1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/migrate.h>
43 #include <linux/delayacct.h>
44 #include <linux/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 #include <linux/pagewalk.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/ctype.h>
55 #include <linux/debugfs.h>
56 #include <linux/khugepaged.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/random.h>
59 #include <linux/mmu_notifier.h>
60 #include <linux/parser.h>
61
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64
65 #include <linux/swapops.h>
66 #include <linux/balloon_compaction.h>
67 #include <linux/sched/sysctl.h>
68
69 #include "internal.h"
70 #include "swap.h"
71
72 #define CREATE_TRACE_POINTS
73 #include <trace/events/vmscan.h>
74
75 struct scan_control {
76 /* How many pages shrink_list() should reclaim */
77 unsigned long nr_to_reclaim;
78
79 /*
80 * Nodemask of nodes allowed by the caller. If NULL, all nodes
81 * are scanned.
82 */
83 nodemask_t *nodemask;
84
85 /*
86 * The memory cgroup that hit its limit and as a result is the
87 * primary target of this reclaim invocation.
88 */
89 struct mem_cgroup *target_mem_cgroup;
90
91 /*
92 * Scan pressure balancing between anon and file LRUs
93 */
94 unsigned long anon_cost;
95 unsigned long file_cost;
96
97 /* Swappiness value for proactive reclaim. Always use sc_swappiness()! */
98 int *proactive_swappiness;
99
100 /* Can active folios be deactivated as part of reclaim? */
101 #define DEACTIVATE_ANON 1
102 #define DEACTIVATE_FILE 2
103 unsigned int may_deactivate:2;
104 unsigned int force_deactivate:1;
105 unsigned int skipped_deactivate:1;
106
107 /* Writepage batching in laptop mode; RECLAIM_WRITE */
108 unsigned int may_writepage:1;
109
110 /* Can mapped folios be reclaimed? */
111 unsigned int may_unmap:1;
112
113 /* Can folios be swapped as part of reclaim? */
114 unsigned int may_swap:1;
115
116 /* Not allow cache_trim_mode to be turned on as part of reclaim? */
117 unsigned int no_cache_trim_mode:1;
118
119 /* Has cache_trim_mode failed at least once? */
120 unsigned int cache_trim_mode_failed:1;
121
122 /* Proactive reclaim invoked by userspace */
123 unsigned int proactive:1;
124
125 /*
126 * Cgroup memory below memory.low is protected as long as we
127 * don't threaten to OOM. If any cgroup is reclaimed at
128 * reduced force or passed over entirely due to its memory.low
129 * setting (memcg_low_skipped), and nothing is reclaimed as a
130 * result, then go back for one more cycle that reclaims the protected
131 * memory (memcg_low_reclaim) to avert OOM.
132 */
133 unsigned int memcg_low_reclaim:1;
134 unsigned int memcg_low_skipped:1;
135
136 /* Shared cgroup tree walk failed, rescan the whole tree */
137 unsigned int memcg_full_walk:1;
138
139 unsigned int hibernation_mode:1;
140
141 /* One of the zones is ready for compaction */
142 unsigned int compaction_ready:1;
143
144 /* There is easily reclaimable cold cache in the current node */
145 unsigned int cache_trim_mode:1;
146
147 /* The file folios on the current node are dangerously low */
148 unsigned int file_is_tiny:1;
149
150 /* Always discard instead of demoting to lower tier memory */
151 unsigned int no_demotion:1;
152
153 /* Allocation order */
154 s8 order;
155
156 /* Scan (total_size >> priority) pages at once */
157 s8 priority;
158
159 /* The highest zone to isolate folios for reclaim from */
160 s8 reclaim_idx;
161
162 /* This context's GFP mask */
163 gfp_t gfp_mask;
164
165 /* Incremented by the number of inactive pages that were scanned */
166 unsigned long nr_scanned;
167
168 /* Number of pages freed so far during a call to shrink_zones() */
169 unsigned long nr_reclaimed;
170
171 struct {
172 unsigned int dirty;
173 unsigned int unqueued_dirty;
174 unsigned int congested;
175 unsigned int writeback;
176 unsigned int immediate;
177 unsigned int file_taken;
178 unsigned int taken;
179 } nr;
180
181 /* for recording the reclaimed slab by now */
182 struct reclaim_state reclaim_state;
183 };
184
185 #ifdef ARCH_HAS_PREFETCHW
186 #define prefetchw_prev_lru_folio(_folio, _base, _field) \
187 do { \
188 if ((_folio)->lru.prev != _base) { \
189 struct folio *prev; \
190 \
191 prev = lru_to_folio(&(_folio->lru)); \
192 prefetchw(&prev->_field); \
193 } \
194 } while (0)
195 #else
196 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
197 #endif
198
199 /*
200 * From 0 .. MAX_SWAPPINESS. Higher means more swappy.
201 */
202 int vm_swappiness = 60;
203
204 #ifdef CONFIG_MEMCG
205
206 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
cgroup_reclaim(struct scan_control * sc)207 static bool cgroup_reclaim(struct scan_control *sc)
208 {
209 return sc->target_mem_cgroup;
210 }
211
212 /*
213 * Returns true for reclaim on the root cgroup. This is true for direct
214 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
215 */
root_reclaim(struct scan_control * sc)216 static bool root_reclaim(struct scan_control *sc)
217 {
218 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
219 }
220
221 /**
222 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
223 * @sc: scan_control in question
224 *
225 * The normal page dirty throttling mechanism in balance_dirty_pages() is
226 * completely broken with the legacy memcg and direct stalling in
227 * shrink_folio_list() is used for throttling instead, which lacks all the
228 * niceties such as fairness, adaptive pausing, bandwidth proportional
229 * allocation and configurability.
230 *
231 * This function tests whether the vmscan currently in progress can assume
232 * that the normal dirty throttling mechanism is operational.
233 */
writeback_throttling_sane(struct scan_control * sc)234 static bool writeback_throttling_sane(struct scan_control *sc)
235 {
236 if (!cgroup_reclaim(sc))
237 return true;
238 #ifdef CONFIG_CGROUP_WRITEBACK
239 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
240 return true;
241 #endif
242 return false;
243 }
244
sc_swappiness(struct scan_control * sc,struct mem_cgroup * memcg)245 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
246 {
247 if (sc->proactive && sc->proactive_swappiness)
248 return *sc->proactive_swappiness;
249 return mem_cgroup_swappiness(memcg);
250 }
251 #else
cgroup_reclaim(struct scan_control * sc)252 static bool cgroup_reclaim(struct scan_control *sc)
253 {
254 return false;
255 }
256
root_reclaim(struct scan_control * sc)257 static bool root_reclaim(struct scan_control *sc)
258 {
259 return true;
260 }
261
writeback_throttling_sane(struct scan_control * sc)262 static bool writeback_throttling_sane(struct scan_control *sc)
263 {
264 return true;
265 }
266
sc_swappiness(struct scan_control * sc,struct mem_cgroup * memcg)267 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
268 {
269 return READ_ONCE(vm_swappiness);
270 }
271 #endif
272
273 /* for_each_managed_zone_pgdat - helper macro to iterate over all managed zones in a pgdat up to
274 * and including the specified highidx
275 * @zone: The current zone in the iterator
276 * @pgdat: The pgdat which node_zones are being iterated
277 * @idx: The index variable
278 * @highidx: The index of the highest zone to return
279 *
280 * This macro iterates through all managed zones up to and including the specified highidx.
281 * The zone iterator enters an invalid state after macro call and must be reinitialized
282 * before it can be used again.
283 */
284 #define for_each_managed_zone_pgdat(zone, pgdat, idx, highidx) \
285 for ((idx) = 0, (zone) = (pgdat)->node_zones; \
286 (idx) <= (highidx); \
287 (idx)++, (zone)++) \
288 if (!managed_zone(zone)) \
289 continue; \
290 else
291
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)292 static void set_task_reclaim_state(struct task_struct *task,
293 struct reclaim_state *rs)
294 {
295 /* Check for an overwrite */
296 WARN_ON_ONCE(rs && task->reclaim_state);
297
298 /* Check for the nulling of an already-nulled member */
299 WARN_ON_ONCE(!rs && !task->reclaim_state);
300
301 task->reclaim_state = rs;
302 }
303
304 /*
305 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
306 * scan_control->nr_reclaimed.
307 */
flush_reclaim_state(struct scan_control * sc)308 static void flush_reclaim_state(struct scan_control *sc)
309 {
310 /*
311 * Currently, reclaim_state->reclaimed includes three types of pages
312 * freed outside of vmscan:
313 * (1) Slab pages.
314 * (2) Clean file pages from pruned inodes (on highmem systems).
315 * (3) XFS freed buffer pages.
316 *
317 * For all of these cases, we cannot universally link the pages to a
318 * single memcg. For example, a memcg-aware shrinker can free one object
319 * charged to the target memcg, causing an entire page to be freed.
320 * If we count the entire page as reclaimed from the memcg, we end up
321 * overestimating the reclaimed amount (potentially under-reclaiming).
322 *
323 * Only count such pages for global reclaim to prevent under-reclaiming
324 * from the target memcg; preventing unnecessary retries during memcg
325 * charging and false positives from proactive reclaim.
326 *
327 * For uncommon cases where the freed pages were actually mostly
328 * charged to the target memcg, we end up underestimating the reclaimed
329 * amount. This should be fine. The freed pages will be uncharged
330 * anyway, even if they are not counted here properly, and we will be
331 * able to make forward progress in charging (which is usually in a
332 * retry loop).
333 *
334 * We can go one step further, and report the uncharged objcg pages in
335 * memcg reclaim, to make reporting more accurate and reduce
336 * underestimation, but it's probably not worth the complexity for now.
337 */
338 if (current->reclaim_state && root_reclaim(sc)) {
339 sc->nr_reclaimed += current->reclaim_state->reclaimed;
340 current->reclaim_state->reclaimed = 0;
341 }
342 }
343
can_demote(int nid,struct scan_control * sc,struct mem_cgroup * memcg)344 static bool can_demote(int nid, struct scan_control *sc,
345 struct mem_cgroup *memcg)
346 {
347 int demotion_nid;
348
349 if (!numa_demotion_enabled)
350 return false;
351 if (sc && sc->no_demotion)
352 return false;
353
354 demotion_nid = next_demotion_node(nid);
355 if (demotion_nid == NUMA_NO_NODE)
356 return false;
357
358 /* If demotion node isn't in the cgroup's mems_allowed, fall back */
359 return mem_cgroup_node_allowed(memcg, demotion_nid);
360 }
361
can_reclaim_anon_pages(struct mem_cgroup * memcg,int nid,struct scan_control * sc)362 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
363 int nid,
364 struct scan_control *sc)
365 {
366 if (memcg == NULL) {
367 /*
368 * For non-memcg reclaim, is there
369 * space in any swap device?
370 */
371 if (get_nr_swap_pages() > 0)
372 return true;
373 } else {
374 /* Is the memcg below its swap limit? */
375 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
376 return true;
377 }
378
379 /*
380 * The page can not be swapped.
381 *
382 * Can it be reclaimed from this node via demotion?
383 */
384 return can_demote(nid, sc, memcg);
385 }
386
387 /*
388 * This misses isolated folios which are not accounted for to save counters.
389 * As the data only determines if reclaim or compaction continues, it is
390 * not expected that isolated folios will be a dominating factor.
391 */
zone_reclaimable_pages(struct zone * zone)392 unsigned long zone_reclaimable_pages(struct zone *zone)
393 {
394 unsigned long nr;
395
396 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
397 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
398 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
399 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
400 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
401
402 return nr;
403 }
404
405 /**
406 * lruvec_lru_size - Returns the number of pages on the given LRU list.
407 * @lruvec: lru vector
408 * @lru: lru to use
409 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
410 */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)411 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
412 int zone_idx)
413 {
414 unsigned long size = 0;
415 int zid;
416 struct zone *zone;
417
418 for_each_managed_zone_pgdat(zone, lruvec_pgdat(lruvec), zid, zone_idx) {
419 if (!mem_cgroup_disabled())
420 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
421 else
422 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
423 }
424 return size;
425 }
426
drop_slab_node(int nid)427 static unsigned long drop_slab_node(int nid)
428 {
429 unsigned long freed = 0;
430 struct mem_cgroup *memcg = NULL;
431
432 memcg = mem_cgroup_iter(NULL, NULL, NULL);
433 do {
434 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
435 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
436
437 return freed;
438 }
439
drop_slab(void)440 void drop_slab(void)
441 {
442 int nid;
443 int shift = 0;
444 unsigned long freed;
445
446 do {
447 freed = 0;
448 for_each_online_node(nid) {
449 if (fatal_signal_pending(current))
450 return;
451
452 freed += drop_slab_node(nid);
453 }
454 } while ((freed >> shift++) > 1);
455 }
456
457 #define CHECK_RECLAIMER_OFFSET(type) \
458 do { \
459 BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD != \
460 PGDEMOTE_##type - PGDEMOTE_KSWAPD); \
461 BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD != \
462 PGSCAN_##type - PGSCAN_KSWAPD); \
463 } while (0)
464
reclaimer_offset(struct scan_control * sc)465 static int reclaimer_offset(struct scan_control *sc)
466 {
467 CHECK_RECLAIMER_OFFSET(DIRECT);
468 CHECK_RECLAIMER_OFFSET(KHUGEPAGED);
469 CHECK_RECLAIMER_OFFSET(PROACTIVE);
470
471 if (current_is_kswapd())
472 return 0;
473 if (current_is_khugepaged())
474 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
475 if (sc->proactive)
476 return PGSTEAL_PROACTIVE - PGSTEAL_KSWAPD;
477 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
478 }
479
480 /*
481 * We detected a synchronous write error writing a folio out. Probably
482 * -ENOSPC. We need to propagate that into the address_space for a subsequent
483 * fsync(), msync() or close().
484 *
485 * The tricky part is that after writepage we cannot touch the mapping: nothing
486 * prevents it from being freed up. But we have a ref on the folio and once
487 * that folio is locked, the mapping is pinned.
488 *
489 * We're allowed to run sleeping folio_lock() here because we know the caller has
490 * __GFP_FS.
491 */
handle_write_error(struct address_space * mapping,struct folio * folio,int error)492 static void handle_write_error(struct address_space *mapping,
493 struct folio *folio, int error)
494 {
495 folio_lock(folio);
496 if (folio_mapping(folio) == mapping)
497 mapping_set_error(mapping, error);
498 folio_unlock(folio);
499 }
500
skip_throttle_noprogress(pg_data_t * pgdat)501 static bool skip_throttle_noprogress(pg_data_t *pgdat)
502 {
503 int reclaimable = 0, write_pending = 0;
504 int i;
505 struct zone *zone;
506 /*
507 * If kswapd is disabled, reschedule if necessary but do not
508 * throttle as the system is likely near OOM.
509 */
510 if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES)
511 return true;
512
513 /*
514 * If there are a lot of dirty/writeback folios then do not
515 * throttle as throttling will occur when the folios cycle
516 * towards the end of the LRU if still under writeback.
517 */
518 for_each_managed_zone_pgdat(zone, pgdat, i, MAX_NR_ZONES - 1) {
519 reclaimable += zone_reclaimable_pages(zone);
520 write_pending += zone_page_state_snapshot(zone,
521 NR_ZONE_WRITE_PENDING);
522 }
523 if (2 * write_pending <= reclaimable)
524 return true;
525
526 return false;
527 }
528
reclaim_throttle(pg_data_t * pgdat,enum vmscan_throttle_state reason)529 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
530 {
531 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
532 long timeout, ret;
533 DEFINE_WAIT(wait);
534
535 /*
536 * Do not throttle user workers, kthreads other than kswapd or
537 * workqueues. They may be required for reclaim to make
538 * forward progress (e.g. journalling workqueues or kthreads).
539 */
540 if (!current_is_kswapd() &&
541 current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
542 cond_resched();
543 return;
544 }
545
546 /*
547 * These figures are pulled out of thin air.
548 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
549 * parallel reclaimers which is a short-lived event so the timeout is
550 * short. Failing to make progress or waiting on writeback are
551 * potentially long-lived events so use a longer timeout. This is shaky
552 * logic as a failure to make progress could be due to anything from
553 * writeback to a slow device to excessive referenced folios at the tail
554 * of the inactive LRU.
555 */
556 switch(reason) {
557 case VMSCAN_THROTTLE_WRITEBACK:
558 timeout = HZ/10;
559
560 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
561 WRITE_ONCE(pgdat->nr_reclaim_start,
562 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
563 }
564
565 break;
566 case VMSCAN_THROTTLE_CONGESTED:
567 fallthrough;
568 case VMSCAN_THROTTLE_NOPROGRESS:
569 if (skip_throttle_noprogress(pgdat)) {
570 cond_resched();
571 return;
572 }
573
574 timeout = 1;
575
576 break;
577 case VMSCAN_THROTTLE_ISOLATED:
578 timeout = HZ/50;
579 break;
580 default:
581 WARN_ON_ONCE(1);
582 timeout = HZ;
583 break;
584 }
585
586 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
587 ret = schedule_timeout(timeout);
588 finish_wait(wqh, &wait);
589
590 if (reason == VMSCAN_THROTTLE_WRITEBACK)
591 atomic_dec(&pgdat->nr_writeback_throttled);
592
593 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
594 jiffies_to_usecs(timeout - ret),
595 reason);
596 }
597
598 /*
599 * Account for folios written if tasks are throttled waiting on dirty
600 * folios to clean. If enough folios have been cleaned since throttling
601 * started then wakeup the throttled tasks.
602 */
__acct_reclaim_writeback(pg_data_t * pgdat,struct folio * folio,int nr_throttled)603 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
604 int nr_throttled)
605 {
606 unsigned long nr_written;
607
608 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
609
610 /*
611 * This is an inaccurate read as the per-cpu deltas may not
612 * be synchronised. However, given that the system is
613 * writeback throttled, it is not worth taking the penalty
614 * of getting an accurate count. At worst, the throttle
615 * timeout guarantees forward progress.
616 */
617 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
618 READ_ONCE(pgdat->nr_reclaim_start);
619
620 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
621 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
622 }
623
624 /* possible outcome of pageout() */
625 typedef enum {
626 /* failed to write folio out, folio is locked */
627 PAGE_KEEP,
628 /* move folio to the active list, folio is locked */
629 PAGE_ACTIVATE,
630 /* folio has been sent to the disk successfully, folio is unlocked */
631 PAGE_SUCCESS,
632 /* folio is clean and locked */
633 PAGE_CLEAN,
634 } pageout_t;
635
writeout(struct folio * folio,struct address_space * mapping,struct swap_iocb ** plug,struct list_head * folio_list)636 static pageout_t writeout(struct folio *folio, struct address_space *mapping,
637 struct swap_iocb **plug, struct list_head *folio_list)
638 {
639 int res;
640
641 folio_set_reclaim(folio);
642
643 /*
644 * The large shmem folio can be split if CONFIG_THP_SWAP is not enabled
645 * or we failed to allocate contiguous swap entries, in which case
646 * the split out folios get added back to folio_list.
647 */
648 if (shmem_mapping(mapping))
649 res = shmem_writeout(folio, plug, folio_list);
650 else
651 res = swap_writeout(folio, plug);
652
653 if (res < 0)
654 handle_write_error(mapping, folio, res);
655 if (res == AOP_WRITEPAGE_ACTIVATE) {
656 folio_clear_reclaim(folio);
657 return PAGE_ACTIVATE;
658 }
659
660 /* synchronous write? */
661 if (!folio_test_writeback(folio))
662 folio_clear_reclaim(folio);
663
664 trace_mm_vmscan_write_folio(folio);
665 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
666 return PAGE_SUCCESS;
667 }
668
669 /*
670 * pageout is called by shrink_folio_list() for each dirty folio.
671 */
pageout(struct folio * folio,struct address_space * mapping,struct swap_iocb ** plug,struct list_head * folio_list)672 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
673 struct swap_iocb **plug, struct list_head *folio_list)
674 {
675 /*
676 * We no longer attempt to writeback filesystem folios here, other
677 * than tmpfs/shmem. That's taken care of in page-writeback.
678 * If we find a dirty filesystem folio at the end of the LRU list,
679 * typically that means the filesystem is saturating the storage
680 * with contiguous writes and telling it to write a folio here
681 * would only make the situation worse by injecting an element
682 * of random access.
683 *
684 * If the folio is swapcache, write it back even if that would
685 * block, for some throttling. This happens by accident, because
686 * swap_backing_dev_info is bust: it doesn't reflect the
687 * congestion state of the swapdevs. Easy to fix, if needed.
688 *
689 * A freeable shmem or swapcache folio is referenced only by the
690 * caller that isolated the folio and the page cache.
691 */
692 if (folio_ref_count(folio) != 1 + folio_nr_pages(folio) || !mapping)
693 return PAGE_KEEP;
694 if (!shmem_mapping(mapping) && !folio_test_anon(folio))
695 return PAGE_ACTIVATE;
696 if (!folio_clear_dirty_for_io(folio))
697 return PAGE_CLEAN;
698 return writeout(folio, mapping, plug, folio_list);
699 }
700
701 /*
702 * Same as remove_mapping, but if the folio is removed from the mapping, it
703 * gets returned with a refcount of 0.
704 */
__remove_mapping(struct address_space * mapping,struct folio * folio,bool reclaimed,struct mem_cgroup * target_memcg)705 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
706 bool reclaimed, struct mem_cgroup *target_memcg)
707 {
708 int refcount;
709 void *shadow = NULL;
710 struct swap_cluster_info *ci;
711
712 BUG_ON(!folio_test_locked(folio));
713 BUG_ON(mapping != folio_mapping(folio));
714
715 if (folio_test_swapcache(folio)) {
716 ci = swap_cluster_get_and_lock_irq(folio);
717 } else {
718 spin_lock(&mapping->host->i_lock);
719 xa_lock_irq(&mapping->i_pages);
720 }
721
722 /*
723 * The non racy check for a busy folio.
724 *
725 * Must be careful with the order of the tests. When someone has
726 * a ref to the folio, it may be possible that they dirty it then
727 * drop the reference. So if the dirty flag is tested before the
728 * refcount here, then the following race may occur:
729 *
730 * get_user_pages(&page);
731 * [user mapping goes away]
732 * write_to(page);
733 * !folio_test_dirty(folio) [good]
734 * folio_set_dirty(folio);
735 * folio_put(folio);
736 * !refcount(folio) [good, discard it]
737 *
738 * [oops, our write_to data is lost]
739 *
740 * Reversing the order of the tests ensures such a situation cannot
741 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
742 * load is not satisfied before that of folio->_refcount.
743 *
744 * Note that if the dirty flag is always set via folio_mark_dirty,
745 * and thus under the i_pages lock, then this ordering is not required.
746 */
747 refcount = 1 + folio_nr_pages(folio);
748 if (!folio_ref_freeze(folio, refcount))
749 goto cannot_free;
750 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
751 if (unlikely(folio_test_dirty(folio))) {
752 folio_ref_unfreeze(folio, refcount);
753 goto cannot_free;
754 }
755
756 if (folio_test_swapcache(folio)) {
757 swp_entry_t swap = folio->swap;
758
759 if (reclaimed && !mapping_exiting(mapping))
760 shadow = workingset_eviction(folio, target_memcg);
761 __swap_cache_del_folio(ci, folio, swap, shadow);
762 memcg1_swapout(folio, swap);
763 swap_cluster_unlock_irq(ci);
764 put_swap_folio(folio, swap);
765 } else {
766 void (*free_folio)(struct folio *);
767
768 free_folio = mapping->a_ops->free_folio;
769 /*
770 * Remember a shadow entry for reclaimed file cache in
771 * order to detect refaults, thus thrashing, later on.
772 *
773 * But don't store shadows in an address space that is
774 * already exiting. This is not just an optimization,
775 * inode reclaim needs to empty out the radix tree or
776 * the nodes are lost. Don't plant shadows behind its
777 * back.
778 *
779 * We also don't store shadows for DAX mappings because the
780 * only page cache folios found in these are zero pages
781 * covering holes, and because we don't want to mix DAX
782 * exceptional entries and shadow exceptional entries in the
783 * same address_space.
784 */
785 if (reclaimed && folio_is_file_lru(folio) &&
786 !mapping_exiting(mapping) && !dax_mapping(mapping))
787 shadow = workingset_eviction(folio, target_memcg);
788 __filemap_remove_folio(folio, shadow);
789 xa_unlock_irq(&mapping->i_pages);
790 if (mapping_shrinkable(mapping))
791 inode_lru_list_add(mapping->host);
792 spin_unlock(&mapping->host->i_lock);
793
794 if (free_folio)
795 free_folio(folio);
796 }
797
798 return 1;
799
800 cannot_free:
801 if (folio_test_swapcache(folio)) {
802 swap_cluster_unlock_irq(ci);
803 } else {
804 xa_unlock_irq(&mapping->i_pages);
805 spin_unlock(&mapping->host->i_lock);
806 }
807 return 0;
808 }
809
810 /**
811 * remove_mapping() - Attempt to remove a folio from its mapping.
812 * @mapping: The address space.
813 * @folio: The folio to remove.
814 *
815 * If the folio is dirty, under writeback or if someone else has a ref
816 * on it, removal will fail.
817 * Return: The number of pages removed from the mapping. 0 if the folio
818 * could not be removed.
819 * Context: The caller should have a single refcount on the folio and
820 * hold its lock.
821 */
remove_mapping(struct address_space * mapping,struct folio * folio)822 long remove_mapping(struct address_space *mapping, struct folio *folio)
823 {
824 if (__remove_mapping(mapping, folio, false, NULL)) {
825 /*
826 * Unfreezing the refcount with 1 effectively
827 * drops the pagecache ref for us without requiring another
828 * atomic operation.
829 */
830 folio_ref_unfreeze(folio, 1);
831 return folio_nr_pages(folio);
832 }
833 return 0;
834 }
835
836 /**
837 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
838 * @folio: Folio to be returned to an LRU list.
839 *
840 * Add previously isolated @folio to appropriate LRU list.
841 * The folio may still be unevictable for other reasons.
842 *
843 * Context: lru_lock must not be held, interrupts must be enabled.
844 */
folio_putback_lru(struct folio * folio)845 void folio_putback_lru(struct folio *folio)
846 {
847 folio_add_lru(folio);
848 folio_put(folio); /* drop ref from isolate */
849 }
850
851 enum folio_references {
852 FOLIOREF_RECLAIM,
853 FOLIOREF_RECLAIM_CLEAN,
854 FOLIOREF_KEEP,
855 FOLIOREF_ACTIVATE,
856 };
857
858 #ifdef CONFIG_LRU_GEN
859 /*
860 * Only used on a mapped folio in the eviction (rmap walk) path, where promotion
861 * needs to be done by taking the folio off the LRU list and then adding it back
862 * with PG_active set. In contrast, the aging (page table walk) path uses
863 * folio_update_gen().
864 */
lru_gen_set_refs(struct folio * folio)865 static bool lru_gen_set_refs(struct folio *folio)
866 {
867 /* see the comment on LRU_REFS_FLAGS */
868 if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
869 set_mask_bits(&folio->flags.f, LRU_REFS_MASK, BIT(PG_referenced));
870 return false;
871 }
872
873 set_mask_bits(&folio->flags.f, LRU_REFS_FLAGS, BIT(PG_workingset));
874 return true;
875 }
876 #else
lru_gen_set_refs(struct folio * folio)877 static bool lru_gen_set_refs(struct folio *folio)
878 {
879 return false;
880 }
881 #endif /* CONFIG_LRU_GEN */
882
folio_check_references(struct folio * folio,struct scan_control * sc)883 static enum folio_references folio_check_references(struct folio *folio,
884 struct scan_control *sc)
885 {
886 int referenced_ptes, referenced_folio;
887 vm_flags_t vm_flags;
888
889 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
890 &vm_flags);
891
892 /*
893 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
894 * Let the folio, now marked Mlocked, be moved to the unevictable list.
895 */
896 if (vm_flags & VM_LOCKED)
897 return FOLIOREF_ACTIVATE;
898
899 /*
900 * There are two cases to consider.
901 * 1) Rmap lock contention: rotate.
902 * 2) Skip the non-shared swapbacked folio mapped solely by
903 * the exiting or OOM-reaped process.
904 */
905 if (referenced_ptes == -1)
906 return FOLIOREF_KEEP;
907
908 if (lru_gen_enabled()) {
909 if (!referenced_ptes)
910 return FOLIOREF_RECLAIM;
911
912 return lru_gen_set_refs(folio) ? FOLIOREF_ACTIVATE : FOLIOREF_KEEP;
913 }
914
915 referenced_folio = folio_test_clear_referenced(folio);
916
917 if (referenced_ptes) {
918 /*
919 * All mapped folios start out with page table
920 * references from the instantiating fault, so we need
921 * to look twice if a mapped file/anon folio is used more
922 * than once.
923 *
924 * Mark it and spare it for another trip around the
925 * inactive list. Another page table reference will
926 * lead to its activation.
927 *
928 * Note: the mark is set for activated folios as well
929 * so that recently deactivated but used folios are
930 * quickly recovered.
931 */
932 folio_set_referenced(folio);
933
934 if (referenced_folio || referenced_ptes > 1)
935 return FOLIOREF_ACTIVATE;
936
937 /*
938 * Activate file-backed executable folios after first usage.
939 */
940 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
941 return FOLIOREF_ACTIVATE;
942
943 return FOLIOREF_KEEP;
944 }
945
946 /* Reclaim if clean, defer dirty folios to writeback */
947 if (referenced_folio && folio_is_file_lru(folio))
948 return FOLIOREF_RECLAIM_CLEAN;
949
950 return FOLIOREF_RECLAIM;
951 }
952
953 /* Check if a folio is dirty or under writeback */
folio_check_dirty_writeback(struct folio * folio,bool * dirty,bool * writeback)954 static void folio_check_dirty_writeback(struct folio *folio,
955 bool *dirty, bool *writeback)
956 {
957 struct address_space *mapping;
958
959 /*
960 * Anonymous folios are not handled by flushers and must be written
961 * from reclaim context. Do not stall reclaim based on them.
962 * MADV_FREE anonymous folios are put into inactive file list too.
963 * They could be mistakenly treated as file lru. So further anon
964 * test is needed.
965 */
966 if (!folio_is_file_lru(folio) ||
967 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
968 *dirty = false;
969 *writeback = false;
970 return;
971 }
972
973 /* By default assume that the folio flags are accurate */
974 *dirty = folio_test_dirty(folio);
975 *writeback = folio_test_writeback(folio);
976
977 /* Verify dirty/writeback state if the filesystem supports it */
978 if (!folio_test_private(folio))
979 return;
980
981 mapping = folio_mapping(folio);
982 if (mapping && mapping->a_ops->is_dirty_writeback)
983 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
984 }
985
alloc_demote_folio(struct folio * src,unsigned long private)986 static struct folio *alloc_demote_folio(struct folio *src,
987 unsigned long private)
988 {
989 struct folio *dst;
990 nodemask_t *allowed_mask;
991 struct migration_target_control *mtc;
992
993 mtc = (struct migration_target_control *)private;
994
995 allowed_mask = mtc->nmask;
996 /*
997 * make sure we allocate from the target node first also trying to
998 * demote or reclaim pages from the target node via kswapd if we are
999 * low on free memory on target node. If we don't do this and if
1000 * we have free memory on the slower(lower) memtier, we would start
1001 * allocating pages from slower(lower) memory tiers without even forcing
1002 * a demotion of cold pages from the target memtier. This can result
1003 * in the kernel placing hot pages in slower(lower) memory tiers.
1004 */
1005 mtc->nmask = NULL;
1006 mtc->gfp_mask |= __GFP_THISNODE;
1007 dst = alloc_migration_target(src, (unsigned long)mtc);
1008 if (dst)
1009 return dst;
1010
1011 mtc->gfp_mask &= ~__GFP_THISNODE;
1012 mtc->nmask = allowed_mask;
1013
1014 return alloc_migration_target(src, (unsigned long)mtc);
1015 }
1016
1017 /*
1018 * Take folios on @demote_folios and attempt to demote them to another node.
1019 * Folios which are not demoted are left on @demote_folios.
1020 */
demote_folio_list(struct list_head * demote_folios,struct pglist_data * pgdat)1021 static unsigned int demote_folio_list(struct list_head *demote_folios,
1022 struct pglist_data *pgdat)
1023 {
1024 int target_nid = next_demotion_node(pgdat->node_id);
1025 unsigned int nr_succeeded;
1026 nodemask_t allowed_mask;
1027
1028 struct migration_target_control mtc = {
1029 /*
1030 * Allocate from 'node', or fail quickly and quietly.
1031 * When this happens, 'page' will likely just be discarded
1032 * instead of migrated.
1033 */
1034 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1035 __GFP_NOMEMALLOC | GFP_NOWAIT,
1036 .nid = target_nid,
1037 .nmask = &allowed_mask,
1038 .reason = MR_DEMOTION,
1039 };
1040
1041 if (list_empty(demote_folios))
1042 return 0;
1043
1044 if (target_nid == NUMA_NO_NODE)
1045 return 0;
1046
1047 node_get_allowed_targets(pgdat, &allowed_mask);
1048
1049 /* Demotion ignores all cpuset and mempolicy settings */
1050 migrate_pages(demote_folios, alloc_demote_folio, NULL,
1051 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1052 &nr_succeeded);
1053
1054 return nr_succeeded;
1055 }
1056
may_enter_fs(struct folio * folio,gfp_t gfp_mask)1057 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1058 {
1059 if (gfp_mask & __GFP_FS)
1060 return true;
1061 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1062 return false;
1063 /*
1064 * We can "enter_fs" for swap-cache with only __GFP_IO
1065 * providing this isn't SWP_FS_OPS.
1066 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1067 * but that will never affect SWP_FS_OPS, so the data_race
1068 * is safe.
1069 */
1070 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1071 }
1072
1073 /*
1074 * shrink_folio_list() returns the number of reclaimed pages
1075 */
shrink_folio_list(struct list_head * folio_list,struct pglist_data * pgdat,struct scan_control * sc,struct reclaim_stat * stat,bool ignore_references,struct mem_cgroup * memcg)1076 static unsigned int shrink_folio_list(struct list_head *folio_list,
1077 struct pglist_data *pgdat, struct scan_control *sc,
1078 struct reclaim_stat *stat, bool ignore_references,
1079 struct mem_cgroup *memcg)
1080 {
1081 struct folio_batch free_folios;
1082 LIST_HEAD(ret_folios);
1083 LIST_HEAD(demote_folios);
1084 unsigned int nr_reclaimed = 0, nr_demoted = 0;
1085 unsigned int pgactivate = 0;
1086 bool do_demote_pass;
1087 struct swap_iocb *plug = NULL;
1088
1089 folio_batch_init(&free_folios);
1090 memset(stat, 0, sizeof(*stat));
1091 cond_resched();
1092 do_demote_pass = can_demote(pgdat->node_id, sc, memcg);
1093
1094 retry:
1095 while (!list_empty(folio_list)) {
1096 struct address_space *mapping;
1097 struct folio *folio;
1098 enum folio_references references = FOLIOREF_RECLAIM;
1099 bool dirty, writeback;
1100 unsigned int nr_pages;
1101
1102 cond_resched();
1103
1104 folio = lru_to_folio(folio_list);
1105 list_del(&folio->lru);
1106
1107 if (!folio_trylock(folio))
1108 goto keep;
1109
1110 if (folio_contain_hwpoisoned_page(folio)) {
1111 /*
1112 * unmap_poisoned_folio() can't handle large
1113 * folio, just skip it. memory_failure() will
1114 * handle it if the UCE is triggered again.
1115 */
1116 if (folio_test_large(folio))
1117 goto keep_locked;
1118
1119 unmap_poisoned_folio(folio, folio_pfn(folio), false);
1120 folio_unlock(folio);
1121 folio_put(folio);
1122 continue;
1123 }
1124
1125 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1126
1127 nr_pages = folio_nr_pages(folio);
1128
1129 /* Account the number of base pages */
1130 sc->nr_scanned += nr_pages;
1131
1132 if (unlikely(!folio_evictable(folio)))
1133 goto activate_locked;
1134
1135 if (!sc->may_unmap && folio_mapped(folio))
1136 goto keep_locked;
1137
1138 /*
1139 * The number of dirty pages determines if a node is marked
1140 * reclaim_congested. kswapd will stall and start writing
1141 * folios if the tail of the LRU is all dirty unqueued folios.
1142 */
1143 folio_check_dirty_writeback(folio, &dirty, &writeback);
1144 if (dirty || writeback)
1145 stat->nr_dirty += nr_pages;
1146
1147 if (dirty && !writeback)
1148 stat->nr_unqueued_dirty += nr_pages;
1149
1150 /*
1151 * Treat this folio as congested if folios are cycling
1152 * through the LRU so quickly that the folios marked
1153 * for immediate reclaim are making it to the end of
1154 * the LRU a second time.
1155 */
1156 if (writeback && folio_test_reclaim(folio))
1157 stat->nr_congested += nr_pages;
1158
1159 /*
1160 * If a folio at the tail of the LRU is under writeback, there
1161 * are three cases to consider.
1162 *
1163 * 1) If reclaim is encountering an excessive number
1164 * of folios under writeback and this folio has both
1165 * the writeback and reclaim flags set, then it
1166 * indicates that folios are being queued for I/O but
1167 * are being recycled through the LRU before the I/O
1168 * can complete. Waiting on the folio itself risks an
1169 * indefinite stall if it is impossible to writeback
1170 * the folio due to I/O error or disconnected storage
1171 * so instead note that the LRU is being scanned too
1172 * quickly and the caller can stall after the folio
1173 * list has been processed.
1174 *
1175 * 2) Global or new memcg reclaim encounters a folio that is
1176 * not marked for immediate reclaim, or the caller does not
1177 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1178 * not to fs), or the folio belongs to a mapping where
1179 * waiting on writeback during reclaim may lead to a deadlock.
1180 * In this case mark the folio for immediate reclaim and
1181 * continue scanning.
1182 *
1183 * Require may_enter_fs() because we would wait on fs, which
1184 * may not have submitted I/O yet. And the loop driver might
1185 * enter reclaim, and deadlock if it waits on a folio for
1186 * which it is needed to do the write (loop masks off
1187 * __GFP_IO|__GFP_FS for this reason); but more thought
1188 * would probably show more reasons.
1189 *
1190 * 3) Legacy memcg encounters a folio that already has the
1191 * reclaim flag set. memcg does not have any dirty folio
1192 * throttling so we could easily OOM just because too many
1193 * folios are in writeback and there is nothing else to
1194 * reclaim. Wait for the writeback to complete.
1195 *
1196 * In cases 1) and 2) we activate the folios to get them out of
1197 * the way while we continue scanning for clean folios on the
1198 * inactive list and refilling from the active list. The
1199 * observation here is that waiting for disk writes is more
1200 * expensive than potentially causing reloads down the line.
1201 * Since they're marked for immediate reclaim, they won't put
1202 * memory pressure on the cache working set any longer than it
1203 * takes to write them to disk.
1204 */
1205 if (folio_test_writeback(folio)) {
1206 mapping = folio_mapping(folio);
1207
1208 /* Case 1 above */
1209 if (current_is_kswapd() &&
1210 folio_test_reclaim(folio) &&
1211 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1212 stat->nr_immediate += nr_pages;
1213 goto activate_locked;
1214
1215 /* Case 2 above */
1216 } else if (writeback_throttling_sane(sc) ||
1217 !folio_test_reclaim(folio) ||
1218 !may_enter_fs(folio, sc->gfp_mask) ||
1219 (mapping &&
1220 mapping_writeback_may_deadlock_on_reclaim(mapping))) {
1221 /*
1222 * This is slightly racy -
1223 * folio_end_writeback() might have
1224 * just cleared the reclaim flag, then
1225 * setting the reclaim flag here ends up
1226 * interpreted as the readahead flag - but
1227 * that does not matter enough to care.
1228 * What we do want is for this folio to
1229 * have the reclaim flag set next time
1230 * memcg reclaim reaches the tests above,
1231 * so it will then wait for writeback to
1232 * avoid OOM; and it's also appropriate
1233 * in global reclaim.
1234 */
1235 folio_set_reclaim(folio);
1236 stat->nr_writeback += nr_pages;
1237 goto activate_locked;
1238
1239 /* Case 3 above */
1240 } else {
1241 folio_unlock(folio);
1242 folio_wait_writeback(folio);
1243 /* then go back and try same folio again */
1244 list_add_tail(&folio->lru, folio_list);
1245 continue;
1246 }
1247 }
1248
1249 if (!ignore_references)
1250 references = folio_check_references(folio, sc);
1251
1252 switch (references) {
1253 case FOLIOREF_ACTIVATE:
1254 goto activate_locked;
1255 case FOLIOREF_KEEP:
1256 stat->nr_ref_keep += nr_pages;
1257 goto keep_locked;
1258 case FOLIOREF_RECLAIM:
1259 case FOLIOREF_RECLAIM_CLEAN:
1260 ; /* try to reclaim the folio below */
1261 }
1262
1263 /*
1264 * Before reclaiming the folio, try to relocate
1265 * its contents to another node.
1266 */
1267 if (do_demote_pass &&
1268 (thp_migration_supported() || !folio_test_large(folio))) {
1269 list_add(&folio->lru, &demote_folios);
1270 folio_unlock(folio);
1271 continue;
1272 }
1273
1274 /*
1275 * Anonymous process memory has backing store?
1276 * Try to allocate it some swap space here.
1277 * Lazyfree folio could be freed directly
1278 */
1279 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1280 if (!folio_test_swapcache(folio)) {
1281 if (!(sc->gfp_mask & __GFP_IO))
1282 goto keep_locked;
1283 if (folio_maybe_dma_pinned(folio))
1284 goto keep_locked;
1285 if (folio_test_large(folio)) {
1286 /* cannot split folio, skip it */
1287 if (!can_split_folio(folio, 1, NULL))
1288 goto activate_locked;
1289 /*
1290 * Split partially mapped folios right away.
1291 * We can free the unmapped pages without IO.
1292 */
1293 if (data_race(!list_empty(&folio->_deferred_list) &&
1294 folio_test_partially_mapped(folio)) &&
1295 split_folio_to_list(folio, folio_list))
1296 goto activate_locked;
1297 }
1298 if (folio_alloc_swap(folio)) {
1299 int __maybe_unused order = folio_order(folio);
1300
1301 if (!folio_test_large(folio))
1302 goto activate_locked_split;
1303 /* Fallback to swap normal pages */
1304 if (split_folio_to_list(folio, folio_list))
1305 goto activate_locked;
1306 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1307 if (nr_pages >= HPAGE_PMD_NR) {
1308 count_memcg_folio_events(folio,
1309 THP_SWPOUT_FALLBACK, 1);
1310 count_vm_event(THP_SWPOUT_FALLBACK);
1311 }
1312 #endif
1313 count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK);
1314 if (folio_alloc_swap(folio))
1315 goto activate_locked_split;
1316 }
1317 /*
1318 * Normally the folio will be dirtied in unmap because its
1319 * pte should be dirty. A special case is MADV_FREE page. The
1320 * page's pte could have dirty bit cleared but the folio's
1321 * SwapBacked flag is still set because clearing the dirty bit
1322 * and SwapBacked flag has no lock protected. For such folio,
1323 * unmap will not set dirty bit for it, so folio reclaim will
1324 * not write the folio out. This can cause data corruption when
1325 * the folio is swapped in later. Always setting the dirty flag
1326 * for the folio solves the problem.
1327 */
1328 folio_mark_dirty(folio);
1329 }
1330 }
1331
1332 /*
1333 * If the folio was split above, the tail pages will make
1334 * their own pass through this function and be accounted
1335 * then.
1336 */
1337 if ((nr_pages > 1) && !folio_test_large(folio)) {
1338 sc->nr_scanned -= (nr_pages - 1);
1339 nr_pages = 1;
1340 }
1341
1342 /*
1343 * The folio is mapped into the page tables of one or more
1344 * processes. Try to unmap it here.
1345 */
1346 if (folio_mapped(folio)) {
1347 enum ttu_flags flags = TTU_BATCH_FLUSH;
1348 bool was_swapbacked = folio_test_swapbacked(folio);
1349
1350 if (folio_test_pmd_mappable(folio))
1351 flags |= TTU_SPLIT_HUGE_PMD;
1352 /*
1353 * Without TTU_SYNC, try_to_unmap will only begin to
1354 * hold PTL from the first present PTE within a large
1355 * folio. Some initial PTEs might be skipped due to
1356 * races with parallel PTE writes in which PTEs can be
1357 * cleared temporarily before being written new present
1358 * values. This will lead to a large folio is still
1359 * mapped while some subpages have been partially
1360 * unmapped after try_to_unmap; TTU_SYNC helps
1361 * try_to_unmap acquire PTL from the first PTE,
1362 * eliminating the influence of temporary PTE values.
1363 */
1364 if (folio_test_large(folio))
1365 flags |= TTU_SYNC;
1366
1367 try_to_unmap(folio, flags);
1368 if (folio_mapped(folio)) {
1369 stat->nr_unmap_fail += nr_pages;
1370 if (!was_swapbacked &&
1371 folio_test_swapbacked(folio))
1372 stat->nr_lazyfree_fail += nr_pages;
1373 goto activate_locked;
1374 }
1375 }
1376
1377 /*
1378 * Folio is unmapped now so it cannot be newly pinned anymore.
1379 * No point in trying to reclaim folio if it is pinned.
1380 * Furthermore we don't want to reclaim underlying fs metadata
1381 * if the folio is pinned and thus potentially modified by the
1382 * pinning process as that may upset the filesystem.
1383 */
1384 if (folio_maybe_dma_pinned(folio))
1385 goto activate_locked;
1386
1387 mapping = folio_mapping(folio);
1388 if (folio_test_dirty(folio)) {
1389 if (folio_is_file_lru(folio)) {
1390 /*
1391 * Immediately reclaim when written back.
1392 * Similar in principle to folio_deactivate()
1393 * except we already have the folio isolated
1394 * and know it's dirty
1395 */
1396 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1397 nr_pages);
1398 if (!folio_test_reclaim(folio))
1399 folio_set_reclaim(folio);
1400
1401 goto activate_locked;
1402 }
1403
1404 if (references == FOLIOREF_RECLAIM_CLEAN)
1405 goto keep_locked;
1406 if (!may_enter_fs(folio, sc->gfp_mask))
1407 goto keep_locked;
1408 if (!sc->may_writepage)
1409 goto keep_locked;
1410
1411 /*
1412 * Folio is dirty. Flush the TLB if a writable entry
1413 * potentially exists to avoid CPU writes after I/O
1414 * starts and then write it out here.
1415 */
1416 try_to_unmap_flush_dirty();
1417 switch (pageout(folio, mapping, &plug, folio_list)) {
1418 case PAGE_KEEP:
1419 goto keep_locked;
1420 case PAGE_ACTIVATE:
1421 /*
1422 * If shmem folio is split when writeback to swap,
1423 * the tail pages will make their own pass through
1424 * this function and be accounted then.
1425 */
1426 if (nr_pages > 1 && !folio_test_large(folio)) {
1427 sc->nr_scanned -= (nr_pages - 1);
1428 nr_pages = 1;
1429 }
1430 goto activate_locked;
1431 case PAGE_SUCCESS:
1432 if (nr_pages > 1 && !folio_test_large(folio)) {
1433 sc->nr_scanned -= (nr_pages - 1);
1434 nr_pages = 1;
1435 }
1436 stat->nr_pageout += nr_pages;
1437
1438 if (folio_test_writeback(folio))
1439 goto keep;
1440 if (folio_test_dirty(folio))
1441 goto keep;
1442
1443 /*
1444 * A synchronous write - probably a ramdisk. Go
1445 * ahead and try to reclaim the folio.
1446 */
1447 if (!folio_trylock(folio))
1448 goto keep;
1449 if (folio_test_dirty(folio) ||
1450 folio_test_writeback(folio))
1451 goto keep_locked;
1452 mapping = folio_mapping(folio);
1453 fallthrough;
1454 case PAGE_CLEAN:
1455 ; /* try to free the folio below */
1456 }
1457 }
1458
1459 /*
1460 * If the folio has buffers, try to free the buffer
1461 * mappings associated with this folio. If we succeed
1462 * we try to free the folio as well.
1463 *
1464 * We do this even if the folio is dirty.
1465 * filemap_release_folio() does not perform I/O, but it
1466 * is possible for a folio to have the dirty flag set,
1467 * but it is actually clean (all its buffers are clean).
1468 * This happens if the buffers were written out directly,
1469 * with submit_bh(). ext3 will do this, as well as
1470 * the blockdev mapping. filemap_release_folio() will
1471 * discover that cleanness and will drop the buffers
1472 * and mark the folio clean - it can be freed.
1473 *
1474 * Rarely, folios can have buffers and no ->mapping.
1475 * These are the folios which were not successfully
1476 * invalidated in truncate_cleanup_folio(). We try to
1477 * drop those buffers here and if that worked, and the
1478 * folio is no longer mapped into process address space
1479 * (refcount == 1) it can be freed. Otherwise, leave
1480 * the folio on the LRU so it is swappable.
1481 */
1482 if (folio_needs_release(folio)) {
1483 if (!filemap_release_folio(folio, sc->gfp_mask))
1484 goto activate_locked;
1485 if (!mapping && folio_ref_count(folio) == 1) {
1486 folio_unlock(folio);
1487 if (folio_put_testzero(folio))
1488 goto free_it;
1489 else {
1490 /*
1491 * rare race with speculative reference.
1492 * the speculative reference will free
1493 * this folio shortly, so we may
1494 * increment nr_reclaimed here (and
1495 * leave it off the LRU).
1496 */
1497 nr_reclaimed += nr_pages;
1498 continue;
1499 }
1500 }
1501 }
1502
1503 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1504 /* follow __remove_mapping for reference */
1505 if (!folio_ref_freeze(folio, 1))
1506 goto keep_locked;
1507 /*
1508 * The folio has only one reference left, which is
1509 * from the isolation. After the caller puts the
1510 * folio back on the lru and drops the reference, the
1511 * folio will be freed anyway. It doesn't matter
1512 * which lru it goes on. So we don't bother checking
1513 * the dirty flag here.
1514 */
1515 count_vm_events(PGLAZYFREED, nr_pages);
1516 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1517 } else if (!mapping || !__remove_mapping(mapping, folio, true,
1518 sc->target_mem_cgroup))
1519 goto keep_locked;
1520
1521 folio_unlock(folio);
1522 free_it:
1523 /*
1524 * Folio may get swapped out as a whole, need to account
1525 * all pages in it.
1526 */
1527 nr_reclaimed += nr_pages;
1528
1529 folio_unqueue_deferred_split(folio);
1530 if (folio_batch_add(&free_folios, folio) == 0) {
1531 mem_cgroup_uncharge_folios(&free_folios);
1532 try_to_unmap_flush();
1533 free_unref_folios(&free_folios);
1534 }
1535 continue;
1536
1537 activate_locked_split:
1538 /*
1539 * The tail pages that are failed to add into swap cache
1540 * reach here. Fixup nr_scanned and nr_pages.
1541 */
1542 if (nr_pages > 1) {
1543 sc->nr_scanned -= (nr_pages - 1);
1544 nr_pages = 1;
1545 }
1546 activate_locked:
1547 /* Not a candidate for swapping, so reclaim swap space. */
1548 if (folio_test_swapcache(folio) &&
1549 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1550 folio_free_swap(folio);
1551 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1552 if (!folio_test_mlocked(folio)) {
1553 int type = folio_is_file_lru(folio);
1554 folio_set_active(folio);
1555 stat->nr_activate[type] += nr_pages;
1556 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1557 }
1558 keep_locked:
1559 folio_unlock(folio);
1560 keep:
1561 list_add(&folio->lru, &ret_folios);
1562 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1563 folio_test_unevictable(folio), folio);
1564 }
1565 /* 'folio_list' is always empty here */
1566
1567 /* Migrate folios selected for demotion */
1568 nr_demoted = demote_folio_list(&demote_folios, pgdat);
1569 nr_reclaimed += nr_demoted;
1570 stat->nr_demoted += nr_demoted;
1571 /* Folios that could not be demoted are still in @demote_folios */
1572 if (!list_empty(&demote_folios)) {
1573 /* Folios which weren't demoted go back on @folio_list */
1574 list_splice_init(&demote_folios, folio_list);
1575
1576 /*
1577 * goto retry to reclaim the undemoted folios in folio_list if
1578 * desired.
1579 *
1580 * Reclaiming directly from top tier nodes is not often desired
1581 * due to it breaking the LRU ordering: in general memory
1582 * should be reclaimed from lower tier nodes and demoted from
1583 * top tier nodes.
1584 *
1585 * However, disabling reclaim from top tier nodes entirely
1586 * would cause ooms in edge scenarios where lower tier memory
1587 * is unreclaimable for whatever reason, eg memory being
1588 * mlocked or too hot to reclaim. We can disable reclaim
1589 * from top tier nodes in proactive reclaim though as that is
1590 * not real memory pressure.
1591 */
1592 if (!sc->proactive) {
1593 do_demote_pass = false;
1594 goto retry;
1595 }
1596 }
1597
1598 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1599
1600 mem_cgroup_uncharge_folios(&free_folios);
1601 try_to_unmap_flush();
1602 free_unref_folios(&free_folios);
1603
1604 list_splice(&ret_folios, folio_list);
1605 count_vm_events(PGACTIVATE, pgactivate);
1606
1607 if (plug)
1608 swap_write_unplug(plug);
1609 return nr_reclaimed;
1610 }
1611
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * folio_list)1612 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1613 struct list_head *folio_list)
1614 {
1615 struct scan_control sc = {
1616 .gfp_mask = GFP_KERNEL,
1617 .may_unmap = 1,
1618 };
1619 struct reclaim_stat stat;
1620 unsigned int nr_reclaimed;
1621 struct folio *folio, *next;
1622 LIST_HEAD(clean_folios);
1623 unsigned int noreclaim_flag;
1624
1625 list_for_each_entry_safe(folio, next, folio_list, lru) {
1626 /* TODO: these pages should not even appear in this list. */
1627 if (page_has_movable_ops(&folio->page))
1628 continue;
1629 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1630 !folio_test_dirty(folio) && !folio_test_unevictable(folio)) {
1631 folio_clear_active(folio);
1632 list_move(&folio->lru, &clean_folios);
1633 }
1634 }
1635
1636 /*
1637 * We should be safe here since we are only dealing with file pages and
1638 * we are not kswapd and therefore cannot write dirty file pages. But
1639 * call memalloc_noreclaim_save() anyway, just in case these conditions
1640 * change in the future.
1641 */
1642 noreclaim_flag = memalloc_noreclaim_save();
1643 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1644 &stat, true, NULL);
1645 memalloc_noreclaim_restore(noreclaim_flag);
1646
1647 list_splice(&clean_folios, folio_list);
1648 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1649 -(long)nr_reclaimed);
1650 /*
1651 * Since lazyfree pages are isolated from file LRU from the beginning,
1652 * they will rotate back to anonymous LRU in the end if it failed to
1653 * discard so isolated count will be mismatched.
1654 * Compensate the isolated count for both LRU lists.
1655 */
1656 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1657 stat.nr_lazyfree_fail);
1658 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1659 -(long)stat.nr_lazyfree_fail);
1660 return nr_reclaimed;
1661 }
1662
1663 /*
1664 * Update LRU sizes after isolating pages. The LRU size updates must
1665 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1666 */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1667 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1668 enum lru_list lru, unsigned long *nr_zone_taken)
1669 {
1670 int zid;
1671
1672 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1673 if (!nr_zone_taken[zid])
1674 continue;
1675
1676 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1677 }
1678
1679 }
1680
1681 /*
1682 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1683 *
1684 * lruvec->lru_lock is heavily contended. Some of the functions that
1685 * shrink the lists perform better by taking out a batch of pages
1686 * and working on them outside the LRU lock.
1687 *
1688 * For pagecache intensive workloads, this function is the hottest
1689 * spot in the kernel (apart from copy_*_user functions).
1690 *
1691 * Lru_lock must be held before calling this function.
1692 *
1693 * @nr_to_scan: The number of eligible pages to look through on the list.
1694 * @lruvec: The LRU vector to pull pages from.
1695 * @dst: The temp list to put pages on to.
1696 * @nr_scanned: The number of pages that were scanned.
1697 * @sc: The scan_control struct for this reclaim session
1698 * @lru: LRU list id for isolating
1699 *
1700 * returns how many pages were moved onto *@dst.
1701 */
isolate_lru_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)1702 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1703 struct lruvec *lruvec, struct list_head *dst,
1704 unsigned long *nr_scanned, struct scan_control *sc,
1705 enum lru_list lru)
1706 {
1707 struct list_head *src = &lruvec->lists[lru];
1708 unsigned long nr_taken = 0;
1709 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1710 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1711 unsigned long skipped = 0, total_scan = 0, scan = 0;
1712 unsigned long nr_pages;
1713 unsigned long max_nr_skipped = 0;
1714 LIST_HEAD(folios_skipped);
1715
1716 while (scan < nr_to_scan && !list_empty(src)) {
1717 struct list_head *move_to = src;
1718 struct folio *folio;
1719
1720 folio = lru_to_folio(src);
1721 prefetchw_prev_lru_folio(folio, src, flags);
1722
1723 nr_pages = folio_nr_pages(folio);
1724 total_scan += nr_pages;
1725
1726 /* Using max_nr_skipped to prevent hard LOCKUP*/
1727 if (max_nr_skipped < SWAP_CLUSTER_MAX_SKIPPED &&
1728 (folio_zonenum(folio) > sc->reclaim_idx)) {
1729 nr_skipped[folio_zonenum(folio)] += nr_pages;
1730 move_to = &folios_skipped;
1731 max_nr_skipped++;
1732 goto move;
1733 }
1734
1735 /*
1736 * Do not count skipped folios because that makes the function
1737 * return with no isolated folios if the LRU mostly contains
1738 * ineligible folios. This causes the VM to not reclaim any
1739 * folios, triggering a premature OOM.
1740 * Account all pages in a folio.
1741 */
1742 scan += nr_pages;
1743
1744 if (!folio_test_lru(folio))
1745 goto move;
1746 if (!sc->may_unmap && folio_mapped(folio))
1747 goto move;
1748
1749 /*
1750 * Be careful not to clear the lru flag until after we're
1751 * sure the folio is not being freed elsewhere -- the
1752 * folio release code relies on it.
1753 */
1754 if (unlikely(!folio_try_get(folio)))
1755 goto move;
1756
1757 if (!folio_test_clear_lru(folio)) {
1758 /* Another thread is already isolating this folio */
1759 folio_put(folio);
1760 goto move;
1761 }
1762
1763 nr_taken += nr_pages;
1764 nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1765 move_to = dst;
1766 move:
1767 list_move(&folio->lru, move_to);
1768 }
1769
1770 /*
1771 * Splice any skipped folios to the start of the LRU list. Note that
1772 * this disrupts the LRU order when reclaiming for lower zones but
1773 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1774 * scanning would soon rescan the same folios to skip and waste lots
1775 * of cpu cycles.
1776 */
1777 if (!list_empty(&folios_skipped)) {
1778 int zid;
1779
1780 list_splice(&folios_skipped, src);
1781 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1782 if (!nr_skipped[zid])
1783 continue;
1784
1785 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1786 skipped += nr_skipped[zid];
1787 }
1788 }
1789 *nr_scanned = total_scan;
1790 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1791 total_scan, skipped, nr_taken, lru);
1792 update_lru_sizes(lruvec, lru, nr_zone_taken);
1793 return nr_taken;
1794 }
1795
1796 /**
1797 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1798 * @folio: Folio to isolate from its LRU list.
1799 *
1800 * Isolate a @folio from an LRU list and adjust the vmstat statistic
1801 * corresponding to whatever LRU list the folio was on.
1802 *
1803 * The folio will have its LRU flag cleared. If it was found on the
1804 * active list, it will have the Active flag set. If it was found on the
1805 * unevictable list, it will have the Unevictable flag set. These flags
1806 * may need to be cleared by the caller before letting the page go.
1807 *
1808 * Context:
1809 *
1810 * (1) Must be called with an elevated refcount on the folio. This is a
1811 * fundamental difference from isolate_lru_folios() (which is called
1812 * without a stable reference).
1813 * (2) The lru_lock must not be held.
1814 * (3) Interrupts must be enabled.
1815 *
1816 * Return: true if the folio was removed from an LRU list.
1817 * false if the folio was not on an LRU list.
1818 */
folio_isolate_lru(struct folio * folio)1819 bool folio_isolate_lru(struct folio *folio)
1820 {
1821 bool ret = false;
1822
1823 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
1824
1825 if (folio_test_clear_lru(folio)) {
1826 struct lruvec *lruvec;
1827
1828 folio_get(folio);
1829 lruvec = folio_lruvec_lock_irq(folio);
1830 lruvec_del_folio(lruvec, folio);
1831 unlock_page_lruvec_irq(lruvec);
1832 ret = true;
1833 }
1834
1835 return ret;
1836 }
1837
1838 /*
1839 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1840 * then get rescheduled. When there are massive number of tasks doing page
1841 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1842 * the LRU list will go small and be scanned faster than necessary, leading to
1843 * unnecessary swapping, thrashing and OOM.
1844 */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1845 static bool too_many_isolated(struct pglist_data *pgdat, int file,
1846 struct scan_control *sc)
1847 {
1848 unsigned long inactive, isolated;
1849 bool too_many;
1850
1851 if (current_is_kswapd())
1852 return false;
1853
1854 if (!writeback_throttling_sane(sc))
1855 return false;
1856
1857 if (file) {
1858 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1859 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1860 } else {
1861 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1862 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1863 }
1864
1865 /*
1866 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1867 * won't get blocked by normal direct-reclaimers, forming a circular
1868 * deadlock.
1869 */
1870 if (gfp_has_io_fs(sc->gfp_mask))
1871 inactive >>= 3;
1872
1873 too_many = isolated > inactive;
1874
1875 /* Wake up tasks throttled due to too_many_isolated. */
1876 if (!too_many)
1877 wake_throttle_isolated(pgdat);
1878
1879 return too_many;
1880 }
1881
1882 /*
1883 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1884 *
1885 * Returns the number of pages moved to the given lruvec.
1886 */
move_folios_to_lru(struct lruvec * lruvec,struct list_head * list)1887 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1888 struct list_head *list)
1889 {
1890 int nr_pages, nr_moved = 0;
1891 struct folio_batch free_folios;
1892
1893 folio_batch_init(&free_folios);
1894 while (!list_empty(list)) {
1895 struct folio *folio = lru_to_folio(list);
1896
1897 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1898 list_del(&folio->lru);
1899 if (unlikely(!folio_evictable(folio))) {
1900 spin_unlock_irq(&lruvec->lru_lock);
1901 folio_putback_lru(folio);
1902 spin_lock_irq(&lruvec->lru_lock);
1903 continue;
1904 }
1905
1906 /*
1907 * The folio_set_lru needs to be kept here for list integrity.
1908 * Otherwise:
1909 * #0 move_folios_to_lru #1 release_pages
1910 * if (!folio_put_testzero())
1911 * if (folio_put_testzero())
1912 * !lru //skip lru_lock
1913 * folio_set_lru()
1914 * list_add(&folio->lru,)
1915 * list_add(&folio->lru,)
1916 */
1917 folio_set_lru(folio);
1918
1919 if (unlikely(folio_put_testzero(folio))) {
1920 __folio_clear_lru_flags(folio);
1921
1922 folio_unqueue_deferred_split(folio);
1923 if (folio_batch_add(&free_folios, folio) == 0) {
1924 spin_unlock_irq(&lruvec->lru_lock);
1925 mem_cgroup_uncharge_folios(&free_folios);
1926 free_unref_folios(&free_folios);
1927 spin_lock_irq(&lruvec->lru_lock);
1928 }
1929
1930 continue;
1931 }
1932
1933 /*
1934 * All pages were isolated from the same lruvec (and isolation
1935 * inhibits memcg migration).
1936 */
1937 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1938 lruvec_add_folio(lruvec, folio);
1939 nr_pages = folio_nr_pages(folio);
1940 nr_moved += nr_pages;
1941 if (folio_test_active(folio))
1942 workingset_age_nonresident(lruvec, nr_pages);
1943 }
1944
1945 if (free_folios.nr) {
1946 spin_unlock_irq(&lruvec->lru_lock);
1947 mem_cgroup_uncharge_folios(&free_folios);
1948 free_unref_folios(&free_folios);
1949 spin_lock_irq(&lruvec->lru_lock);
1950 }
1951
1952 return nr_moved;
1953 }
1954
1955 /*
1956 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1957 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1958 * we should not throttle. Otherwise it is safe to do so.
1959 */
current_may_throttle(void)1960 static int current_may_throttle(void)
1961 {
1962 return !(current->flags & PF_LOCAL_THROTTLE);
1963 }
1964
1965 /*
1966 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1967 * of reclaimed pages
1968 */
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1969 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
1970 struct lruvec *lruvec, struct scan_control *sc,
1971 enum lru_list lru)
1972 {
1973 LIST_HEAD(folio_list);
1974 unsigned long nr_scanned;
1975 unsigned int nr_reclaimed = 0;
1976 unsigned long nr_taken;
1977 struct reclaim_stat stat;
1978 bool file = is_file_lru(lru);
1979 enum vm_event_item item;
1980 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1981 bool stalled = false;
1982
1983 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1984 if (stalled)
1985 return 0;
1986
1987 /* wait a bit for the reclaimer. */
1988 stalled = true;
1989 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
1990
1991 /* We are about to die and free our memory. Return now. */
1992 if (fatal_signal_pending(current))
1993 return SWAP_CLUSTER_MAX;
1994 }
1995
1996 lru_add_drain();
1997
1998 spin_lock_irq(&lruvec->lru_lock);
1999
2000 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2001 &nr_scanned, sc, lru);
2002
2003 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2004 item = PGSCAN_KSWAPD + reclaimer_offset(sc);
2005 if (!cgroup_reclaim(sc))
2006 __count_vm_events(item, nr_scanned);
2007 count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2008 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2009
2010 spin_unlock_irq(&lruvec->lru_lock);
2011
2012 if (nr_taken == 0)
2013 return 0;
2014
2015 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false,
2016 lruvec_memcg(lruvec));
2017
2018 spin_lock_irq(&lruvec->lru_lock);
2019 move_folios_to_lru(lruvec, &folio_list);
2020
2021 mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc),
2022 stat.nr_demoted);
2023 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2024 item = PGSTEAL_KSWAPD + reclaimer_offset(sc);
2025 if (!cgroup_reclaim(sc))
2026 __count_vm_events(item, nr_reclaimed);
2027 count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2028 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2029
2030 lru_note_cost_unlock_irq(lruvec, file, stat.nr_pageout,
2031 nr_scanned - nr_reclaimed);
2032
2033 /*
2034 * If dirty folios are scanned that are not queued for IO, it
2035 * implies that flushers are not doing their job. This can
2036 * happen when memory pressure pushes dirty folios to the end of
2037 * the LRU before the dirty limits are breached and the dirty
2038 * data has expired. It can also happen when the proportion of
2039 * dirty folios grows not through writes but through memory
2040 * pressure reclaiming all the clean cache. And in some cases,
2041 * the flushers simply cannot keep up with the allocation
2042 * rate. Nudge the flusher threads in case they are asleep.
2043 */
2044 if (stat.nr_unqueued_dirty == nr_taken) {
2045 wakeup_flusher_threads(WB_REASON_VMSCAN);
2046 /*
2047 * For cgroupv1 dirty throttling is achieved by waking up
2048 * the kernel flusher here and later waiting on folios
2049 * which are in writeback to finish (see shrink_folio_list()).
2050 *
2051 * Flusher may not be able to issue writeback quickly
2052 * enough for cgroupv1 writeback throttling to work
2053 * on a large system.
2054 */
2055 if (!writeback_throttling_sane(sc))
2056 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2057 }
2058
2059 sc->nr.dirty += stat.nr_dirty;
2060 sc->nr.congested += stat.nr_congested;
2061 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2062 sc->nr.writeback += stat.nr_writeback;
2063 sc->nr.immediate += stat.nr_immediate;
2064 sc->nr.taken += nr_taken;
2065 if (file)
2066 sc->nr.file_taken += nr_taken;
2067
2068 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2069 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2070 return nr_reclaimed;
2071 }
2072
2073 /*
2074 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2075 *
2076 * We move them the other way if the folio is referenced by one or more
2077 * processes.
2078 *
2079 * If the folios are mostly unmapped, the processing is fast and it is
2080 * appropriate to hold lru_lock across the whole operation. But if
2081 * the folios are mapped, the processing is slow (folio_referenced()), so
2082 * we should drop lru_lock around each folio. It's impossible to balance
2083 * this, so instead we remove the folios from the LRU while processing them.
2084 * It is safe to rely on the active flag against the non-LRU folios in here
2085 * because nobody will play with that bit on a non-LRU folio.
2086 *
2087 * The downside is that we have to touch folio->_refcount against each folio.
2088 * But we had to alter folio->flags anyway.
2089 */
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2090 static void shrink_active_list(unsigned long nr_to_scan,
2091 struct lruvec *lruvec,
2092 struct scan_control *sc,
2093 enum lru_list lru)
2094 {
2095 unsigned long nr_taken;
2096 unsigned long nr_scanned;
2097 vm_flags_t vm_flags;
2098 LIST_HEAD(l_hold); /* The folios which were snipped off */
2099 LIST_HEAD(l_active);
2100 LIST_HEAD(l_inactive);
2101 unsigned nr_deactivate, nr_activate;
2102 unsigned nr_rotated = 0;
2103 bool file = is_file_lru(lru);
2104 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2105
2106 lru_add_drain();
2107
2108 spin_lock_irq(&lruvec->lru_lock);
2109
2110 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2111 &nr_scanned, sc, lru);
2112
2113 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2114
2115 if (!cgroup_reclaim(sc))
2116 __count_vm_events(PGREFILL, nr_scanned);
2117 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2118
2119 spin_unlock_irq(&lruvec->lru_lock);
2120
2121 while (!list_empty(&l_hold)) {
2122 struct folio *folio;
2123
2124 cond_resched();
2125 folio = lru_to_folio(&l_hold);
2126 list_del(&folio->lru);
2127
2128 if (unlikely(!folio_evictable(folio))) {
2129 folio_putback_lru(folio);
2130 continue;
2131 }
2132
2133 if (unlikely(buffer_heads_over_limit)) {
2134 if (folio_needs_release(folio) &&
2135 folio_trylock(folio)) {
2136 filemap_release_folio(folio, 0);
2137 folio_unlock(folio);
2138 }
2139 }
2140
2141 /* Referenced or rmap lock contention: rotate */
2142 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2143 &vm_flags) != 0) {
2144 /*
2145 * Identify referenced, file-backed active folios and
2146 * give them one more trip around the active list. So
2147 * that executable code get better chances to stay in
2148 * memory under moderate memory pressure. Anon folios
2149 * are not likely to be evicted by use-once streaming
2150 * IO, plus JVM can create lots of anon VM_EXEC folios,
2151 * so we ignore them here.
2152 */
2153 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2154 nr_rotated += folio_nr_pages(folio);
2155 list_add(&folio->lru, &l_active);
2156 continue;
2157 }
2158 }
2159
2160 folio_clear_active(folio); /* we are de-activating */
2161 folio_set_workingset(folio);
2162 list_add(&folio->lru, &l_inactive);
2163 }
2164
2165 /*
2166 * Move folios back to the lru list.
2167 */
2168 spin_lock_irq(&lruvec->lru_lock);
2169
2170 nr_activate = move_folios_to_lru(lruvec, &l_active);
2171 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2172
2173 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2174 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2175
2176 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2177
2178 lru_note_cost_unlock_irq(lruvec, file, 0, nr_rotated);
2179 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2180 nr_deactivate, nr_rotated, sc->priority, file);
2181 }
2182
reclaim_folio_list(struct list_head * folio_list,struct pglist_data * pgdat)2183 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2184 struct pglist_data *pgdat)
2185 {
2186 struct reclaim_stat stat;
2187 unsigned int nr_reclaimed;
2188 struct folio *folio;
2189 struct scan_control sc = {
2190 .gfp_mask = GFP_KERNEL,
2191 .may_writepage = 1,
2192 .may_unmap = 1,
2193 .may_swap = 1,
2194 .no_demotion = 1,
2195 };
2196
2197 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &stat, true, NULL);
2198 while (!list_empty(folio_list)) {
2199 folio = lru_to_folio(folio_list);
2200 list_del(&folio->lru);
2201 folio_putback_lru(folio);
2202 }
2203 trace_mm_vmscan_reclaim_pages(pgdat->node_id, sc.nr_scanned, nr_reclaimed, &stat);
2204
2205 return nr_reclaimed;
2206 }
2207
reclaim_pages(struct list_head * folio_list)2208 unsigned long reclaim_pages(struct list_head *folio_list)
2209 {
2210 int nid;
2211 unsigned int nr_reclaimed = 0;
2212 LIST_HEAD(node_folio_list);
2213 unsigned int noreclaim_flag;
2214
2215 if (list_empty(folio_list))
2216 return nr_reclaimed;
2217
2218 noreclaim_flag = memalloc_noreclaim_save();
2219
2220 nid = folio_nid(lru_to_folio(folio_list));
2221 do {
2222 struct folio *folio = lru_to_folio(folio_list);
2223
2224 if (nid == folio_nid(folio)) {
2225 folio_clear_active(folio);
2226 list_move(&folio->lru, &node_folio_list);
2227 continue;
2228 }
2229
2230 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2231 nid = folio_nid(lru_to_folio(folio_list));
2232 } while (!list_empty(folio_list));
2233
2234 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2235
2236 memalloc_noreclaim_restore(noreclaim_flag);
2237
2238 return nr_reclaimed;
2239 }
2240
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2241 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2242 struct lruvec *lruvec, struct scan_control *sc)
2243 {
2244 if (is_active_lru(lru)) {
2245 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2246 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2247 else
2248 sc->skipped_deactivate = 1;
2249 return 0;
2250 }
2251
2252 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2253 }
2254
2255 /*
2256 * The inactive anon list should be small enough that the VM never has
2257 * to do too much work.
2258 *
2259 * The inactive file list should be small enough to leave most memory
2260 * to the established workingset on the scan-resistant active list,
2261 * but large enough to avoid thrashing the aggregate readahead window.
2262 *
2263 * Both inactive lists should also be large enough that each inactive
2264 * folio has a chance to be referenced again before it is reclaimed.
2265 *
2266 * If that fails and refaulting is observed, the inactive list grows.
2267 *
2268 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2269 * on this LRU, maintained by the pageout code. An inactive_ratio
2270 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2271 *
2272 * total target max
2273 * memory ratio inactive
2274 * -------------------------------------
2275 * 10MB 1 5MB
2276 * 100MB 1 50MB
2277 * 1GB 3 250MB
2278 * 10GB 10 0.9GB
2279 * 100GB 31 3GB
2280 * 1TB 101 10GB
2281 * 10TB 320 32GB
2282 */
inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2283 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2284 {
2285 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2286 unsigned long inactive, active;
2287 unsigned long inactive_ratio;
2288 unsigned long gb;
2289
2290 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2291 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2292
2293 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2294 if (gb)
2295 inactive_ratio = int_sqrt(10 * gb);
2296 else
2297 inactive_ratio = 1;
2298
2299 return inactive * inactive_ratio < active;
2300 }
2301
2302 enum scan_balance {
2303 SCAN_EQUAL,
2304 SCAN_FRACT,
2305 SCAN_ANON,
2306 SCAN_FILE,
2307 };
2308
prepare_scan_control(pg_data_t * pgdat,struct scan_control * sc)2309 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2310 {
2311 unsigned long file;
2312 struct lruvec *target_lruvec;
2313
2314 if (lru_gen_enabled())
2315 return;
2316
2317 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2318
2319 /*
2320 * Flush the memory cgroup stats in rate-limited way as we don't need
2321 * most accurate stats here. We may switch to regular stats flushing
2322 * in the future once it is cheap enough.
2323 */
2324 mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup);
2325
2326 /*
2327 * Determine the scan balance between anon and file LRUs.
2328 */
2329 spin_lock_irq(&target_lruvec->lru_lock);
2330 sc->anon_cost = target_lruvec->anon_cost;
2331 sc->file_cost = target_lruvec->file_cost;
2332 spin_unlock_irq(&target_lruvec->lru_lock);
2333
2334 /*
2335 * Target desirable inactive:active list ratios for the anon
2336 * and file LRU lists.
2337 */
2338 if (!sc->force_deactivate) {
2339 unsigned long refaults;
2340
2341 /*
2342 * When refaults are being observed, it means a new
2343 * workingset is being established. Deactivate to get
2344 * rid of any stale active pages quickly.
2345 */
2346 refaults = lruvec_page_state(target_lruvec,
2347 WORKINGSET_ACTIVATE_ANON);
2348 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2349 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2350 sc->may_deactivate |= DEACTIVATE_ANON;
2351 else
2352 sc->may_deactivate &= ~DEACTIVATE_ANON;
2353
2354 refaults = lruvec_page_state(target_lruvec,
2355 WORKINGSET_ACTIVATE_FILE);
2356 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2357 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2358 sc->may_deactivate |= DEACTIVATE_FILE;
2359 else
2360 sc->may_deactivate &= ~DEACTIVATE_FILE;
2361 } else
2362 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2363
2364 /*
2365 * If we have plenty of inactive file pages that aren't
2366 * thrashing, try to reclaim those first before touching
2367 * anonymous pages.
2368 */
2369 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2370 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) &&
2371 !sc->no_cache_trim_mode)
2372 sc->cache_trim_mode = 1;
2373 else
2374 sc->cache_trim_mode = 0;
2375
2376 /*
2377 * Prevent the reclaimer from falling into the cache trap: as
2378 * cache pages start out inactive, every cache fault will tip
2379 * the scan balance towards the file LRU. And as the file LRU
2380 * shrinks, so does the window for rotation from references.
2381 * This means we have a runaway feedback loop where a tiny
2382 * thrashing file LRU becomes infinitely more attractive than
2383 * anon pages. Try to detect this based on file LRU size.
2384 */
2385 if (!cgroup_reclaim(sc)) {
2386 unsigned long total_high_wmark = 0;
2387 unsigned long free, anon;
2388 int z;
2389 struct zone *zone;
2390
2391 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2392 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2393 node_page_state(pgdat, NR_INACTIVE_FILE);
2394
2395 for_each_managed_zone_pgdat(zone, pgdat, z, MAX_NR_ZONES - 1) {
2396 total_high_wmark += high_wmark_pages(zone);
2397 }
2398
2399 /*
2400 * Consider anon: if that's low too, this isn't a
2401 * runaway file reclaim problem, but rather just
2402 * extreme pressure. Reclaim as per usual then.
2403 */
2404 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2405
2406 sc->file_is_tiny =
2407 file + free <= total_high_wmark &&
2408 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2409 anon >> sc->priority;
2410 }
2411 }
2412
calculate_pressure_balance(struct scan_control * sc,int swappiness,u64 * fraction,u64 * denominator)2413 static inline void calculate_pressure_balance(struct scan_control *sc,
2414 int swappiness, u64 *fraction, u64 *denominator)
2415 {
2416 unsigned long anon_cost, file_cost, total_cost;
2417 unsigned long ap, fp;
2418
2419 /*
2420 * Calculate the pressure balance between anon and file pages.
2421 *
2422 * The amount of pressure we put on each LRU is inversely
2423 * proportional to the cost of reclaiming each list, as
2424 * determined by the share of pages that are refaulting, times
2425 * the relative IO cost of bringing back a swapped out
2426 * anonymous page vs reloading a filesystem page (swappiness).
2427 *
2428 * Although we limit that influence to ensure no list gets
2429 * left behind completely: at least a third of the pressure is
2430 * applied, before swappiness.
2431 *
2432 * With swappiness at 100, anon and file have equal IO cost.
2433 */
2434 total_cost = sc->anon_cost + sc->file_cost;
2435 anon_cost = total_cost + sc->anon_cost;
2436 file_cost = total_cost + sc->file_cost;
2437 total_cost = anon_cost + file_cost;
2438
2439 ap = swappiness * (total_cost + 1);
2440 ap /= anon_cost + 1;
2441
2442 fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1);
2443 fp /= file_cost + 1;
2444
2445 fraction[WORKINGSET_ANON] = ap;
2446 fraction[WORKINGSET_FILE] = fp;
2447 *denominator = ap + fp;
2448 }
2449
apply_proportional_protection(struct mem_cgroup * memcg,struct scan_control * sc,unsigned long scan)2450 static unsigned long apply_proportional_protection(struct mem_cgroup *memcg,
2451 struct scan_control *sc, unsigned long scan)
2452 {
2453 unsigned long min, low;
2454
2455 mem_cgroup_protection(sc->target_mem_cgroup, memcg, &min, &low);
2456
2457 if (min || low) {
2458 /*
2459 * Scale a cgroup's reclaim pressure by proportioning
2460 * its current usage to its memory.low or memory.min
2461 * setting.
2462 *
2463 * This is important, as otherwise scanning aggression
2464 * becomes extremely binary -- from nothing as we
2465 * approach the memory protection threshold, to totally
2466 * nominal as we exceed it. This results in requiring
2467 * setting extremely liberal protection thresholds. It
2468 * also means we simply get no protection at all if we
2469 * set it too low, which is not ideal.
2470 *
2471 * If there is any protection in place, we reduce scan
2472 * pressure by how much of the total memory used is
2473 * within protection thresholds.
2474 *
2475 * There is one special case: in the first reclaim pass,
2476 * we skip over all groups that are within their low
2477 * protection. If that fails to reclaim enough pages to
2478 * satisfy the reclaim goal, we come back and override
2479 * the best-effort low protection. However, we still
2480 * ideally want to honor how well-behaved groups are in
2481 * that case instead of simply punishing them all
2482 * equally. As such, we reclaim them based on how much
2483 * memory they are using, reducing the scan pressure
2484 * again by how much of the total memory used is under
2485 * hard protection.
2486 */
2487 unsigned long cgroup_size = mem_cgroup_size(memcg);
2488 unsigned long protection;
2489
2490 /* memory.low scaling, make sure we retry before OOM */
2491 if (!sc->memcg_low_reclaim && low > min) {
2492 protection = low;
2493 sc->memcg_low_skipped = 1;
2494 } else {
2495 protection = min;
2496 }
2497
2498 /* Avoid TOCTOU with earlier protection check */
2499 cgroup_size = max(cgroup_size, protection);
2500
2501 scan -= scan * protection / (cgroup_size + 1);
2502
2503 /*
2504 * Minimally target SWAP_CLUSTER_MAX pages to keep
2505 * reclaim moving forwards, avoiding decrementing
2506 * sc->priority further than desirable.
2507 */
2508 scan = max(scan, SWAP_CLUSTER_MAX);
2509 }
2510 return scan;
2511 }
2512
2513 /*
2514 * Determine how aggressively the anon and file LRU lists should be
2515 * scanned.
2516 *
2517 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2518 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2519 */
get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)2520 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2521 unsigned long *nr)
2522 {
2523 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2524 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2525 int swappiness = sc_swappiness(sc, memcg);
2526 u64 fraction[ANON_AND_FILE];
2527 u64 denominator = 0; /* gcc */
2528 enum scan_balance scan_balance;
2529 enum lru_list lru;
2530
2531 /* If we have no swap space, do not bother scanning anon folios. */
2532 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2533 scan_balance = SCAN_FILE;
2534 goto out;
2535 }
2536
2537 /*
2538 * Global reclaim will swap to prevent OOM even with no
2539 * swappiness, but memcg users want to use this knob to
2540 * disable swapping for individual groups completely when
2541 * using the memory controller's swap limit feature would be
2542 * too expensive.
2543 */
2544 if (cgroup_reclaim(sc) && !swappiness) {
2545 scan_balance = SCAN_FILE;
2546 goto out;
2547 }
2548
2549 /* Proactive reclaim initiated by userspace for anonymous memory only */
2550 if (swappiness == SWAPPINESS_ANON_ONLY) {
2551 WARN_ON_ONCE(!sc->proactive);
2552 scan_balance = SCAN_ANON;
2553 goto out;
2554 }
2555
2556 /*
2557 * Do not apply any pressure balancing cleverness when the
2558 * system is close to OOM, scan both anon and file equally
2559 * (unless the swappiness setting disagrees with swapping).
2560 */
2561 if (!sc->priority && swappiness) {
2562 scan_balance = SCAN_EQUAL;
2563 goto out;
2564 }
2565
2566 /*
2567 * If the system is almost out of file pages, force-scan anon.
2568 */
2569 if (sc->file_is_tiny) {
2570 scan_balance = SCAN_ANON;
2571 goto out;
2572 }
2573
2574 /*
2575 * If there is enough inactive page cache, we do not reclaim
2576 * anything from the anonymous working right now to make sure
2577 * a streaming file access pattern doesn't cause swapping.
2578 */
2579 if (sc->cache_trim_mode) {
2580 scan_balance = SCAN_FILE;
2581 goto out;
2582 }
2583
2584 scan_balance = SCAN_FRACT;
2585 calculate_pressure_balance(sc, swappiness, fraction, &denominator);
2586
2587 out:
2588 for_each_evictable_lru(lru) {
2589 bool file = is_file_lru(lru);
2590 unsigned long lruvec_size;
2591 unsigned long scan;
2592
2593 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2594 scan = apply_proportional_protection(memcg, sc, lruvec_size);
2595 scan >>= sc->priority;
2596
2597 /*
2598 * If the cgroup's already been deleted, make sure to
2599 * scrape out the remaining cache.
2600 */
2601 if (!scan && !mem_cgroup_online(memcg))
2602 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2603
2604 switch (scan_balance) {
2605 case SCAN_EQUAL:
2606 /* Scan lists relative to size */
2607 break;
2608 case SCAN_FRACT:
2609 /*
2610 * Scan types proportional to swappiness and
2611 * their relative recent reclaim efficiency.
2612 * Make sure we don't miss the last page on
2613 * the offlined memory cgroups because of a
2614 * round-off error.
2615 */
2616 scan = mem_cgroup_online(memcg) ?
2617 div64_u64(scan * fraction[file], denominator) :
2618 DIV64_U64_ROUND_UP(scan * fraction[file],
2619 denominator);
2620 break;
2621 case SCAN_FILE:
2622 case SCAN_ANON:
2623 /* Scan one type exclusively */
2624 if ((scan_balance == SCAN_FILE) != file)
2625 scan = 0;
2626 break;
2627 default:
2628 /* Look ma, no brain */
2629 BUG();
2630 }
2631
2632 nr[lru] = scan;
2633 }
2634 }
2635
2636 /*
2637 * Anonymous LRU management is a waste if there is
2638 * ultimately no way to reclaim the memory.
2639 */
can_age_anon_pages(struct lruvec * lruvec,struct scan_control * sc)2640 static bool can_age_anon_pages(struct lruvec *lruvec,
2641 struct scan_control *sc)
2642 {
2643 /* Aging the anon LRU is valuable if swap is present: */
2644 if (total_swap_pages > 0)
2645 return true;
2646
2647 /* Also valuable if anon pages can be demoted: */
2648 return can_demote(lruvec_pgdat(lruvec)->node_id, sc,
2649 lruvec_memcg(lruvec));
2650 }
2651
2652 #ifdef CONFIG_LRU_GEN
2653
2654 #ifdef CONFIG_LRU_GEN_ENABLED
2655 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2656 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
2657 #else
2658 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2659 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
2660 #endif
2661
should_walk_mmu(void)2662 static bool should_walk_mmu(void)
2663 {
2664 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2665 }
2666
should_clear_pmd_young(void)2667 static bool should_clear_pmd_young(void)
2668 {
2669 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2670 }
2671
2672 /******************************************************************************
2673 * shorthand helpers
2674 ******************************************************************************/
2675
2676 #define DEFINE_MAX_SEQ(lruvec) \
2677 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2678
2679 #define DEFINE_MIN_SEQ(lruvec) \
2680 unsigned long min_seq[ANON_AND_FILE] = { \
2681 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
2682 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
2683 }
2684
2685 /* Get the min/max evictable type based on swappiness */
2686 #define min_type(swappiness) (!(swappiness))
2687 #define max_type(swappiness) ((swappiness) < SWAPPINESS_ANON_ONLY)
2688
2689 #define evictable_min_seq(min_seq, swappiness) \
2690 min((min_seq)[min_type(swappiness)], (min_seq)[max_type(swappiness)])
2691
2692 #define for_each_gen_type_zone(gen, type, zone) \
2693 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
2694 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
2695 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2696
2697 #define for_each_evictable_type(type, swappiness) \
2698 for ((type) = min_type(swappiness); (type) <= max_type(swappiness); (type)++)
2699
2700 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS)
2701 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS)
2702
get_lruvec(struct mem_cgroup * memcg,int nid)2703 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2704 {
2705 struct pglist_data *pgdat = NODE_DATA(nid);
2706
2707 #ifdef CONFIG_MEMCG
2708 if (memcg) {
2709 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2710
2711 /* see the comment in mem_cgroup_lruvec() */
2712 if (!lruvec->pgdat)
2713 lruvec->pgdat = pgdat;
2714
2715 return lruvec;
2716 }
2717 #endif
2718 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2719
2720 return &pgdat->__lruvec;
2721 }
2722
get_swappiness(struct lruvec * lruvec,struct scan_control * sc)2723 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2724 {
2725 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2726 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2727
2728 if (!sc->may_swap)
2729 return 0;
2730
2731 if (!can_demote(pgdat->node_id, sc, memcg) &&
2732 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2733 return 0;
2734
2735 return sc_swappiness(sc, memcg);
2736 }
2737
get_nr_gens(struct lruvec * lruvec,int type)2738 static int get_nr_gens(struct lruvec *lruvec, int type)
2739 {
2740 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2741 }
2742
seq_is_valid(struct lruvec * lruvec)2743 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2744 {
2745 int type;
2746
2747 for (type = 0; type < ANON_AND_FILE; type++) {
2748 int n = get_nr_gens(lruvec, type);
2749
2750 if (n < MIN_NR_GENS || n > MAX_NR_GENS)
2751 return false;
2752 }
2753
2754 return true;
2755 }
2756
2757 /******************************************************************************
2758 * Bloom filters
2759 ******************************************************************************/
2760
2761 /*
2762 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2763 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2764 * bits in a bitmap, k is the number of hash functions and n is the number of
2765 * inserted items.
2766 *
2767 * Page table walkers use one of the two filters to reduce their search space.
2768 * To get rid of non-leaf entries that no longer have enough leaf entries, the
2769 * aging uses the double-buffering technique to flip to the other filter each
2770 * time it produces a new generation. For non-leaf entries that have enough
2771 * leaf entries, the aging carries them over to the next generation in
2772 * walk_pmd_range(); the eviction also report them when walking the rmap
2773 * in lru_gen_look_around().
2774 *
2775 * For future optimizations:
2776 * 1. It's not necessary to keep both filters all the time. The spare one can be
2777 * freed after the RCU grace period and reallocated if needed again.
2778 * 2. And when reallocating, it's worth scaling its size according to the number
2779 * of inserted entries in the other filter, to reduce the memory overhead on
2780 * small systems and false positives on large systems.
2781 * 3. Jenkins' hash function is an alternative to Knuth's.
2782 */
2783 #define BLOOM_FILTER_SHIFT 15
2784
filter_gen_from_seq(unsigned long seq)2785 static inline int filter_gen_from_seq(unsigned long seq)
2786 {
2787 return seq % NR_BLOOM_FILTERS;
2788 }
2789
get_item_key(void * item,int * key)2790 static void get_item_key(void *item, int *key)
2791 {
2792 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2793
2794 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2795
2796 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2797 key[1] = hash >> BLOOM_FILTER_SHIFT;
2798 }
2799
test_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq,void * item)2800 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2801 void *item)
2802 {
2803 int key[2];
2804 unsigned long *filter;
2805 int gen = filter_gen_from_seq(seq);
2806
2807 filter = READ_ONCE(mm_state->filters[gen]);
2808 if (!filter)
2809 return true;
2810
2811 get_item_key(item, key);
2812
2813 return test_bit(key[0], filter) && test_bit(key[1], filter);
2814 }
2815
update_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq,void * item)2816 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2817 void *item)
2818 {
2819 int key[2];
2820 unsigned long *filter;
2821 int gen = filter_gen_from_seq(seq);
2822
2823 filter = READ_ONCE(mm_state->filters[gen]);
2824 if (!filter)
2825 return;
2826
2827 get_item_key(item, key);
2828
2829 if (!test_bit(key[0], filter))
2830 set_bit(key[0], filter);
2831 if (!test_bit(key[1], filter))
2832 set_bit(key[1], filter);
2833 }
2834
reset_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq)2835 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2836 {
2837 unsigned long *filter;
2838 int gen = filter_gen_from_seq(seq);
2839
2840 filter = mm_state->filters[gen];
2841 if (filter) {
2842 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2843 return;
2844 }
2845
2846 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2847 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2848 WRITE_ONCE(mm_state->filters[gen], filter);
2849 }
2850
2851 /******************************************************************************
2852 * mm_struct list
2853 ******************************************************************************/
2854
2855 #ifdef CONFIG_LRU_GEN_WALKS_MMU
2856
get_mm_list(struct mem_cgroup * memcg)2857 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2858 {
2859 static struct lru_gen_mm_list mm_list = {
2860 .fifo = LIST_HEAD_INIT(mm_list.fifo),
2861 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2862 };
2863
2864 #ifdef CONFIG_MEMCG
2865 if (memcg)
2866 return &memcg->mm_list;
2867 #endif
2868 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2869
2870 return &mm_list;
2871 }
2872
get_mm_state(struct lruvec * lruvec)2873 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2874 {
2875 return &lruvec->mm_state;
2876 }
2877
get_next_mm(struct lru_gen_mm_walk * walk)2878 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2879 {
2880 int key;
2881 struct mm_struct *mm;
2882 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2883 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2884
2885 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2886 key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2887
2888 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2889 return NULL;
2890
2891 clear_bit(key, &mm->lru_gen.bitmap);
2892
2893 return mmget_not_zero(mm) ? mm : NULL;
2894 }
2895
lru_gen_add_mm(struct mm_struct * mm)2896 void lru_gen_add_mm(struct mm_struct *mm)
2897 {
2898 int nid;
2899 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2900 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2901
2902 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2903 #ifdef CONFIG_MEMCG
2904 VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2905 mm->lru_gen.memcg = memcg;
2906 #endif
2907 spin_lock(&mm_list->lock);
2908
2909 for_each_node_state(nid, N_MEMORY) {
2910 struct lruvec *lruvec = get_lruvec(memcg, nid);
2911 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2912
2913 /* the first addition since the last iteration */
2914 if (mm_state->tail == &mm_list->fifo)
2915 mm_state->tail = &mm->lru_gen.list;
2916 }
2917
2918 list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2919
2920 spin_unlock(&mm_list->lock);
2921 }
2922
lru_gen_del_mm(struct mm_struct * mm)2923 void lru_gen_del_mm(struct mm_struct *mm)
2924 {
2925 int nid;
2926 struct lru_gen_mm_list *mm_list;
2927 struct mem_cgroup *memcg = NULL;
2928
2929 if (list_empty(&mm->lru_gen.list))
2930 return;
2931
2932 #ifdef CONFIG_MEMCG
2933 memcg = mm->lru_gen.memcg;
2934 #endif
2935 mm_list = get_mm_list(memcg);
2936
2937 spin_lock(&mm_list->lock);
2938
2939 for_each_node(nid) {
2940 struct lruvec *lruvec = get_lruvec(memcg, nid);
2941 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2942
2943 /* where the current iteration continues after */
2944 if (mm_state->head == &mm->lru_gen.list)
2945 mm_state->head = mm_state->head->prev;
2946
2947 /* where the last iteration ended before */
2948 if (mm_state->tail == &mm->lru_gen.list)
2949 mm_state->tail = mm_state->tail->next;
2950 }
2951
2952 list_del_init(&mm->lru_gen.list);
2953
2954 spin_unlock(&mm_list->lock);
2955
2956 #ifdef CONFIG_MEMCG
2957 mem_cgroup_put(mm->lru_gen.memcg);
2958 mm->lru_gen.memcg = NULL;
2959 #endif
2960 }
2961
2962 #ifdef CONFIG_MEMCG
lru_gen_migrate_mm(struct mm_struct * mm)2963 void lru_gen_migrate_mm(struct mm_struct *mm)
2964 {
2965 struct mem_cgroup *memcg;
2966 struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2967
2968 VM_WARN_ON_ONCE(task->mm != mm);
2969 lockdep_assert_held(&task->alloc_lock);
2970
2971 /* for mm_update_next_owner() */
2972 if (mem_cgroup_disabled())
2973 return;
2974
2975 /* migration can happen before addition */
2976 if (!mm->lru_gen.memcg)
2977 return;
2978
2979 rcu_read_lock();
2980 memcg = mem_cgroup_from_task(task);
2981 rcu_read_unlock();
2982 if (memcg == mm->lru_gen.memcg)
2983 return;
2984
2985 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
2986
2987 lru_gen_del_mm(mm);
2988 lru_gen_add_mm(mm);
2989 }
2990 #endif
2991
2992 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
2993
get_mm_list(struct mem_cgroup * memcg)2994 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2995 {
2996 return NULL;
2997 }
2998
get_mm_state(struct lruvec * lruvec)2999 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
3000 {
3001 return NULL;
3002 }
3003
get_next_mm(struct lru_gen_mm_walk * walk)3004 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
3005 {
3006 return NULL;
3007 }
3008
3009 #endif
3010
reset_mm_stats(struct lru_gen_mm_walk * walk,bool last)3011 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
3012 {
3013 int i;
3014 int hist;
3015 struct lruvec *lruvec = walk->lruvec;
3016 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3017
3018 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3019
3020 hist = lru_hist_from_seq(walk->seq);
3021
3022 for (i = 0; i < NR_MM_STATS; i++) {
3023 WRITE_ONCE(mm_state->stats[hist][i],
3024 mm_state->stats[hist][i] + walk->mm_stats[i]);
3025 walk->mm_stats[i] = 0;
3026 }
3027
3028 if (NR_HIST_GENS > 1 && last) {
3029 hist = lru_hist_from_seq(walk->seq + 1);
3030
3031 for (i = 0; i < NR_MM_STATS; i++)
3032 WRITE_ONCE(mm_state->stats[hist][i], 0);
3033 }
3034 }
3035
iterate_mm_list(struct lru_gen_mm_walk * walk,struct mm_struct ** iter)3036 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
3037 {
3038 bool first = false;
3039 bool last = false;
3040 struct mm_struct *mm = NULL;
3041 struct lruvec *lruvec = walk->lruvec;
3042 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3043 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3044 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3045
3046 /*
3047 * mm_state->seq is incremented after each iteration of mm_list. There
3048 * are three interesting cases for this page table walker:
3049 * 1. It tries to start a new iteration with a stale max_seq: there is
3050 * nothing left to do.
3051 * 2. It started the next iteration: it needs to reset the Bloom filter
3052 * so that a fresh set of PTE tables can be recorded.
3053 * 3. It ended the current iteration: it needs to reset the mm stats
3054 * counters and tell its caller to increment max_seq.
3055 */
3056 spin_lock(&mm_list->lock);
3057
3058 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq);
3059
3060 if (walk->seq <= mm_state->seq)
3061 goto done;
3062
3063 if (!mm_state->head)
3064 mm_state->head = &mm_list->fifo;
3065
3066 if (mm_state->head == &mm_list->fifo)
3067 first = true;
3068
3069 do {
3070 mm_state->head = mm_state->head->next;
3071 if (mm_state->head == &mm_list->fifo) {
3072 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3073 last = true;
3074 break;
3075 }
3076
3077 /* force scan for those added after the last iteration */
3078 if (!mm_state->tail || mm_state->tail == mm_state->head) {
3079 mm_state->tail = mm_state->head->next;
3080 walk->force_scan = true;
3081 }
3082 } while (!(mm = get_next_mm(walk)));
3083 done:
3084 if (*iter || last)
3085 reset_mm_stats(walk, last);
3086
3087 spin_unlock(&mm_list->lock);
3088
3089 if (mm && first)
3090 reset_bloom_filter(mm_state, walk->seq + 1);
3091
3092 if (*iter)
3093 mmput_async(*iter);
3094
3095 *iter = mm;
3096
3097 return last;
3098 }
3099
iterate_mm_list_nowalk(struct lruvec * lruvec,unsigned long seq)3100 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
3101 {
3102 bool success = false;
3103 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3104 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3105 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3106
3107 spin_lock(&mm_list->lock);
3108
3109 VM_WARN_ON_ONCE(mm_state->seq + 1 < seq);
3110
3111 if (seq > mm_state->seq) {
3112 mm_state->head = NULL;
3113 mm_state->tail = NULL;
3114 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3115 success = true;
3116 }
3117
3118 spin_unlock(&mm_list->lock);
3119
3120 return success;
3121 }
3122
3123 /******************************************************************************
3124 * PID controller
3125 ******************************************************************************/
3126
3127 /*
3128 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3129 *
3130 * The P term is refaulted/(evicted+protected) from a tier in the generation
3131 * currently being evicted; the I term is the exponential moving average of the
3132 * P term over the generations previously evicted, using the smoothing factor
3133 * 1/2; the D term isn't supported.
3134 *
3135 * The setpoint (SP) is always the first tier of one type; the process variable
3136 * (PV) is either any tier of the other type or any other tier of the same
3137 * type.
3138 *
3139 * The error is the difference between the SP and the PV; the correction is to
3140 * turn off protection when SP>PV or turn on protection when SP<PV.
3141 *
3142 * For future optimizations:
3143 * 1. The D term may discount the other two terms over time so that long-lived
3144 * generations can resist stale information.
3145 */
3146 struct ctrl_pos {
3147 unsigned long refaulted;
3148 unsigned long total;
3149 int gain;
3150 };
3151
read_ctrl_pos(struct lruvec * lruvec,int type,int tier,int gain,struct ctrl_pos * pos)3152 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3153 struct ctrl_pos *pos)
3154 {
3155 int i;
3156 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3157 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3158
3159 pos->gain = gain;
3160 pos->refaulted = pos->total = 0;
3161
3162 for (i = tier % MAX_NR_TIERS; i <= min(tier, MAX_NR_TIERS - 1); i++) {
3163 pos->refaulted += lrugen->avg_refaulted[type][i] +
3164 atomic_long_read(&lrugen->refaulted[hist][type][i]);
3165 pos->total += lrugen->avg_total[type][i] +
3166 lrugen->protected[hist][type][i] +
3167 atomic_long_read(&lrugen->evicted[hist][type][i]);
3168 }
3169 }
3170
reset_ctrl_pos(struct lruvec * lruvec,int type,bool carryover)3171 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3172 {
3173 int hist, tier;
3174 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3175 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3176 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3177
3178 lockdep_assert_held(&lruvec->lru_lock);
3179
3180 if (!carryover && !clear)
3181 return;
3182
3183 hist = lru_hist_from_seq(seq);
3184
3185 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3186 if (carryover) {
3187 unsigned long sum;
3188
3189 sum = lrugen->avg_refaulted[type][tier] +
3190 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3191 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3192
3193 sum = lrugen->avg_total[type][tier] +
3194 lrugen->protected[hist][type][tier] +
3195 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3196 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3197 }
3198
3199 if (clear) {
3200 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3201 atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3202 WRITE_ONCE(lrugen->protected[hist][type][tier], 0);
3203 }
3204 }
3205 }
3206
positive_ctrl_err(struct ctrl_pos * sp,struct ctrl_pos * pv)3207 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3208 {
3209 /*
3210 * Return true if the PV has a limited number of refaults or a lower
3211 * refaulted/total than the SP.
3212 */
3213 return pv->refaulted < MIN_LRU_BATCH ||
3214 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3215 (sp->refaulted + 1) * pv->total * pv->gain;
3216 }
3217
3218 /******************************************************************************
3219 * the aging
3220 ******************************************************************************/
3221
3222 /* promote pages accessed through page tables */
folio_update_gen(struct folio * folio,int gen)3223 static int folio_update_gen(struct folio *folio, int gen)
3224 {
3225 unsigned long new_flags, old_flags = READ_ONCE(folio->flags.f);
3226
3227 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3228
3229 /* see the comment on LRU_REFS_FLAGS */
3230 if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
3231 set_mask_bits(&folio->flags.f, LRU_REFS_MASK, BIT(PG_referenced));
3232 return -1;
3233 }
3234
3235 do {
3236 /* lru_gen_del_folio() has isolated this page? */
3237 if (!(old_flags & LRU_GEN_MASK))
3238 return -1;
3239
3240 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
3241 new_flags |= ((gen + 1UL) << LRU_GEN_PGOFF) | BIT(PG_workingset);
3242 } while (!try_cmpxchg(&folio->flags.f, &old_flags, new_flags));
3243
3244 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3245 }
3246
3247 /* protect pages accessed multiple times through file descriptors */
folio_inc_gen(struct lruvec * lruvec,struct folio * folio,bool reclaiming)3248 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3249 {
3250 int type = folio_is_file_lru(folio);
3251 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3252 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3253 unsigned long new_flags, old_flags = READ_ONCE(folio->flags.f);
3254
3255 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3256
3257 do {
3258 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3259 /* folio_update_gen() has promoted this page? */
3260 if (new_gen >= 0 && new_gen != old_gen)
3261 return new_gen;
3262
3263 new_gen = (old_gen + 1) % MAX_NR_GENS;
3264
3265 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
3266 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3267 /* for folio_end_writeback() */
3268 if (reclaiming)
3269 new_flags |= BIT(PG_reclaim);
3270 } while (!try_cmpxchg(&folio->flags.f, &old_flags, new_flags));
3271
3272 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3273
3274 return new_gen;
3275 }
3276
update_batch_size(struct lru_gen_mm_walk * walk,struct folio * folio,int old_gen,int new_gen)3277 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3278 int old_gen, int new_gen)
3279 {
3280 int type = folio_is_file_lru(folio);
3281 int zone = folio_zonenum(folio);
3282 int delta = folio_nr_pages(folio);
3283
3284 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3285 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3286
3287 walk->batched++;
3288
3289 walk->nr_pages[old_gen][type][zone] -= delta;
3290 walk->nr_pages[new_gen][type][zone] += delta;
3291 }
3292
reset_batch_size(struct lru_gen_mm_walk * walk)3293 static void reset_batch_size(struct lru_gen_mm_walk *walk)
3294 {
3295 int gen, type, zone;
3296 struct lruvec *lruvec = walk->lruvec;
3297 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3298
3299 walk->batched = 0;
3300
3301 for_each_gen_type_zone(gen, type, zone) {
3302 enum lru_list lru = type * LRU_INACTIVE_FILE;
3303 int delta = walk->nr_pages[gen][type][zone];
3304
3305 if (!delta)
3306 continue;
3307
3308 walk->nr_pages[gen][type][zone] = 0;
3309 WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3310 lrugen->nr_pages[gen][type][zone] + delta);
3311
3312 if (lru_gen_is_active(lruvec, gen))
3313 lru += LRU_ACTIVE;
3314 __update_lru_size(lruvec, lru, zone, delta);
3315 }
3316 }
3317
should_skip_vma(unsigned long start,unsigned long end,struct mm_walk * args)3318 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3319 {
3320 struct address_space *mapping;
3321 struct vm_area_struct *vma = args->vma;
3322 struct lru_gen_mm_walk *walk = args->private;
3323
3324 if (!vma_is_accessible(vma))
3325 return true;
3326
3327 if (is_vm_hugetlb_page(vma))
3328 return true;
3329
3330 if (!vma_has_recency(vma))
3331 return true;
3332
3333 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3334 return true;
3335
3336 if (vma == get_gate_vma(vma->vm_mm))
3337 return true;
3338
3339 if (vma_is_anonymous(vma))
3340 return !walk->swappiness;
3341
3342 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3343 return true;
3344
3345 mapping = vma->vm_file->f_mapping;
3346 if (mapping_unevictable(mapping))
3347 return true;
3348
3349 if (shmem_mapping(mapping))
3350 return !walk->swappiness;
3351
3352 if (walk->swappiness > MAX_SWAPPINESS)
3353 return true;
3354
3355 /* to exclude special mappings like dax, etc. */
3356 return !mapping->a_ops->read_folio;
3357 }
3358
3359 /*
3360 * Some userspace memory allocators map many single-page VMAs. Instead of
3361 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3362 * table to reduce zigzags and improve cache performance.
3363 */
get_next_vma(unsigned long mask,unsigned long size,struct mm_walk * args,unsigned long * vm_start,unsigned long * vm_end)3364 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3365 unsigned long *vm_start, unsigned long *vm_end)
3366 {
3367 unsigned long start = round_up(*vm_end, size);
3368 unsigned long end = (start | ~mask) + 1;
3369 VMA_ITERATOR(vmi, args->mm, start);
3370
3371 VM_WARN_ON_ONCE(mask & size);
3372 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3373
3374 for_each_vma(vmi, args->vma) {
3375 if (end && end <= args->vma->vm_start)
3376 return false;
3377
3378 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3379 continue;
3380
3381 *vm_start = max(start, args->vma->vm_start);
3382 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3383
3384 return true;
3385 }
3386
3387 return false;
3388 }
3389
get_pte_pfn(pte_t pte,struct vm_area_struct * vma,unsigned long addr,struct pglist_data * pgdat)3390 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr,
3391 struct pglist_data *pgdat)
3392 {
3393 unsigned long pfn = pte_pfn(pte);
3394
3395 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3396
3397 if (!pte_present(pte) || is_zero_pfn(pfn))
3398 return -1;
3399
3400 if (WARN_ON_ONCE(pte_special(pte)))
3401 return -1;
3402
3403 if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm))
3404 return -1;
3405
3406 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3407 return -1;
3408
3409 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3410 return -1;
3411
3412 return pfn;
3413 }
3414
get_pmd_pfn(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr,struct pglist_data * pgdat)3415 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr,
3416 struct pglist_data *pgdat)
3417 {
3418 unsigned long pfn = pmd_pfn(pmd);
3419
3420 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3421
3422 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3423 return -1;
3424
3425 if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm))
3426 return -1;
3427
3428 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3429 return -1;
3430
3431 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3432 return -1;
3433
3434 return pfn;
3435 }
3436
get_pfn_folio(unsigned long pfn,struct mem_cgroup * memcg,struct pglist_data * pgdat)3437 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3438 struct pglist_data *pgdat)
3439 {
3440 struct folio *folio = pfn_folio(pfn);
3441
3442 if (folio_lru_gen(folio) < 0)
3443 return NULL;
3444
3445 if (folio_nid(folio) != pgdat->node_id)
3446 return NULL;
3447
3448 if (folio_memcg(folio) != memcg)
3449 return NULL;
3450
3451 return folio;
3452 }
3453
suitable_to_scan(int total,int young)3454 static bool suitable_to_scan(int total, int young)
3455 {
3456 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3457
3458 /* suitable if the average number of young PTEs per cacheline is >=1 */
3459 return young * n >= total;
3460 }
3461
walk_update_folio(struct lru_gen_mm_walk * walk,struct folio * folio,int new_gen,bool dirty)3462 static void walk_update_folio(struct lru_gen_mm_walk *walk, struct folio *folio,
3463 int new_gen, bool dirty)
3464 {
3465 int old_gen;
3466
3467 if (!folio)
3468 return;
3469
3470 if (dirty && !folio_test_dirty(folio) &&
3471 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3472 !folio_test_swapcache(folio)))
3473 folio_mark_dirty(folio);
3474
3475 if (walk) {
3476 old_gen = folio_update_gen(folio, new_gen);
3477 if (old_gen >= 0 && old_gen != new_gen)
3478 update_batch_size(walk, folio, old_gen, new_gen);
3479 } else if (lru_gen_set_refs(folio)) {
3480 old_gen = folio_lru_gen(folio);
3481 if (old_gen >= 0 && old_gen != new_gen)
3482 folio_activate(folio);
3483 }
3484 }
3485
walk_pte_range(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * args)3486 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3487 struct mm_walk *args)
3488 {
3489 int i;
3490 bool dirty;
3491 pte_t *pte;
3492 spinlock_t *ptl;
3493 unsigned long addr;
3494 int total = 0;
3495 int young = 0;
3496 struct folio *last = NULL;
3497 struct lru_gen_mm_walk *walk = args->private;
3498 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3499 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3500 DEFINE_MAX_SEQ(walk->lruvec);
3501 int gen = lru_gen_from_seq(max_seq);
3502 pmd_t pmdval;
3503
3504 pte = pte_offset_map_rw_nolock(args->mm, pmd, start & PMD_MASK, &pmdval, &ptl);
3505 if (!pte)
3506 return false;
3507
3508 if (!spin_trylock(ptl)) {
3509 pte_unmap(pte);
3510 return true;
3511 }
3512
3513 if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) {
3514 pte_unmap_unlock(pte, ptl);
3515 return false;
3516 }
3517
3518 arch_enter_lazy_mmu_mode();
3519 restart:
3520 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3521 unsigned long pfn;
3522 struct folio *folio;
3523 pte_t ptent = ptep_get(pte + i);
3524
3525 total++;
3526 walk->mm_stats[MM_LEAF_TOTAL]++;
3527
3528 pfn = get_pte_pfn(ptent, args->vma, addr, pgdat);
3529 if (pfn == -1)
3530 continue;
3531
3532 folio = get_pfn_folio(pfn, memcg, pgdat);
3533 if (!folio)
3534 continue;
3535
3536 if (!ptep_clear_young_notify(args->vma, addr, pte + i))
3537 continue;
3538
3539 if (last != folio) {
3540 walk_update_folio(walk, last, gen, dirty);
3541
3542 last = folio;
3543 dirty = false;
3544 }
3545
3546 if (pte_dirty(ptent))
3547 dirty = true;
3548
3549 young++;
3550 walk->mm_stats[MM_LEAF_YOUNG]++;
3551 }
3552
3553 walk_update_folio(walk, last, gen, dirty);
3554 last = NULL;
3555
3556 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3557 goto restart;
3558
3559 arch_leave_lazy_mmu_mode();
3560 pte_unmap_unlock(pte, ptl);
3561
3562 return suitable_to_scan(total, young);
3563 }
3564
walk_pmd_range_locked(pud_t * pud,unsigned long addr,struct vm_area_struct * vma,struct mm_walk * args,unsigned long * bitmap,unsigned long * first)3565 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3566 struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3567 {
3568 int i;
3569 bool dirty;
3570 pmd_t *pmd;
3571 spinlock_t *ptl;
3572 struct folio *last = NULL;
3573 struct lru_gen_mm_walk *walk = args->private;
3574 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3575 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3576 DEFINE_MAX_SEQ(walk->lruvec);
3577 int gen = lru_gen_from_seq(max_seq);
3578
3579 VM_WARN_ON_ONCE(pud_leaf(*pud));
3580
3581 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3582 if (*first == -1) {
3583 *first = addr;
3584 bitmap_zero(bitmap, MIN_LRU_BATCH);
3585 return;
3586 }
3587
3588 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3589 if (i && i <= MIN_LRU_BATCH) {
3590 __set_bit(i - 1, bitmap);
3591 return;
3592 }
3593
3594 pmd = pmd_offset(pud, *first);
3595
3596 ptl = pmd_lockptr(args->mm, pmd);
3597 if (!spin_trylock(ptl))
3598 goto done;
3599
3600 arch_enter_lazy_mmu_mode();
3601
3602 do {
3603 unsigned long pfn;
3604 struct folio *folio;
3605
3606 /* don't round down the first address */
3607 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3608
3609 if (!pmd_present(pmd[i]))
3610 goto next;
3611
3612 if (!pmd_trans_huge(pmd[i])) {
3613 if (!walk->force_scan && should_clear_pmd_young() &&
3614 !mm_has_notifiers(args->mm))
3615 pmdp_test_and_clear_young(vma, addr, pmd + i);
3616 goto next;
3617 }
3618
3619 pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat);
3620 if (pfn == -1)
3621 goto next;
3622
3623 folio = get_pfn_folio(pfn, memcg, pgdat);
3624 if (!folio)
3625 goto next;
3626
3627 if (!pmdp_clear_young_notify(vma, addr, pmd + i))
3628 goto next;
3629
3630 if (last != folio) {
3631 walk_update_folio(walk, last, gen, dirty);
3632
3633 last = folio;
3634 dirty = false;
3635 }
3636
3637 if (pmd_dirty(pmd[i]))
3638 dirty = true;
3639
3640 walk->mm_stats[MM_LEAF_YOUNG]++;
3641 next:
3642 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3643 } while (i <= MIN_LRU_BATCH);
3644
3645 walk_update_folio(walk, last, gen, dirty);
3646
3647 arch_leave_lazy_mmu_mode();
3648 spin_unlock(ptl);
3649 done:
3650 *first = -1;
3651 }
3652
walk_pmd_range(pud_t * pud,unsigned long start,unsigned long end,struct mm_walk * args)3653 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3654 struct mm_walk *args)
3655 {
3656 int i;
3657 pmd_t *pmd;
3658 unsigned long next;
3659 unsigned long addr;
3660 struct vm_area_struct *vma;
3661 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3662 unsigned long first = -1;
3663 struct lru_gen_mm_walk *walk = args->private;
3664 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3665
3666 VM_WARN_ON_ONCE(pud_leaf(*pud));
3667
3668 /*
3669 * Finish an entire PMD in two passes: the first only reaches to PTE
3670 * tables to avoid taking the PMD lock; the second, if necessary, takes
3671 * the PMD lock to clear the accessed bit in PMD entries.
3672 */
3673 pmd = pmd_offset(pud, start & PUD_MASK);
3674 restart:
3675 /* walk_pte_range() may call get_next_vma() */
3676 vma = args->vma;
3677 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3678 pmd_t val = pmdp_get_lockless(pmd + i);
3679
3680 next = pmd_addr_end(addr, end);
3681
3682 if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3683 walk->mm_stats[MM_LEAF_TOTAL]++;
3684 continue;
3685 }
3686
3687 if (pmd_trans_huge(val)) {
3688 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3689 unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat);
3690
3691 walk->mm_stats[MM_LEAF_TOTAL]++;
3692
3693 if (pfn != -1)
3694 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3695 continue;
3696 }
3697
3698 if (!walk->force_scan && should_clear_pmd_young() &&
3699 !mm_has_notifiers(args->mm)) {
3700 if (!pmd_young(val))
3701 continue;
3702
3703 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3704 }
3705
3706 if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i))
3707 continue;
3708
3709 walk->mm_stats[MM_NONLEAF_FOUND]++;
3710
3711 if (!walk_pte_range(&val, addr, next, args))
3712 continue;
3713
3714 walk->mm_stats[MM_NONLEAF_ADDED]++;
3715
3716 /* carry over to the next generation */
3717 update_bloom_filter(mm_state, walk->seq + 1, pmd + i);
3718 }
3719
3720 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3721
3722 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3723 goto restart;
3724 }
3725
walk_pud_range(p4d_t * p4d,unsigned long start,unsigned long end,struct mm_walk * args)3726 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3727 struct mm_walk *args)
3728 {
3729 int i;
3730 pud_t *pud;
3731 unsigned long addr;
3732 unsigned long next;
3733 struct lru_gen_mm_walk *walk = args->private;
3734
3735 VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3736
3737 pud = pud_offset(p4d, start & P4D_MASK);
3738 restart:
3739 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3740 pud_t val = pudp_get(pud + i);
3741
3742 next = pud_addr_end(addr, end);
3743
3744 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3745 continue;
3746
3747 walk_pmd_range(&val, addr, next, args);
3748
3749 if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3750 end = (addr | ~PUD_MASK) + 1;
3751 goto done;
3752 }
3753 }
3754
3755 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3756 goto restart;
3757
3758 end = round_up(end, P4D_SIZE);
3759 done:
3760 if (!end || !args->vma)
3761 return 1;
3762
3763 walk->next_addr = max(end, args->vma->vm_start);
3764
3765 return -EAGAIN;
3766 }
3767
walk_mm(struct mm_struct * mm,struct lru_gen_mm_walk * walk)3768 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3769 {
3770 static const struct mm_walk_ops mm_walk_ops = {
3771 .test_walk = should_skip_vma,
3772 .p4d_entry = walk_pud_range,
3773 .walk_lock = PGWALK_RDLOCK,
3774 };
3775 int err;
3776 struct lruvec *lruvec = walk->lruvec;
3777
3778 walk->next_addr = FIRST_USER_ADDRESS;
3779
3780 do {
3781 DEFINE_MAX_SEQ(lruvec);
3782
3783 err = -EBUSY;
3784
3785 /* another thread might have called inc_max_seq() */
3786 if (walk->seq != max_seq)
3787 break;
3788
3789 /* the caller might be holding the lock for write */
3790 if (mmap_read_trylock(mm)) {
3791 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3792
3793 mmap_read_unlock(mm);
3794 }
3795
3796 if (walk->batched) {
3797 spin_lock_irq(&lruvec->lru_lock);
3798 reset_batch_size(walk);
3799 spin_unlock_irq(&lruvec->lru_lock);
3800 }
3801
3802 cond_resched();
3803 } while (err == -EAGAIN);
3804 }
3805
set_mm_walk(struct pglist_data * pgdat,bool force_alloc)3806 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3807 {
3808 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3809
3810 if (pgdat && current_is_kswapd()) {
3811 VM_WARN_ON_ONCE(walk);
3812
3813 walk = &pgdat->mm_walk;
3814 } else if (!walk && force_alloc) {
3815 VM_WARN_ON_ONCE(current_is_kswapd());
3816
3817 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3818 }
3819
3820 current->reclaim_state->mm_walk = walk;
3821
3822 return walk;
3823 }
3824
clear_mm_walk(void)3825 static void clear_mm_walk(void)
3826 {
3827 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3828
3829 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3830 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3831
3832 current->reclaim_state->mm_walk = NULL;
3833
3834 if (!current_is_kswapd())
3835 kfree(walk);
3836 }
3837
inc_min_seq(struct lruvec * lruvec,int type,int swappiness)3838 static bool inc_min_seq(struct lruvec *lruvec, int type, int swappiness)
3839 {
3840 int zone;
3841 int remaining = MAX_LRU_BATCH;
3842 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3843 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3844 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3845
3846 /* For file type, skip the check if swappiness is anon only */
3847 if (type && (swappiness == SWAPPINESS_ANON_ONLY))
3848 goto done;
3849
3850 /* For anon type, skip the check if swappiness is zero (file only) */
3851 if (!type && !swappiness)
3852 goto done;
3853
3854 /* prevent cold/hot inversion if the type is evictable */
3855 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3856 struct list_head *head = &lrugen->folios[old_gen][type][zone];
3857
3858 while (!list_empty(head)) {
3859 struct folio *folio = lru_to_folio(head);
3860 int refs = folio_lru_refs(folio);
3861 bool workingset = folio_test_workingset(folio);
3862
3863 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3864 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3865 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3866 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3867
3868 new_gen = folio_inc_gen(lruvec, folio, false);
3869 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3870
3871 /* don't count the workingset being lazily promoted */
3872 if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
3873 int tier = lru_tier_from_refs(refs, workingset);
3874 int delta = folio_nr_pages(folio);
3875
3876 WRITE_ONCE(lrugen->protected[hist][type][tier],
3877 lrugen->protected[hist][type][tier] + delta);
3878 }
3879
3880 if (!--remaining)
3881 return false;
3882 }
3883 }
3884 done:
3885 reset_ctrl_pos(lruvec, type, true);
3886 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3887
3888 return true;
3889 }
3890
try_to_inc_min_seq(struct lruvec * lruvec,int swappiness)3891 static bool try_to_inc_min_seq(struct lruvec *lruvec, int swappiness)
3892 {
3893 int gen, type, zone;
3894 bool success = false;
3895 bool seq_inc_flag = false;
3896 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3897 DEFINE_MIN_SEQ(lruvec);
3898
3899 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3900
3901 /* find the oldest populated generation */
3902 for_each_evictable_type(type, swappiness) {
3903 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3904 gen = lru_gen_from_seq(min_seq[type]);
3905
3906 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3907 if (!list_empty(&lrugen->folios[gen][type][zone]))
3908 goto next;
3909 }
3910
3911 min_seq[type]++;
3912 seq_inc_flag = true;
3913 }
3914 next:
3915 ;
3916 }
3917
3918 /*
3919 * If min_seq[type] of both anonymous and file is not increased,
3920 * we can directly return false to avoid unnecessary checking
3921 * overhead later.
3922 */
3923 if (!seq_inc_flag)
3924 return success;
3925
3926 /* see the comment on lru_gen_folio */
3927 if (swappiness && swappiness <= MAX_SWAPPINESS) {
3928 unsigned long seq = lrugen->max_seq - MIN_NR_GENS;
3929
3930 if (min_seq[LRU_GEN_ANON] > seq && min_seq[LRU_GEN_FILE] < seq)
3931 min_seq[LRU_GEN_ANON] = seq;
3932 else if (min_seq[LRU_GEN_FILE] > seq && min_seq[LRU_GEN_ANON] < seq)
3933 min_seq[LRU_GEN_FILE] = seq;
3934 }
3935
3936 for_each_evictable_type(type, swappiness) {
3937 if (min_seq[type] <= lrugen->min_seq[type])
3938 continue;
3939
3940 reset_ctrl_pos(lruvec, type, true);
3941 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3942 success = true;
3943 }
3944
3945 return success;
3946 }
3947
inc_max_seq(struct lruvec * lruvec,unsigned long seq,int swappiness)3948 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, int swappiness)
3949 {
3950 bool success;
3951 int prev, next;
3952 int type, zone;
3953 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3954 restart:
3955 if (seq < READ_ONCE(lrugen->max_seq))
3956 return false;
3957
3958 spin_lock_irq(&lruvec->lru_lock);
3959
3960 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3961
3962 success = seq == lrugen->max_seq;
3963 if (!success)
3964 goto unlock;
3965
3966 for (type = 0; type < ANON_AND_FILE; type++) {
3967 if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3968 continue;
3969
3970 if (inc_min_seq(lruvec, type, swappiness))
3971 continue;
3972
3973 spin_unlock_irq(&lruvec->lru_lock);
3974 cond_resched();
3975 goto restart;
3976 }
3977
3978 /*
3979 * Update the active/inactive LRU sizes for compatibility. Both sides of
3980 * the current max_seq need to be covered, since max_seq+1 can overlap
3981 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3982 * overlap, cold/hot inversion happens.
3983 */
3984 prev = lru_gen_from_seq(lrugen->max_seq - 1);
3985 next = lru_gen_from_seq(lrugen->max_seq + 1);
3986
3987 for (type = 0; type < ANON_AND_FILE; type++) {
3988 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3989 enum lru_list lru = type * LRU_INACTIVE_FILE;
3990 long delta = lrugen->nr_pages[prev][type][zone] -
3991 lrugen->nr_pages[next][type][zone];
3992
3993 if (!delta)
3994 continue;
3995
3996 __update_lru_size(lruvec, lru, zone, delta);
3997 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
3998 }
3999 }
4000
4001 for (type = 0; type < ANON_AND_FILE; type++)
4002 reset_ctrl_pos(lruvec, type, false);
4003
4004 WRITE_ONCE(lrugen->timestamps[next], jiffies);
4005 /* make sure preceding modifications appear */
4006 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4007 unlock:
4008 spin_unlock_irq(&lruvec->lru_lock);
4009
4010 return success;
4011 }
4012
try_to_inc_max_seq(struct lruvec * lruvec,unsigned long seq,int swappiness,bool force_scan)4013 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
4014 int swappiness, bool force_scan)
4015 {
4016 bool success;
4017 struct lru_gen_mm_walk *walk;
4018 struct mm_struct *mm = NULL;
4019 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4020 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4021
4022 VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq));
4023
4024 if (!mm_state)
4025 return inc_max_seq(lruvec, seq, swappiness);
4026
4027 /* see the comment in iterate_mm_list() */
4028 if (seq <= READ_ONCE(mm_state->seq))
4029 return false;
4030
4031 /*
4032 * If the hardware doesn't automatically set the accessed bit, fallback
4033 * to lru_gen_look_around(), which only clears the accessed bit in a
4034 * handful of PTEs. Spreading the work out over a period of time usually
4035 * is less efficient, but it avoids bursty page faults.
4036 */
4037 if (!should_walk_mmu()) {
4038 success = iterate_mm_list_nowalk(lruvec, seq);
4039 goto done;
4040 }
4041
4042 walk = set_mm_walk(NULL, true);
4043 if (!walk) {
4044 success = iterate_mm_list_nowalk(lruvec, seq);
4045 goto done;
4046 }
4047
4048 walk->lruvec = lruvec;
4049 walk->seq = seq;
4050 walk->swappiness = swappiness;
4051 walk->force_scan = force_scan;
4052
4053 do {
4054 success = iterate_mm_list(walk, &mm);
4055 if (mm)
4056 walk_mm(mm, walk);
4057 } while (mm);
4058 done:
4059 if (success) {
4060 success = inc_max_seq(lruvec, seq, swappiness);
4061 WARN_ON_ONCE(!success);
4062 }
4063
4064 return success;
4065 }
4066
4067 /******************************************************************************
4068 * working set protection
4069 ******************************************************************************/
4070
set_initial_priority(struct pglist_data * pgdat,struct scan_control * sc)4071 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
4072 {
4073 int priority;
4074 unsigned long reclaimable;
4075
4076 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
4077 return;
4078 /*
4079 * Determine the initial priority based on
4080 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
4081 * where reclaimed_to_scanned_ratio = inactive / total.
4082 */
4083 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
4084 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
4085 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
4086
4087 /* round down reclaimable and round up sc->nr_to_reclaim */
4088 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
4089
4090 /*
4091 * The estimation is based on LRU pages only, so cap it to prevent
4092 * overshoots of shrinker objects by large margins.
4093 */
4094 sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY);
4095 }
4096
lruvec_is_sizable(struct lruvec * lruvec,struct scan_control * sc)4097 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4098 {
4099 int gen, type, zone;
4100 unsigned long total = 0;
4101 int swappiness = get_swappiness(lruvec, sc);
4102 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4103 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4104 DEFINE_MAX_SEQ(lruvec);
4105 DEFINE_MIN_SEQ(lruvec);
4106
4107 for_each_evictable_type(type, swappiness) {
4108 unsigned long seq;
4109
4110 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4111 gen = lru_gen_from_seq(seq);
4112
4113 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4114 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4115 }
4116 }
4117
4118 /* whether the size is big enough to be helpful */
4119 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4120 }
4121
lruvec_is_reclaimable(struct lruvec * lruvec,struct scan_control * sc,unsigned long min_ttl)4122 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4123 unsigned long min_ttl)
4124 {
4125 int gen;
4126 unsigned long birth;
4127 int swappiness = get_swappiness(lruvec, sc);
4128 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4129 DEFINE_MIN_SEQ(lruvec);
4130
4131 if (mem_cgroup_below_min(NULL, memcg))
4132 return false;
4133
4134 if (!lruvec_is_sizable(lruvec, sc))
4135 return false;
4136
4137 gen = lru_gen_from_seq(evictable_min_seq(min_seq, swappiness));
4138 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4139
4140 return time_is_before_jiffies(birth + min_ttl);
4141 }
4142
4143 /* to protect the working set of the last N jiffies */
4144 static unsigned long lru_gen_min_ttl __read_mostly;
4145
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)4146 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4147 {
4148 struct mem_cgroup *memcg;
4149 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4150 bool reclaimable = !min_ttl;
4151
4152 VM_WARN_ON_ONCE(!current_is_kswapd());
4153
4154 set_initial_priority(pgdat, sc);
4155
4156 memcg = mem_cgroup_iter(NULL, NULL, NULL);
4157 do {
4158 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4159
4160 mem_cgroup_calculate_protection(NULL, memcg);
4161
4162 if (!reclaimable)
4163 reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl);
4164 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4165
4166 /*
4167 * The main goal is to OOM kill if every generation from all memcgs is
4168 * younger than min_ttl. However, another possibility is all memcgs are
4169 * either too small or below min.
4170 */
4171 if (!reclaimable && mutex_trylock(&oom_lock)) {
4172 struct oom_control oc = {
4173 .gfp_mask = sc->gfp_mask,
4174 };
4175
4176 out_of_memory(&oc);
4177
4178 mutex_unlock(&oom_lock);
4179 }
4180 }
4181
4182 /******************************************************************************
4183 * rmap/PT walk feedback
4184 ******************************************************************************/
4185
4186 /*
4187 * This function exploits spatial locality when shrink_folio_list() walks the
4188 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4189 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4190 * the PTE table to the Bloom filter. This forms a feedback loop between the
4191 * eviction and the aging.
4192 */
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)4193 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4194 {
4195 int i;
4196 bool dirty;
4197 unsigned long start;
4198 unsigned long end;
4199 struct lru_gen_mm_walk *walk;
4200 struct folio *last = NULL;
4201 int young = 1;
4202 pte_t *pte = pvmw->pte;
4203 unsigned long addr = pvmw->address;
4204 struct vm_area_struct *vma = pvmw->vma;
4205 struct folio *folio = pfn_folio(pvmw->pfn);
4206 struct mem_cgroup *memcg = folio_memcg(folio);
4207 struct pglist_data *pgdat = folio_pgdat(folio);
4208 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4209 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4210 DEFINE_MAX_SEQ(lruvec);
4211 int gen = lru_gen_from_seq(max_seq);
4212
4213 lockdep_assert_held(pvmw->ptl);
4214 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4215
4216 if (!ptep_clear_young_notify(vma, addr, pte))
4217 return false;
4218
4219 if (spin_is_contended(pvmw->ptl))
4220 return true;
4221
4222 /* exclude special VMAs containing anon pages from COW */
4223 if (vma->vm_flags & VM_SPECIAL)
4224 return true;
4225
4226 /* avoid taking the LRU lock under the PTL when possible */
4227 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4228
4229 start = max(addr & PMD_MASK, vma->vm_start);
4230 end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4231
4232 if (end - start == PAGE_SIZE)
4233 return true;
4234
4235 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4236 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4237 end = start + MIN_LRU_BATCH * PAGE_SIZE;
4238 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4239 start = end - MIN_LRU_BATCH * PAGE_SIZE;
4240 else {
4241 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4242 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4243 }
4244 }
4245
4246 arch_enter_lazy_mmu_mode();
4247
4248 pte -= (addr - start) / PAGE_SIZE;
4249
4250 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4251 unsigned long pfn;
4252 pte_t ptent = ptep_get(pte + i);
4253
4254 pfn = get_pte_pfn(ptent, vma, addr, pgdat);
4255 if (pfn == -1)
4256 continue;
4257
4258 folio = get_pfn_folio(pfn, memcg, pgdat);
4259 if (!folio)
4260 continue;
4261
4262 if (!ptep_clear_young_notify(vma, addr, pte + i))
4263 continue;
4264
4265 if (last != folio) {
4266 walk_update_folio(walk, last, gen, dirty);
4267
4268 last = folio;
4269 dirty = false;
4270 }
4271
4272 if (pte_dirty(ptent))
4273 dirty = true;
4274
4275 young++;
4276 }
4277
4278 walk_update_folio(walk, last, gen, dirty);
4279
4280 arch_leave_lazy_mmu_mode();
4281
4282 /* feedback from rmap walkers to page table walkers */
4283 if (mm_state && suitable_to_scan(i, young))
4284 update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4285
4286 return true;
4287 }
4288
4289 /******************************************************************************
4290 * memcg LRU
4291 ******************************************************************************/
4292
4293 /* see the comment on MEMCG_NR_GENS */
4294 enum {
4295 MEMCG_LRU_NOP,
4296 MEMCG_LRU_HEAD,
4297 MEMCG_LRU_TAIL,
4298 MEMCG_LRU_OLD,
4299 MEMCG_LRU_YOUNG,
4300 };
4301
lru_gen_rotate_memcg(struct lruvec * lruvec,int op)4302 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4303 {
4304 int seg;
4305 int old, new;
4306 unsigned long flags;
4307 int bin = get_random_u32_below(MEMCG_NR_BINS);
4308 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4309
4310 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4311
4312 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4313
4314 seg = 0;
4315 new = old = lruvec->lrugen.gen;
4316
4317 /* see the comment on MEMCG_NR_GENS */
4318 if (op == MEMCG_LRU_HEAD)
4319 seg = MEMCG_LRU_HEAD;
4320 else if (op == MEMCG_LRU_TAIL)
4321 seg = MEMCG_LRU_TAIL;
4322 else if (op == MEMCG_LRU_OLD)
4323 new = get_memcg_gen(pgdat->memcg_lru.seq);
4324 else if (op == MEMCG_LRU_YOUNG)
4325 new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4326 else
4327 VM_WARN_ON_ONCE(true);
4328
4329 WRITE_ONCE(lruvec->lrugen.seg, seg);
4330 WRITE_ONCE(lruvec->lrugen.gen, new);
4331
4332 hlist_nulls_del_rcu(&lruvec->lrugen.list);
4333
4334 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4335 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4336 else
4337 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4338
4339 pgdat->memcg_lru.nr_memcgs[old]--;
4340 pgdat->memcg_lru.nr_memcgs[new]++;
4341
4342 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4343 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4344
4345 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4346 }
4347
4348 #ifdef CONFIG_MEMCG
4349
lru_gen_online_memcg(struct mem_cgroup * memcg)4350 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4351 {
4352 int gen;
4353 int nid;
4354 int bin = get_random_u32_below(MEMCG_NR_BINS);
4355
4356 for_each_node(nid) {
4357 struct pglist_data *pgdat = NODE_DATA(nid);
4358 struct lruvec *lruvec = get_lruvec(memcg, nid);
4359
4360 spin_lock_irq(&pgdat->memcg_lru.lock);
4361
4362 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4363
4364 gen = get_memcg_gen(pgdat->memcg_lru.seq);
4365
4366 lruvec->lrugen.gen = gen;
4367
4368 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4369 pgdat->memcg_lru.nr_memcgs[gen]++;
4370
4371 spin_unlock_irq(&pgdat->memcg_lru.lock);
4372 }
4373 }
4374
lru_gen_offline_memcg(struct mem_cgroup * memcg)4375 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4376 {
4377 int nid;
4378
4379 for_each_node(nid) {
4380 struct lruvec *lruvec = get_lruvec(memcg, nid);
4381
4382 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4383 }
4384 }
4385
lru_gen_release_memcg(struct mem_cgroup * memcg)4386 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4387 {
4388 int gen;
4389 int nid;
4390
4391 for_each_node(nid) {
4392 struct pglist_data *pgdat = NODE_DATA(nid);
4393 struct lruvec *lruvec = get_lruvec(memcg, nid);
4394
4395 spin_lock_irq(&pgdat->memcg_lru.lock);
4396
4397 if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4398 goto unlock;
4399
4400 gen = lruvec->lrugen.gen;
4401
4402 hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4403 pgdat->memcg_lru.nr_memcgs[gen]--;
4404
4405 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4406 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4407 unlock:
4408 spin_unlock_irq(&pgdat->memcg_lru.lock);
4409 }
4410 }
4411
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)4412 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4413 {
4414 struct lruvec *lruvec = get_lruvec(memcg, nid);
4415
4416 /* see the comment on MEMCG_NR_GENS */
4417 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4418 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4419 }
4420
4421 #endif /* CONFIG_MEMCG */
4422
4423 /******************************************************************************
4424 * the eviction
4425 ******************************************************************************/
4426
sort_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc,int tier_idx)4427 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4428 int tier_idx)
4429 {
4430 bool success;
4431 bool dirty, writeback;
4432 int gen = folio_lru_gen(folio);
4433 int type = folio_is_file_lru(folio);
4434 int zone = folio_zonenum(folio);
4435 int delta = folio_nr_pages(folio);
4436 int refs = folio_lru_refs(folio);
4437 bool workingset = folio_test_workingset(folio);
4438 int tier = lru_tier_from_refs(refs, workingset);
4439 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4440
4441 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4442
4443 /* unevictable */
4444 if (!folio_evictable(folio)) {
4445 success = lru_gen_del_folio(lruvec, folio, true);
4446 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4447 folio_set_unevictable(folio);
4448 lruvec_add_folio(lruvec, folio);
4449 __count_vm_events(UNEVICTABLE_PGCULLED, delta);
4450 return true;
4451 }
4452
4453 /* promoted */
4454 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4455 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4456 return true;
4457 }
4458
4459 /* protected */
4460 if (tier > tier_idx || refs + workingset == BIT(LRU_REFS_WIDTH) + 1) {
4461 gen = folio_inc_gen(lruvec, folio, false);
4462 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4463
4464 /* don't count the workingset being lazily promoted */
4465 if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
4466 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4467
4468 WRITE_ONCE(lrugen->protected[hist][type][tier],
4469 lrugen->protected[hist][type][tier] + delta);
4470 }
4471 return true;
4472 }
4473
4474 /* ineligible */
4475 if (zone > sc->reclaim_idx) {
4476 gen = folio_inc_gen(lruvec, folio, false);
4477 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4478 return true;
4479 }
4480
4481 dirty = folio_test_dirty(folio);
4482 writeback = folio_test_writeback(folio);
4483 if (type == LRU_GEN_FILE && dirty) {
4484 sc->nr.file_taken += delta;
4485 if (!writeback)
4486 sc->nr.unqueued_dirty += delta;
4487 }
4488
4489 /* waiting for writeback */
4490 if (writeback || (type == LRU_GEN_FILE && dirty)) {
4491 gen = folio_inc_gen(lruvec, folio, true);
4492 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4493 return true;
4494 }
4495
4496 return false;
4497 }
4498
isolate_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc)4499 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4500 {
4501 bool success;
4502
4503 /* swap constrained */
4504 if (!(sc->gfp_mask & __GFP_IO) &&
4505 (folio_test_dirty(folio) ||
4506 (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4507 return false;
4508
4509 /* raced with release_pages() */
4510 if (!folio_try_get(folio))
4511 return false;
4512
4513 /* raced with another isolation */
4514 if (!folio_test_clear_lru(folio)) {
4515 folio_put(folio);
4516 return false;
4517 }
4518
4519 /* see the comment on LRU_REFS_FLAGS */
4520 if (!folio_test_referenced(folio))
4521 set_mask_bits(&folio->flags.f, LRU_REFS_MASK, 0);
4522
4523 /* for shrink_folio_list() */
4524 folio_clear_reclaim(folio);
4525
4526 success = lru_gen_del_folio(lruvec, folio, true);
4527 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4528
4529 return true;
4530 }
4531
scan_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,int type,int tier,struct list_head * list)4532 static int scan_folios(unsigned long nr_to_scan, struct lruvec *lruvec,
4533 struct scan_control *sc, int type, int tier,
4534 struct list_head *list)
4535 {
4536 int i;
4537 int gen;
4538 enum vm_event_item item;
4539 int sorted = 0;
4540 int scanned = 0;
4541 int isolated = 0;
4542 int skipped = 0;
4543 int remaining = min(nr_to_scan, MAX_LRU_BATCH);
4544 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4545 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4546
4547 VM_WARN_ON_ONCE(!list_empty(list));
4548
4549 if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4550 return 0;
4551
4552 gen = lru_gen_from_seq(lrugen->min_seq[type]);
4553
4554 for (i = MAX_NR_ZONES; i > 0; i--) {
4555 LIST_HEAD(moved);
4556 int skipped_zone = 0;
4557 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4558 struct list_head *head = &lrugen->folios[gen][type][zone];
4559
4560 while (!list_empty(head)) {
4561 struct folio *folio = lru_to_folio(head);
4562 int delta = folio_nr_pages(folio);
4563
4564 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4565 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4566 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4567 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4568
4569 scanned += delta;
4570
4571 if (sort_folio(lruvec, folio, sc, tier))
4572 sorted += delta;
4573 else if (isolate_folio(lruvec, folio, sc)) {
4574 list_add(&folio->lru, list);
4575 isolated += delta;
4576 } else {
4577 list_move(&folio->lru, &moved);
4578 skipped_zone += delta;
4579 }
4580
4581 if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4582 break;
4583 }
4584
4585 if (skipped_zone) {
4586 list_splice(&moved, head);
4587 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4588 skipped += skipped_zone;
4589 }
4590
4591 if (!remaining || isolated >= MIN_LRU_BATCH)
4592 break;
4593 }
4594
4595 item = PGSCAN_KSWAPD + reclaimer_offset(sc);
4596 if (!cgroup_reclaim(sc)) {
4597 __count_vm_events(item, isolated);
4598 __count_vm_events(PGREFILL, sorted);
4599 }
4600 count_memcg_events(memcg, item, isolated);
4601 count_memcg_events(memcg, PGREFILL, sorted);
4602 __count_vm_events(PGSCAN_ANON + type, isolated);
4603 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
4604 scanned, skipped, isolated,
4605 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4606 if (type == LRU_GEN_FILE)
4607 sc->nr.file_taken += isolated;
4608 /*
4609 * There might not be eligible folios due to reclaim_idx. Check the
4610 * remaining to prevent livelock if it's not making progress.
4611 */
4612 return isolated || !remaining ? scanned : 0;
4613 }
4614
get_tier_idx(struct lruvec * lruvec,int type)4615 static int get_tier_idx(struct lruvec *lruvec, int type)
4616 {
4617 int tier;
4618 struct ctrl_pos sp, pv;
4619
4620 /*
4621 * To leave a margin for fluctuations, use a larger gain factor (2:3).
4622 * This value is chosen because any other tier would have at least twice
4623 * as many refaults as the first tier.
4624 */
4625 read_ctrl_pos(lruvec, type, 0, 2, &sp);
4626 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4627 read_ctrl_pos(lruvec, type, tier, 3, &pv);
4628 if (!positive_ctrl_err(&sp, &pv))
4629 break;
4630 }
4631
4632 return tier - 1;
4633 }
4634
get_type_to_scan(struct lruvec * lruvec,int swappiness)4635 static int get_type_to_scan(struct lruvec *lruvec, int swappiness)
4636 {
4637 struct ctrl_pos sp, pv;
4638
4639 if (swappiness <= MIN_SWAPPINESS + 1)
4640 return LRU_GEN_FILE;
4641
4642 if (swappiness >= MAX_SWAPPINESS)
4643 return LRU_GEN_ANON;
4644 /*
4645 * Compare the sum of all tiers of anon with that of file to determine
4646 * which type to scan.
4647 */
4648 read_ctrl_pos(lruvec, LRU_GEN_ANON, MAX_NR_TIERS, swappiness, &sp);
4649 read_ctrl_pos(lruvec, LRU_GEN_FILE, MAX_NR_TIERS, MAX_SWAPPINESS - swappiness, &pv);
4650
4651 return positive_ctrl_err(&sp, &pv);
4652 }
4653
isolate_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,int swappiness,int * type_scanned,struct list_head * list)4654 static int isolate_folios(unsigned long nr_to_scan, struct lruvec *lruvec,
4655 struct scan_control *sc, int swappiness,
4656 int *type_scanned, struct list_head *list)
4657 {
4658 int i;
4659 int type = get_type_to_scan(lruvec, swappiness);
4660
4661 for_each_evictable_type(i, swappiness) {
4662 int scanned;
4663 int tier = get_tier_idx(lruvec, type);
4664
4665 *type_scanned = type;
4666
4667 scanned = scan_folios(nr_to_scan, lruvec, sc, type, tier, list);
4668 if (scanned)
4669 return scanned;
4670
4671 type = !type;
4672 }
4673
4674 return 0;
4675 }
4676
evict_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,int swappiness)4677 static int evict_folios(unsigned long nr_to_scan, struct lruvec *lruvec,
4678 struct scan_control *sc, int swappiness)
4679 {
4680 int type;
4681 int scanned;
4682 int reclaimed;
4683 LIST_HEAD(list);
4684 LIST_HEAD(clean);
4685 struct folio *folio;
4686 struct folio *next;
4687 enum vm_event_item item;
4688 struct reclaim_stat stat;
4689 struct lru_gen_mm_walk *walk;
4690 bool skip_retry = false;
4691 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4692 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4693 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4694
4695 spin_lock_irq(&lruvec->lru_lock);
4696
4697 scanned = isolate_folios(nr_to_scan, lruvec, sc, swappiness, &type, &list);
4698
4699 scanned += try_to_inc_min_seq(lruvec, swappiness);
4700
4701 if (evictable_min_seq(lrugen->min_seq, swappiness) + MIN_NR_GENS > lrugen->max_seq)
4702 scanned = 0;
4703
4704 spin_unlock_irq(&lruvec->lru_lock);
4705
4706 if (list_empty(&list))
4707 return scanned;
4708 retry:
4709 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false, memcg);
4710 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
4711 sc->nr_reclaimed += reclaimed;
4712 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4713 scanned, reclaimed, &stat, sc->priority,
4714 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4715
4716 list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4717 DEFINE_MIN_SEQ(lruvec);
4718
4719 if (!folio_evictable(folio)) {
4720 list_del(&folio->lru);
4721 folio_putback_lru(folio);
4722 continue;
4723 }
4724
4725 /* retry folios that may have missed folio_rotate_reclaimable() */
4726 if (!skip_retry && !folio_test_active(folio) && !folio_mapped(folio) &&
4727 !folio_test_dirty(folio) && !folio_test_writeback(folio)) {
4728 list_move(&folio->lru, &clean);
4729 continue;
4730 }
4731
4732 /* don't add rejected folios to the oldest generation */
4733 if (lru_gen_folio_seq(lruvec, folio, false) == min_seq[type])
4734 set_mask_bits(&folio->flags.f, LRU_REFS_FLAGS, BIT(PG_active));
4735 }
4736
4737 spin_lock_irq(&lruvec->lru_lock);
4738
4739 move_folios_to_lru(lruvec, &list);
4740
4741 walk = current->reclaim_state->mm_walk;
4742 if (walk && walk->batched) {
4743 walk->lruvec = lruvec;
4744 reset_batch_size(walk);
4745 }
4746
4747 mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc),
4748 stat.nr_demoted);
4749
4750 item = PGSTEAL_KSWAPD + reclaimer_offset(sc);
4751 if (!cgroup_reclaim(sc))
4752 __count_vm_events(item, reclaimed);
4753 count_memcg_events(memcg, item, reclaimed);
4754 __count_vm_events(PGSTEAL_ANON + type, reclaimed);
4755
4756 spin_unlock_irq(&lruvec->lru_lock);
4757
4758 list_splice_init(&clean, &list);
4759
4760 if (!list_empty(&list)) {
4761 skip_retry = true;
4762 goto retry;
4763 }
4764
4765 return scanned;
4766 }
4767
should_run_aging(struct lruvec * lruvec,unsigned long max_seq,int swappiness,unsigned long * nr_to_scan)4768 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4769 int swappiness, unsigned long *nr_to_scan)
4770 {
4771 int gen, type, zone;
4772 unsigned long size = 0;
4773 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4774 DEFINE_MIN_SEQ(lruvec);
4775
4776 *nr_to_scan = 0;
4777 /* have to run aging, since eviction is not possible anymore */
4778 if (evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS > max_seq)
4779 return true;
4780
4781 for_each_evictable_type(type, swappiness) {
4782 unsigned long seq;
4783
4784 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4785 gen = lru_gen_from_seq(seq);
4786
4787 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4788 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4789 }
4790 }
4791
4792 *nr_to_scan = size;
4793 /* better to run aging even though eviction is still possible */
4794 return evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS == max_seq;
4795 }
4796
4797 /*
4798 * For future optimizations:
4799 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4800 * reclaim.
4801 */
get_nr_to_scan(struct lruvec * lruvec,struct scan_control * sc,int swappiness)4802 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4803 {
4804 bool success;
4805 unsigned long nr_to_scan;
4806 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4807 DEFINE_MAX_SEQ(lruvec);
4808
4809 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4810 return -1;
4811
4812 success = should_run_aging(lruvec, max_seq, swappiness, &nr_to_scan);
4813
4814 /* try to scrape all its memory if this memcg was deleted */
4815 if (nr_to_scan && !mem_cgroup_online(memcg))
4816 return nr_to_scan;
4817
4818 nr_to_scan = apply_proportional_protection(memcg, sc, nr_to_scan);
4819
4820 /* try to get away with not aging at the default priority */
4821 if (!success || sc->priority == DEF_PRIORITY)
4822 return nr_to_scan >> sc->priority;
4823
4824 /* stop scanning this lruvec as it's low on cold folios */
4825 return try_to_inc_max_seq(lruvec, max_seq, swappiness, false) ? -1 : 0;
4826 }
4827
should_abort_scan(struct lruvec * lruvec,struct scan_control * sc)4828 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4829 {
4830 int i;
4831 enum zone_watermarks mark;
4832
4833 /* don't abort memcg reclaim to ensure fairness */
4834 if (!root_reclaim(sc))
4835 return false;
4836
4837 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4838 return true;
4839
4840 /* check the order to exclude compaction-induced reclaim */
4841 if (!current_is_kswapd() || sc->order)
4842 return false;
4843
4844 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4845 WMARK_PROMO : WMARK_HIGH;
4846
4847 for (i = 0; i <= sc->reclaim_idx; i++) {
4848 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4849 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4850
4851 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4852 return false;
4853 }
4854
4855 /* kswapd should abort if all eligible zones are safe */
4856 return true;
4857 }
4858
try_to_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)4859 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4860 {
4861 long nr_to_scan;
4862 unsigned long scanned = 0;
4863 int swappiness = get_swappiness(lruvec, sc);
4864
4865 while (true) {
4866 int delta;
4867
4868 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4869 if (nr_to_scan <= 0)
4870 break;
4871
4872 delta = evict_folios(nr_to_scan, lruvec, sc, swappiness);
4873 if (!delta)
4874 break;
4875
4876 scanned += delta;
4877 if (scanned >= nr_to_scan)
4878 break;
4879
4880 if (should_abort_scan(lruvec, sc))
4881 break;
4882
4883 cond_resched();
4884 }
4885
4886 /*
4887 * If too many file cache in the coldest generation can't be evicted
4888 * due to being dirty, wake up the flusher.
4889 */
4890 if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken)
4891 wakeup_flusher_threads(WB_REASON_VMSCAN);
4892
4893 /* whether this lruvec should be rotated */
4894 return nr_to_scan < 0;
4895 }
4896
shrink_one(struct lruvec * lruvec,struct scan_control * sc)4897 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4898 {
4899 bool success;
4900 unsigned long scanned = sc->nr_scanned;
4901 unsigned long reclaimed = sc->nr_reclaimed;
4902 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4903 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4904
4905 /* lru_gen_age_node() called mem_cgroup_calculate_protection() */
4906 if (mem_cgroup_below_min(NULL, memcg))
4907 return MEMCG_LRU_YOUNG;
4908
4909 if (mem_cgroup_below_low(NULL, memcg)) {
4910 /* see the comment on MEMCG_NR_GENS */
4911 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
4912 return MEMCG_LRU_TAIL;
4913
4914 memcg_memory_event(memcg, MEMCG_LOW);
4915 }
4916
4917 success = try_to_shrink_lruvec(lruvec, sc);
4918
4919 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4920
4921 if (!sc->proactive)
4922 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4923 sc->nr_reclaimed - reclaimed);
4924
4925 flush_reclaim_state(sc);
4926
4927 if (success && mem_cgroup_online(memcg))
4928 return MEMCG_LRU_YOUNG;
4929
4930 if (!success && lruvec_is_sizable(lruvec, sc))
4931 return 0;
4932
4933 /* one retry if offlined or too small */
4934 return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
4935 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4936 }
4937
shrink_many(struct pglist_data * pgdat,struct scan_control * sc)4938 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4939 {
4940 int op;
4941 int gen;
4942 int bin;
4943 int first_bin;
4944 struct lruvec *lruvec;
4945 struct lru_gen_folio *lrugen;
4946 struct mem_cgroup *memcg;
4947 struct hlist_nulls_node *pos;
4948
4949 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4950 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4951 restart:
4952 op = 0;
4953 memcg = NULL;
4954
4955 rcu_read_lock();
4956
4957 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4958 if (op) {
4959 lru_gen_rotate_memcg(lruvec, op);
4960 op = 0;
4961 }
4962
4963 mem_cgroup_put(memcg);
4964 memcg = NULL;
4965
4966 if (gen != READ_ONCE(lrugen->gen))
4967 continue;
4968
4969 lruvec = container_of(lrugen, struct lruvec, lrugen);
4970 memcg = lruvec_memcg(lruvec);
4971
4972 if (!mem_cgroup_tryget(memcg)) {
4973 lru_gen_release_memcg(memcg);
4974 memcg = NULL;
4975 continue;
4976 }
4977
4978 rcu_read_unlock();
4979
4980 op = shrink_one(lruvec, sc);
4981
4982 rcu_read_lock();
4983
4984 if (should_abort_scan(lruvec, sc))
4985 break;
4986 }
4987
4988 rcu_read_unlock();
4989
4990 if (op)
4991 lru_gen_rotate_memcg(lruvec, op);
4992
4993 mem_cgroup_put(memcg);
4994
4995 if (!is_a_nulls(pos))
4996 return;
4997
4998 /* restart if raced with lru_gen_rotate_memcg() */
4999 if (gen != get_nulls_value(pos))
5000 goto restart;
5001
5002 /* try the rest of the bins of the current generation */
5003 bin = get_memcg_bin(bin + 1);
5004 if (bin != first_bin)
5005 goto restart;
5006 }
5007
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5008 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5009 {
5010 struct blk_plug plug;
5011
5012 VM_WARN_ON_ONCE(root_reclaim(sc));
5013 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5014
5015 lru_add_drain();
5016
5017 blk_start_plug(&plug);
5018
5019 set_mm_walk(NULL, sc->proactive);
5020
5021 if (try_to_shrink_lruvec(lruvec, sc))
5022 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5023
5024 clear_mm_walk();
5025
5026 blk_finish_plug(&plug);
5027 }
5028
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5029 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5030 {
5031 struct blk_plug plug;
5032 unsigned long reclaimed = sc->nr_reclaimed;
5033
5034 VM_WARN_ON_ONCE(!root_reclaim(sc));
5035
5036 /*
5037 * Unmapped clean folios are already prioritized. Scanning for more of
5038 * them is likely futile and can cause high reclaim latency when there
5039 * is a large number of memcgs.
5040 */
5041 if (!sc->may_writepage || !sc->may_unmap)
5042 goto done;
5043
5044 lru_add_drain();
5045
5046 blk_start_plug(&plug);
5047
5048 set_mm_walk(pgdat, sc->proactive);
5049
5050 set_initial_priority(pgdat, sc);
5051
5052 if (current_is_kswapd())
5053 sc->nr_reclaimed = 0;
5054
5055 if (mem_cgroup_disabled())
5056 shrink_one(&pgdat->__lruvec, sc);
5057 else
5058 shrink_many(pgdat, sc);
5059
5060 if (current_is_kswapd())
5061 sc->nr_reclaimed += reclaimed;
5062
5063 clear_mm_walk();
5064
5065 blk_finish_plug(&plug);
5066 done:
5067 if (sc->nr_reclaimed > reclaimed)
5068 atomic_set(&pgdat->kswapd_failures, 0);
5069 }
5070
5071 /******************************************************************************
5072 * state change
5073 ******************************************************************************/
5074
state_is_valid(struct lruvec * lruvec)5075 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5076 {
5077 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5078
5079 if (lrugen->enabled) {
5080 enum lru_list lru;
5081
5082 for_each_evictable_lru(lru) {
5083 if (!list_empty(&lruvec->lists[lru]))
5084 return false;
5085 }
5086 } else {
5087 int gen, type, zone;
5088
5089 for_each_gen_type_zone(gen, type, zone) {
5090 if (!list_empty(&lrugen->folios[gen][type][zone]))
5091 return false;
5092 }
5093 }
5094
5095 return true;
5096 }
5097
fill_evictable(struct lruvec * lruvec)5098 static bool fill_evictable(struct lruvec *lruvec)
5099 {
5100 enum lru_list lru;
5101 int remaining = MAX_LRU_BATCH;
5102
5103 for_each_evictable_lru(lru) {
5104 int type = is_file_lru(lru);
5105 bool active = is_active_lru(lru);
5106 struct list_head *head = &lruvec->lists[lru];
5107
5108 while (!list_empty(head)) {
5109 bool success;
5110 struct folio *folio = lru_to_folio(head);
5111
5112 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5113 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5114 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5115 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5116
5117 lruvec_del_folio(lruvec, folio);
5118 success = lru_gen_add_folio(lruvec, folio, false);
5119 VM_WARN_ON_ONCE(!success);
5120
5121 if (!--remaining)
5122 return false;
5123 }
5124 }
5125
5126 return true;
5127 }
5128
drain_evictable(struct lruvec * lruvec)5129 static bool drain_evictable(struct lruvec *lruvec)
5130 {
5131 int gen, type, zone;
5132 int remaining = MAX_LRU_BATCH;
5133
5134 for_each_gen_type_zone(gen, type, zone) {
5135 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5136
5137 while (!list_empty(head)) {
5138 bool success;
5139 struct folio *folio = lru_to_folio(head);
5140
5141 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5142 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5143 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5144 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5145
5146 success = lru_gen_del_folio(lruvec, folio, false);
5147 VM_WARN_ON_ONCE(!success);
5148 lruvec_add_folio(lruvec, folio);
5149
5150 if (!--remaining)
5151 return false;
5152 }
5153 }
5154
5155 return true;
5156 }
5157
lru_gen_change_state(bool enabled)5158 static void lru_gen_change_state(bool enabled)
5159 {
5160 static DEFINE_MUTEX(state_mutex);
5161
5162 struct mem_cgroup *memcg;
5163
5164 cgroup_lock();
5165 cpus_read_lock();
5166 get_online_mems();
5167 mutex_lock(&state_mutex);
5168
5169 if (enabled == lru_gen_enabled())
5170 goto unlock;
5171
5172 if (enabled)
5173 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5174 else
5175 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5176
5177 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5178 do {
5179 int nid;
5180
5181 for_each_node(nid) {
5182 struct lruvec *lruvec = get_lruvec(memcg, nid);
5183
5184 spin_lock_irq(&lruvec->lru_lock);
5185
5186 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5187 VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5188
5189 lruvec->lrugen.enabled = enabled;
5190
5191 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5192 spin_unlock_irq(&lruvec->lru_lock);
5193 cond_resched();
5194 spin_lock_irq(&lruvec->lru_lock);
5195 }
5196
5197 spin_unlock_irq(&lruvec->lru_lock);
5198 }
5199
5200 cond_resched();
5201 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5202 unlock:
5203 mutex_unlock(&state_mutex);
5204 put_online_mems();
5205 cpus_read_unlock();
5206 cgroup_unlock();
5207 }
5208
5209 /******************************************************************************
5210 * sysfs interface
5211 ******************************************************************************/
5212
min_ttl_ms_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5213 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5214 {
5215 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5216 }
5217
5218 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
min_ttl_ms_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5219 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5220 const char *buf, size_t len)
5221 {
5222 unsigned int msecs;
5223
5224 if (kstrtouint(buf, 0, &msecs))
5225 return -EINVAL;
5226
5227 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5228
5229 return len;
5230 }
5231
5232 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5233
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5234 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5235 {
5236 unsigned int caps = 0;
5237
5238 if (get_cap(LRU_GEN_CORE))
5239 caps |= BIT(LRU_GEN_CORE);
5240
5241 if (should_walk_mmu())
5242 caps |= BIT(LRU_GEN_MM_WALK);
5243
5244 if (should_clear_pmd_young())
5245 caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5246
5247 return sysfs_emit(buf, "0x%04x\n", caps);
5248 }
5249
5250 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5251 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5252 const char *buf, size_t len)
5253 {
5254 int i;
5255 unsigned int caps;
5256
5257 if (tolower(*buf) == 'n')
5258 caps = 0;
5259 else if (tolower(*buf) == 'y')
5260 caps = -1;
5261 else if (kstrtouint(buf, 0, &caps))
5262 return -EINVAL;
5263
5264 for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5265 bool enabled = caps & BIT(i);
5266
5267 if (i == LRU_GEN_CORE)
5268 lru_gen_change_state(enabled);
5269 else if (enabled)
5270 static_branch_enable(&lru_gen_caps[i]);
5271 else
5272 static_branch_disable(&lru_gen_caps[i]);
5273 }
5274
5275 return len;
5276 }
5277
5278 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5279
5280 static struct attribute *lru_gen_attrs[] = {
5281 &lru_gen_min_ttl_attr.attr,
5282 &lru_gen_enabled_attr.attr,
5283 NULL
5284 };
5285
5286 static const struct attribute_group lru_gen_attr_group = {
5287 .name = "lru_gen",
5288 .attrs = lru_gen_attrs,
5289 };
5290
5291 /******************************************************************************
5292 * debugfs interface
5293 ******************************************************************************/
5294
lru_gen_seq_start(struct seq_file * m,loff_t * pos)5295 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5296 {
5297 struct mem_cgroup *memcg;
5298 loff_t nr_to_skip = *pos;
5299
5300 m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5301 if (!m->private)
5302 return ERR_PTR(-ENOMEM);
5303
5304 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5305 do {
5306 int nid;
5307
5308 for_each_node_state(nid, N_MEMORY) {
5309 if (!nr_to_skip--)
5310 return get_lruvec(memcg, nid);
5311 }
5312 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5313
5314 return NULL;
5315 }
5316
lru_gen_seq_stop(struct seq_file * m,void * v)5317 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5318 {
5319 if (!IS_ERR_OR_NULL(v))
5320 mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5321
5322 kvfree(m->private);
5323 m->private = NULL;
5324 }
5325
lru_gen_seq_next(struct seq_file * m,void * v,loff_t * pos)5326 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5327 {
5328 int nid = lruvec_pgdat(v)->node_id;
5329 struct mem_cgroup *memcg = lruvec_memcg(v);
5330
5331 ++*pos;
5332
5333 nid = next_memory_node(nid);
5334 if (nid == MAX_NUMNODES) {
5335 memcg = mem_cgroup_iter(NULL, memcg, NULL);
5336 if (!memcg)
5337 return NULL;
5338
5339 nid = first_memory_node;
5340 }
5341
5342 return get_lruvec(memcg, nid);
5343 }
5344
lru_gen_seq_show_full(struct seq_file * m,struct lruvec * lruvec,unsigned long max_seq,unsigned long * min_seq,unsigned long seq)5345 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5346 unsigned long max_seq, unsigned long *min_seq,
5347 unsigned long seq)
5348 {
5349 int i;
5350 int type, tier;
5351 int hist = lru_hist_from_seq(seq);
5352 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5353 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5354
5355 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5356 seq_printf(m, " %10d", tier);
5357 for (type = 0; type < ANON_AND_FILE; type++) {
5358 const char *s = "xxx";
5359 unsigned long n[3] = {};
5360
5361 if (seq == max_seq) {
5362 s = "RTx";
5363 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5364 n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5365 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5366 s = "rep";
5367 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5368 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5369 n[2] = READ_ONCE(lrugen->protected[hist][type][tier]);
5370 }
5371
5372 for (i = 0; i < 3; i++)
5373 seq_printf(m, " %10lu%c", n[i], s[i]);
5374 }
5375 seq_putc(m, '\n');
5376 }
5377
5378 if (!mm_state)
5379 return;
5380
5381 seq_puts(m, " ");
5382 for (i = 0; i < NR_MM_STATS; i++) {
5383 const char *s = "xxxx";
5384 unsigned long n = 0;
5385
5386 if (seq == max_seq && NR_HIST_GENS == 1) {
5387 s = "TYFA";
5388 n = READ_ONCE(mm_state->stats[hist][i]);
5389 } else if (seq != max_seq && NR_HIST_GENS > 1) {
5390 s = "tyfa";
5391 n = READ_ONCE(mm_state->stats[hist][i]);
5392 }
5393
5394 seq_printf(m, " %10lu%c", n, s[i]);
5395 }
5396 seq_putc(m, '\n');
5397 }
5398
5399 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_show(struct seq_file * m,void * v)5400 static int lru_gen_seq_show(struct seq_file *m, void *v)
5401 {
5402 unsigned long seq;
5403 bool full = debugfs_get_aux_num(m->file);
5404 struct lruvec *lruvec = v;
5405 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5406 int nid = lruvec_pgdat(lruvec)->node_id;
5407 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5408 DEFINE_MAX_SEQ(lruvec);
5409 DEFINE_MIN_SEQ(lruvec);
5410
5411 if (nid == first_memory_node) {
5412 const char *path = memcg ? m->private : "";
5413
5414 #ifdef CONFIG_MEMCG
5415 if (memcg)
5416 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5417 #endif
5418 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5419 }
5420
5421 seq_printf(m, " node %5d\n", nid);
5422
5423 if (!full)
5424 seq = evictable_min_seq(min_seq, MAX_SWAPPINESS / 2);
5425 else if (max_seq >= MAX_NR_GENS)
5426 seq = max_seq - MAX_NR_GENS + 1;
5427 else
5428 seq = 0;
5429
5430 for (; seq <= max_seq; seq++) {
5431 int type, zone;
5432 int gen = lru_gen_from_seq(seq);
5433 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5434
5435 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5436
5437 for (type = 0; type < ANON_AND_FILE; type++) {
5438 unsigned long size = 0;
5439 char mark = full && seq < min_seq[type] ? 'x' : ' ';
5440
5441 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5442 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5443
5444 seq_printf(m, " %10lu%c", size, mark);
5445 }
5446
5447 seq_putc(m, '\n');
5448
5449 if (full)
5450 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5451 }
5452
5453 return 0;
5454 }
5455
5456 static const struct seq_operations lru_gen_seq_ops = {
5457 .start = lru_gen_seq_start,
5458 .stop = lru_gen_seq_stop,
5459 .next = lru_gen_seq_next,
5460 .show = lru_gen_seq_show,
5461 };
5462
run_aging(struct lruvec * lruvec,unsigned long seq,int swappiness,bool force_scan)5463 static int run_aging(struct lruvec *lruvec, unsigned long seq,
5464 int swappiness, bool force_scan)
5465 {
5466 DEFINE_MAX_SEQ(lruvec);
5467
5468 if (seq > max_seq)
5469 return -EINVAL;
5470
5471 return try_to_inc_max_seq(lruvec, max_seq, swappiness, force_scan) ? 0 : -EEXIST;
5472 }
5473
run_eviction(struct lruvec * lruvec,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long nr_to_reclaim)5474 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5475 int swappiness, unsigned long nr_to_reclaim)
5476 {
5477 DEFINE_MAX_SEQ(lruvec);
5478
5479 if (seq + MIN_NR_GENS > max_seq)
5480 return -EINVAL;
5481
5482 sc->nr_reclaimed = 0;
5483
5484 while (!signal_pending(current)) {
5485 DEFINE_MIN_SEQ(lruvec);
5486
5487 if (seq < evictable_min_seq(min_seq, swappiness))
5488 return 0;
5489
5490 if (sc->nr_reclaimed >= nr_to_reclaim)
5491 return 0;
5492
5493 if (!evict_folios(nr_to_reclaim - sc->nr_reclaimed, lruvec, sc,
5494 swappiness))
5495 return 0;
5496
5497 cond_resched();
5498 }
5499
5500 return -EINTR;
5501 }
5502
run_cmd(char cmd,int memcg_id,int nid,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long opt)5503 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5504 struct scan_control *sc, int swappiness, unsigned long opt)
5505 {
5506 struct lruvec *lruvec;
5507 int err = -EINVAL;
5508 struct mem_cgroup *memcg = NULL;
5509
5510 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5511 return -EINVAL;
5512
5513 if (!mem_cgroup_disabled()) {
5514 rcu_read_lock();
5515
5516 memcg = mem_cgroup_from_id(memcg_id);
5517 if (!mem_cgroup_tryget(memcg))
5518 memcg = NULL;
5519
5520 rcu_read_unlock();
5521
5522 if (!memcg)
5523 return -EINVAL;
5524 }
5525
5526 if (memcg_id != mem_cgroup_id(memcg))
5527 goto done;
5528
5529 sc->target_mem_cgroup = memcg;
5530 lruvec = get_lruvec(memcg, nid);
5531
5532 if (swappiness < MIN_SWAPPINESS)
5533 swappiness = get_swappiness(lruvec, sc);
5534 else if (swappiness > SWAPPINESS_ANON_ONLY)
5535 goto done;
5536
5537 switch (cmd) {
5538 case '+':
5539 err = run_aging(lruvec, seq, swappiness, opt);
5540 break;
5541 case '-':
5542 err = run_eviction(lruvec, seq, sc, swappiness, opt);
5543 break;
5544 }
5545 done:
5546 mem_cgroup_put(memcg);
5547
5548 return err;
5549 }
5550
5551 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_write(struct file * file,const char __user * src,size_t len,loff_t * pos)5552 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5553 size_t len, loff_t *pos)
5554 {
5555 void *buf;
5556 char *cur, *next;
5557 unsigned int flags;
5558 struct blk_plug plug;
5559 int err = -EINVAL;
5560 struct scan_control sc = {
5561 .may_writepage = true,
5562 .may_unmap = true,
5563 .may_swap = true,
5564 .reclaim_idx = MAX_NR_ZONES - 1,
5565 .gfp_mask = GFP_KERNEL,
5566 .proactive = true,
5567 };
5568
5569 buf = kvmalloc(len + 1, GFP_KERNEL);
5570 if (!buf)
5571 return -ENOMEM;
5572
5573 if (copy_from_user(buf, src, len)) {
5574 kvfree(buf);
5575 return -EFAULT;
5576 }
5577
5578 set_task_reclaim_state(current, &sc.reclaim_state);
5579 flags = memalloc_noreclaim_save();
5580 blk_start_plug(&plug);
5581 if (!set_mm_walk(NULL, true)) {
5582 err = -ENOMEM;
5583 goto done;
5584 }
5585
5586 next = buf;
5587 next[len] = '\0';
5588
5589 while ((cur = strsep(&next, ",;\n"))) {
5590 int n;
5591 int end;
5592 char cmd, swap_string[5];
5593 unsigned int memcg_id;
5594 unsigned int nid;
5595 unsigned long seq;
5596 unsigned int swappiness;
5597 unsigned long opt = -1;
5598
5599 cur = skip_spaces(cur);
5600 if (!*cur)
5601 continue;
5602
5603 n = sscanf(cur, "%c %u %u %lu %n %4s %n %lu %n", &cmd, &memcg_id, &nid,
5604 &seq, &end, swap_string, &end, &opt, &end);
5605 if (n < 4 || cur[end]) {
5606 err = -EINVAL;
5607 break;
5608 }
5609
5610 if (n == 4) {
5611 swappiness = -1;
5612 } else if (!strcmp("max", swap_string)) {
5613 /* set by userspace for anonymous memory only */
5614 swappiness = SWAPPINESS_ANON_ONLY;
5615 } else {
5616 err = kstrtouint(swap_string, 0, &swappiness);
5617 if (err)
5618 break;
5619 }
5620
5621 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5622 if (err)
5623 break;
5624 }
5625 done:
5626 clear_mm_walk();
5627 blk_finish_plug(&plug);
5628 memalloc_noreclaim_restore(flags);
5629 set_task_reclaim_state(current, NULL);
5630
5631 kvfree(buf);
5632
5633 return err ? : len;
5634 }
5635
lru_gen_seq_open(struct inode * inode,struct file * file)5636 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5637 {
5638 return seq_open(file, &lru_gen_seq_ops);
5639 }
5640
5641 static const struct file_operations lru_gen_rw_fops = {
5642 .open = lru_gen_seq_open,
5643 .read = seq_read,
5644 .write = lru_gen_seq_write,
5645 .llseek = seq_lseek,
5646 .release = seq_release,
5647 };
5648
5649 static const struct file_operations lru_gen_ro_fops = {
5650 .open = lru_gen_seq_open,
5651 .read = seq_read,
5652 .llseek = seq_lseek,
5653 .release = seq_release,
5654 };
5655
5656 /******************************************************************************
5657 * initialization
5658 ******************************************************************************/
5659
lru_gen_init_pgdat(struct pglist_data * pgdat)5660 void lru_gen_init_pgdat(struct pglist_data *pgdat)
5661 {
5662 int i, j;
5663
5664 spin_lock_init(&pgdat->memcg_lru.lock);
5665
5666 for (i = 0; i < MEMCG_NR_GENS; i++) {
5667 for (j = 0; j < MEMCG_NR_BINS; j++)
5668 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5669 }
5670 }
5671
lru_gen_init_lruvec(struct lruvec * lruvec)5672 void lru_gen_init_lruvec(struct lruvec *lruvec)
5673 {
5674 int i;
5675 int gen, type, zone;
5676 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5677 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5678
5679 lrugen->max_seq = MIN_NR_GENS + 1;
5680 lrugen->enabled = lru_gen_enabled();
5681
5682 for (i = 0; i <= MIN_NR_GENS + 1; i++)
5683 lrugen->timestamps[i] = jiffies;
5684
5685 for_each_gen_type_zone(gen, type, zone)
5686 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5687
5688 if (mm_state)
5689 mm_state->seq = MIN_NR_GENS;
5690 }
5691
5692 #ifdef CONFIG_MEMCG
5693
lru_gen_init_memcg(struct mem_cgroup * memcg)5694 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5695 {
5696 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5697
5698 if (!mm_list)
5699 return;
5700
5701 INIT_LIST_HEAD(&mm_list->fifo);
5702 spin_lock_init(&mm_list->lock);
5703 }
5704
lru_gen_exit_memcg(struct mem_cgroup * memcg)5705 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5706 {
5707 int i;
5708 int nid;
5709 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5710
5711 VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5712
5713 for_each_node(nid) {
5714 struct lruvec *lruvec = get_lruvec(memcg, nid);
5715 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5716
5717 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5718 sizeof(lruvec->lrugen.nr_pages)));
5719
5720 lruvec->lrugen.list.next = LIST_POISON1;
5721
5722 if (!mm_state)
5723 continue;
5724
5725 for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5726 bitmap_free(mm_state->filters[i]);
5727 mm_state->filters[i] = NULL;
5728 }
5729 }
5730 }
5731
5732 #endif /* CONFIG_MEMCG */
5733
init_lru_gen(void)5734 static int __init init_lru_gen(void)
5735 {
5736 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5737 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5738
5739 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5740 pr_err("lru_gen: failed to create sysfs group\n");
5741
5742 debugfs_create_file_aux_num("lru_gen", 0644, NULL, NULL, false,
5743 &lru_gen_rw_fops);
5744 debugfs_create_file_aux_num("lru_gen_full", 0444, NULL, NULL, true,
5745 &lru_gen_ro_fops);
5746
5747 return 0;
5748 };
5749 late_initcall(init_lru_gen);
5750
5751 #else /* !CONFIG_LRU_GEN */
5752
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)5753 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5754 {
5755 BUILD_BUG();
5756 }
5757
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5758 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5759 {
5760 BUILD_BUG();
5761 }
5762
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5763 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5764 {
5765 BUILD_BUG();
5766 }
5767
5768 #endif /* CONFIG_LRU_GEN */
5769
shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5770 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5771 {
5772 unsigned long nr[NR_LRU_LISTS];
5773 unsigned long targets[NR_LRU_LISTS];
5774 unsigned long nr_to_scan;
5775 enum lru_list lru;
5776 unsigned long nr_reclaimed = 0;
5777 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5778 bool proportional_reclaim;
5779 struct blk_plug plug;
5780
5781 if (lru_gen_enabled() && !root_reclaim(sc)) {
5782 lru_gen_shrink_lruvec(lruvec, sc);
5783 return;
5784 }
5785
5786 get_scan_count(lruvec, sc, nr);
5787
5788 /* Record the original scan target for proportional adjustments later */
5789 memcpy(targets, nr, sizeof(nr));
5790
5791 /*
5792 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5793 * event that can occur when there is little memory pressure e.g.
5794 * multiple streaming readers/writers. Hence, we do not abort scanning
5795 * when the requested number of pages are reclaimed when scanning at
5796 * DEF_PRIORITY on the assumption that the fact we are direct
5797 * reclaiming implies that kswapd is not keeping up and it is best to
5798 * do a batch of work at once. For memcg reclaim one check is made to
5799 * abort proportional reclaim if either the file or anon lru has already
5800 * dropped to zero at the first pass.
5801 */
5802 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5803 sc->priority == DEF_PRIORITY);
5804
5805 blk_start_plug(&plug);
5806 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5807 nr[LRU_INACTIVE_FILE]) {
5808 unsigned long nr_anon, nr_file, percentage;
5809 unsigned long nr_scanned;
5810
5811 for_each_evictable_lru(lru) {
5812 if (nr[lru]) {
5813 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5814 nr[lru] -= nr_to_scan;
5815
5816 nr_reclaimed += shrink_list(lru, nr_to_scan,
5817 lruvec, sc);
5818 }
5819 }
5820
5821 cond_resched();
5822
5823 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5824 continue;
5825
5826 /*
5827 * For kswapd and memcg, reclaim at least the number of pages
5828 * requested. Ensure that the anon and file LRUs are scanned
5829 * proportionally what was requested by get_scan_count(). We
5830 * stop reclaiming one LRU and reduce the amount scanning
5831 * proportional to the original scan target.
5832 */
5833 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5834 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5835
5836 /*
5837 * It's just vindictive to attack the larger once the smaller
5838 * has gone to zero. And given the way we stop scanning the
5839 * smaller below, this makes sure that we only make one nudge
5840 * towards proportionality once we've got nr_to_reclaim.
5841 */
5842 if (!nr_file || !nr_anon)
5843 break;
5844
5845 if (nr_file > nr_anon) {
5846 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5847 targets[LRU_ACTIVE_ANON] + 1;
5848 lru = LRU_BASE;
5849 percentage = nr_anon * 100 / scan_target;
5850 } else {
5851 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5852 targets[LRU_ACTIVE_FILE] + 1;
5853 lru = LRU_FILE;
5854 percentage = nr_file * 100 / scan_target;
5855 }
5856
5857 /* Stop scanning the smaller of the LRU */
5858 nr[lru] = 0;
5859 nr[lru + LRU_ACTIVE] = 0;
5860
5861 /*
5862 * Recalculate the other LRU scan count based on its original
5863 * scan target and the percentage scanning already complete
5864 */
5865 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5866 nr_scanned = targets[lru] - nr[lru];
5867 nr[lru] = targets[lru] * (100 - percentage) / 100;
5868 nr[lru] -= min(nr[lru], nr_scanned);
5869
5870 lru += LRU_ACTIVE;
5871 nr_scanned = targets[lru] - nr[lru];
5872 nr[lru] = targets[lru] * (100 - percentage) / 100;
5873 nr[lru] -= min(nr[lru], nr_scanned);
5874 }
5875 blk_finish_plug(&plug);
5876 sc->nr_reclaimed += nr_reclaimed;
5877
5878 /*
5879 * Even if we did not try to evict anon pages at all, we want to
5880 * rebalance the anon lru active/inactive ratio.
5881 */
5882 if (can_age_anon_pages(lruvec, sc) &&
5883 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5884 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5885 sc, LRU_ACTIVE_ANON);
5886 }
5887
5888 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)5889 static bool in_reclaim_compaction(struct scan_control *sc)
5890 {
5891 if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
5892 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5893 sc->priority < DEF_PRIORITY - 2))
5894 return true;
5895
5896 return false;
5897 }
5898
5899 /*
5900 * Reclaim/compaction is used for high-order allocation requests. It reclaims
5901 * order-0 pages before compacting the zone. should_continue_reclaim() returns
5902 * true if more pages should be reclaimed such that when the page allocator
5903 * calls try_to_compact_pages() that it will have enough free pages to succeed.
5904 * It will give up earlier than that if there is difficulty reclaiming pages.
5905 */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)5906 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5907 unsigned long nr_reclaimed,
5908 struct scan_control *sc)
5909 {
5910 unsigned long pages_for_compaction;
5911 unsigned long inactive_lru_pages;
5912 int z;
5913 struct zone *zone;
5914
5915 /* If not in reclaim/compaction mode, stop */
5916 if (!in_reclaim_compaction(sc))
5917 return false;
5918
5919 /*
5920 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5921 * number of pages that were scanned. This will return to the caller
5922 * with the risk reclaim/compaction and the resulting allocation attempt
5923 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5924 * allocations through requiring that the full LRU list has been scanned
5925 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5926 * scan, but that approximation was wrong, and there were corner cases
5927 * where always a non-zero amount of pages were scanned.
5928 */
5929 if (!nr_reclaimed)
5930 return false;
5931
5932 /* If compaction would go ahead or the allocation would succeed, stop */
5933 for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) {
5934 unsigned long watermark = min_wmark_pages(zone);
5935
5936 /* Allocation can already succeed, nothing to do */
5937 if (zone_watermark_ok(zone, sc->order, watermark,
5938 sc->reclaim_idx, 0))
5939 return false;
5940
5941 if (compaction_suitable(zone, sc->order, watermark,
5942 sc->reclaim_idx))
5943 return false;
5944 }
5945
5946 /*
5947 * If we have not reclaimed enough pages for compaction and the
5948 * inactive lists are large enough, continue reclaiming
5949 */
5950 pages_for_compaction = compact_gap(sc->order);
5951 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5952 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5953 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5954
5955 return inactive_lru_pages > pages_for_compaction;
5956 }
5957
shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)5958 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5959 {
5960 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5961 struct mem_cgroup_reclaim_cookie reclaim = {
5962 .pgdat = pgdat,
5963 };
5964 struct mem_cgroup_reclaim_cookie *partial = &reclaim;
5965 struct mem_cgroup *memcg;
5966
5967 /*
5968 * In most cases, direct reclaimers can do partial walks
5969 * through the cgroup tree, using an iterator state that
5970 * persists across invocations. This strikes a balance between
5971 * fairness and allocation latency.
5972 *
5973 * For kswapd, reliable forward progress is more important
5974 * than a quick return to idle. Always do full walks.
5975 */
5976 if (current_is_kswapd() || sc->memcg_full_walk)
5977 partial = NULL;
5978
5979 memcg = mem_cgroup_iter(target_memcg, NULL, partial);
5980 do {
5981 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5982 unsigned long reclaimed;
5983 unsigned long scanned;
5984
5985 /*
5986 * This loop can become CPU-bound when target memcgs
5987 * aren't eligible for reclaim - either because they
5988 * don't have any reclaimable pages, or because their
5989 * memory is explicitly protected. Avoid soft lockups.
5990 */
5991 cond_resched();
5992
5993 mem_cgroup_calculate_protection(target_memcg, memcg);
5994
5995 if (mem_cgroup_below_min(target_memcg, memcg)) {
5996 /*
5997 * Hard protection.
5998 * If there is no reclaimable memory, OOM.
5999 */
6000 continue;
6001 } else if (mem_cgroup_below_low(target_memcg, memcg)) {
6002 /*
6003 * Soft protection.
6004 * Respect the protection only as long as
6005 * there is an unprotected supply
6006 * of reclaimable memory from other cgroups.
6007 */
6008 if (!sc->memcg_low_reclaim) {
6009 sc->memcg_low_skipped = 1;
6010 continue;
6011 }
6012 memcg_memory_event(memcg, MEMCG_LOW);
6013 }
6014
6015 reclaimed = sc->nr_reclaimed;
6016 scanned = sc->nr_scanned;
6017
6018 shrink_lruvec(lruvec, sc);
6019
6020 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6021 sc->priority);
6022
6023 /* Record the group's reclaim efficiency */
6024 if (!sc->proactive)
6025 vmpressure(sc->gfp_mask, memcg, false,
6026 sc->nr_scanned - scanned,
6027 sc->nr_reclaimed - reclaimed);
6028
6029 /* If partial walks are allowed, bail once goal is reached */
6030 if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) {
6031 mem_cgroup_iter_break(target_memcg, memcg);
6032 break;
6033 }
6034 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial)));
6035 }
6036
shrink_node(pg_data_t * pgdat,struct scan_control * sc)6037 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6038 {
6039 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
6040 struct lruvec *target_lruvec;
6041 bool reclaimable = false;
6042
6043 if (lru_gen_enabled() && root_reclaim(sc)) {
6044 memset(&sc->nr, 0, sizeof(sc->nr));
6045 lru_gen_shrink_node(pgdat, sc);
6046 return;
6047 }
6048
6049 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6050
6051 again:
6052 memset(&sc->nr, 0, sizeof(sc->nr));
6053
6054 nr_reclaimed = sc->nr_reclaimed;
6055 nr_scanned = sc->nr_scanned;
6056
6057 prepare_scan_control(pgdat, sc);
6058
6059 shrink_node_memcgs(pgdat, sc);
6060
6061 flush_reclaim_state(sc);
6062
6063 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
6064
6065 /* Record the subtree's reclaim efficiency */
6066 if (!sc->proactive)
6067 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6068 sc->nr_scanned - nr_scanned, nr_node_reclaimed);
6069
6070 if (nr_node_reclaimed)
6071 reclaimable = true;
6072
6073 if (current_is_kswapd()) {
6074 /*
6075 * If reclaim is isolating dirty pages under writeback,
6076 * it implies that the long-lived page allocation rate
6077 * is exceeding the page laundering rate. Either the
6078 * global limits are not being effective at throttling
6079 * processes due to the page distribution throughout
6080 * zones or there is heavy usage of a slow backing
6081 * device. The only option is to throttle from reclaim
6082 * context which is not ideal as there is no guarantee
6083 * the dirtying process is throttled in the same way
6084 * balance_dirty_pages() manages.
6085 *
6086 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6087 * count the number of pages under pages flagged for
6088 * immediate reclaim and stall if any are encountered
6089 * in the nr_immediate check below.
6090 */
6091 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6092 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6093
6094 /*
6095 * If kswapd scans pages marked for immediate
6096 * reclaim and under writeback (nr_immediate), it
6097 * implies that pages are cycling through the LRU
6098 * faster than they are written so forcibly stall
6099 * until some pages complete writeback.
6100 */
6101 if (sc->nr.immediate)
6102 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6103 }
6104
6105 /*
6106 * Tag a node/memcg as congested if all the dirty pages were marked
6107 * for writeback and immediate reclaim (counted in nr.congested).
6108 *
6109 * Legacy memcg will stall in page writeback so avoid forcibly
6110 * stalling in reclaim_throttle().
6111 */
6112 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
6113 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
6114 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
6115
6116 if (current_is_kswapd())
6117 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
6118 }
6119
6120 /*
6121 * Stall direct reclaim for IO completions if the lruvec is
6122 * node is congested. Allow kswapd to continue until it
6123 * starts encountering unqueued dirty pages or cycling through
6124 * the LRU too quickly.
6125 */
6126 if (!current_is_kswapd() && current_may_throttle() &&
6127 !sc->hibernation_mode &&
6128 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
6129 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
6130 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6131
6132 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6133 goto again;
6134
6135 /*
6136 * Kswapd gives up on balancing particular nodes after too
6137 * many failures to reclaim anything from them and goes to
6138 * sleep. On reclaim progress, reset the failure counter. A
6139 * successful direct reclaim run will revive a dormant kswapd.
6140 */
6141 if (reclaimable)
6142 atomic_set(&pgdat->kswapd_failures, 0);
6143 else if (sc->cache_trim_mode)
6144 sc->cache_trim_mode_failed = 1;
6145 }
6146
6147 /*
6148 * Returns true if compaction should go ahead for a costly-order request, or
6149 * the allocation would already succeed without compaction. Return false if we
6150 * should reclaim first.
6151 */
compaction_ready(struct zone * zone,struct scan_control * sc)6152 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6153 {
6154 unsigned long watermark;
6155
6156 if (!gfp_compaction_allowed(sc->gfp_mask))
6157 return false;
6158
6159 /* Allocation can already succeed, nothing to do */
6160 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6161 sc->reclaim_idx, 0))
6162 return true;
6163
6164 /*
6165 * Direct reclaim usually targets the min watermark, but compaction
6166 * takes time to run and there are potentially other callers using the
6167 * pages just freed. So target a higher buffer to give compaction a
6168 * reasonable chance of completing and allocating the pages.
6169 *
6170 * Note that we won't actually reclaim the whole buffer in one attempt
6171 * as the target watermark in should_continue_reclaim() is lower. But if
6172 * we are already above the high+gap watermark, don't reclaim at all.
6173 */
6174 watermark = high_wmark_pages(zone);
6175 if (compaction_suitable(zone, sc->order, watermark, sc->reclaim_idx))
6176 return true;
6177
6178 return false;
6179 }
6180
consider_reclaim_throttle(pg_data_t * pgdat,struct scan_control * sc)6181 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6182 {
6183 /*
6184 * If reclaim is making progress greater than 12% efficiency then
6185 * wake all the NOPROGRESS throttled tasks.
6186 */
6187 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6188 wait_queue_head_t *wqh;
6189
6190 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6191 if (waitqueue_active(wqh))
6192 wake_up(wqh);
6193
6194 return;
6195 }
6196
6197 /*
6198 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6199 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6200 * under writeback and marked for immediate reclaim at the tail of the
6201 * LRU.
6202 */
6203 if (current_is_kswapd() || cgroup_reclaim(sc))
6204 return;
6205
6206 /* Throttle if making no progress at high prioities. */
6207 if (sc->priority == 1 && !sc->nr_reclaimed)
6208 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6209 }
6210
6211 /*
6212 * This is the direct reclaim path, for page-allocating processes. We only
6213 * try to reclaim pages from zones which will satisfy the caller's allocation
6214 * request.
6215 *
6216 * If a zone is deemed to be full of pinned pages then just give it a light
6217 * scan then give up on it.
6218 */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)6219 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6220 {
6221 struct zoneref *z;
6222 struct zone *zone;
6223 unsigned long nr_soft_reclaimed;
6224 unsigned long nr_soft_scanned;
6225 gfp_t orig_mask;
6226 pg_data_t *last_pgdat = NULL;
6227 pg_data_t *first_pgdat = NULL;
6228
6229 /*
6230 * If the number of buffer_heads in the machine exceeds the maximum
6231 * allowed level, force direct reclaim to scan the highmem zone as
6232 * highmem pages could be pinning lowmem pages storing buffer_heads
6233 */
6234 orig_mask = sc->gfp_mask;
6235 if (buffer_heads_over_limit) {
6236 sc->gfp_mask |= __GFP_HIGHMEM;
6237 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6238 }
6239
6240 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6241 sc->reclaim_idx, sc->nodemask) {
6242 /*
6243 * Take care memory controller reclaiming has small influence
6244 * to global LRU.
6245 */
6246 if (!cgroup_reclaim(sc)) {
6247 if (!cpuset_zone_allowed(zone,
6248 GFP_KERNEL | __GFP_HARDWALL))
6249 continue;
6250
6251 /*
6252 * If we already have plenty of memory free for
6253 * compaction in this zone, don't free any more.
6254 * Even though compaction is invoked for any
6255 * non-zero order, only frequent costly order
6256 * reclamation is disruptive enough to become a
6257 * noticeable problem, like transparent huge
6258 * page allocations.
6259 */
6260 if (IS_ENABLED(CONFIG_COMPACTION) &&
6261 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6262 compaction_ready(zone, sc)) {
6263 sc->compaction_ready = true;
6264 continue;
6265 }
6266
6267 /*
6268 * Shrink each node in the zonelist once. If the
6269 * zonelist is ordered by zone (not the default) then a
6270 * node may be shrunk multiple times but in that case
6271 * the user prefers lower zones being preserved.
6272 */
6273 if (zone->zone_pgdat == last_pgdat)
6274 continue;
6275
6276 /*
6277 * This steals pages from memory cgroups over softlimit
6278 * and returns the number of reclaimed pages and
6279 * scanned pages. This works for global memory pressure
6280 * and balancing, not for a memcg's limit.
6281 */
6282 nr_soft_scanned = 0;
6283 nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat,
6284 sc->order, sc->gfp_mask,
6285 &nr_soft_scanned);
6286 sc->nr_reclaimed += nr_soft_reclaimed;
6287 sc->nr_scanned += nr_soft_scanned;
6288 /* need some check for avoid more shrink_zone() */
6289 }
6290
6291 if (!first_pgdat)
6292 first_pgdat = zone->zone_pgdat;
6293
6294 /* See comment about same check for global reclaim above */
6295 if (zone->zone_pgdat == last_pgdat)
6296 continue;
6297 last_pgdat = zone->zone_pgdat;
6298 shrink_node(zone->zone_pgdat, sc);
6299 }
6300
6301 if (first_pgdat)
6302 consider_reclaim_throttle(first_pgdat, sc);
6303
6304 /*
6305 * Restore to original mask to avoid the impact on the caller if we
6306 * promoted it to __GFP_HIGHMEM.
6307 */
6308 sc->gfp_mask = orig_mask;
6309 }
6310
snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)6311 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6312 {
6313 struct lruvec *target_lruvec;
6314 unsigned long refaults;
6315
6316 if (lru_gen_enabled())
6317 return;
6318
6319 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6320 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6321 target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6322 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6323 target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6324 }
6325
6326 /*
6327 * This is the main entry point to direct page reclaim.
6328 *
6329 * If a full scan of the inactive list fails to free enough memory then we
6330 * are "out of memory" and something needs to be killed.
6331 *
6332 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6333 * high - the zone may be full of dirty or under-writeback pages, which this
6334 * caller can't do much about. We kick the writeback threads and take explicit
6335 * naps in the hope that some of these pages can be written. But if the
6336 * allocating task holds filesystem locks which prevent writeout this might not
6337 * work, and the allocation attempt will fail.
6338 *
6339 * returns: 0, if no pages reclaimed
6340 * else, the number of pages reclaimed
6341 */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)6342 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6343 struct scan_control *sc)
6344 {
6345 int initial_priority = sc->priority;
6346 pg_data_t *last_pgdat;
6347 struct zoneref *z;
6348 struct zone *zone;
6349 retry:
6350 delayacct_freepages_start();
6351
6352 if (!cgroup_reclaim(sc))
6353 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6354
6355 do {
6356 if (!sc->proactive)
6357 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6358 sc->priority);
6359 sc->nr_scanned = 0;
6360 shrink_zones(zonelist, sc);
6361
6362 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6363 break;
6364
6365 if (sc->compaction_ready)
6366 break;
6367
6368 /*
6369 * If we're getting trouble reclaiming, start doing
6370 * writepage even in laptop mode.
6371 */
6372 if (sc->priority < DEF_PRIORITY - 2)
6373 sc->may_writepage = 1;
6374 } while (--sc->priority >= 0);
6375
6376 last_pgdat = NULL;
6377 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6378 sc->nodemask) {
6379 if (zone->zone_pgdat == last_pgdat)
6380 continue;
6381 last_pgdat = zone->zone_pgdat;
6382
6383 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6384
6385 if (cgroup_reclaim(sc)) {
6386 struct lruvec *lruvec;
6387
6388 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6389 zone->zone_pgdat);
6390 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6391 }
6392 }
6393
6394 delayacct_freepages_end();
6395
6396 if (sc->nr_reclaimed)
6397 return sc->nr_reclaimed;
6398
6399 /* Aborted reclaim to try compaction? don't OOM, then */
6400 if (sc->compaction_ready)
6401 return 1;
6402
6403 /*
6404 * In most cases, direct reclaimers can do partial walks
6405 * through the cgroup tree to meet the reclaim goal while
6406 * keeping latency low. Since the iterator state is shared
6407 * among all direct reclaim invocations (to retain fairness
6408 * among cgroups), though, high concurrency can result in
6409 * individual threads not seeing enough cgroups to make
6410 * meaningful forward progress. Avoid false OOMs in this case.
6411 */
6412 if (!sc->memcg_full_walk) {
6413 sc->priority = initial_priority;
6414 sc->memcg_full_walk = 1;
6415 goto retry;
6416 }
6417
6418 /*
6419 * We make inactive:active ratio decisions based on the node's
6420 * composition of memory, but a restrictive reclaim_idx or a
6421 * memory.low cgroup setting can exempt large amounts of
6422 * memory from reclaim. Neither of which are very common, so
6423 * instead of doing costly eligibility calculations of the
6424 * entire cgroup subtree up front, we assume the estimates are
6425 * good, and retry with forcible deactivation if that fails.
6426 */
6427 if (sc->skipped_deactivate) {
6428 sc->priority = initial_priority;
6429 sc->force_deactivate = 1;
6430 sc->skipped_deactivate = 0;
6431 goto retry;
6432 }
6433
6434 /* Untapped cgroup reserves? Don't OOM, retry. */
6435 if (sc->memcg_low_skipped) {
6436 sc->priority = initial_priority;
6437 sc->force_deactivate = 0;
6438 sc->memcg_low_reclaim = 1;
6439 sc->memcg_low_skipped = 0;
6440 goto retry;
6441 }
6442
6443 return 0;
6444 }
6445
allow_direct_reclaim(pg_data_t * pgdat)6446 static bool allow_direct_reclaim(pg_data_t *pgdat)
6447 {
6448 struct zone *zone;
6449 unsigned long pfmemalloc_reserve = 0;
6450 unsigned long free_pages = 0;
6451 int i;
6452 bool wmark_ok;
6453
6454 if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES)
6455 return true;
6456
6457 for_each_managed_zone_pgdat(zone, pgdat, i, ZONE_NORMAL) {
6458 if (!zone_reclaimable_pages(zone) && zone_page_state_snapshot(zone, NR_FREE_PAGES))
6459 continue;
6460
6461 pfmemalloc_reserve += min_wmark_pages(zone);
6462 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6463 }
6464
6465 /* If there are no reserves (unexpected config) then do not throttle */
6466 if (!pfmemalloc_reserve)
6467 return true;
6468
6469 wmark_ok = free_pages > pfmemalloc_reserve / 2;
6470
6471 /* kswapd must be awake if processes are being throttled */
6472 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6473 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6474 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6475
6476 wake_up_interruptible(&pgdat->kswapd_wait);
6477 }
6478
6479 return wmark_ok;
6480 }
6481
6482 /*
6483 * Throttle direct reclaimers if backing storage is backed by the network
6484 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6485 * depleted. kswapd will continue to make progress and wake the processes
6486 * when the low watermark is reached.
6487 *
6488 * Returns true if a fatal signal was delivered during throttling. If this
6489 * happens, the page allocator should not consider triggering the OOM killer.
6490 */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)6491 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6492 nodemask_t *nodemask)
6493 {
6494 struct zoneref *z;
6495 struct zone *zone;
6496 pg_data_t *pgdat = NULL;
6497
6498 /*
6499 * Kernel threads should not be throttled as they may be indirectly
6500 * responsible for cleaning pages necessary for reclaim to make forward
6501 * progress. kjournald for example may enter direct reclaim while
6502 * committing a transaction where throttling it could forcing other
6503 * processes to block on log_wait_commit().
6504 */
6505 if (current->flags & PF_KTHREAD)
6506 goto out;
6507
6508 /*
6509 * If a fatal signal is pending, this process should not throttle.
6510 * It should return quickly so it can exit and free its memory
6511 */
6512 if (fatal_signal_pending(current))
6513 goto out;
6514
6515 /*
6516 * Check if the pfmemalloc reserves are ok by finding the first node
6517 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6518 * GFP_KERNEL will be required for allocating network buffers when
6519 * swapping over the network so ZONE_HIGHMEM is unusable.
6520 *
6521 * Throttling is based on the first usable node and throttled processes
6522 * wait on a queue until kswapd makes progress and wakes them. There
6523 * is an affinity then between processes waking up and where reclaim
6524 * progress has been made assuming the process wakes on the same node.
6525 * More importantly, processes running on remote nodes will not compete
6526 * for remote pfmemalloc reserves and processes on different nodes
6527 * should make reasonable progress.
6528 */
6529 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6530 gfp_zone(gfp_mask), nodemask) {
6531 if (zone_idx(zone) > ZONE_NORMAL)
6532 continue;
6533
6534 /* Throttle based on the first usable node */
6535 pgdat = zone->zone_pgdat;
6536 if (allow_direct_reclaim(pgdat))
6537 goto out;
6538 break;
6539 }
6540
6541 /* If no zone was usable by the allocation flags then do not throttle */
6542 if (!pgdat)
6543 goto out;
6544
6545 /* Account for the throttling */
6546 count_vm_event(PGSCAN_DIRECT_THROTTLE);
6547
6548 /*
6549 * If the caller cannot enter the filesystem, it's possible that it
6550 * is due to the caller holding an FS lock or performing a journal
6551 * transaction in the case of a filesystem like ext[3|4]. In this case,
6552 * it is not safe to block on pfmemalloc_wait as kswapd could be
6553 * blocked waiting on the same lock. Instead, throttle for up to a
6554 * second before continuing.
6555 */
6556 if (!(gfp_mask & __GFP_FS))
6557 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6558 allow_direct_reclaim(pgdat), HZ);
6559 else
6560 /* Throttle until kswapd wakes the process */
6561 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6562 allow_direct_reclaim(pgdat));
6563
6564 if (fatal_signal_pending(current))
6565 return true;
6566
6567 out:
6568 return false;
6569 }
6570
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)6571 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6572 gfp_t gfp_mask, nodemask_t *nodemask)
6573 {
6574 unsigned long nr_reclaimed;
6575 struct scan_control sc = {
6576 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6577 .gfp_mask = current_gfp_context(gfp_mask),
6578 .reclaim_idx = gfp_zone(gfp_mask),
6579 .order = order,
6580 .nodemask = nodemask,
6581 .priority = DEF_PRIORITY,
6582 .may_writepage = !laptop_mode,
6583 .may_unmap = 1,
6584 .may_swap = 1,
6585 };
6586
6587 /*
6588 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6589 * Confirm they are large enough for max values.
6590 */
6591 BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6592 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6593 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6594
6595 /*
6596 * Do not enter reclaim if fatal signal was delivered while throttled.
6597 * 1 is returned so that the page allocator does not OOM kill at this
6598 * point.
6599 */
6600 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6601 return 1;
6602
6603 set_task_reclaim_state(current, &sc.reclaim_state);
6604 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6605
6606 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6607
6608 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6609 set_task_reclaim_state(current, NULL);
6610
6611 return nr_reclaimed;
6612 }
6613
6614 #ifdef CONFIG_MEMCG
6615
6616 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)6617 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6618 gfp_t gfp_mask, bool noswap,
6619 pg_data_t *pgdat,
6620 unsigned long *nr_scanned)
6621 {
6622 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6623 struct scan_control sc = {
6624 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6625 .target_mem_cgroup = memcg,
6626 .may_writepage = !laptop_mode,
6627 .may_unmap = 1,
6628 .reclaim_idx = MAX_NR_ZONES - 1,
6629 .may_swap = !noswap,
6630 };
6631
6632 WARN_ON_ONCE(!current->reclaim_state);
6633
6634 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6635 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6636
6637 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6638 sc.gfp_mask);
6639
6640 /*
6641 * NOTE: Although we can get the priority field, using it
6642 * here is not a good idea, since it limits the pages we can scan.
6643 * if we don't reclaim here, the shrink_node from balance_pgdat
6644 * will pick up pages from other mem cgroup's as well. We hack
6645 * the priority and make it zero.
6646 */
6647 shrink_lruvec(lruvec, &sc);
6648
6649 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6650
6651 *nr_scanned = sc.nr_scanned;
6652
6653 return sc.nr_reclaimed;
6654 }
6655
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,unsigned int reclaim_options,int * swappiness)6656 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6657 unsigned long nr_pages,
6658 gfp_t gfp_mask,
6659 unsigned int reclaim_options,
6660 int *swappiness)
6661 {
6662 unsigned long nr_reclaimed;
6663 unsigned int noreclaim_flag;
6664 struct scan_control sc = {
6665 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6666 .proactive_swappiness = swappiness,
6667 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6668 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6669 .reclaim_idx = MAX_NR_ZONES - 1,
6670 .target_mem_cgroup = memcg,
6671 .priority = DEF_PRIORITY,
6672 .may_writepage = !laptop_mode,
6673 .may_unmap = 1,
6674 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6675 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6676 };
6677 /*
6678 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6679 * equal pressure on all the nodes. This is based on the assumption that
6680 * the reclaim does not bail out early.
6681 */
6682 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6683
6684 set_task_reclaim_state(current, &sc.reclaim_state);
6685 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6686 noreclaim_flag = memalloc_noreclaim_save();
6687
6688 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6689
6690 memalloc_noreclaim_restore(noreclaim_flag);
6691 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6692 set_task_reclaim_state(current, NULL);
6693
6694 return nr_reclaimed;
6695 }
6696 #else
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,unsigned int reclaim_options,int * swappiness)6697 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6698 unsigned long nr_pages,
6699 gfp_t gfp_mask,
6700 unsigned int reclaim_options,
6701 int *swappiness)
6702 {
6703 return 0;
6704 }
6705 #endif
6706
kswapd_age_node(struct pglist_data * pgdat,struct scan_control * sc)6707 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6708 {
6709 struct mem_cgroup *memcg;
6710 struct lruvec *lruvec;
6711
6712 if (lru_gen_enabled()) {
6713 lru_gen_age_node(pgdat, sc);
6714 return;
6715 }
6716
6717 lruvec = mem_cgroup_lruvec(NULL, pgdat);
6718 if (!can_age_anon_pages(lruvec, sc))
6719 return;
6720
6721 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6722 return;
6723
6724 memcg = mem_cgroup_iter(NULL, NULL, NULL);
6725 do {
6726 lruvec = mem_cgroup_lruvec(memcg, pgdat);
6727 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6728 sc, LRU_ACTIVE_ANON);
6729 memcg = mem_cgroup_iter(NULL, memcg, NULL);
6730 } while (memcg);
6731 }
6732
pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)6733 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6734 {
6735 int i;
6736 struct zone *zone;
6737
6738 /*
6739 * Check for watermark boosts top-down as the higher zones
6740 * are more likely to be boosted. Both watermarks and boosts
6741 * should not be checked at the same time as reclaim would
6742 * start prematurely when there is no boosting and a lower
6743 * zone is balanced.
6744 */
6745 for (i = highest_zoneidx; i >= 0; i--) {
6746 zone = pgdat->node_zones + i;
6747 if (!managed_zone(zone))
6748 continue;
6749
6750 if (zone->watermark_boost)
6751 return true;
6752 }
6753
6754 return false;
6755 }
6756
6757 /*
6758 * Returns true if there is an eligible zone balanced for the request order
6759 * and highest_zoneidx
6760 */
pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)6761 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6762 {
6763 int i;
6764 unsigned long mark = -1;
6765 struct zone *zone;
6766
6767 /*
6768 * Check watermarks bottom-up as lower zones are more likely to
6769 * meet watermarks.
6770 */
6771 for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6772 enum zone_stat_item item;
6773 unsigned long free_pages;
6774
6775 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6776 mark = promo_wmark_pages(zone);
6777 else
6778 mark = high_wmark_pages(zone);
6779
6780 /*
6781 * In defrag_mode, watermarks must be met in whole
6782 * blocks to avoid polluting allocator fallbacks.
6783 *
6784 * However, kswapd usually cannot accomplish this on
6785 * its own and needs kcompactd support. Once it's
6786 * reclaimed a compaction gap, and kswapd_shrink_node
6787 * has dropped order, simply ensure there are enough
6788 * base pages for compaction, wake kcompactd & sleep.
6789 */
6790 if (defrag_mode && order)
6791 item = NR_FREE_PAGES_BLOCKS;
6792 else
6793 item = NR_FREE_PAGES;
6794
6795 /*
6796 * When there is a high number of CPUs in the system,
6797 * the cumulative error from the vmstat per-cpu cache
6798 * can blur the line between the watermarks. In that
6799 * case, be safe and get an accurate snapshot.
6800 *
6801 * TODO: NR_FREE_PAGES_BLOCKS moves in steps of
6802 * pageblock_nr_pages, while the vmstat pcp threshold
6803 * is limited to 125. On many configurations that
6804 * counter won't actually be per-cpu cached. But keep
6805 * things simple for now; revisit when somebody cares.
6806 */
6807 free_pages = zone_page_state(zone, item);
6808 if (zone->percpu_drift_mark && free_pages < zone->percpu_drift_mark)
6809 free_pages = zone_page_state_snapshot(zone, item);
6810
6811 if (__zone_watermark_ok(zone, order, mark, highest_zoneidx,
6812 0, free_pages))
6813 return true;
6814 }
6815
6816 /*
6817 * If a node has no managed zone within highest_zoneidx, it does not
6818 * need balancing by definition. This can happen if a zone-restricted
6819 * allocation tries to wake a remote kswapd.
6820 */
6821 if (mark == -1)
6822 return true;
6823
6824 return false;
6825 }
6826
6827 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)6828 static void clear_pgdat_congested(pg_data_t *pgdat)
6829 {
6830 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6831
6832 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6833 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6834 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6835 }
6836
6837 /*
6838 * Prepare kswapd for sleeping. This verifies that there are no processes
6839 * waiting in throttle_direct_reclaim() and that watermarks have been met.
6840 *
6841 * Returns true if kswapd is ready to sleep
6842 */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)6843 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6844 int highest_zoneidx)
6845 {
6846 /*
6847 * The throttled processes are normally woken up in balance_pgdat() as
6848 * soon as allow_direct_reclaim() is true. But there is a potential
6849 * race between when kswapd checks the watermarks and a process gets
6850 * throttled. There is also a potential race if processes get
6851 * throttled, kswapd wakes, a large process exits thereby balancing the
6852 * zones, which causes kswapd to exit balance_pgdat() before reaching
6853 * the wake up checks. If kswapd is going to sleep, no process should
6854 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6855 * the wake up is premature, processes will wake kswapd and get
6856 * throttled again. The difference from wake ups in balance_pgdat() is
6857 * that here we are under prepare_to_wait().
6858 */
6859 if (waitqueue_active(&pgdat->pfmemalloc_wait))
6860 wake_up_all(&pgdat->pfmemalloc_wait);
6861
6862 /* Hopeless node, leave it to direct reclaim */
6863 if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES)
6864 return true;
6865
6866 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6867 clear_pgdat_congested(pgdat);
6868 return true;
6869 }
6870
6871 return false;
6872 }
6873
6874 /*
6875 * kswapd shrinks a node of pages that are at or below the highest usable
6876 * zone that is currently unbalanced.
6877 *
6878 * Returns true if kswapd scanned at least the requested number of pages to
6879 * reclaim or if the lack of progress was due to pages under writeback.
6880 * This is used to determine if the scanning priority needs to be raised.
6881 */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)6882 static bool kswapd_shrink_node(pg_data_t *pgdat,
6883 struct scan_control *sc)
6884 {
6885 struct zone *zone;
6886 int z;
6887 unsigned long nr_reclaimed = sc->nr_reclaimed;
6888
6889 /* Reclaim a number of pages proportional to the number of zones */
6890 sc->nr_to_reclaim = 0;
6891 for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) {
6892 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6893 }
6894
6895 /*
6896 * Historically care was taken to put equal pressure on all zones but
6897 * now pressure is applied based on node LRU order.
6898 */
6899 shrink_node(pgdat, sc);
6900
6901 /*
6902 * Fragmentation may mean that the system cannot be rebalanced for
6903 * high-order allocations. If twice the allocation size has been
6904 * reclaimed then recheck watermarks only at order-0 to prevent
6905 * excessive reclaim. Assume that a process requested a high-order
6906 * can direct reclaim/compact.
6907 */
6908 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6909 sc->order = 0;
6910
6911 /* account for progress from mm_account_reclaimed_pages() */
6912 return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim;
6913 }
6914
6915 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6916 static inline void
update_reclaim_active(pg_data_t * pgdat,int highest_zoneidx,bool active)6917 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6918 {
6919 int i;
6920 struct zone *zone;
6921
6922 for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6923 if (active)
6924 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6925 else
6926 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6927 }
6928 }
6929
6930 static inline void
set_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)6931 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6932 {
6933 update_reclaim_active(pgdat, highest_zoneidx, true);
6934 }
6935
6936 static inline void
clear_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)6937 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6938 {
6939 update_reclaim_active(pgdat, highest_zoneidx, false);
6940 }
6941
6942 /*
6943 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6944 * that are eligible for use by the caller until at least one zone is
6945 * balanced.
6946 *
6947 * Returns the order kswapd finished reclaiming at.
6948 *
6949 * kswapd scans the zones in the highmem->normal->dma direction. It skips
6950 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6951 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6952 * or lower is eligible for reclaim until at least one usable zone is
6953 * balanced.
6954 */
balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)6955 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6956 {
6957 int i;
6958 unsigned long nr_soft_reclaimed;
6959 unsigned long nr_soft_scanned;
6960 unsigned long pflags;
6961 unsigned long nr_boost_reclaim;
6962 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6963 bool boosted;
6964 struct zone *zone;
6965 struct scan_control sc = {
6966 .gfp_mask = GFP_KERNEL,
6967 .order = order,
6968 .may_unmap = 1,
6969 };
6970
6971 set_task_reclaim_state(current, &sc.reclaim_state);
6972 psi_memstall_enter(&pflags);
6973 __fs_reclaim_acquire(_THIS_IP_);
6974
6975 count_vm_event(PAGEOUTRUN);
6976
6977 /*
6978 * Account for the reclaim boost. Note that the zone boost is left in
6979 * place so that parallel allocations that are near the watermark will
6980 * stall or direct reclaim until kswapd is finished.
6981 */
6982 nr_boost_reclaim = 0;
6983 for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6984 nr_boost_reclaim += zone->watermark_boost;
6985 zone_boosts[i] = zone->watermark_boost;
6986 }
6987 boosted = nr_boost_reclaim;
6988
6989 restart:
6990 set_reclaim_active(pgdat, highest_zoneidx);
6991 sc.priority = DEF_PRIORITY;
6992 do {
6993 unsigned long nr_reclaimed = sc.nr_reclaimed;
6994 bool raise_priority = true;
6995 bool balanced;
6996 bool ret;
6997 bool was_frozen;
6998
6999 sc.reclaim_idx = highest_zoneidx;
7000
7001 /*
7002 * If the number of buffer_heads exceeds the maximum allowed
7003 * then consider reclaiming from all zones. This has a dual
7004 * purpose -- on 64-bit systems it is expected that
7005 * buffer_heads are stripped during active rotation. On 32-bit
7006 * systems, highmem pages can pin lowmem memory and shrinking
7007 * buffers can relieve lowmem pressure. Reclaim may still not
7008 * go ahead if all eligible zones for the original allocation
7009 * request are balanced to avoid excessive reclaim from kswapd.
7010 */
7011 if (buffer_heads_over_limit) {
7012 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7013 zone = pgdat->node_zones + i;
7014 if (!managed_zone(zone))
7015 continue;
7016
7017 sc.reclaim_idx = i;
7018 break;
7019 }
7020 }
7021
7022 /*
7023 * If the pgdat is imbalanced then ignore boosting and preserve
7024 * the watermarks for a later time and restart. Note that the
7025 * zone watermarks will be still reset at the end of balancing
7026 * on the grounds that the normal reclaim should be enough to
7027 * re-evaluate if boosting is required when kswapd next wakes.
7028 */
7029 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7030 if (!balanced && nr_boost_reclaim) {
7031 nr_boost_reclaim = 0;
7032 goto restart;
7033 }
7034
7035 /*
7036 * If boosting is not active then only reclaim if there are no
7037 * eligible zones. Note that sc.reclaim_idx is not used as
7038 * buffer_heads_over_limit may have adjusted it.
7039 */
7040 if (!nr_boost_reclaim && balanced)
7041 goto out;
7042
7043 /* Limit the priority of boosting to avoid reclaim writeback */
7044 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7045 raise_priority = false;
7046
7047 /*
7048 * Do not writeback or swap pages for boosted reclaim. The
7049 * intent is to relieve pressure not issue sub-optimal IO
7050 * from reclaim context. If no pages are reclaimed, the
7051 * reclaim will be aborted.
7052 */
7053 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7054 sc.may_swap = !nr_boost_reclaim;
7055
7056 /*
7057 * Do some background aging, to give pages a chance to be
7058 * referenced before reclaiming. All pages are rotated
7059 * regardless of classzone as this is about consistent aging.
7060 */
7061 kswapd_age_node(pgdat, &sc);
7062
7063 /*
7064 * If we're getting trouble reclaiming, start doing writepage
7065 * even in laptop mode.
7066 */
7067 if (sc.priority < DEF_PRIORITY - 2)
7068 sc.may_writepage = 1;
7069
7070 /* Call soft limit reclaim before calling shrink_node. */
7071 sc.nr_scanned = 0;
7072 nr_soft_scanned = 0;
7073 nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order,
7074 sc.gfp_mask, &nr_soft_scanned);
7075 sc.nr_reclaimed += nr_soft_reclaimed;
7076
7077 /*
7078 * There should be no need to raise the scanning priority if
7079 * enough pages are already being scanned that that high
7080 * watermark would be met at 100% efficiency.
7081 */
7082 if (kswapd_shrink_node(pgdat, &sc))
7083 raise_priority = false;
7084
7085 /*
7086 * If the low watermark is met there is no need for processes
7087 * to be throttled on pfmemalloc_wait as they should not be
7088 * able to safely make forward progress. Wake them
7089 */
7090 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7091 allow_direct_reclaim(pgdat))
7092 wake_up_all(&pgdat->pfmemalloc_wait);
7093
7094 /* Check if kswapd should be suspending */
7095 __fs_reclaim_release(_THIS_IP_);
7096 ret = kthread_freezable_should_stop(&was_frozen);
7097 __fs_reclaim_acquire(_THIS_IP_);
7098 if (was_frozen || ret)
7099 break;
7100
7101 /*
7102 * Raise priority if scanning rate is too low or there was no
7103 * progress in reclaiming pages
7104 */
7105 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7106 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7107
7108 /*
7109 * If reclaim made no progress for a boost, stop reclaim as
7110 * IO cannot be queued and it could be an infinite loop in
7111 * extreme circumstances.
7112 */
7113 if (nr_boost_reclaim && !nr_reclaimed)
7114 break;
7115
7116 if (raise_priority || !nr_reclaimed)
7117 sc.priority--;
7118 } while (sc.priority >= 1);
7119
7120 /*
7121 * Restart only if it went through the priority loop all the way,
7122 * but cache_trim_mode didn't work.
7123 */
7124 if (!sc.nr_reclaimed && sc.priority < 1 &&
7125 !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) {
7126 sc.no_cache_trim_mode = 1;
7127 goto restart;
7128 }
7129
7130 /*
7131 * If the reclaim was boosted, we might still be far from the
7132 * watermark_high at this point. We need to avoid increasing the
7133 * failure count to prevent the kswapd thread from stopping.
7134 */
7135 if (!sc.nr_reclaimed && !boosted)
7136 atomic_inc(&pgdat->kswapd_failures);
7137
7138 out:
7139 clear_reclaim_active(pgdat, highest_zoneidx);
7140
7141 /* If reclaim was boosted, account for the reclaim done in this pass */
7142 if (boosted) {
7143 unsigned long flags;
7144
7145 for (i = 0; i <= highest_zoneidx; i++) {
7146 if (!zone_boosts[i])
7147 continue;
7148
7149 /* Increments are under the zone lock */
7150 zone = pgdat->node_zones + i;
7151 spin_lock_irqsave(&zone->lock, flags);
7152 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7153 spin_unlock_irqrestore(&zone->lock, flags);
7154 }
7155
7156 /*
7157 * As there is now likely space, wakeup kcompact to defragment
7158 * pageblocks.
7159 */
7160 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7161 }
7162
7163 snapshot_refaults(NULL, pgdat);
7164 __fs_reclaim_release(_THIS_IP_);
7165 psi_memstall_leave(&pflags);
7166 set_task_reclaim_state(current, NULL);
7167
7168 /*
7169 * Return the order kswapd stopped reclaiming at as
7170 * prepare_kswapd_sleep() takes it into account. If another caller
7171 * entered the allocator slow path while kswapd was awake, order will
7172 * remain at the higher level.
7173 */
7174 return sc.order;
7175 }
7176
7177 /*
7178 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7179 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7180 * not a valid index then either kswapd runs for first time or kswapd couldn't
7181 * sleep after previous reclaim attempt (node is still unbalanced). In that
7182 * case return the zone index of the previous kswapd reclaim cycle.
7183 */
kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)7184 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7185 enum zone_type prev_highest_zoneidx)
7186 {
7187 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7188
7189 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7190 }
7191
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)7192 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7193 unsigned int highest_zoneidx)
7194 {
7195 long remaining = 0;
7196 DEFINE_WAIT(wait);
7197
7198 if (freezing(current) || kthread_should_stop())
7199 return;
7200
7201 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7202
7203 /*
7204 * Try to sleep for a short interval. Note that kcompactd will only be
7205 * woken if it is possible to sleep for a short interval. This is
7206 * deliberate on the assumption that if reclaim cannot keep an
7207 * eligible zone balanced that it's also unlikely that compaction will
7208 * succeed.
7209 */
7210 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7211 /*
7212 * Compaction records what page blocks it recently failed to
7213 * isolate pages from and skips them in the future scanning.
7214 * When kswapd is going to sleep, it is reasonable to assume
7215 * that pages and compaction may succeed so reset the cache.
7216 */
7217 reset_isolation_suitable(pgdat);
7218
7219 /*
7220 * We have freed the memory, now we should compact it to make
7221 * allocation of the requested order possible.
7222 */
7223 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7224
7225 remaining = schedule_timeout(HZ/10);
7226
7227 /*
7228 * If woken prematurely then reset kswapd_highest_zoneidx and
7229 * order. The values will either be from a wakeup request or
7230 * the previous request that slept prematurely.
7231 */
7232 if (remaining) {
7233 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7234 kswapd_highest_zoneidx(pgdat,
7235 highest_zoneidx));
7236
7237 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7238 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7239 }
7240
7241 finish_wait(&pgdat->kswapd_wait, &wait);
7242 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7243 }
7244
7245 /*
7246 * After a short sleep, check if it was a premature sleep. If not, then
7247 * go fully to sleep until explicitly woken up.
7248 */
7249 if (!remaining &&
7250 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7251 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7252
7253 /*
7254 * vmstat counters are not perfectly accurate and the estimated
7255 * value for counters such as NR_FREE_PAGES can deviate from the
7256 * true value by nr_online_cpus * threshold. To avoid the zone
7257 * watermarks being breached while under pressure, we reduce the
7258 * per-cpu vmstat threshold while kswapd is awake and restore
7259 * them before going back to sleep.
7260 */
7261 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7262
7263 if (!kthread_should_stop())
7264 schedule();
7265
7266 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7267 } else {
7268 if (remaining)
7269 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7270 else
7271 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7272 }
7273 finish_wait(&pgdat->kswapd_wait, &wait);
7274 }
7275
7276 /*
7277 * The background pageout daemon, started as a kernel thread
7278 * from the init process.
7279 *
7280 * This basically trickles out pages so that we have _some_
7281 * free memory available even if there is no other activity
7282 * that frees anything up. This is needed for things like routing
7283 * etc, where we otherwise might have all activity going on in
7284 * asynchronous contexts that cannot page things out.
7285 *
7286 * If there are applications that are active memory-allocators
7287 * (most normal use), this basically shouldn't matter.
7288 */
kswapd(void * p)7289 static int kswapd(void *p)
7290 {
7291 unsigned int alloc_order, reclaim_order;
7292 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7293 pg_data_t *pgdat = (pg_data_t *)p;
7294 struct task_struct *tsk = current;
7295
7296 /*
7297 * Tell the memory management that we're a "memory allocator",
7298 * and that if we need more memory we should get access to it
7299 * regardless (see "__alloc_pages()"). "kswapd" should
7300 * never get caught in the normal page freeing logic.
7301 *
7302 * (Kswapd normally doesn't need memory anyway, but sometimes
7303 * you need a small amount of memory in order to be able to
7304 * page out something else, and this flag essentially protects
7305 * us from recursively trying to free more memory as we're
7306 * trying to free the first piece of memory in the first place).
7307 */
7308 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7309 set_freezable();
7310
7311 WRITE_ONCE(pgdat->kswapd_order, 0);
7312 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7313 atomic_set(&pgdat->nr_writeback_throttled, 0);
7314 for ( ; ; ) {
7315 bool was_frozen;
7316
7317 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7318 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7319 highest_zoneidx);
7320
7321 kswapd_try_sleep:
7322 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7323 highest_zoneidx);
7324
7325 /* Read the new order and highest_zoneidx */
7326 alloc_order = READ_ONCE(pgdat->kswapd_order);
7327 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7328 highest_zoneidx);
7329 WRITE_ONCE(pgdat->kswapd_order, 0);
7330 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7331
7332 if (kthread_freezable_should_stop(&was_frozen))
7333 break;
7334
7335 /*
7336 * We can speed up thawing tasks if we don't call balance_pgdat
7337 * after returning from the refrigerator
7338 */
7339 if (was_frozen)
7340 continue;
7341
7342 /*
7343 * Reclaim begins at the requested order but if a high-order
7344 * reclaim fails then kswapd falls back to reclaiming for
7345 * order-0. If that happens, kswapd will consider sleeping
7346 * for the order it finished reclaiming at (reclaim_order)
7347 * but kcompactd is woken to compact for the original
7348 * request (alloc_order).
7349 */
7350 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7351 alloc_order);
7352 reclaim_order = balance_pgdat(pgdat, alloc_order,
7353 highest_zoneidx);
7354 if (reclaim_order < alloc_order)
7355 goto kswapd_try_sleep;
7356 }
7357
7358 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7359
7360 return 0;
7361 }
7362
7363 /*
7364 * A zone is low on free memory or too fragmented for high-order memory. If
7365 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7366 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
7367 * has failed or is not needed, still wake up kcompactd if only compaction is
7368 * needed.
7369 */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)7370 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7371 enum zone_type highest_zoneidx)
7372 {
7373 pg_data_t *pgdat;
7374 enum zone_type curr_idx;
7375
7376 if (!managed_zone(zone))
7377 return;
7378
7379 if (!cpuset_zone_allowed(zone, gfp_flags))
7380 return;
7381
7382 pgdat = zone->zone_pgdat;
7383 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7384
7385 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7386 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7387
7388 if (READ_ONCE(pgdat->kswapd_order) < order)
7389 WRITE_ONCE(pgdat->kswapd_order, order);
7390
7391 if (!waitqueue_active(&pgdat->kswapd_wait))
7392 return;
7393
7394 /* Hopeless node, leave it to direct reclaim if possible */
7395 if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES ||
7396 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7397 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7398 /*
7399 * There may be plenty of free memory available, but it's too
7400 * fragmented for high-order allocations. Wake up kcompactd
7401 * and rely on compaction_suitable() to determine if it's
7402 * needed. If it fails, it will defer subsequent attempts to
7403 * ratelimit its work.
7404 */
7405 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7406 wakeup_kcompactd(pgdat, order, highest_zoneidx);
7407 return;
7408 }
7409
7410 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7411 gfp_flags);
7412 wake_up_interruptible(&pgdat->kswapd_wait);
7413 }
7414
7415 #ifdef CONFIG_HIBERNATION
7416 /*
7417 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7418 * freed pages.
7419 *
7420 * Rather than trying to age LRUs the aim is to preserve the overall
7421 * LRU order by reclaiming preferentially
7422 * inactive > active > active referenced > active mapped
7423 */
shrink_all_memory(unsigned long nr_to_reclaim)7424 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7425 {
7426 struct scan_control sc = {
7427 .nr_to_reclaim = nr_to_reclaim,
7428 .gfp_mask = GFP_HIGHUSER_MOVABLE,
7429 .reclaim_idx = MAX_NR_ZONES - 1,
7430 .priority = DEF_PRIORITY,
7431 .may_writepage = 1,
7432 .may_unmap = 1,
7433 .may_swap = 1,
7434 .hibernation_mode = 1,
7435 };
7436 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7437 unsigned long nr_reclaimed;
7438 unsigned int noreclaim_flag;
7439
7440 fs_reclaim_acquire(sc.gfp_mask);
7441 noreclaim_flag = memalloc_noreclaim_save();
7442 set_task_reclaim_state(current, &sc.reclaim_state);
7443
7444 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7445
7446 set_task_reclaim_state(current, NULL);
7447 memalloc_noreclaim_restore(noreclaim_flag);
7448 fs_reclaim_release(sc.gfp_mask);
7449
7450 return nr_reclaimed;
7451 }
7452 #endif /* CONFIG_HIBERNATION */
7453
7454 /*
7455 * This kswapd start function will be called by init and node-hot-add.
7456 */
kswapd_run(int nid)7457 void __meminit kswapd_run(int nid)
7458 {
7459 pg_data_t *pgdat = NODE_DATA(nid);
7460
7461 pgdat_kswapd_lock(pgdat);
7462 if (!pgdat->kswapd) {
7463 pgdat->kswapd = kthread_create_on_node(kswapd, pgdat, nid, "kswapd%d", nid);
7464 if (IS_ERR(pgdat->kswapd)) {
7465 /* failure at boot is fatal */
7466 pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7467 nid, PTR_ERR(pgdat->kswapd));
7468 BUG_ON(system_state < SYSTEM_RUNNING);
7469 pgdat->kswapd = NULL;
7470 } else {
7471 wake_up_process(pgdat->kswapd);
7472 }
7473 }
7474 pgdat_kswapd_unlock(pgdat);
7475 }
7476
7477 /*
7478 * Called by memory hotplug when all memory in a node is offlined. Caller must
7479 * be holding mem_hotplug_begin/done().
7480 */
kswapd_stop(int nid)7481 void __meminit kswapd_stop(int nid)
7482 {
7483 pg_data_t *pgdat = NODE_DATA(nid);
7484 struct task_struct *kswapd;
7485
7486 pgdat_kswapd_lock(pgdat);
7487 kswapd = pgdat->kswapd;
7488 if (kswapd) {
7489 kthread_stop(kswapd);
7490 pgdat->kswapd = NULL;
7491 }
7492 pgdat_kswapd_unlock(pgdat);
7493 }
7494
7495 static const struct ctl_table vmscan_sysctl_table[] = {
7496 {
7497 .procname = "swappiness",
7498 .data = &vm_swappiness,
7499 .maxlen = sizeof(vm_swappiness),
7500 .mode = 0644,
7501 .proc_handler = proc_dointvec_minmax,
7502 .extra1 = SYSCTL_ZERO,
7503 .extra2 = SYSCTL_TWO_HUNDRED,
7504 },
7505 #ifdef CONFIG_NUMA
7506 {
7507 .procname = "zone_reclaim_mode",
7508 .data = &node_reclaim_mode,
7509 .maxlen = sizeof(node_reclaim_mode),
7510 .mode = 0644,
7511 .proc_handler = proc_dointvec_minmax,
7512 .extra1 = SYSCTL_ZERO,
7513 }
7514 #endif
7515 };
7516
kswapd_init(void)7517 static int __init kswapd_init(void)
7518 {
7519 int nid;
7520
7521 swap_setup();
7522 for_each_node_state(nid, N_MEMORY)
7523 kswapd_run(nid);
7524 register_sysctl_init("vm", vmscan_sysctl_table);
7525 return 0;
7526 }
7527
7528 module_init(kswapd_init)
7529
7530 #ifdef CONFIG_NUMA
7531 /*
7532 * Node reclaim mode
7533 *
7534 * If non-zero call node_reclaim when the number of free pages falls below
7535 * the watermarks.
7536 */
7537 int node_reclaim_mode __read_mostly;
7538
7539 /*
7540 * Priority for NODE_RECLAIM. This determines the fraction of pages
7541 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7542 * a zone.
7543 */
7544 #define NODE_RECLAIM_PRIORITY 4
7545
7546 /*
7547 * Percentage of pages in a zone that must be unmapped for node_reclaim to
7548 * occur.
7549 */
7550 int sysctl_min_unmapped_ratio = 1;
7551
7552 /*
7553 * If the number of slab pages in a zone grows beyond this percentage then
7554 * slab reclaim needs to occur.
7555 */
7556 int sysctl_min_slab_ratio = 5;
7557
node_unmapped_file_pages(struct pglist_data * pgdat)7558 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7559 {
7560 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7561 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7562 node_page_state(pgdat, NR_ACTIVE_FILE);
7563
7564 /*
7565 * It's possible for there to be more file mapped pages than
7566 * accounted for by the pages on the file LRU lists because
7567 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7568 */
7569 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7570 }
7571
7572 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)7573 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7574 {
7575 unsigned long nr_pagecache_reclaimable;
7576 unsigned long delta = 0;
7577
7578 /*
7579 * If RECLAIM_UNMAP is set, then all file pages are considered
7580 * potentially reclaimable. Otherwise, we have to worry about
7581 * pages like swapcache and node_unmapped_file_pages() provides
7582 * a better estimate
7583 */
7584 if (node_reclaim_mode & RECLAIM_UNMAP)
7585 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7586 else
7587 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7588
7589 /*
7590 * Since we can't clean folios through reclaim, remove dirty file
7591 * folios from consideration.
7592 */
7593 delta += node_page_state(pgdat, NR_FILE_DIRTY);
7594
7595 /* Watch for any possible underflows due to delta */
7596 if (unlikely(delta > nr_pagecache_reclaimable))
7597 delta = nr_pagecache_reclaimable;
7598
7599 return nr_pagecache_reclaimable - delta;
7600 }
7601
7602 /*
7603 * Try to free up some pages from this node through reclaim.
7604 */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned long nr_pages,struct scan_control * sc)7605 static unsigned long __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask,
7606 unsigned long nr_pages,
7607 struct scan_control *sc)
7608 {
7609 struct task_struct *p = current;
7610 unsigned int noreclaim_flag;
7611 unsigned long pflags;
7612
7613 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, sc->order,
7614 sc->gfp_mask);
7615
7616 cond_resched();
7617 psi_memstall_enter(&pflags);
7618 delayacct_freepages_start();
7619 fs_reclaim_acquire(sc->gfp_mask);
7620 /*
7621 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7622 */
7623 noreclaim_flag = memalloc_noreclaim_save();
7624 set_task_reclaim_state(p, &sc->reclaim_state);
7625
7626 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7627 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7628 /*
7629 * Free memory by calling shrink node with increasing
7630 * priorities until we have enough memory freed.
7631 */
7632 do {
7633 shrink_node(pgdat, sc);
7634 } while (sc->nr_reclaimed < nr_pages && --sc->priority >= 0);
7635 }
7636
7637 set_task_reclaim_state(p, NULL);
7638 memalloc_noreclaim_restore(noreclaim_flag);
7639 fs_reclaim_release(sc->gfp_mask);
7640 delayacct_freepages_end();
7641 psi_memstall_leave(&pflags);
7642
7643 trace_mm_vmscan_node_reclaim_end(sc->nr_reclaimed);
7644
7645 return sc->nr_reclaimed;
7646 }
7647
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)7648 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7649 {
7650 int ret;
7651 /* Minimum pages needed in order to stay on node */
7652 const unsigned long nr_pages = 1 << order;
7653 struct scan_control sc = {
7654 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7655 .gfp_mask = current_gfp_context(gfp_mask),
7656 .order = order,
7657 .priority = NODE_RECLAIM_PRIORITY,
7658 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7659 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7660 .may_swap = 1,
7661 .reclaim_idx = gfp_zone(gfp_mask),
7662 };
7663
7664 /*
7665 * Node reclaim reclaims unmapped file backed pages and
7666 * slab pages if we are over the defined limits.
7667 *
7668 * A small portion of unmapped file backed pages is needed for
7669 * file I/O otherwise pages read by file I/O will be immediately
7670 * thrown out if the node is overallocated. So we do not reclaim
7671 * if less than a specified percentage of the node is used by
7672 * unmapped file backed pages.
7673 */
7674 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7675 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7676 pgdat->min_slab_pages)
7677 return NODE_RECLAIM_FULL;
7678
7679 /*
7680 * Do not scan if the allocation should not be delayed.
7681 */
7682 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7683 return NODE_RECLAIM_NOSCAN;
7684
7685 /*
7686 * Only run node reclaim on the local node or on nodes that do not
7687 * have associated processors. This will favor the local processor
7688 * over remote processors and spread off node memory allocations
7689 * as wide as possible.
7690 */
7691 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7692 return NODE_RECLAIM_NOSCAN;
7693
7694 if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7695 return NODE_RECLAIM_NOSCAN;
7696
7697 ret = __node_reclaim(pgdat, gfp_mask, nr_pages, &sc) >= nr_pages;
7698 clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7699
7700 if (ret)
7701 count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS);
7702 else
7703 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7704
7705 return ret;
7706 }
7707
7708 enum {
7709 MEMORY_RECLAIM_SWAPPINESS = 0,
7710 MEMORY_RECLAIM_SWAPPINESS_MAX,
7711 MEMORY_RECLAIM_NULL,
7712 };
7713 static const match_table_t tokens = {
7714 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"},
7715 { MEMORY_RECLAIM_SWAPPINESS_MAX, "swappiness=max"},
7716 { MEMORY_RECLAIM_NULL, NULL },
7717 };
7718
user_proactive_reclaim(char * buf,struct mem_cgroup * memcg,pg_data_t * pgdat)7719 int user_proactive_reclaim(char *buf,
7720 struct mem_cgroup *memcg, pg_data_t *pgdat)
7721 {
7722 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
7723 unsigned long nr_to_reclaim, nr_reclaimed = 0;
7724 int swappiness = -1;
7725 char *old_buf, *start;
7726 substring_t args[MAX_OPT_ARGS];
7727 gfp_t gfp_mask = GFP_KERNEL;
7728
7729 if (!buf || (!memcg && !pgdat) || (memcg && pgdat))
7730 return -EINVAL;
7731
7732 buf = strstrip(buf);
7733
7734 old_buf = buf;
7735 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE;
7736 if (buf == old_buf)
7737 return -EINVAL;
7738
7739 buf = strstrip(buf);
7740
7741 while ((start = strsep(&buf, " ")) != NULL) {
7742 if (!strlen(start))
7743 continue;
7744 switch (match_token(start, tokens, args)) {
7745 case MEMORY_RECLAIM_SWAPPINESS:
7746 if (match_int(&args[0], &swappiness))
7747 return -EINVAL;
7748 if (swappiness < MIN_SWAPPINESS ||
7749 swappiness > MAX_SWAPPINESS)
7750 return -EINVAL;
7751 break;
7752 case MEMORY_RECLAIM_SWAPPINESS_MAX:
7753 swappiness = SWAPPINESS_ANON_ONLY;
7754 break;
7755 default:
7756 return -EINVAL;
7757 }
7758 }
7759
7760 while (nr_reclaimed < nr_to_reclaim) {
7761 /* Will converge on zero, but reclaim enforces a minimum */
7762 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
7763 unsigned long reclaimed;
7764
7765 if (signal_pending(current))
7766 return -EINTR;
7767
7768 /*
7769 * This is the final attempt, drain percpu lru caches in the
7770 * hope of introducing more evictable pages.
7771 */
7772 if (!nr_retries)
7773 lru_add_drain_all();
7774
7775 if (memcg) {
7776 unsigned int reclaim_options;
7777
7778 reclaim_options = MEMCG_RECLAIM_MAY_SWAP |
7779 MEMCG_RECLAIM_PROACTIVE;
7780 reclaimed = try_to_free_mem_cgroup_pages(memcg,
7781 batch_size, gfp_mask,
7782 reclaim_options,
7783 swappiness == -1 ? NULL : &swappiness);
7784 } else {
7785 struct scan_control sc = {
7786 .gfp_mask = current_gfp_context(gfp_mask),
7787 .reclaim_idx = gfp_zone(gfp_mask),
7788 .proactive_swappiness = swappiness == -1 ? NULL : &swappiness,
7789 .priority = DEF_PRIORITY,
7790 .may_writepage = !laptop_mode,
7791 .nr_to_reclaim = max(batch_size, SWAP_CLUSTER_MAX),
7792 .may_unmap = 1,
7793 .may_swap = 1,
7794 .proactive = 1,
7795 };
7796
7797 if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED,
7798 &pgdat->flags))
7799 return -EBUSY;
7800
7801 reclaimed = __node_reclaim(pgdat, gfp_mask,
7802 batch_size, &sc);
7803 clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7804 }
7805
7806 if (!reclaimed && !nr_retries--)
7807 return -EAGAIN;
7808
7809 nr_reclaimed += reclaimed;
7810 }
7811
7812 return 0;
7813 }
7814
7815 #endif
7816
7817 /**
7818 * check_move_unevictable_folios - Move evictable folios to appropriate zone
7819 * lru list
7820 * @fbatch: Batch of lru folios to check.
7821 *
7822 * Checks folios for evictability, if an evictable folio is in the unevictable
7823 * lru list, moves it to the appropriate evictable lru list. This function
7824 * should be only used for lru folios.
7825 */
check_move_unevictable_folios(struct folio_batch * fbatch)7826 void check_move_unevictable_folios(struct folio_batch *fbatch)
7827 {
7828 struct lruvec *lruvec = NULL;
7829 int pgscanned = 0;
7830 int pgrescued = 0;
7831 int i;
7832
7833 for (i = 0; i < fbatch->nr; i++) {
7834 struct folio *folio = fbatch->folios[i];
7835 int nr_pages = folio_nr_pages(folio);
7836
7837 pgscanned += nr_pages;
7838
7839 /* block memcg migration while the folio moves between lrus */
7840 if (!folio_test_clear_lru(folio))
7841 continue;
7842
7843 lruvec = folio_lruvec_relock_irq(folio, lruvec);
7844 if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7845 lruvec_del_folio(lruvec, folio);
7846 folio_clear_unevictable(folio);
7847 lruvec_add_folio(lruvec, folio);
7848 pgrescued += nr_pages;
7849 }
7850 folio_set_lru(folio);
7851 }
7852
7853 if (lruvec) {
7854 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7855 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7856 unlock_page_lruvec_irq(lruvec);
7857 } else if (pgscanned) {
7858 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7859 }
7860 }
7861 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
7862
7863 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
reclaim_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7864 static ssize_t reclaim_store(struct device *dev,
7865 struct device_attribute *attr,
7866 const char *buf, size_t count)
7867 {
7868 int ret, nid = dev->id;
7869
7870 ret = user_proactive_reclaim((char *)buf, NULL, NODE_DATA(nid));
7871 return ret ? -EAGAIN : count;
7872 }
7873
7874 static DEVICE_ATTR_WO(reclaim);
reclaim_register_node(struct node * node)7875 int reclaim_register_node(struct node *node)
7876 {
7877 return device_create_file(&node->dev, &dev_attr_reclaim);
7878 }
7879
reclaim_unregister_node(struct node * node)7880 void reclaim_unregister_node(struct node *node)
7881 {
7882 return device_remove_file(&node->dev, &dev_attr_reclaim);
7883 }
7884 #endif
7885