xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_device.c (revision 72c181399b01bb4836d1fabaa9f5f6438c82178e)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/bsearch.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include "kfd_priv.h"
28 #include "kfd_device_queue_manager.h"
29 #include "kfd_pm4_headers_vi.h"
30 #include "kfd_pm4_headers_aldebaran.h"
31 #include "cwsr_trap_handler.h"
32 #include "amdgpu_amdkfd.h"
33 #include "kfd_smi_events.h"
34 #include "kfd_svm.h"
35 #include "kfd_migrate.h"
36 #include "amdgpu.h"
37 #include "amdgpu_xcp.h"
38 
39 #define MQD_SIZE_ALIGNED 768
40 
41 /*
42  * kfd_locked is used to lock the kfd driver during suspend or reset
43  * once locked, kfd driver will stop any further GPU execution.
44  * create process (open) will return -EAGAIN.
45  */
46 static int kfd_locked;
47 
48 #ifdef CONFIG_DRM_AMDGPU_CIK
49 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
50 #endif
51 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
52 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
53 extern const struct kfd2kgd_calls arcturus_kfd2kgd;
54 extern const struct kfd2kgd_calls aldebaran_kfd2kgd;
55 extern const struct kfd2kgd_calls gc_9_4_3_kfd2kgd;
56 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
57 extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
58 extern const struct kfd2kgd_calls gfx_v11_kfd2kgd;
59 extern const struct kfd2kgd_calls gfx_v12_kfd2kgd;
60 
61 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
62 				unsigned int chunk_size);
63 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
64 
65 static int kfd_resume(struct kfd_node *kfd);
66 
kfd_device_info_set_sdma_info(struct kfd_dev * kfd)67 static void kfd_device_info_set_sdma_info(struct kfd_dev *kfd)
68 {
69 	uint32_t sdma_version = amdgpu_ip_version(kfd->adev, SDMA0_HWIP, 0);
70 
71 	switch (sdma_version) {
72 	case IP_VERSION(4, 0, 0):/* VEGA10 */
73 	case IP_VERSION(4, 0, 1):/* VEGA12 */
74 	case IP_VERSION(4, 1, 0):/* RAVEN */
75 	case IP_VERSION(4, 1, 1):/* RAVEN */
76 	case IP_VERSION(4, 1, 2):/* RENOIR */
77 	case IP_VERSION(5, 2, 1):/* VANGOGH */
78 	case IP_VERSION(5, 2, 3):/* YELLOW_CARP */
79 	case IP_VERSION(5, 2, 6):/* GC 10.3.6 */
80 	case IP_VERSION(5, 2, 7):/* GC 10.3.7 */
81 		kfd->device_info.num_sdma_queues_per_engine = 2;
82 		break;
83 	case IP_VERSION(4, 2, 0):/* VEGA20 */
84 	case IP_VERSION(4, 2, 2):/* ARCTURUS */
85 	case IP_VERSION(4, 4, 0):/* ALDEBARAN */
86 	case IP_VERSION(4, 4, 2):
87 	case IP_VERSION(4, 4, 5):
88 	case IP_VERSION(4, 4, 4):
89 	case IP_VERSION(5, 0, 0):/* NAVI10 */
90 	case IP_VERSION(5, 0, 1):/* CYAN_SKILLFISH */
91 	case IP_VERSION(5, 0, 2):/* NAVI14 */
92 	case IP_VERSION(5, 0, 5):/* NAVI12 */
93 	case IP_VERSION(5, 2, 0):/* SIENNA_CICHLID */
94 	case IP_VERSION(5, 2, 2):/* NAVY_FLOUNDER */
95 	case IP_VERSION(5, 2, 4):/* DIMGREY_CAVEFISH */
96 	case IP_VERSION(5, 2, 5):/* BEIGE_GOBY */
97 	case IP_VERSION(6, 0, 0):
98 	case IP_VERSION(6, 0, 1):
99 	case IP_VERSION(6, 0, 2):
100 	case IP_VERSION(6, 0, 3):
101 	case IP_VERSION(6, 1, 0):
102 	case IP_VERSION(6, 1, 1):
103 	case IP_VERSION(6, 1, 2):
104 	case IP_VERSION(6, 1, 3):
105 	case IP_VERSION(7, 0, 0):
106 	case IP_VERSION(7, 0, 1):
107 		kfd->device_info.num_sdma_queues_per_engine = 8;
108 		break;
109 	default:
110 		dev_warn(kfd_device,
111 			"Default sdma queue per engine(8) is set due to mismatch of sdma ip block(SDMA_HWIP:0x%x).\n",
112 			sdma_version);
113 		kfd->device_info.num_sdma_queues_per_engine = 8;
114 	}
115 
116 	bitmap_zero(kfd->device_info.reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES);
117 
118 	switch (sdma_version) {
119 	case IP_VERSION(6, 0, 0):
120 	case IP_VERSION(6, 0, 1):
121 	case IP_VERSION(6, 0, 2):
122 	case IP_VERSION(6, 0, 3):
123 	case IP_VERSION(6, 1, 0):
124 	case IP_VERSION(6, 1, 1):
125 	case IP_VERSION(6, 1, 2):
126 	case IP_VERSION(6, 1, 3):
127 	case IP_VERSION(7, 0, 0):
128 	case IP_VERSION(7, 0, 1):
129 		/* Reserve 1 for paging and 1 for gfx */
130 		kfd->device_info.num_reserved_sdma_queues_per_engine = 2;
131 		/* BIT(0)=engine-0 queue-0; BIT(1)=engine-1 queue-0; BIT(2)=engine-0 queue-1; ... */
132 		bitmap_set(kfd->device_info.reserved_sdma_queues_bitmap, 0,
133 			   kfd->adev->sdma.num_instances *
134 			   kfd->device_info.num_reserved_sdma_queues_per_engine);
135 		break;
136 	default:
137 		break;
138 	}
139 }
140 
kfd_device_info_set_event_interrupt_class(struct kfd_dev * kfd)141 static void kfd_device_info_set_event_interrupt_class(struct kfd_dev *kfd)
142 {
143 	uint32_t gc_version = KFD_GC_VERSION(kfd);
144 
145 	switch (gc_version) {
146 	case IP_VERSION(9, 0, 1): /* VEGA10 */
147 	case IP_VERSION(9, 1, 0): /* RAVEN */
148 	case IP_VERSION(9, 2, 1): /* VEGA12 */
149 	case IP_VERSION(9, 2, 2): /* RAVEN */
150 	case IP_VERSION(9, 3, 0): /* RENOIR */
151 	case IP_VERSION(9, 4, 0): /* VEGA20 */
152 	case IP_VERSION(9, 4, 1): /* ARCTURUS */
153 	case IP_VERSION(9, 4, 2): /* ALDEBARAN */
154 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
155 		break;
156 	case IP_VERSION(9, 4, 3): /* GC 9.4.3 */
157 	case IP_VERSION(9, 4, 4): /* GC 9.4.4 */
158 	case IP_VERSION(9, 5, 0): /* GC 9.5.0 */
159 		kfd->device_info.event_interrupt_class =
160 						&event_interrupt_class_v9_4_3;
161 		break;
162 	case IP_VERSION(10, 3, 1): /* VANGOGH */
163 	case IP_VERSION(10, 3, 3): /* YELLOW_CARP */
164 	case IP_VERSION(10, 3, 6): /* GC 10.3.6 */
165 	case IP_VERSION(10, 3, 7): /* GC 10.3.7 */
166 	case IP_VERSION(10, 1, 3): /* CYAN_SKILLFISH */
167 	case IP_VERSION(10, 1, 4):
168 	case IP_VERSION(10, 1, 10): /* NAVI10 */
169 	case IP_VERSION(10, 1, 2): /* NAVI12 */
170 	case IP_VERSION(10, 1, 1): /* NAVI14 */
171 	case IP_VERSION(10, 3, 0): /* SIENNA_CICHLID */
172 	case IP_VERSION(10, 3, 2): /* NAVY_FLOUNDER */
173 	case IP_VERSION(10, 3, 4): /* DIMGREY_CAVEFISH */
174 	case IP_VERSION(10, 3, 5): /* BEIGE_GOBY */
175 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v10;
176 		break;
177 	case IP_VERSION(11, 0, 0):
178 	case IP_VERSION(11, 0, 1):
179 	case IP_VERSION(11, 0, 2):
180 	case IP_VERSION(11, 0, 3):
181 	case IP_VERSION(11, 0, 4):
182 	case IP_VERSION(11, 5, 0):
183 	case IP_VERSION(11, 5, 1):
184 	case IP_VERSION(11, 5, 2):
185 	case IP_VERSION(11, 5, 3):
186 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v11;
187 		break;
188 	case IP_VERSION(12, 0, 0):
189 	case IP_VERSION(12, 0, 1):
190 		/* GFX12_TODO: Change to v12 version. */
191 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v11;
192 		break;
193 	default:
194 		dev_warn(kfd_device, "v9 event interrupt handler is set due to "
195 			"mismatch of gc ip block(GC_HWIP:0x%x).\n", gc_version);
196 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
197 	}
198 }
199 
kfd_device_info_init(struct kfd_dev * kfd,bool vf,uint32_t gfx_target_version)200 static void kfd_device_info_init(struct kfd_dev *kfd,
201 				 bool vf, uint32_t gfx_target_version)
202 {
203 	uint32_t gc_version = KFD_GC_VERSION(kfd);
204 	uint32_t asic_type = kfd->adev->asic_type;
205 
206 	kfd->device_info.max_pasid_bits = 16;
207 	kfd->device_info.max_no_of_hqd = 24;
208 	kfd->device_info.num_of_watch_points = 4;
209 	kfd->device_info.mqd_size_aligned = MQD_SIZE_ALIGNED;
210 	kfd->device_info.gfx_target_version = gfx_target_version;
211 
212 	if (KFD_IS_SOC15(kfd)) {
213 		kfd->device_info.doorbell_size = 8;
214 		kfd->device_info.ih_ring_entry_size = 8 * sizeof(uint32_t);
215 		kfd->device_info.supports_cwsr = true;
216 
217 		kfd_device_info_set_sdma_info(kfd);
218 
219 		kfd_device_info_set_event_interrupt_class(kfd);
220 
221 		if (gc_version < IP_VERSION(11, 0, 0)) {
222 			/* Navi2x+, Navi1x+ */
223 			if (gc_version == IP_VERSION(10, 3, 6))
224 				kfd->device_info.no_atomic_fw_version = 14;
225 			else if (gc_version == IP_VERSION(10, 3, 7))
226 				kfd->device_info.no_atomic_fw_version = 3;
227 			else if (gc_version >= IP_VERSION(10, 3, 0))
228 				kfd->device_info.no_atomic_fw_version = 92;
229 			else if (gc_version >= IP_VERSION(10, 1, 1))
230 				kfd->device_info.no_atomic_fw_version = 145;
231 
232 			/* Navi1x+ */
233 			if (gc_version >= IP_VERSION(10, 1, 1))
234 				kfd->device_info.needs_pci_atomics = true;
235 		} else if (gc_version < IP_VERSION(12, 0, 0)) {
236 			/*
237 			 * PCIe atomics support acknowledgment in GFX11 RS64 CPFW requires
238 			 * MEC version >= 509. Prior RS64 CPFW versions (and all F32) require
239 			 * PCIe atomics support.
240 			 */
241 			kfd->device_info.needs_pci_atomics = true;
242 			kfd->device_info.no_atomic_fw_version = kfd->adev->gfx.rs64_enable ? 509 : 0;
243 		} else if (gc_version < IP_VERSION(13, 0, 0)) {
244 			kfd->device_info.needs_pci_atomics = true;
245 			kfd->device_info.no_atomic_fw_version = 2090;
246 		} else {
247 			kfd->device_info.needs_pci_atomics = true;
248 		}
249 	} else {
250 		kfd->device_info.doorbell_size = 4;
251 		kfd->device_info.ih_ring_entry_size = 4 * sizeof(uint32_t);
252 		kfd->device_info.event_interrupt_class = &event_interrupt_class_cik;
253 		kfd->device_info.num_sdma_queues_per_engine = 2;
254 
255 		if (asic_type != CHIP_KAVERI &&
256 		    asic_type != CHIP_HAWAII &&
257 		    asic_type != CHIP_TONGA)
258 			kfd->device_info.supports_cwsr = true;
259 
260 		if (asic_type != CHIP_HAWAII && !vf)
261 			kfd->device_info.needs_pci_atomics = true;
262 	}
263 }
264 
kgd2kfd_probe(struct amdgpu_device * adev,bool vf)265 struct kfd_dev *kgd2kfd_probe(struct amdgpu_device *adev, bool vf)
266 {
267 	struct kfd_dev *kfd = NULL;
268 	const struct kfd2kgd_calls *f2g = NULL;
269 	uint32_t gfx_target_version = 0;
270 
271 	switch (adev->asic_type) {
272 #ifdef CONFIG_DRM_AMDGPU_CIK
273 	case CHIP_KAVERI:
274 		gfx_target_version = 70000;
275 		if (!vf)
276 			f2g = &gfx_v7_kfd2kgd;
277 		break;
278 #endif
279 	case CHIP_CARRIZO:
280 		gfx_target_version = 80001;
281 		if (!vf)
282 			f2g = &gfx_v8_kfd2kgd;
283 		break;
284 #ifdef CONFIG_DRM_AMDGPU_CIK
285 	case CHIP_HAWAII:
286 		gfx_target_version = 70001;
287 		if (!amdgpu_exp_hw_support)
288 			pr_info(
289 	"KFD support on Hawaii is experimental. See modparam exp_hw_support\n"
290 				);
291 		else if (!vf)
292 			f2g = &gfx_v7_kfd2kgd;
293 		break;
294 #endif
295 	case CHIP_TONGA:
296 		gfx_target_version = 80002;
297 		if (!vf)
298 			f2g = &gfx_v8_kfd2kgd;
299 		break;
300 	case CHIP_FIJI:
301 	case CHIP_POLARIS10:
302 		gfx_target_version = 80003;
303 		f2g = &gfx_v8_kfd2kgd;
304 		break;
305 	case CHIP_POLARIS11:
306 	case CHIP_POLARIS12:
307 	case CHIP_VEGAM:
308 		gfx_target_version = 80003;
309 		if (!vf)
310 			f2g = &gfx_v8_kfd2kgd;
311 		break;
312 	default:
313 		switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
314 		/* Vega 10 */
315 		case IP_VERSION(9, 0, 1):
316 			gfx_target_version = 90000;
317 			f2g = &gfx_v9_kfd2kgd;
318 			break;
319 		/* Raven */
320 		case IP_VERSION(9, 1, 0):
321 		case IP_VERSION(9, 2, 2):
322 			gfx_target_version = 90002;
323 			if (!vf)
324 				f2g = &gfx_v9_kfd2kgd;
325 			break;
326 		/* Vega12 */
327 		case IP_VERSION(9, 2, 1):
328 			gfx_target_version = 90004;
329 			if (!vf)
330 				f2g = &gfx_v9_kfd2kgd;
331 			break;
332 		/* Renoir */
333 		case IP_VERSION(9, 3, 0):
334 			gfx_target_version = 90012;
335 			if (!vf)
336 				f2g = &gfx_v9_kfd2kgd;
337 			break;
338 		/* Vega20 */
339 		case IP_VERSION(9, 4, 0):
340 			gfx_target_version = 90006;
341 			if (!vf)
342 				f2g = &gfx_v9_kfd2kgd;
343 			break;
344 		/* Arcturus */
345 		case IP_VERSION(9, 4, 1):
346 			gfx_target_version = 90008;
347 			f2g = &arcturus_kfd2kgd;
348 			break;
349 		/* Aldebaran */
350 		case IP_VERSION(9, 4, 2):
351 			gfx_target_version = 90010;
352 			f2g = &aldebaran_kfd2kgd;
353 			break;
354 		case IP_VERSION(9, 4, 3):
355 		case IP_VERSION(9, 4, 4):
356 			gfx_target_version = 90402;
357 			f2g = &gc_9_4_3_kfd2kgd;
358 			break;
359 		case IP_VERSION(9, 5, 0):
360 			gfx_target_version = 90500;
361 			f2g = &gc_9_4_3_kfd2kgd;
362 			break;
363 		/* Navi10 */
364 		case IP_VERSION(10, 1, 10):
365 			gfx_target_version = 100100;
366 			if (!vf)
367 				f2g = &gfx_v10_kfd2kgd;
368 			break;
369 		/* Navi12 */
370 		case IP_VERSION(10, 1, 2):
371 			gfx_target_version = 100101;
372 			f2g = &gfx_v10_kfd2kgd;
373 			break;
374 		/* Navi14 */
375 		case IP_VERSION(10, 1, 1):
376 			gfx_target_version = 100102;
377 			if (!vf)
378 				f2g = &gfx_v10_kfd2kgd;
379 			break;
380 		/* Cyan Skillfish */
381 		case IP_VERSION(10, 1, 3):
382 		case IP_VERSION(10, 1, 4):
383 			gfx_target_version = 100103;
384 			if (!vf)
385 				f2g = &gfx_v10_kfd2kgd;
386 			break;
387 		/* Sienna Cichlid */
388 		case IP_VERSION(10, 3, 0):
389 			gfx_target_version = 100300;
390 			f2g = &gfx_v10_3_kfd2kgd;
391 			break;
392 		/* Navy Flounder */
393 		case IP_VERSION(10, 3, 2):
394 			gfx_target_version = 100301;
395 			f2g = &gfx_v10_3_kfd2kgd;
396 			break;
397 		/* Van Gogh */
398 		case IP_VERSION(10, 3, 1):
399 			gfx_target_version = 100303;
400 			if (!vf)
401 				f2g = &gfx_v10_3_kfd2kgd;
402 			break;
403 		/* Dimgrey Cavefish */
404 		case IP_VERSION(10, 3, 4):
405 			gfx_target_version = 100302;
406 			f2g = &gfx_v10_3_kfd2kgd;
407 			break;
408 		/* Beige Goby */
409 		case IP_VERSION(10, 3, 5):
410 			gfx_target_version = 100304;
411 			f2g = &gfx_v10_3_kfd2kgd;
412 			break;
413 		/* Yellow Carp */
414 		case IP_VERSION(10, 3, 3):
415 			gfx_target_version = 100305;
416 			if (!vf)
417 				f2g = &gfx_v10_3_kfd2kgd;
418 			break;
419 		case IP_VERSION(10, 3, 6):
420 		case IP_VERSION(10, 3, 7):
421 			gfx_target_version = 100306;
422 			if (!vf)
423 				f2g = &gfx_v10_3_kfd2kgd;
424 			break;
425 		case IP_VERSION(11, 0, 0):
426 			gfx_target_version = 110000;
427 			f2g = &gfx_v11_kfd2kgd;
428 			break;
429 		case IP_VERSION(11, 0, 1):
430 		case IP_VERSION(11, 0, 4):
431 			gfx_target_version = 110003;
432 			f2g = &gfx_v11_kfd2kgd;
433 			break;
434 		case IP_VERSION(11, 0, 2):
435 			gfx_target_version = 110002;
436 			f2g = &gfx_v11_kfd2kgd;
437 			break;
438 		case IP_VERSION(11, 0, 3):
439 			/* Note: Compiler version is 11.0.1 while HW version is 11.0.3 */
440 			gfx_target_version = 110001;
441 			f2g = &gfx_v11_kfd2kgd;
442 			break;
443 		case IP_VERSION(11, 5, 0):
444 			gfx_target_version = 110500;
445 			f2g = &gfx_v11_kfd2kgd;
446 			break;
447 		case IP_VERSION(11, 5, 1):
448 			gfx_target_version = 110501;
449 			f2g = &gfx_v11_kfd2kgd;
450 			break;
451 		case IP_VERSION(11, 5, 2):
452 			gfx_target_version = 110502;
453 			f2g = &gfx_v11_kfd2kgd;
454 			break;
455 		case IP_VERSION(11, 5, 3):
456 			gfx_target_version = 110503;
457 			f2g = &gfx_v11_kfd2kgd;
458 			break;
459 		case IP_VERSION(12, 0, 0):
460 			gfx_target_version = 120000;
461 			f2g = &gfx_v12_kfd2kgd;
462 			break;
463 		case IP_VERSION(12, 0, 1):
464 			gfx_target_version = 120001;
465 			f2g = &gfx_v12_kfd2kgd;
466 			break;
467 		default:
468 			break;
469 		}
470 		break;
471 	}
472 
473 	if (!f2g) {
474 		if (amdgpu_ip_version(adev, GC_HWIP, 0))
475 			dev_info(kfd_device,
476 				"GC IP %06x %s not supported in kfd\n",
477 				amdgpu_ip_version(adev, GC_HWIP, 0),
478 				vf ? "VF" : "");
479 		else
480 			dev_info(kfd_device, "%s %s not supported in kfd\n",
481 				amdgpu_asic_name[adev->asic_type], vf ? "VF" : "");
482 		return NULL;
483 	}
484 
485 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
486 	if (!kfd)
487 		return NULL;
488 
489 	kfd->adev = adev;
490 	kfd_device_info_init(kfd, vf, gfx_target_version);
491 	kfd->init_complete = false;
492 	kfd->kfd2kgd = f2g;
493 	atomic_set(&kfd->compute_profile, 0);
494 
495 	mutex_init(&kfd->doorbell_mutex);
496 
497 	ida_init(&kfd->doorbell_ida);
498 	atomic_set(&kfd->kfd_processes_count, 0);
499 
500 	return kfd;
501 }
502 
kfd_cwsr_init(struct kfd_dev * kfd)503 static void kfd_cwsr_init(struct kfd_dev *kfd)
504 {
505 	if (cwsr_enable && kfd->device_info.supports_cwsr) {
506 		if (KFD_GC_VERSION(kfd) < IP_VERSION(9, 0, 1)) {
507 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex)
508 					     > KFD_CWSR_TMA_OFFSET);
509 			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
510 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
511 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 1)) {
512 			BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex)
513 					     > KFD_CWSR_TMA_OFFSET);
514 			kfd->cwsr_isa = cwsr_trap_arcturus_hex;
515 			kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
516 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2)) {
517 			BUILD_BUG_ON(sizeof(cwsr_trap_aldebaran_hex)
518 					     > KFD_CWSR_TMA_OFFSET);
519 			kfd->cwsr_isa = cwsr_trap_aldebaran_hex;
520 			kfd->cwsr_isa_size = sizeof(cwsr_trap_aldebaran_hex);
521 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) ||
522 			   KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 4)) {
523 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_4_3_hex)
524 					     > KFD_CWSR_TMA_OFFSET);
525 			kfd->cwsr_isa = cwsr_trap_gfx9_4_3_hex;
526 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_4_3_hex);
527 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 5, 0)) {
528 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_5_0_hex) > PAGE_SIZE);
529 			kfd->cwsr_isa = cwsr_trap_gfx9_5_0_hex;
530 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_5_0_hex);
531 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 1, 1)) {
532 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex)
533 					     > KFD_CWSR_TMA_OFFSET);
534 			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
535 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
536 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 3, 0)) {
537 			BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex)
538 					     > KFD_CWSR_TMA_OFFSET);
539 			kfd->cwsr_isa = cwsr_trap_nv1x_hex;
540 			kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
541 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(11, 0, 0)) {
542 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex)
543 					     > KFD_CWSR_TMA_OFFSET);
544 			kfd->cwsr_isa = cwsr_trap_gfx10_hex;
545 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
546 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(12, 0, 0)) {
547 			/* The gfx11 cwsr trap handler must fit inside a single
548 			   page. */
549 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx11_hex) > PAGE_SIZE);
550 			kfd->cwsr_isa = cwsr_trap_gfx11_hex;
551 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx11_hex);
552 		} else {
553 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx12_hex)
554 					     > KFD_CWSR_TMA_OFFSET);
555 			kfd->cwsr_isa = cwsr_trap_gfx12_hex;
556 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx12_hex);
557 		}
558 
559 		kfd->cwsr_enabled = true;
560 	}
561 }
562 
kfd_gws_init(struct kfd_node * node)563 static int kfd_gws_init(struct kfd_node *node)
564 {
565 	int ret = 0;
566 	struct kfd_dev *kfd = node->kfd;
567 	uint32_t mes_rev = node->adev->mes.sched_version & AMDGPU_MES_VERSION_MASK;
568 
569 	if (node->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
570 		return 0;
571 
572 	if (hws_gws_support || (KFD_IS_SOC15(node) &&
573 		((KFD_GC_VERSION(node) == IP_VERSION(9, 0, 1)
574 			&& kfd->mec2_fw_version >= 0x81b3) ||
575 		(KFD_GC_VERSION(node) <= IP_VERSION(9, 4, 0)
576 			&& kfd->mec2_fw_version >= 0x1b3)  ||
577 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 1)
578 			&& kfd->mec2_fw_version >= 0x30)   ||
579 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 2)
580 			&& kfd->mec2_fw_version >= 0x28) ||
581 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 3) ||
582 		 KFD_GC_VERSION(node) == IP_VERSION(9, 4, 4)) ||
583 		(KFD_GC_VERSION(node) == IP_VERSION(9, 5, 0)) ||
584 		(KFD_GC_VERSION(node) >= IP_VERSION(10, 3, 0)
585 			&& KFD_GC_VERSION(node) < IP_VERSION(11, 0, 0)
586 			&& kfd->mec2_fw_version >= 0x6b) ||
587 		(KFD_GC_VERSION(node) >= IP_VERSION(11, 0, 0)
588 			&& KFD_GC_VERSION(node) < IP_VERSION(12, 0, 0)
589 			&& mes_rev >= 68) ||
590 		(KFD_GC_VERSION(node) >= IP_VERSION(12, 0, 0))))) {
591 		if (KFD_GC_VERSION(node) >= IP_VERSION(12, 0, 0))
592 			node->adev->gds.gws_size = 64;
593 		ret = amdgpu_amdkfd_alloc_gws(node->adev,
594 				node->adev->gds.gws_size, &node->gws);
595 	}
596 
597 	return ret;
598 }
599 
kfd_smi_init(struct kfd_node * dev)600 static void kfd_smi_init(struct kfd_node *dev)
601 {
602 	INIT_LIST_HEAD(&dev->smi_clients);
603 	spin_lock_init(&dev->smi_lock);
604 }
605 
kfd_init_node(struct kfd_node * node)606 static int kfd_init_node(struct kfd_node *node)
607 {
608 	int err = -1;
609 
610 	if (kfd_interrupt_init(node)) {
611 		dev_err(kfd_device, "Error initializing interrupts\n");
612 		goto kfd_interrupt_error;
613 	}
614 
615 	node->dqm = device_queue_manager_init(node);
616 	if (!node->dqm) {
617 		dev_err(kfd_device, "Error initializing queue manager\n");
618 		goto device_queue_manager_error;
619 	}
620 
621 	if (kfd_gws_init(node)) {
622 		dev_err(kfd_device, "Could not allocate %d gws\n",
623 			node->adev->gds.gws_size);
624 		goto gws_error;
625 	}
626 
627 	if (kfd_resume(node))
628 		goto kfd_resume_error;
629 
630 	if (kfd_topology_add_device(node)) {
631 		dev_err(kfd_device, "Error adding device to topology\n");
632 		goto kfd_topology_add_device_error;
633 	}
634 
635 	kfd_smi_init(node);
636 
637 	return 0;
638 
639 kfd_topology_add_device_error:
640 kfd_resume_error:
641 gws_error:
642 	device_queue_manager_uninit(node->dqm);
643 device_queue_manager_error:
644 	kfd_interrupt_exit(node);
645 kfd_interrupt_error:
646 	if (node->gws)
647 		amdgpu_amdkfd_free_gws(node->adev, node->gws);
648 
649 	/* Cleanup the node memory here */
650 	kfree(node);
651 	return err;
652 }
653 
kfd_cleanup_nodes(struct kfd_dev * kfd,unsigned int num_nodes)654 static void kfd_cleanup_nodes(struct kfd_dev *kfd, unsigned int num_nodes)
655 {
656 	struct kfd_node *knode;
657 	unsigned int i;
658 
659 	/*
660 	 * flush_work ensures that there are no outstanding
661 	 * work-queue items that will access interrupt_ring. New work items
662 	 * can't be created because we stopped interrupt handling above.
663 	 */
664 	flush_workqueue(kfd->ih_wq);
665 	destroy_workqueue(kfd->ih_wq);
666 
667 	for (i = 0; i < num_nodes; i++) {
668 		knode = kfd->nodes[i];
669 		device_queue_manager_uninit(knode->dqm);
670 		kfd_interrupt_exit(knode);
671 		kfd_topology_remove_device(knode);
672 		if (knode->gws)
673 			amdgpu_amdkfd_free_gws(knode->adev, knode->gws);
674 		kfree(knode);
675 		kfd->nodes[i] = NULL;
676 	}
677 }
678 
kfd_setup_interrupt_bitmap(struct kfd_node * node,unsigned int kfd_node_idx)679 static void kfd_setup_interrupt_bitmap(struct kfd_node *node,
680 				       unsigned int kfd_node_idx)
681 {
682 	struct amdgpu_device *adev = node->adev;
683 	uint32_t xcc_mask = node->xcc_mask;
684 	uint32_t xcc, mapped_xcc;
685 	/*
686 	 * Interrupt bitmap is setup for processing interrupts from
687 	 * different XCDs and AIDs.
688 	 * Interrupt bitmap is defined as follows:
689 	 * 1. Bits 0-15 - correspond to the NodeId field.
690 	 *    Each bit corresponds to NodeId number. For example, if
691 	 *    a KFD node has interrupt bitmap set to 0x7, then this
692 	 *    KFD node will process interrupts with NodeId = 0, 1 and 2
693 	 *    in the IH cookie.
694 	 * 2. Bits 16-31 - unused.
695 	 *
696 	 * Please note that the kfd_node_idx argument passed to this
697 	 * function is not related to NodeId field received in the
698 	 * IH cookie.
699 	 *
700 	 * In CPX mode, a KFD node will process an interrupt if:
701 	 * - the Node Id matches the corresponding bit set in
702 	 *   Bits 0-15.
703 	 * - AND VMID reported in the interrupt lies within the
704 	 *   VMID range of the node.
705 	 */
706 	for_each_inst(xcc, xcc_mask) {
707 		mapped_xcc = GET_INST(GC, xcc);
708 		node->interrupt_bitmap |= (mapped_xcc % 2 ? 5 : 3) << (4 * (mapped_xcc / 2));
709 	}
710 	dev_info(kfd_device, "Node: %d, interrupt_bitmap: %x\n", kfd_node_idx,
711 							node->interrupt_bitmap);
712 }
713 
kgd2kfd_device_init(struct kfd_dev * kfd,const struct kgd2kfd_shared_resources * gpu_resources)714 bool kgd2kfd_device_init(struct kfd_dev *kfd,
715 			 const struct kgd2kfd_shared_resources *gpu_resources)
716 {
717 	unsigned int size, map_process_packet_size, i;
718 	struct kfd_node *node;
719 	uint32_t first_vmid_kfd, last_vmid_kfd, vmid_num_kfd;
720 	unsigned int max_proc_per_quantum;
721 	int partition_mode;
722 	int xcp_idx;
723 
724 	kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
725 			KGD_ENGINE_MEC1);
726 	kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
727 			KGD_ENGINE_MEC2);
728 	kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
729 			KGD_ENGINE_SDMA1);
730 	kfd->shared_resources = *gpu_resources;
731 
732 	kfd->num_nodes = amdgpu_xcp_get_num_xcp(kfd->adev->xcp_mgr);
733 
734 	if (kfd->num_nodes == 0) {
735 		dev_err(kfd_device,
736 			"KFD num nodes cannot be 0, num_xcc_in_node: %d\n",
737 			kfd->adev->gfx.num_xcc_per_xcp);
738 		goto out;
739 	}
740 
741 	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
742 	 * 32 and 64-bit requests are possible and must be
743 	 * supported.
744 	 */
745 	kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kfd->adev);
746 	if (!kfd->pci_atomic_requested &&
747 	    kfd->device_info.needs_pci_atomics &&
748 	    (!kfd->device_info.no_atomic_fw_version ||
749 	     kfd->mec_fw_version < kfd->device_info.no_atomic_fw_version)) {
750 		dev_info(kfd_device,
751 			 "skipped device %x:%x, PCI rejects atomics %d<%d\n",
752 			 kfd->adev->pdev->vendor, kfd->adev->pdev->device,
753 			 kfd->mec_fw_version,
754 			 kfd->device_info.no_atomic_fw_version);
755 		return false;
756 	}
757 
758 	first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
759 	last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
760 	vmid_num_kfd = last_vmid_kfd - first_vmid_kfd + 1;
761 
762 	/* For multi-partition capable GPUs, we need special handling for VMIDs
763 	 * depending on partition mode.
764 	 * In CPX mode, the VMID range needs to be shared between XCDs.
765 	 * Additionally, there are 13 VMIDs (3-15) available for KFD. To
766 	 * divide them equally, we change starting VMID to 4 and not use
767 	 * VMID 3.
768 	 * If the VMID range changes for multi-partition capable GPUs, then
769 	 * this code MUST be revisited.
770 	 */
771 	if (kfd->adev->xcp_mgr) {
772 		partition_mode = amdgpu_xcp_query_partition_mode(kfd->adev->xcp_mgr,
773 								 AMDGPU_XCP_FL_LOCKED);
774 		if (partition_mode == AMDGPU_CPX_PARTITION_MODE &&
775 		    kfd->num_nodes != 1) {
776 			vmid_num_kfd /= 2;
777 			first_vmid_kfd = last_vmid_kfd + 1 - vmid_num_kfd*2;
778 		}
779 	}
780 
781 	/* Verify module parameters regarding mapped process number*/
782 	if (hws_max_conc_proc >= 0)
783 		max_proc_per_quantum = min((u32)hws_max_conc_proc, vmid_num_kfd);
784 	else
785 		max_proc_per_quantum = vmid_num_kfd;
786 
787 	/* calculate max size of mqds needed for queues */
788 	size = max_num_of_queues_per_device *
789 			kfd->device_info.mqd_size_aligned;
790 
791 	/*
792 	 * calculate max size of runlist packet.
793 	 * There can be only 2 packets at once
794 	 */
795 	map_process_packet_size = KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2) ?
796 				sizeof(struct pm4_mes_map_process_aldebaran) :
797 				sizeof(struct pm4_mes_map_process);
798 	size += (KFD_MAX_NUM_OF_PROCESSES * map_process_packet_size +
799 		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
800 		+ sizeof(struct pm4_mes_runlist)) * 2;
801 
802 	/* Add size of HIQ & DIQ */
803 	size += KFD_KERNEL_QUEUE_SIZE * 2;
804 
805 	/* add another 512KB for all other allocations on gart (HPD, fences) */
806 	size += 512 * 1024;
807 
808 	if (amdgpu_amdkfd_alloc_gtt_mem(
809 			kfd->adev, size, &kfd->gtt_mem,
810 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
811 			false)) {
812 		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
813 		goto alloc_gtt_mem_failure;
814 	}
815 
816 	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
817 
818 	/* Initialize GTT sa with 512 byte chunk size */
819 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
820 		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
821 		goto kfd_gtt_sa_init_error;
822 	}
823 
824 	if (kfd_doorbell_init(kfd)) {
825 		dev_err(kfd_device,
826 			"Error initializing doorbell aperture\n");
827 		goto kfd_doorbell_error;
828 	}
829 
830 	if (amdgpu_use_xgmi_p2p)
831 		kfd->hive_id = kfd->adev->gmc.xgmi.hive_id;
832 
833 	/*
834 	 * For multi-partition capable GPUs, the KFD abstracts all partitions
835 	 * within a socket as xGMI connected in the topology so assign a unique
836 	 * hive id per device based on the pci device location if device is in
837 	 * PCIe mode.
838 	 */
839 	if (!kfd->hive_id && kfd->num_nodes > 1)
840 		kfd->hive_id = pci_dev_id(kfd->adev->pdev);
841 
842 	kfd->noretry = kfd->adev->gmc.noretry;
843 
844 	kfd_cwsr_init(kfd);
845 
846 	dev_info(kfd_device, "Total number of KFD nodes to be created: %d\n",
847 				kfd->num_nodes);
848 
849 	/* Allocate the KFD nodes */
850 	for (i = 0, xcp_idx = 0; i < kfd->num_nodes; i++) {
851 		node = kzalloc(sizeof(struct kfd_node), GFP_KERNEL);
852 		if (!node)
853 			goto node_alloc_error;
854 
855 		node->node_id = i;
856 		node->adev = kfd->adev;
857 		node->kfd = kfd;
858 		node->kfd2kgd = kfd->kfd2kgd;
859 		node->vm_info.vmid_num_kfd = vmid_num_kfd;
860 		node->xcp = amdgpu_get_next_xcp(kfd->adev->xcp_mgr, &xcp_idx);
861 		/* TODO : Check if error handling is needed */
862 		if (node->xcp) {
863 			amdgpu_xcp_get_inst_details(node->xcp, AMDGPU_XCP_GFX,
864 						    &node->xcc_mask);
865 			++xcp_idx;
866 		} else {
867 			node->xcc_mask =
868 				(1U << NUM_XCC(kfd->adev->gfx.xcc_mask)) - 1;
869 		}
870 
871 		if (node->xcp) {
872 			dev_info(kfd_device, "KFD node %d partition %d size %lldM\n",
873 				node->node_id, node->xcp->mem_id,
874 				KFD_XCP_MEMORY_SIZE(node->adev, node->node_id) >> 20);
875 		}
876 
877 		if (partition_mode == AMDGPU_CPX_PARTITION_MODE &&
878 		    kfd->num_nodes != 1) {
879 			/* For multi-partition capable GPUs and CPX mode, first
880 			 * XCD gets VMID range 4-9 and second XCD gets VMID
881 			 * range 10-15.
882 			 */
883 
884 			node->vm_info.first_vmid_kfd = (i%2 == 0) ?
885 						first_vmid_kfd :
886 						first_vmid_kfd+vmid_num_kfd;
887 			node->vm_info.last_vmid_kfd = (i%2 == 0) ?
888 						last_vmid_kfd-vmid_num_kfd :
889 						last_vmid_kfd;
890 			node->compute_vmid_bitmap =
891 				((0x1 << (node->vm_info.last_vmid_kfd + 1)) - 1) -
892 				((0x1 << (node->vm_info.first_vmid_kfd)) - 1);
893 		} else {
894 			node->vm_info.first_vmid_kfd = first_vmid_kfd;
895 			node->vm_info.last_vmid_kfd = last_vmid_kfd;
896 			node->compute_vmid_bitmap =
897 				gpu_resources->compute_vmid_bitmap;
898 		}
899 		node->max_proc_per_quantum = max_proc_per_quantum;
900 		atomic_set(&node->sram_ecc_flag, 0);
901 
902 		amdgpu_amdkfd_get_local_mem_info(kfd->adev,
903 					&node->local_mem_info, node->xcp);
904 
905 		if (kfd->adev->xcp_mgr)
906 			kfd_setup_interrupt_bitmap(node, i);
907 
908 		/* Initialize the KFD node */
909 		if (kfd_init_node(node)) {
910 			dev_err(kfd_device, "Error initializing KFD node\n");
911 			goto node_init_error;
912 		}
913 
914 		spin_lock_init(&node->watch_points_lock);
915 
916 		kfd->nodes[i] = node;
917 	}
918 
919 	svm_range_set_max_pages(kfd->adev);
920 
921 	kfd->init_complete = true;
922 	dev_info(kfd_device, "added device %x:%x\n", kfd->adev->pdev->vendor,
923 		 kfd->adev->pdev->device);
924 
925 	pr_debug("Starting kfd with the following scheduling policy %d\n",
926 		node->dqm->sched_policy);
927 
928 	goto out;
929 
930 node_init_error:
931 node_alloc_error:
932 	kfd_cleanup_nodes(kfd, i);
933 	kfd_doorbell_fini(kfd);
934 kfd_doorbell_error:
935 	kfd_gtt_sa_fini(kfd);
936 kfd_gtt_sa_init_error:
937 	amdgpu_amdkfd_free_gtt_mem(kfd->adev, &kfd->gtt_mem);
938 alloc_gtt_mem_failure:
939 	dev_err(kfd_device,
940 		"device %x:%x NOT added due to errors\n",
941 		kfd->adev->pdev->vendor, kfd->adev->pdev->device);
942 out:
943 	return kfd->init_complete;
944 }
945 
kgd2kfd_device_exit(struct kfd_dev * kfd)946 void kgd2kfd_device_exit(struct kfd_dev *kfd)
947 {
948 	if (kfd->init_complete) {
949 		/* Cleanup KFD nodes */
950 		kfd_cleanup_nodes(kfd, kfd->num_nodes);
951 		/* Cleanup common/shared resources */
952 		kfd_doorbell_fini(kfd);
953 		ida_destroy(&kfd->doorbell_ida);
954 		kfd_gtt_sa_fini(kfd);
955 		amdgpu_amdkfd_free_gtt_mem(kfd->adev, &kfd->gtt_mem);
956 	}
957 
958 	kfree(kfd);
959 }
960 
kgd2kfd_pre_reset(struct kfd_dev * kfd,struct amdgpu_reset_context * reset_context)961 int kgd2kfd_pre_reset(struct kfd_dev *kfd,
962 		      struct amdgpu_reset_context *reset_context)
963 {
964 	struct kfd_node *node;
965 	int i;
966 
967 	if (!kfd->init_complete)
968 		return 0;
969 
970 	for (i = 0; i < kfd->num_nodes; i++) {
971 		node = kfd->nodes[i];
972 		kfd_smi_event_update_gpu_reset(node, false, reset_context);
973 	}
974 
975 	kgd2kfd_suspend(kfd, true);
976 
977 	for (i = 0; i < kfd->num_nodes; i++)
978 		kfd_signal_reset_event(kfd->nodes[i]);
979 
980 	return 0;
981 }
982 
983 /*
984  * Fix me. KFD won't be able to resume existing process for now.
985  * We will keep all existing process in a evicted state and
986  * wait the process to be terminated.
987  */
988 
kgd2kfd_post_reset(struct kfd_dev * kfd)989 int kgd2kfd_post_reset(struct kfd_dev *kfd)
990 {
991 	int ret;
992 	struct kfd_node *node;
993 	int i;
994 
995 	if (!kfd->init_complete)
996 		return 0;
997 
998 	for (i = 0; i < kfd->num_nodes; i++) {
999 		ret = kfd_resume(kfd->nodes[i]);
1000 		if (ret)
1001 			return ret;
1002 	}
1003 
1004 	mutex_lock(&kfd_processes_mutex);
1005 	--kfd_locked;
1006 	mutex_unlock(&kfd_processes_mutex);
1007 
1008 	for (i = 0; i < kfd->num_nodes; i++) {
1009 		node = kfd->nodes[i];
1010 		atomic_set(&node->sram_ecc_flag, 0);
1011 		kfd_smi_event_update_gpu_reset(node, true, NULL);
1012 	}
1013 
1014 	return 0;
1015 }
1016 
kfd_is_locked(struct kfd_dev * kfd)1017 bool kfd_is_locked(struct kfd_dev *kfd)
1018 {
1019 	uint8_t id  = 0;
1020 	struct kfd_node *dev;
1021 
1022 	lockdep_assert_held(&kfd_processes_mutex);
1023 
1024 	/* check reset/suspend lock */
1025 	if (kfd_locked > 0)
1026 		return true;
1027 
1028 	if (kfd)
1029 		return kfd->kfd_dev_lock > 0;
1030 
1031 	/* check lock on all cgroup accessible devices */
1032 	while (kfd_topology_enum_kfd_devices(id++, &dev) == 0) {
1033 		if (!dev || kfd_devcgroup_check_permission(dev))
1034 			continue;
1035 
1036 		if (dev->kfd->kfd_dev_lock > 0)
1037 			return true;
1038 	}
1039 
1040 	return false;
1041 }
1042 
kgd2kfd_suspend(struct kfd_dev * kfd,bool suspend_proc)1043 void kgd2kfd_suspend(struct kfd_dev *kfd, bool suspend_proc)
1044 {
1045 	struct kfd_node *node;
1046 	int i;
1047 
1048 	if (!kfd->init_complete)
1049 		return;
1050 
1051 	if (suspend_proc)
1052 		kgd2kfd_suspend_process(kfd);
1053 
1054 	for (i = 0; i < kfd->num_nodes; i++) {
1055 		node = kfd->nodes[i];
1056 		node->dqm->ops.stop(node->dqm);
1057 	}
1058 }
1059 
kgd2kfd_resume(struct kfd_dev * kfd,bool resume_proc)1060 int kgd2kfd_resume(struct kfd_dev *kfd, bool resume_proc)
1061 {
1062 	int ret, i;
1063 
1064 	if (!kfd->init_complete)
1065 		return 0;
1066 
1067 	for (i = 0; i < kfd->num_nodes; i++) {
1068 		ret = kfd_resume(kfd->nodes[i]);
1069 		if (ret)
1070 			return ret;
1071 	}
1072 
1073 	if (resume_proc)
1074 		ret = kgd2kfd_resume_process(kfd);
1075 
1076 	return ret;
1077 }
1078 
kgd2kfd_suspend_process(struct kfd_dev * kfd)1079 void kgd2kfd_suspend_process(struct kfd_dev *kfd)
1080 {
1081 	if (!kfd->init_complete)
1082 		return;
1083 
1084 	mutex_lock(&kfd_processes_mutex);
1085 	/* For first KFD device suspend all the KFD processes */
1086 	if (++kfd_locked == 1)
1087 		kfd_suspend_all_processes();
1088 	mutex_unlock(&kfd_processes_mutex);
1089 }
1090 
kgd2kfd_resume_process(struct kfd_dev * kfd)1091 int kgd2kfd_resume_process(struct kfd_dev *kfd)
1092 {
1093 	int ret = 0;
1094 
1095 	if (!kfd->init_complete)
1096 		return 0;
1097 
1098 	mutex_lock(&kfd_processes_mutex);
1099 	if (--kfd_locked == 0)
1100 		ret = kfd_resume_all_processes();
1101 	WARN_ONCE(kfd_locked < 0, "KFD suspend / resume ref. error");
1102 	mutex_unlock(&kfd_processes_mutex);
1103 
1104 	return ret;
1105 }
1106 
kfd_resume(struct kfd_node * node)1107 static int kfd_resume(struct kfd_node *node)
1108 {
1109 	int err = 0;
1110 
1111 	err = node->dqm->ops.start(node->dqm);
1112 	if (err)
1113 		dev_err(kfd_device,
1114 			"Error starting queue manager for device %x:%x\n",
1115 			node->adev->pdev->vendor, node->adev->pdev->device);
1116 
1117 	return err;
1118 }
1119 
1120 /* This is called directly from KGD at ISR. */
kgd2kfd_interrupt(struct kfd_dev * kfd,const void * ih_ring_entry)1121 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
1122 {
1123 	uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE], i;
1124 	bool is_patched = false;
1125 	unsigned long flags;
1126 	struct kfd_node *node;
1127 
1128 	if (!kfd->init_complete)
1129 		return;
1130 
1131 	if (kfd->device_info.ih_ring_entry_size > sizeof(patched_ihre)) {
1132 		dev_err_once(kfd_device, "Ring entry too small\n");
1133 		return;
1134 	}
1135 
1136 	for (i = 0; i < kfd->num_nodes; i++) {
1137 		/* Race if another thread in b/w
1138 		 * kfd_cleanup_nodes and kfree(kfd),
1139 		 * when kfd->nodes[i] = NULL
1140 		 */
1141 		if (kfd->nodes[i])
1142 			node = kfd->nodes[i];
1143 		else
1144 			return;
1145 
1146 		spin_lock_irqsave(&node->interrupt_lock, flags);
1147 
1148 		if (node->interrupts_active
1149 		    && interrupt_is_wanted(node, ih_ring_entry,
1150 			    	patched_ihre, &is_patched)
1151 		    && enqueue_ih_ring_entry(node,
1152 			    	is_patched ? patched_ihre : ih_ring_entry)) {
1153 			queue_work(node->kfd->ih_wq, &node->interrupt_work);
1154 			spin_unlock_irqrestore(&node->interrupt_lock, flags);
1155 			return;
1156 		}
1157 		spin_unlock_irqrestore(&node->interrupt_lock, flags);
1158 	}
1159 
1160 }
1161 
kgd2kfd_quiesce_mm(struct mm_struct * mm,uint32_t trigger)1162 int kgd2kfd_quiesce_mm(struct mm_struct *mm, uint32_t trigger)
1163 {
1164 	struct kfd_process *p;
1165 	int r;
1166 
1167 	/* Because we are called from arbitrary context (workqueue) as opposed
1168 	 * to process context, kfd_process could attempt to exit while we are
1169 	 * running so the lookup function increments the process ref count.
1170 	 */
1171 	p = kfd_lookup_process_by_mm(mm);
1172 	if (!p)
1173 		return -ESRCH;
1174 
1175 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
1176 	r = kfd_process_evict_queues(p, trigger);
1177 
1178 	kfd_unref_process(p);
1179 	return r;
1180 }
1181 
kgd2kfd_resume_mm(struct mm_struct * mm)1182 int kgd2kfd_resume_mm(struct mm_struct *mm)
1183 {
1184 	struct kfd_process *p;
1185 	int r;
1186 
1187 	/* Because we are called from arbitrary context (workqueue) as opposed
1188 	 * to process context, kfd_process could attempt to exit while we are
1189 	 * running so the lookup function increments the process ref count.
1190 	 */
1191 	p = kfd_lookup_process_by_mm(mm);
1192 	if (!p)
1193 		return -ESRCH;
1194 
1195 	r = kfd_process_restore_queues(p);
1196 
1197 	kfd_unref_process(p);
1198 	return r;
1199 }
1200 
1201 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
1202  *   prepare for safe eviction of KFD BOs that belong to the specified
1203  *   process.
1204  *
1205  * @mm: mm_struct that identifies the specified KFD process
1206  * @fence: eviction fence attached to KFD process BOs
1207  *
1208  */
kgd2kfd_schedule_evict_and_restore_process(struct mm_struct * mm,struct dma_fence * fence)1209 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1210 					       struct dma_fence *fence)
1211 {
1212 	struct kfd_process *p;
1213 	unsigned long active_time;
1214 	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1215 
1216 	if (!fence)
1217 		return -EINVAL;
1218 
1219 	if (dma_fence_is_signaled(fence))
1220 		return 0;
1221 
1222 	p = kfd_lookup_process_by_mm(mm);
1223 	if (!p)
1224 		return -ENODEV;
1225 
1226 	if (fence->seqno == p->last_eviction_seqno)
1227 		goto out;
1228 
1229 	p->last_eviction_seqno = fence->seqno;
1230 
1231 	/* Avoid KFD process starvation. Wait for at least
1232 	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
1233 	 */
1234 	active_time = get_jiffies_64() - p->last_restore_timestamp;
1235 	if (delay_jiffies > active_time)
1236 		delay_jiffies -= active_time;
1237 	else
1238 		delay_jiffies = 0;
1239 
1240 	/* During process initialization eviction_work.dwork is initialized
1241 	 * to kfd_evict_bo_worker
1242 	 */
1243 	WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1244 	     p->lead_thread->pid, delay_jiffies);
1245 	schedule_delayed_work(&p->eviction_work, delay_jiffies);
1246 out:
1247 	kfd_unref_process(p);
1248 	return 0;
1249 }
1250 
kfd_gtt_sa_init(struct kfd_dev * kfd,unsigned int buf_size,unsigned int chunk_size)1251 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1252 				unsigned int chunk_size)
1253 {
1254 	if (WARN_ON(buf_size < chunk_size))
1255 		return -EINVAL;
1256 	if (WARN_ON(buf_size == 0))
1257 		return -EINVAL;
1258 	if (WARN_ON(chunk_size == 0))
1259 		return -EINVAL;
1260 
1261 	kfd->gtt_sa_chunk_size = chunk_size;
1262 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1263 
1264 	kfd->gtt_sa_bitmap = bitmap_zalloc(kfd->gtt_sa_num_of_chunks,
1265 					   GFP_KERNEL);
1266 	if (!kfd->gtt_sa_bitmap)
1267 		return -ENOMEM;
1268 
1269 	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1270 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1271 
1272 	mutex_init(&kfd->gtt_sa_lock);
1273 
1274 	return 0;
1275 }
1276 
kfd_gtt_sa_fini(struct kfd_dev * kfd)1277 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1278 {
1279 	mutex_destroy(&kfd->gtt_sa_lock);
1280 	bitmap_free(kfd->gtt_sa_bitmap);
1281 }
1282 
kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,unsigned int bit_num,unsigned int chunk_size)1283 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1284 						unsigned int bit_num,
1285 						unsigned int chunk_size)
1286 {
1287 	return start_addr + bit_num * chunk_size;
1288 }
1289 
kfd_gtt_sa_calc_cpu_addr(void * start_addr,unsigned int bit_num,unsigned int chunk_size)1290 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1291 						unsigned int bit_num,
1292 						unsigned int chunk_size)
1293 {
1294 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1295 }
1296 
kfd_gtt_sa_allocate(struct kfd_node * node,unsigned int size,struct kfd_mem_obj ** mem_obj)1297 int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size,
1298 			struct kfd_mem_obj **mem_obj)
1299 {
1300 	unsigned int found, start_search, cur_size;
1301 	struct kfd_dev *kfd = node->kfd;
1302 
1303 	if (size == 0)
1304 		return -EINVAL;
1305 
1306 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1307 		return -ENOMEM;
1308 
1309 	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1310 	if (!(*mem_obj))
1311 		return -ENOMEM;
1312 
1313 	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1314 
1315 	start_search = 0;
1316 
1317 	mutex_lock(&kfd->gtt_sa_lock);
1318 
1319 kfd_gtt_restart_search:
1320 	/* Find the first chunk that is free */
1321 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1322 					kfd->gtt_sa_num_of_chunks,
1323 					start_search);
1324 
1325 	pr_debug("Found = %d\n", found);
1326 
1327 	/* If there wasn't any free chunk, bail out */
1328 	if (found == kfd->gtt_sa_num_of_chunks)
1329 		goto kfd_gtt_no_free_chunk;
1330 
1331 	/* Update fields of mem_obj */
1332 	(*mem_obj)->range_start = found;
1333 	(*mem_obj)->range_end = found;
1334 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1335 					kfd->gtt_start_gpu_addr,
1336 					found,
1337 					kfd->gtt_sa_chunk_size);
1338 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1339 					kfd->gtt_start_cpu_ptr,
1340 					found,
1341 					kfd->gtt_sa_chunk_size);
1342 
1343 	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1344 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1345 
1346 	/* If we need only one chunk, mark it as allocated and get out */
1347 	if (size <= kfd->gtt_sa_chunk_size) {
1348 		pr_debug("Single bit\n");
1349 		__set_bit(found, kfd->gtt_sa_bitmap);
1350 		goto kfd_gtt_out;
1351 	}
1352 
1353 	/* Otherwise, try to see if we have enough contiguous chunks */
1354 	cur_size = size - kfd->gtt_sa_chunk_size;
1355 	do {
1356 		(*mem_obj)->range_end =
1357 			find_next_zero_bit(kfd->gtt_sa_bitmap,
1358 					kfd->gtt_sa_num_of_chunks, ++found);
1359 		/*
1360 		 * If next free chunk is not contiguous than we need to
1361 		 * restart our search from the last free chunk we found (which
1362 		 * wasn't contiguous to the previous ones
1363 		 */
1364 		if ((*mem_obj)->range_end != found) {
1365 			start_search = found;
1366 			goto kfd_gtt_restart_search;
1367 		}
1368 
1369 		/*
1370 		 * If we reached end of buffer, bail out with error
1371 		 */
1372 		if (found == kfd->gtt_sa_num_of_chunks)
1373 			goto kfd_gtt_no_free_chunk;
1374 
1375 		/* Check if we don't need another chunk */
1376 		if (cur_size <= kfd->gtt_sa_chunk_size)
1377 			cur_size = 0;
1378 		else
1379 			cur_size -= kfd->gtt_sa_chunk_size;
1380 
1381 	} while (cur_size > 0);
1382 
1383 	pr_debug("range_start = %d, range_end = %d\n",
1384 		(*mem_obj)->range_start, (*mem_obj)->range_end);
1385 
1386 	/* Mark the chunks as allocated */
1387 	bitmap_set(kfd->gtt_sa_bitmap, (*mem_obj)->range_start,
1388 		   (*mem_obj)->range_end - (*mem_obj)->range_start + 1);
1389 
1390 kfd_gtt_out:
1391 	mutex_unlock(&kfd->gtt_sa_lock);
1392 	return 0;
1393 
1394 kfd_gtt_no_free_chunk:
1395 	pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1396 	mutex_unlock(&kfd->gtt_sa_lock);
1397 	kfree(*mem_obj);
1398 	return -ENOMEM;
1399 }
1400 
kfd_gtt_sa_free(struct kfd_node * node,struct kfd_mem_obj * mem_obj)1401 int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj)
1402 {
1403 	struct kfd_dev *kfd = node->kfd;
1404 
1405 	/* Act like kfree when trying to free a NULL object */
1406 	if (!mem_obj)
1407 		return 0;
1408 
1409 	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1410 			mem_obj, mem_obj->range_start, mem_obj->range_end);
1411 
1412 	mutex_lock(&kfd->gtt_sa_lock);
1413 
1414 	/* Mark the chunks as free */
1415 	bitmap_clear(kfd->gtt_sa_bitmap, mem_obj->range_start,
1416 		     mem_obj->range_end - mem_obj->range_start + 1);
1417 
1418 	mutex_unlock(&kfd->gtt_sa_lock);
1419 
1420 	kfree(mem_obj);
1421 	return 0;
1422 }
1423 
kgd2kfd_set_sram_ecc_flag(struct kfd_dev * kfd)1424 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1425 {
1426 	/*
1427 	 * TODO: Currently update SRAM ECC flag for first node.
1428 	 * This needs to be updated later when we can
1429 	 * identify SRAM ECC error on other nodes also.
1430 	 */
1431 	if (kfd)
1432 		atomic_inc(&kfd->nodes[0]->sram_ecc_flag);
1433 }
1434 
kfd_inc_compute_active(struct kfd_node * node)1435 void kfd_inc_compute_active(struct kfd_node *node)
1436 {
1437 	if (atomic_inc_return(&node->kfd->compute_profile) == 1)
1438 		amdgpu_amdkfd_set_compute_idle(node->adev, false);
1439 }
1440 
kfd_dec_compute_active(struct kfd_node * node)1441 void kfd_dec_compute_active(struct kfd_node *node)
1442 {
1443 	int count = atomic_dec_return(&node->kfd->compute_profile);
1444 
1445 	if (count == 0)
1446 		amdgpu_amdkfd_set_compute_idle(node->adev, true);
1447 	WARN_ONCE(count < 0, "Compute profile ref. count error");
1448 }
1449 
kfd_compute_active(struct kfd_node * node)1450 static bool kfd_compute_active(struct kfd_node *node)
1451 {
1452 	if (atomic_read(&node->kfd->compute_profile))
1453 		return true;
1454 	return false;
1455 }
1456 
kgd2kfd_smi_event_throttle(struct kfd_dev * kfd,uint64_t throttle_bitmask)1457 void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint64_t throttle_bitmask)
1458 {
1459 	/*
1460 	 * TODO: For now, raise the throttling event only on first node.
1461 	 * This will need to change after we are able to determine
1462 	 * which node raised the throttling event.
1463 	 */
1464 	if (kfd && kfd->init_complete)
1465 		kfd_smi_event_update_thermal_throttling(kfd->nodes[0],
1466 							throttle_bitmask);
1467 }
1468 
1469 /* kfd_get_num_sdma_engines returns the number of PCIe optimized SDMA and
1470  * kfd_get_num_xgmi_sdma_engines returns the number of XGMI SDMA.
1471  * When the device has more than two engines, we reserve two for PCIe to enable
1472  * full-duplex and the rest are used as XGMI.
1473  */
kfd_get_num_sdma_engines(struct kfd_node * node)1474 unsigned int kfd_get_num_sdma_engines(struct kfd_node *node)
1475 {
1476 	/* If XGMI is not supported, all SDMA engines are PCIe */
1477 	if (!node->adev->gmc.xgmi.supported)
1478 		return node->adev->sdma.num_instances/(int)node->kfd->num_nodes;
1479 
1480 	return min(node->adev->sdma.num_instances/(int)node->kfd->num_nodes, 2);
1481 }
1482 
kfd_get_num_xgmi_sdma_engines(struct kfd_node * node)1483 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *node)
1484 {
1485 	/* After reserved for PCIe, the rest of engines are XGMI */
1486 	return node->adev->sdma.num_instances/(int)node->kfd->num_nodes -
1487 		kfd_get_num_sdma_engines(node);
1488 }
1489 
kgd2kfd_check_and_lock_kfd(struct kfd_dev * kfd)1490 int kgd2kfd_check_and_lock_kfd(struct kfd_dev *kfd)
1491 {
1492 	struct kfd_process *p;
1493 	int r = 0, temp, idx;
1494 
1495 	mutex_lock(&kfd_processes_mutex);
1496 
1497 	/* kfd_processes_count is per kfd_dev, return -EBUSY without
1498 	 * further check
1499 	 */
1500 	if (!!atomic_read(&kfd->kfd_processes_count)) {
1501 		pr_debug("process_wq_release not finished\n");
1502 		r = -EBUSY;
1503 		goto out;
1504 	}
1505 
1506 	if (hash_empty(kfd_processes_table) && !kfd_is_locked(kfd))
1507 		goto out;
1508 
1509 	/* fail under system reset/resume or kfd device is partition switching. */
1510 	if (kfd_is_locked(kfd)) {
1511 		r = -EBUSY;
1512 		goto out;
1513 	}
1514 
1515 	/*
1516 	 * ensure all running processes are cgroup excluded from device before mode switch.
1517 	 * i.e. no pdd was created on the process socket.
1518 	 */
1519 	idx = srcu_read_lock(&kfd_processes_srcu);
1520 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1521 		int i;
1522 
1523 		for (i = 0; i < p->n_pdds; i++) {
1524 			if (p->pdds[i]->dev->kfd != kfd)
1525 				continue;
1526 
1527 			r = -EBUSY;
1528 			goto proc_check_unlock;
1529 		}
1530 	}
1531 
1532 proc_check_unlock:
1533 	srcu_read_unlock(&kfd_processes_srcu, idx);
1534 out:
1535 	if (!r)
1536 		++kfd->kfd_dev_lock;
1537 	mutex_unlock(&kfd_processes_mutex);
1538 
1539 	return r;
1540 }
1541 
kgd2kfd_unlock_kfd(struct kfd_dev * kfd)1542 void kgd2kfd_unlock_kfd(struct kfd_dev *kfd)
1543 {
1544 	mutex_lock(&kfd_processes_mutex);
1545 	--kfd->kfd_dev_lock;
1546 	mutex_unlock(&kfd_processes_mutex);
1547 }
1548 
kgd2kfd_start_sched(struct kfd_dev * kfd,uint32_t node_id)1549 int kgd2kfd_start_sched(struct kfd_dev *kfd, uint32_t node_id)
1550 {
1551 	struct kfd_node *node;
1552 	int ret;
1553 
1554 	if (!kfd->init_complete)
1555 		return 0;
1556 
1557 	if (node_id >= kfd->num_nodes) {
1558 		dev_warn(kfd->adev->dev, "Invalid node ID: %u exceeds %u\n",
1559 			 node_id, kfd->num_nodes - 1);
1560 		return -EINVAL;
1561 	}
1562 	node = kfd->nodes[node_id];
1563 
1564 	ret = node->dqm->ops.unhalt(node->dqm);
1565 	if (ret)
1566 		dev_err(kfd_device, "Error in starting scheduler\n");
1567 
1568 	return ret;
1569 }
1570 
kgd2kfd_start_sched_all_nodes(struct kfd_dev * kfd)1571 int kgd2kfd_start_sched_all_nodes(struct kfd_dev *kfd)
1572 {
1573 	struct kfd_node *node;
1574 	int i, r;
1575 
1576 	if (!kfd->init_complete)
1577 		return 0;
1578 
1579 	for (i = 0; i < kfd->num_nodes; i++) {
1580 		node = kfd->nodes[i];
1581 		r = node->dqm->ops.unhalt(node->dqm);
1582 		if (r) {
1583 			dev_err(kfd_device, "Error in starting scheduler\n");
1584 			return r;
1585 		}
1586 	}
1587 	return 0;
1588 }
1589 
kgd2kfd_stop_sched(struct kfd_dev * kfd,uint32_t node_id)1590 int kgd2kfd_stop_sched(struct kfd_dev *kfd, uint32_t node_id)
1591 {
1592 	struct kfd_node *node;
1593 
1594 	if (!kfd->init_complete)
1595 		return 0;
1596 
1597 	if (node_id >= kfd->num_nodes) {
1598 		dev_warn(kfd->adev->dev, "Invalid node ID: %u exceeds %u\n",
1599 			 node_id, kfd->num_nodes - 1);
1600 		return -EINVAL;
1601 	}
1602 
1603 	node = kfd->nodes[node_id];
1604 	return node->dqm->ops.halt(node->dqm);
1605 }
1606 
kgd2kfd_stop_sched_all_nodes(struct kfd_dev * kfd)1607 int kgd2kfd_stop_sched_all_nodes(struct kfd_dev *kfd)
1608 {
1609 	struct kfd_node *node;
1610 	int i, r;
1611 
1612 	if (!kfd->init_complete)
1613 		return 0;
1614 
1615 	for (i = 0; i < kfd->num_nodes; i++) {
1616 		node = kfd->nodes[i];
1617 		r = node->dqm->ops.halt(node->dqm);
1618 		if (r)
1619 			return r;
1620 	}
1621 	return 0;
1622 }
1623 
kgd2kfd_compute_active(struct kfd_dev * kfd,uint32_t node_id)1624 bool kgd2kfd_compute_active(struct kfd_dev *kfd, uint32_t node_id)
1625 {
1626 	struct kfd_node *node;
1627 
1628 	if (!kfd->init_complete)
1629 		return false;
1630 
1631 	if (node_id >= kfd->num_nodes) {
1632 		dev_warn(kfd->adev->dev, "Invalid node ID: %u exceeds %u\n",
1633 			 node_id, kfd->num_nodes - 1);
1634 		return false;
1635 	}
1636 
1637 	node = kfd->nodes[node_id];
1638 
1639 	return kfd_compute_active(node);
1640 }
1641 
1642 /**
1643  * kgd2kfd_vmfault_fast_path() - KFD vm page fault interrupt handling fast path for gmc v9
1644  * @adev: amdgpu device
1645  * @entry: vm fault interrupt vector
1646  * @retry_fault: if this is retry fault
1647  *
1648  * retry fault -
1649  *    with CAM enabled, adev primary ring
1650  *                           |  gmc_v9_0_process_interrupt()
1651  *                      adev soft_ring
1652  *                           |  gmc_v9_0_process_interrupt() worker failed to recover page fault
1653  *                      KFD node ih_fifo
1654  *                           |  KFD interrupt_wq worker
1655  *                      kfd_signal_vm_fault_event
1656  *
1657  *    without CAM,      adev primary ring1
1658  *                           |  gmc_v9_0_process_interrupt worker failed to recvoer page fault
1659  *                      KFD node ih_fifo
1660  *                           |  KFD interrupt_wq worker
1661  *                      kfd_signal_vm_fault_event
1662  *
1663  * no-retry fault -
1664  *                      adev primary ring
1665  *                           |  gmc_v9_0_process_interrupt()
1666  *                      KFD node ih_fifo
1667  *                           |  KFD interrupt_wq worker
1668  *                      kfd_signal_vm_fault_event
1669  *
1670  * fast path - After kfd_signal_vm_fault_event, gmc_v9_0_process_interrupt drop the page fault
1671  *            of same process, don't copy interrupt to KFD node ih_fifo.
1672  *            With gdb debugger enabled, need convert the retry fault to no-retry fault for
1673  *            debugger, cannot use the fast path.
1674  *
1675  * Return:
1676  *   true - use the fast path to handle this fault
1677  *   false - use normal path to handle it
1678  */
kgd2kfd_vmfault_fast_path(struct amdgpu_device * adev,struct amdgpu_iv_entry * entry,bool retry_fault)1679 bool kgd2kfd_vmfault_fast_path(struct amdgpu_device *adev, struct amdgpu_iv_entry *entry,
1680 			       bool retry_fault)
1681 {
1682 	struct kfd_process *p;
1683 	u32 cam_index;
1684 
1685 	if (entry->ih == &adev->irq.ih_soft || entry->ih == &adev->irq.ih1) {
1686 		p = kfd_lookup_process_by_pasid(entry->pasid, NULL);
1687 		if (!p)
1688 			return true;
1689 
1690 		if (p->gpu_page_fault && !p->debug_trap_enabled) {
1691 			if (retry_fault && adev->irq.retry_cam_enabled) {
1692 				cam_index = entry->src_data[2] & 0x3ff;
1693 				WDOORBELL32(adev->irq.retry_cam_doorbell_index, cam_index);
1694 			}
1695 
1696 			kfd_unref_process(p);
1697 			return true;
1698 		}
1699 
1700 		/*
1701 		 * This is the first page fault, set flag and then signal user space
1702 		 */
1703 		p->gpu_page_fault = true;
1704 		kfd_unref_process(p);
1705 	}
1706 	return false;
1707 }
1708 
1709 #if defined(CONFIG_DEBUG_FS)
1710 
1711 /* This function will send a package to HIQ to hang the HWS
1712  * which will trigger a GPU reset and bring the HWS back to normal state
1713  */
kfd_debugfs_hang_hws(struct kfd_node * dev)1714 int kfd_debugfs_hang_hws(struct kfd_node *dev)
1715 {
1716 	if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1717 		pr_err("HWS is not enabled");
1718 		return -EINVAL;
1719 	}
1720 
1721 	if (dev->kfd->shared_resources.enable_mes) {
1722 		dev_err(dev->adev->dev, "Inducing MES hang is not supported\n");
1723 		return -EINVAL;
1724 	}
1725 
1726 	return dqm_debugfs_hang_hws(dev->dqm);
1727 }
1728 
1729 #endif
1730