xref: /linux/tools/testing/selftests/kvm/lib/kvm_util.c (revision 54f15ebfc61ee8499a97f2dbfc18b1b13fdcb524)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/kvm_util.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 #include "test_util.h"
8 #include "kvm_util.h"
9 #include "processor.h"
10 #include "ucall_common.h"
11 
12 #include <assert.h>
13 #include <sched.h>
14 #include <sys/mman.h>
15 #include <sys/resource.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
20 
21 #define KVM_UTIL_MIN_PFN	2
22 
23 uint32_t guest_random_seed;
24 struct guest_random_state guest_rng;
25 static uint32_t last_guest_seed;
26 
27 static size_t vcpu_mmap_sz(void);
28 
29 int __open_path_or_exit(const char *path, int flags, const char *enoent_help)
30 {
31 	int fd;
32 
33 	fd = open(path, flags);
34 	if (fd < 0)
35 		goto error;
36 
37 	return fd;
38 
39 error:
40 	if (errno == EACCES || errno == ENOENT)
41 		ksft_exit_skip("- Cannot open '%s': %s.  %s\n",
42 			       path, strerror(errno),
43 			       errno == EACCES ? "Root required?" : enoent_help);
44 	TEST_FAIL("Failed to open '%s'", path);
45 }
46 
47 int open_path_or_exit(const char *path, int flags)
48 {
49 	return __open_path_or_exit(path, flags, "");
50 }
51 
52 /*
53  * Open KVM_DEV_PATH if available, otherwise exit the entire program.
54  *
55  * Input Args:
56  *   flags - The flags to pass when opening KVM_DEV_PATH.
57  *
58  * Return:
59  *   The opened file descriptor of /dev/kvm.
60  */
61 static int _open_kvm_dev_path_or_exit(int flags)
62 {
63 	return __open_path_or_exit(KVM_DEV_PATH, flags, "Is KVM loaded and enabled?");
64 }
65 
66 int open_kvm_dev_path_or_exit(void)
67 {
68 	return _open_kvm_dev_path_or_exit(O_RDONLY);
69 }
70 
71 static ssize_t get_module_param(const char *module_name, const char *param,
72 				void *buffer, size_t buffer_size)
73 {
74 	const int path_size = 128;
75 	char path[path_size];
76 	ssize_t bytes_read;
77 	int fd, r;
78 
79 	/* Verify KVM is loaded, to provide a more helpful SKIP message. */
80 	close(open_kvm_dev_path_or_exit());
81 
82 	r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
83 		     module_name, param);
84 	TEST_ASSERT(r < path_size,
85 		    "Failed to construct sysfs path in %d bytes.", path_size);
86 
87 	fd = open_path_or_exit(path, O_RDONLY);
88 
89 	bytes_read = read(fd, buffer, buffer_size);
90 	TEST_ASSERT(bytes_read > 0, "read(%s) returned %ld, wanted %ld bytes",
91 		    path, bytes_read, buffer_size);
92 
93 	r = close(fd);
94 	TEST_ASSERT(!r, "close(%s) failed", path);
95 	return bytes_read;
96 }
97 
98 int kvm_get_module_param_integer(const char *module_name, const char *param)
99 {
100 	/*
101 	 * 16 bytes to hold a 64-bit value (1 byte per char), 1 byte for the
102 	 * NUL char, and 1 byte because the kernel sucks and inserts a newline
103 	 * at the end.
104 	 */
105 	char value[16 + 1 + 1];
106 	ssize_t r;
107 
108 	memset(value, '\0', sizeof(value));
109 
110 	r = get_module_param(module_name, param, value, sizeof(value));
111 	TEST_ASSERT(value[r - 1] == '\n',
112 		    "Expected trailing newline, got char '%c'", value[r - 1]);
113 
114 	/*
115 	 * Squash the newline, otherwise atoi_paranoid() will complain about
116 	 * trailing non-NUL characters in the string.
117 	 */
118 	value[r - 1] = '\0';
119 	return atoi_paranoid(value);
120 }
121 
122 bool kvm_get_module_param_bool(const char *module_name, const char *param)
123 {
124 	char value;
125 	ssize_t r;
126 
127 	r = get_module_param(module_name, param, &value, sizeof(value));
128 	TEST_ASSERT_EQ(r, 1);
129 
130 	if (value == 'Y')
131 		return true;
132 	else if (value == 'N')
133 		return false;
134 
135 	TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
136 }
137 
138 /*
139  * Capability
140  *
141  * Input Args:
142  *   cap - Capability
143  *
144  * Output Args: None
145  *
146  * Return:
147  *   On success, the Value corresponding to the capability (KVM_CAP_*)
148  *   specified by the value of cap.  On failure a TEST_ASSERT failure
149  *   is produced.
150  *
151  * Looks up and returns the value corresponding to the capability
152  * (KVM_CAP_*) given by cap.
153  */
154 unsigned int kvm_check_cap(long cap)
155 {
156 	int ret;
157 	int kvm_fd;
158 
159 	kvm_fd = open_kvm_dev_path_or_exit();
160 	ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
161 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
162 
163 	close(kvm_fd);
164 
165 	return (unsigned int)ret;
166 }
167 
168 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
169 {
170 	if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
171 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
172 	else
173 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
174 	vm->dirty_ring_size = ring_size;
175 }
176 
177 static void vm_open(struct kvm_vm *vm)
178 {
179 	vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
180 
181 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
182 
183 	vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
184 	TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
185 
186 	if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD))
187 		vm->stats.fd = vm_get_stats_fd(vm);
188 	else
189 		vm->stats.fd = -1;
190 }
191 
192 const char *vm_guest_mode_string(uint32_t i)
193 {
194 	static const char * const strings[] = {
195 		[VM_MODE_P52V48_4K]	= "PA-bits:52,  VA-bits:48,  4K pages",
196 		[VM_MODE_P52V48_16K]	= "PA-bits:52,  VA-bits:48, 16K pages",
197 		[VM_MODE_P52V48_64K]	= "PA-bits:52,  VA-bits:48, 64K pages",
198 		[VM_MODE_P48V48_4K]	= "PA-bits:48,  VA-bits:48,  4K pages",
199 		[VM_MODE_P48V48_16K]	= "PA-bits:48,  VA-bits:48, 16K pages",
200 		[VM_MODE_P48V48_64K]	= "PA-bits:48,  VA-bits:48, 64K pages",
201 		[VM_MODE_P40V48_4K]	= "PA-bits:40,  VA-bits:48,  4K pages",
202 		[VM_MODE_P40V48_16K]	= "PA-bits:40,  VA-bits:48, 16K pages",
203 		[VM_MODE_P40V48_64K]	= "PA-bits:40,  VA-bits:48, 64K pages",
204 		[VM_MODE_PXXVYY_4K]	= "PA-bits:ANY, VA-bits:48 or 57, 4K pages",
205 		[VM_MODE_P47V64_4K]	= "PA-bits:47,  VA-bits:64,  4K pages",
206 		[VM_MODE_P44V64_4K]	= "PA-bits:44,  VA-bits:64,  4K pages",
207 		[VM_MODE_P36V48_4K]	= "PA-bits:36,  VA-bits:48,  4K pages",
208 		[VM_MODE_P36V48_16K]	= "PA-bits:36,  VA-bits:48, 16K pages",
209 		[VM_MODE_P36V48_64K]	= "PA-bits:36,  VA-bits:48, 64K pages",
210 		[VM_MODE_P47V47_16K]	= "PA-bits:47,  VA-bits:47, 16K pages",
211 		[VM_MODE_P36V47_16K]	= "PA-bits:36,  VA-bits:47, 16K pages",
212 		[VM_MODE_P56V57_4K]	= "PA-bits:56,  VA-bits:57,  4K pages",
213 		[VM_MODE_P56V48_4K]	= "PA-bits:56,  VA-bits:48,  4K pages",
214 		[VM_MODE_P56V39_4K]	= "PA-bits:56,  VA-bits:39,  4K pages",
215 		[VM_MODE_P50V57_4K]	= "PA-bits:50,  VA-bits:57,  4K pages",
216 		[VM_MODE_P50V48_4K]	= "PA-bits:50,  VA-bits:48,  4K pages",
217 		[VM_MODE_P50V39_4K]	= "PA-bits:50,  VA-bits:39,  4K pages",
218 		[VM_MODE_P41V57_4K]	= "PA-bits:41,  VA-bits:57,  4K pages",
219 		[VM_MODE_P41V48_4K]	= "PA-bits:41,  VA-bits:48,  4K pages",
220 		[VM_MODE_P41V39_4K]	= "PA-bits:41,  VA-bits:39,  4K pages",
221 	};
222 	_Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
223 		       "Missing new mode strings?");
224 
225 	TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
226 
227 	return strings[i];
228 }
229 
230 const struct vm_guest_mode_params vm_guest_mode_params[] = {
231 	[VM_MODE_P52V48_4K]	= { 52, 48,  0x1000, 12 },
232 	[VM_MODE_P52V48_16K]	= { 52, 48,  0x4000, 14 },
233 	[VM_MODE_P52V48_64K]	= { 52, 48, 0x10000, 16 },
234 	[VM_MODE_P48V48_4K]	= { 48, 48,  0x1000, 12 },
235 	[VM_MODE_P48V48_16K]	= { 48, 48,  0x4000, 14 },
236 	[VM_MODE_P48V48_64K]	= { 48, 48, 0x10000, 16 },
237 	[VM_MODE_P40V48_4K]	= { 40, 48,  0x1000, 12 },
238 	[VM_MODE_P40V48_16K]	= { 40, 48,  0x4000, 14 },
239 	[VM_MODE_P40V48_64K]	= { 40, 48, 0x10000, 16 },
240 	[VM_MODE_PXXVYY_4K]	= {  0,  0,  0x1000, 12 },
241 	[VM_MODE_P47V64_4K]	= { 47, 64,  0x1000, 12 },
242 	[VM_MODE_P44V64_4K]	= { 44, 64,  0x1000, 12 },
243 	[VM_MODE_P36V48_4K]	= { 36, 48,  0x1000, 12 },
244 	[VM_MODE_P36V48_16K]	= { 36, 48,  0x4000, 14 },
245 	[VM_MODE_P36V48_64K]	= { 36, 48, 0x10000, 16 },
246 	[VM_MODE_P47V47_16K]	= { 47, 47,  0x4000, 14 },
247 	[VM_MODE_P36V47_16K]	= { 36, 47,  0x4000, 14 },
248 	[VM_MODE_P56V57_4K]	= { 56, 57,  0x1000, 12 },
249 	[VM_MODE_P56V48_4K]	= { 56, 48,  0x1000, 12 },
250 	[VM_MODE_P56V39_4K]	= { 56, 39,  0x1000, 12 },
251 	[VM_MODE_P50V57_4K]	= { 50, 57,  0x1000, 12 },
252 	[VM_MODE_P50V48_4K]	= { 50, 48,  0x1000, 12 },
253 	[VM_MODE_P50V39_4K]	= { 50, 39,  0x1000, 12 },
254 	[VM_MODE_P41V57_4K]	= { 41, 57,  0x1000, 12 },
255 	[VM_MODE_P41V48_4K]	= { 41, 48,  0x1000, 12 },
256 	[VM_MODE_P41V39_4K]	= { 41, 39,  0x1000, 12 },
257 };
258 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
259 	       "Missing new mode params?");
260 
261 /*
262  * Initializes vm->vpages_valid to match the canonical VA space of the
263  * architecture.
264  *
265  * The default implementation is valid for architectures which split the
266  * range addressed by a single page table into a low and high region
267  * based on the MSB of the VA. On architectures with this behavior
268  * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1].
269  */
270 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
271 {
272 	sparsebit_set_num(vm->vpages_valid,
273 		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
274 	sparsebit_set_num(vm->vpages_valid,
275 		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
276 		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
277 }
278 
279 struct kvm_vm *____vm_create(struct vm_shape shape)
280 {
281 	struct kvm_vm *vm;
282 
283 	vm = calloc(1, sizeof(*vm));
284 	TEST_ASSERT(vm != NULL, "Insufficient Memory");
285 
286 	INIT_LIST_HEAD(&vm->vcpus);
287 	vm->regions.gpa_tree = RB_ROOT;
288 	vm->regions.hva_tree = RB_ROOT;
289 	hash_init(vm->regions.slot_hash);
290 
291 	vm->mode = shape.mode;
292 	vm->type = shape.type;
293 
294 	vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits;
295 	vm->va_bits = vm_guest_mode_params[vm->mode].va_bits;
296 	vm->page_size = vm_guest_mode_params[vm->mode].page_size;
297 	vm->page_shift = vm_guest_mode_params[vm->mode].page_shift;
298 
299 	/* Setup mode specific traits. */
300 	switch (vm->mode) {
301 	case VM_MODE_P52V48_4K:
302 		vm->mmu.pgtable_levels = 4;
303 		break;
304 	case VM_MODE_P52V48_64K:
305 		vm->mmu.pgtable_levels = 3;
306 		break;
307 	case VM_MODE_P48V48_4K:
308 		vm->mmu.pgtable_levels = 4;
309 		break;
310 	case VM_MODE_P48V48_64K:
311 		vm->mmu.pgtable_levels = 3;
312 		break;
313 	case VM_MODE_P40V48_4K:
314 	case VM_MODE_P36V48_4K:
315 		vm->mmu.pgtable_levels = 4;
316 		break;
317 	case VM_MODE_P40V48_64K:
318 	case VM_MODE_P36V48_64K:
319 		vm->mmu.pgtable_levels = 3;
320 		break;
321 	case VM_MODE_P52V48_16K:
322 	case VM_MODE_P48V48_16K:
323 	case VM_MODE_P40V48_16K:
324 	case VM_MODE_P36V48_16K:
325 		vm->mmu.pgtable_levels = 4;
326 		break;
327 	case VM_MODE_P47V47_16K:
328 	case VM_MODE_P36V47_16K:
329 		vm->mmu.pgtable_levels = 3;
330 		break;
331 	case VM_MODE_PXXVYY_4K:
332 #ifdef __x86_64__
333 		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
334 		kvm_init_vm_address_properties(vm);
335 
336 		pr_debug("Guest physical address width detected: %d\n",
337 			 vm->pa_bits);
338 		pr_debug("Guest virtual address width detected: %d\n",
339 			 vm->va_bits);
340 
341 		if (vm->va_bits == 57) {
342 			vm->mmu.pgtable_levels = 5;
343 		} else {
344 			TEST_ASSERT(vm->va_bits == 48,
345 				    "Unexpected guest virtual address width: %d",
346 				    vm->va_bits);
347 			vm->mmu.pgtable_levels = 4;
348 		}
349 #else
350 		TEST_FAIL("VM_MODE_PXXVYY_4K not supported on non-x86 platforms");
351 #endif
352 		break;
353 	case VM_MODE_P47V64_4K:
354 		vm->mmu.pgtable_levels = 5;
355 		break;
356 	case VM_MODE_P44V64_4K:
357 		vm->mmu.pgtable_levels = 5;
358 		break;
359 	case VM_MODE_P56V57_4K:
360 	case VM_MODE_P50V57_4K:
361 	case VM_MODE_P41V57_4K:
362 		vm->mmu.pgtable_levels = 5;
363 		break;
364 	case VM_MODE_P56V48_4K:
365 	case VM_MODE_P50V48_4K:
366 	case VM_MODE_P41V48_4K:
367 		vm->mmu.pgtable_levels = 4;
368 		break;
369 	case VM_MODE_P56V39_4K:
370 	case VM_MODE_P50V39_4K:
371 	case VM_MODE_P41V39_4K:
372 		vm->mmu.pgtable_levels = 3;
373 		break;
374 	default:
375 		TEST_FAIL("Unknown guest mode: 0x%x", vm->mode);
376 	}
377 
378 #ifdef __aarch64__
379 	TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types");
380 	if (vm->pa_bits != 40)
381 		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
382 #endif
383 
384 	vm_open(vm);
385 
386 	/* Limit to VA-bit canonical virtual addresses. */
387 	vm->vpages_valid = sparsebit_alloc();
388 	vm_vaddr_populate_bitmap(vm);
389 
390 	/* Limit physical addresses to PA-bits. */
391 	vm->max_gfn = vm_compute_max_gfn(vm);
392 
393 	/* Allocate and setup memory for guest. */
394 	vm->vpages_mapped = sparsebit_alloc();
395 
396 	return vm;
397 }
398 
399 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
400 				     uint32_t nr_runnable_vcpus,
401 				     uint64_t extra_mem_pages)
402 {
403 	uint64_t page_size = vm_guest_mode_params[mode].page_size;
404 	uint64_t nr_pages;
405 
406 	TEST_ASSERT(nr_runnable_vcpus,
407 		    "Use vm_create_barebones() for VMs that _never_ have vCPUs");
408 
409 	TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
410 		    "nr_vcpus = %d too large for host, max-vcpus = %d",
411 		    nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
412 
413 	/*
414 	 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
415 	 * test code and other per-VM assets that will be loaded into memslot0.
416 	 */
417 	nr_pages = 512;
418 
419 	/* Account for the per-vCPU stacks on behalf of the test. */
420 	nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
421 
422 	/*
423 	 * Account for the number of pages needed for the page tables.  The
424 	 * maximum page table size for a memory region will be when the
425 	 * smallest page size is used. Considering each page contains x page
426 	 * table descriptors, the total extra size for page tables (for extra
427 	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
428 	 * than N/x*2.
429 	 */
430 	nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
431 
432 	/* Account for the number of pages needed by ucall. */
433 	nr_pages += ucall_nr_pages_required(page_size);
434 
435 	return vm_adjust_num_guest_pages(mode, nr_pages);
436 }
437 
438 void kvm_set_files_rlimit(uint32_t nr_vcpus)
439 {
440 	/*
441 	 * Each vCPU will open two file descriptors: the vCPU itself and the
442 	 * vCPU's binary stats file descriptor.  Add an arbitrary amount of
443 	 * buffer for all other files a test may open.
444 	 */
445 	int nr_fds_wanted = nr_vcpus * 2 + 100;
446 	struct rlimit rl;
447 
448 	/*
449 	 * Check that we're allowed to open nr_fds_wanted file descriptors and
450 	 * try raising the limits if needed.
451 	 */
452 	TEST_ASSERT(!getrlimit(RLIMIT_NOFILE, &rl), "getrlimit() failed!");
453 
454 	if (rl.rlim_cur < nr_fds_wanted) {
455 		rl.rlim_cur = nr_fds_wanted;
456 		if (rl.rlim_max < nr_fds_wanted) {
457 			int old_rlim_max = rl.rlim_max;
458 
459 			rl.rlim_max = nr_fds_wanted;
460 			__TEST_REQUIRE(setrlimit(RLIMIT_NOFILE, &rl) >= 0,
461 				       "RLIMIT_NOFILE hard limit is too low (%d, wanted %d)",
462 				       old_rlim_max, nr_fds_wanted);
463 		} else {
464 			TEST_ASSERT(!setrlimit(RLIMIT_NOFILE, &rl), "setrlimit() failed!");
465 		}
466 	}
467 
468 }
469 
470 static bool is_guest_memfd_required(struct vm_shape shape)
471 {
472 #ifdef __x86_64__
473 	return shape.type == KVM_X86_SNP_VM;
474 #else
475 	return false;
476 #endif
477 }
478 
479 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
480 			   uint64_t nr_extra_pages)
481 {
482 	uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus,
483 						 nr_extra_pages);
484 	struct userspace_mem_region *slot0;
485 	struct kvm_vm *vm;
486 	int i, flags;
487 
488 	kvm_set_files_rlimit(nr_runnable_vcpus);
489 
490 	pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__,
491 		 vm_guest_mode_string(shape.mode), shape.type, nr_pages);
492 
493 	vm = ____vm_create(shape);
494 
495 	/*
496 	 * Force GUEST_MEMFD for the primary memory region if necessary, e.g.
497 	 * for CoCo VMs that require GUEST_MEMFD backed private memory.
498 	 */
499 	flags = 0;
500 	if (is_guest_memfd_required(shape))
501 		flags |= KVM_MEM_GUEST_MEMFD;
502 
503 	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, flags);
504 	for (i = 0; i < NR_MEM_REGIONS; i++)
505 		vm->memslots[i] = 0;
506 
507 	kvm_vm_elf_load(vm, program_invocation_name);
508 
509 	/*
510 	 * TODO: Add proper defines to protect the library's memslots, and then
511 	 * carve out memslot1 for the ucall MMIO address.  KVM treats writes to
512 	 * read-only memslots as MMIO, and creating a read-only memslot for the
513 	 * MMIO region would prevent silently clobbering the MMIO region.
514 	 */
515 	slot0 = memslot2region(vm, 0);
516 	ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
517 
518 	if (guest_random_seed != last_guest_seed) {
519 		pr_info("Random seed: 0x%x\n", guest_random_seed);
520 		last_guest_seed = guest_random_seed;
521 	}
522 	guest_rng = new_guest_random_state(guest_random_seed);
523 	sync_global_to_guest(vm, guest_rng);
524 
525 	kvm_arch_vm_post_create(vm, nr_runnable_vcpus);
526 
527 	return vm;
528 }
529 
530 /*
531  * VM Create with customized parameters
532  *
533  * Input Args:
534  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
535  *   nr_vcpus - VCPU count
536  *   extra_mem_pages - Non-slot0 physical memory total size
537  *   guest_code - Guest entry point
538  *   vcpuids - VCPU IDs
539  *
540  * Output Args: None
541  *
542  * Return:
543  *   Pointer to opaque structure that describes the created VM.
544  *
545  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
546  * extra_mem_pages is only used to calculate the maximum page table size,
547  * no real memory allocation for non-slot0 memory in this function.
548  */
549 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
550 				      uint64_t extra_mem_pages,
551 				      void *guest_code, struct kvm_vcpu *vcpus[])
552 {
553 	struct kvm_vm *vm;
554 	int i;
555 
556 	TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
557 
558 	vm = __vm_create(shape, nr_vcpus, extra_mem_pages);
559 
560 	for (i = 0; i < nr_vcpus; ++i)
561 		vcpus[i] = vm_vcpu_add(vm, i, guest_code);
562 
563 	kvm_arch_vm_finalize_vcpus(vm);
564 	return vm;
565 }
566 
567 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
568 					       struct kvm_vcpu **vcpu,
569 					       uint64_t extra_mem_pages,
570 					       void *guest_code)
571 {
572 	struct kvm_vcpu *vcpus[1];
573 	struct kvm_vm *vm;
574 
575 	vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus);
576 
577 	*vcpu = vcpus[0];
578 	return vm;
579 }
580 
581 /*
582  * VM Restart
583  *
584  * Input Args:
585  *   vm - VM that has been released before
586  *
587  * Output Args: None
588  *
589  * Reopens the file descriptors associated to the VM and reinstates the
590  * global state, such as the irqchip and the memory regions that are mapped
591  * into the guest.
592  */
593 void kvm_vm_restart(struct kvm_vm *vmp)
594 {
595 	int ctr;
596 	struct userspace_mem_region *region;
597 
598 	vm_open(vmp);
599 	if (vmp->has_irqchip)
600 		vm_create_irqchip(vmp);
601 
602 	hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
603 		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, &region->region);
604 
605 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
606 			    "  rc: %i errno: %i\n"
607 			    "  slot: %u flags: 0x%x\n"
608 			    "  guest_phys_addr: 0x%llx size: 0x%llx",
609 			    ret, errno, region->region.slot,
610 			    region->region.flags,
611 			    region->region.guest_phys_addr,
612 			    region->region.memory_size);
613 	}
614 }
615 
616 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
617 					      uint32_t vcpu_id)
618 {
619 	return __vm_vcpu_add(vm, vcpu_id);
620 }
621 
622 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
623 {
624 	kvm_vm_restart(vm);
625 
626 	return vm_vcpu_recreate(vm, 0);
627 }
628 
629 int __pin_task_to_cpu(pthread_t task, int cpu)
630 {
631 	cpu_set_t cpuset;
632 
633 	CPU_ZERO(&cpuset);
634 	CPU_SET(cpu, &cpuset);
635 
636 	return pthread_setaffinity_np(task, sizeof(cpuset), &cpuset);
637 }
638 
639 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask)
640 {
641 	uint32_t pcpu = atoi_non_negative("CPU number", cpu_str);
642 
643 	TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask),
644 		    "Not allowed to run on pCPU '%d', check cgroups?", pcpu);
645 	return pcpu;
646 }
647 
648 void kvm_print_vcpu_pinning_help(void)
649 {
650 	const char *name = program_invocation_name;
651 
652 	printf(" -c: Pin tasks to physical CPUs.  Takes a list of comma separated\n"
653 	       "     values (target pCPU), one for each vCPU, plus an optional\n"
654 	       "     entry for the main application task (specified via entry\n"
655 	       "     <nr_vcpus + 1>).  If used, entries must be provided for all\n"
656 	       "     vCPUs, i.e. pinning vCPUs is all or nothing.\n\n"
657 	       "     E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n"
658 	       "     vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n"
659 	       "         %s -v 3 -c 22,23,24,50\n\n"
660 	       "     To leave the application task unpinned, drop the final entry:\n\n"
661 	       "         %s -v 3 -c 22,23,24\n\n"
662 	       "     (default: no pinning)\n", name, name);
663 }
664 
665 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
666 			    int nr_vcpus)
667 {
668 	cpu_set_t allowed_mask;
669 	char *cpu, *cpu_list;
670 	char delim[2] = ",";
671 	int i, r;
672 
673 	cpu_list = strdup(pcpus_string);
674 	TEST_ASSERT(cpu_list, "strdup() allocation failed.");
675 
676 	r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask);
677 	TEST_ASSERT(!r, "sched_getaffinity() failed");
678 
679 	cpu = strtok(cpu_list, delim);
680 
681 	/* 1. Get all pcpus for vcpus. */
682 	for (i = 0; i < nr_vcpus; i++) {
683 		TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i);
684 		vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask);
685 		cpu = strtok(NULL, delim);
686 	}
687 
688 	/* 2. Check if the main worker needs to be pinned. */
689 	if (cpu) {
690 		pin_self_to_cpu(parse_pcpu(cpu, &allowed_mask));
691 		cpu = strtok(NULL, delim);
692 	}
693 
694 	TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu);
695 	free(cpu_list);
696 }
697 
698 /*
699  * Userspace Memory Region Find
700  *
701  * Input Args:
702  *   vm - Virtual Machine
703  *   start - Starting VM physical address
704  *   end - Ending VM physical address, inclusive.
705  *
706  * Output Args: None
707  *
708  * Return:
709  *   Pointer to overlapping region, NULL if no such region.
710  *
711  * Searches for a region with any physical memory that overlaps with
712  * any portion of the guest physical addresses from start to end
713  * inclusive.  If multiple overlapping regions exist, a pointer to any
714  * of the regions is returned.  Null is returned only when no overlapping
715  * region exists.
716  */
717 static struct userspace_mem_region *
718 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
719 {
720 	struct rb_node *node;
721 
722 	for (node = vm->regions.gpa_tree.rb_node; node; ) {
723 		struct userspace_mem_region *region =
724 			container_of(node, struct userspace_mem_region, gpa_node);
725 		uint64_t existing_start = region->region.guest_phys_addr;
726 		uint64_t existing_end = region->region.guest_phys_addr
727 			+ region->region.memory_size - 1;
728 		if (start <= existing_end && end >= existing_start)
729 			return region;
730 
731 		if (start < existing_start)
732 			node = node->rb_left;
733 		else
734 			node = node->rb_right;
735 	}
736 
737 	return NULL;
738 }
739 
740 static void kvm_stats_release(struct kvm_binary_stats *stats)
741 {
742 	if (stats->fd < 0)
743 		return;
744 
745 	if (stats->desc) {
746 		free(stats->desc);
747 		stats->desc = NULL;
748 	}
749 
750 	kvm_close(stats->fd);
751 	stats->fd = -1;
752 }
753 
754 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
755 {
756 
757 }
758 
759 /*
760  * VM VCPU Remove
761  *
762  * Input Args:
763  *   vcpu - VCPU to remove
764  *
765  * Output Args: None
766  *
767  * Return: None, TEST_ASSERT failures for all error conditions
768  *
769  * Removes a vCPU from a VM and frees its resources.
770  */
771 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
772 {
773 	if (vcpu->dirty_gfns) {
774 		kvm_munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
775 		vcpu->dirty_gfns = NULL;
776 	}
777 
778 	kvm_munmap(vcpu->run, vcpu_mmap_sz());
779 
780 	kvm_close(vcpu->fd);
781 	kvm_stats_release(&vcpu->stats);
782 
783 	list_del(&vcpu->list);
784 
785 	vcpu_arch_free(vcpu);
786 	free(vcpu);
787 }
788 
789 void kvm_vm_release(struct kvm_vm *vmp)
790 {
791 	struct kvm_vcpu *vcpu, *tmp;
792 
793 	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
794 		vm_vcpu_rm(vmp, vcpu);
795 
796 	kvm_close(vmp->fd);
797 	kvm_close(vmp->kvm_fd);
798 
799 	/* Free cached stats metadata and close FD */
800 	kvm_stats_release(&vmp->stats);
801 
802 	kvm_arch_vm_release(vmp);
803 }
804 
805 static void __vm_mem_region_delete(struct kvm_vm *vm,
806 				   struct userspace_mem_region *region)
807 {
808 	rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
809 	rb_erase(&region->hva_node, &vm->regions.hva_tree);
810 	hash_del(&region->slot_node);
811 
812 	sparsebit_free(&region->unused_phy_pages);
813 	sparsebit_free(&region->protected_phy_pages);
814 	kvm_munmap(region->mmap_start, region->mmap_size);
815 	if (region->fd >= 0) {
816 		/* There's an extra map when using shared memory. */
817 		kvm_munmap(region->mmap_alias, region->mmap_size);
818 		close(region->fd);
819 	}
820 	if (region->region.guest_memfd >= 0)
821 		close(region->region.guest_memfd);
822 
823 	free(region);
824 }
825 
826 /*
827  * Destroys and frees the VM pointed to by vmp.
828  */
829 void kvm_vm_free(struct kvm_vm *vmp)
830 {
831 	int ctr;
832 	struct hlist_node *node;
833 	struct userspace_mem_region *region;
834 
835 	if (vmp == NULL)
836 		return;
837 
838 	/* Free userspace_mem_regions. */
839 	hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
840 		__vm_mem_region_delete(vmp, region);
841 
842 	/* Free sparsebit arrays. */
843 	sparsebit_free(&vmp->vpages_valid);
844 	sparsebit_free(&vmp->vpages_mapped);
845 
846 	kvm_vm_release(vmp);
847 
848 	/* Free the structure describing the VM. */
849 	free(vmp);
850 }
851 
852 int kvm_memfd_alloc(size_t size, bool hugepages)
853 {
854 	int memfd_flags = MFD_CLOEXEC;
855 	int fd;
856 
857 	if (hugepages)
858 		memfd_flags |= MFD_HUGETLB;
859 
860 	fd = memfd_create("kvm_selftest", memfd_flags);
861 	TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
862 
863 	kvm_ftruncate(fd, size);
864 	kvm_fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
865 
866 	return fd;
867 }
868 
869 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
870 					       struct userspace_mem_region *region)
871 {
872 	struct rb_node **cur, *parent;
873 
874 	for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
875 		struct userspace_mem_region *cregion;
876 
877 		cregion = container_of(*cur, typeof(*cregion), gpa_node);
878 		parent = *cur;
879 		if (region->region.guest_phys_addr <
880 		    cregion->region.guest_phys_addr)
881 			cur = &(*cur)->rb_left;
882 		else {
883 			TEST_ASSERT(region->region.guest_phys_addr !=
884 				    cregion->region.guest_phys_addr,
885 				    "Duplicate GPA in region tree");
886 
887 			cur = &(*cur)->rb_right;
888 		}
889 	}
890 
891 	rb_link_node(&region->gpa_node, parent, cur);
892 	rb_insert_color(&region->gpa_node, gpa_tree);
893 }
894 
895 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
896 					       struct userspace_mem_region *region)
897 {
898 	struct rb_node **cur, *parent;
899 
900 	for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
901 		struct userspace_mem_region *cregion;
902 
903 		cregion = container_of(*cur, typeof(*cregion), hva_node);
904 		parent = *cur;
905 		if (region->host_mem < cregion->host_mem)
906 			cur = &(*cur)->rb_left;
907 		else {
908 			TEST_ASSERT(region->host_mem !=
909 				    cregion->host_mem,
910 				    "Duplicate HVA in region tree");
911 
912 			cur = &(*cur)->rb_right;
913 		}
914 	}
915 
916 	rb_link_node(&region->hva_node, parent, cur);
917 	rb_insert_color(&region->hva_node, hva_tree);
918 }
919 
920 
921 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
922 				uint64_t gpa, uint64_t size, void *hva)
923 {
924 	struct kvm_userspace_memory_region region = {
925 		.slot = slot,
926 		.flags = flags,
927 		.guest_phys_addr = gpa,
928 		.memory_size = size,
929 		.userspace_addr = (uintptr_t)hva,
930 	};
931 
932 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region);
933 }
934 
935 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
936 			       uint64_t gpa, uint64_t size, void *hva)
937 {
938 	int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
939 
940 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
941 		    errno, strerror(errno));
942 }
943 
944 #define TEST_REQUIRE_SET_USER_MEMORY_REGION2()			\
945 	__TEST_REQUIRE(kvm_has_cap(KVM_CAP_USER_MEMORY2),	\
946 		       "KVM selftests now require KVM_SET_USER_MEMORY_REGION2 (introduced in v6.8)")
947 
948 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
949 				 uint64_t gpa, uint64_t size, void *hva,
950 				 uint32_t guest_memfd, uint64_t guest_memfd_offset)
951 {
952 	struct kvm_userspace_memory_region2 region = {
953 		.slot = slot,
954 		.flags = flags,
955 		.guest_phys_addr = gpa,
956 		.memory_size = size,
957 		.userspace_addr = (uintptr_t)hva,
958 		.guest_memfd = guest_memfd,
959 		.guest_memfd_offset = guest_memfd_offset,
960 	};
961 
962 	TEST_REQUIRE_SET_USER_MEMORY_REGION2();
963 
964 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, &region);
965 }
966 
967 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
968 				uint64_t gpa, uint64_t size, void *hva,
969 				uint32_t guest_memfd, uint64_t guest_memfd_offset)
970 {
971 	int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva,
972 					       guest_memfd, guest_memfd_offset);
973 
974 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)",
975 		    errno, strerror(errno));
976 }
977 
978 
979 /* FIXME: This thing needs to be ripped apart and rewritten. */
980 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
981 		uint64_t gpa, uint32_t slot, uint64_t npages, uint32_t flags,
982 		int guest_memfd, uint64_t guest_memfd_offset)
983 {
984 	int ret;
985 	struct userspace_mem_region *region;
986 	size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
987 	size_t mem_size = npages * vm->page_size;
988 	size_t alignment;
989 
990 	TEST_REQUIRE_SET_USER_MEMORY_REGION2();
991 
992 	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
993 		"Number of guest pages is not compatible with the host. "
994 		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
995 
996 	TEST_ASSERT((gpa % vm->page_size) == 0, "Guest physical "
997 		"address not on a page boundary.\n"
998 		"  gpa: 0x%lx vm->page_size: 0x%x",
999 		gpa, vm->page_size);
1000 	TEST_ASSERT((((gpa >> vm->page_shift) + npages) - 1)
1001 		<= vm->max_gfn, "Physical range beyond maximum "
1002 		"supported physical address,\n"
1003 		"  gpa: 0x%lx npages: 0x%lx\n"
1004 		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
1005 		gpa, npages, vm->max_gfn, vm->page_size);
1006 
1007 	/*
1008 	 * Confirm a mem region with an overlapping address doesn't
1009 	 * already exist.
1010 	 */
1011 	region = (struct userspace_mem_region *) userspace_mem_region_find(
1012 		vm, gpa, (gpa + npages * vm->page_size) - 1);
1013 	if (region != NULL)
1014 		TEST_FAIL("overlapping userspace_mem_region already "
1015 			"exists\n"
1016 			"  requested gpa: 0x%lx npages: 0x%lx page_size: 0x%x\n"
1017 			"  existing gpa: 0x%lx size: 0x%lx",
1018 			gpa, npages, vm->page_size,
1019 			(uint64_t) region->region.guest_phys_addr,
1020 			(uint64_t) region->region.memory_size);
1021 
1022 	/* Confirm no region with the requested slot already exists. */
1023 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1024 			       slot) {
1025 		if (region->region.slot != slot)
1026 			continue;
1027 
1028 		TEST_FAIL("A mem region with the requested slot "
1029 			"already exists.\n"
1030 			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
1031 			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
1032 			slot, gpa, npages, region->region.slot,
1033 			(uint64_t) region->region.guest_phys_addr,
1034 			(uint64_t) region->region.memory_size);
1035 	}
1036 
1037 	/* Allocate and initialize new mem region structure. */
1038 	region = calloc(1, sizeof(*region));
1039 	TEST_ASSERT(region != NULL, "Insufficient Memory");
1040 	region->mmap_size = mem_size;
1041 
1042 #ifdef __s390x__
1043 	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
1044 	alignment = 0x100000;
1045 #else
1046 	alignment = 1;
1047 #endif
1048 
1049 	/*
1050 	 * When using THP mmap is not guaranteed to returned a hugepage aligned
1051 	 * address so we have to pad the mmap. Padding is not needed for HugeTLB
1052 	 * because mmap will always return an address aligned to the HugeTLB
1053 	 * page size.
1054 	 */
1055 	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
1056 		alignment = max(backing_src_pagesz, alignment);
1057 
1058 	TEST_ASSERT_EQ(gpa, align_up(gpa, backing_src_pagesz));
1059 
1060 	/* Add enough memory to align up if necessary */
1061 	if (alignment > 1)
1062 		region->mmap_size += alignment;
1063 
1064 	region->fd = -1;
1065 	if (backing_src_is_shared(src_type))
1066 		region->fd = kvm_memfd_alloc(region->mmap_size,
1067 					     src_type == VM_MEM_SRC_SHARED_HUGETLB);
1068 
1069 	region->mmap_start = kvm_mmap(region->mmap_size, PROT_READ | PROT_WRITE,
1070 				      vm_mem_backing_src_alias(src_type)->flag,
1071 				      region->fd);
1072 
1073 	TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
1074 		    region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
1075 		    "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
1076 		    region->mmap_start, backing_src_pagesz);
1077 
1078 	/* Align host address */
1079 	region->host_mem = align_ptr_up(region->mmap_start, alignment);
1080 
1081 	/* As needed perform madvise */
1082 	if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1083 	     src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1084 		ret = madvise(region->host_mem, mem_size,
1085 			      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1086 		TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1087 			    region->host_mem, mem_size,
1088 			    vm_mem_backing_src_alias(src_type)->name);
1089 	}
1090 
1091 	region->backing_src_type = src_type;
1092 
1093 	if (flags & KVM_MEM_GUEST_MEMFD) {
1094 		if (guest_memfd < 0) {
1095 			uint32_t guest_memfd_flags = 0;
1096 			TEST_ASSERT(!guest_memfd_offset,
1097 				    "Offset must be zero when creating new guest_memfd");
1098 			guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags);
1099 		} else {
1100 			/*
1101 			 * Install a unique fd for each memslot so that the fd
1102 			 * can be closed when the region is deleted without
1103 			 * needing to track if the fd is owned by the framework
1104 			 * or by the caller.
1105 			 */
1106 			guest_memfd = kvm_dup(guest_memfd);
1107 		}
1108 
1109 		region->region.guest_memfd = guest_memfd;
1110 		region->region.guest_memfd_offset = guest_memfd_offset;
1111 	} else {
1112 		region->region.guest_memfd = -1;
1113 	}
1114 
1115 	region->unused_phy_pages = sparsebit_alloc();
1116 	if (vm_arch_has_protected_memory(vm))
1117 		region->protected_phy_pages = sparsebit_alloc();
1118 	sparsebit_set_num(region->unused_phy_pages, gpa >> vm->page_shift, npages);
1119 	region->region.slot = slot;
1120 	region->region.flags = flags;
1121 	region->region.guest_phys_addr = gpa;
1122 	region->region.memory_size = npages * vm->page_size;
1123 	region->region.userspace_addr = (uintptr_t) region->host_mem;
1124 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1125 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1126 		"  rc: %i errno: %i\n"
1127 		"  slot: %u flags: 0x%x\n"
1128 		"  guest_phys_addr: 0x%lx size: 0x%llx guest_memfd: %d",
1129 		ret, errno, slot, flags, gpa, region->region.memory_size,
1130 		region->region.guest_memfd);
1131 
1132 	/* Add to quick lookup data structures */
1133 	vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1134 	vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1135 	hash_add(vm->regions.slot_hash, &region->slot_node, slot);
1136 
1137 	/* If shared memory, create an alias. */
1138 	if (region->fd >= 0) {
1139 		region->mmap_alias = kvm_mmap(region->mmap_size,
1140 					      PROT_READ | PROT_WRITE,
1141 					      vm_mem_backing_src_alias(src_type)->flag,
1142 					      region->fd);
1143 
1144 		/* Align host alias address */
1145 		region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1146 	}
1147 }
1148 
1149 void vm_userspace_mem_region_add(struct kvm_vm *vm,
1150 				 enum vm_mem_backing_src_type src_type,
1151 				 uint64_t gpa, uint32_t slot, uint64_t npages,
1152 				 uint32_t flags)
1153 {
1154 	vm_mem_add(vm, src_type, gpa, slot, npages, flags, -1, 0);
1155 }
1156 
1157 /*
1158  * Memslot to region
1159  *
1160  * Input Args:
1161  *   vm - Virtual Machine
1162  *   memslot - KVM memory slot ID
1163  *
1164  * Output Args: None
1165  *
1166  * Return:
1167  *   Pointer to memory region structure that describe memory region
1168  *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
1169  *   on error (e.g. currently no memory region using memslot as a KVM
1170  *   memory slot ID).
1171  */
1172 struct userspace_mem_region *
1173 memslot2region(struct kvm_vm *vm, uint32_t memslot)
1174 {
1175 	struct userspace_mem_region *region;
1176 
1177 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1178 			       memslot)
1179 		if (region->region.slot == memslot)
1180 			return region;
1181 
1182 	fprintf(stderr, "No mem region with the requested slot found,\n"
1183 		"  requested slot: %u\n", memslot);
1184 	fputs("---- vm dump ----\n", stderr);
1185 	vm_dump(stderr, vm, 2);
1186 	TEST_FAIL("Mem region not found");
1187 	return NULL;
1188 }
1189 
1190 /*
1191  * VM Memory Region Flags Set
1192  *
1193  * Input Args:
1194  *   vm - Virtual Machine
1195  *   flags - Starting guest physical address
1196  *
1197  * Output Args: None
1198  *
1199  * Return: None
1200  *
1201  * Sets the flags of the memory region specified by the value of slot,
1202  * to the values given by flags.
1203  */
1204 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1205 {
1206 	int ret;
1207 	struct userspace_mem_region *region;
1208 
1209 	region = memslot2region(vm, slot);
1210 
1211 	region->region.flags = flags;
1212 
1213 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1214 
1215 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1216 		"  rc: %i errno: %i slot: %u flags: 0x%x",
1217 		ret, errno, slot, flags);
1218 }
1219 
1220 void vm_mem_region_reload(struct kvm_vm *vm, uint32_t slot)
1221 {
1222 	struct userspace_mem_region *region = memslot2region(vm, slot);
1223 	struct kvm_userspace_memory_region2 tmp = region->region;
1224 
1225 	tmp.memory_size = 0;
1226 	vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &tmp);
1227 	vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1228 }
1229 
1230 /*
1231  * VM Memory Region Move
1232  *
1233  * Input Args:
1234  *   vm - Virtual Machine
1235  *   slot - Slot of the memory region to move
1236  *   new_gpa - Starting guest physical address
1237  *
1238  * Output Args: None
1239  *
1240  * Return: None
1241  *
1242  * Change the gpa of a memory region.
1243  */
1244 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1245 {
1246 	struct userspace_mem_region *region;
1247 	int ret;
1248 
1249 	region = memslot2region(vm, slot);
1250 
1251 	region->region.guest_phys_addr = new_gpa;
1252 
1253 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1254 
1255 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n"
1256 		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1257 		    ret, errno, slot, new_gpa);
1258 }
1259 
1260 /*
1261  * VM Memory Region Delete
1262  *
1263  * Input Args:
1264  *   vm - Virtual Machine
1265  *   slot - Slot of the memory region to delete
1266  *
1267  * Output Args: None
1268  *
1269  * Return: None
1270  *
1271  * Delete a memory region.
1272  */
1273 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1274 {
1275 	struct userspace_mem_region *region = memslot2region(vm, slot);
1276 
1277 	region->region.memory_size = 0;
1278 	vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1279 
1280 	__vm_mem_region_delete(vm, region);
1281 }
1282 
1283 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size,
1284 			    bool punch_hole)
1285 {
1286 	const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0);
1287 	struct userspace_mem_region *region;
1288 	uint64_t end = base + size;
1289 	uint64_t gpa, len;
1290 	off_t fd_offset;
1291 	int ret;
1292 
1293 	for (gpa = base; gpa < end; gpa += len) {
1294 		uint64_t offset;
1295 
1296 		region = userspace_mem_region_find(vm, gpa, gpa);
1297 		TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD,
1298 			    "Private memory region not found for GPA 0x%lx", gpa);
1299 
1300 		offset = gpa - region->region.guest_phys_addr;
1301 		fd_offset = region->region.guest_memfd_offset + offset;
1302 		len = min_t(uint64_t, end - gpa, region->region.memory_size - offset);
1303 
1304 		ret = fallocate(region->region.guest_memfd, mode, fd_offset, len);
1305 		TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx",
1306 			    punch_hole ? "punch hole" : "allocate", gpa, len,
1307 			    region->region.guest_memfd, mode, fd_offset);
1308 	}
1309 }
1310 
1311 /* Returns the size of a vCPU's kvm_run structure. */
1312 static size_t vcpu_mmap_sz(void)
1313 {
1314 	int dev_fd, ret;
1315 
1316 	dev_fd = open_kvm_dev_path_or_exit();
1317 
1318 	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1319 	TEST_ASSERT(ret >= 0 && ret >= sizeof(struct kvm_run),
1320 		    KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1321 
1322 	close(dev_fd);
1323 
1324 	return ret;
1325 }
1326 
1327 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1328 {
1329 	struct kvm_vcpu *vcpu;
1330 
1331 	list_for_each_entry(vcpu, &vm->vcpus, list) {
1332 		if (vcpu->id == vcpu_id)
1333 			return true;
1334 	}
1335 
1336 	return false;
1337 }
1338 
1339 /*
1340  * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1341  * No additional vCPU setup is done.  Returns the vCPU.
1342  */
1343 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1344 {
1345 	struct kvm_vcpu *vcpu;
1346 
1347 	/* Confirm a vcpu with the specified id doesn't already exist. */
1348 	TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id);
1349 
1350 	/* Allocate and initialize new vcpu structure. */
1351 	vcpu = calloc(1, sizeof(*vcpu));
1352 	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1353 
1354 	vcpu->vm = vm;
1355 	vcpu->id = vcpu_id;
1356 	vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1357 	TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm);
1358 
1359 	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1360 		"smaller than expected, vcpu_mmap_sz: %zi expected_min: %zi",
1361 		vcpu_mmap_sz(), sizeof(*vcpu->run));
1362 	vcpu->run = kvm_mmap(vcpu_mmap_sz(), PROT_READ | PROT_WRITE,
1363 			     MAP_SHARED, vcpu->fd);
1364 
1365 	if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD))
1366 		vcpu->stats.fd = vcpu_get_stats_fd(vcpu);
1367 	else
1368 		vcpu->stats.fd = -1;
1369 
1370 	/* Add to linked-list of VCPUs. */
1371 	list_add(&vcpu->list, &vm->vcpus);
1372 
1373 	return vcpu;
1374 }
1375 
1376 /*
1377  * VM Virtual Address Unused Gap
1378  *
1379  * Input Args:
1380  *   vm - Virtual Machine
1381  *   sz - Size (bytes)
1382  *   vaddr_min - Minimum Virtual Address
1383  *
1384  * Output Args: None
1385  *
1386  * Return:
1387  *   Lowest virtual address at or above vaddr_min, with at least
1388  *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1389  *   size sz is available.
1390  *
1391  * Within the VM specified by vm, locates the lowest starting virtual
1392  * address >= vaddr_min, that has at least sz unallocated bytes.  A
1393  * TEST_ASSERT failure occurs for invalid input or no area of at least
1394  * sz unallocated bytes >= vaddr_min is available.
1395  */
1396 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1397 			       vm_vaddr_t vaddr_min)
1398 {
1399 	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1400 
1401 	/* Determine lowest permitted virtual page index. */
1402 	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1403 	if ((pgidx_start * vm->page_size) < vaddr_min)
1404 		goto no_va_found;
1405 
1406 	/* Loop over section with enough valid virtual page indexes. */
1407 	if (!sparsebit_is_set_num(vm->vpages_valid,
1408 		pgidx_start, pages))
1409 		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1410 			pgidx_start, pages);
1411 	do {
1412 		/*
1413 		 * Are there enough unused virtual pages available at
1414 		 * the currently proposed starting virtual page index.
1415 		 * If not, adjust proposed starting index to next
1416 		 * possible.
1417 		 */
1418 		if (sparsebit_is_clear_num(vm->vpages_mapped,
1419 			pgidx_start, pages))
1420 			goto va_found;
1421 		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1422 			pgidx_start, pages);
1423 		if (pgidx_start == 0)
1424 			goto no_va_found;
1425 
1426 		/*
1427 		 * If needed, adjust proposed starting virtual address,
1428 		 * to next range of valid virtual addresses.
1429 		 */
1430 		if (!sparsebit_is_set_num(vm->vpages_valid,
1431 			pgidx_start, pages)) {
1432 			pgidx_start = sparsebit_next_set_num(
1433 				vm->vpages_valid, pgidx_start, pages);
1434 			if (pgidx_start == 0)
1435 				goto no_va_found;
1436 		}
1437 	} while (pgidx_start != 0);
1438 
1439 no_va_found:
1440 	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1441 
1442 	/* NOT REACHED */
1443 	return -1;
1444 
1445 va_found:
1446 	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1447 		pgidx_start, pages),
1448 		"Unexpected, invalid virtual page index range,\n"
1449 		"  pgidx_start: 0x%lx\n"
1450 		"  pages: 0x%lx",
1451 		pgidx_start, pages);
1452 	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1453 		pgidx_start, pages),
1454 		"Unexpected, pages already mapped,\n"
1455 		"  pgidx_start: 0x%lx\n"
1456 		"  pages: 0x%lx",
1457 		pgidx_start, pages);
1458 
1459 	return pgidx_start * vm->page_size;
1460 }
1461 
1462 static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
1463 				     vm_vaddr_t vaddr_min,
1464 				     enum kvm_mem_region_type type,
1465 				     bool protected)
1466 {
1467 	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1468 
1469 	virt_pgd_alloc(vm);
1470 	vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages,
1471 						KVM_UTIL_MIN_PFN * vm->page_size,
1472 						vm->memslots[type], protected);
1473 
1474 	/*
1475 	 * Find an unused range of virtual page addresses of at least
1476 	 * pages in length.
1477 	 */
1478 	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1479 
1480 	/* Map the virtual pages. */
1481 	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1482 		pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1483 
1484 		virt_pg_map(vm, vaddr, paddr);
1485 	}
1486 
1487 	return vaddr_start;
1488 }
1489 
1490 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1491 			    enum kvm_mem_region_type type)
1492 {
1493 	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type,
1494 				  vm_arch_has_protected_memory(vm));
1495 }
1496 
1497 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
1498 				 vm_vaddr_t vaddr_min,
1499 				 enum kvm_mem_region_type type)
1500 {
1501 	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false);
1502 }
1503 
1504 /*
1505  * VM Virtual Address Allocate
1506  *
1507  * Input Args:
1508  *   vm - Virtual Machine
1509  *   sz - Size in bytes
1510  *   vaddr_min - Minimum starting virtual address
1511  *
1512  * Output Args: None
1513  *
1514  * Return:
1515  *   Starting guest virtual address
1516  *
1517  * Allocates at least sz bytes within the virtual address space of the vm
1518  * given by vm.  The allocated bytes are mapped to a virtual address >=
1519  * the address given by vaddr_min.  Note that each allocation uses a
1520  * a unique set of pages, with the minimum real allocation being at least
1521  * a page. The allocated physical space comes from the TEST_DATA memory region.
1522  */
1523 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1524 {
1525 	return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
1526 }
1527 
1528 /*
1529  * VM Virtual Address Allocate Pages
1530  *
1531  * Input Args:
1532  *   vm - Virtual Machine
1533  *
1534  * Output Args: None
1535  *
1536  * Return:
1537  *   Starting guest virtual address
1538  *
1539  * Allocates at least N system pages worth of bytes within the virtual address
1540  * space of the vm.
1541  */
1542 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1543 {
1544 	return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1545 }
1546 
1547 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
1548 {
1549 	return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
1550 }
1551 
1552 /*
1553  * VM Virtual Address Allocate Page
1554  *
1555  * Input Args:
1556  *   vm - Virtual Machine
1557  *
1558  * Output Args: None
1559  *
1560  * Return:
1561  *   Starting guest virtual address
1562  *
1563  * Allocates at least one system page worth of bytes within the virtual address
1564  * space of the vm.
1565  */
1566 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1567 {
1568 	return vm_vaddr_alloc_pages(vm, 1);
1569 }
1570 
1571 /*
1572  * Map a range of VM virtual address to the VM's physical address
1573  *
1574  * Input Args:
1575  *   vm - Virtual Machine
1576  *   vaddr - Virtuall address to map
1577  *   paddr - VM Physical Address
1578  *   npages - The number of pages to map
1579  *
1580  * Output Args: None
1581  *
1582  * Return: None
1583  *
1584  * Within the VM given by @vm, creates a virtual translation for
1585  * @npages starting at @vaddr to the page range starting at @paddr.
1586  */
1587 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1588 	      unsigned int npages)
1589 {
1590 	size_t page_size = vm->page_size;
1591 	size_t size = npages * page_size;
1592 
1593 	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1594 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1595 
1596 	while (npages--) {
1597 		virt_pg_map(vm, vaddr, paddr);
1598 
1599 		vaddr += page_size;
1600 		paddr += page_size;
1601 	}
1602 }
1603 
1604 /*
1605  * Address VM Physical to Host Virtual
1606  *
1607  * Input Args:
1608  *   vm - Virtual Machine
1609  *   gpa - VM physical address
1610  *
1611  * Output Args: None
1612  *
1613  * Return:
1614  *   Equivalent host virtual address
1615  *
1616  * Locates the memory region containing the VM physical address given
1617  * by gpa, within the VM given by vm.  When found, the host virtual
1618  * address providing the memory to the vm physical address is returned.
1619  * A TEST_ASSERT failure occurs if no region containing gpa exists.
1620  */
1621 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1622 {
1623 	struct userspace_mem_region *region;
1624 
1625 	gpa = vm_untag_gpa(vm, gpa);
1626 
1627 	region = userspace_mem_region_find(vm, gpa, gpa);
1628 	if (!region) {
1629 		TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1630 		return NULL;
1631 	}
1632 
1633 	return (void *)((uintptr_t)region->host_mem
1634 		+ (gpa - region->region.guest_phys_addr));
1635 }
1636 
1637 /*
1638  * Address Host Virtual to VM Physical
1639  *
1640  * Input Args:
1641  *   vm - Virtual Machine
1642  *   hva - Host virtual address
1643  *
1644  * Output Args: None
1645  *
1646  * Return:
1647  *   Equivalent VM physical address
1648  *
1649  * Locates the memory region containing the host virtual address given
1650  * by hva, within the VM given by vm.  When found, the equivalent
1651  * VM physical address is returned. A TEST_ASSERT failure occurs if no
1652  * region containing hva exists.
1653  */
1654 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1655 {
1656 	struct rb_node *node;
1657 
1658 	for (node = vm->regions.hva_tree.rb_node; node; ) {
1659 		struct userspace_mem_region *region =
1660 			container_of(node, struct userspace_mem_region, hva_node);
1661 
1662 		if (hva >= region->host_mem) {
1663 			if (hva <= (region->host_mem
1664 				+ region->region.memory_size - 1))
1665 				return (vm_paddr_t)((uintptr_t)
1666 					region->region.guest_phys_addr
1667 					+ (hva - (uintptr_t)region->host_mem));
1668 
1669 			node = node->rb_right;
1670 		} else
1671 			node = node->rb_left;
1672 	}
1673 
1674 	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1675 	return -1;
1676 }
1677 
1678 /*
1679  * Address VM physical to Host Virtual *alias*.
1680  *
1681  * Input Args:
1682  *   vm - Virtual Machine
1683  *   gpa - VM physical address
1684  *
1685  * Output Args: None
1686  *
1687  * Return:
1688  *   Equivalent address within the host virtual *alias* area, or NULL
1689  *   (without failing the test) if the guest memory is not shared (so
1690  *   no alias exists).
1691  *
1692  * Create a writable, shared virtual=>physical alias for the specific GPA.
1693  * The primary use case is to allow the host selftest to manipulate guest
1694  * memory without mapping said memory in the guest's address space. And, for
1695  * userfaultfd-based demand paging, to do so without triggering userfaults.
1696  */
1697 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1698 {
1699 	struct userspace_mem_region *region;
1700 	uintptr_t offset;
1701 
1702 	region = userspace_mem_region_find(vm, gpa, gpa);
1703 	if (!region)
1704 		return NULL;
1705 
1706 	if (!region->host_alias)
1707 		return NULL;
1708 
1709 	offset = gpa - region->region.guest_phys_addr;
1710 	return (void *) ((uintptr_t) region->host_alias + offset);
1711 }
1712 
1713 /* Create an interrupt controller chip for the specified VM. */
1714 void vm_create_irqchip(struct kvm_vm *vm)
1715 {
1716 	int r;
1717 
1718 	/*
1719 	 * Allocate a fully in-kernel IRQ chip by default, but fall back to a
1720 	 * split model (x86 only) if that fails (KVM x86 allows compiling out
1721 	 * support for KVM_CREATE_IRQCHIP).
1722 	 */
1723 	r = __vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1724 	if (r && errno == ENOTTY && kvm_has_cap(KVM_CAP_SPLIT_IRQCHIP))
1725 		vm_enable_cap(vm, KVM_CAP_SPLIT_IRQCHIP, 24);
1726 	else
1727 		TEST_ASSERT_VM_VCPU_IOCTL(!r, KVM_CREATE_IRQCHIP, r, vm);
1728 
1729 	vm->has_irqchip = true;
1730 }
1731 
1732 int _vcpu_run(struct kvm_vcpu *vcpu)
1733 {
1734 	int rc;
1735 
1736 	do {
1737 		rc = __vcpu_run(vcpu);
1738 	} while (rc == -1 && errno == EINTR);
1739 
1740 	if (!rc)
1741 		assert_on_unhandled_exception(vcpu);
1742 
1743 	return rc;
1744 }
1745 
1746 /*
1747  * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1748  * Assert if the KVM returns an error (other than -EINTR).
1749  */
1750 void vcpu_run(struct kvm_vcpu *vcpu)
1751 {
1752 	int ret = _vcpu_run(vcpu);
1753 
1754 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1755 }
1756 
1757 void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1758 {
1759 	int ret;
1760 
1761 	vcpu->run->immediate_exit = 1;
1762 	ret = __vcpu_run(vcpu);
1763 	vcpu->run->immediate_exit = 0;
1764 
1765 	TEST_ASSERT(ret == -1 && errno == EINTR,
1766 		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1767 		    ret, errno);
1768 }
1769 
1770 /*
1771  * Get the list of guest registers which are supported for
1772  * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls.  Returns a kvm_reg_list pointer,
1773  * it is the caller's responsibility to free the list.
1774  */
1775 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1776 {
1777 	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1778 	int ret;
1779 
1780 	ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, &reg_list_n);
1781 	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1782 
1783 	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1784 	reg_list->n = reg_list_n.n;
1785 	vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1786 	return reg_list;
1787 }
1788 
1789 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1790 {
1791 	uint32_t page_size = getpagesize();
1792 	uint32_t size = vcpu->vm->dirty_ring_size;
1793 
1794 	TEST_ASSERT(size > 0, "Should enable dirty ring first");
1795 
1796 	if (!vcpu->dirty_gfns) {
1797 		void *addr;
1798 
1799 		addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1800 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1801 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1802 
1803 		addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1804 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1805 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1806 
1807 		addr = __kvm_mmap(size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1808 				  page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1809 
1810 		vcpu->dirty_gfns = addr;
1811 		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1812 	}
1813 
1814 	return vcpu->dirty_gfns;
1815 }
1816 
1817 /*
1818  * Device Ioctl
1819  */
1820 
1821 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1822 {
1823 	struct kvm_device_attr attribute = {
1824 		.group = group,
1825 		.attr = attr,
1826 		.flags = 0,
1827 	};
1828 
1829 	return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1830 }
1831 
1832 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1833 {
1834 	struct kvm_create_device create_dev = {
1835 		.type = type,
1836 		.flags = KVM_CREATE_DEVICE_TEST,
1837 	};
1838 
1839 	return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1840 }
1841 
1842 int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1843 {
1844 	struct kvm_create_device create_dev = {
1845 		.type = type,
1846 		.fd = -1,
1847 		.flags = 0,
1848 	};
1849 	int err;
1850 
1851 	err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1852 	TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1853 	return err ? : create_dev.fd;
1854 }
1855 
1856 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1857 {
1858 	struct kvm_device_attr kvmattr = {
1859 		.group = group,
1860 		.attr = attr,
1861 		.flags = 0,
1862 		.addr = (uintptr_t)val,
1863 	};
1864 
1865 	return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1866 }
1867 
1868 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1869 {
1870 	struct kvm_device_attr kvmattr = {
1871 		.group = group,
1872 		.attr = attr,
1873 		.flags = 0,
1874 		.addr = (uintptr_t)val,
1875 	};
1876 
1877 	return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1878 }
1879 
1880 /*
1881  * IRQ related functions.
1882  */
1883 
1884 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1885 {
1886 	struct kvm_irq_level irq_level = {
1887 		.irq    = irq,
1888 		.level  = level,
1889 	};
1890 
1891 	return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1892 }
1893 
1894 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1895 {
1896 	int ret = _kvm_irq_line(vm, irq, level);
1897 
1898 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1899 }
1900 
1901 struct kvm_irq_routing *kvm_gsi_routing_create(void)
1902 {
1903 	struct kvm_irq_routing *routing;
1904 	size_t size;
1905 
1906 	size = sizeof(struct kvm_irq_routing);
1907 	/* Allocate space for the max number of entries: this wastes 196 KBs. */
1908 	size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1909 	routing = calloc(1, size);
1910 	assert(routing);
1911 
1912 	return routing;
1913 }
1914 
1915 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1916 		uint32_t gsi, uint32_t pin)
1917 {
1918 	int i;
1919 
1920 	assert(routing);
1921 	assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1922 
1923 	i = routing->nr;
1924 	routing->entries[i].gsi = gsi;
1925 	routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1926 	routing->entries[i].flags = 0;
1927 	routing->entries[i].u.irqchip.irqchip = 0;
1928 	routing->entries[i].u.irqchip.pin = pin;
1929 	routing->nr++;
1930 }
1931 
1932 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1933 {
1934 	int ret;
1935 
1936 	assert(routing);
1937 	ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1938 	free(routing);
1939 
1940 	return ret;
1941 }
1942 
1943 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1944 {
1945 	int ret;
1946 
1947 	ret = _kvm_gsi_routing_write(vm, routing);
1948 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1949 }
1950 
1951 /*
1952  * VM Dump
1953  *
1954  * Input Args:
1955  *   vm - Virtual Machine
1956  *   indent - Left margin indent amount
1957  *
1958  * Output Args:
1959  *   stream - Output FILE stream
1960  *
1961  * Return: None
1962  *
1963  * Dumps the current state of the VM given by vm, to the FILE stream
1964  * given by stream.
1965  */
1966 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1967 {
1968 	int ctr;
1969 	struct userspace_mem_region *region;
1970 	struct kvm_vcpu *vcpu;
1971 
1972 	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1973 	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1974 	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1975 	fprintf(stream, "%*sMem Regions:\n", indent, "");
1976 	hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1977 		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1978 			"host_virt: %p\n", indent + 2, "",
1979 			(uint64_t) region->region.guest_phys_addr,
1980 			(uint64_t) region->region.memory_size,
1981 			region->host_mem);
1982 		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1983 		sparsebit_dump(stream, region->unused_phy_pages, 0);
1984 		if (region->protected_phy_pages) {
1985 			fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, "");
1986 			sparsebit_dump(stream, region->protected_phy_pages, 0);
1987 		}
1988 	}
1989 	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1990 	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1991 	fprintf(stream, "%*spgd_created: %u\n", indent, "",
1992 		vm->mmu.pgd_created);
1993 	if (vm->mmu.pgd_created) {
1994 		fprintf(stream, "%*sVirtual Translation Tables:\n",
1995 			indent + 2, "");
1996 		virt_dump(stream, vm, indent + 4);
1997 	}
1998 	fprintf(stream, "%*sVCPUs:\n", indent, "");
1999 
2000 	list_for_each_entry(vcpu, &vm->vcpus, list)
2001 		vcpu_dump(stream, vcpu, indent + 2);
2002 }
2003 
2004 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x}
2005 
2006 /* Known KVM exit reasons */
2007 static struct exit_reason {
2008 	unsigned int reason;
2009 	const char *name;
2010 } exit_reasons_known[] = {
2011 	KVM_EXIT_STRING(UNKNOWN),
2012 	KVM_EXIT_STRING(EXCEPTION),
2013 	KVM_EXIT_STRING(IO),
2014 	KVM_EXIT_STRING(HYPERCALL),
2015 	KVM_EXIT_STRING(DEBUG),
2016 	KVM_EXIT_STRING(HLT),
2017 	KVM_EXIT_STRING(MMIO),
2018 	KVM_EXIT_STRING(IRQ_WINDOW_OPEN),
2019 	KVM_EXIT_STRING(SHUTDOWN),
2020 	KVM_EXIT_STRING(FAIL_ENTRY),
2021 	KVM_EXIT_STRING(INTR),
2022 	KVM_EXIT_STRING(SET_TPR),
2023 	KVM_EXIT_STRING(TPR_ACCESS),
2024 	KVM_EXIT_STRING(S390_SIEIC),
2025 	KVM_EXIT_STRING(S390_RESET),
2026 	KVM_EXIT_STRING(DCR),
2027 	KVM_EXIT_STRING(NMI),
2028 	KVM_EXIT_STRING(INTERNAL_ERROR),
2029 	KVM_EXIT_STRING(OSI),
2030 	KVM_EXIT_STRING(PAPR_HCALL),
2031 	KVM_EXIT_STRING(S390_UCONTROL),
2032 	KVM_EXIT_STRING(WATCHDOG),
2033 	KVM_EXIT_STRING(S390_TSCH),
2034 	KVM_EXIT_STRING(EPR),
2035 	KVM_EXIT_STRING(SYSTEM_EVENT),
2036 	KVM_EXIT_STRING(S390_STSI),
2037 	KVM_EXIT_STRING(IOAPIC_EOI),
2038 	KVM_EXIT_STRING(HYPERV),
2039 	KVM_EXIT_STRING(ARM_NISV),
2040 	KVM_EXIT_STRING(X86_RDMSR),
2041 	KVM_EXIT_STRING(X86_WRMSR),
2042 	KVM_EXIT_STRING(DIRTY_RING_FULL),
2043 	KVM_EXIT_STRING(AP_RESET_HOLD),
2044 	KVM_EXIT_STRING(X86_BUS_LOCK),
2045 	KVM_EXIT_STRING(XEN),
2046 	KVM_EXIT_STRING(RISCV_SBI),
2047 	KVM_EXIT_STRING(RISCV_CSR),
2048 	KVM_EXIT_STRING(NOTIFY),
2049 	KVM_EXIT_STRING(LOONGARCH_IOCSR),
2050 	KVM_EXIT_STRING(MEMORY_FAULT),
2051 	KVM_EXIT_STRING(ARM_SEA),
2052 };
2053 
2054 /*
2055  * Exit Reason String
2056  *
2057  * Input Args:
2058  *   exit_reason - Exit reason
2059  *
2060  * Output Args: None
2061  *
2062  * Return:
2063  *   Constant string pointer describing the exit reason.
2064  *
2065  * Locates and returns a constant string that describes the KVM exit
2066  * reason given by exit_reason.  If no such string is found, a constant
2067  * string of "Unknown" is returned.
2068  */
2069 const char *exit_reason_str(unsigned int exit_reason)
2070 {
2071 	unsigned int n1;
2072 
2073 	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
2074 		if (exit_reason == exit_reasons_known[n1].reason)
2075 			return exit_reasons_known[n1].name;
2076 	}
2077 
2078 	return "Unknown";
2079 }
2080 
2081 /*
2082  * Physical Contiguous Page Allocator
2083  *
2084  * Input Args:
2085  *   vm - Virtual Machine
2086  *   num - number of pages
2087  *   paddr_min - Physical address minimum
2088  *   memslot - Memory region to allocate page from
2089  *   protected - True if the pages will be used as protected/private memory
2090  *
2091  * Output Args: None
2092  *
2093  * Return:
2094  *   Starting physical address
2095  *
2096  * Within the VM specified by vm, locates a range of available physical
2097  * pages at or above paddr_min. If found, the pages are marked as in use
2098  * and their base address is returned. A TEST_ASSERT failure occurs if
2099  * not enough pages are available at or above paddr_min.
2100  */
2101 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2102 				vm_paddr_t paddr_min, uint32_t memslot,
2103 				bool protected)
2104 {
2105 	struct userspace_mem_region *region;
2106 	sparsebit_idx_t pg, base;
2107 
2108 	TEST_ASSERT(num > 0, "Must allocate at least one page");
2109 
2110 	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2111 		"not divisible by page size.\n"
2112 		"  paddr_min: 0x%lx page_size: 0x%x",
2113 		paddr_min, vm->page_size);
2114 
2115 	region = memslot2region(vm, memslot);
2116 	TEST_ASSERT(!protected || region->protected_phy_pages,
2117 		    "Region doesn't support protected memory");
2118 
2119 	base = pg = paddr_min >> vm->page_shift;
2120 	do {
2121 		for (; pg < base + num; ++pg) {
2122 			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2123 				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2124 				break;
2125 			}
2126 		}
2127 	} while (pg && pg != base + num);
2128 
2129 	if (pg == 0) {
2130 		fprintf(stderr, "No guest physical page available, "
2131 			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2132 			paddr_min, vm->page_size, memslot);
2133 		fputs("---- vm dump ----\n", stderr);
2134 		vm_dump(stderr, vm, 2);
2135 		abort();
2136 	}
2137 
2138 	for (pg = base; pg < base + num; ++pg) {
2139 		sparsebit_clear(region->unused_phy_pages, pg);
2140 		if (protected)
2141 			sparsebit_set(region->protected_phy_pages, pg);
2142 	}
2143 
2144 	return base * vm->page_size;
2145 }
2146 
2147 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2148 			     uint32_t memslot)
2149 {
2150 	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2151 }
2152 
2153 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2154 {
2155 	return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
2156 				 vm->memslots[MEM_REGION_PT]);
2157 }
2158 
2159 /*
2160  * Address Guest Virtual to Host Virtual
2161  *
2162  * Input Args:
2163  *   vm - Virtual Machine
2164  *   gva - VM virtual address
2165  *
2166  * Output Args: None
2167  *
2168  * Return:
2169  *   Equivalent host virtual address
2170  */
2171 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2172 {
2173 	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2174 }
2175 
2176 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
2177 {
2178 	return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2179 }
2180 
2181 static unsigned int vm_calc_num_pages(unsigned int num_pages,
2182 				      unsigned int page_shift,
2183 				      unsigned int new_page_shift,
2184 				      bool ceil)
2185 {
2186 	unsigned int n = 1 << (new_page_shift - page_shift);
2187 
2188 	if (page_shift >= new_page_shift)
2189 		return num_pages * (1 << (page_shift - new_page_shift));
2190 
2191 	return num_pages / n + !!(ceil && num_pages % n);
2192 }
2193 
2194 static inline int getpageshift(void)
2195 {
2196 	return __builtin_ffs(getpagesize()) - 1;
2197 }
2198 
2199 unsigned int
2200 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2201 {
2202 	return vm_calc_num_pages(num_guest_pages,
2203 				 vm_guest_mode_params[mode].page_shift,
2204 				 getpageshift(), true);
2205 }
2206 
2207 unsigned int
2208 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2209 {
2210 	return vm_calc_num_pages(num_host_pages, getpageshift(),
2211 				 vm_guest_mode_params[mode].page_shift, false);
2212 }
2213 
2214 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2215 {
2216 	unsigned int n;
2217 	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2218 	return vm_adjust_num_guest_pages(mode, n);
2219 }
2220 
2221 /*
2222  * Read binary stats descriptors
2223  *
2224  * Input Args:
2225  *   stats_fd - the file descriptor for the binary stats file from which to read
2226  *   header - the binary stats metadata header corresponding to the given FD
2227  *
2228  * Output Args: None
2229  *
2230  * Return:
2231  *   A pointer to a newly allocated series of stat descriptors.
2232  *   Caller is responsible for freeing the returned kvm_stats_desc.
2233  *
2234  * Read the stats descriptors from the binary stats interface.
2235  */
2236 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
2237 					      struct kvm_stats_header *header)
2238 {
2239 	struct kvm_stats_desc *stats_desc;
2240 	ssize_t desc_size, total_size, ret;
2241 
2242 	desc_size = get_stats_descriptor_size(header);
2243 	total_size = header->num_desc * desc_size;
2244 
2245 	stats_desc = calloc(header->num_desc, desc_size);
2246 	TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
2247 
2248 	ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
2249 	TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
2250 
2251 	return stats_desc;
2252 }
2253 
2254 /*
2255  * Read stat data for a particular stat
2256  *
2257  * Input Args:
2258  *   stats_fd - the file descriptor for the binary stats file from which to read
2259  *   header - the binary stats metadata header corresponding to the given FD
2260  *   desc - the binary stat metadata for the particular stat to be read
2261  *   max_elements - the maximum number of 8-byte values to read into data
2262  *
2263  * Output Args:
2264  *   data - the buffer into which stat data should be read
2265  *
2266  * Read the data values of a specified stat from the binary stats interface.
2267  */
2268 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
2269 		    struct kvm_stats_desc *desc, uint64_t *data,
2270 		    size_t max_elements)
2271 {
2272 	size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
2273 	size_t size = nr_elements * sizeof(*data);
2274 	ssize_t ret;
2275 
2276 	TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
2277 	TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
2278 
2279 	ret = pread(stats_fd, data, size,
2280 		    header->data_offset + desc->offset);
2281 
2282 	TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
2283 		    desc->name, errno, strerror(errno));
2284 	TEST_ASSERT(ret == size,
2285 		    "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
2286 		    desc->name, size, ret);
2287 }
2288 
2289 void kvm_get_stat(struct kvm_binary_stats *stats, const char *name,
2290 		  uint64_t *data, size_t max_elements)
2291 {
2292 	struct kvm_stats_desc *desc;
2293 	size_t size_desc;
2294 	int i;
2295 
2296 	if (!stats->desc) {
2297 		read_stats_header(stats->fd, &stats->header);
2298 		stats->desc = read_stats_descriptors(stats->fd, &stats->header);
2299 	}
2300 
2301 	size_desc = get_stats_descriptor_size(&stats->header);
2302 
2303 	for (i = 0; i < stats->header.num_desc; ++i) {
2304 		desc = (void *)stats->desc + (i * size_desc);
2305 
2306 		if (strcmp(desc->name, name))
2307 			continue;
2308 
2309 		read_stat_data(stats->fd, &stats->header, desc, data, max_elements);
2310 		return;
2311 	}
2312 
2313 	TEST_FAIL("Unable to find stat '%s'", name);
2314 }
2315 
2316 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm, unsigned int nr_vcpus)
2317 {
2318 }
2319 
2320 __weak void kvm_arch_vm_finalize_vcpus(struct kvm_vm *vm)
2321 {
2322 }
2323 
2324 __weak void kvm_arch_vm_release(struct kvm_vm *vm)
2325 {
2326 }
2327 
2328 __weak void kvm_selftest_arch_init(void)
2329 {
2330 }
2331 
2332 static void report_unexpected_signal(int signum)
2333 {
2334 #define KVM_CASE_SIGNUM(sig)					\
2335 	case sig: TEST_FAIL("Unexpected " #sig " (%d)\n", signum)
2336 
2337 	switch (signum) {
2338 	KVM_CASE_SIGNUM(SIGBUS);
2339 	KVM_CASE_SIGNUM(SIGSEGV);
2340 	KVM_CASE_SIGNUM(SIGILL);
2341 	KVM_CASE_SIGNUM(SIGFPE);
2342 	default:
2343 		TEST_FAIL("Unexpected signal %d\n", signum);
2344 	}
2345 }
2346 
2347 void __attribute((constructor)) kvm_selftest_init(void)
2348 {
2349 	struct sigaction sig_sa = {
2350 		.sa_handler = report_unexpected_signal,
2351 	};
2352 
2353 	/* Tell stdout not to buffer its content. */
2354 	setbuf(stdout, NULL);
2355 
2356 	sigaction(SIGBUS, &sig_sa, NULL);
2357 	sigaction(SIGSEGV, &sig_sa, NULL);
2358 	sigaction(SIGILL, &sig_sa, NULL);
2359 	sigaction(SIGFPE, &sig_sa, NULL);
2360 
2361 	guest_random_seed = last_guest_seed = random();
2362 	pr_info("Random seed: 0x%x\n", guest_random_seed);
2363 
2364 	kvm_selftest_arch_init();
2365 }
2366 
2367 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr)
2368 {
2369 	sparsebit_idx_t pg = 0;
2370 	struct userspace_mem_region *region;
2371 
2372 	if (!vm_arch_has_protected_memory(vm))
2373 		return false;
2374 
2375 	region = userspace_mem_region_find(vm, paddr, paddr);
2376 	TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr);
2377 
2378 	pg = paddr >> vm->page_shift;
2379 	return sparsebit_is_set(region->protected_phy_pages, pg);
2380 }
2381 
2382 __weak bool kvm_arch_has_default_irqchip(void)
2383 {
2384 	return false;
2385 }
2386