xref: /linux/tools/testing/selftests/kvm/lib/kvm_util.c (revision 3349e275067f94ffb4141989aed9cbae7409429b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/kvm_util.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 #include "test_util.h"
8 #include "kvm_util.h"
9 #include "processor.h"
10 #include "ucall_common.h"
11 
12 #include <assert.h>
13 #include <sched.h>
14 #include <sys/mman.h>
15 #include <sys/resource.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
20 
21 #define KVM_UTIL_MIN_PFN	2
22 
23 uint32_t guest_random_seed;
24 struct guest_random_state guest_rng;
25 static uint32_t last_guest_seed;
26 
27 static int vcpu_mmap_sz(void);
28 
open_path_or_exit(const char * path,int flags)29 int open_path_or_exit(const char *path, int flags)
30 {
31 	int fd;
32 
33 	fd = open(path, flags);
34 	__TEST_REQUIRE(fd >= 0 || errno != ENOENT, "Cannot open %s: %s", path, strerror(errno));
35 	TEST_ASSERT(fd >= 0, "Failed to open '%s'", path);
36 
37 	return fd;
38 }
39 
40 /*
41  * Open KVM_DEV_PATH if available, otherwise exit the entire program.
42  *
43  * Input Args:
44  *   flags - The flags to pass when opening KVM_DEV_PATH.
45  *
46  * Return:
47  *   The opened file descriptor of /dev/kvm.
48  */
_open_kvm_dev_path_or_exit(int flags)49 static int _open_kvm_dev_path_or_exit(int flags)
50 {
51 	return open_path_or_exit(KVM_DEV_PATH, flags);
52 }
53 
open_kvm_dev_path_or_exit(void)54 int open_kvm_dev_path_or_exit(void)
55 {
56 	return _open_kvm_dev_path_or_exit(O_RDONLY);
57 }
58 
get_module_param(const char * module_name,const char * param,void * buffer,size_t buffer_size)59 static ssize_t get_module_param(const char *module_name, const char *param,
60 				void *buffer, size_t buffer_size)
61 {
62 	const int path_size = 128;
63 	char path[path_size];
64 	ssize_t bytes_read;
65 	int fd, r;
66 
67 	r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
68 		     module_name, param);
69 	TEST_ASSERT(r < path_size,
70 		    "Failed to construct sysfs path in %d bytes.", path_size);
71 
72 	fd = open_path_or_exit(path, O_RDONLY);
73 
74 	bytes_read = read(fd, buffer, buffer_size);
75 	TEST_ASSERT(bytes_read > 0, "read(%s) returned %ld, wanted %ld bytes",
76 		    path, bytes_read, buffer_size);
77 
78 	r = close(fd);
79 	TEST_ASSERT(!r, "close(%s) failed", path);
80 	return bytes_read;
81 }
82 
get_module_param_integer(const char * module_name,const char * param)83 static int get_module_param_integer(const char *module_name, const char *param)
84 {
85 	/*
86 	 * 16 bytes to hold a 64-bit value (1 byte per char), 1 byte for the
87 	 * NUL char, and 1 byte because the kernel sucks and inserts a newline
88 	 * at the end.
89 	 */
90 	char value[16 + 1 + 1];
91 	ssize_t r;
92 
93 	memset(value, '\0', sizeof(value));
94 
95 	r = get_module_param(module_name, param, value, sizeof(value));
96 	TEST_ASSERT(value[r - 1] == '\n',
97 		    "Expected trailing newline, got char '%c'", value[r - 1]);
98 
99 	/*
100 	 * Squash the newline, otherwise atoi_paranoid() will complain about
101 	 * trailing non-NUL characters in the string.
102 	 */
103 	value[r - 1] = '\0';
104 	return atoi_paranoid(value);
105 }
106 
get_module_param_bool(const char * module_name,const char * param)107 static bool get_module_param_bool(const char *module_name, const char *param)
108 {
109 	char value;
110 	ssize_t r;
111 
112 	r = get_module_param(module_name, param, &value, sizeof(value));
113 	TEST_ASSERT_EQ(r, 1);
114 
115 	if (value == 'Y')
116 		return true;
117 	else if (value == 'N')
118 		return false;
119 
120 	TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
121 }
122 
get_kvm_param_bool(const char * param)123 bool get_kvm_param_bool(const char *param)
124 {
125 	return get_module_param_bool("kvm", param);
126 }
127 
get_kvm_intel_param_bool(const char * param)128 bool get_kvm_intel_param_bool(const char *param)
129 {
130 	return get_module_param_bool("kvm_intel", param);
131 }
132 
get_kvm_amd_param_bool(const char * param)133 bool get_kvm_amd_param_bool(const char *param)
134 {
135 	return get_module_param_bool("kvm_amd", param);
136 }
137 
get_kvm_param_integer(const char * param)138 int get_kvm_param_integer(const char *param)
139 {
140 	return get_module_param_integer("kvm", param);
141 }
142 
get_kvm_intel_param_integer(const char * param)143 int get_kvm_intel_param_integer(const char *param)
144 {
145 	return get_module_param_integer("kvm_intel", param);
146 }
147 
get_kvm_amd_param_integer(const char * param)148 int get_kvm_amd_param_integer(const char *param)
149 {
150 	return get_module_param_integer("kvm_amd", param);
151 }
152 
153 /*
154  * Capability
155  *
156  * Input Args:
157  *   cap - Capability
158  *
159  * Output Args: None
160  *
161  * Return:
162  *   On success, the Value corresponding to the capability (KVM_CAP_*)
163  *   specified by the value of cap.  On failure a TEST_ASSERT failure
164  *   is produced.
165  *
166  * Looks up and returns the value corresponding to the capability
167  * (KVM_CAP_*) given by cap.
168  */
kvm_check_cap(long cap)169 unsigned int kvm_check_cap(long cap)
170 {
171 	int ret;
172 	int kvm_fd;
173 
174 	kvm_fd = open_kvm_dev_path_or_exit();
175 	ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
176 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
177 
178 	close(kvm_fd);
179 
180 	return (unsigned int)ret;
181 }
182 
vm_enable_dirty_ring(struct kvm_vm * vm,uint32_t ring_size)183 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
184 {
185 	if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
186 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
187 	else
188 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
189 	vm->dirty_ring_size = ring_size;
190 }
191 
vm_open(struct kvm_vm * vm)192 static void vm_open(struct kvm_vm *vm)
193 {
194 	vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
195 
196 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
197 
198 	vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
199 	TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
200 
201 	if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD))
202 		vm->stats.fd = vm_get_stats_fd(vm);
203 	else
204 		vm->stats.fd = -1;
205 }
206 
vm_guest_mode_string(uint32_t i)207 const char *vm_guest_mode_string(uint32_t i)
208 {
209 	static const char * const strings[] = {
210 		[VM_MODE_P52V48_4K]	= "PA-bits:52,  VA-bits:48,  4K pages",
211 		[VM_MODE_P52V48_16K]	= "PA-bits:52,  VA-bits:48, 16K pages",
212 		[VM_MODE_P52V48_64K]	= "PA-bits:52,  VA-bits:48, 64K pages",
213 		[VM_MODE_P48V48_4K]	= "PA-bits:48,  VA-bits:48,  4K pages",
214 		[VM_MODE_P48V48_16K]	= "PA-bits:48,  VA-bits:48, 16K pages",
215 		[VM_MODE_P48V48_64K]	= "PA-bits:48,  VA-bits:48, 64K pages",
216 		[VM_MODE_P40V48_4K]	= "PA-bits:40,  VA-bits:48,  4K pages",
217 		[VM_MODE_P40V48_16K]	= "PA-bits:40,  VA-bits:48, 16K pages",
218 		[VM_MODE_P40V48_64K]	= "PA-bits:40,  VA-bits:48, 64K pages",
219 		[VM_MODE_PXXV48_4K]	= "PA-bits:ANY, VA-bits:48,  4K pages",
220 		[VM_MODE_P47V64_4K]	= "PA-bits:47,  VA-bits:64,  4K pages",
221 		[VM_MODE_P44V64_4K]	= "PA-bits:44,  VA-bits:64,  4K pages",
222 		[VM_MODE_P36V48_4K]	= "PA-bits:36,  VA-bits:48,  4K pages",
223 		[VM_MODE_P36V48_16K]	= "PA-bits:36,  VA-bits:48, 16K pages",
224 		[VM_MODE_P36V48_64K]	= "PA-bits:36,  VA-bits:48, 64K pages",
225 		[VM_MODE_P47V47_16K]	= "PA-bits:47,  VA-bits:47, 16K pages",
226 		[VM_MODE_P36V47_16K]	= "PA-bits:36,  VA-bits:47, 16K pages",
227 	};
228 	_Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
229 		       "Missing new mode strings?");
230 
231 	TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
232 
233 	return strings[i];
234 }
235 
236 const struct vm_guest_mode_params vm_guest_mode_params[] = {
237 	[VM_MODE_P52V48_4K]	= { 52, 48,  0x1000, 12 },
238 	[VM_MODE_P52V48_16K]	= { 52, 48,  0x4000, 14 },
239 	[VM_MODE_P52V48_64K]	= { 52, 48, 0x10000, 16 },
240 	[VM_MODE_P48V48_4K]	= { 48, 48,  0x1000, 12 },
241 	[VM_MODE_P48V48_16K]	= { 48, 48,  0x4000, 14 },
242 	[VM_MODE_P48V48_64K]	= { 48, 48, 0x10000, 16 },
243 	[VM_MODE_P40V48_4K]	= { 40, 48,  0x1000, 12 },
244 	[VM_MODE_P40V48_16K]	= { 40, 48,  0x4000, 14 },
245 	[VM_MODE_P40V48_64K]	= { 40, 48, 0x10000, 16 },
246 	[VM_MODE_PXXV48_4K]	= {  0,  0,  0x1000, 12 },
247 	[VM_MODE_P47V64_4K]	= { 47, 64,  0x1000, 12 },
248 	[VM_MODE_P44V64_4K]	= { 44, 64,  0x1000, 12 },
249 	[VM_MODE_P36V48_4K]	= { 36, 48,  0x1000, 12 },
250 	[VM_MODE_P36V48_16K]	= { 36, 48,  0x4000, 14 },
251 	[VM_MODE_P36V48_64K]	= { 36, 48, 0x10000, 16 },
252 	[VM_MODE_P47V47_16K]	= { 47, 47,  0x4000, 14 },
253 	[VM_MODE_P36V47_16K]	= { 36, 47,  0x4000, 14 },
254 };
255 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
256 	       "Missing new mode params?");
257 
258 /*
259  * Initializes vm->vpages_valid to match the canonical VA space of the
260  * architecture.
261  *
262  * The default implementation is valid for architectures which split the
263  * range addressed by a single page table into a low and high region
264  * based on the MSB of the VA. On architectures with this behavior
265  * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1].
266  */
vm_vaddr_populate_bitmap(struct kvm_vm * vm)267 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
268 {
269 	sparsebit_set_num(vm->vpages_valid,
270 		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
271 	sparsebit_set_num(vm->vpages_valid,
272 		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
273 		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
274 }
275 
____vm_create(struct vm_shape shape)276 struct kvm_vm *____vm_create(struct vm_shape shape)
277 {
278 	struct kvm_vm *vm;
279 
280 	vm = calloc(1, sizeof(*vm));
281 	TEST_ASSERT(vm != NULL, "Insufficient Memory");
282 
283 	INIT_LIST_HEAD(&vm->vcpus);
284 	vm->regions.gpa_tree = RB_ROOT;
285 	vm->regions.hva_tree = RB_ROOT;
286 	hash_init(vm->regions.slot_hash);
287 
288 	vm->mode = shape.mode;
289 	vm->type = shape.type;
290 
291 	vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits;
292 	vm->va_bits = vm_guest_mode_params[vm->mode].va_bits;
293 	vm->page_size = vm_guest_mode_params[vm->mode].page_size;
294 	vm->page_shift = vm_guest_mode_params[vm->mode].page_shift;
295 
296 	/* Setup mode specific traits. */
297 	switch (vm->mode) {
298 	case VM_MODE_P52V48_4K:
299 		vm->pgtable_levels = 4;
300 		break;
301 	case VM_MODE_P52V48_64K:
302 		vm->pgtable_levels = 3;
303 		break;
304 	case VM_MODE_P48V48_4K:
305 		vm->pgtable_levels = 4;
306 		break;
307 	case VM_MODE_P48V48_64K:
308 		vm->pgtable_levels = 3;
309 		break;
310 	case VM_MODE_P40V48_4K:
311 	case VM_MODE_P36V48_4K:
312 		vm->pgtable_levels = 4;
313 		break;
314 	case VM_MODE_P40V48_64K:
315 	case VM_MODE_P36V48_64K:
316 		vm->pgtable_levels = 3;
317 		break;
318 	case VM_MODE_P52V48_16K:
319 	case VM_MODE_P48V48_16K:
320 	case VM_MODE_P40V48_16K:
321 	case VM_MODE_P36V48_16K:
322 		vm->pgtable_levels = 4;
323 		break;
324 	case VM_MODE_P47V47_16K:
325 	case VM_MODE_P36V47_16K:
326 		vm->pgtable_levels = 3;
327 		break;
328 	case VM_MODE_PXXV48_4K:
329 #ifdef __x86_64__
330 		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
331 		kvm_init_vm_address_properties(vm);
332 		/*
333 		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
334 		 * it doesn't take effect unless a CR4.LA57 is set, which it
335 		 * isn't for this mode (48-bit virtual address space).
336 		 */
337 		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
338 			    "Linear address width (%d bits) not supported",
339 			    vm->va_bits);
340 		pr_debug("Guest physical address width detected: %d\n",
341 			 vm->pa_bits);
342 		vm->pgtable_levels = 4;
343 		vm->va_bits = 48;
344 #else
345 		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
346 #endif
347 		break;
348 	case VM_MODE_P47V64_4K:
349 		vm->pgtable_levels = 5;
350 		break;
351 	case VM_MODE_P44V64_4K:
352 		vm->pgtable_levels = 5;
353 		break;
354 	default:
355 		TEST_FAIL("Unknown guest mode: 0x%x", vm->mode);
356 	}
357 
358 #ifdef __aarch64__
359 	TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types");
360 	if (vm->pa_bits != 40)
361 		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
362 #endif
363 
364 	vm_open(vm);
365 
366 	/* Limit to VA-bit canonical virtual addresses. */
367 	vm->vpages_valid = sparsebit_alloc();
368 	vm_vaddr_populate_bitmap(vm);
369 
370 	/* Limit physical addresses to PA-bits. */
371 	vm->max_gfn = vm_compute_max_gfn(vm);
372 
373 	/* Allocate and setup memory for guest. */
374 	vm->vpages_mapped = sparsebit_alloc();
375 
376 	return vm;
377 }
378 
vm_nr_pages_required(enum vm_guest_mode mode,uint32_t nr_runnable_vcpus,uint64_t extra_mem_pages)379 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
380 				     uint32_t nr_runnable_vcpus,
381 				     uint64_t extra_mem_pages)
382 {
383 	uint64_t page_size = vm_guest_mode_params[mode].page_size;
384 	uint64_t nr_pages;
385 
386 	TEST_ASSERT(nr_runnable_vcpus,
387 		    "Use vm_create_barebones() for VMs that _never_ have vCPUs");
388 
389 	TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
390 		    "nr_vcpus = %d too large for host, max-vcpus = %d",
391 		    nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
392 
393 	/*
394 	 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
395 	 * test code and other per-VM assets that will be loaded into memslot0.
396 	 */
397 	nr_pages = 512;
398 
399 	/* Account for the per-vCPU stacks on behalf of the test. */
400 	nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
401 
402 	/*
403 	 * Account for the number of pages needed for the page tables.  The
404 	 * maximum page table size for a memory region will be when the
405 	 * smallest page size is used. Considering each page contains x page
406 	 * table descriptors, the total extra size for page tables (for extra
407 	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
408 	 * than N/x*2.
409 	 */
410 	nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
411 
412 	/* Account for the number of pages needed by ucall. */
413 	nr_pages += ucall_nr_pages_required(page_size);
414 
415 	return vm_adjust_num_guest_pages(mode, nr_pages);
416 }
417 
kvm_set_files_rlimit(uint32_t nr_vcpus)418 void kvm_set_files_rlimit(uint32_t nr_vcpus)
419 {
420 	/*
421 	 * Each vCPU will open two file descriptors: the vCPU itself and the
422 	 * vCPU's binary stats file descriptor.  Add an arbitrary amount of
423 	 * buffer for all other files a test may open.
424 	 */
425 	int nr_fds_wanted = nr_vcpus * 2 + 100;
426 	struct rlimit rl;
427 
428 	/*
429 	 * Check that we're allowed to open nr_fds_wanted file descriptors and
430 	 * try raising the limits if needed.
431 	 */
432 	TEST_ASSERT(!getrlimit(RLIMIT_NOFILE, &rl), "getrlimit() failed!");
433 
434 	if (rl.rlim_cur < nr_fds_wanted) {
435 		rl.rlim_cur = nr_fds_wanted;
436 		if (rl.rlim_max < nr_fds_wanted) {
437 			int old_rlim_max = rl.rlim_max;
438 
439 			rl.rlim_max = nr_fds_wanted;
440 			__TEST_REQUIRE(setrlimit(RLIMIT_NOFILE, &rl) >= 0,
441 				       "RLIMIT_NOFILE hard limit is too low (%d, wanted %d)",
442 				       old_rlim_max, nr_fds_wanted);
443 		} else {
444 			TEST_ASSERT(!setrlimit(RLIMIT_NOFILE, &rl), "setrlimit() failed!");
445 		}
446 	}
447 
448 }
449 
is_guest_memfd_required(struct vm_shape shape)450 static bool is_guest_memfd_required(struct vm_shape shape)
451 {
452 #ifdef __x86_64__
453 	return shape.type == KVM_X86_SNP_VM;
454 #else
455 	return false;
456 #endif
457 }
458 
__vm_create(struct vm_shape shape,uint32_t nr_runnable_vcpus,uint64_t nr_extra_pages)459 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
460 			   uint64_t nr_extra_pages)
461 {
462 	uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus,
463 						 nr_extra_pages);
464 	struct userspace_mem_region *slot0;
465 	struct kvm_vm *vm;
466 	int i, flags;
467 
468 	kvm_set_files_rlimit(nr_runnable_vcpus);
469 
470 	pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__,
471 		 vm_guest_mode_string(shape.mode), shape.type, nr_pages);
472 
473 	vm = ____vm_create(shape);
474 
475 	/*
476 	 * Force GUEST_MEMFD for the primary memory region if necessary, e.g.
477 	 * for CoCo VMs that require GUEST_MEMFD backed private memory.
478 	 */
479 	flags = 0;
480 	if (is_guest_memfd_required(shape))
481 		flags |= KVM_MEM_GUEST_MEMFD;
482 
483 	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, flags);
484 	for (i = 0; i < NR_MEM_REGIONS; i++)
485 		vm->memslots[i] = 0;
486 
487 	kvm_vm_elf_load(vm, program_invocation_name);
488 
489 	/*
490 	 * TODO: Add proper defines to protect the library's memslots, and then
491 	 * carve out memslot1 for the ucall MMIO address.  KVM treats writes to
492 	 * read-only memslots as MMIO, and creating a read-only memslot for the
493 	 * MMIO region would prevent silently clobbering the MMIO region.
494 	 */
495 	slot0 = memslot2region(vm, 0);
496 	ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
497 
498 	if (guest_random_seed != last_guest_seed) {
499 		pr_info("Random seed: 0x%x\n", guest_random_seed);
500 		last_guest_seed = guest_random_seed;
501 	}
502 	guest_rng = new_guest_random_state(guest_random_seed);
503 	sync_global_to_guest(vm, guest_rng);
504 
505 	kvm_arch_vm_post_create(vm);
506 
507 	return vm;
508 }
509 
510 /*
511  * VM Create with customized parameters
512  *
513  * Input Args:
514  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
515  *   nr_vcpus - VCPU count
516  *   extra_mem_pages - Non-slot0 physical memory total size
517  *   guest_code - Guest entry point
518  *   vcpuids - VCPU IDs
519  *
520  * Output Args: None
521  *
522  * Return:
523  *   Pointer to opaque structure that describes the created VM.
524  *
525  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
526  * extra_mem_pages is only used to calculate the maximum page table size,
527  * no real memory allocation for non-slot0 memory in this function.
528  */
__vm_create_with_vcpus(struct vm_shape shape,uint32_t nr_vcpus,uint64_t extra_mem_pages,void * guest_code,struct kvm_vcpu * vcpus[])529 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
530 				      uint64_t extra_mem_pages,
531 				      void *guest_code, struct kvm_vcpu *vcpus[])
532 {
533 	struct kvm_vm *vm;
534 	int i;
535 
536 	TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
537 
538 	vm = __vm_create(shape, nr_vcpus, extra_mem_pages);
539 
540 	for (i = 0; i < nr_vcpus; ++i)
541 		vcpus[i] = vm_vcpu_add(vm, i, guest_code);
542 
543 	return vm;
544 }
545 
__vm_create_shape_with_one_vcpu(struct vm_shape shape,struct kvm_vcpu ** vcpu,uint64_t extra_mem_pages,void * guest_code)546 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
547 					       struct kvm_vcpu **vcpu,
548 					       uint64_t extra_mem_pages,
549 					       void *guest_code)
550 {
551 	struct kvm_vcpu *vcpus[1];
552 	struct kvm_vm *vm;
553 
554 	vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus);
555 
556 	*vcpu = vcpus[0];
557 	return vm;
558 }
559 
560 /*
561  * VM Restart
562  *
563  * Input Args:
564  *   vm - VM that has been released before
565  *
566  * Output Args: None
567  *
568  * Reopens the file descriptors associated to the VM and reinstates the
569  * global state, such as the irqchip and the memory regions that are mapped
570  * into the guest.
571  */
kvm_vm_restart(struct kvm_vm * vmp)572 void kvm_vm_restart(struct kvm_vm *vmp)
573 {
574 	int ctr;
575 	struct userspace_mem_region *region;
576 
577 	vm_open(vmp);
578 	if (vmp->has_irqchip)
579 		vm_create_irqchip(vmp);
580 
581 	hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
582 		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, &region->region);
583 
584 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
585 			    "  rc: %i errno: %i\n"
586 			    "  slot: %u flags: 0x%x\n"
587 			    "  guest_phys_addr: 0x%llx size: 0x%llx",
588 			    ret, errno, region->region.slot,
589 			    region->region.flags,
590 			    region->region.guest_phys_addr,
591 			    region->region.memory_size);
592 	}
593 }
594 
vm_arch_vcpu_recreate(struct kvm_vm * vm,uint32_t vcpu_id)595 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
596 					      uint32_t vcpu_id)
597 {
598 	return __vm_vcpu_add(vm, vcpu_id);
599 }
600 
vm_recreate_with_one_vcpu(struct kvm_vm * vm)601 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
602 {
603 	kvm_vm_restart(vm);
604 
605 	return vm_vcpu_recreate(vm, 0);
606 }
607 
kvm_pin_this_task_to_pcpu(uint32_t pcpu)608 void kvm_pin_this_task_to_pcpu(uint32_t pcpu)
609 {
610 	cpu_set_t mask;
611 	int r;
612 
613 	CPU_ZERO(&mask);
614 	CPU_SET(pcpu, &mask);
615 	r = sched_setaffinity(0, sizeof(mask), &mask);
616 	TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.", pcpu);
617 }
618 
parse_pcpu(const char * cpu_str,const cpu_set_t * allowed_mask)619 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask)
620 {
621 	uint32_t pcpu = atoi_non_negative("CPU number", cpu_str);
622 
623 	TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask),
624 		    "Not allowed to run on pCPU '%d', check cgroups?", pcpu);
625 	return pcpu;
626 }
627 
kvm_print_vcpu_pinning_help(void)628 void kvm_print_vcpu_pinning_help(void)
629 {
630 	const char *name = program_invocation_name;
631 
632 	printf(" -c: Pin tasks to physical CPUs.  Takes a list of comma separated\n"
633 	       "     values (target pCPU), one for each vCPU, plus an optional\n"
634 	       "     entry for the main application task (specified via entry\n"
635 	       "     <nr_vcpus + 1>).  If used, entries must be provided for all\n"
636 	       "     vCPUs, i.e. pinning vCPUs is all or nothing.\n\n"
637 	       "     E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n"
638 	       "     vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n"
639 	       "         %s -v 3 -c 22,23,24,50\n\n"
640 	       "     To leave the application task unpinned, drop the final entry:\n\n"
641 	       "         %s -v 3 -c 22,23,24\n\n"
642 	       "     (default: no pinning)\n", name, name);
643 }
644 
kvm_parse_vcpu_pinning(const char * pcpus_string,uint32_t vcpu_to_pcpu[],int nr_vcpus)645 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
646 			    int nr_vcpus)
647 {
648 	cpu_set_t allowed_mask;
649 	char *cpu, *cpu_list;
650 	char delim[2] = ",";
651 	int i, r;
652 
653 	cpu_list = strdup(pcpus_string);
654 	TEST_ASSERT(cpu_list, "strdup() allocation failed.");
655 
656 	r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask);
657 	TEST_ASSERT(!r, "sched_getaffinity() failed");
658 
659 	cpu = strtok(cpu_list, delim);
660 
661 	/* 1. Get all pcpus for vcpus. */
662 	for (i = 0; i < nr_vcpus; i++) {
663 		TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i);
664 		vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask);
665 		cpu = strtok(NULL, delim);
666 	}
667 
668 	/* 2. Check if the main worker needs to be pinned. */
669 	if (cpu) {
670 		kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask));
671 		cpu = strtok(NULL, delim);
672 	}
673 
674 	TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu);
675 	free(cpu_list);
676 }
677 
678 /*
679  * Userspace Memory Region Find
680  *
681  * Input Args:
682  *   vm - Virtual Machine
683  *   start - Starting VM physical address
684  *   end - Ending VM physical address, inclusive.
685  *
686  * Output Args: None
687  *
688  * Return:
689  *   Pointer to overlapping region, NULL if no such region.
690  *
691  * Searches for a region with any physical memory that overlaps with
692  * any portion of the guest physical addresses from start to end
693  * inclusive.  If multiple overlapping regions exist, a pointer to any
694  * of the regions is returned.  Null is returned only when no overlapping
695  * region exists.
696  */
697 static struct userspace_mem_region *
userspace_mem_region_find(struct kvm_vm * vm,uint64_t start,uint64_t end)698 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
699 {
700 	struct rb_node *node;
701 
702 	for (node = vm->regions.gpa_tree.rb_node; node; ) {
703 		struct userspace_mem_region *region =
704 			container_of(node, struct userspace_mem_region, gpa_node);
705 		uint64_t existing_start = region->region.guest_phys_addr;
706 		uint64_t existing_end = region->region.guest_phys_addr
707 			+ region->region.memory_size - 1;
708 		if (start <= existing_end && end >= existing_start)
709 			return region;
710 
711 		if (start < existing_start)
712 			node = node->rb_left;
713 		else
714 			node = node->rb_right;
715 	}
716 
717 	return NULL;
718 }
719 
kvm_stats_release(struct kvm_binary_stats * stats)720 static void kvm_stats_release(struct kvm_binary_stats *stats)
721 {
722 	int ret;
723 
724 	if (stats->fd < 0)
725 		return;
726 
727 	if (stats->desc) {
728 		free(stats->desc);
729 		stats->desc = NULL;
730 	}
731 
732 	ret = close(stats->fd);
733 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
734 	stats->fd = -1;
735 }
736 
vcpu_arch_free(struct kvm_vcpu * vcpu)737 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
738 {
739 
740 }
741 
742 /*
743  * VM VCPU Remove
744  *
745  * Input Args:
746  *   vcpu - VCPU to remove
747  *
748  * Output Args: None
749  *
750  * Return: None, TEST_ASSERT failures for all error conditions
751  *
752  * Removes a vCPU from a VM and frees its resources.
753  */
vm_vcpu_rm(struct kvm_vm * vm,struct kvm_vcpu * vcpu)754 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
755 {
756 	int ret;
757 
758 	if (vcpu->dirty_gfns) {
759 		ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
760 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
761 		vcpu->dirty_gfns = NULL;
762 	}
763 
764 	ret = munmap(vcpu->run, vcpu_mmap_sz());
765 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
766 
767 	ret = close(vcpu->fd);
768 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
769 
770 	kvm_stats_release(&vcpu->stats);
771 
772 	list_del(&vcpu->list);
773 
774 	vcpu_arch_free(vcpu);
775 	free(vcpu);
776 }
777 
kvm_vm_release(struct kvm_vm * vmp)778 void kvm_vm_release(struct kvm_vm *vmp)
779 {
780 	struct kvm_vcpu *vcpu, *tmp;
781 	int ret;
782 
783 	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
784 		vm_vcpu_rm(vmp, vcpu);
785 
786 	ret = close(vmp->fd);
787 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
788 
789 	ret = close(vmp->kvm_fd);
790 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
791 
792 	/* Free cached stats metadata and close FD */
793 	kvm_stats_release(&vmp->stats);
794 }
795 
__vm_mem_region_delete(struct kvm_vm * vm,struct userspace_mem_region * region)796 static void __vm_mem_region_delete(struct kvm_vm *vm,
797 				   struct userspace_mem_region *region)
798 {
799 	int ret;
800 
801 	rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
802 	rb_erase(&region->hva_node, &vm->regions.hva_tree);
803 	hash_del(&region->slot_node);
804 
805 	sparsebit_free(&region->unused_phy_pages);
806 	sparsebit_free(&region->protected_phy_pages);
807 	ret = munmap(region->mmap_start, region->mmap_size);
808 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
809 	if (region->fd >= 0) {
810 		/* There's an extra map when using shared memory. */
811 		ret = munmap(region->mmap_alias, region->mmap_size);
812 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
813 		close(region->fd);
814 	}
815 	if (region->region.guest_memfd >= 0)
816 		close(region->region.guest_memfd);
817 
818 	free(region);
819 }
820 
821 /*
822  * Destroys and frees the VM pointed to by vmp.
823  */
kvm_vm_free(struct kvm_vm * vmp)824 void kvm_vm_free(struct kvm_vm *vmp)
825 {
826 	int ctr;
827 	struct hlist_node *node;
828 	struct userspace_mem_region *region;
829 
830 	if (vmp == NULL)
831 		return;
832 
833 	/* Free userspace_mem_regions. */
834 	hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
835 		__vm_mem_region_delete(vmp, region);
836 
837 	/* Free sparsebit arrays. */
838 	sparsebit_free(&vmp->vpages_valid);
839 	sparsebit_free(&vmp->vpages_mapped);
840 
841 	kvm_vm_release(vmp);
842 
843 	/* Free the structure describing the VM. */
844 	free(vmp);
845 }
846 
kvm_memfd_alloc(size_t size,bool hugepages)847 int kvm_memfd_alloc(size_t size, bool hugepages)
848 {
849 	int memfd_flags = MFD_CLOEXEC;
850 	int fd, r;
851 
852 	if (hugepages)
853 		memfd_flags |= MFD_HUGETLB;
854 
855 	fd = memfd_create("kvm_selftest", memfd_flags);
856 	TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
857 
858 	r = ftruncate(fd, size);
859 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
860 
861 	r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
862 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
863 
864 	return fd;
865 }
866 
vm_userspace_mem_region_gpa_insert(struct rb_root * gpa_tree,struct userspace_mem_region * region)867 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
868 					       struct userspace_mem_region *region)
869 {
870 	struct rb_node **cur, *parent;
871 
872 	for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
873 		struct userspace_mem_region *cregion;
874 
875 		cregion = container_of(*cur, typeof(*cregion), gpa_node);
876 		parent = *cur;
877 		if (region->region.guest_phys_addr <
878 		    cregion->region.guest_phys_addr)
879 			cur = &(*cur)->rb_left;
880 		else {
881 			TEST_ASSERT(region->region.guest_phys_addr !=
882 				    cregion->region.guest_phys_addr,
883 				    "Duplicate GPA in region tree");
884 
885 			cur = &(*cur)->rb_right;
886 		}
887 	}
888 
889 	rb_link_node(&region->gpa_node, parent, cur);
890 	rb_insert_color(&region->gpa_node, gpa_tree);
891 }
892 
vm_userspace_mem_region_hva_insert(struct rb_root * hva_tree,struct userspace_mem_region * region)893 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
894 					       struct userspace_mem_region *region)
895 {
896 	struct rb_node **cur, *parent;
897 
898 	for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
899 		struct userspace_mem_region *cregion;
900 
901 		cregion = container_of(*cur, typeof(*cregion), hva_node);
902 		parent = *cur;
903 		if (region->host_mem < cregion->host_mem)
904 			cur = &(*cur)->rb_left;
905 		else {
906 			TEST_ASSERT(region->host_mem !=
907 				    cregion->host_mem,
908 				    "Duplicate HVA in region tree");
909 
910 			cur = &(*cur)->rb_right;
911 		}
912 	}
913 
914 	rb_link_node(&region->hva_node, parent, cur);
915 	rb_insert_color(&region->hva_node, hva_tree);
916 }
917 
918 
__vm_set_user_memory_region(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva)919 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
920 				uint64_t gpa, uint64_t size, void *hva)
921 {
922 	struct kvm_userspace_memory_region region = {
923 		.slot = slot,
924 		.flags = flags,
925 		.guest_phys_addr = gpa,
926 		.memory_size = size,
927 		.userspace_addr = (uintptr_t)hva,
928 	};
929 
930 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region);
931 }
932 
vm_set_user_memory_region(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva)933 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
934 			       uint64_t gpa, uint64_t size, void *hva)
935 {
936 	int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
937 
938 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
939 		    errno, strerror(errno));
940 }
941 
942 #define TEST_REQUIRE_SET_USER_MEMORY_REGION2()			\
943 	__TEST_REQUIRE(kvm_has_cap(KVM_CAP_USER_MEMORY2),	\
944 		       "KVM selftests now require KVM_SET_USER_MEMORY_REGION2 (introduced in v6.8)")
945 
__vm_set_user_memory_region2(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva,uint32_t guest_memfd,uint64_t guest_memfd_offset)946 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
947 				 uint64_t gpa, uint64_t size, void *hva,
948 				 uint32_t guest_memfd, uint64_t guest_memfd_offset)
949 {
950 	struct kvm_userspace_memory_region2 region = {
951 		.slot = slot,
952 		.flags = flags,
953 		.guest_phys_addr = gpa,
954 		.memory_size = size,
955 		.userspace_addr = (uintptr_t)hva,
956 		.guest_memfd = guest_memfd,
957 		.guest_memfd_offset = guest_memfd_offset,
958 	};
959 
960 	TEST_REQUIRE_SET_USER_MEMORY_REGION2();
961 
962 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, &region);
963 }
964 
vm_set_user_memory_region2(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva,uint32_t guest_memfd,uint64_t guest_memfd_offset)965 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
966 				uint64_t gpa, uint64_t size, void *hva,
967 				uint32_t guest_memfd, uint64_t guest_memfd_offset)
968 {
969 	int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva,
970 					       guest_memfd, guest_memfd_offset);
971 
972 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)",
973 		    errno, strerror(errno));
974 }
975 
976 
977 /* FIXME: This thing needs to be ripped apart and rewritten. */
vm_mem_add(struct kvm_vm * vm,enum vm_mem_backing_src_type src_type,uint64_t guest_paddr,uint32_t slot,uint64_t npages,uint32_t flags,int guest_memfd,uint64_t guest_memfd_offset)978 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
979 		uint64_t guest_paddr, uint32_t slot, uint64_t npages,
980 		uint32_t flags, int guest_memfd, uint64_t guest_memfd_offset)
981 {
982 	int ret;
983 	struct userspace_mem_region *region;
984 	size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
985 	size_t mem_size = npages * vm->page_size;
986 	size_t alignment;
987 
988 	TEST_REQUIRE_SET_USER_MEMORY_REGION2();
989 
990 	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
991 		"Number of guest pages is not compatible with the host. "
992 		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
993 
994 	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
995 		"address not on a page boundary.\n"
996 		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
997 		guest_paddr, vm->page_size);
998 	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
999 		<= vm->max_gfn, "Physical range beyond maximum "
1000 		"supported physical address,\n"
1001 		"  guest_paddr: 0x%lx npages: 0x%lx\n"
1002 		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
1003 		guest_paddr, npages, vm->max_gfn, vm->page_size);
1004 
1005 	/*
1006 	 * Confirm a mem region with an overlapping address doesn't
1007 	 * already exist.
1008 	 */
1009 	region = (struct userspace_mem_region *) userspace_mem_region_find(
1010 		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
1011 	if (region != NULL)
1012 		TEST_FAIL("overlapping userspace_mem_region already "
1013 			"exists\n"
1014 			"  requested guest_paddr: 0x%lx npages: 0x%lx "
1015 			"page_size: 0x%x\n"
1016 			"  existing guest_paddr: 0x%lx size: 0x%lx",
1017 			guest_paddr, npages, vm->page_size,
1018 			(uint64_t) region->region.guest_phys_addr,
1019 			(uint64_t) region->region.memory_size);
1020 
1021 	/* Confirm no region with the requested slot already exists. */
1022 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1023 			       slot) {
1024 		if (region->region.slot != slot)
1025 			continue;
1026 
1027 		TEST_FAIL("A mem region with the requested slot "
1028 			"already exists.\n"
1029 			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
1030 			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
1031 			slot, guest_paddr, npages,
1032 			region->region.slot,
1033 			(uint64_t) region->region.guest_phys_addr,
1034 			(uint64_t) region->region.memory_size);
1035 	}
1036 
1037 	/* Allocate and initialize new mem region structure. */
1038 	region = calloc(1, sizeof(*region));
1039 	TEST_ASSERT(region != NULL, "Insufficient Memory");
1040 	region->mmap_size = mem_size;
1041 
1042 #ifdef __s390x__
1043 	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
1044 	alignment = 0x100000;
1045 #else
1046 	alignment = 1;
1047 #endif
1048 
1049 	/*
1050 	 * When using THP mmap is not guaranteed to returned a hugepage aligned
1051 	 * address so we have to pad the mmap. Padding is not needed for HugeTLB
1052 	 * because mmap will always return an address aligned to the HugeTLB
1053 	 * page size.
1054 	 */
1055 	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
1056 		alignment = max(backing_src_pagesz, alignment);
1057 
1058 	TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
1059 
1060 	/* Add enough memory to align up if necessary */
1061 	if (alignment > 1)
1062 		region->mmap_size += alignment;
1063 
1064 	region->fd = -1;
1065 	if (backing_src_is_shared(src_type))
1066 		region->fd = kvm_memfd_alloc(region->mmap_size,
1067 					     src_type == VM_MEM_SRC_SHARED_HUGETLB);
1068 
1069 	region->mmap_start = mmap(NULL, region->mmap_size,
1070 				  PROT_READ | PROT_WRITE,
1071 				  vm_mem_backing_src_alias(src_type)->flag,
1072 				  region->fd, 0);
1073 	TEST_ASSERT(region->mmap_start != MAP_FAILED,
1074 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1075 
1076 	TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
1077 		    region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
1078 		    "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
1079 		    region->mmap_start, backing_src_pagesz);
1080 
1081 	/* Align host address */
1082 	region->host_mem = align_ptr_up(region->mmap_start, alignment);
1083 
1084 	/* As needed perform madvise */
1085 	if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1086 	     src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1087 		ret = madvise(region->host_mem, mem_size,
1088 			      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1089 		TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1090 			    region->host_mem, mem_size,
1091 			    vm_mem_backing_src_alias(src_type)->name);
1092 	}
1093 
1094 	region->backing_src_type = src_type;
1095 
1096 	if (flags & KVM_MEM_GUEST_MEMFD) {
1097 		if (guest_memfd < 0) {
1098 			uint32_t guest_memfd_flags = 0;
1099 			TEST_ASSERT(!guest_memfd_offset,
1100 				    "Offset must be zero when creating new guest_memfd");
1101 			guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags);
1102 		} else {
1103 			/*
1104 			 * Install a unique fd for each memslot so that the fd
1105 			 * can be closed when the region is deleted without
1106 			 * needing to track if the fd is owned by the framework
1107 			 * or by the caller.
1108 			 */
1109 			guest_memfd = dup(guest_memfd);
1110 			TEST_ASSERT(guest_memfd >= 0, __KVM_SYSCALL_ERROR("dup()", guest_memfd));
1111 		}
1112 
1113 		region->region.guest_memfd = guest_memfd;
1114 		region->region.guest_memfd_offset = guest_memfd_offset;
1115 	} else {
1116 		region->region.guest_memfd = -1;
1117 	}
1118 
1119 	region->unused_phy_pages = sparsebit_alloc();
1120 	if (vm_arch_has_protected_memory(vm))
1121 		region->protected_phy_pages = sparsebit_alloc();
1122 	sparsebit_set_num(region->unused_phy_pages,
1123 		guest_paddr >> vm->page_shift, npages);
1124 	region->region.slot = slot;
1125 	region->region.flags = flags;
1126 	region->region.guest_phys_addr = guest_paddr;
1127 	region->region.memory_size = npages * vm->page_size;
1128 	region->region.userspace_addr = (uintptr_t) region->host_mem;
1129 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1130 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1131 		"  rc: %i errno: %i\n"
1132 		"  slot: %u flags: 0x%x\n"
1133 		"  guest_phys_addr: 0x%lx size: 0x%lx guest_memfd: %d",
1134 		ret, errno, slot, flags,
1135 		guest_paddr, (uint64_t) region->region.memory_size,
1136 		region->region.guest_memfd);
1137 
1138 	/* Add to quick lookup data structures */
1139 	vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1140 	vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1141 	hash_add(vm->regions.slot_hash, &region->slot_node, slot);
1142 
1143 	/* If shared memory, create an alias. */
1144 	if (region->fd >= 0) {
1145 		region->mmap_alias = mmap(NULL, region->mmap_size,
1146 					  PROT_READ | PROT_WRITE,
1147 					  vm_mem_backing_src_alias(src_type)->flag,
1148 					  region->fd, 0);
1149 		TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1150 			    __KVM_SYSCALL_ERROR("mmap()",  (int)(unsigned long)MAP_FAILED));
1151 
1152 		/* Align host alias address */
1153 		region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1154 	}
1155 }
1156 
vm_userspace_mem_region_add(struct kvm_vm * vm,enum vm_mem_backing_src_type src_type,uint64_t guest_paddr,uint32_t slot,uint64_t npages,uint32_t flags)1157 void vm_userspace_mem_region_add(struct kvm_vm *vm,
1158 				 enum vm_mem_backing_src_type src_type,
1159 				 uint64_t guest_paddr, uint32_t slot,
1160 				 uint64_t npages, uint32_t flags)
1161 {
1162 	vm_mem_add(vm, src_type, guest_paddr, slot, npages, flags, -1, 0);
1163 }
1164 
1165 /*
1166  * Memslot to region
1167  *
1168  * Input Args:
1169  *   vm - Virtual Machine
1170  *   memslot - KVM memory slot ID
1171  *
1172  * Output Args: None
1173  *
1174  * Return:
1175  *   Pointer to memory region structure that describe memory region
1176  *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
1177  *   on error (e.g. currently no memory region using memslot as a KVM
1178  *   memory slot ID).
1179  */
1180 struct userspace_mem_region *
memslot2region(struct kvm_vm * vm,uint32_t memslot)1181 memslot2region(struct kvm_vm *vm, uint32_t memslot)
1182 {
1183 	struct userspace_mem_region *region;
1184 
1185 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1186 			       memslot)
1187 		if (region->region.slot == memslot)
1188 			return region;
1189 
1190 	fprintf(stderr, "No mem region with the requested slot found,\n"
1191 		"  requested slot: %u\n", memslot);
1192 	fputs("---- vm dump ----\n", stderr);
1193 	vm_dump(stderr, vm, 2);
1194 	TEST_FAIL("Mem region not found");
1195 	return NULL;
1196 }
1197 
1198 /*
1199  * VM Memory Region Flags Set
1200  *
1201  * Input Args:
1202  *   vm - Virtual Machine
1203  *   flags - Starting guest physical address
1204  *
1205  * Output Args: None
1206  *
1207  * Return: None
1208  *
1209  * Sets the flags of the memory region specified by the value of slot,
1210  * to the values given by flags.
1211  */
vm_mem_region_set_flags(struct kvm_vm * vm,uint32_t slot,uint32_t flags)1212 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1213 {
1214 	int ret;
1215 	struct userspace_mem_region *region;
1216 
1217 	region = memslot2region(vm, slot);
1218 
1219 	region->region.flags = flags;
1220 
1221 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1222 
1223 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1224 		"  rc: %i errno: %i slot: %u flags: 0x%x",
1225 		ret, errno, slot, flags);
1226 }
1227 
1228 /*
1229  * VM Memory Region Move
1230  *
1231  * Input Args:
1232  *   vm - Virtual Machine
1233  *   slot - Slot of the memory region to move
1234  *   new_gpa - Starting guest physical address
1235  *
1236  * Output Args: None
1237  *
1238  * Return: None
1239  *
1240  * Change the gpa of a memory region.
1241  */
vm_mem_region_move(struct kvm_vm * vm,uint32_t slot,uint64_t new_gpa)1242 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1243 {
1244 	struct userspace_mem_region *region;
1245 	int ret;
1246 
1247 	region = memslot2region(vm, slot);
1248 
1249 	region->region.guest_phys_addr = new_gpa;
1250 
1251 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1252 
1253 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n"
1254 		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1255 		    ret, errno, slot, new_gpa);
1256 }
1257 
1258 /*
1259  * VM Memory Region Delete
1260  *
1261  * Input Args:
1262  *   vm - Virtual Machine
1263  *   slot - Slot of the memory region to delete
1264  *
1265  * Output Args: None
1266  *
1267  * Return: None
1268  *
1269  * Delete a memory region.
1270  */
vm_mem_region_delete(struct kvm_vm * vm,uint32_t slot)1271 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1272 {
1273 	struct userspace_mem_region *region = memslot2region(vm, slot);
1274 
1275 	region->region.memory_size = 0;
1276 	vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1277 
1278 	__vm_mem_region_delete(vm, region);
1279 }
1280 
vm_guest_mem_fallocate(struct kvm_vm * vm,uint64_t base,uint64_t size,bool punch_hole)1281 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size,
1282 			    bool punch_hole)
1283 {
1284 	const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0);
1285 	struct userspace_mem_region *region;
1286 	uint64_t end = base + size;
1287 	uint64_t gpa, len;
1288 	off_t fd_offset;
1289 	int ret;
1290 
1291 	for (gpa = base; gpa < end; gpa += len) {
1292 		uint64_t offset;
1293 
1294 		region = userspace_mem_region_find(vm, gpa, gpa);
1295 		TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD,
1296 			    "Private memory region not found for GPA 0x%lx", gpa);
1297 
1298 		offset = gpa - region->region.guest_phys_addr;
1299 		fd_offset = region->region.guest_memfd_offset + offset;
1300 		len = min_t(uint64_t, end - gpa, region->region.memory_size - offset);
1301 
1302 		ret = fallocate(region->region.guest_memfd, mode, fd_offset, len);
1303 		TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx",
1304 			    punch_hole ? "punch hole" : "allocate", gpa, len,
1305 			    region->region.guest_memfd, mode, fd_offset);
1306 	}
1307 }
1308 
1309 /* Returns the size of a vCPU's kvm_run structure. */
vcpu_mmap_sz(void)1310 static int vcpu_mmap_sz(void)
1311 {
1312 	int dev_fd, ret;
1313 
1314 	dev_fd = open_kvm_dev_path_or_exit();
1315 
1316 	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1317 	TEST_ASSERT(ret >= sizeof(struct kvm_run),
1318 		    KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1319 
1320 	close(dev_fd);
1321 
1322 	return ret;
1323 }
1324 
vcpu_exists(struct kvm_vm * vm,uint32_t vcpu_id)1325 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1326 {
1327 	struct kvm_vcpu *vcpu;
1328 
1329 	list_for_each_entry(vcpu, &vm->vcpus, list) {
1330 		if (vcpu->id == vcpu_id)
1331 			return true;
1332 	}
1333 
1334 	return false;
1335 }
1336 
1337 /*
1338  * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1339  * No additional vCPU setup is done.  Returns the vCPU.
1340  */
__vm_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id)1341 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1342 {
1343 	struct kvm_vcpu *vcpu;
1344 
1345 	/* Confirm a vcpu with the specified id doesn't already exist. */
1346 	TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id);
1347 
1348 	/* Allocate and initialize new vcpu structure. */
1349 	vcpu = calloc(1, sizeof(*vcpu));
1350 	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1351 
1352 	vcpu->vm = vm;
1353 	vcpu->id = vcpu_id;
1354 	vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1355 	TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm);
1356 
1357 	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1358 		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1359 		vcpu_mmap_sz(), sizeof(*vcpu->run));
1360 	vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1361 		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1362 	TEST_ASSERT(vcpu->run != MAP_FAILED,
1363 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1364 
1365 	if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD))
1366 		vcpu->stats.fd = vcpu_get_stats_fd(vcpu);
1367 	else
1368 		vcpu->stats.fd = -1;
1369 
1370 	/* Add to linked-list of VCPUs. */
1371 	list_add(&vcpu->list, &vm->vcpus);
1372 
1373 	return vcpu;
1374 }
1375 
1376 /*
1377  * VM Virtual Address Unused Gap
1378  *
1379  * Input Args:
1380  *   vm - Virtual Machine
1381  *   sz - Size (bytes)
1382  *   vaddr_min - Minimum Virtual Address
1383  *
1384  * Output Args: None
1385  *
1386  * Return:
1387  *   Lowest virtual address at or below vaddr_min, with at least
1388  *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1389  *   size sz is available.
1390  *
1391  * Within the VM specified by vm, locates the lowest starting virtual
1392  * address >= vaddr_min, that has at least sz unallocated bytes.  A
1393  * TEST_ASSERT failure occurs for invalid input or no area of at least
1394  * sz unallocated bytes >= vaddr_min is available.
1395  */
vm_vaddr_unused_gap(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1396 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1397 			       vm_vaddr_t vaddr_min)
1398 {
1399 	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1400 
1401 	/* Determine lowest permitted virtual page index. */
1402 	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1403 	if ((pgidx_start * vm->page_size) < vaddr_min)
1404 		goto no_va_found;
1405 
1406 	/* Loop over section with enough valid virtual page indexes. */
1407 	if (!sparsebit_is_set_num(vm->vpages_valid,
1408 		pgidx_start, pages))
1409 		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1410 			pgidx_start, pages);
1411 	do {
1412 		/*
1413 		 * Are there enough unused virtual pages available at
1414 		 * the currently proposed starting virtual page index.
1415 		 * If not, adjust proposed starting index to next
1416 		 * possible.
1417 		 */
1418 		if (sparsebit_is_clear_num(vm->vpages_mapped,
1419 			pgidx_start, pages))
1420 			goto va_found;
1421 		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1422 			pgidx_start, pages);
1423 		if (pgidx_start == 0)
1424 			goto no_va_found;
1425 
1426 		/*
1427 		 * If needed, adjust proposed starting virtual address,
1428 		 * to next range of valid virtual addresses.
1429 		 */
1430 		if (!sparsebit_is_set_num(vm->vpages_valid,
1431 			pgidx_start, pages)) {
1432 			pgidx_start = sparsebit_next_set_num(
1433 				vm->vpages_valid, pgidx_start, pages);
1434 			if (pgidx_start == 0)
1435 				goto no_va_found;
1436 		}
1437 	} while (pgidx_start != 0);
1438 
1439 no_va_found:
1440 	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1441 
1442 	/* NOT REACHED */
1443 	return -1;
1444 
1445 va_found:
1446 	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1447 		pgidx_start, pages),
1448 		"Unexpected, invalid virtual page index range,\n"
1449 		"  pgidx_start: 0x%lx\n"
1450 		"  pages: 0x%lx",
1451 		pgidx_start, pages);
1452 	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1453 		pgidx_start, pages),
1454 		"Unexpected, pages already mapped,\n"
1455 		"  pgidx_start: 0x%lx\n"
1456 		"  pages: 0x%lx",
1457 		pgidx_start, pages);
1458 
1459 	return pgidx_start * vm->page_size;
1460 }
1461 
____vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type,bool protected)1462 static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
1463 				     vm_vaddr_t vaddr_min,
1464 				     enum kvm_mem_region_type type,
1465 				     bool protected)
1466 {
1467 	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1468 
1469 	virt_pgd_alloc(vm);
1470 	vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages,
1471 						KVM_UTIL_MIN_PFN * vm->page_size,
1472 						vm->memslots[type], protected);
1473 
1474 	/*
1475 	 * Find an unused range of virtual page addresses of at least
1476 	 * pages in length.
1477 	 */
1478 	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1479 
1480 	/* Map the virtual pages. */
1481 	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1482 		pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1483 
1484 		virt_pg_map(vm, vaddr, paddr);
1485 
1486 		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1487 	}
1488 
1489 	return vaddr_start;
1490 }
1491 
__vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type)1492 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1493 			    enum kvm_mem_region_type type)
1494 {
1495 	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type,
1496 				  vm_arch_has_protected_memory(vm));
1497 }
1498 
vm_vaddr_alloc_shared(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type)1499 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
1500 				 vm_vaddr_t vaddr_min,
1501 				 enum kvm_mem_region_type type)
1502 {
1503 	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false);
1504 }
1505 
1506 /*
1507  * VM Virtual Address Allocate
1508  *
1509  * Input Args:
1510  *   vm - Virtual Machine
1511  *   sz - Size in bytes
1512  *   vaddr_min - Minimum starting virtual address
1513  *
1514  * Output Args: None
1515  *
1516  * Return:
1517  *   Starting guest virtual address
1518  *
1519  * Allocates at least sz bytes within the virtual address space of the vm
1520  * given by vm.  The allocated bytes are mapped to a virtual address >=
1521  * the address given by vaddr_min.  Note that each allocation uses a
1522  * a unique set of pages, with the minimum real allocation being at least
1523  * a page. The allocated physical space comes from the TEST_DATA memory region.
1524  */
vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1525 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1526 {
1527 	return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
1528 }
1529 
1530 /*
1531  * VM Virtual Address Allocate Pages
1532  *
1533  * Input Args:
1534  *   vm - Virtual Machine
1535  *
1536  * Output Args: None
1537  *
1538  * Return:
1539  *   Starting guest virtual address
1540  *
1541  * Allocates at least N system pages worth of bytes within the virtual address
1542  * space of the vm.
1543  */
vm_vaddr_alloc_pages(struct kvm_vm * vm,int nr_pages)1544 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1545 {
1546 	return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1547 }
1548 
__vm_vaddr_alloc_page(struct kvm_vm * vm,enum kvm_mem_region_type type)1549 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
1550 {
1551 	return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
1552 }
1553 
1554 /*
1555  * VM Virtual Address Allocate Page
1556  *
1557  * Input Args:
1558  *   vm - Virtual Machine
1559  *
1560  * Output Args: None
1561  *
1562  * Return:
1563  *   Starting guest virtual address
1564  *
1565  * Allocates at least one system page worth of bytes within the virtual address
1566  * space of the vm.
1567  */
vm_vaddr_alloc_page(struct kvm_vm * vm)1568 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1569 {
1570 	return vm_vaddr_alloc_pages(vm, 1);
1571 }
1572 
1573 /*
1574  * Map a range of VM virtual address to the VM's physical address
1575  *
1576  * Input Args:
1577  *   vm - Virtual Machine
1578  *   vaddr - Virtuall address to map
1579  *   paddr - VM Physical Address
1580  *   npages - The number of pages to map
1581  *
1582  * Output Args: None
1583  *
1584  * Return: None
1585  *
1586  * Within the VM given by @vm, creates a virtual translation for
1587  * @npages starting at @vaddr to the page range starting at @paddr.
1588  */
virt_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr,unsigned int npages)1589 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1590 	      unsigned int npages)
1591 {
1592 	size_t page_size = vm->page_size;
1593 	size_t size = npages * page_size;
1594 
1595 	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1596 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1597 
1598 	while (npages--) {
1599 		virt_pg_map(vm, vaddr, paddr);
1600 		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1601 
1602 		vaddr += page_size;
1603 		paddr += page_size;
1604 	}
1605 }
1606 
1607 /*
1608  * Address VM Physical to Host Virtual
1609  *
1610  * Input Args:
1611  *   vm - Virtual Machine
1612  *   gpa - VM physical address
1613  *
1614  * Output Args: None
1615  *
1616  * Return:
1617  *   Equivalent host virtual address
1618  *
1619  * Locates the memory region containing the VM physical address given
1620  * by gpa, within the VM given by vm.  When found, the host virtual
1621  * address providing the memory to the vm physical address is returned.
1622  * A TEST_ASSERT failure occurs if no region containing gpa exists.
1623  */
addr_gpa2hva(struct kvm_vm * vm,vm_paddr_t gpa)1624 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1625 {
1626 	struct userspace_mem_region *region;
1627 
1628 	gpa = vm_untag_gpa(vm, gpa);
1629 
1630 	region = userspace_mem_region_find(vm, gpa, gpa);
1631 	if (!region) {
1632 		TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1633 		return NULL;
1634 	}
1635 
1636 	return (void *)((uintptr_t)region->host_mem
1637 		+ (gpa - region->region.guest_phys_addr));
1638 }
1639 
1640 /*
1641  * Address Host Virtual to VM Physical
1642  *
1643  * Input Args:
1644  *   vm - Virtual Machine
1645  *   hva - Host virtual address
1646  *
1647  * Output Args: None
1648  *
1649  * Return:
1650  *   Equivalent VM physical address
1651  *
1652  * Locates the memory region containing the host virtual address given
1653  * by hva, within the VM given by vm.  When found, the equivalent
1654  * VM physical address is returned. A TEST_ASSERT failure occurs if no
1655  * region containing hva exists.
1656  */
addr_hva2gpa(struct kvm_vm * vm,void * hva)1657 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1658 {
1659 	struct rb_node *node;
1660 
1661 	for (node = vm->regions.hva_tree.rb_node; node; ) {
1662 		struct userspace_mem_region *region =
1663 			container_of(node, struct userspace_mem_region, hva_node);
1664 
1665 		if (hva >= region->host_mem) {
1666 			if (hva <= (region->host_mem
1667 				+ region->region.memory_size - 1))
1668 				return (vm_paddr_t)((uintptr_t)
1669 					region->region.guest_phys_addr
1670 					+ (hva - (uintptr_t)region->host_mem));
1671 
1672 			node = node->rb_right;
1673 		} else
1674 			node = node->rb_left;
1675 	}
1676 
1677 	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1678 	return -1;
1679 }
1680 
1681 /*
1682  * Address VM physical to Host Virtual *alias*.
1683  *
1684  * Input Args:
1685  *   vm - Virtual Machine
1686  *   gpa - VM physical address
1687  *
1688  * Output Args: None
1689  *
1690  * Return:
1691  *   Equivalent address within the host virtual *alias* area, or NULL
1692  *   (without failing the test) if the guest memory is not shared (so
1693  *   no alias exists).
1694  *
1695  * Create a writable, shared virtual=>physical alias for the specific GPA.
1696  * The primary use case is to allow the host selftest to manipulate guest
1697  * memory without mapping said memory in the guest's address space. And, for
1698  * userfaultfd-based demand paging, to do so without triggering userfaults.
1699  */
addr_gpa2alias(struct kvm_vm * vm,vm_paddr_t gpa)1700 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1701 {
1702 	struct userspace_mem_region *region;
1703 	uintptr_t offset;
1704 
1705 	region = userspace_mem_region_find(vm, gpa, gpa);
1706 	if (!region)
1707 		return NULL;
1708 
1709 	if (!region->host_alias)
1710 		return NULL;
1711 
1712 	offset = gpa - region->region.guest_phys_addr;
1713 	return (void *) ((uintptr_t) region->host_alias + offset);
1714 }
1715 
1716 /* Create an interrupt controller chip for the specified VM. */
vm_create_irqchip(struct kvm_vm * vm)1717 void vm_create_irqchip(struct kvm_vm *vm)
1718 {
1719 	vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1720 
1721 	vm->has_irqchip = true;
1722 }
1723 
_vcpu_run(struct kvm_vcpu * vcpu)1724 int _vcpu_run(struct kvm_vcpu *vcpu)
1725 {
1726 	int rc;
1727 
1728 	do {
1729 		rc = __vcpu_run(vcpu);
1730 	} while (rc == -1 && errno == EINTR);
1731 
1732 	if (!rc)
1733 		assert_on_unhandled_exception(vcpu);
1734 
1735 	return rc;
1736 }
1737 
1738 /*
1739  * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1740  * Assert if the KVM returns an error (other than -EINTR).
1741  */
vcpu_run(struct kvm_vcpu * vcpu)1742 void vcpu_run(struct kvm_vcpu *vcpu)
1743 {
1744 	int ret = _vcpu_run(vcpu);
1745 
1746 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1747 }
1748 
vcpu_run_complete_io(struct kvm_vcpu * vcpu)1749 void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1750 {
1751 	int ret;
1752 
1753 	vcpu->run->immediate_exit = 1;
1754 	ret = __vcpu_run(vcpu);
1755 	vcpu->run->immediate_exit = 0;
1756 
1757 	TEST_ASSERT(ret == -1 && errno == EINTR,
1758 		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1759 		    ret, errno);
1760 }
1761 
1762 /*
1763  * Get the list of guest registers which are supported for
1764  * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls.  Returns a kvm_reg_list pointer,
1765  * it is the caller's responsibility to free the list.
1766  */
vcpu_get_reg_list(struct kvm_vcpu * vcpu)1767 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1768 {
1769 	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1770 	int ret;
1771 
1772 	ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, &reg_list_n);
1773 	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1774 
1775 	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1776 	reg_list->n = reg_list_n.n;
1777 	vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1778 	return reg_list;
1779 }
1780 
vcpu_map_dirty_ring(struct kvm_vcpu * vcpu)1781 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1782 {
1783 	uint32_t page_size = getpagesize();
1784 	uint32_t size = vcpu->vm->dirty_ring_size;
1785 
1786 	TEST_ASSERT(size > 0, "Should enable dirty ring first");
1787 
1788 	if (!vcpu->dirty_gfns) {
1789 		void *addr;
1790 
1791 		addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1792 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1793 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1794 
1795 		addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1796 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1797 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1798 
1799 		addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1800 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1801 		TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1802 
1803 		vcpu->dirty_gfns = addr;
1804 		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1805 	}
1806 
1807 	return vcpu->dirty_gfns;
1808 }
1809 
1810 /*
1811  * Device Ioctl
1812  */
1813 
__kvm_has_device_attr(int dev_fd,uint32_t group,uint64_t attr)1814 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1815 {
1816 	struct kvm_device_attr attribute = {
1817 		.group = group,
1818 		.attr = attr,
1819 		.flags = 0,
1820 	};
1821 
1822 	return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1823 }
1824 
__kvm_test_create_device(struct kvm_vm * vm,uint64_t type)1825 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1826 {
1827 	struct kvm_create_device create_dev = {
1828 		.type = type,
1829 		.flags = KVM_CREATE_DEVICE_TEST,
1830 	};
1831 
1832 	return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1833 }
1834 
__kvm_create_device(struct kvm_vm * vm,uint64_t type)1835 int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1836 {
1837 	struct kvm_create_device create_dev = {
1838 		.type = type,
1839 		.fd = -1,
1840 		.flags = 0,
1841 	};
1842 	int err;
1843 
1844 	err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1845 	TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1846 	return err ? : create_dev.fd;
1847 }
1848 
__kvm_device_attr_get(int dev_fd,uint32_t group,uint64_t attr,void * val)1849 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1850 {
1851 	struct kvm_device_attr kvmattr = {
1852 		.group = group,
1853 		.attr = attr,
1854 		.flags = 0,
1855 		.addr = (uintptr_t)val,
1856 	};
1857 
1858 	return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1859 }
1860 
__kvm_device_attr_set(int dev_fd,uint32_t group,uint64_t attr,void * val)1861 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1862 {
1863 	struct kvm_device_attr kvmattr = {
1864 		.group = group,
1865 		.attr = attr,
1866 		.flags = 0,
1867 		.addr = (uintptr_t)val,
1868 	};
1869 
1870 	return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1871 }
1872 
1873 /*
1874  * IRQ related functions.
1875  */
1876 
_kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)1877 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1878 {
1879 	struct kvm_irq_level irq_level = {
1880 		.irq    = irq,
1881 		.level  = level,
1882 	};
1883 
1884 	return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1885 }
1886 
kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)1887 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1888 {
1889 	int ret = _kvm_irq_line(vm, irq, level);
1890 
1891 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1892 }
1893 
kvm_gsi_routing_create(void)1894 struct kvm_irq_routing *kvm_gsi_routing_create(void)
1895 {
1896 	struct kvm_irq_routing *routing;
1897 	size_t size;
1898 
1899 	size = sizeof(struct kvm_irq_routing);
1900 	/* Allocate space for the max number of entries: this wastes 196 KBs. */
1901 	size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1902 	routing = calloc(1, size);
1903 	assert(routing);
1904 
1905 	return routing;
1906 }
1907 
kvm_gsi_routing_irqchip_add(struct kvm_irq_routing * routing,uint32_t gsi,uint32_t pin)1908 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1909 		uint32_t gsi, uint32_t pin)
1910 {
1911 	int i;
1912 
1913 	assert(routing);
1914 	assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1915 
1916 	i = routing->nr;
1917 	routing->entries[i].gsi = gsi;
1918 	routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1919 	routing->entries[i].flags = 0;
1920 	routing->entries[i].u.irqchip.irqchip = 0;
1921 	routing->entries[i].u.irqchip.pin = pin;
1922 	routing->nr++;
1923 }
1924 
_kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)1925 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1926 {
1927 	int ret;
1928 
1929 	assert(routing);
1930 	ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1931 	free(routing);
1932 
1933 	return ret;
1934 }
1935 
kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)1936 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1937 {
1938 	int ret;
1939 
1940 	ret = _kvm_gsi_routing_write(vm, routing);
1941 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1942 }
1943 
1944 /*
1945  * VM Dump
1946  *
1947  * Input Args:
1948  *   vm - Virtual Machine
1949  *   indent - Left margin indent amount
1950  *
1951  * Output Args:
1952  *   stream - Output FILE stream
1953  *
1954  * Return: None
1955  *
1956  * Dumps the current state of the VM given by vm, to the FILE stream
1957  * given by stream.
1958  */
vm_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)1959 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1960 {
1961 	int ctr;
1962 	struct userspace_mem_region *region;
1963 	struct kvm_vcpu *vcpu;
1964 
1965 	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1966 	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1967 	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1968 	fprintf(stream, "%*sMem Regions:\n", indent, "");
1969 	hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1970 		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1971 			"host_virt: %p\n", indent + 2, "",
1972 			(uint64_t) region->region.guest_phys_addr,
1973 			(uint64_t) region->region.memory_size,
1974 			region->host_mem);
1975 		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1976 		sparsebit_dump(stream, region->unused_phy_pages, 0);
1977 		if (region->protected_phy_pages) {
1978 			fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, "");
1979 			sparsebit_dump(stream, region->protected_phy_pages, 0);
1980 		}
1981 	}
1982 	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1983 	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1984 	fprintf(stream, "%*spgd_created: %u\n", indent, "",
1985 		vm->pgd_created);
1986 	if (vm->pgd_created) {
1987 		fprintf(stream, "%*sVirtual Translation Tables:\n",
1988 			indent + 2, "");
1989 		virt_dump(stream, vm, indent + 4);
1990 	}
1991 	fprintf(stream, "%*sVCPUs:\n", indent, "");
1992 
1993 	list_for_each_entry(vcpu, &vm->vcpus, list)
1994 		vcpu_dump(stream, vcpu, indent + 2);
1995 }
1996 
1997 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x}
1998 
1999 /* Known KVM exit reasons */
2000 static struct exit_reason {
2001 	unsigned int reason;
2002 	const char *name;
2003 } exit_reasons_known[] = {
2004 	KVM_EXIT_STRING(UNKNOWN),
2005 	KVM_EXIT_STRING(EXCEPTION),
2006 	KVM_EXIT_STRING(IO),
2007 	KVM_EXIT_STRING(HYPERCALL),
2008 	KVM_EXIT_STRING(DEBUG),
2009 	KVM_EXIT_STRING(HLT),
2010 	KVM_EXIT_STRING(MMIO),
2011 	KVM_EXIT_STRING(IRQ_WINDOW_OPEN),
2012 	KVM_EXIT_STRING(SHUTDOWN),
2013 	KVM_EXIT_STRING(FAIL_ENTRY),
2014 	KVM_EXIT_STRING(INTR),
2015 	KVM_EXIT_STRING(SET_TPR),
2016 	KVM_EXIT_STRING(TPR_ACCESS),
2017 	KVM_EXIT_STRING(S390_SIEIC),
2018 	KVM_EXIT_STRING(S390_RESET),
2019 	KVM_EXIT_STRING(DCR),
2020 	KVM_EXIT_STRING(NMI),
2021 	KVM_EXIT_STRING(INTERNAL_ERROR),
2022 	KVM_EXIT_STRING(OSI),
2023 	KVM_EXIT_STRING(PAPR_HCALL),
2024 	KVM_EXIT_STRING(S390_UCONTROL),
2025 	KVM_EXIT_STRING(WATCHDOG),
2026 	KVM_EXIT_STRING(S390_TSCH),
2027 	KVM_EXIT_STRING(EPR),
2028 	KVM_EXIT_STRING(SYSTEM_EVENT),
2029 	KVM_EXIT_STRING(S390_STSI),
2030 	KVM_EXIT_STRING(IOAPIC_EOI),
2031 	KVM_EXIT_STRING(HYPERV),
2032 	KVM_EXIT_STRING(ARM_NISV),
2033 	KVM_EXIT_STRING(X86_RDMSR),
2034 	KVM_EXIT_STRING(X86_WRMSR),
2035 	KVM_EXIT_STRING(DIRTY_RING_FULL),
2036 	KVM_EXIT_STRING(AP_RESET_HOLD),
2037 	KVM_EXIT_STRING(X86_BUS_LOCK),
2038 	KVM_EXIT_STRING(XEN),
2039 	KVM_EXIT_STRING(RISCV_SBI),
2040 	KVM_EXIT_STRING(RISCV_CSR),
2041 	KVM_EXIT_STRING(NOTIFY),
2042 	KVM_EXIT_STRING(LOONGARCH_IOCSR),
2043 	KVM_EXIT_STRING(MEMORY_FAULT),
2044 };
2045 
2046 /*
2047  * Exit Reason String
2048  *
2049  * Input Args:
2050  *   exit_reason - Exit reason
2051  *
2052  * Output Args: None
2053  *
2054  * Return:
2055  *   Constant string pointer describing the exit reason.
2056  *
2057  * Locates and returns a constant string that describes the KVM exit
2058  * reason given by exit_reason.  If no such string is found, a constant
2059  * string of "Unknown" is returned.
2060  */
exit_reason_str(unsigned int exit_reason)2061 const char *exit_reason_str(unsigned int exit_reason)
2062 {
2063 	unsigned int n1;
2064 
2065 	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
2066 		if (exit_reason == exit_reasons_known[n1].reason)
2067 			return exit_reasons_known[n1].name;
2068 	}
2069 
2070 	return "Unknown";
2071 }
2072 
2073 /*
2074  * Physical Contiguous Page Allocator
2075  *
2076  * Input Args:
2077  *   vm - Virtual Machine
2078  *   num - number of pages
2079  *   paddr_min - Physical address minimum
2080  *   memslot - Memory region to allocate page from
2081  *   protected - True if the pages will be used as protected/private memory
2082  *
2083  * Output Args: None
2084  *
2085  * Return:
2086  *   Starting physical address
2087  *
2088  * Within the VM specified by vm, locates a range of available physical
2089  * pages at or above paddr_min. If found, the pages are marked as in use
2090  * and their base address is returned. A TEST_ASSERT failure occurs if
2091  * not enough pages are available at or above paddr_min.
2092  */
__vm_phy_pages_alloc(struct kvm_vm * vm,size_t num,vm_paddr_t paddr_min,uint32_t memslot,bool protected)2093 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2094 				vm_paddr_t paddr_min, uint32_t memslot,
2095 				bool protected)
2096 {
2097 	struct userspace_mem_region *region;
2098 	sparsebit_idx_t pg, base;
2099 
2100 	TEST_ASSERT(num > 0, "Must allocate at least one page");
2101 
2102 	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2103 		"not divisible by page size.\n"
2104 		"  paddr_min: 0x%lx page_size: 0x%x",
2105 		paddr_min, vm->page_size);
2106 
2107 	region = memslot2region(vm, memslot);
2108 	TEST_ASSERT(!protected || region->protected_phy_pages,
2109 		    "Region doesn't support protected memory");
2110 
2111 	base = pg = paddr_min >> vm->page_shift;
2112 	do {
2113 		for (; pg < base + num; ++pg) {
2114 			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2115 				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2116 				break;
2117 			}
2118 		}
2119 	} while (pg && pg != base + num);
2120 
2121 	if (pg == 0) {
2122 		fprintf(stderr, "No guest physical page available, "
2123 			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2124 			paddr_min, vm->page_size, memslot);
2125 		fputs("---- vm dump ----\n", stderr);
2126 		vm_dump(stderr, vm, 2);
2127 		abort();
2128 	}
2129 
2130 	for (pg = base; pg < base + num; ++pg) {
2131 		sparsebit_clear(region->unused_phy_pages, pg);
2132 		if (protected)
2133 			sparsebit_set(region->protected_phy_pages, pg);
2134 	}
2135 
2136 	return base * vm->page_size;
2137 }
2138 
vm_phy_page_alloc(struct kvm_vm * vm,vm_paddr_t paddr_min,uint32_t memslot)2139 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2140 			     uint32_t memslot)
2141 {
2142 	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2143 }
2144 
vm_alloc_page_table(struct kvm_vm * vm)2145 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2146 {
2147 	return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
2148 				 vm->memslots[MEM_REGION_PT]);
2149 }
2150 
2151 /*
2152  * Address Guest Virtual to Host Virtual
2153  *
2154  * Input Args:
2155  *   vm - Virtual Machine
2156  *   gva - VM virtual address
2157  *
2158  * Output Args: None
2159  *
2160  * Return:
2161  *   Equivalent host virtual address
2162  */
addr_gva2hva(struct kvm_vm * vm,vm_vaddr_t gva)2163 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2164 {
2165 	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2166 }
2167 
vm_compute_max_gfn(struct kvm_vm * vm)2168 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
2169 {
2170 	return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2171 }
2172 
vm_calc_num_pages(unsigned int num_pages,unsigned int page_shift,unsigned int new_page_shift,bool ceil)2173 static unsigned int vm_calc_num_pages(unsigned int num_pages,
2174 				      unsigned int page_shift,
2175 				      unsigned int new_page_shift,
2176 				      bool ceil)
2177 {
2178 	unsigned int n = 1 << (new_page_shift - page_shift);
2179 
2180 	if (page_shift >= new_page_shift)
2181 		return num_pages * (1 << (page_shift - new_page_shift));
2182 
2183 	return num_pages / n + !!(ceil && num_pages % n);
2184 }
2185 
getpageshift(void)2186 static inline int getpageshift(void)
2187 {
2188 	return __builtin_ffs(getpagesize()) - 1;
2189 }
2190 
2191 unsigned int
vm_num_host_pages(enum vm_guest_mode mode,unsigned int num_guest_pages)2192 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2193 {
2194 	return vm_calc_num_pages(num_guest_pages,
2195 				 vm_guest_mode_params[mode].page_shift,
2196 				 getpageshift(), true);
2197 }
2198 
2199 unsigned int
vm_num_guest_pages(enum vm_guest_mode mode,unsigned int num_host_pages)2200 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2201 {
2202 	return vm_calc_num_pages(num_host_pages, getpageshift(),
2203 				 vm_guest_mode_params[mode].page_shift, false);
2204 }
2205 
vm_calc_num_guest_pages(enum vm_guest_mode mode,size_t size)2206 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2207 {
2208 	unsigned int n;
2209 	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2210 	return vm_adjust_num_guest_pages(mode, n);
2211 }
2212 
2213 /*
2214  * Read binary stats descriptors
2215  *
2216  * Input Args:
2217  *   stats_fd - the file descriptor for the binary stats file from which to read
2218  *   header - the binary stats metadata header corresponding to the given FD
2219  *
2220  * Output Args: None
2221  *
2222  * Return:
2223  *   A pointer to a newly allocated series of stat descriptors.
2224  *   Caller is responsible for freeing the returned kvm_stats_desc.
2225  *
2226  * Read the stats descriptors from the binary stats interface.
2227  */
read_stats_descriptors(int stats_fd,struct kvm_stats_header * header)2228 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
2229 					      struct kvm_stats_header *header)
2230 {
2231 	struct kvm_stats_desc *stats_desc;
2232 	ssize_t desc_size, total_size, ret;
2233 
2234 	desc_size = get_stats_descriptor_size(header);
2235 	total_size = header->num_desc * desc_size;
2236 
2237 	stats_desc = calloc(header->num_desc, desc_size);
2238 	TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
2239 
2240 	ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
2241 	TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
2242 
2243 	return stats_desc;
2244 }
2245 
2246 /*
2247  * Read stat data for a particular stat
2248  *
2249  * Input Args:
2250  *   stats_fd - the file descriptor for the binary stats file from which to read
2251  *   header - the binary stats metadata header corresponding to the given FD
2252  *   desc - the binary stat metadata for the particular stat to be read
2253  *   max_elements - the maximum number of 8-byte values to read into data
2254  *
2255  * Output Args:
2256  *   data - the buffer into which stat data should be read
2257  *
2258  * Read the data values of a specified stat from the binary stats interface.
2259  */
read_stat_data(int stats_fd,struct kvm_stats_header * header,struct kvm_stats_desc * desc,uint64_t * data,size_t max_elements)2260 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
2261 		    struct kvm_stats_desc *desc, uint64_t *data,
2262 		    size_t max_elements)
2263 {
2264 	size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
2265 	size_t size = nr_elements * sizeof(*data);
2266 	ssize_t ret;
2267 
2268 	TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
2269 	TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
2270 
2271 	ret = pread(stats_fd, data, size,
2272 		    header->data_offset + desc->offset);
2273 
2274 	TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
2275 		    desc->name, errno, strerror(errno));
2276 	TEST_ASSERT(ret == size,
2277 		    "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
2278 		    desc->name, size, ret);
2279 }
2280 
kvm_get_stat(struct kvm_binary_stats * stats,const char * name,uint64_t * data,size_t max_elements)2281 void kvm_get_stat(struct kvm_binary_stats *stats, const char *name,
2282 		  uint64_t *data, size_t max_elements)
2283 {
2284 	struct kvm_stats_desc *desc;
2285 	size_t size_desc;
2286 	int i;
2287 
2288 	if (!stats->desc) {
2289 		read_stats_header(stats->fd, &stats->header);
2290 		stats->desc = read_stats_descriptors(stats->fd, &stats->header);
2291 	}
2292 
2293 	size_desc = get_stats_descriptor_size(&stats->header);
2294 
2295 	for (i = 0; i < stats->header.num_desc; ++i) {
2296 		desc = (void *)stats->desc + (i * size_desc);
2297 
2298 		if (strcmp(desc->name, name))
2299 			continue;
2300 
2301 		read_stat_data(stats->fd, &stats->header, desc, data, max_elements);
2302 		return;
2303 	}
2304 
2305 	TEST_FAIL("Unable to find stat '%s'", name);
2306 }
2307 
kvm_arch_vm_post_create(struct kvm_vm * vm)2308 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm)
2309 {
2310 }
2311 
kvm_selftest_arch_init(void)2312 __weak void kvm_selftest_arch_init(void)
2313 {
2314 }
2315 
kvm_selftest_init(void)2316 void __attribute((constructor)) kvm_selftest_init(void)
2317 {
2318 	/* Tell stdout not to buffer its content. */
2319 	setbuf(stdout, NULL);
2320 
2321 	guest_random_seed = last_guest_seed = random();
2322 	pr_info("Random seed: 0x%x\n", guest_random_seed);
2323 
2324 	kvm_selftest_arch_init();
2325 }
2326 
vm_is_gpa_protected(struct kvm_vm * vm,vm_paddr_t paddr)2327 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr)
2328 {
2329 	sparsebit_idx_t pg = 0;
2330 	struct userspace_mem_region *region;
2331 
2332 	if (!vm_arch_has_protected_memory(vm))
2333 		return false;
2334 
2335 	region = userspace_mem_region_find(vm, paddr, paddr);
2336 	TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr);
2337 
2338 	pg = paddr >> vm->page_shift;
2339 	return sparsebit_is_set(region->protected_phy_pages, pg);
2340 }
2341