1 /* SPDX-License-Identifier: GPL-2.0 */
2
3 /*
4 * Linux-specific definitions for managing interactions with Microsoft's
5 * Hyper-V hypervisor. The definitions in this file are architecture
6 * independent. See arch/<arch>/include/asm/mshyperv.h for definitions
7 * that are specific to architecture <arch>.
8 *
9 * Definitions that are derived from Hyper-V code or headers should not go in
10 * this file, but should instead go in the relevant files in include/hyperv.
11 *
12 * Copyright (C) 2019, Microsoft, Inc.
13 *
14 * Author : Michael Kelley <mikelley@microsoft.com>
15 */
16
17 #ifndef _ASM_GENERIC_MSHYPERV_H
18 #define _ASM_GENERIC_MSHYPERV_H
19
20 #include <linux/types.h>
21 #include <linux/atomic.h>
22 #include <linux/bitops.h>
23 #include <acpi/acpi_numa.h>
24 #include <linux/cpumask.h>
25 #include <linux/nmi.h>
26 #include <asm/ptrace.h>
27 #include <hyperv/hvhdk.h>
28
29 #define VTPM_BASE_ADDRESS 0xfed40000
30
31 enum hv_partition_type {
32 HV_PARTITION_TYPE_GUEST,
33 HV_PARTITION_TYPE_ROOT,
34 HV_PARTITION_TYPE_L1VH,
35 };
36
37 struct ms_hyperv_info {
38 u32 features;
39 u32 priv_high;
40 u32 ext_features;
41 u32 misc_features;
42 u32 hints;
43 u32 nested_features;
44 u32 max_vp_index;
45 u32 max_lp_index;
46 u8 vtl;
47 union {
48 u32 isolation_config_a;
49 struct {
50 u32 paravisor_present : 1;
51 u32 reserved_a1 : 31;
52 };
53 };
54 union {
55 u32 isolation_config_b;
56 struct {
57 u32 cvm_type : 4;
58 u32 reserved_b1 : 1;
59 u32 shared_gpa_boundary_active : 1;
60 u32 shared_gpa_boundary_bits : 6;
61 u32 reserved_b2 : 20;
62 };
63 };
64 u64 shared_gpa_boundary;
65 };
66 extern struct ms_hyperv_info ms_hyperv;
67 extern bool hv_nested;
68 extern u64 hv_current_partition_id;
69 extern enum hv_partition_type hv_curr_partition_type;
70
71 extern void * __percpu *hyperv_pcpu_input_arg;
72 extern void * __percpu *hyperv_pcpu_output_arg;
73
74 u64 hv_do_hypercall(u64 control, void *inputaddr, void *outputaddr);
75 u64 hv_do_fast_hypercall8(u16 control, u64 input8);
76 u64 hv_do_fast_hypercall16(u16 control, u64 input1, u64 input2);
77
78 bool hv_isolation_type_snp(void);
79 bool hv_isolation_type_tdx(void);
80
81 /*
82 * On architectures where Hyper-V doesn't support AEOI (e.g., ARM64),
83 * it doesn't provide a recommendation flag and AEOI must be disabled.
84 */
hv_recommend_using_aeoi(void)85 static inline bool hv_recommend_using_aeoi(void)
86 {
87 #ifdef HV_DEPRECATING_AEOI_RECOMMENDED
88 return !(ms_hyperv.hints & HV_DEPRECATING_AEOI_RECOMMENDED);
89 #else
90 return false;
91 #endif
92 }
93
hv_numa_node_to_pxm_info(int node)94 static inline struct hv_proximity_domain_info hv_numa_node_to_pxm_info(int node)
95 {
96 struct hv_proximity_domain_info pxm_info = {};
97
98 if (node != NUMA_NO_NODE) {
99 pxm_info.domain_id = node_to_pxm(node);
100 pxm_info.flags.proximity_info_valid = 1;
101 pxm_info.flags.proximity_preferred = 1;
102 }
103
104 return pxm_info;
105 }
106
107 /* Helper functions that provide a consistent pattern for checking Hyper-V hypercall status. */
hv_result(u64 status)108 static inline int hv_result(u64 status)
109 {
110 return status & HV_HYPERCALL_RESULT_MASK;
111 }
112
hv_result_success(u64 status)113 static inline bool hv_result_success(u64 status)
114 {
115 return hv_result(status) == HV_STATUS_SUCCESS;
116 }
117
hv_repcomp(u64 status)118 static inline unsigned int hv_repcomp(u64 status)
119 {
120 /* Bits [43:32] of status have 'Reps completed' data. */
121 return (status & HV_HYPERCALL_REP_COMP_MASK) >>
122 HV_HYPERCALL_REP_COMP_OFFSET;
123 }
124
125 /*
126 * Rep hypercalls. Callers of this functions are supposed to ensure that
127 * rep_count and varhead_size comply with Hyper-V hypercall definition.
128 */
hv_do_rep_hypercall(u16 code,u16 rep_count,u16 varhead_size,void * input,void * output)129 static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size,
130 void *input, void *output)
131 {
132 u64 control = code;
133 u64 status;
134 u16 rep_comp;
135
136 control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET;
137 control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET;
138
139 do {
140 status = hv_do_hypercall(control, input, output);
141 if (!hv_result_success(status))
142 return status;
143
144 rep_comp = hv_repcomp(status);
145
146 control &= ~HV_HYPERCALL_REP_START_MASK;
147 control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET;
148
149 touch_nmi_watchdog();
150 } while (rep_comp < rep_count);
151
152 return status;
153 }
154
155 /* Generate the guest OS identifier as described in the Hyper-V TLFS */
hv_generate_guest_id(u64 kernel_version)156 static inline u64 hv_generate_guest_id(u64 kernel_version)
157 {
158 u64 guest_id;
159
160 guest_id = (((u64)HV_LINUX_VENDOR_ID) << 48);
161 guest_id |= (kernel_version << 16);
162
163 return guest_id;
164 }
165
166 #if IS_ENABLED(CONFIG_HYPERV_VMBUS)
167 /* Free the message slot and signal end-of-message if required */
vmbus_signal_eom(struct hv_message * msg,u32 old_msg_type)168 static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type)
169 {
170 /*
171 * On crash we're reading some other CPU's message page and we need
172 * to be careful: this other CPU may already had cleared the header
173 * and the host may already had delivered some other message there.
174 * In case we blindly write msg->header.message_type we're going
175 * to lose it. We can still lose a message of the same type but
176 * we count on the fact that there can only be one
177 * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages
178 * on crash.
179 */
180 if (cmpxchg(&msg->header.message_type, old_msg_type,
181 HVMSG_NONE) != old_msg_type)
182 return;
183
184 /*
185 * The cmxchg() above does an implicit memory barrier to
186 * ensure the write to MessageType (ie set to
187 * HVMSG_NONE) happens before we read the
188 * MessagePending and EOMing. Otherwise, the EOMing
189 * will not deliver any more messages since there is
190 * no empty slot
191 */
192 if (msg->header.message_flags.msg_pending) {
193 /*
194 * This will cause message queue rescan to
195 * possibly deliver another msg from the
196 * hypervisor
197 */
198 hv_set_msr(HV_MSR_EOM, 0);
199 }
200 }
201
202 extern int vmbus_interrupt;
203 extern int vmbus_irq;
204 #endif /* CONFIG_HYPERV_VMBUS */
205
206 int hv_get_hypervisor_version(union hv_hypervisor_version_info *info);
207
208 void hv_setup_vmbus_handler(void (*handler)(void));
209 void hv_remove_vmbus_handler(void);
210 void hv_setup_stimer0_handler(void (*handler)(void));
211 void hv_remove_stimer0_handler(void);
212
213 void hv_setup_kexec_handler(void (*handler)(void));
214 void hv_remove_kexec_handler(void);
215 void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs));
216 void hv_remove_crash_handler(void);
217 void hv_setup_mshv_handler(void (*handler)(void));
218
219 #if IS_ENABLED(CONFIG_HYPERV)
220 /*
221 * Hypervisor's notion of virtual processor ID is different from
222 * Linux' notion of CPU ID. This information can only be retrieved
223 * in the context of the calling CPU. Setup a map for easy access
224 * to this information.
225 */
226 extern u32 *hv_vp_index;
227 extern u32 hv_max_vp_index;
228
229 extern u64 (*hv_read_reference_counter)(void);
230
231 /* Sentinel value for an uninitialized entry in hv_vp_index array */
232 #define VP_INVAL U32_MAX
233
234 int __init hv_common_init(void);
235 void __init hv_get_partition_id(void);
236 void __init hv_common_free(void);
237 void __init ms_hyperv_late_init(void);
238 int hv_common_cpu_init(unsigned int cpu);
239 int hv_common_cpu_die(unsigned int cpu);
240 void hv_identify_partition_type(void);
241
242 /**
243 * hv_cpu_number_to_vp_number() - Map CPU to VP.
244 * @cpu_number: CPU number in Linux terms
245 *
246 * This function returns the mapping between the Linux processor
247 * number and the hypervisor's virtual processor number, useful
248 * in making hypercalls and such that talk about specific
249 * processors.
250 *
251 * Return: Virtual processor number in Hyper-V terms
252 */
hv_cpu_number_to_vp_number(int cpu_number)253 static inline int hv_cpu_number_to_vp_number(int cpu_number)
254 {
255 return hv_vp_index[cpu_number];
256 }
257
__cpumask_to_vpset(struct hv_vpset * vpset,const struct cpumask * cpus,bool (* func)(int cpu))258 static inline int __cpumask_to_vpset(struct hv_vpset *vpset,
259 const struct cpumask *cpus,
260 bool (*func)(int cpu))
261 {
262 int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1;
263 int max_vcpu_bank = hv_max_vp_index / HV_VCPUS_PER_SPARSE_BANK;
264
265 /* vpset.valid_bank_mask can represent up to HV_MAX_SPARSE_VCPU_BANKS banks */
266 if (max_vcpu_bank >= HV_MAX_SPARSE_VCPU_BANKS)
267 return 0;
268
269 /*
270 * Clear all banks up to the maximum possible bank as hv_tlb_flush_ex
271 * structs are not cleared between calls, we risk flushing unneeded
272 * vCPUs otherwise.
273 */
274 for (vcpu_bank = 0; vcpu_bank <= max_vcpu_bank; vcpu_bank++)
275 vpset->bank_contents[vcpu_bank] = 0;
276
277 /*
278 * Some banks may end up being empty but this is acceptable.
279 */
280 for_each_cpu(cpu, cpus) {
281 if (func && func(cpu))
282 continue;
283 vcpu = hv_cpu_number_to_vp_number(cpu);
284 if (vcpu == VP_INVAL)
285 return -1;
286 vcpu_bank = vcpu / HV_VCPUS_PER_SPARSE_BANK;
287 vcpu_offset = vcpu % HV_VCPUS_PER_SPARSE_BANK;
288 __set_bit(vcpu_offset, (unsigned long *)
289 &vpset->bank_contents[vcpu_bank]);
290 if (vcpu_bank >= nr_bank)
291 nr_bank = vcpu_bank + 1;
292 }
293 vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0);
294 return nr_bank;
295 }
296
297 /*
298 * Convert a Linux cpumask into a Hyper-V VPset. In the _skip variant,
299 * 'func' is called for each CPU present in cpumask. If 'func' returns
300 * true, that CPU is skipped -- i.e., that CPU from cpumask is *not*
301 * added to the Hyper-V VPset. If 'func' is NULL, no CPUs are
302 * skipped.
303 */
cpumask_to_vpset(struct hv_vpset * vpset,const struct cpumask * cpus)304 static inline int cpumask_to_vpset(struct hv_vpset *vpset,
305 const struct cpumask *cpus)
306 {
307 return __cpumask_to_vpset(vpset, cpus, NULL);
308 }
309
cpumask_to_vpset_skip(struct hv_vpset * vpset,const struct cpumask * cpus,bool (* func)(int cpu))310 static inline int cpumask_to_vpset_skip(struct hv_vpset *vpset,
311 const struct cpumask *cpus,
312 bool (*func)(int cpu))
313 {
314 return __cpumask_to_vpset(vpset, cpus, func);
315 }
316
317 #define _hv_status_fmt(fmt) "%s: Hyper-V status: %#x = %s: " fmt
318 #define hv_status_printk(level, status, fmt, ...) \
319 do { \
320 u64 __status = (status); \
321 pr_##level(_hv_status_fmt(fmt), __func__, hv_result(__status), \
322 hv_result_to_string(__status), ##__VA_ARGS__); \
323 } while (0)
324 #define hv_status_err(status, fmt, ...) \
325 hv_status_printk(err, status, fmt, ##__VA_ARGS__)
326 #define hv_status_debug(status, fmt, ...) \
327 hv_status_printk(debug, status, fmt, ##__VA_ARGS__)
328
329 const char *hv_result_to_string(u64 hv_status);
330 int hv_result_to_errno(u64 status);
331 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die);
332 bool hv_is_hyperv_initialized(void);
333 bool hv_is_hibernation_supported(void);
334 enum hv_isolation_type hv_get_isolation_type(void);
335 bool hv_is_isolation_supported(void);
336 bool hv_isolation_type_snp(void);
337 u64 hv_ghcb_hypercall(u64 control, void *input, void *output, u32 input_size);
338 u64 hv_tdx_hypercall(u64 control, u64 param1, u64 param2);
339 void hyperv_cleanup(void);
340 bool hv_query_ext_cap(u64 cap_query);
341 void hv_setup_dma_ops(struct device *dev, bool coherent);
342 #else /* CONFIG_HYPERV */
hv_identify_partition_type(void)343 static inline void hv_identify_partition_type(void) {}
hv_is_hyperv_initialized(void)344 static inline bool hv_is_hyperv_initialized(void) { return false; }
hv_is_hibernation_supported(void)345 static inline bool hv_is_hibernation_supported(void) { return false; }
hyperv_cleanup(void)346 static inline void hyperv_cleanup(void) {}
ms_hyperv_late_init(void)347 static inline void ms_hyperv_late_init(void) {}
hv_is_isolation_supported(void)348 static inline bool hv_is_isolation_supported(void) { return false; }
hv_get_isolation_type(void)349 static inline enum hv_isolation_type hv_get_isolation_type(void)
350 {
351 return HV_ISOLATION_TYPE_NONE;
352 }
353 #endif /* CONFIG_HYPERV */
354
355 #if IS_ENABLED(CONFIG_MSHV_ROOT)
hv_root_partition(void)356 static inline bool hv_root_partition(void)
357 {
358 return hv_curr_partition_type == HV_PARTITION_TYPE_ROOT;
359 }
hv_l1vh_partition(void)360 static inline bool hv_l1vh_partition(void)
361 {
362 return hv_curr_partition_type == HV_PARTITION_TYPE_L1VH;
363 }
hv_parent_partition(void)364 static inline bool hv_parent_partition(void)
365 {
366 return hv_root_partition() || hv_l1vh_partition();
367 }
368 int hv_call_deposit_pages(int node, u64 partition_id, u32 num_pages);
369 int hv_call_add_logical_proc(int node, u32 lp_index, u32 acpi_id);
370 int hv_call_create_vp(int node, u64 partition_id, u32 vp_index, u32 flags);
371
372 #else /* CONFIG_MSHV_ROOT */
hv_root_partition(void)373 static inline bool hv_root_partition(void) { return false; }
hv_l1vh_partition(void)374 static inline bool hv_l1vh_partition(void) { return false; }
hv_parent_partition(void)375 static inline bool hv_parent_partition(void) { return false; }
hv_call_deposit_pages(int node,u64 partition_id,u32 num_pages)376 static inline int hv_call_deposit_pages(int node, u64 partition_id, u32 num_pages)
377 {
378 return -EOPNOTSUPP;
379 }
hv_call_add_logical_proc(int node,u32 lp_index,u32 acpi_id)380 static inline int hv_call_add_logical_proc(int node, u32 lp_index, u32 acpi_id)
381 {
382 return -EOPNOTSUPP;
383 }
hv_call_create_vp(int node,u64 partition_id,u32 vp_index,u32 flags)384 static inline int hv_call_create_vp(int node, u64 partition_id, u32 vp_index, u32 flags)
385 {
386 return -EOPNOTSUPP;
387 }
388 #endif /* CONFIG_MSHV_ROOT */
389
390 #if IS_ENABLED(CONFIG_HYPERV_VTL_MODE)
391 u8 __init get_vtl(void);
392 #else
get_vtl(void)393 static inline u8 get_vtl(void) { return 0; }
394 #endif
395
396 #endif
397