 cands.len = cc->cnt;
9482 /* cand_cache_mutex needs to span the cache lookup and
9483 * copy of btf pointer into bpf_core_cand_list,
9484 * since module can be unloaded while bpf_core_calc_relo_insn
9485 * is working with module's btf.
9486 */
9487 }
9488
9489 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
9490 &targ_res);
9491 if (err)
9492 goto out;
9493
9494 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
9495 &targ_res);
9496
9497 out:
9498 kfree(specs);
9499 if (need_cands) {
9500 kfree(cands.cands);
9501 mutex_unlock(&cand_cache_mutex);
9502 if (ctx->log->level & BPF_LOG_LEVEL2)
9503 print_cand_cache(ctx->log);
9504 }
9505 return err;
9506 }
9507
btf_nested_type_is_trusted(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,const char * field_name,u32 btf_id,const char * suffix)9508 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
9509 const struct bpf_reg_state *reg,
9510 const char *field_name, u32 btf_id, const char *suffix)
9511 {
9512 struct btf *btf = reg->btf;
9513 const struct btf_type *walk_type, *safe_type;
9514 const char *tname;
9515 char safe_tname[64];
9516 long ret, safe_id;
9517 const struct btf_member *member;
9518 u32 i;
9519
9520 walk_type = btf_type_by_id(btf, reg->btf_id);
9521 if (!walk_type)
9522 return false;
9523
9524 tname = btf_name_by_offset(btf, walk_type->name_off);
9525
9526 ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix);
9527 if (ret >= sizeof(safe_tname))
9528 return false;
9529
9530 safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info));
9531 if (safe_id < 0)
9532 return false;
9533
9534 safe_type = btf_type_by_id(btf, safe_id);
9535 if (!safe_type)
9536 return false;
9537
9538 for_each_member(i, safe_type, member) {
9539 const char *m_name = __btf_name_by_offset(btf, member->name_off);
9540 const struct btf_type *mtype = btf_type_by_id(btf, member->type);
9541 u32 id;
9542
9543 if (!btf_type_is_ptr(mtype))
9544 continue;
9545
9546 btf_type_skip_modifiers(btf, mtype->type, &id);
9547 /* If we match on both type and name, the field is considered trusted. */
9548 if (btf_id == id && !strcmp(field_name, m_name))
9549 return true;
9550 }
9551
9552 return false;
9553 }
9554
btf_type_ids_nocast_alias(struct bpf_verifier_log * log,const struct btf * reg_btf,u32 reg_id,const struct btf * arg_btf,u32 arg_id)9555 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
9556 const struct btf *reg_btf, u32 reg_id,
9557 const struct btf *arg_btf, u32 arg_id)
9558 {
9559 const char *reg_name, *arg_name, *search_needle;
9560 const struct btf_type *reg_type, *arg_type;
9561 int reg_len, arg_len, cmp_len;
9562 size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
9563
9564 reg_type = btf_type_by_id(reg_btf, reg_id);
9565 if (!reg_type)
9566 return false;
9567
9568 arg_type = btf_type_by_id(arg_btf, arg_id);
9569 if (!arg_type)
9570 return false;
9571
9572 reg_name = btf_name_by_offset(reg_btf, reg_type->name_off);
9573 arg_name = btf_name_by_offset(arg_btf, arg_type->name_off);
9574
9575 reg_len = strlen(reg_name);
9576 arg_len = strlen(arg_name);
9577
9578 /* Exactly one of the two type names may be suffixed with ___init, so
9579 * if the strings are the same size, they can't possibly be no-cast
9580 * aliases of one another. If you have two of the same type names, e.g.
9581 * they're both nf_conn___init, it would be improper to return true
9582 * because they are _not_ no-cast aliases, they are the same type.
9583 */
9584 if (reg_len == arg_len)
9585 return false;
9586
9587 /* Either of the two names must be the other name, suffixed with ___init. */
9588 if ((reg_len != arg_len + pattern_len) &&
9589 (arg_len != reg_len + pattern_len))
9590 return false;
9591
9592 if (reg_len < arg_len) {
9593 search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
9594 cmp_len = reg_len;
9595 } else {
9596 search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
9597 cmp_len = arg_len;
9598 }
9599
9600 if (!search_needle)
9601 return false;
9602
9603 /* ___init suffix must come at the end of the name */
9604 if (*(search_needle + pattern_len) != '\0')
9605 return false;
9606
9607 return !strncmp(reg_name, arg_name, cmp_len);
9608 }
9609
9610 #ifdef CONFIG_BPF_JIT
9611 static int
btf_add_struct_ops(struct btf * btf,struct bpf_struct_ops * st_ops,struct bpf_verifier_log * log)9612 btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops,
9613 struct bpf_verifier_log *log)
9614 {
9615 struct btf_struct_ops_tab *tab, *new_tab;
9616 int i, err;
9617
9618 tab = btf->struct_ops_tab;
9619 if (!tab) {
9620 tab = kzalloc_flex(*tab, ops, 4, GFP_KERNEL);
9621 if (!tab)
9622 return -ENOMEM;
9623 tab->capacity = 4;
9624 btf->struct_ops_tab = tab;
9625 }
9626
9627 for (i = 0; i < tab->cnt; i++)
9628 if (tab->ops[i].st_ops == st_ops)
9629 return -EEXIST;
9630
9631 if (tab->cnt == tab->capacity) {
9632 new_tab = krealloc(tab,
9633 struct_size(tab, ops, tab->capacity * 2),
9634 GFP_KERNEL);
9635 if (!new_tab)
9636 return -ENOMEM;
9637 tab = new_tab;
9638 tab->capacity *= 2;
9639 btf->struct_ops_tab = tab;
9640 }
9641
9642 tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops;
9643
9644 err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log);
9645 if (err)
9646 return err;
9647
9648 btf->struct_ops_tab->cnt++;
9649
9650 return 0;
9651 }
9652
9653 const struct bpf_struct_ops_desc *
bpf_struct_ops_find_value(struct btf * btf,u32 value_id)9654 bpf_struct_ops_find_value(struct btf *btf, u32 value_id)
9655 {
9656 const struct bpf_struct_ops_desc *st_ops_list;
9657 unsigned int i;
9658 u32 cnt;
9659
9660 if (!value_id)
9661 return NULL;
9662 if (!btf->struct_ops_tab)
9663 return NULL;
9664
9665 cnt = btf->struct_ops_tab->cnt;
9666 st_ops_list = btf->struct_ops_tab->ops;
9667 for (i = 0; i < cnt; i++) {
9668 if (st_ops_list[i].value_id == value_id)
9669 return &st_ops_list[i];
9670 }
9671
9672 return NULL;
9673 }
9674
9675 const struct bpf_struct_ops_desc *
bpf_struct_ops_find(struct btf * btf,u32 type_id)9676 bpf_struct_ops_find(struct btf *btf, u32 type_id)
9677 {
9678 const struct bpf_struct_ops_desc *st_ops_list;
9679 unsigned int i;
9680 u32 cnt;
9681
9682 if (!type_id)
9683 return NULL;
9684 if (!btf->struct_ops_tab)
9685 return NULL;
9686
9687 cnt = btf->struct_ops_tab->cnt;
9688 st_ops_list = btf->struct_ops_tab->ops;
9689 for (i = 0; i < cnt; i++) {
9690 if (st_ops_list[i].type_id == type_id)
9691 return &st_ops_list[i];
9692 }
9693
9694 return NULL;
9695 }
9696
__register_bpf_struct_ops(struct bpf_struct_ops * st_ops)9697 int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops)
9698 {
9699 struct bpf_verifier_log *log;
9700 struct btf *btf;
9701 int err = 0;
9702
9703 btf = btf_get_module_btf(st_ops->owner);
9704 if (!btf)
9705 return check_btf_kconfigs(st_ops->owner, "struct_ops");
9706 if (IS_ERR(btf))
9707 return PTR_ERR(btf);
9708
9709 log = kzalloc_obj(*log, GFP_KERNEL | __GFP_NOWARN);
9710 if (!log) {
9711 err = -ENOMEM;
9712 goto errout;
9713 }
9714
9715 log->level = BPF_LOG_KERNEL;
9716
9717 err = btf_add_struct_ops(btf, st_ops, log);
9718
9719 errout:
9720 kfree(log);
9721 btf_put(btf);
9722
9723 return err;
9724 }
9725 EXPORT_SYMBOL_GPL(__register_bpf_struct_ops);
9726 #endif
9727
btf_param_match_suffix(const struct btf * btf,const struct btf_param * arg,const char * suffix)9728 bool btf_param_match_suffix(const struct btf *btf,
9729 const struct btf_param *arg,
9730 const char *suffix)
9731 {
9732 int suffix_len = strlen(suffix), len;
9733 const char *param_name;
9734
9735 /* In the future, this can be ported to use BTF tagging */
9736 param_name = btf_name_by_offset(btf, arg->name_off);
9737 if (str_is_empty(param_name))
9738 return false;
9739 len = strlen(param_name);
9740 if (len <= suffix_len)
9741 return false;
9742 param_name += len - suffix_len;
9743 return !strncmp(param_name, suffix, suffix_len);
9744 }
9745