xref: /linux/include/linux/memremap.h (revision 8804d970fab45726b3c7cd7f240b31122aa94219)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MEMREMAP_H_
3 #define _LINUX_MEMREMAP_H_
4 
5 #include <linux/mmzone.h>
6 #include <linux/range.h>
7 #include <linux/ioport.h>
8 #include <linux/percpu-refcount.h>
9 
10 struct resource;
11 struct device;
12 
13 /**
14  * struct vmem_altmap - pre-allocated storage for vmemmap_populate
15  * @base_pfn: base of the entire dev_pagemap mapping
16  * @reserve: pages mapped, but reserved for driver use (relative to @base)
17  * @free: free pages set aside in the mapping for memmap storage
18  * @align: pages reserved to meet allocation alignments
19  * @alloc: track pages consumed, private to vmemmap_populate()
20  */
21 struct vmem_altmap {
22 	unsigned long base_pfn;
23 	const unsigned long end_pfn;
24 	const unsigned long reserve;
25 	unsigned long free;
26 	unsigned long align;
27 	unsigned long alloc;
28 	bool inaccessible;
29 };
30 
31 /*
32  * Specialize ZONE_DEVICE memory into multiple types each has a different
33  * usage.
34  *
35  * MEMORY_DEVICE_PRIVATE:
36  * Device memory that is not directly addressable by the CPU: CPU can neither
37  * read nor write private memory. In this case, we do still have struct pages
38  * backing the device memory. Doing so simplifies the implementation, but it is
39  * important to remember that there are certain points at which the struct page
40  * must be treated as an opaque object, rather than a "normal" struct page.
41  *
42  * A more complete discussion of unaddressable memory may be found in
43  * include/linux/hmm.h and Documentation/mm/hmm.rst.
44  *
45  * MEMORY_DEVICE_COHERENT:
46  * Device memory that is cache coherent from device and CPU point of view. This
47  * is used on platforms that have an advanced system bus (like CAPI or CXL). A
48  * driver can hotplug the device memory using ZONE_DEVICE and with that memory
49  * type. Any page of a process can be migrated to such memory. However no one
50  * should be allowed to pin such memory so that it can always be evicted.
51  *
52  * MEMORY_DEVICE_FS_DAX:
53  * Host memory that has similar access semantics as System RAM i.e. DMA
54  * coherent and supports page pinning. In support of coordinating page
55  * pinning vs other operations MEMORY_DEVICE_FS_DAX arranges for a
56  * wakeup event whenever a page is unpinned and becomes idle. This
57  * wakeup is used to coordinate physical address space management (ex:
58  * fs truncate/hole punch) vs pinned pages (ex: device dma).
59  *
60  * MEMORY_DEVICE_GENERIC:
61  * Host memory that has similar access semantics as System RAM i.e. DMA
62  * coherent and supports page pinning. This is for example used by DAX devices
63  * that expose memory using a character device.
64  *
65  * MEMORY_DEVICE_PCI_P2PDMA:
66  * Device memory residing in a PCI BAR intended for use with Peer-to-Peer
67  * transactions.
68  */
69 enum memory_type {
70 	/* 0 is reserved to catch uninitialized type fields */
71 	MEMORY_DEVICE_PRIVATE = 1,
72 	MEMORY_DEVICE_COHERENT,
73 	MEMORY_DEVICE_FS_DAX,
74 	MEMORY_DEVICE_GENERIC,
75 	MEMORY_DEVICE_PCI_P2PDMA,
76 };
77 
78 struct dev_pagemap_ops {
79 	/*
80 	 * Called once the page refcount reaches 0.  The reference count will be
81 	 * reset to one by the core code after the method is called to prepare
82 	 * for handing out the page again.
83 	 */
84 	void (*page_free)(struct page *page);
85 
86 	/*
87 	 * Used for private (un-addressable) device memory only.  Must migrate
88 	 * the page back to a CPU accessible page.
89 	 */
90 	vm_fault_t (*migrate_to_ram)(struct vm_fault *vmf);
91 
92 	/*
93 	 * Handle the memory failure happens on a range of pfns.  Notify the
94 	 * processes who are using these pfns, and try to recover the data on
95 	 * them if necessary.  The mf_flags is finally passed to the recover
96 	 * function through the whole notify routine.
97 	 *
98 	 * When this is not implemented, or it returns -EOPNOTSUPP, the caller
99 	 * will fall back to a common handler called mf_generic_kill_procs().
100 	 */
101 	int (*memory_failure)(struct dev_pagemap *pgmap, unsigned long pfn,
102 			      unsigned long nr_pages, int mf_flags);
103 };
104 
105 #define PGMAP_ALTMAP_VALID	(1 << 0)
106 
107 /**
108  * struct dev_pagemap - metadata for ZONE_DEVICE mappings
109  * @altmap: pre-allocated/reserved memory for vmemmap allocations
110  * @ref: reference count that pins the devm_memremap_pages() mapping
111  * @done: completion for @ref
112  * @type: memory type: see MEMORY_* above in memremap.h
113  * @flags: PGMAP_* flags to specify defailed behavior
114  * @vmemmap_shift: structural definition of how the vmemmap page metadata
115  *      is populated, specifically the metadata page order.
116  *	A zero value (default) uses base pages as the vmemmap metadata
117  *	representation. A bigger value will set up compound struct pages
118  *	of the requested order value.
119  * @ops: method table
120  * @owner: an opaque pointer identifying the entity that manages this
121  *	instance.  Used by various helpers to make sure that no
122  *	foreign ZONE_DEVICE memory is accessed.
123  * @nr_range: number of ranges to be mapped
124  * @range: range to be mapped when nr_range == 1
125  * @ranges: array of ranges to be mapped when nr_range > 1
126  */
127 struct dev_pagemap {
128 	struct vmem_altmap altmap;
129 	struct percpu_ref ref;
130 	struct completion done;
131 	enum memory_type type;
132 	unsigned int flags;
133 	unsigned long vmemmap_shift;
134 	const struct dev_pagemap_ops *ops;
135 	void *owner;
136 	int nr_range;
137 	union {
138 		struct range range;
139 		DECLARE_FLEX_ARRAY(struct range, ranges);
140 	};
141 };
142 
pgmap_has_memory_failure(struct dev_pagemap * pgmap)143 static inline bool pgmap_has_memory_failure(struct dev_pagemap *pgmap)
144 {
145 	return pgmap->ops && pgmap->ops->memory_failure;
146 }
147 
pgmap_altmap(struct dev_pagemap * pgmap)148 static inline struct vmem_altmap *pgmap_altmap(struct dev_pagemap *pgmap)
149 {
150 	if (pgmap->flags & PGMAP_ALTMAP_VALID)
151 		return &pgmap->altmap;
152 	return NULL;
153 }
154 
pgmap_vmemmap_nr(struct dev_pagemap * pgmap)155 static inline unsigned long pgmap_vmemmap_nr(struct dev_pagemap *pgmap)
156 {
157 	return 1 << pgmap->vmemmap_shift;
158 }
159 
folio_is_device_private(const struct folio * folio)160 static inline bool folio_is_device_private(const struct folio *folio)
161 {
162 	return IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
163 		folio_is_zone_device(folio) &&
164 		folio->pgmap->type == MEMORY_DEVICE_PRIVATE;
165 }
166 
is_device_private_page(const struct page * page)167 static inline bool is_device_private_page(const struct page *page)
168 {
169 	return IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
170 		folio_is_device_private(page_folio(page));
171 }
172 
folio_is_pci_p2pdma(const struct folio * folio)173 static inline bool folio_is_pci_p2pdma(const struct folio *folio)
174 {
175 	return IS_ENABLED(CONFIG_PCI_P2PDMA) &&
176 		folio_is_zone_device(folio) &&
177 		folio->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
178 }
179 
is_pci_p2pdma_page(const struct page * page)180 static inline bool is_pci_p2pdma_page(const struct page *page)
181 {
182 	return IS_ENABLED(CONFIG_PCI_P2PDMA) &&
183 		folio_is_pci_p2pdma(page_folio(page));
184 }
185 
folio_is_device_coherent(const struct folio * folio)186 static inline bool folio_is_device_coherent(const struct folio *folio)
187 {
188 	return folio_is_zone_device(folio) &&
189 		folio->pgmap->type == MEMORY_DEVICE_COHERENT;
190 }
191 
is_device_coherent_page(const struct page * page)192 static inline bool is_device_coherent_page(const struct page *page)
193 {
194 	return folio_is_device_coherent(page_folio(page));
195 }
196 
folio_is_fsdax(const struct folio * folio)197 static inline bool folio_is_fsdax(const struct folio *folio)
198 {
199 	return folio_is_zone_device(folio) &&
200 		folio->pgmap->type == MEMORY_DEVICE_FS_DAX;
201 }
202 
is_fsdax_page(const struct page * page)203 static inline bool is_fsdax_page(const struct page *page)
204 {
205 	return folio_is_fsdax(page_folio(page));
206 }
207 
208 #ifdef CONFIG_ZONE_DEVICE
209 void zone_device_page_init(struct page *page);
210 void *memremap_pages(struct dev_pagemap *pgmap, int nid);
211 void memunmap_pages(struct dev_pagemap *pgmap);
212 void *devm_memremap_pages(struct device *dev, struct dev_pagemap *pgmap);
213 void devm_memunmap_pages(struct device *dev, struct dev_pagemap *pgmap);
214 struct dev_pagemap *get_dev_pagemap(unsigned long pfn);
215 bool pgmap_pfn_valid(struct dev_pagemap *pgmap, unsigned long pfn);
216 
217 unsigned long memremap_compat_align(void);
218 #else
devm_memremap_pages(struct device * dev,struct dev_pagemap * pgmap)219 static inline void *devm_memremap_pages(struct device *dev,
220 		struct dev_pagemap *pgmap)
221 {
222 	/*
223 	 * Fail attempts to call devm_memremap_pages() without
224 	 * ZONE_DEVICE support enabled, this requires callers to fall
225 	 * back to plain devm_memremap() based on config
226 	 */
227 	WARN_ON_ONCE(1);
228 	return ERR_PTR(-ENXIO);
229 }
230 
devm_memunmap_pages(struct device * dev,struct dev_pagemap * pgmap)231 static inline void devm_memunmap_pages(struct device *dev,
232 		struct dev_pagemap *pgmap)
233 {
234 }
235 
get_dev_pagemap(unsigned long pfn)236 static inline struct dev_pagemap *get_dev_pagemap(unsigned long pfn)
237 {
238 	return NULL;
239 }
240 
pgmap_pfn_valid(struct dev_pagemap * pgmap,unsigned long pfn)241 static inline bool pgmap_pfn_valid(struct dev_pagemap *pgmap, unsigned long pfn)
242 {
243 	return false;
244 }
245 
246 /* when memremap_pages() is disabled all archs can remap a single page */
memremap_compat_align(void)247 static inline unsigned long memremap_compat_align(void)
248 {
249 	return PAGE_SIZE;
250 }
251 #endif /* CONFIG_ZONE_DEVICE */
252 
put_dev_pagemap(struct dev_pagemap * pgmap)253 static inline void put_dev_pagemap(struct dev_pagemap *pgmap)
254 {
255 	if (pgmap)
256 		percpu_ref_put(&pgmap->ref);
257 }
258 
259 #endif /* _LINUX_MEMREMAP_H_ */
260