xref: /linux/drivers/hv/vmbus_drv.c (revision 3349e275067f94ffb4141989aed9cbae7409429b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  *   K. Y. Srinivasan <kys@microsoft.com>
9  */
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/device.h>
15 #include <linux/platform_device.h>
16 #include <linux/interrupt.h>
17 #include <linux/sysctl.h>
18 #include <linux/slab.h>
19 #include <linux/acpi.h>
20 #include <linux/completion.h>
21 #include <linux/hyperv.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/of_address.h>
24 #include <linux/clockchips.h>
25 #include <linux/cpu.h>
26 #include <linux/sched/isolation.h>
27 #include <linux/sched/task_stack.h>
28 
29 #include <linux/delay.h>
30 #include <linux/panic_notifier.h>
31 #include <linux/ptrace.h>
32 #include <linux/screen_info.h>
33 #include <linux/efi.h>
34 #include <linux/random.h>
35 #include <linux/kernel.h>
36 #include <linux/syscore_ops.h>
37 #include <linux/dma-map-ops.h>
38 #include <linux/pci.h>
39 #include <clocksource/hyperv_timer.h>
40 #include <asm/mshyperv.h>
41 #include "hyperv_vmbus.h"
42 
43 struct vmbus_dynid {
44 	struct list_head node;
45 	struct hv_vmbus_device_id id;
46 };
47 
48 /* VMBus Root Device */
49 static struct device  *vmbus_root_device;
50 
51 static int hyperv_cpuhp_online;
52 
53 static long __percpu *vmbus_evt;
54 
55 /* Values parsed from ACPI DSDT */
56 int vmbus_irq;
57 int vmbus_interrupt;
58 
59 /*
60  * The panic notifier below is responsible solely for unloading the
61  * vmbus connection, which is necessary in a panic event.
62  *
63  * Notice an intrincate relation of this notifier with Hyper-V
64  * framebuffer panic notifier exists - we need vmbus connection alive
65  * there in order to succeed, so we need to order both with each other
66  * [see hvfb_on_panic()] - this is done using notifiers' priorities.
67  */
hv_panic_vmbus_unload(struct notifier_block * nb,unsigned long val,void * args)68 static int hv_panic_vmbus_unload(struct notifier_block *nb, unsigned long val,
69 			      void *args)
70 {
71 	vmbus_initiate_unload(true);
72 	return NOTIFY_DONE;
73 }
74 static struct notifier_block hyperv_panic_vmbus_unload_block = {
75 	.notifier_call	= hv_panic_vmbus_unload,
76 	.priority	= INT_MIN + 1, /* almost the latest one to execute */
77 };
78 
79 static const char *fb_mmio_name = "fb_range";
80 static struct resource *fb_mmio;
81 static struct resource *hyperv_mmio;
82 static DEFINE_MUTEX(hyperv_mmio_lock);
83 
hv_get_vmbus_root_device(void)84 struct device *hv_get_vmbus_root_device(void)
85 {
86 	return vmbus_root_device;
87 }
88 EXPORT_SYMBOL_GPL(hv_get_vmbus_root_device);
89 
vmbus_exists(void)90 static int vmbus_exists(void)
91 {
92 	if (vmbus_root_device == NULL)
93 		return -ENODEV;
94 
95 	return 0;
96 }
97 
channel_monitor_group(const struct vmbus_channel * channel)98 static u8 channel_monitor_group(const struct vmbus_channel *channel)
99 {
100 	return (u8)channel->offermsg.monitorid / 32;
101 }
102 
channel_monitor_offset(const struct vmbus_channel * channel)103 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
104 {
105 	return (u8)channel->offermsg.monitorid % 32;
106 }
107 
channel_pending(const struct vmbus_channel * channel,const struct hv_monitor_page * monitor_page)108 static u32 channel_pending(const struct vmbus_channel *channel,
109 			   const struct hv_monitor_page *monitor_page)
110 {
111 	u8 monitor_group = channel_monitor_group(channel);
112 
113 	return monitor_page->trigger_group[monitor_group].pending;
114 }
115 
channel_latency(const struct vmbus_channel * channel,const struct hv_monitor_page * monitor_page)116 static u32 channel_latency(const struct vmbus_channel *channel,
117 			   const struct hv_monitor_page *monitor_page)
118 {
119 	u8 monitor_group = channel_monitor_group(channel);
120 	u8 monitor_offset = channel_monitor_offset(channel);
121 
122 	return monitor_page->latency[monitor_group][monitor_offset];
123 }
124 
channel_conn_id(struct vmbus_channel * channel,struct hv_monitor_page * monitor_page)125 static u32 channel_conn_id(struct vmbus_channel *channel,
126 			   struct hv_monitor_page *monitor_page)
127 {
128 	u8 monitor_group = channel_monitor_group(channel);
129 	u8 monitor_offset = channel_monitor_offset(channel);
130 
131 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
132 }
133 
id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)134 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
135 		       char *buf)
136 {
137 	struct hv_device *hv_dev = device_to_hv_device(dev);
138 
139 	if (!hv_dev->channel)
140 		return -ENODEV;
141 	return sysfs_emit(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
142 }
143 static DEVICE_ATTR_RO(id);
144 
state_show(struct device * dev,struct device_attribute * dev_attr,char * buf)145 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
146 			  char *buf)
147 {
148 	struct hv_device *hv_dev = device_to_hv_device(dev);
149 
150 	if (!hv_dev->channel)
151 		return -ENODEV;
152 	return sysfs_emit(buf, "%d\n", hv_dev->channel->state);
153 }
154 static DEVICE_ATTR_RO(state);
155 
monitor_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)156 static ssize_t monitor_id_show(struct device *dev,
157 			       struct device_attribute *dev_attr, char *buf)
158 {
159 	struct hv_device *hv_dev = device_to_hv_device(dev);
160 
161 	if (!hv_dev->channel)
162 		return -ENODEV;
163 	return sysfs_emit(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
164 }
165 static DEVICE_ATTR_RO(monitor_id);
166 
class_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)167 static ssize_t class_id_show(struct device *dev,
168 			       struct device_attribute *dev_attr, char *buf)
169 {
170 	struct hv_device *hv_dev = device_to_hv_device(dev);
171 
172 	if (!hv_dev->channel)
173 		return -ENODEV;
174 	return sysfs_emit(buf, "{%pUl}\n",
175 			  &hv_dev->channel->offermsg.offer.if_type);
176 }
177 static DEVICE_ATTR_RO(class_id);
178 
device_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)179 static ssize_t device_id_show(struct device *dev,
180 			      struct device_attribute *dev_attr, char *buf)
181 {
182 	struct hv_device *hv_dev = device_to_hv_device(dev);
183 
184 	if (!hv_dev->channel)
185 		return -ENODEV;
186 	return sysfs_emit(buf, "{%pUl}\n",
187 			  &hv_dev->channel->offermsg.offer.if_instance);
188 }
189 static DEVICE_ATTR_RO(device_id);
190 
modalias_show(struct device * dev,struct device_attribute * dev_attr,char * buf)191 static ssize_t modalias_show(struct device *dev,
192 			     struct device_attribute *dev_attr, char *buf)
193 {
194 	struct hv_device *hv_dev = device_to_hv_device(dev);
195 
196 	return sysfs_emit(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type);
197 }
198 static DEVICE_ATTR_RO(modalias);
199 
200 #ifdef CONFIG_NUMA
numa_node_show(struct device * dev,struct device_attribute * attr,char * buf)201 static ssize_t numa_node_show(struct device *dev,
202 			      struct device_attribute *attr, char *buf)
203 {
204 	struct hv_device *hv_dev = device_to_hv_device(dev);
205 
206 	if (!hv_dev->channel)
207 		return -ENODEV;
208 
209 	return sysfs_emit(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu));
210 }
211 static DEVICE_ATTR_RO(numa_node);
212 #endif
213 
server_monitor_pending_show(struct device * dev,struct device_attribute * dev_attr,char * buf)214 static ssize_t server_monitor_pending_show(struct device *dev,
215 					   struct device_attribute *dev_attr,
216 					   char *buf)
217 {
218 	struct hv_device *hv_dev = device_to_hv_device(dev);
219 
220 	if (!hv_dev->channel)
221 		return -ENODEV;
222 	return sysfs_emit(buf, "%d\n", channel_pending(hv_dev->channel,
223 			  vmbus_connection.monitor_pages[0]));
224 }
225 static DEVICE_ATTR_RO(server_monitor_pending);
226 
client_monitor_pending_show(struct device * dev,struct device_attribute * dev_attr,char * buf)227 static ssize_t client_monitor_pending_show(struct device *dev,
228 					   struct device_attribute *dev_attr,
229 					   char *buf)
230 {
231 	struct hv_device *hv_dev = device_to_hv_device(dev);
232 
233 	if (!hv_dev->channel)
234 		return -ENODEV;
235 	return sysfs_emit(buf, "%d\n", channel_pending(hv_dev->channel,
236 			  vmbus_connection.monitor_pages[1]));
237 }
238 static DEVICE_ATTR_RO(client_monitor_pending);
239 
server_monitor_latency_show(struct device * dev,struct device_attribute * dev_attr,char * buf)240 static ssize_t server_monitor_latency_show(struct device *dev,
241 					   struct device_attribute *dev_attr,
242 					   char *buf)
243 {
244 	struct hv_device *hv_dev = device_to_hv_device(dev);
245 
246 	if (!hv_dev->channel)
247 		return -ENODEV;
248 	return sysfs_emit(buf, "%d\n", channel_latency(hv_dev->channel,
249 			  vmbus_connection.monitor_pages[0]));
250 }
251 static DEVICE_ATTR_RO(server_monitor_latency);
252 
client_monitor_latency_show(struct device * dev,struct device_attribute * dev_attr,char * buf)253 static ssize_t client_monitor_latency_show(struct device *dev,
254 					   struct device_attribute *dev_attr,
255 					   char *buf)
256 {
257 	struct hv_device *hv_dev = device_to_hv_device(dev);
258 
259 	if (!hv_dev->channel)
260 		return -ENODEV;
261 	return sysfs_emit(buf, "%d\n", channel_latency(hv_dev->channel,
262 			  vmbus_connection.monitor_pages[1]));
263 }
264 static DEVICE_ATTR_RO(client_monitor_latency);
265 
server_monitor_conn_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)266 static ssize_t server_monitor_conn_id_show(struct device *dev,
267 					   struct device_attribute *dev_attr,
268 					   char *buf)
269 {
270 	struct hv_device *hv_dev = device_to_hv_device(dev);
271 
272 	if (!hv_dev->channel)
273 		return -ENODEV;
274 	return sysfs_emit(buf, "%d\n", channel_conn_id(hv_dev->channel,
275 			  vmbus_connection.monitor_pages[0]));
276 }
277 static DEVICE_ATTR_RO(server_monitor_conn_id);
278 
client_monitor_conn_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)279 static ssize_t client_monitor_conn_id_show(struct device *dev,
280 					   struct device_attribute *dev_attr,
281 					   char *buf)
282 {
283 	struct hv_device *hv_dev = device_to_hv_device(dev);
284 
285 	if (!hv_dev->channel)
286 		return -ENODEV;
287 	return sysfs_emit(buf, "%d\n", channel_conn_id(hv_dev->channel,
288 			  vmbus_connection.monitor_pages[1]));
289 }
290 static DEVICE_ATTR_RO(client_monitor_conn_id);
291 
out_intr_mask_show(struct device * dev,struct device_attribute * dev_attr,char * buf)292 static ssize_t out_intr_mask_show(struct device *dev,
293 				  struct device_attribute *dev_attr, char *buf)
294 {
295 	struct hv_device *hv_dev = device_to_hv_device(dev);
296 	struct hv_ring_buffer_debug_info outbound;
297 	int ret;
298 
299 	if (!hv_dev->channel)
300 		return -ENODEV;
301 
302 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
303 					  &outbound);
304 	if (ret < 0)
305 		return ret;
306 
307 	return sysfs_emit(buf, "%d\n", outbound.current_interrupt_mask);
308 }
309 static DEVICE_ATTR_RO(out_intr_mask);
310 
out_read_index_show(struct device * dev,struct device_attribute * dev_attr,char * buf)311 static ssize_t out_read_index_show(struct device *dev,
312 				   struct device_attribute *dev_attr, char *buf)
313 {
314 	struct hv_device *hv_dev = device_to_hv_device(dev);
315 	struct hv_ring_buffer_debug_info outbound;
316 	int ret;
317 
318 	if (!hv_dev->channel)
319 		return -ENODEV;
320 
321 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
322 					  &outbound);
323 	if (ret < 0)
324 		return ret;
325 	return sysfs_emit(buf, "%d\n", outbound.current_read_index);
326 }
327 static DEVICE_ATTR_RO(out_read_index);
328 
out_write_index_show(struct device * dev,struct device_attribute * dev_attr,char * buf)329 static ssize_t out_write_index_show(struct device *dev,
330 				    struct device_attribute *dev_attr,
331 				    char *buf)
332 {
333 	struct hv_device *hv_dev = device_to_hv_device(dev);
334 	struct hv_ring_buffer_debug_info outbound;
335 	int ret;
336 
337 	if (!hv_dev->channel)
338 		return -ENODEV;
339 
340 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
341 					  &outbound);
342 	if (ret < 0)
343 		return ret;
344 	return sysfs_emit(buf, "%d\n", outbound.current_write_index);
345 }
346 static DEVICE_ATTR_RO(out_write_index);
347 
out_read_bytes_avail_show(struct device * dev,struct device_attribute * dev_attr,char * buf)348 static ssize_t out_read_bytes_avail_show(struct device *dev,
349 					 struct device_attribute *dev_attr,
350 					 char *buf)
351 {
352 	struct hv_device *hv_dev = device_to_hv_device(dev);
353 	struct hv_ring_buffer_debug_info outbound;
354 	int ret;
355 
356 	if (!hv_dev->channel)
357 		return -ENODEV;
358 
359 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
360 					  &outbound);
361 	if (ret < 0)
362 		return ret;
363 	return sysfs_emit(buf, "%d\n", outbound.bytes_avail_toread);
364 }
365 static DEVICE_ATTR_RO(out_read_bytes_avail);
366 
out_write_bytes_avail_show(struct device * dev,struct device_attribute * dev_attr,char * buf)367 static ssize_t out_write_bytes_avail_show(struct device *dev,
368 					  struct device_attribute *dev_attr,
369 					  char *buf)
370 {
371 	struct hv_device *hv_dev = device_to_hv_device(dev);
372 	struct hv_ring_buffer_debug_info outbound;
373 	int ret;
374 
375 	if (!hv_dev->channel)
376 		return -ENODEV;
377 
378 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
379 					  &outbound);
380 	if (ret < 0)
381 		return ret;
382 	return sysfs_emit(buf, "%d\n", outbound.bytes_avail_towrite);
383 }
384 static DEVICE_ATTR_RO(out_write_bytes_avail);
385 
in_intr_mask_show(struct device * dev,struct device_attribute * dev_attr,char * buf)386 static ssize_t in_intr_mask_show(struct device *dev,
387 				 struct device_attribute *dev_attr, char *buf)
388 {
389 	struct hv_device *hv_dev = device_to_hv_device(dev);
390 	struct hv_ring_buffer_debug_info inbound;
391 	int ret;
392 
393 	if (!hv_dev->channel)
394 		return -ENODEV;
395 
396 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
397 	if (ret < 0)
398 		return ret;
399 
400 	return sysfs_emit(buf, "%d\n", inbound.current_interrupt_mask);
401 }
402 static DEVICE_ATTR_RO(in_intr_mask);
403 
in_read_index_show(struct device * dev,struct device_attribute * dev_attr,char * buf)404 static ssize_t in_read_index_show(struct device *dev,
405 				  struct device_attribute *dev_attr, char *buf)
406 {
407 	struct hv_device *hv_dev = device_to_hv_device(dev);
408 	struct hv_ring_buffer_debug_info inbound;
409 	int ret;
410 
411 	if (!hv_dev->channel)
412 		return -ENODEV;
413 
414 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
415 	if (ret < 0)
416 		return ret;
417 
418 	return sysfs_emit(buf, "%d\n", inbound.current_read_index);
419 }
420 static DEVICE_ATTR_RO(in_read_index);
421 
in_write_index_show(struct device * dev,struct device_attribute * dev_attr,char * buf)422 static ssize_t in_write_index_show(struct device *dev,
423 				   struct device_attribute *dev_attr, char *buf)
424 {
425 	struct hv_device *hv_dev = device_to_hv_device(dev);
426 	struct hv_ring_buffer_debug_info inbound;
427 	int ret;
428 
429 	if (!hv_dev->channel)
430 		return -ENODEV;
431 
432 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
433 	if (ret < 0)
434 		return ret;
435 
436 	return sysfs_emit(buf, "%d\n", inbound.current_write_index);
437 }
438 static DEVICE_ATTR_RO(in_write_index);
439 
in_read_bytes_avail_show(struct device * dev,struct device_attribute * dev_attr,char * buf)440 static ssize_t in_read_bytes_avail_show(struct device *dev,
441 					struct device_attribute *dev_attr,
442 					char *buf)
443 {
444 	struct hv_device *hv_dev = device_to_hv_device(dev);
445 	struct hv_ring_buffer_debug_info inbound;
446 	int ret;
447 
448 	if (!hv_dev->channel)
449 		return -ENODEV;
450 
451 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
452 	if (ret < 0)
453 		return ret;
454 
455 	return sysfs_emit(buf, "%d\n", inbound.bytes_avail_toread);
456 }
457 static DEVICE_ATTR_RO(in_read_bytes_avail);
458 
in_write_bytes_avail_show(struct device * dev,struct device_attribute * dev_attr,char * buf)459 static ssize_t in_write_bytes_avail_show(struct device *dev,
460 					 struct device_attribute *dev_attr,
461 					 char *buf)
462 {
463 	struct hv_device *hv_dev = device_to_hv_device(dev);
464 	struct hv_ring_buffer_debug_info inbound;
465 	int ret;
466 
467 	if (!hv_dev->channel)
468 		return -ENODEV;
469 
470 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
471 	if (ret < 0)
472 		return ret;
473 
474 	return sysfs_emit(buf, "%d\n", inbound.bytes_avail_towrite);
475 }
476 static DEVICE_ATTR_RO(in_write_bytes_avail);
477 
channel_vp_mapping_show(struct device * dev,struct device_attribute * dev_attr,char * buf)478 static ssize_t channel_vp_mapping_show(struct device *dev,
479 				       struct device_attribute *dev_attr,
480 				       char *buf)
481 {
482 	struct hv_device *hv_dev = device_to_hv_device(dev);
483 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
484 	int n_written;
485 	struct list_head *cur;
486 
487 	if (!channel)
488 		return -ENODEV;
489 
490 	mutex_lock(&vmbus_connection.channel_mutex);
491 
492 	n_written = sysfs_emit(buf, "%u:%u\n",
493 			       channel->offermsg.child_relid,
494 			       channel->target_cpu);
495 
496 	list_for_each(cur, &channel->sc_list) {
497 
498 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
499 		n_written += sysfs_emit_at(buf, n_written, "%u:%u\n",
500 					  cur_sc->offermsg.child_relid,
501 					  cur_sc->target_cpu);
502 	}
503 
504 	mutex_unlock(&vmbus_connection.channel_mutex);
505 
506 	return n_written;
507 }
508 static DEVICE_ATTR_RO(channel_vp_mapping);
509 
vendor_show(struct device * dev,struct device_attribute * dev_attr,char * buf)510 static ssize_t vendor_show(struct device *dev,
511 			   struct device_attribute *dev_attr,
512 			   char *buf)
513 {
514 	struct hv_device *hv_dev = device_to_hv_device(dev);
515 
516 	return sysfs_emit(buf, "0x%x\n", hv_dev->vendor_id);
517 }
518 static DEVICE_ATTR_RO(vendor);
519 
device_show(struct device * dev,struct device_attribute * dev_attr,char * buf)520 static ssize_t device_show(struct device *dev,
521 			   struct device_attribute *dev_attr,
522 			   char *buf)
523 {
524 	struct hv_device *hv_dev = device_to_hv_device(dev);
525 
526 	return sysfs_emit(buf, "0x%x\n", hv_dev->device_id);
527 }
528 static DEVICE_ATTR_RO(device);
529 
driver_override_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)530 static ssize_t driver_override_store(struct device *dev,
531 				     struct device_attribute *attr,
532 				     const char *buf, size_t count)
533 {
534 	struct hv_device *hv_dev = device_to_hv_device(dev);
535 	int ret;
536 
537 	ret = driver_set_override(dev, &hv_dev->driver_override, buf, count);
538 	if (ret)
539 		return ret;
540 
541 	return count;
542 }
543 
driver_override_show(struct device * dev,struct device_attribute * attr,char * buf)544 static ssize_t driver_override_show(struct device *dev,
545 				    struct device_attribute *attr, char *buf)
546 {
547 	struct hv_device *hv_dev = device_to_hv_device(dev);
548 	ssize_t len;
549 
550 	device_lock(dev);
551 	len = sysfs_emit(buf, "%s\n", hv_dev->driver_override);
552 	device_unlock(dev);
553 
554 	return len;
555 }
556 static DEVICE_ATTR_RW(driver_override);
557 
558 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
559 static struct attribute *vmbus_dev_attrs[] = {
560 	&dev_attr_id.attr,
561 	&dev_attr_state.attr,
562 	&dev_attr_monitor_id.attr,
563 	&dev_attr_class_id.attr,
564 	&dev_attr_device_id.attr,
565 	&dev_attr_modalias.attr,
566 #ifdef CONFIG_NUMA
567 	&dev_attr_numa_node.attr,
568 #endif
569 	&dev_attr_server_monitor_pending.attr,
570 	&dev_attr_client_monitor_pending.attr,
571 	&dev_attr_server_monitor_latency.attr,
572 	&dev_attr_client_monitor_latency.attr,
573 	&dev_attr_server_monitor_conn_id.attr,
574 	&dev_attr_client_monitor_conn_id.attr,
575 	&dev_attr_out_intr_mask.attr,
576 	&dev_attr_out_read_index.attr,
577 	&dev_attr_out_write_index.attr,
578 	&dev_attr_out_read_bytes_avail.attr,
579 	&dev_attr_out_write_bytes_avail.attr,
580 	&dev_attr_in_intr_mask.attr,
581 	&dev_attr_in_read_index.attr,
582 	&dev_attr_in_write_index.attr,
583 	&dev_attr_in_read_bytes_avail.attr,
584 	&dev_attr_in_write_bytes_avail.attr,
585 	&dev_attr_channel_vp_mapping.attr,
586 	&dev_attr_vendor.attr,
587 	&dev_attr_device.attr,
588 	&dev_attr_driver_override.attr,
589 	NULL,
590 };
591 
592 /*
593  * Device-level attribute_group callback function. Returns the permission for
594  * each attribute, and returns 0 if an attribute is not visible.
595  */
vmbus_dev_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)596 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
597 					 struct attribute *attr, int idx)
598 {
599 	struct device *dev = kobj_to_dev(kobj);
600 	const struct hv_device *hv_dev = device_to_hv_device(dev);
601 
602 	/* Hide the monitor attributes if the monitor mechanism is not used. */
603 	if (!hv_dev->channel->offermsg.monitor_allocated &&
604 	    (attr == &dev_attr_monitor_id.attr ||
605 	     attr == &dev_attr_server_monitor_pending.attr ||
606 	     attr == &dev_attr_client_monitor_pending.attr ||
607 	     attr == &dev_attr_server_monitor_latency.attr ||
608 	     attr == &dev_attr_client_monitor_latency.attr ||
609 	     attr == &dev_attr_server_monitor_conn_id.attr ||
610 	     attr == &dev_attr_client_monitor_conn_id.attr))
611 		return 0;
612 
613 	return attr->mode;
614 }
615 
616 static const struct attribute_group vmbus_dev_group = {
617 	.attrs = vmbus_dev_attrs,
618 	.is_visible = vmbus_dev_attr_is_visible
619 };
620 __ATTRIBUTE_GROUPS(vmbus_dev);
621 
622 /* Set up the attribute for /sys/bus/vmbus/hibernation */
hibernation_show(const struct bus_type * bus,char * buf)623 static ssize_t hibernation_show(const struct bus_type *bus, char *buf)
624 {
625 	return sprintf(buf, "%d\n", !!hv_is_hibernation_supported());
626 }
627 
628 static BUS_ATTR_RO(hibernation);
629 
630 static struct attribute *vmbus_bus_attrs[] = {
631 	&bus_attr_hibernation.attr,
632 	NULL,
633 };
634 static const struct attribute_group vmbus_bus_group = {
635 	.attrs = vmbus_bus_attrs,
636 };
637 __ATTRIBUTE_GROUPS(vmbus_bus);
638 
639 /*
640  * vmbus_uevent - add uevent for our device
641  *
642  * This routine is invoked when a device is added or removed on the vmbus to
643  * generate a uevent to udev in the userspace. The udev will then look at its
644  * rule and the uevent generated here to load the appropriate driver
645  *
646  * The alias string will be of the form vmbus:guid where guid is the string
647  * representation of the device guid (each byte of the guid will be
648  * represented with two hex characters.
649  */
vmbus_uevent(const struct device * device,struct kobj_uevent_env * env)650 static int vmbus_uevent(const struct device *device, struct kobj_uevent_env *env)
651 {
652 	const struct hv_device *dev = device_to_hv_device(device);
653 	const char *format = "MODALIAS=vmbus:%*phN";
654 
655 	return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type);
656 }
657 
658 static const struct hv_vmbus_device_id *
hv_vmbus_dev_match(const struct hv_vmbus_device_id * id,const guid_t * guid)659 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
660 {
661 	if (id == NULL)
662 		return NULL; /* empty device table */
663 
664 	for (; !guid_is_null(&id->guid); id++)
665 		if (guid_equal(&id->guid, guid))
666 			return id;
667 
668 	return NULL;
669 }
670 
671 static const struct hv_vmbus_device_id *
hv_vmbus_dynid_match(struct hv_driver * drv,const guid_t * guid)672 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
673 {
674 	const struct hv_vmbus_device_id *id = NULL;
675 	struct vmbus_dynid *dynid;
676 
677 	spin_lock(&drv->dynids.lock);
678 	list_for_each_entry(dynid, &drv->dynids.list, node) {
679 		if (guid_equal(&dynid->id.guid, guid)) {
680 			id = &dynid->id;
681 			break;
682 		}
683 	}
684 	spin_unlock(&drv->dynids.lock);
685 
686 	return id;
687 }
688 
689 static const struct hv_vmbus_device_id vmbus_device_null;
690 
691 /*
692  * Return a matching hv_vmbus_device_id pointer.
693  * If there is no match, return NULL.
694  */
hv_vmbus_get_id(const struct hv_driver * drv,struct hv_device * dev)695 static const struct hv_vmbus_device_id *hv_vmbus_get_id(const struct hv_driver *drv,
696 							struct hv_device *dev)
697 {
698 	const guid_t *guid = &dev->dev_type;
699 	const struct hv_vmbus_device_id *id;
700 
701 	/* When driver_override is set, only bind to the matching driver */
702 	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
703 		return NULL;
704 
705 	/* Look at the dynamic ids first, before the static ones */
706 	id = hv_vmbus_dynid_match((struct hv_driver *)drv, guid);
707 	if (!id)
708 		id = hv_vmbus_dev_match(drv->id_table, guid);
709 
710 	/* driver_override will always match, send a dummy id */
711 	if (!id && dev->driver_override)
712 		id = &vmbus_device_null;
713 
714 	return id;
715 }
716 
717 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices
718  *
719  * This function can race with vmbus_device_register(). This function is
720  * typically running on a user thread in response to writing to the "new_id"
721  * sysfs entry for a driver. vmbus_device_register() is running on a
722  * workqueue thread in response to the Hyper-V host offering a device to the
723  * guest. This function calls driver_attach(), which looks for an existing
724  * device matching the new id, and attaches the driver to which the new id
725  * has been assigned. vmbus_device_register() calls device_register(), which
726  * looks for a driver that matches the device being registered. If both
727  * operations are running simultaneously, the device driver probe function runs
728  * on whichever thread establishes the linkage between the driver and device.
729  *
730  * In most cases, it doesn't matter which thread runs the driver probe
731  * function. But if vmbus_device_register() does not find a matching driver,
732  * it proceeds to create the "channels" subdirectory and numbered per-channel
733  * subdirectory in sysfs. While that multi-step creation is in progress, this
734  * function could run the driver probe function. If the probe function checks
735  * for, or operates on, entries in the "channels" subdirectory, including by
736  * calling hv_create_ring_sysfs(), the operation may or may not succeed
737  * depending on the race. The race can't create a kernel failure in VMBus
738  * or device subsystem code, but probe functions in VMBus drivers doing such
739  * operations must be prepared for the failure case.
740  */
vmbus_add_dynid(struct hv_driver * drv,guid_t * guid)741 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
742 {
743 	struct vmbus_dynid *dynid;
744 
745 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
746 	if (!dynid)
747 		return -ENOMEM;
748 
749 	dynid->id.guid = *guid;
750 
751 	spin_lock(&drv->dynids.lock);
752 	list_add_tail(&dynid->node, &drv->dynids.list);
753 	spin_unlock(&drv->dynids.lock);
754 
755 	return driver_attach(&drv->driver);
756 }
757 
vmbus_free_dynids(struct hv_driver * drv)758 static void vmbus_free_dynids(struct hv_driver *drv)
759 {
760 	struct vmbus_dynid *dynid, *n;
761 
762 	spin_lock(&drv->dynids.lock);
763 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
764 		list_del(&dynid->node);
765 		kfree(dynid);
766 	}
767 	spin_unlock(&drv->dynids.lock);
768 }
769 
770 /*
771  * store_new_id - sysfs frontend to vmbus_add_dynid()
772  *
773  * Allow GUIDs to be added to an existing driver via sysfs.
774  */
new_id_store(struct device_driver * driver,const char * buf,size_t count)775 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
776 			    size_t count)
777 {
778 	struct hv_driver *drv = drv_to_hv_drv(driver);
779 	guid_t guid;
780 	ssize_t retval;
781 
782 	retval = guid_parse(buf, &guid);
783 	if (retval)
784 		return retval;
785 
786 	if (hv_vmbus_dynid_match(drv, &guid))
787 		return -EEXIST;
788 
789 	retval = vmbus_add_dynid(drv, &guid);
790 	if (retval)
791 		return retval;
792 	return count;
793 }
794 static DRIVER_ATTR_WO(new_id);
795 
796 /*
797  * store_remove_id - remove a PCI device ID from this driver
798  *
799  * Removes a dynamic pci device ID to this driver.
800  */
remove_id_store(struct device_driver * driver,const char * buf,size_t count)801 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
802 			       size_t count)
803 {
804 	struct hv_driver *drv = drv_to_hv_drv(driver);
805 	struct vmbus_dynid *dynid, *n;
806 	guid_t guid;
807 	ssize_t retval;
808 
809 	retval = guid_parse(buf, &guid);
810 	if (retval)
811 		return retval;
812 
813 	retval = -ENODEV;
814 	spin_lock(&drv->dynids.lock);
815 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
816 		struct hv_vmbus_device_id *id = &dynid->id;
817 
818 		if (guid_equal(&id->guid, &guid)) {
819 			list_del(&dynid->node);
820 			kfree(dynid);
821 			retval = count;
822 			break;
823 		}
824 	}
825 	spin_unlock(&drv->dynids.lock);
826 
827 	return retval;
828 }
829 static DRIVER_ATTR_WO(remove_id);
830 
831 static struct attribute *vmbus_drv_attrs[] = {
832 	&driver_attr_new_id.attr,
833 	&driver_attr_remove_id.attr,
834 	NULL,
835 };
836 ATTRIBUTE_GROUPS(vmbus_drv);
837 
838 
839 /*
840  * vmbus_match - Attempt to match the specified device to the specified driver
841  */
vmbus_match(struct device * device,const struct device_driver * driver)842 static int vmbus_match(struct device *device, const struct device_driver *driver)
843 {
844 	const struct hv_driver *drv = drv_to_hv_drv(driver);
845 	struct hv_device *hv_dev = device_to_hv_device(device);
846 
847 	/* The hv_sock driver handles all hv_sock offers. */
848 	if (is_hvsock_channel(hv_dev->channel))
849 		return drv->hvsock;
850 
851 	if (hv_vmbus_get_id(drv, hv_dev))
852 		return 1;
853 
854 	return 0;
855 }
856 
857 /*
858  * vmbus_probe - Add the new vmbus's child device
859  */
vmbus_probe(struct device * child_device)860 static int vmbus_probe(struct device *child_device)
861 {
862 	int ret = 0;
863 	struct hv_driver *drv =
864 			drv_to_hv_drv(child_device->driver);
865 	struct hv_device *dev = device_to_hv_device(child_device);
866 	const struct hv_vmbus_device_id *dev_id;
867 
868 	dev_id = hv_vmbus_get_id(drv, dev);
869 	if (drv->probe) {
870 		ret = drv->probe(dev, dev_id);
871 		if (ret != 0)
872 			pr_err("probe failed for device %s (%d)\n",
873 			       dev_name(child_device), ret);
874 
875 	} else {
876 		pr_err("probe not set for driver %s\n",
877 		       dev_name(child_device));
878 		ret = -ENODEV;
879 	}
880 	return ret;
881 }
882 
883 /*
884  * vmbus_dma_configure -- Configure DMA coherence for VMbus device
885  */
vmbus_dma_configure(struct device * child_device)886 static int vmbus_dma_configure(struct device *child_device)
887 {
888 	/*
889 	 * On ARM64, propagate the DMA coherence setting from the top level
890 	 * VMbus ACPI device to the child VMbus device being added here.
891 	 * On x86/x64 coherence is assumed and these calls have no effect.
892 	 */
893 	hv_setup_dma_ops(child_device,
894 		device_get_dma_attr(vmbus_root_device) == DEV_DMA_COHERENT);
895 	return 0;
896 }
897 
898 /*
899  * vmbus_remove - Remove a vmbus device
900  */
vmbus_remove(struct device * child_device)901 static void vmbus_remove(struct device *child_device)
902 {
903 	struct hv_driver *drv;
904 	struct hv_device *dev = device_to_hv_device(child_device);
905 
906 	if (child_device->driver) {
907 		drv = drv_to_hv_drv(child_device->driver);
908 		if (drv->remove)
909 			drv->remove(dev);
910 	}
911 }
912 
913 /*
914  * vmbus_shutdown - Shutdown a vmbus device
915  */
vmbus_shutdown(struct device * child_device)916 static void vmbus_shutdown(struct device *child_device)
917 {
918 	struct hv_driver *drv;
919 	struct hv_device *dev = device_to_hv_device(child_device);
920 
921 
922 	/* The device may not be attached yet */
923 	if (!child_device->driver)
924 		return;
925 
926 	drv = drv_to_hv_drv(child_device->driver);
927 
928 	if (drv->shutdown)
929 		drv->shutdown(dev);
930 }
931 
932 #ifdef CONFIG_PM_SLEEP
933 /*
934  * vmbus_suspend - Suspend a vmbus device
935  */
vmbus_suspend(struct device * child_device)936 static int vmbus_suspend(struct device *child_device)
937 {
938 	struct hv_driver *drv;
939 	struct hv_device *dev = device_to_hv_device(child_device);
940 
941 	/* The device may not be attached yet */
942 	if (!child_device->driver)
943 		return 0;
944 
945 	drv = drv_to_hv_drv(child_device->driver);
946 	if (!drv->suspend)
947 		return -EOPNOTSUPP;
948 
949 	return drv->suspend(dev);
950 }
951 
952 /*
953  * vmbus_resume - Resume a vmbus device
954  */
vmbus_resume(struct device * child_device)955 static int vmbus_resume(struct device *child_device)
956 {
957 	struct hv_driver *drv;
958 	struct hv_device *dev = device_to_hv_device(child_device);
959 
960 	/* The device may not be attached yet */
961 	if (!child_device->driver)
962 		return 0;
963 
964 	drv = drv_to_hv_drv(child_device->driver);
965 	if (!drv->resume)
966 		return -EOPNOTSUPP;
967 
968 	return drv->resume(dev);
969 }
970 #else
971 #define vmbus_suspend NULL
972 #define vmbus_resume NULL
973 #endif /* CONFIG_PM_SLEEP */
974 
975 /*
976  * vmbus_device_release - Final callback release of the vmbus child device
977  */
vmbus_device_release(struct device * device)978 static void vmbus_device_release(struct device *device)
979 {
980 	struct hv_device *hv_dev = device_to_hv_device(device);
981 	struct vmbus_channel *channel = hv_dev->channel;
982 
983 	hv_debug_rm_dev_dir(hv_dev);
984 
985 	mutex_lock(&vmbus_connection.channel_mutex);
986 	hv_process_channel_removal(channel);
987 	mutex_unlock(&vmbus_connection.channel_mutex);
988 	kfree(hv_dev);
989 }
990 
991 /*
992  * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
993  *
994  * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
995  * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
996  * is no way to wake up a Generation-2 VM.
997  *
998  * The other 4 ops are for hibernation.
999  */
1000 
1001 static const struct dev_pm_ops vmbus_pm = {
1002 	.suspend_noirq	= NULL,
1003 	.resume_noirq	= NULL,
1004 	.freeze_noirq	= vmbus_suspend,
1005 	.thaw_noirq	= vmbus_resume,
1006 	.poweroff_noirq	= vmbus_suspend,
1007 	.restore_noirq	= vmbus_resume,
1008 };
1009 
1010 /* The one and only one */
1011 static const struct bus_type  hv_bus = {
1012 	.name =		"vmbus",
1013 	.match =		vmbus_match,
1014 	.shutdown =		vmbus_shutdown,
1015 	.remove =		vmbus_remove,
1016 	.probe =		vmbus_probe,
1017 	.uevent =		vmbus_uevent,
1018 	.dma_configure =	vmbus_dma_configure,
1019 	.dev_groups =		vmbus_dev_groups,
1020 	.drv_groups =		vmbus_drv_groups,
1021 	.bus_groups =		vmbus_bus_groups,
1022 	.pm =			&vmbus_pm,
1023 };
1024 
1025 struct onmessage_work_context {
1026 	struct work_struct work;
1027 	struct {
1028 		struct hv_message_header header;
1029 		u8 payload[];
1030 	} msg;
1031 };
1032 
vmbus_onmessage_work(struct work_struct * work)1033 static void vmbus_onmessage_work(struct work_struct *work)
1034 {
1035 	struct onmessage_work_context *ctx;
1036 
1037 	/* Do not process messages if we're in DISCONNECTED state */
1038 	if (vmbus_connection.conn_state == DISCONNECTED)
1039 		return;
1040 
1041 	ctx = container_of(work, struct onmessage_work_context,
1042 			   work);
1043 	vmbus_onmessage((struct vmbus_channel_message_header *)
1044 			&ctx->msg.payload);
1045 	kfree(ctx);
1046 }
1047 
vmbus_on_msg_dpc(unsigned long data)1048 void vmbus_on_msg_dpc(unsigned long data)
1049 {
1050 	struct hv_per_cpu_context *hv_cpu = (void *)data;
1051 	void *page_addr = hv_cpu->synic_message_page;
1052 	struct hv_message msg_copy, *msg = (struct hv_message *)page_addr +
1053 				  VMBUS_MESSAGE_SINT;
1054 	struct vmbus_channel_message_header *hdr;
1055 	enum vmbus_channel_message_type msgtype;
1056 	const struct vmbus_channel_message_table_entry *entry;
1057 	struct onmessage_work_context *ctx;
1058 	__u8 payload_size;
1059 	u32 message_type;
1060 
1061 	/*
1062 	 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
1063 	 * it is being used in 'struct vmbus_channel_message_header' definition
1064 	 * which is supposed to match hypervisor ABI.
1065 	 */
1066 	BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));
1067 
1068 	/*
1069 	 * Since the message is in memory shared with the host, an erroneous or
1070 	 * malicious Hyper-V could modify the message while vmbus_on_msg_dpc()
1071 	 * or individual message handlers are executing; to prevent this, copy
1072 	 * the message into private memory.
1073 	 */
1074 	memcpy(&msg_copy, msg, sizeof(struct hv_message));
1075 
1076 	message_type = msg_copy.header.message_type;
1077 	if (message_type == HVMSG_NONE)
1078 		/* no msg */
1079 		return;
1080 
1081 	hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload;
1082 	msgtype = hdr->msgtype;
1083 
1084 	trace_vmbus_on_msg_dpc(hdr);
1085 
1086 	if (msgtype >= CHANNELMSG_COUNT) {
1087 		WARN_ONCE(1, "unknown msgtype=%d\n", msgtype);
1088 		goto msg_handled;
1089 	}
1090 
1091 	payload_size = msg_copy.header.payload_size;
1092 	if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
1093 		WARN_ONCE(1, "payload size is too large (%d)\n", payload_size);
1094 		goto msg_handled;
1095 	}
1096 
1097 	entry = &channel_message_table[msgtype];
1098 
1099 	if (!entry->message_handler)
1100 		goto msg_handled;
1101 
1102 	if (payload_size < entry->min_payload_len) {
1103 		WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size);
1104 		goto msg_handled;
1105 	}
1106 
1107 	if (entry->handler_type	== VMHT_BLOCKING) {
1108 		ctx = kmalloc(struct_size(ctx, msg.payload, payload_size), GFP_ATOMIC);
1109 		if (ctx == NULL)
1110 			return;
1111 
1112 		INIT_WORK(&ctx->work, vmbus_onmessage_work);
1113 		ctx->msg.header = msg_copy.header;
1114 		memcpy(&ctx->msg.payload, msg_copy.u.payload, payload_size);
1115 
1116 		/*
1117 		 * The host can generate a rescind message while we
1118 		 * may still be handling the original offer. We deal with
1119 		 * this condition by relying on the synchronization provided
1120 		 * by offer_in_progress and by channel_mutex.  See also the
1121 		 * inline comments in vmbus_onoffer_rescind().
1122 		 */
1123 		switch (msgtype) {
1124 		case CHANNELMSG_RESCIND_CHANNELOFFER:
1125 			/*
1126 			 * If we are handling the rescind message;
1127 			 * schedule the work on the global work queue.
1128 			 *
1129 			 * The OFFER message and the RESCIND message should
1130 			 * not be handled by the same serialized work queue,
1131 			 * because the OFFER handler may call vmbus_open(),
1132 			 * which tries to open the channel by sending an
1133 			 * OPEN_CHANNEL message to the host and waits for
1134 			 * the host's response; however, if the host has
1135 			 * rescinded the channel before it receives the
1136 			 * OPEN_CHANNEL message, the host just silently
1137 			 * ignores the OPEN_CHANNEL message; as a result,
1138 			 * the guest's OFFER handler hangs for ever, if we
1139 			 * handle the RESCIND message in the same serialized
1140 			 * work queue: the RESCIND handler can not start to
1141 			 * run before the OFFER handler finishes.
1142 			 */
1143 			if (vmbus_connection.ignore_any_offer_msg)
1144 				break;
1145 			queue_work(vmbus_connection.rescind_work_queue, &ctx->work);
1146 			break;
1147 
1148 		case CHANNELMSG_OFFERCHANNEL:
1149 			/*
1150 			 * The host sends the offer message of a given channel
1151 			 * before sending the rescind message of the same
1152 			 * channel.  These messages are sent to the guest's
1153 			 * connect CPU; the guest then starts processing them
1154 			 * in the tasklet handler on this CPU:
1155 			 *
1156 			 * VMBUS_CONNECT_CPU
1157 			 *
1158 			 * [vmbus_on_msg_dpc()]
1159 			 * atomic_inc()  // CHANNELMSG_OFFERCHANNEL
1160 			 * queue_work()
1161 			 * ...
1162 			 * [vmbus_on_msg_dpc()]
1163 			 * schedule_work()  // CHANNELMSG_RESCIND_CHANNELOFFER
1164 			 *
1165 			 * We rely on the memory-ordering properties of the
1166 			 * queue_work() and schedule_work() primitives, which
1167 			 * guarantee that the atomic increment will be visible
1168 			 * to the CPUs which will execute the offer & rescind
1169 			 * works by the time these works will start execution.
1170 			 */
1171 			if (vmbus_connection.ignore_any_offer_msg)
1172 				break;
1173 			atomic_inc(&vmbus_connection.offer_in_progress);
1174 			fallthrough;
1175 
1176 		default:
1177 			queue_work(vmbus_connection.work_queue, &ctx->work);
1178 		}
1179 	} else
1180 		entry->message_handler(hdr);
1181 
1182 msg_handled:
1183 	vmbus_signal_eom(msg, message_type);
1184 }
1185 
1186 #ifdef CONFIG_PM_SLEEP
1187 /*
1188  * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1189  * hibernation, because hv_sock connections can not persist across hibernation.
1190  */
vmbus_force_channel_rescinded(struct vmbus_channel * channel)1191 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1192 {
1193 	struct onmessage_work_context *ctx;
1194 	struct vmbus_channel_rescind_offer *rescind;
1195 
1196 	WARN_ON(!is_hvsock_channel(channel));
1197 
1198 	/*
1199 	 * Allocation size is small and the allocation should really not fail,
1200 	 * otherwise the state of the hv_sock connections ends up in limbo.
1201 	 */
1202 	ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
1203 		      GFP_KERNEL | __GFP_NOFAIL);
1204 
1205 	/*
1206 	 * So far, these are not really used by Linux. Just set them to the
1207 	 * reasonable values conforming to the definitions of the fields.
1208 	 */
1209 	ctx->msg.header.message_type = 1;
1210 	ctx->msg.header.payload_size = sizeof(*rescind);
1211 
1212 	/* These values are actually used by Linux. */
1213 	rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1214 	rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1215 	rescind->child_relid = channel->offermsg.child_relid;
1216 
1217 	INIT_WORK(&ctx->work, vmbus_onmessage_work);
1218 
1219 	queue_work(vmbus_connection.work_queue, &ctx->work);
1220 }
1221 #endif /* CONFIG_PM_SLEEP */
1222 
1223 /*
1224  * Schedule all channels with events pending
1225  */
vmbus_chan_sched(struct hv_per_cpu_context * hv_cpu)1226 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1227 {
1228 	unsigned long *recv_int_page;
1229 	u32 maxbits, relid;
1230 
1231 	/*
1232 	 * The event page can be directly checked to get the id of
1233 	 * the channel that has the interrupt pending.
1234 	 */
1235 	void *page_addr = hv_cpu->synic_event_page;
1236 	union hv_synic_event_flags *event
1237 		= (union hv_synic_event_flags *)page_addr +
1238 					 VMBUS_MESSAGE_SINT;
1239 
1240 	maxbits = HV_EVENT_FLAGS_COUNT;
1241 	recv_int_page = event->flags;
1242 
1243 	if (unlikely(!recv_int_page))
1244 		return;
1245 
1246 	for_each_set_bit(relid, recv_int_page, maxbits) {
1247 		void (*callback_fn)(void *context);
1248 		struct vmbus_channel *channel;
1249 
1250 		if (!sync_test_and_clear_bit(relid, recv_int_page))
1251 			continue;
1252 
1253 		/* Special case - vmbus channel protocol msg */
1254 		if (relid == 0)
1255 			continue;
1256 
1257 		/*
1258 		 * Pairs with the kfree_rcu() in vmbus_chan_release().
1259 		 * Guarantees that the channel data structure doesn't
1260 		 * get freed while the channel pointer below is being
1261 		 * dereferenced.
1262 		 */
1263 		rcu_read_lock();
1264 
1265 		/* Find channel based on relid */
1266 		channel = relid2channel(relid);
1267 		if (channel == NULL)
1268 			goto sched_unlock_rcu;
1269 
1270 		if (channel->rescind)
1271 			goto sched_unlock_rcu;
1272 
1273 		/*
1274 		 * Make sure that the ring buffer data structure doesn't get
1275 		 * freed while we dereference the ring buffer pointer.  Test
1276 		 * for the channel's onchannel_callback being NULL within a
1277 		 * sched_lock critical section.  See also the inline comments
1278 		 * in vmbus_reset_channel_cb().
1279 		 */
1280 		spin_lock(&channel->sched_lock);
1281 
1282 		callback_fn = channel->onchannel_callback;
1283 		if (unlikely(callback_fn == NULL))
1284 			goto sched_unlock;
1285 
1286 		trace_vmbus_chan_sched(channel);
1287 
1288 		++channel->interrupts;
1289 
1290 		switch (channel->callback_mode) {
1291 		case HV_CALL_ISR:
1292 			(*callback_fn)(channel->channel_callback_context);
1293 			break;
1294 
1295 		case HV_CALL_BATCHED:
1296 			hv_begin_read(&channel->inbound);
1297 			fallthrough;
1298 		case HV_CALL_DIRECT:
1299 			tasklet_schedule(&channel->callback_event);
1300 		}
1301 
1302 sched_unlock:
1303 		spin_unlock(&channel->sched_lock);
1304 sched_unlock_rcu:
1305 		rcu_read_unlock();
1306 	}
1307 }
1308 
vmbus_isr(void)1309 static void vmbus_isr(void)
1310 {
1311 	struct hv_per_cpu_context *hv_cpu
1312 		= this_cpu_ptr(hv_context.cpu_context);
1313 	void *page_addr;
1314 	struct hv_message *msg;
1315 
1316 	vmbus_chan_sched(hv_cpu);
1317 
1318 	page_addr = hv_cpu->synic_message_page;
1319 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1320 
1321 	/* Check if there are actual msgs to be processed */
1322 	if (msg->header.message_type != HVMSG_NONE) {
1323 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1324 			hv_stimer0_isr();
1325 			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1326 		} else
1327 			tasklet_schedule(&hv_cpu->msg_dpc);
1328 	}
1329 
1330 	add_interrupt_randomness(vmbus_interrupt);
1331 }
1332 
vmbus_percpu_isr(int irq,void * dev_id)1333 static irqreturn_t vmbus_percpu_isr(int irq, void *dev_id)
1334 {
1335 	vmbus_isr();
1336 	return IRQ_HANDLED;
1337 }
1338 
vmbus_percpu_work(struct work_struct * work)1339 static void vmbus_percpu_work(struct work_struct *work)
1340 {
1341 	unsigned int cpu = smp_processor_id();
1342 
1343 	hv_synic_init(cpu);
1344 }
1345 
1346 /*
1347  * vmbus_bus_init -Main vmbus driver initialization routine.
1348  *
1349  * Here, we
1350  *	- initialize the vmbus driver context
1351  *	- invoke the vmbus hv main init routine
1352  *	- retrieve the channel offers
1353  */
vmbus_bus_init(void)1354 static int vmbus_bus_init(void)
1355 {
1356 	int ret, cpu;
1357 	struct work_struct __percpu *works;
1358 
1359 	ret = hv_init();
1360 	if (ret != 0) {
1361 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1362 		return ret;
1363 	}
1364 
1365 	ret = bus_register(&hv_bus);
1366 	if (ret)
1367 		return ret;
1368 
1369 	/*
1370 	 * VMbus interrupts are best modeled as per-cpu interrupts. If
1371 	 * on an architecture with support for per-cpu IRQs (e.g. ARM64),
1372 	 * allocate a per-cpu IRQ using standard Linux kernel functionality.
1373 	 * If not on such an architecture (e.g., x86/x64), then rely on
1374 	 * code in the arch-specific portion of the code tree to connect
1375 	 * the VMbus interrupt handler.
1376 	 */
1377 
1378 	if (vmbus_irq == -1) {
1379 		hv_setup_vmbus_handler(vmbus_isr);
1380 	} else {
1381 		vmbus_evt = alloc_percpu(long);
1382 		ret = request_percpu_irq(vmbus_irq, vmbus_percpu_isr,
1383 				"Hyper-V VMbus", vmbus_evt);
1384 		if (ret) {
1385 			pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d",
1386 					vmbus_irq, ret);
1387 			free_percpu(vmbus_evt);
1388 			goto err_setup;
1389 		}
1390 	}
1391 
1392 	ret = hv_synic_alloc();
1393 	if (ret)
1394 		goto err_alloc;
1395 
1396 	works = alloc_percpu(struct work_struct);
1397 	if (!works) {
1398 		ret = -ENOMEM;
1399 		goto err_alloc;
1400 	}
1401 
1402 	/*
1403 	 * Initialize the per-cpu interrupt state and stimer state.
1404 	 * Then connect to the host.
1405 	 */
1406 	cpus_read_lock();
1407 	for_each_online_cpu(cpu) {
1408 		struct work_struct *work = per_cpu_ptr(works, cpu);
1409 
1410 		INIT_WORK(work, vmbus_percpu_work);
1411 		schedule_work_on(cpu, work);
1412 	}
1413 
1414 	for_each_online_cpu(cpu)
1415 		flush_work(per_cpu_ptr(works, cpu));
1416 
1417 	/* Register the callbacks for possible CPU online/offline'ing */
1418 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1419 						   hv_synic_init, hv_synic_cleanup);
1420 	cpus_read_unlock();
1421 	free_percpu(works);
1422 	if (ret < 0)
1423 		goto err_alloc;
1424 	hyperv_cpuhp_online = ret;
1425 
1426 	ret = vmbus_connect();
1427 	if (ret)
1428 		goto err_connect;
1429 
1430 	/*
1431 	 * Always register the vmbus unload panic notifier because we
1432 	 * need to shut the VMbus channel connection on panic.
1433 	 */
1434 	atomic_notifier_chain_register(&panic_notifier_list,
1435 			       &hyperv_panic_vmbus_unload_block);
1436 
1437 	vmbus_request_offers();
1438 
1439 	return 0;
1440 
1441 err_connect:
1442 	cpuhp_remove_state(hyperv_cpuhp_online);
1443 err_alloc:
1444 	hv_synic_free();
1445 	if (vmbus_irq == -1) {
1446 		hv_remove_vmbus_handler();
1447 	} else {
1448 		free_percpu_irq(vmbus_irq, vmbus_evt);
1449 		free_percpu(vmbus_evt);
1450 	}
1451 err_setup:
1452 	bus_unregister(&hv_bus);
1453 	return ret;
1454 }
1455 
1456 /**
1457  * __vmbus_driver_register() - Register a vmbus's driver
1458  * @hv_driver: Pointer to driver structure you want to register
1459  * @owner: owner module of the drv
1460  * @mod_name: module name string
1461  *
1462  * Registers the given driver with Linux through the 'driver_register()' call
1463  * and sets up the hyper-v vmbus handling for this driver.
1464  * It will return the state of the 'driver_register()' call.
1465  *
1466  */
__vmbus_driver_register(struct hv_driver * hv_driver,struct module * owner,const char * mod_name)1467 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1468 {
1469 	int ret;
1470 
1471 	pr_info("registering driver %s\n", hv_driver->name);
1472 
1473 	ret = vmbus_exists();
1474 	if (ret < 0)
1475 		return ret;
1476 
1477 	hv_driver->driver.name = hv_driver->name;
1478 	hv_driver->driver.owner = owner;
1479 	hv_driver->driver.mod_name = mod_name;
1480 	hv_driver->driver.bus = &hv_bus;
1481 
1482 	spin_lock_init(&hv_driver->dynids.lock);
1483 	INIT_LIST_HEAD(&hv_driver->dynids.list);
1484 
1485 	ret = driver_register(&hv_driver->driver);
1486 
1487 	return ret;
1488 }
1489 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1490 
1491 /**
1492  * vmbus_driver_unregister() - Unregister a vmbus's driver
1493  * @hv_driver: Pointer to driver structure you want to
1494  *             un-register
1495  *
1496  * Un-register the given driver that was previous registered with a call to
1497  * vmbus_driver_register()
1498  */
vmbus_driver_unregister(struct hv_driver * hv_driver)1499 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1500 {
1501 	pr_info("unregistering driver %s\n", hv_driver->name);
1502 
1503 	if (!vmbus_exists()) {
1504 		driver_unregister(&hv_driver->driver);
1505 		vmbus_free_dynids(hv_driver);
1506 	}
1507 }
1508 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1509 
1510 
1511 /*
1512  * Called when last reference to channel is gone.
1513  */
vmbus_chan_release(struct kobject * kobj)1514 static void vmbus_chan_release(struct kobject *kobj)
1515 {
1516 	struct vmbus_channel *channel
1517 		= container_of(kobj, struct vmbus_channel, kobj);
1518 
1519 	kfree_rcu(channel, rcu);
1520 }
1521 
1522 struct vmbus_chan_attribute {
1523 	struct attribute attr;
1524 	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1525 	ssize_t (*store)(struct vmbus_channel *chan,
1526 			 const char *buf, size_t count);
1527 };
1528 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1529 	struct vmbus_chan_attribute chan_attr_##_name \
1530 		= __ATTR(_name, _mode, _show, _store)
1531 #define VMBUS_CHAN_ATTR_RW(_name) \
1532 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1533 #define VMBUS_CHAN_ATTR_RO(_name) \
1534 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1535 #define VMBUS_CHAN_ATTR_WO(_name) \
1536 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1537 
vmbus_chan_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)1538 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1539 				    struct attribute *attr, char *buf)
1540 {
1541 	const struct vmbus_chan_attribute *attribute
1542 		= container_of(attr, struct vmbus_chan_attribute, attr);
1543 	struct vmbus_channel *chan
1544 		= container_of(kobj, struct vmbus_channel, kobj);
1545 
1546 	if (!attribute->show)
1547 		return -EIO;
1548 
1549 	return attribute->show(chan, buf);
1550 }
1551 
vmbus_chan_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)1552 static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
1553 				     struct attribute *attr, const char *buf,
1554 				     size_t count)
1555 {
1556 	const struct vmbus_chan_attribute *attribute
1557 		= container_of(attr, struct vmbus_chan_attribute, attr);
1558 	struct vmbus_channel *chan
1559 		= container_of(kobj, struct vmbus_channel, kobj);
1560 
1561 	if (!attribute->store)
1562 		return -EIO;
1563 
1564 	return attribute->store(chan, buf, count);
1565 }
1566 
1567 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1568 	.show = vmbus_chan_attr_show,
1569 	.store = vmbus_chan_attr_store,
1570 };
1571 
out_mask_show(struct vmbus_channel * channel,char * buf)1572 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1573 {
1574 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1575 	ssize_t ret;
1576 
1577 	mutex_lock(&rbi->ring_buffer_mutex);
1578 	if (!rbi->ring_buffer) {
1579 		mutex_unlock(&rbi->ring_buffer_mutex);
1580 		return -EINVAL;
1581 	}
1582 
1583 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1584 	mutex_unlock(&rbi->ring_buffer_mutex);
1585 	return ret;
1586 }
1587 static VMBUS_CHAN_ATTR_RO(out_mask);
1588 
in_mask_show(struct vmbus_channel * channel,char * buf)1589 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1590 {
1591 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1592 	ssize_t ret;
1593 
1594 	mutex_lock(&rbi->ring_buffer_mutex);
1595 	if (!rbi->ring_buffer) {
1596 		mutex_unlock(&rbi->ring_buffer_mutex);
1597 		return -EINVAL;
1598 	}
1599 
1600 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1601 	mutex_unlock(&rbi->ring_buffer_mutex);
1602 	return ret;
1603 }
1604 static VMBUS_CHAN_ATTR_RO(in_mask);
1605 
read_avail_show(struct vmbus_channel * channel,char * buf)1606 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1607 {
1608 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1609 	ssize_t ret;
1610 
1611 	mutex_lock(&rbi->ring_buffer_mutex);
1612 	if (!rbi->ring_buffer) {
1613 		mutex_unlock(&rbi->ring_buffer_mutex);
1614 		return -EINVAL;
1615 	}
1616 
1617 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1618 	mutex_unlock(&rbi->ring_buffer_mutex);
1619 	return ret;
1620 }
1621 static VMBUS_CHAN_ATTR_RO(read_avail);
1622 
write_avail_show(struct vmbus_channel * channel,char * buf)1623 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1624 {
1625 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1626 	ssize_t ret;
1627 
1628 	mutex_lock(&rbi->ring_buffer_mutex);
1629 	if (!rbi->ring_buffer) {
1630 		mutex_unlock(&rbi->ring_buffer_mutex);
1631 		return -EINVAL;
1632 	}
1633 
1634 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1635 	mutex_unlock(&rbi->ring_buffer_mutex);
1636 	return ret;
1637 }
1638 static VMBUS_CHAN_ATTR_RO(write_avail);
1639 
target_cpu_show(struct vmbus_channel * channel,char * buf)1640 static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
1641 {
1642 	return sprintf(buf, "%u\n", channel->target_cpu);
1643 }
1644 
vmbus_channel_set_cpu(struct vmbus_channel * channel,u32 target_cpu)1645 int vmbus_channel_set_cpu(struct vmbus_channel *channel, u32 target_cpu)
1646 {
1647 	u32 origin_cpu;
1648 	int ret = 0;
1649 
1650 	lockdep_assert_cpus_held();
1651 	lockdep_assert_held(&vmbus_connection.channel_mutex);
1652 
1653 	if (vmbus_proto_version < VERSION_WIN10_V4_1)
1654 		return -EIO;
1655 
1656 	/* Validate target_cpu for the cpumask_test_cpu() operation below. */
1657 	if (target_cpu >= nr_cpumask_bits)
1658 		return -EINVAL;
1659 
1660 	if (!cpumask_test_cpu(target_cpu, housekeeping_cpumask(HK_TYPE_MANAGED_IRQ)))
1661 		return -EINVAL;
1662 
1663 	if (!cpu_online(target_cpu))
1664 		return -EINVAL;
1665 
1666 	/*
1667 	 * Synchronizes vmbus_channel_set_cpu() and channel closure:
1668 	 *
1669 	 * { Initially: state = CHANNEL_OPENED }
1670 	 *
1671 	 * CPU1				CPU2
1672 	 *
1673 	 * [vmbus_channel_set_cpu()]	[vmbus_disconnect_ring()]
1674 	 *
1675 	 * LOCK channel_mutex		LOCK channel_mutex
1676 	 * LOAD r1 = state		LOAD r2 = state
1677 	 * IF (r1 == CHANNEL_OPENED)	IF (r2 == CHANNEL_OPENED)
1678 	 *   SEND MODIFYCHANNEL		  STORE state = CHANNEL_OPEN
1679 	 *   [...]			  SEND CLOSECHANNEL
1680 	 * UNLOCK channel_mutex		UNLOCK channel_mutex
1681 	 *
1682 	 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
1683 	 * 		CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
1684 	 *
1685 	 * Note.  The host processes the channel messages "sequentially", in
1686 	 * the order in which they are received on a per-partition basis.
1687 	 */
1688 
1689 	/*
1690 	 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
1691 	 * avoid sending the message and fail here for such channels.
1692 	 */
1693 	if (channel->state != CHANNEL_OPENED_STATE) {
1694 		ret = -EIO;
1695 		goto end;
1696 	}
1697 
1698 	origin_cpu = channel->target_cpu;
1699 	if (target_cpu == origin_cpu)
1700 		goto end;
1701 
1702 	if (vmbus_send_modifychannel(channel,
1703 				     hv_cpu_number_to_vp_number(target_cpu))) {
1704 		ret = -EIO;
1705 		goto end;
1706 	}
1707 
1708 	/*
1709 	 * For version before VERSION_WIN10_V5_3, the following warning holds:
1710 	 *
1711 	 * Warning.  At this point, there is *no* guarantee that the host will
1712 	 * have successfully processed the vmbus_send_modifychannel() request.
1713 	 * See the header comment of vmbus_send_modifychannel() for more info.
1714 	 *
1715 	 * Lags in the processing of the above vmbus_send_modifychannel() can
1716 	 * result in missed interrupts if the "old" target CPU is taken offline
1717 	 * before Hyper-V starts sending interrupts to the "new" target CPU.
1718 	 * But apart from this offlining scenario, the code tolerates such
1719 	 * lags.  It will function correctly even if a channel interrupt comes
1720 	 * in on a CPU that is different from the channel target_cpu value.
1721 	 */
1722 
1723 	channel->target_cpu = target_cpu;
1724 
1725 	/* See init_vp_index(). */
1726 	if (hv_is_perf_channel(channel))
1727 		hv_update_allocated_cpus(origin_cpu, target_cpu);
1728 
1729 	/* Currently set only for storvsc channels. */
1730 	if (channel->change_target_cpu_callback) {
1731 		(*channel->change_target_cpu_callback)(channel,
1732 				origin_cpu, target_cpu);
1733 	}
1734 
1735 end:
1736 	return ret;
1737 }
1738 
target_cpu_store(struct vmbus_channel * channel,const char * buf,size_t count)1739 static ssize_t target_cpu_store(struct vmbus_channel *channel,
1740 				const char *buf, size_t count)
1741 {
1742 	u32 target_cpu;
1743 	ssize_t ret;
1744 
1745 	if (sscanf(buf, "%uu", &target_cpu) != 1)
1746 		return -EIO;
1747 
1748 	cpus_read_lock();
1749 	mutex_lock(&vmbus_connection.channel_mutex);
1750 	ret = vmbus_channel_set_cpu(channel, target_cpu);
1751 	mutex_unlock(&vmbus_connection.channel_mutex);
1752 	cpus_read_unlock();
1753 
1754 	return ret ?: count;
1755 }
1756 static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
1757 
channel_pending_show(struct vmbus_channel * channel,char * buf)1758 static ssize_t channel_pending_show(struct vmbus_channel *channel,
1759 				    char *buf)
1760 {
1761 	return sprintf(buf, "%d\n",
1762 		       channel_pending(channel,
1763 				       vmbus_connection.monitor_pages[1]));
1764 }
1765 static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL);
1766 
channel_latency_show(struct vmbus_channel * channel,char * buf)1767 static ssize_t channel_latency_show(struct vmbus_channel *channel,
1768 				    char *buf)
1769 {
1770 	return sprintf(buf, "%d\n",
1771 		       channel_latency(channel,
1772 				       vmbus_connection.monitor_pages[1]));
1773 }
1774 static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL);
1775 
channel_interrupts_show(struct vmbus_channel * channel,char * buf)1776 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1777 {
1778 	return sprintf(buf, "%llu\n", channel->interrupts);
1779 }
1780 static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL);
1781 
channel_events_show(struct vmbus_channel * channel,char * buf)1782 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1783 {
1784 	return sprintf(buf, "%llu\n", channel->sig_events);
1785 }
1786 static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL);
1787 
channel_intr_in_full_show(struct vmbus_channel * channel,char * buf)1788 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1789 					 char *buf)
1790 {
1791 	return sprintf(buf, "%llu\n",
1792 		       (unsigned long long)channel->intr_in_full);
1793 }
1794 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1795 
channel_intr_out_empty_show(struct vmbus_channel * channel,char * buf)1796 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1797 					   char *buf)
1798 {
1799 	return sprintf(buf, "%llu\n",
1800 		       (unsigned long long)channel->intr_out_empty);
1801 }
1802 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1803 
channel_out_full_first_show(struct vmbus_channel * channel,char * buf)1804 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1805 					   char *buf)
1806 {
1807 	return sprintf(buf, "%llu\n",
1808 		       (unsigned long long)channel->out_full_first);
1809 }
1810 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1811 
channel_out_full_total_show(struct vmbus_channel * channel,char * buf)1812 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1813 					   char *buf)
1814 {
1815 	return sprintf(buf, "%llu\n",
1816 		       (unsigned long long)channel->out_full_total);
1817 }
1818 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1819 
subchannel_monitor_id_show(struct vmbus_channel * channel,char * buf)1820 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1821 					  char *buf)
1822 {
1823 	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1824 }
1825 static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL);
1826 
subchannel_id_show(struct vmbus_channel * channel,char * buf)1827 static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1828 				  char *buf)
1829 {
1830 	return sprintf(buf, "%u\n",
1831 		       channel->offermsg.offer.sub_channel_index);
1832 }
1833 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1834 
hv_mmap_ring_buffer_wrapper(struct file * filp,struct kobject * kobj,const struct bin_attribute * attr,struct vm_area_struct * vma)1835 static int hv_mmap_ring_buffer_wrapper(struct file *filp, struct kobject *kobj,
1836 				       const struct bin_attribute *attr,
1837 				       struct vm_area_struct *vma)
1838 {
1839 	struct vmbus_channel *channel = container_of(kobj, struct vmbus_channel, kobj);
1840 
1841 	/*
1842 	 * hv_(create|remove)_ring_sysfs implementation ensures that mmap_ring_buffer
1843 	 * is not NULL.
1844 	 */
1845 	return channel->mmap_ring_buffer(channel, vma);
1846 }
1847 
1848 static struct bin_attribute chan_attr_ring_buffer = {
1849 	.attr = {
1850 		.name = "ring",
1851 		.mode = 0600,
1852 	},
1853 	.mmap = hv_mmap_ring_buffer_wrapper,
1854 };
1855 static struct attribute *vmbus_chan_attrs[] = {
1856 	&chan_attr_out_mask.attr,
1857 	&chan_attr_in_mask.attr,
1858 	&chan_attr_read_avail.attr,
1859 	&chan_attr_write_avail.attr,
1860 	&chan_attr_cpu.attr,
1861 	&chan_attr_pending.attr,
1862 	&chan_attr_latency.attr,
1863 	&chan_attr_interrupts.attr,
1864 	&chan_attr_events.attr,
1865 	&chan_attr_intr_in_full.attr,
1866 	&chan_attr_intr_out_empty.attr,
1867 	&chan_attr_out_full_first.attr,
1868 	&chan_attr_out_full_total.attr,
1869 	&chan_attr_monitor_id.attr,
1870 	&chan_attr_subchannel_id.attr,
1871 	NULL
1872 };
1873 
1874 static const struct bin_attribute *vmbus_chan_bin_attrs[] = {
1875 	&chan_attr_ring_buffer,
1876 	NULL
1877 };
1878 
1879 /*
1880  * Channel-level attribute_group callback function. Returns the permission for
1881  * each attribute, and returns 0 if an attribute is not visible.
1882  */
vmbus_chan_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)1883 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1884 					  struct attribute *attr, int idx)
1885 {
1886 	const struct vmbus_channel *channel =
1887 		container_of(kobj, struct vmbus_channel, kobj);
1888 
1889 	/* Hide the monitor attributes if the monitor mechanism is not used. */
1890 	if (!channel->offermsg.monitor_allocated &&
1891 	    (attr == &chan_attr_pending.attr ||
1892 	     attr == &chan_attr_latency.attr ||
1893 	     attr == &chan_attr_monitor_id.attr))
1894 		return 0;
1895 
1896 	return attr->mode;
1897 }
1898 
vmbus_chan_bin_attr_is_visible(struct kobject * kobj,const struct bin_attribute * attr,int idx)1899 static umode_t vmbus_chan_bin_attr_is_visible(struct kobject *kobj,
1900 					      const struct bin_attribute *attr, int idx)
1901 {
1902 	const struct vmbus_channel *channel =
1903 		container_of(kobj, struct vmbus_channel, kobj);
1904 
1905 	/* Hide ring attribute if channel's ring_sysfs_visible is set to false */
1906 	if (attr ==  &chan_attr_ring_buffer && !channel->ring_sysfs_visible)
1907 		return 0;
1908 
1909 	return attr->attr.mode;
1910 }
1911 
vmbus_chan_bin_size(struct kobject * kobj,const struct bin_attribute * bin_attr,int a)1912 static size_t vmbus_chan_bin_size(struct kobject *kobj,
1913 				  const struct bin_attribute *bin_attr, int a)
1914 {
1915 	const struct vmbus_channel *channel =
1916 		container_of(kobj, struct vmbus_channel, kobj);
1917 
1918 	return channel->ringbuffer_pagecount << PAGE_SHIFT;
1919 }
1920 
1921 static const struct attribute_group vmbus_chan_group = {
1922 	.attrs = vmbus_chan_attrs,
1923 	.bin_attrs = vmbus_chan_bin_attrs,
1924 	.is_visible = vmbus_chan_attr_is_visible,
1925 	.is_bin_visible = vmbus_chan_bin_attr_is_visible,
1926 	.bin_size = vmbus_chan_bin_size,
1927 };
1928 
1929 static const struct kobj_type vmbus_chan_ktype = {
1930 	.sysfs_ops = &vmbus_chan_sysfs_ops,
1931 	.release = vmbus_chan_release,
1932 };
1933 
1934 /**
1935  * hv_create_ring_sysfs() - create "ring" sysfs entry corresponding to ring buffers for a channel.
1936  * @channel: Pointer to vmbus_channel structure
1937  * @hv_mmap_ring_buffer: function pointer for initializing the function to be called on mmap of
1938  *                       channel's "ring" sysfs node, which is for the ring buffer of that channel.
1939  *                       Function pointer is of below type:
1940  *                       int (*hv_mmap_ring_buffer)(struct vmbus_channel *channel,
1941  *                                                  struct vm_area_struct *vma))
1942  *                       This has a pointer to the channel and a pointer to vm_area_struct,
1943  *                       used for mmap, as arguments.
1944  *
1945  * Sysfs node for ring buffer of a channel is created along with other fields, however its
1946  * visibility is disabled by default. Sysfs creation needs to be controlled when the use-case
1947  * is running.
1948  * For example, HV_NIC device is used either by uio_hv_generic or hv_netvsc at any given point of
1949  * time, and "ring" sysfs is needed only when uio_hv_generic is bound to that device. To avoid
1950  * exposing the ring buffer by default, this function is reponsible to enable visibility of
1951  * ring for userspace to use.
1952  * Note: Race conditions can happen with userspace and it is not encouraged to create new
1953  * use-cases for this. This was added to maintain backward compatibility, while solving
1954  * one of the race conditions in uio_hv_generic while creating sysfs. See comments with
1955  * vmbus_add_dynid() and vmbus_device_register().
1956  *
1957  * Returns 0 on success or error code on failure.
1958  */
hv_create_ring_sysfs(struct vmbus_channel * channel,int (* hv_mmap_ring_buffer)(struct vmbus_channel * channel,struct vm_area_struct * vma))1959 int hv_create_ring_sysfs(struct vmbus_channel *channel,
1960 			 int (*hv_mmap_ring_buffer)(struct vmbus_channel *channel,
1961 						    struct vm_area_struct *vma))
1962 {
1963 	struct kobject *kobj = &channel->kobj;
1964 
1965 	channel->mmap_ring_buffer = hv_mmap_ring_buffer;
1966 	channel->ring_sysfs_visible = true;
1967 
1968 	return sysfs_update_group(kobj, &vmbus_chan_group);
1969 }
1970 EXPORT_SYMBOL_GPL(hv_create_ring_sysfs);
1971 
1972 /**
1973  * hv_remove_ring_sysfs() - remove ring sysfs entry corresponding to ring buffers for a channel.
1974  * @channel: Pointer to vmbus_channel structure
1975  *
1976  * Hide "ring" sysfs for a channel by changing its is_visible attribute and updating sysfs group.
1977  *
1978  * Returns 0 on success or error code on failure.
1979  */
hv_remove_ring_sysfs(struct vmbus_channel * channel)1980 int hv_remove_ring_sysfs(struct vmbus_channel *channel)
1981 {
1982 	struct kobject *kobj = &channel->kobj;
1983 	int ret;
1984 
1985 	channel->ring_sysfs_visible = false;
1986 	ret = sysfs_update_group(kobj, &vmbus_chan_group);
1987 	channel->mmap_ring_buffer = NULL;
1988 	return ret;
1989 }
1990 EXPORT_SYMBOL_GPL(hv_remove_ring_sysfs);
1991 
1992 /*
1993  * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1994  */
vmbus_add_channel_kobj(struct hv_device * dev,struct vmbus_channel * channel)1995 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1996 {
1997 	const struct device *device = &dev->device;
1998 	struct kobject *kobj = &channel->kobj;
1999 	u32 relid = channel->offermsg.child_relid;
2000 	int ret;
2001 
2002 	kobj->kset = dev->channels_kset;
2003 	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
2004 				   "%u", relid);
2005 	if (ret) {
2006 		kobject_put(kobj);
2007 		return ret;
2008 	}
2009 
2010 	ret = sysfs_create_group(kobj, &vmbus_chan_group);
2011 
2012 	if (ret) {
2013 		/*
2014 		 * The calling functions' error handling paths will cleanup the
2015 		 * empty channel directory.
2016 		 */
2017 		kobject_put(kobj);
2018 		dev_err(device, "Unable to set up channel sysfs files\n");
2019 		return ret;
2020 	}
2021 
2022 	kobject_uevent(kobj, KOBJ_ADD);
2023 
2024 	return 0;
2025 }
2026 
2027 /*
2028  * vmbus_remove_channel_attr_group - remove the channel's attribute group
2029  */
vmbus_remove_channel_attr_group(struct vmbus_channel * channel)2030 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
2031 {
2032 	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
2033 }
2034 
2035 /*
2036  * vmbus_device_create - Creates and registers a new child device
2037  * on the vmbus.
2038  */
vmbus_device_create(const guid_t * type,const guid_t * instance,struct vmbus_channel * channel)2039 struct hv_device *vmbus_device_create(const guid_t *type,
2040 				      const guid_t *instance,
2041 				      struct vmbus_channel *channel)
2042 {
2043 	struct hv_device *child_device_obj;
2044 
2045 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
2046 	if (!child_device_obj) {
2047 		pr_err("Unable to allocate device object for child device\n");
2048 		return NULL;
2049 	}
2050 
2051 	child_device_obj->channel = channel;
2052 	guid_copy(&child_device_obj->dev_type, type);
2053 	guid_copy(&child_device_obj->dev_instance, instance);
2054 	child_device_obj->vendor_id = PCI_VENDOR_ID_MICROSOFT;
2055 
2056 	return child_device_obj;
2057 }
2058 
2059 /*
2060  * vmbus_device_register - Register the child device
2061  */
vmbus_device_register(struct hv_device * child_device_obj)2062 int vmbus_device_register(struct hv_device *child_device_obj)
2063 {
2064 	struct kobject *kobj = &child_device_obj->device.kobj;
2065 	int ret;
2066 
2067 	dev_set_name(&child_device_obj->device, "%pUl",
2068 		     &child_device_obj->channel->offermsg.offer.if_instance);
2069 
2070 	child_device_obj->device.bus = &hv_bus;
2071 	child_device_obj->device.parent = vmbus_root_device;
2072 	child_device_obj->device.release = vmbus_device_release;
2073 
2074 	child_device_obj->device.dma_parms = &child_device_obj->dma_parms;
2075 	child_device_obj->device.dma_mask = &child_device_obj->dma_mask;
2076 	dma_set_mask(&child_device_obj->device, DMA_BIT_MASK(64));
2077 
2078 	/*
2079 	 * Register with the LDM. This will kick off the driver/device
2080 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
2081 	 */
2082 	ret = device_register(&child_device_obj->device);
2083 	if (ret) {
2084 		pr_err("Unable to register child device\n");
2085 		put_device(&child_device_obj->device);
2086 		return ret;
2087 	}
2088 
2089 	/*
2090 	 * If device_register() found a driver to assign to the device, the
2091 	 * driver's probe function has already run at this point. If that
2092 	 * probe function accesses or operates on the "channels" subdirectory
2093 	 * in sysfs, those operations will have failed because the "channels"
2094 	 * subdirectory doesn't exist until the code below runs. Or if the
2095 	 * probe function creates a /dev entry, a user space program could
2096 	 * find and open the /dev entry, and then create a race by accessing
2097 	 * the "channels" subdirectory while the creation steps are in progress
2098 	 * here. The race can't result in a kernel failure, but the user space
2099 	 * program may get an error in accessing "channels" or its
2100 	 * subdirectories. See also comments with vmbus_add_dynid() about a
2101 	 * related race condition.
2102 	 */
2103 	child_device_obj->channels_kset = kset_create_and_add("channels",
2104 							      NULL, kobj);
2105 	if (!child_device_obj->channels_kset) {
2106 		ret = -ENOMEM;
2107 		goto err_dev_unregister;
2108 	}
2109 
2110 	ret = vmbus_add_channel_kobj(child_device_obj,
2111 				     child_device_obj->channel);
2112 	if (ret) {
2113 		pr_err("Unable to register primary channeln");
2114 		goto err_kset_unregister;
2115 	}
2116 	hv_debug_add_dev_dir(child_device_obj);
2117 
2118 	return 0;
2119 
2120 err_kset_unregister:
2121 	kset_unregister(child_device_obj->channels_kset);
2122 
2123 err_dev_unregister:
2124 	device_unregister(&child_device_obj->device);
2125 	return ret;
2126 }
2127 
2128 /*
2129  * vmbus_device_unregister - Remove the specified child device
2130  * from the vmbus.
2131  */
vmbus_device_unregister(struct hv_device * device_obj)2132 void vmbus_device_unregister(struct hv_device *device_obj)
2133 {
2134 	pr_debug("child device %s unregistered\n",
2135 		dev_name(&device_obj->device));
2136 
2137 	kset_unregister(device_obj->channels_kset);
2138 
2139 	/*
2140 	 * Kick off the process of unregistering the device.
2141 	 * This will call vmbus_remove() and eventually vmbus_device_release()
2142 	 */
2143 	device_unregister(&device_obj->device);
2144 }
2145 EXPORT_SYMBOL_GPL(vmbus_device_unregister);
2146 
2147 #ifdef CONFIG_ACPI
2148 /*
2149  * VMBUS is an acpi enumerated device. Get the information we
2150  * need from DSDT.
2151  */
vmbus_walk_resources(struct acpi_resource * res,void * ctx)2152 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
2153 {
2154 	resource_size_t start = 0;
2155 	resource_size_t end = 0;
2156 	struct resource *new_res;
2157 	struct resource **old_res = &hyperv_mmio;
2158 	struct resource **prev_res = NULL;
2159 	struct resource r;
2160 
2161 	switch (res->type) {
2162 
2163 	/*
2164 	 * "Address" descriptors are for bus windows. Ignore
2165 	 * "memory" descriptors, which are for registers on
2166 	 * devices.
2167 	 */
2168 	case ACPI_RESOURCE_TYPE_ADDRESS32:
2169 		start = res->data.address32.address.minimum;
2170 		end = res->data.address32.address.maximum;
2171 		break;
2172 
2173 	case ACPI_RESOURCE_TYPE_ADDRESS64:
2174 		start = res->data.address64.address.minimum;
2175 		end = res->data.address64.address.maximum;
2176 		break;
2177 
2178 	/*
2179 	 * The IRQ information is needed only on ARM64, which Hyper-V
2180 	 * sets up in the extended format. IRQ information is present
2181 	 * on x86/x64 in the non-extended format but it is not used by
2182 	 * Linux. So don't bother checking for the non-extended format.
2183 	 */
2184 	case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
2185 		if (!acpi_dev_resource_interrupt(res, 0, &r)) {
2186 			pr_err("Unable to parse Hyper-V ACPI interrupt\n");
2187 			return AE_ERROR;
2188 		}
2189 		/* ARM64 INTID for VMbus */
2190 		vmbus_interrupt = res->data.extended_irq.interrupts[0];
2191 		/* Linux IRQ number */
2192 		vmbus_irq = r.start;
2193 		return AE_OK;
2194 
2195 	default:
2196 		/* Unused resource type */
2197 		return AE_OK;
2198 
2199 	}
2200 	/*
2201 	 * Ignore ranges that are below 1MB, as they're not
2202 	 * necessary or useful here.
2203 	 */
2204 	if (end < 0x100000)
2205 		return AE_OK;
2206 
2207 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
2208 	if (!new_res)
2209 		return AE_NO_MEMORY;
2210 
2211 	/* If this range overlaps the virtual TPM, truncate it. */
2212 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
2213 		end = VTPM_BASE_ADDRESS;
2214 
2215 	new_res->name = "hyperv mmio";
2216 	new_res->flags = IORESOURCE_MEM;
2217 	new_res->start = start;
2218 	new_res->end = end;
2219 
2220 	/*
2221 	 * If two ranges are adjacent, merge them.
2222 	 */
2223 	do {
2224 		if (!*old_res) {
2225 			*old_res = new_res;
2226 			break;
2227 		}
2228 
2229 		if (((*old_res)->end + 1) == new_res->start) {
2230 			(*old_res)->end = new_res->end;
2231 			kfree(new_res);
2232 			break;
2233 		}
2234 
2235 		if ((*old_res)->start == new_res->end + 1) {
2236 			(*old_res)->start = new_res->start;
2237 			kfree(new_res);
2238 			break;
2239 		}
2240 
2241 		if ((*old_res)->start > new_res->end) {
2242 			new_res->sibling = *old_res;
2243 			if (prev_res)
2244 				(*prev_res)->sibling = new_res;
2245 			*old_res = new_res;
2246 			break;
2247 		}
2248 
2249 		prev_res = old_res;
2250 		old_res = &(*old_res)->sibling;
2251 
2252 	} while (1);
2253 
2254 	return AE_OK;
2255 }
2256 #endif
2257 
vmbus_mmio_remove(void)2258 static void vmbus_mmio_remove(void)
2259 {
2260 	struct resource *cur_res;
2261 	struct resource *next_res;
2262 
2263 	if (hyperv_mmio) {
2264 		if (fb_mmio) {
2265 			__release_region(hyperv_mmio, fb_mmio->start,
2266 					 resource_size(fb_mmio));
2267 			fb_mmio = NULL;
2268 		}
2269 
2270 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
2271 			next_res = cur_res->sibling;
2272 			kfree(cur_res);
2273 		}
2274 	}
2275 }
2276 
vmbus_reserve_fb(void)2277 static void __maybe_unused vmbus_reserve_fb(void)
2278 {
2279 	resource_size_t start = 0, size;
2280 	struct pci_dev *pdev;
2281 
2282 	if (efi_enabled(EFI_BOOT)) {
2283 		/* Gen2 VM: get FB base from EFI framebuffer */
2284 		if (IS_ENABLED(CONFIG_SYSFB)) {
2285 			start = screen_info.lfb_base;
2286 			size = max_t(__u32, screen_info.lfb_size, 0x800000);
2287 		}
2288 	} else {
2289 		/* Gen1 VM: get FB base from PCI */
2290 		pdev = pci_get_device(PCI_VENDOR_ID_MICROSOFT,
2291 				      PCI_DEVICE_ID_HYPERV_VIDEO, NULL);
2292 		if (!pdev)
2293 			return;
2294 
2295 		if (pdev->resource[0].flags & IORESOURCE_MEM) {
2296 			start = pci_resource_start(pdev, 0);
2297 			size = pci_resource_len(pdev, 0);
2298 		}
2299 
2300 		/*
2301 		 * Release the PCI device so hyperv_drm or hyperv_fb driver can
2302 		 * grab it later.
2303 		 */
2304 		pci_dev_put(pdev);
2305 	}
2306 
2307 	if (!start)
2308 		return;
2309 
2310 	/*
2311 	 * Make a claim for the frame buffer in the resource tree under the
2312 	 * first node, which will be the one below 4GB.  The length seems to
2313 	 * be underreported, particularly in a Generation 1 VM.  So start out
2314 	 * reserving a larger area and make it smaller until it succeeds.
2315 	 */
2316 	for (; !fb_mmio && (size >= 0x100000); size >>= 1)
2317 		fb_mmio = __request_region(hyperv_mmio, start, size, fb_mmio_name, 0);
2318 }
2319 
2320 /**
2321  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2322  * @new:		If successful, supplied a pointer to the
2323  *			allocated MMIO space.
2324  * @device_obj:		Identifies the caller
2325  * @min:		Minimum guest physical address of the
2326  *			allocation
2327  * @max:		Maximum guest physical address
2328  * @size:		Size of the range to be allocated
2329  * @align:		Alignment of the range to be allocated
2330  * @fb_overlap_ok:	Whether this allocation can be allowed
2331  *			to overlap the video frame buffer.
2332  *
2333  * This function walks the resources granted to VMBus by the
2334  * _CRS object in the ACPI namespace underneath the parent
2335  * "bridge" whether that's a root PCI bus in the Generation 1
2336  * case or a Module Device in the Generation 2 case.  It then
2337  * attempts to allocate from the global MMIO pool in a way that
2338  * matches the constraints supplied in these parameters and by
2339  * that _CRS.
2340  *
2341  * Return: 0 on success, -errno on failure
2342  */
vmbus_allocate_mmio(struct resource ** new,struct hv_device * device_obj,resource_size_t min,resource_size_t max,resource_size_t size,resource_size_t align,bool fb_overlap_ok)2343 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2344 			resource_size_t min, resource_size_t max,
2345 			resource_size_t size, resource_size_t align,
2346 			bool fb_overlap_ok)
2347 {
2348 	struct resource *iter, *shadow;
2349 	resource_size_t range_min, range_max, start, end;
2350 	const char *dev_n = dev_name(&device_obj->device);
2351 	int retval;
2352 
2353 	retval = -ENXIO;
2354 	mutex_lock(&hyperv_mmio_lock);
2355 
2356 	/*
2357 	 * If overlaps with frame buffers are allowed, then first attempt to
2358 	 * make the allocation from within the reserved region.  Because it
2359 	 * is already reserved, no shadow allocation is necessary.
2360 	 */
2361 	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2362 	    !(max < fb_mmio->start)) {
2363 
2364 		range_min = fb_mmio->start;
2365 		range_max = fb_mmio->end;
2366 		start = (range_min + align - 1) & ~(align - 1);
2367 		for (; start + size - 1 <= range_max; start += align) {
2368 			*new = request_mem_region_exclusive(start, size, dev_n);
2369 			if (*new) {
2370 				retval = 0;
2371 				goto exit;
2372 			}
2373 		}
2374 	}
2375 
2376 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2377 		if ((iter->start >= max) || (iter->end <= min))
2378 			continue;
2379 
2380 		range_min = iter->start;
2381 		range_max = iter->end;
2382 		start = (range_min + align - 1) & ~(align - 1);
2383 		for (; start + size - 1 <= range_max; start += align) {
2384 			end = start + size - 1;
2385 
2386 			/* Skip the whole fb_mmio region if not fb_overlap_ok */
2387 			if (!fb_overlap_ok && fb_mmio &&
2388 			    (((start >= fb_mmio->start) && (start <= fb_mmio->end)) ||
2389 			     ((end >= fb_mmio->start) && (end <= fb_mmio->end))))
2390 				continue;
2391 
2392 			shadow = __request_region(iter, start, size, NULL,
2393 						  IORESOURCE_BUSY);
2394 			if (!shadow)
2395 				continue;
2396 
2397 			*new = request_mem_region_exclusive(start, size, dev_n);
2398 			if (*new) {
2399 				shadow->name = (char *)*new;
2400 				retval = 0;
2401 				goto exit;
2402 			}
2403 
2404 			__release_region(iter, start, size);
2405 		}
2406 	}
2407 
2408 exit:
2409 	mutex_unlock(&hyperv_mmio_lock);
2410 	return retval;
2411 }
2412 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2413 
2414 /**
2415  * vmbus_free_mmio() - Free a memory-mapped I/O range.
2416  * @start:		Base address of region to release.
2417  * @size:		Size of the range to be allocated
2418  *
2419  * This function releases anything requested by
2420  * vmbus_mmio_allocate().
2421  */
vmbus_free_mmio(resource_size_t start,resource_size_t size)2422 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2423 {
2424 	struct resource *iter;
2425 
2426 	mutex_lock(&hyperv_mmio_lock);
2427 
2428 	/*
2429 	 * If all bytes of the MMIO range to be released are within the
2430 	 * special case fb_mmio shadow region, skip releasing the shadow
2431 	 * region since no corresponding __request_region() was done
2432 	 * in vmbus_allocate_mmio().
2433 	 */
2434 	if (fb_mmio && start >= fb_mmio->start &&
2435 	    (start + size - 1 <= fb_mmio->end))
2436 		goto skip_shadow_release;
2437 
2438 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2439 		if ((iter->start >= start + size) || (iter->end <= start))
2440 			continue;
2441 
2442 		__release_region(iter, start, size);
2443 	}
2444 
2445 skip_shadow_release:
2446 	release_mem_region(start, size);
2447 	mutex_unlock(&hyperv_mmio_lock);
2448 
2449 }
2450 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2451 
2452 #ifdef CONFIG_ACPI
vmbus_acpi_add(struct platform_device * pdev)2453 static int vmbus_acpi_add(struct platform_device *pdev)
2454 {
2455 	acpi_status result;
2456 	int ret_val = -ENODEV;
2457 	struct acpi_device *ancestor;
2458 	struct acpi_device *device = ACPI_COMPANION(&pdev->dev);
2459 
2460 	vmbus_root_device = &device->dev;
2461 
2462 	/*
2463 	 * Older versions of Hyper-V for ARM64 fail to include the _CCA
2464 	 * method on the top level VMbus device in the DSDT. But devices
2465 	 * are hardware coherent in all current Hyper-V use cases, so fix
2466 	 * up the ACPI device to behave as if _CCA is present and indicates
2467 	 * hardware coherence.
2468 	 */
2469 	ACPI_COMPANION_SET(&device->dev, device);
2470 	if (IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED) &&
2471 	    device_get_dma_attr(&device->dev) == DEV_DMA_NOT_SUPPORTED) {
2472 		pr_info("No ACPI _CCA found; assuming coherent device I/O\n");
2473 		device->flags.cca_seen = true;
2474 		device->flags.coherent_dma = true;
2475 	}
2476 
2477 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2478 					vmbus_walk_resources, NULL);
2479 
2480 	if (ACPI_FAILURE(result))
2481 		goto acpi_walk_err;
2482 	/*
2483 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2484 	 * firmware) is the VMOD that has the mmio ranges. Get that.
2485 	 */
2486 	for (ancestor = acpi_dev_parent(device);
2487 	     ancestor && ancestor->handle != ACPI_ROOT_OBJECT;
2488 	     ancestor = acpi_dev_parent(ancestor)) {
2489 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2490 					     vmbus_walk_resources, NULL);
2491 
2492 		if (ACPI_FAILURE(result))
2493 			continue;
2494 		if (hyperv_mmio) {
2495 			vmbus_reserve_fb();
2496 			break;
2497 		}
2498 	}
2499 	ret_val = 0;
2500 
2501 acpi_walk_err:
2502 	if (ret_val)
2503 		vmbus_mmio_remove();
2504 	return ret_val;
2505 }
2506 #else
vmbus_acpi_add(struct platform_device * pdev)2507 static int vmbus_acpi_add(struct platform_device *pdev)
2508 {
2509 	return 0;
2510 }
2511 #endif
2512 
vmbus_set_irq(struct platform_device * pdev)2513 static int vmbus_set_irq(struct platform_device *pdev)
2514 {
2515 	struct irq_data *data;
2516 	int irq;
2517 	irq_hw_number_t hwirq;
2518 
2519 	irq = platform_get_irq(pdev, 0);
2520 	/* platform_get_irq() may not return 0. */
2521 	if (irq < 0)
2522 		return irq;
2523 
2524 	data = irq_get_irq_data(irq);
2525 	if (!data) {
2526 		pr_err("No interrupt data for VMBus virq %d\n", irq);
2527 		return -ENODEV;
2528 	}
2529 	hwirq = irqd_to_hwirq(data);
2530 
2531 	vmbus_irq = irq;
2532 	vmbus_interrupt = hwirq;
2533 	pr_debug("VMBus virq %d, hwirq %d\n", vmbus_irq, vmbus_interrupt);
2534 
2535 	return 0;
2536 }
2537 
vmbus_device_add(struct platform_device * pdev)2538 static int vmbus_device_add(struct platform_device *pdev)
2539 {
2540 	struct resource **cur_res = &hyperv_mmio;
2541 	struct of_range range;
2542 	struct of_range_parser parser;
2543 	struct device_node *np = pdev->dev.of_node;
2544 	int ret;
2545 
2546 	vmbus_root_device = &pdev->dev;
2547 
2548 	ret = of_range_parser_init(&parser, np);
2549 	if (ret)
2550 		return ret;
2551 
2552 	if (!__is_defined(HYPERVISOR_CALLBACK_VECTOR))
2553 		ret = vmbus_set_irq(pdev);
2554 	if (ret)
2555 		return ret;
2556 
2557 	for_each_of_range(&parser, &range) {
2558 		struct resource *res;
2559 
2560 		res = kzalloc(sizeof(*res), GFP_KERNEL);
2561 		if (!res) {
2562 			vmbus_mmio_remove();
2563 			return -ENOMEM;
2564 		}
2565 
2566 		res->name = "hyperv mmio";
2567 		res->flags = range.flags;
2568 		res->start = range.cpu_addr;
2569 		res->end = range.cpu_addr + range.size;
2570 
2571 		*cur_res = res;
2572 		cur_res = &res->sibling;
2573 	}
2574 
2575 	return ret;
2576 }
2577 
vmbus_platform_driver_probe(struct platform_device * pdev)2578 static int vmbus_platform_driver_probe(struct platform_device *pdev)
2579 {
2580 	if (acpi_disabled)
2581 		return vmbus_device_add(pdev);
2582 	else
2583 		return vmbus_acpi_add(pdev);
2584 }
2585 
vmbus_platform_driver_remove(struct platform_device * pdev)2586 static void vmbus_platform_driver_remove(struct platform_device *pdev)
2587 {
2588 	vmbus_mmio_remove();
2589 }
2590 
2591 #ifdef CONFIG_PM_SLEEP
vmbus_bus_suspend(struct device * dev)2592 static int vmbus_bus_suspend(struct device *dev)
2593 {
2594 	struct hv_per_cpu_context *hv_cpu = per_cpu_ptr(
2595 			hv_context.cpu_context, VMBUS_CONNECT_CPU);
2596 	struct vmbus_channel *channel, *sc;
2597 
2598 	tasklet_disable(&hv_cpu->msg_dpc);
2599 	vmbus_connection.ignore_any_offer_msg = true;
2600 	/* The tasklet_enable() takes care of providing a memory barrier */
2601 	tasklet_enable(&hv_cpu->msg_dpc);
2602 
2603 	/* Drain all the workqueues as we are in suspend */
2604 	drain_workqueue(vmbus_connection.rescind_work_queue);
2605 	drain_workqueue(vmbus_connection.work_queue);
2606 	drain_workqueue(vmbus_connection.handle_primary_chan_wq);
2607 	drain_workqueue(vmbus_connection.handle_sub_chan_wq);
2608 
2609 	mutex_lock(&vmbus_connection.channel_mutex);
2610 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2611 		if (!is_hvsock_channel(channel))
2612 			continue;
2613 
2614 		vmbus_force_channel_rescinded(channel);
2615 	}
2616 	mutex_unlock(&vmbus_connection.channel_mutex);
2617 
2618 	/*
2619 	 * Wait until all the sub-channels and hv_sock channels have been
2620 	 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2621 	 * they would conflict with the new sub-channels that will be created
2622 	 * in the resume path. hv_sock channels should also be destroyed, but
2623 	 * a hv_sock channel of an established hv_sock connection can not be
2624 	 * really destroyed since it may still be referenced by the userspace
2625 	 * application, so we just force the hv_sock channel to be rescinded
2626 	 * by vmbus_force_channel_rescinded(), and the userspace application
2627 	 * will thoroughly destroy the channel after hibernation.
2628 	 *
2629 	 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2630 	 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2631 	 */
2632 	if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2633 		wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2634 
2635 	mutex_lock(&vmbus_connection.channel_mutex);
2636 
2637 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2638 		/*
2639 		 * Remove the channel from the array of channels and invalidate
2640 		 * the channel's relid.  Upon resume, vmbus_onoffer() will fix
2641 		 * up the relid (and other fields, if necessary) and add the
2642 		 * channel back to the array.
2643 		 */
2644 		vmbus_channel_unmap_relid(channel);
2645 		channel->offermsg.child_relid = INVALID_RELID;
2646 
2647 		if (is_hvsock_channel(channel)) {
2648 			if (!channel->rescind) {
2649 				pr_err("hv_sock channel not rescinded!\n");
2650 				WARN_ON_ONCE(1);
2651 			}
2652 			continue;
2653 		}
2654 
2655 		list_for_each_entry(sc, &channel->sc_list, sc_list) {
2656 			pr_err("Sub-channel not deleted!\n");
2657 			WARN_ON_ONCE(1);
2658 		}
2659 	}
2660 
2661 	mutex_unlock(&vmbus_connection.channel_mutex);
2662 
2663 	vmbus_initiate_unload(false);
2664 
2665 	return 0;
2666 }
2667 
vmbus_bus_resume(struct device * dev)2668 static int vmbus_bus_resume(struct device *dev)
2669 {
2670 	struct vmbus_channel *channel;
2671 	struct vmbus_channel_msginfo *msginfo;
2672 	size_t msgsize;
2673 	int ret;
2674 
2675 	vmbus_connection.ignore_any_offer_msg = false;
2676 
2677 	/*
2678 	 * We only use the 'vmbus_proto_version', which was in use before
2679 	 * hibernation, to re-negotiate with the host.
2680 	 */
2681 	if (!vmbus_proto_version) {
2682 		pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2683 		return -EINVAL;
2684 	}
2685 
2686 	msgsize = sizeof(*msginfo) +
2687 		  sizeof(struct vmbus_channel_initiate_contact);
2688 
2689 	msginfo = kzalloc(msgsize, GFP_KERNEL);
2690 
2691 	if (msginfo == NULL)
2692 		return -ENOMEM;
2693 
2694 	ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2695 
2696 	kfree(msginfo);
2697 
2698 	if (ret != 0)
2699 		return ret;
2700 
2701 	vmbus_request_offers();
2702 
2703 	mutex_lock(&vmbus_connection.channel_mutex);
2704 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2705 		if (channel->offermsg.child_relid != INVALID_RELID)
2706 			continue;
2707 
2708 		/* hvsock channels are not expected to be present. */
2709 		if (is_hvsock_channel(channel))
2710 			continue;
2711 
2712 		pr_err("channel %pUl/%pUl not present after resume.\n",
2713 		       &channel->offermsg.offer.if_type,
2714 		       &channel->offermsg.offer.if_instance);
2715 		/* ToDo: Cleanup these channels here */
2716 	}
2717 	mutex_unlock(&vmbus_connection.channel_mutex);
2718 
2719 	/* Reset the event for the next suspend. */
2720 	reinit_completion(&vmbus_connection.ready_for_suspend_event);
2721 
2722 	return 0;
2723 }
2724 #else
2725 #define vmbus_bus_suspend NULL
2726 #define vmbus_bus_resume NULL
2727 #endif /* CONFIG_PM_SLEEP */
2728 
2729 static const __maybe_unused struct of_device_id vmbus_of_match[] = {
2730 	{
2731 		.compatible = "microsoft,vmbus",
2732 	},
2733 	{
2734 		/* sentinel */
2735 	},
2736 };
2737 MODULE_DEVICE_TABLE(of, vmbus_of_match);
2738 
2739 static const __maybe_unused struct acpi_device_id vmbus_acpi_device_ids[] = {
2740 	{"VMBUS", 0},
2741 	{"VMBus", 0},
2742 	{"", 0},
2743 };
2744 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2745 
2746 /*
2747  * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2748  * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2749  * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
2750  * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2751  * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2752  * resume callback must also run via the "noirq" ops.
2753  *
2754  * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2755  * earlier in this file before vmbus_pm.
2756  */
2757 
2758 static const struct dev_pm_ops vmbus_bus_pm = {
2759 	.suspend_noirq	= NULL,
2760 	.resume_noirq	= NULL,
2761 	.freeze_noirq	= vmbus_bus_suspend,
2762 	.thaw_noirq	= vmbus_bus_resume,
2763 	.poweroff_noirq	= vmbus_bus_suspend,
2764 	.restore_noirq	= vmbus_bus_resume
2765 };
2766 
2767 static struct platform_driver vmbus_platform_driver = {
2768 	.probe = vmbus_platform_driver_probe,
2769 	.remove = vmbus_platform_driver_remove,
2770 	.driver = {
2771 		.name = "vmbus",
2772 		.acpi_match_table = ACPI_PTR(vmbus_acpi_device_ids),
2773 		.of_match_table = of_match_ptr(vmbus_of_match),
2774 		.pm = &vmbus_bus_pm,
2775 		.probe_type = PROBE_FORCE_SYNCHRONOUS,
2776 	}
2777 };
2778 
hv_kexec_handler(void)2779 static void hv_kexec_handler(void)
2780 {
2781 	hv_stimer_global_cleanup();
2782 	vmbus_initiate_unload(false);
2783 	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
2784 	mb();
2785 	cpuhp_remove_state(hyperv_cpuhp_online);
2786 };
2787 
hv_crash_handler(struct pt_regs * regs)2788 static void hv_crash_handler(struct pt_regs *regs)
2789 {
2790 	int cpu;
2791 
2792 	vmbus_initiate_unload(true);
2793 	/*
2794 	 * In crash handler we can't schedule synic cleanup for all CPUs,
2795 	 * doing the cleanup for current CPU only. This should be sufficient
2796 	 * for kdump.
2797 	 */
2798 	cpu = smp_processor_id();
2799 	hv_stimer_cleanup(cpu);
2800 	hv_synic_disable_regs(cpu);
2801 };
2802 
hv_synic_suspend(void)2803 static int hv_synic_suspend(void)
2804 {
2805 	/*
2806 	 * When we reach here, all the non-boot CPUs have been offlined.
2807 	 * If we're in a legacy configuration where stimer Direct Mode is
2808 	 * not enabled, the stimers on the non-boot CPUs have been unbound
2809 	 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2810 	 * hv_stimer_cleanup() -> clockevents_unbind_device().
2811 	 *
2812 	 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2813 	 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2814 	 * 1) it's unnecessary as interrupts remain disabled between
2815 	 * syscore_suspend() and syscore_resume(): see create_image() and
2816 	 * resume_target_kernel()
2817 	 * 2) the stimer on CPU0 is automatically disabled later by
2818 	 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2819 	 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2820 	 * 3) a warning would be triggered if we call
2821 	 * clockevents_unbind_device(), which may sleep, in an
2822 	 * interrupts-disabled context.
2823 	 */
2824 
2825 	hv_synic_disable_regs(0);
2826 
2827 	return 0;
2828 }
2829 
hv_synic_resume(void)2830 static void hv_synic_resume(void)
2831 {
2832 	hv_synic_enable_regs(0);
2833 
2834 	/*
2835 	 * Note: we don't need to call hv_stimer_init(0), because the timer
2836 	 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2837 	 * automatically re-enabled in timekeeping_resume().
2838 	 */
2839 }
2840 
2841 /* The callbacks run only on CPU0, with irqs_disabled. */
2842 static struct syscore_ops hv_synic_syscore_ops = {
2843 	.suspend = hv_synic_suspend,
2844 	.resume = hv_synic_resume,
2845 };
2846 
hv_acpi_init(void)2847 static int __init hv_acpi_init(void)
2848 {
2849 	int ret;
2850 
2851 	if (!hv_is_hyperv_initialized())
2852 		return -ENODEV;
2853 
2854 	if (hv_root_partition() && !hv_nested)
2855 		return 0;
2856 
2857 	/*
2858 	 * Get ACPI resources first.
2859 	 */
2860 	ret = platform_driver_register(&vmbus_platform_driver);
2861 	if (ret)
2862 		return ret;
2863 
2864 	if (!vmbus_root_device) {
2865 		ret = -ENODEV;
2866 		goto cleanup;
2867 	}
2868 
2869 	/*
2870 	 * If we're on an architecture with a hardcoded hypervisor
2871 	 * vector (i.e. x86/x64), override the VMbus interrupt found
2872 	 * in the ACPI tables. Ensure vmbus_irq is not set since the
2873 	 * normal Linux IRQ mechanism is not used in this case.
2874 	 */
2875 #ifdef HYPERVISOR_CALLBACK_VECTOR
2876 	vmbus_interrupt = HYPERVISOR_CALLBACK_VECTOR;
2877 	vmbus_irq = -1;
2878 #endif
2879 
2880 	hv_debug_init();
2881 
2882 	ret = vmbus_bus_init();
2883 	if (ret)
2884 		goto cleanup;
2885 
2886 	hv_setup_kexec_handler(hv_kexec_handler);
2887 	hv_setup_crash_handler(hv_crash_handler);
2888 
2889 	register_syscore_ops(&hv_synic_syscore_ops);
2890 
2891 	return 0;
2892 
2893 cleanup:
2894 	platform_driver_unregister(&vmbus_platform_driver);
2895 	vmbus_root_device = NULL;
2896 	return ret;
2897 }
2898 
vmbus_exit(void)2899 static void __exit vmbus_exit(void)
2900 {
2901 	int cpu;
2902 
2903 	unregister_syscore_ops(&hv_synic_syscore_ops);
2904 
2905 	hv_remove_kexec_handler();
2906 	hv_remove_crash_handler();
2907 	vmbus_connection.conn_state = DISCONNECTED;
2908 	hv_stimer_global_cleanup();
2909 	vmbus_disconnect();
2910 	if (vmbus_irq == -1) {
2911 		hv_remove_vmbus_handler();
2912 	} else {
2913 		free_percpu_irq(vmbus_irq, vmbus_evt);
2914 		free_percpu(vmbus_evt);
2915 	}
2916 	for_each_online_cpu(cpu) {
2917 		struct hv_per_cpu_context *hv_cpu
2918 			= per_cpu_ptr(hv_context.cpu_context, cpu);
2919 
2920 		tasklet_kill(&hv_cpu->msg_dpc);
2921 	}
2922 	hv_debug_rm_all_dir();
2923 
2924 	vmbus_free_channels();
2925 	kfree(vmbus_connection.channels);
2926 
2927 	/*
2928 	 * The vmbus panic notifier is always registered, hence we should
2929 	 * also unconditionally unregister it here as well.
2930 	 */
2931 	atomic_notifier_chain_unregister(&panic_notifier_list,
2932 					&hyperv_panic_vmbus_unload_block);
2933 
2934 	bus_unregister(&hv_bus);
2935 
2936 	cpuhp_remove_state(hyperv_cpuhp_online);
2937 	hv_synic_free();
2938 	platform_driver_unregister(&vmbus_platform_driver);
2939 }
2940 
2941 
2942 MODULE_LICENSE("GPL");
2943 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2944 
2945 subsys_initcall(hv_acpi_init);
2946 module_exit(vmbus_exit);
2947