xref: /linux/include/linux/mmzone.h (revision 8804d970fab45726b3c7cd7f240b31122aa94219)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/list_nulls.h>
11 #include <linux/wait.h>
12 #include <linux/bitops.h>
13 #include <linux/cache.h>
14 #include <linux/threads.h>
15 #include <linux/numa.h>
16 #include <linux/init.h>
17 #include <linux/seqlock.h>
18 #include <linux/nodemask.h>
19 #include <linux/pageblock-flags.h>
20 #include <linux/page-flags-layout.h>
21 #include <linux/atomic.h>
22 #include <linux/mm_types.h>
23 #include <linux/page-flags.h>
24 #include <linux/local_lock.h>
25 #include <linux/zswap.h>
26 #include <asm/page.h>
27 
28 /* Free memory management - zoned buddy allocator.  */
29 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
30 #define MAX_PAGE_ORDER 10
31 #else
32 #define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
33 #endif
34 #define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER)
35 
36 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
37 
38 #define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1)
39 
40 /* Defines the order for the number of pages that have a migrate type. */
41 #ifndef CONFIG_PAGE_BLOCK_MAX_ORDER
42 #define PAGE_BLOCK_MAX_ORDER MAX_PAGE_ORDER
43 #else
44 #define PAGE_BLOCK_MAX_ORDER CONFIG_PAGE_BLOCK_MAX_ORDER
45 #endif /* CONFIG_PAGE_BLOCK_MAX_ORDER */
46 
47 /*
48  * The MAX_PAGE_ORDER, which defines the max order of pages to be allocated
49  * by the buddy allocator, has to be larger or equal to the PAGE_BLOCK_MAX_ORDER,
50  * which defines the order for the number of pages that can have a migrate type
51  */
52 #if (PAGE_BLOCK_MAX_ORDER > MAX_PAGE_ORDER)
53 #error MAX_PAGE_ORDER must be >= PAGE_BLOCK_MAX_ORDER
54 #endif
55 
56 /*
57  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
58  * costly to service.  That is between allocation orders which should
59  * coalesce naturally under reasonable reclaim pressure and those which
60  * will not.
61  */
62 #define PAGE_ALLOC_COSTLY_ORDER 3
63 
64 enum migratetype {
65 	MIGRATE_UNMOVABLE,
66 	MIGRATE_MOVABLE,
67 	MIGRATE_RECLAIMABLE,
68 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
69 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
70 #ifdef CONFIG_CMA
71 	/*
72 	 * MIGRATE_CMA migration type is designed to mimic the way
73 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
74 	 * from MIGRATE_CMA pageblocks and page allocator never
75 	 * implicitly change migration type of MIGRATE_CMA pageblock.
76 	 *
77 	 * The way to use it is to change migratetype of a range of
78 	 * pageblocks to MIGRATE_CMA which can be done by
79 	 * __free_pageblock_cma() function.
80 	 */
81 	MIGRATE_CMA,
82 	__MIGRATE_TYPE_END = MIGRATE_CMA,
83 #else
84 	__MIGRATE_TYPE_END = MIGRATE_HIGHATOMIC,
85 #endif
86 #ifdef CONFIG_MEMORY_ISOLATION
87 	MIGRATE_ISOLATE,	/* can't allocate from here */
88 #endif
89 	MIGRATE_TYPES
90 };
91 
92 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
93 extern const char * const migratetype_names[MIGRATE_TYPES];
94 
95 #ifdef CONFIG_CMA
96 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
97 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
98 /*
99  * __dump_folio() in mm/debug.c passes a folio pointer to on-stack struct folio,
100  * so folio_pfn() cannot be used and pfn is needed.
101  */
102 #  define is_migrate_cma_folio(folio, pfn) \
103 	(get_pfnblock_migratetype(&folio->page, pfn) == MIGRATE_CMA)
104 #else
105 #  define is_migrate_cma(migratetype) false
106 #  define is_migrate_cma_page(_page) false
107 #  define is_migrate_cma_folio(folio, pfn) false
108 #endif
109 
is_migrate_movable(int mt)110 static inline bool is_migrate_movable(int mt)
111 {
112 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
113 }
114 
115 /*
116  * Check whether a migratetype can be merged with another migratetype.
117  *
118  * It is only mergeable when it can fall back to other migratetypes for
119  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
120  */
migratetype_is_mergeable(int mt)121 static inline bool migratetype_is_mergeable(int mt)
122 {
123 	return mt < MIGRATE_PCPTYPES;
124 }
125 
126 #define for_each_migratetype_order(order, type) \
127 	for (order = 0; order < NR_PAGE_ORDERS; order++) \
128 		for (type = 0; type < MIGRATE_TYPES; type++)
129 
130 extern int page_group_by_mobility_disabled;
131 
132 #define get_pageblock_migratetype(page) \
133 	get_pfnblock_migratetype(page, page_to_pfn(page))
134 
135 #define folio_migratetype(folio) \
136 	get_pageblock_migratetype(&folio->page)
137 
138 struct free_area {
139 	struct list_head	free_list[MIGRATE_TYPES];
140 	unsigned long		nr_free;
141 };
142 
143 struct pglist_data;
144 
145 #ifdef CONFIG_NUMA
146 enum numa_stat_item {
147 	NUMA_HIT,		/* allocated in intended node */
148 	NUMA_MISS,		/* allocated in non intended node */
149 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
150 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
151 	NUMA_LOCAL,		/* allocation from local node */
152 	NUMA_OTHER,		/* allocation from other node */
153 	NR_VM_NUMA_EVENT_ITEMS
154 };
155 #else
156 #define NR_VM_NUMA_EVENT_ITEMS 0
157 #endif
158 
159 enum zone_stat_item {
160 	/* First 128 byte cacheline (assuming 64 bit words) */
161 	NR_FREE_PAGES,
162 	NR_FREE_PAGES_BLOCKS,
163 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
164 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
165 	NR_ZONE_ACTIVE_ANON,
166 	NR_ZONE_INACTIVE_FILE,
167 	NR_ZONE_ACTIVE_FILE,
168 	NR_ZONE_UNEVICTABLE,
169 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
170 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
171 	/* Second 128 byte cacheline */
172 #if IS_ENABLED(CONFIG_ZSMALLOC)
173 	NR_ZSPAGES,		/* allocated in zsmalloc */
174 #endif
175 	NR_FREE_CMA_PAGES,
176 #ifdef CONFIG_UNACCEPTED_MEMORY
177 	NR_UNACCEPTED,
178 #endif
179 	NR_VM_ZONE_STAT_ITEMS };
180 
181 enum node_stat_item {
182 	NR_LRU_BASE,
183 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
184 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
185 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
186 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
187 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
188 	NR_SLAB_RECLAIMABLE_B,
189 	NR_SLAB_UNRECLAIMABLE_B,
190 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
191 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
192 	WORKINGSET_NODES,
193 	WORKINGSET_REFAULT_BASE,
194 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
195 	WORKINGSET_REFAULT_FILE,
196 	WORKINGSET_ACTIVATE_BASE,
197 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
198 	WORKINGSET_ACTIVATE_FILE,
199 	WORKINGSET_RESTORE_BASE,
200 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
201 	WORKINGSET_RESTORE_FILE,
202 	WORKINGSET_NODERECLAIM,
203 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
204 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
205 			   only modified from process context */
206 	NR_FILE_PAGES,
207 	NR_FILE_DIRTY,
208 	NR_WRITEBACK,
209 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
210 	NR_SHMEM_THPS,
211 	NR_SHMEM_PMDMAPPED,
212 	NR_FILE_THPS,
213 	NR_FILE_PMDMAPPED,
214 	NR_ANON_THPS,
215 	NR_VMSCAN_WRITE,
216 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
217 	NR_DIRTIED,		/* page dirtyings since bootup */
218 	NR_WRITTEN,		/* page writings since bootup */
219 	NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */
220 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
221 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
222 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
223 	NR_KERNEL_STACK_KB,	/* measured in KiB */
224 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
225 	NR_KERNEL_SCS_KB,	/* measured in KiB */
226 #endif
227 	NR_PAGETABLE,		/* used for pagetables */
228 	NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */
229 #ifdef CONFIG_IOMMU_SUPPORT
230 	NR_IOMMU_PAGES,		/* # of pages allocated by IOMMU */
231 #endif
232 #ifdef CONFIG_SWAP
233 	NR_SWAPCACHE,
234 #endif
235 #ifdef CONFIG_NUMA_BALANCING
236 	PGPROMOTE_SUCCESS,	/* promote successfully */
237 	/**
238 	 * Candidate pages for promotion based on hint fault latency.  This
239 	 * counter is used to control the promotion rate and adjust the hot
240 	 * threshold.
241 	 */
242 	PGPROMOTE_CANDIDATE,
243 	/**
244 	 * Not rate-limited (NRL) candidate pages for those can be promoted
245 	 * without considering hot threshold because of enough free pages in
246 	 * fast-tier node.  These promotions bypass the regular hotness checks
247 	 * and do NOT influence the promotion rate-limiter or
248 	 * threshold-adjustment logic.
249 	 * This is for statistics/monitoring purposes.
250 	 */
251 	PGPROMOTE_CANDIDATE_NRL,
252 #endif
253 	/* PGDEMOTE_*: pages demoted */
254 	PGDEMOTE_KSWAPD,
255 	PGDEMOTE_DIRECT,
256 	PGDEMOTE_KHUGEPAGED,
257 	PGDEMOTE_PROACTIVE,
258 #ifdef CONFIG_HUGETLB_PAGE
259 	NR_HUGETLB,
260 #endif
261 	NR_BALLOON_PAGES,
262 	NR_KERNEL_FILE_PAGES,
263 	NR_VM_NODE_STAT_ITEMS
264 };
265 
266 /*
267  * Returns true if the item should be printed in THPs (/proc/vmstat
268  * currently prints number of anon, file and shmem THPs. But the item
269  * is charged in pages).
270  */
vmstat_item_print_in_thp(enum node_stat_item item)271 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
272 {
273 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
274 		return false;
275 
276 	return item == NR_ANON_THPS ||
277 	       item == NR_FILE_THPS ||
278 	       item == NR_SHMEM_THPS ||
279 	       item == NR_SHMEM_PMDMAPPED ||
280 	       item == NR_FILE_PMDMAPPED;
281 }
282 
283 /*
284  * Returns true if the value is measured in bytes (most vmstat values are
285  * measured in pages). This defines the API part, the internal representation
286  * might be different.
287  */
vmstat_item_in_bytes(int idx)288 static __always_inline bool vmstat_item_in_bytes(int idx)
289 {
290 	/*
291 	 * Global and per-node slab counters track slab pages.
292 	 * It's expected that changes are multiples of PAGE_SIZE.
293 	 * Internally values are stored in pages.
294 	 *
295 	 * Per-memcg and per-lruvec counters track memory, consumed
296 	 * by individual slab objects. These counters are actually
297 	 * byte-precise.
298 	 */
299 	return (idx == NR_SLAB_RECLAIMABLE_B ||
300 		idx == NR_SLAB_UNRECLAIMABLE_B);
301 }
302 
303 /*
304  * We do arithmetic on the LRU lists in various places in the code,
305  * so it is important to keep the active lists LRU_ACTIVE higher in
306  * the array than the corresponding inactive lists, and to keep
307  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
308  *
309  * This has to be kept in sync with the statistics in zone_stat_item
310  * above and the descriptions in vmstat_text in mm/vmstat.c
311  */
312 #define LRU_BASE 0
313 #define LRU_ACTIVE 1
314 #define LRU_FILE 2
315 
316 enum lru_list {
317 	LRU_INACTIVE_ANON = LRU_BASE,
318 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
319 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
320 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
321 	LRU_UNEVICTABLE,
322 	NR_LRU_LISTS
323 };
324 
325 enum vmscan_throttle_state {
326 	VMSCAN_THROTTLE_WRITEBACK,
327 	VMSCAN_THROTTLE_ISOLATED,
328 	VMSCAN_THROTTLE_NOPROGRESS,
329 	VMSCAN_THROTTLE_CONGESTED,
330 	NR_VMSCAN_THROTTLE,
331 };
332 
333 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
334 
335 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
336 
is_file_lru(enum lru_list lru)337 static inline bool is_file_lru(enum lru_list lru)
338 {
339 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
340 }
341 
is_active_lru(enum lru_list lru)342 static inline bool is_active_lru(enum lru_list lru)
343 {
344 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
345 }
346 
347 #define WORKINGSET_ANON 0
348 #define WORKINGSET_FILE 1
349 #define ANON_AND_FILE 2
350 
351 enum lruvec_flags {
352 	/*
353 	 * An lruvec has many dirty pages backed by a congested BDI:
354 	 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
355 	 *    It can be cleared by cgroup reclaim or kswapd.
356 	 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
357 	 *    It can only be cleared by kswapd.
358 	 *
359 	 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
360 	 * reclaim, but not vice versa. This only applies to the root cgroup.
361 	 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
362 	 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
363 	 * by kswapd).
364 	 */
365 	LRUVEC_CGROUP_CONGESTED,
366 	LRUVEC_NODE_CONGESTED,
367 };
368 
369 #endif /* !__GENERATING_BOUNDS_H */
370 
371 /*
372  * Evictable folios are divided into multiple generations. The youngest and the
373  * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
374  * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
375  * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
376  * corresponding generation. The gen counter in folio->flags stores gen+1 while
377  * a folio is on one of lrugen->folios[]. Otherwise it stores 0.
378  *
379  * After a folio is faulted in, the aging needs to check the accessed bit at
380  * least twice before handing this folio over to the eviction. The first check
381  * clears the accessed bit from the initial fault; the second check makes sure
382  * this folio hasn't been used since then. This process, AKA second chance,
383  * requires a minimum of two generations, hence MIN_NR_GENS. And to maintain ABI
384  * compatibility with the active/inactive LRU, e.g., /proc/vmstat, these two
385  * generations are considered active; the rest of generations, if they exist,
386  * are considered inactive. See lru_gen_is_active().
387  *
388  * PG_active is always cleared while a folio is on one of lrugen->folios[] so
389  * that the sliding window needs not to worry about it. And it's set again when
390  * a folio considered active is isolated for non-reclaiming purposes, e.g.,
391  * migration. See lru_gen_add_folio() and lru_gen_del_folio().
392  *
393  * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
394  * number of categories of the active/inactive LRU when keeping track of
395  * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
396  * in folio->flags, masked by LRU_GEN_MASK.
397  */
398 #define MIN_NR_GENS		2U
399 #define MAX_NR_GENS		4U
400 
401 /*
402  * Each generation is divided into multiple tiers. A folio accessed N times
403  * through file descriptors is in tier order_base_2(N). A folio in the first
404  * tier (N=0,1) is marked by PG_referenced unless it was faulted in through page
405  * tables or read ahead. A folio in the last tier (MAX_NR_TIERS-1) is marked by
406  * PG_workingset. A folio in any other tier (1<N<5) between the first and last
407  * is marked by additional bits of LRU_REFS_WIDTH in folio->flags.
408  *
409  * In contrast to moving across generations which requires the LRU lock, moving
410  * across tiers only involves atomic operations on folio->flags and therefore
411  * has a negligible cost in the buffered access path. In the eviction path,
412  * comparisons of refaulted/(evicted+protected) from the first tier and the rest
413  * infer whether folios accessed multiple times through file descriptors are
414  * statistically hot and thus worth protecting.
415  *
416  * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
417  * number of categories of the active/inactive LRU when keeping track of
418  * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
419  * folio->flags, masked by LRU_REFS_MASK.
420  */
421 #define MAX_NR_TIERS		4U
422 
423 #ifndef __GENERATING_BOUNDS_H
424 
425 #define LRU_GEN_MASK		((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
426 #define LRU_REFS_MASK		((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
427 
428 /*
429  * For folios accessed multiple times through file descriptors,
430  * lru_gen_inc_refs() sets additional bits of LRU_REFS_WIDTH in folio->flags
431  * after PG_referenced, then PG_workingset after LRU_REFS_WIDTH. After all its
432  * bits are set, i.e., LRU_REFS_FLAGS|BIT(PG_workingset), a folio is lazily
433  * promoted into the second oldest generation in the eviction path. And when
434  * folio_inc_gen() does that, it clears LRU_REFS_FLAGS so that
435  * lru_gen_inc_refs() can start over. Note that for this case, LRU_REFS_MASK is
436  * only valid when PG_referenced is set.
437  *
438  * For folios accessed multiple times through page tables, folio_update_gen()
439  * from a page table walk or lru_gen_set_refs() from a rmap walk sets
440  * PG_referenced after the accessed bit is cleared for the first time.
441  * Thereafter, those two paths set PG_workingset and promote folios to the
442  * youngest generation. Like folio_inc_gen(), folio_update_gen() also clears
443  * PG_referenced. Note that for this case, LRU_REFS_MASK is not used.
444  *
445  * For both cases above, after PG_workingset is set on a folio, it remains until
446  * this folio is either reclaimed, or "deactivated" by lru_gen_clear_refs(). It
447  * can be set again if lru_gen_test_recent() returns true upon a refault.
448  */
449 #define LRU_REFS_FLAGS		(LRU_REFS_MASK | BIT(PG_referenced))
450 
451 struct lruvec;
452 struct page_vma_mapped_walk;
453 
454 #ifdef CONFIG_LRU_GEN
455 
456 enum {
457 	LRU_GEN_ANON,
458 	LRU_GEN_FILE,
459 };
460 
461 enum {
462 	LRU_GEN_CORE,
463 	LRU_GEN_MM_WALK,
464 	LRU_GEN_NONLEAF_YOUNG,
465 	NR_LRU_GEN_CAPS
466 };
467 
468 #define MIN_LRU_BATCH		BITS_PER_LONG
469 #define MAX_LRU_BATCH		(MIN_LRU_BATCH * 64)
470 
471 /* whether to keep historical stats from evicted generations */
472 #ifdef CONFIG_LRU_GEN_STATS
473 #define NR_HIST_GENS		MAX_NR_GENS
474 #else
475 #define NR_HIST_GENS		1U
476 #endif
477 
478 /*
479  * The youngest generation number is stored in max_seq for both anon and file
480  * types as they are aged on an equal footing. The oldest generation numbers are
481  * stored in min_seq[] separately for anon and file types so that they can be
482  * incremented independently. Ideally min_seq[] are kept in sync when both anon
483  * and file types are evictable. However, to adapt to situations like extreme
484  * swappiness, they are allowed to be out of sync by at most
485  * MAX_NR_GENS-MIN_NR_GENS-1.
486  *
487  * The number of pages in each generation is eventually consistent and therefore
488  * can be transiently negative when reset_batch_size() is pending.
489  */
490 struct lru_gen_folio {
491 	/* the aging increments the youngest generation number */
492 	unsigned long max_seq;
493 	/* the eviction increments the oldest generation numbers */
494 	unsigned long min_seq[ANON_AND_FILE];
495 	/* the birth time of each generation in jiffies */
496 	unsigned long timestamps[MAX_NR_GENS];
497 	/* the multi-gen LRU lists, lazily sorted on eviction */
498 	struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
499 	/* the multi-gen LRU sizes, eventually consistent */
500 	long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
501 	/* the exponential moving average of refaulted */
502 	unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
503 	/* the exponential moving average of evicted+protected */
504 	unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
505 	/* can only be modified under the LRU lock */
506 	unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
507 	/* can be modified without holding the LRU lock */
508 	atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
509 	atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
510 	/* whether the multi-gen LRU is enabled */
511 	bool enabled;
512 	/* the memcg generation this lru_gen_folio belongs to */
513 	u8 gen;
514 	/* the list segment this lru_gen_folio belongs to */
515 	u8 seg;
516 	/* per-node lru_gen_folio list for global reclaim */
517 	struct hlist_nulls_node list;
518 };
519 
520 enum {
521 	MM_LEAF_TOTAL,		/* total leaf entries */
522 	MM_LEAF_YOUNG,		/* young leaf entries */
523 	MM_NONLEAF_FOUND,	/* non-leaf entries found in Bloom filters */
524 	MM_NONLEAF_ADDED,	/* non-leaf entries added to Bloom filters */
525 	NR_MM_STATS
526 };
527 
528 /* double-buffering Bloom filters */
529 #define NR_BLOOM_FILTERS	2
530 
531 struct lru_gen_mm_state {
532 	/* synced with max_seq after each iteration */
533 	unsigned long seq;
534 	/* where the current iteration continues after */
535 	struct list_head *head;
536 	/* where the last iteration ended before */
537 	struct list_head *tail;
538 	/* Bloom filters flip after each iteration */
539 	unsigned long *filters[NR_BLOOM_FILTERS];
540 	/* the mm stats for debugging */
541 	unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
542 };
543 
544 struct lru_gen_mm_walk {
545 	/* the lruvec under reclaim */
546 	struct lruvec *lruvec;
547 	/* max_seq from lru_gen_folio: can be out of date */
548 	unsigned long seq;
549 	/* the next address within an mm to scan */
550 	unsigned long next_addr;
551 	/* to batch promoted pages */
552 	int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
553 	/* to batch the mm stats */
554 	int mm_stats[NR_MM_STATS];
555 	/* total batched items */
556 	int batched;
557 	int swappiness;
558 	bool force_scan;
559 };
560 
561 /*
562  * For each node, memcgs are divided into two generations: the old and the
563  * young. For each generation, memcgs are randomly sharded into multiple bins
564  * to improve scalability. For each bin, the hlist_nulls is virtually divided
565  * into three segments: the head, the tail and the default.
566  *
567  * An onlining memcg is added to the tail of a random bin in the old generation.
568  * The eviction starts at the head of a random bin in the old generation. The
569  * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
570  * the old generation, is incremented when all its bins become empty.
571  *
572  * There are four operations:
573  * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its
574  *    current generation (old or young) and updates its "seg" to "head";
575  * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its
576  *    current generation (old or young) and updates its "seg" to "tail";
577  * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old
578  *    generation, updates its "gen" to "old" and resets its "seg" to "default";
579  * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the
580  *    young generation, updates its "gen" to "young" and resets its "seg" to
581  *    "default".
582  *
583  * The events that trigger the above operations are:
584  * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
585  * 2. The first attempt to reclaim a memcg below low, which triggers
586  *    MEMCG_LRU_TAIL;
587  * 3. The first attempt to reclaim a memcg offlined or below reclaimable size
588  *    threshold, which triggers MEMCG_LRU_TAIL;
589  * 4. The second attempt to reclaim a memcg offlined or below reclaimable size
590  *    threshold, which triggers MEMCG_LRU_YOUNG;
591  * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG;
592  * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
593  * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD.
594  *
595  * Notes:
596  * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing
597  *    of their max_seq counters ensures the eventual fairness to all eligible
598  *    memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
599  * 2. There are only two valid generations: old (seq) and young (seq+1).
600  *    MEMCG_NR_GENS is set to three so that when reading the generation counter
601  *    locklessly, a stale value (seq-1) does not wraparound to young.
602  */
603 #define MEMCG_NR_GENS	3
604 #define MEMCG_NR_BINS	8
605 
606 struct lru_gen_memcg {
607 	/* the per-node memcg generation counter */
608 	unsigned long seq;
609 	/* each memcg has one lru_gen_folio per node */
610 	unsigned long nr_memcgs[MEMCG_NR_GENS];
611 	/* per-node lru_gen_folio list for global reclaim */
612 	struct hlist_nulls_head	fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
613 	/* protects the above */
614 	spinlock_t lock;
615 };
616 
617 void lru_gen_init_pgdat(struct pglist_data *pgdat);
618 void lru_gen_init_lruvec(struct lruvec *lruvec);
619 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
620 
621 void lru_gen_init_memcg(struct mem_cgroup *memcg);
622 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
623 void lru_gen_online_memcg(struct mem_cgroup *memcg);
624 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
625 void lru_gen_release_memcg(struct mem_cgroup *memcg);
626 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
627 
628 #else /* !CONFIG_LRU_GEN */
629 
lru_gen_init_pgdat(struct pglist_data * pgdat)630 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
631 {
632 }
633 
lru_gen_init_lruvec(struct lruvec * lruvec)634 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
635 {
636 }
637 
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)638 static inline bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
639 {
640 	return false;
641 }
642 
lru_gen_init_memcg(struct mem_cgroup * memcg)643 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
644 {
645 }
646 
lru_gen_exit_memcg(struct mem_cgroup * memcg)647 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
648 {
649 }
650 
lru_gen_online_memcg(struct mem_cgroup * memcg)651 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
652 {
653 }
654 
lru_gen_offline_memcg(struct mem_cgroup * memcg)655 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
656 {
657 }
658 
lru_gen_release_memcg(struct mem_cgroup * memcg)659 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
660 {
661 }
662 
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)663 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
664 {
665 }
666 
667 #endif /* CONFIG_LRU_GEN */
668 
669 struct lruvec {
670 	struct list_head		lists[NR_LRU_LISTS];
671 	/* per lruvec lru_lock for memcg */
672 	spinlock_t			lru_lock;
673 	/*
674 	 * These track the cost of reclaiming one LRU - file or anon -
675 	 * over the other. As the observed cost of reclaiming one LRU
676 	 * increases, the reclaim scan balance tips toward the other.
677 	 */
678 	unsigned long			anon_cost;
679 	unsigned long			file_cost;
680 	/* Non-resident age, driven by LRU movement */
681 	atomic_long_t			nonresident_age;
682 	/* Refaults at the time of last reclaim cycle */
683 	unsigned long			refaults[ANON_AND_FILE];
684 	/* Various lruvec state flags (enum lruvec_flags) */
685 	unsigned long			flags;
686 #ifdef CONFIG_LRU_GEN
687 	/* evictable pages divided into generations */
688 	struct lru_gen_folio		lrugen;
689 #ifdef CONFIG_LRU_GEN_WALKS_MMU
690 	/* to concurrently iterate lru_gen_mm_list */
691 	struct lru_gen_mm_state		mm_state;
692 #endif
693 #endif /* CONFIG_LRU_GEN */
694 #ifdef CONFIG_MEMCG
695 	struct pglist_data *pgdat;
696 #endif
697 	struct zswap_lruvec_state zswap_lruvec_state;
698 };
699 
700 /* Isolate for asynchronous migration */
701 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
702 /* Isolate unevictable pages */
703 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
704 
705 /* LRU Isolation modes. */
706 typedef unsigned __bitwise isolate_mode_t;
707 
708 enum zone_watermarks {
709 	WMARK_MIN,
710 	WMARK_LOW,
711 	WMARK_HIGH,
712 	WMARK_PROMO,
713 	NR_WMARK
714 };
715 
716 /*
717  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists
718  * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list
719  * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE.
720  */
721 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
722 #define NR_PCP_THP 2
723 #else
724 #define NR_PCP_THP 0
725 #endif
726 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
727 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
728 
729 /*
730  * Flags used in pcp->flags field.
731  *
732  * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the
733  * previous page freeing.  To avoid to drain PCP for an accident
734  * high-order page freeing.
735  *
736  * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before
737  * draining PCP for consecutive high-order pages freeing without
738  * allocation if data cache slice of CPU is large enough.  To reduce
739  * zone lock contention and keep cache-hot pages reusing.
740  */
741 #define	PCPF_PREV_FREE_HIGH_ORDER	BIT(0)
742 #define	PCPF_FREE_HIGH_BATCH		BIT(1)
743 
744 struct per_cpu_pages {
745 	spinlock_t lock;	/* Protects lists field */
746 	int count;		/* number of pages in the list */
747 	int high;		/* high watermark, emptying needed */
748 	int high_min;		/* min high watermark */
749 	int high_max;		/* max high watermark */
750 	int batch;		/* chunk size for buddy add/remove */
751 	u8 flags;		/* protected by pcp->lock */
752 	u8 alloc_factor;	/* batch scaling factor during allocate */
753 #ifdef CONFIG_NUMA
754 	u8 expire;		/* When 0, remote pagesets are drained */
755 #endif
756 	short free_count;	/* consecutive free count */
757 
758 	/* Lists of pages, one per migrate type stored on the pcp-lists */
759 	struct list_head lists[NR_PCP_LISTS];
760 } ____cacheline_aligned_in_smp;
761 
762 struct per_cpu_zonestat {
763 #ifdef CONFIG_SMP
764 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
765 	s8 stat_threshold;
766 #endif
767 #ifdef CONFIG_NUMA
768 	/*
769 	 * Low priority inaccurate counters that are only folded
770 	 * on demand. Use a large type to avoid the overhead of
771 	 * folding during refresh_cpu_vm_stats.
772 	 */
773 	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
774 #endif
775 };
776 
777 struct per_cpu_nodestat {
778 	s8 stat_threshold;
779 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
780 };
781 
782 #endif /* !__GENERATING_BOUNDS.H */
783 
784 enum zone_type {
785 	/*
786 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
787 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
788 	 * On architectures where this area covers the whole 32 bit address
789 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
790 	 * DMA addressing constraints. This distinction is important as a 32bit
791 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
792 	 * platforms may need both zones as they support peripherals with
793 	 * different DMA addressing limitations.
794 	 */
795 #ifdef CONFIG_ZONE_DMA
796 	ZONE_DMA,
797 #endif
798 #ifdef CONFIG_ZONE_DMA32
799 	ZONE_DMA32,
800 #endif
801 	/*
802 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
803 	 * performed on pages in ZONE_NORMAL if the DMA devices support
804 	 * transfers to all addressable memory.
805 	 */
806 	ZONE_NORMAL,
807 #ifdef CONFIG_HIGHMEM
808 	/*
809 	 * A memory area that is only addressable by the kernel through
810 	 * mapping portions into its own address space. This is for example
811 	 * used by i386 to allow the kernel to address the memory beyond
812 	 * 900MB. The kernel will set up special mappings (page
813 	 * table entries on i386) for each page that the kernel needs to
814 	 * access.
815 	 */
816 	ZONE_HIGHMEM,
817 #endif
818 	/*
819 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
820 	 * movable pages with few exceptional cases described below. Main use
821 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
822 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
823 	 * to increase the number of THP/huge pages. Notable special cases are:
824 	 *
825 	 * 1. Pinned pages: (long-term) pinning of movable pages might
826 	 *    essentially turn such pages unmovable. Therefore, we do not allow
827 	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
828 	 *    faulted, they come from the right zone right away. However, it is
829 	 *    still possible that address space already has pages in
830 	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
831 	 *    touches that memory before pinning). In such case we migrate them
832 	 *    to a different zone. When migration fails - pinning fails.
833 	 * 2. memblock allocations: kernelcore/movablecore setups might create
834 	 *    situations where ZONE_MOVABLE contains unmovable allocations
835 	 *    after boot. Memory offlining and allocations fail early.
836 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
837 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
838 	 *    for example, if we have sections that are only partially
839 	 *    populated. Memory offlining and allocations fail early.
840 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
841 	 *    memory offlining, such pages cannot be allocated.
842 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
843 	 *    hotplugged memory blocks might only partially be managed by the
844 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
845 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
846 	 *    some cases (virtio-mem), such pages can be skipped during
847 	 *    memory offlining, however, cannot be moved/allocated. These
848 	 *    techniques might use alloc_contig_range() to hide previously
849 	 *    exposed pages from the buddy again (e.g., to implement some sort
850 	 *    of memory unplug in virtio-mem).
851 	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
852 	 *    situations where ZERO_PAGE(0) which is allocated differently
853 	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
854 	 *    cannot be migrated.
855 	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
856 	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
857 	 *    such zone. Such pages cannot be really moved around as they are
858 	 *    self-stored in the range, but they are treated as movable when
859 	 *    the range they describe is about to be offlined.
860 	 *
861 	 * In general, no unmovable allocations that degrade memory offlining
862 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
863 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
864 	 * if has_unmovable_pages() states that there are no unmovable pages,
865 	 * there can be false negatives).
866 	 */
867 	ZONE_MOVABLE,
868 #ifdef CONFIG_ZONE_DEVICE
869 	ZONE_DEVICE,
870 #endif
871 	__MAX_NR_ZONES
872 
873 };
874 
875 #ifndef __GENERATING_BOUNDS_H
876 
877 #define ASYNC_AND_SYNC 2
878 
879 struct zone {
880 	/* Read-mostly fields */
881 
882 	/* zone watermarks, access with *_wmark_pages(zone) macros */
883 	unsigned long _watermark[NR_WMARK];
884 	unsigned long watermark_boost;
885 
886 	unsigned long nr_reserved_highatomic;
887 	unsigned long nr_free_highatomic;
888 
889 	/*
890 	 * We don't know if the memory that we're going to allocate will be
891 	 * freeable or/and it will be released eventually, so to avoid totally
892 	 * wasting several GB of ram we must reserve some of the lower zone
893 	 * memory (otherwise we risk to run OOM on the lower zones despite
894 	 * there being tons of freeable ram on the higher zones).  This array is
895 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
896 	 * changes.
897 	 */
898 	long lowmem_reserve[MAX_NR_ZONES];
899 
900 #ifdef CONFIG_NUMA
901 	int node;
902 #endif
903 	struct pglist_data	*zone_pgdat;
904 	struct per_cpu_pages	__percpu *per_cpu_pageset;
905 	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
906 	/*
907 	 * the high and batch values are copied to individual pagesets for
908 	 * faster access
909 	 */
910 	int pageset_high_min;
911 	int pageset_high_max;
912 	int pageset_batch;
913 
914 #ifndef CONFIG_SPARSEMEM
915 	/*
916 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
917 	 * In SPARSEMEM, this map is stored in struct mem_section
918 	 */
919 	unsigned long		*pageblock_flags;
920 #endif /* CONFIG_SPARSEMEM */
921 
922 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
923 	unsigned long		zone_start_pfn;
924 
925 	/*
926 	 * spanned_pages is the total pages spanned by the zone, including
927 	 * holes, which is calculated as:
928 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
929 	 *
930 	 * present_pages is physical pages existing within the zone, which
931 	 * is calculated as:
932 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
933 	 *
934 	 * present_early_pages is present pages existing within the zone
935 	 * located on memory available since early boot, excluding hotplugged
936 	 * memory.
937 	 *
938 	 * managed_pages is present pages managed by the buddy system, which
939 	 * is calculated as (reserved_pages includes pages allocated by the
940 	 * bootmem allocator):
941 	 *	managed_pages = present_pages - reserved_pages;
942 	 *
943 	 * cma pages is present pages that are assigned for CMA use
944 	 * (MIGRATE_CMA).
945 	 *
946 	 * So present_pages may be used by memory hotplug or memory power
947 	 * management logic to figure out unmanaged pages by checking
948 	 * (present_pages - managed_pages). And managed_pages should be used
949 	 * by page allocator and vm scanner to calculate all kinds of watermarks
950 	 * and thresholds.
951 	 *
952 	 * Locking rules:
953 	 *
954 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
955 	 * It is a seqlock because it has to be read outside of zone->lock,
956 	 * and it is done in the main allocator path.  But, it is written
957 	 * quite infrequently.
958 	 *
959 	 * The span_seq lock is declared along with zone->lock because it is
960 	 * frequently read in proximity to zone->lock.  It's good to
961 	 * give them a chance of being in the same cacheline.
962 	 *
963 	 * Write access to present_pages at runtime should be protected by
964 	 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
965 	 * present_pages should use get_online_mems() to get a stable value.
966 	 */
967 	atomic_long_t		managed_pages;
968 	unsigned long		spanned_pages;
969 	unsigned long		present_pages;
970 #if defined(CONFIG_MEMORY_HOTPLUG)
971 	unsigned long		present_early_pages;
972 #endif
973 #ifdef CONFIG_CMA
974 	unsigned long		cma_pages;
975 #endif
976 
977 	const char		*name;
978 
979 #ifdef CONFIG_MEMORY_ISOLATION
980 	/*
981 	 * Number of isolated pageblock. It is used to solve incorrect
982 	 * freepage counting problem due to racy retrieving migratetype
983 	 * of pageblock. Protected by zone->lock.
984 	 */
985 	unsigned long		nr_isolate_pageblock;
986 #endif
987 
988 #ifdef CONFIG_MEMORY_HOTPLUG
989 	/* see spanned/present_pages for more description */
990 	seqlock_t		span_seqlock;
991 #endif
992 
993 	int initialized;
994 
995 	/* Write-intensive fields used from the page allocator */
996 	CACHELINE_PADDING(_pad1_);
997 
998 	/* free areas of different sizes */
999 	struct free_area	free_area[NR_PAGE_ORDERS];
1000 
1001 #ifdef CONFIG_UNACCEPTED_MEMORY
1002 	/* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */
1003 	struct list_head	unaccepted_pages;
1004 
1005 	/* To be called once the last page in the zone is accepted */
1006 	struct work_struct	unaccepted_cleanup;
1007 #endif
1008 
1009 	/* zone flags, see below */
1010 	unsigned long		flags;
1011 
1012 	/* Primarily protects free_area */
1013 	spinlock_t		lock;
1014 
1015 	/* Pages to be freed when next trylock succeeds */
1016 	struct llist_head	trylock_free_pages;
1017 
1018 	/* Write-intensive fields used by compaction and vmstats. */
1019 	CACHELINE_PADDING(_pad2_);
1020 
1021 	/*
1022 	 * When free pages are below this point, additional steps are taken
1023 	 * when reading the number of free pages to avoid per-cpu counter
1024 	 * drift allowing watermarks to be breached
1025 	 */
1026 	unsigned long percpu_drift_mark;
1027 
1028 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
1029 	/* pfn where compaction free scanner should start */
1030 	unsigned long		compact_cached_free_pfn;
1031 	/* pfn where compaction migration scanner should start */
1032 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
1033 	unsigned long		compact_init_migrate_pfn;
1034 	unsigned long		compact_init_free_pfn;
1035 #endif
1036 
1037 #ifdef CONFIG_COMPACTION
1038 	/*
1039 	 * On compaction failure, 1<<compact_defer_shift compactions
1040 	 * are skipped before trying again. The number attempted since
1041 	 * last failure is tracked with compact_considered.
1042 	 * compact_order_failed is the minimum compaction failed order.
1043 	 */
1044 	unsigned int		compact_considered;
1045 	unsigned int		compact_defer_shift;
1046 	int			compact_order_failed;
1047 #endif
1048 
1049 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
1050 	/* Set to true when the PG_migrate_skip bits should be cleared */
1051 	bool			compact_blockskip_flush;
1052 #endif
1053 
1054 	bool			contiguous;
1055 
1056 	CACHELINE_PADDING(_pad3_);
1057 	/* Zone statistics */
1058 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
1059 	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
1060 } ____cacheline_internodealigned_in_smp;
1061 
1062 enum pgdat_flags {
1063 	PGDAT_DIRTY,			/* reclaim scanning has recently found
1064 					 * many dirty file pages at the tail
1065 					 * of the LRU.
1066 					 */
1067 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
1068 					 * many pages under writeback
1069 					 */
1070 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
1071 };
1072 
1073 enum zone_flags {
1074 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
1075 					 * Cleared when kswapd is woken.
1076 					 */
1077 	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
1078 	ZONE_BELOW_HIGH,		/* zone is below high watermark. */
1079 };
1080 
wmark_pages(const struct zone * z,enum zone_watermarks w)1081 static inline unsigned long wmark_pages(const struct zone *z,
1082 					enum zone_watermarks w)
1083 {
1084 	return z->_watermark[w] + z->watermark_boost;
1085 }
1086 
min_wmark_pages(const struct zone * z)1087 static inline unsigned long min_wmark_pages(const struct zone *z)
1088 {
1089 	return wmark_pages(z, WMARK_MIN);
1090 }
1091 
low_wmark_pages(const struct zone * z)1092 static inline unsigned long low_wmark_pages(const struct zone *z)
1093 {
1094 	return wmark_pages(z, WMARK_LOW);
1095 }
1096 
high_wmark_pages(const struct zone * z)1097 static inline unsigned long high_wmark_pages(const struct zone *z)
1098 {
1099 	return wmark_pages(z, WMARK_HIGH);
1100 }
1101 
promo_wmark_pages(const struct zone * z)1102 static inline unsigned long promo_wmark_pages(const struct zone *z)
1103 {
1104 	return wmark_pages(z, WMARK_PROMO);
1105 }
1106 
zone_managed_pages(const struct zone * zone)1107 static inline unsigned long zone_managed_pages(const struct zone *zone)
1108 {
1109 	return (unsigned long)atomic_long_read(&zone->managed_pages);
1110 }
1111 
zone_cma_pages(struct zone * zone)1112 static inline unsigned long zone_cma_pages(struct zone *zone)
1113 {
1114 #ifdef CONFIG_CMA
1115 	return zone->cma_pages;
1116 #else
1117 	return 0;
1118 #endif
1119 }
1120 
zone_end_pfn(const struct zone * zone)1121 static inline unsigned long zone_end_pfn(const struct zone *zone)
1122 {
1123 	return zone->zone_start_pfn + zone->spanned_pages;
1124 }
1125 
zone_spans_pfn(const struct zone * zone,unsigned long pfn)1126 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1127 {
1128 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1129 }
1130 
zone_is_initialized(const struct zone * zone)1131 static inline bool zone_is_initialized(const struct zone *zone)
1132 {
1133 	return zone->initialized;
1134 }
1135 
zone_is_empty(const struct zone * zone)1136 static inline bool zone_is_empty(const struct zone *zone)
1137 {
1138 	return zone->spanned_pages == 0;
1139 }
1140 
1141 #ifndef BUILD_VDSO32_64
1142 /*
1143  * The zone field is never updated after free_area_init_core()
1144  * sets it, so none of the operations on it need to be atomic.
1145  */
1146 
1147 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1148 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1149 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1150 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1151 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1152 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1153 #define LRU_GEN_PGOFF		(KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1154 #define LRU_REFS_PGOFF		(LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1155 
1156 /*
1157  * Define the bit shifts to access each section.  For non-existent
1158  * sections we define the shift as 0; that plus a 0 mask ensures
1159  * the compiler will optimise away reference to them.
1160  */
1161 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1162 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1163 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1164 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1165 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1166 
1167 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1168 #ifdef NODE_NOT_IN_PAGE_FLAGS
1169 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1170 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1171 						SECTIONS_PGOFF : ZONES_PGOFF)
1172 #else
1173 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1174 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF) ? \
1175 						NODES_PGOFF : ZONES_PGOFF)
1176 #endif
1177 
1178 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1179 
1180 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1181 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1182 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1183 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1184 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1185 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1186 
memdesc_zonenum(memdesc_flags_t flags)1187 static inline enum zone_type memdesc_zonenum(memdesc_flags_t flags)
1188 {
1189 	ASSERT_EXCLUSIVE_BITS(flags.f, ZONES_MASK << ZONES_PGSHIFT);
1190 	return (flags.f >> ZONES_PGSHIFT) & ZONES_MASK;
1191 }
1192 
page_zonenum(const struct page * page)1193 static inline enum zone_type page_zonenum(const struct page *page)
1194 {
1195 	return memdesc_zonenum(page->flags);
1196 }
1197 
folio_zonenum(const struct folio * folio)1198 static inline enum zone_type folio_zonenum(const struct folio *folio)
1199 {
1200 	return memdesc_zonenum(folio->flags);
1201 }
1202 
1203 #ifdef CONFIG_ZONE_DEVICE
memdesc_is_zone_device(memdesc_flags_t mdf)1204 static inline bool memdesc_is_zone_device(memdesc_flags_t mdf)
1205 {
1206 	return memdesc_zonenum(mdf) == ZONE_DEVICE;
1207 }
1208 
page_pgmap(const struct page * page)1209 static inline struct dev_pagemap *page_pgmap(const struct page *page)
1210 {
1211 	VM_WARN_ON_ONCE_PAGE(!memdesc_is_zone_device(page->flags), page);
1212 	return page_folio(page)->pgmap;
1213 }
1214 
1215 /*
1216  * Consecutive zone device pages should not be merged into the same sgl
1217  * or bvec segment with other types of pages or if they belong to different
1218  * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1219  * without scanning the entire segment. This helper returns true either if
1220  * both pages are not zone device pages or both pages are zone device pages
1221  * with the same pgmap.
1222  */
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1223 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1224 						     const struct page *b)
1225 {
1226 	if (memdesc_is_zone_device(a->flags) != memdesc_is_zone_device(b->flags))
1227 		return false;
1228 	if (!memdesc_is_zone_device(a->flags))
1229 		return true;
1230 	return page_pgmap(a) == page_pgmap(b);
1231 }
1232 
1233 extern void memmap_init_zone_device(struct zone *, unsigned long,
1234 				    unsigned long, struct dev_pagemap *);
1235 #else
memdesc_is_zone_device(memdesc_flags_t mdf)1236 static inline bool memdesc_is_zone_device(memdesc_flags_t mdf)
1237 {
1238 	return false;
1239 }
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1240 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1241 						     const struct page *b)
1242 {
1243 	return true;
1244 }
page_pgmap(const struct page * page)1245 static inline struct dev_pagemap *page_pgmap(const struct page *page)
1246 {
1247 	return NULL;
1248 }
1249 #endif
1250 
is_zone_device_page(const struct page * page)1251 static inline bool is_zone_device_page(const struct page *page)
1252 {
1253 	return memdesc_is_zone_device(page->flags);
1254 }
1255 
folio_is_zone_device(const struct folio * folio)1256 static inline bool folio_is_zone_device(const struct folio *folio)
1257 {
1258 	return memdesc_is_zone_device(folio->flags);
1259 }
1260 
is_zone_movable_page(const struct page * page)1261 static inline bool is_zone_movable_page(const struct page *page)
1262 {
1263 	return page_zonenum(page) == ZONE_MOVABLE;
1264 }
1265 
folio_is_zone_movable(const struct folio * folio)1266 static inline bool folio_is_zone_movable(const struct folio *folio)
1267 {
1268 	return folio_zonenum(folio) == ZONE_MOVABLE;
1269 }
1270 #endif
1271 
1272 /*
1273  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1274  * intersection with the given zone
1275  */
zone_intersects(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)1276 static inline bool zone_intersects(const struct zone *zone,
1277 		unsigned long start_pfn, unsigned long nr_pages)
1278 {
1279 	if (zone_is_empty(zone))
1280 		return false;
1281 	if (start_pfn >= zone_end_pfn(zone) ||
1282 	    start_pfn + nr_pages <= zone->zone_start_pfn)
1283 		return false;
1284 
1285 	return true;
1286 }
1287 
1288 /*
1289  * The "priority" of VM scanning is how much of the queues we will scan in one
1290  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1291  * queues ("queue_length >> 12") during an aging round.
1292  */
1293 #define DEF_PRIORITY 12
1294 
1295 /* Maximum number of zones on a zonelist */
1296 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1297 
1298 enum {
1299 	ZONELIST_FALLBACK,	/* zonelist with fallback */
1300 #ifdef CONFIG_NUMA
1301 	/*
1302 	 * The NUMA zonelists are doubled because we need zonelists that
1303 	 * restrict the allocations to a single node for __GFP_THISNODE.
1304 	 */
1305 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
1306 #endif
1307 	MAX_ZONELISTS
1308 };
1309 
1310 /*
1311  * This struct contains information about a zone in a zonelist. It is stored
1312  * here to avoid dereferences into large structures and lookups of tables
1313  */
1314 struct zoneref {
1315 	struct zone *zone;	/* Pointer to actual zone */
1316 	int zone_idx;		/* zone_idx(zoneref->zone) */
1317 };
1318 
1319 /*
1320  * One allocation request operates on a zonelist. A zonelist
1321  * is a list of zones, the first one is the 'goal' of the
1322  * allocation, the other zones are fallback zones, in decreasing
1323  * priority.
1324  *
1325  * To speed the reading of the zonelist, the zonerefs contain the zone index
1326  * of the entry being read. Helper functions to access information given
1327  * a struct zoneref are
1328  *
1329  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
1330  * zonelist_zone_idx()	- Return the index of the zone for an entry
1331  * zonelist_node_idx()	- Return the index of the node for an entry
1332  */
1333 struct zonelist {
1334 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1335 };
1336 
1337 /*
1338  * The array of struct pages for flatmem.
1339  * It must be declared for SPARSEMEM as well because there are configurations
1340  * that rely on that.
1341  */
1342 extern struct page *mem_map;
1343 
1344 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1345 struct deferred_split {
1346 	spinlock_t split_queue_lock;
1347 	struct list_head split_queue;
1348 	unsigned long split_queue_len;
1349 };
1350 #endif
1351 
1352 #ifdef CONFIG_MEMORY_FAILURE
1353 /*
1354  * Per NUMA node memory failure handling statistics.
1355  */
1356 struct memory_failure_stats {
1357 	/*
1358 	 * Number of raw pages poisoned.
1359 	 * Cases not accounted: memory outside kernel control, offline page,
1360 	 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1361 	 * error events, and unpoison actions from hwpoison_unpoison.
1362 	 */
1363 	unsigned long total;
1364 	/*
1365 	 * Recovery results of poisoned raw pages handled by memory_failure,
1366 	 * in sync with mf_result.
1367 	 * total = ignored + failed + delayed + recovered.
1368 	 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1369 	 */
1370 	unsigned long ignored;
1371 	unsigned long failed;
1372 	unsigned long delayed;
1373 	unsigned long recovered;
1374 };
1375 #endif
1376 
1377 /*
1378  * On NUMA machines, each NUMA node would have a pg_data_t to describe
1379  * it's memory layout. On UMA machines there is a single pglist_data which
1380  * describes the whole memory.
1381  *
1382  * Memory statistics and page replacement data structures are maintained on a
1383  * per-zone basis.
1384  */
1385 typedef struct pglist_data {
1386 	/*
1387 	 * node_zones contains just the zones for THIS node. Not all of the
1388 	 * zones may be populated, but it is the full list. It is referenced by
1389 	 * this node's node_zonelists as well as other node's node_zonelists.
1390 	 */
1391 	struct zone node_zones[MAX_NR_ZONES];
1392 
1393 	/*
1394 	 * node_zonelists contains references to all zones in all nodes.
1395 	 * Generally the first zones will be references to this node's
1396 	 * node_zones.
1397 	 */
1398 	struct zonelist node_zonelists[MAX_ZONELISTS];
1399 
1400 	int nr_zones; /* number of populated zones in this node */
1401 #ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */
1402 	struct page *node_mem_map;
1403 #ifdef CONFIG_PAGE_EXTENSION
1404 	struct page_ext *node_page_ext;
1405 #endif
1406 #endif
1407 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1408 	/*
1409 	 * Must be held any time you expect node_start_pfn,
1410 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1411 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1412 	 * init.
1413 	 *
1414 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1415 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1416 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1417 	 *
1418 	 * Nests above zone->lock and zone->span_seqlock
1419 	 */
1420 	spinlock_t node_size_lock;
1421 #endif
1422 	unsigned long node_start_pfn;
1423 	unsigned long node_present_pages; /* total number of physical pages */
1424 	unsigned long node_spanned_pages; /* total size of physical page
1425 					     range, including holes */
1426 	int node_id;
1427 	wait_queue_head_t kswapd_wait;
1428 	wait_queue_head_t pfmemalloc_wait;
1429 
1430 	/* workqueues for throttling reclaim for different reasons. */
1431 	wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1432 
1433 	atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1434 	unsigned long nr_reclaim_start;	/* nr pages written while throttled
1435 					 * when throttling started. */
1436 #ifdef CONFIG_MEMORY_HOTPLUG
1437 	struct mutex kswapd_lock;
1438 #endif
1439 	struct task_struct *kswapd;	/* Protected by kswapd_lock */
1440 	int kswapd_order;
1441 	enum zone_type kswapd_highest_zoneidx;
1442 
1443 	atomic_t kswapd_failures;	/* Number of 'reclaimed == 0' runs */
1444 
1445 #ifdef CONFIG_COMPACTION
1446 	int kcompactd_max_order;
1447 	enum zone_type kcompactd_highest_zoneidx;
1448 	wait_queue_head_t kcompactd_wait;
1449 	struct task_struct *kcompactd;
1450 	bool proactive_compact_trigger;
1451 #endif
1452 	/*
1453 	 * This is a per-node reserve of pages that are not available
1454 	 * to userspace allocations.
1455 	 */
1456 	unsigned long		totalreserve_pages;
1457 
1458 #ifdef CONFIG_NUMA
1459 	/*
1460 	 * node reclaim becomes active if more unmapped pages exist.
1461 	 */
1462 	unsigned long		min_unmapped_pages;
1463 	unsigned long		min_slab_pages;
1464 #endif /* CONFIG_NUMA */
1465 
1466 	/* Write-intensive fields used by page reclaim */
1467 	CACHELINE_PADDING(_pad1_);
1468 
1469 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1470 	/*
1471 	 * If memory initialisation on large machines is deferred then this
1472 	 * is the first PFN that needs to be initialised.
1473 	 */
1474 	unsigned long first_deferred_pfn;
1475 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1476 
1477 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1478 	struct deferred_split deferred_split_queue;
1479 #endif
1480 
1481 #ifdef CONFIG_NUMA_BALANCING
1482 	/* start time in ms of current promote rate limit period */
1483 	unsigned int nbp_rl_start;
1484 	/* number of promote candidate pages at start time of current rate limit period */
1485 	unsigned long nbp_rl_nr_cand;
1486 	/* promote threshold in ms */
1487 	unsigned int nbp_threshold;
1488 	/* start time in ms of current promote threshold adjustment period */
1489 	unsigned int nbp_th_start;
1490 	/*
1491 	 * number of promote candidate pages at start time of current promote
1492 	 * threshold adjustment period
1493 	 */
1494 	unsigned long nbp_th_nr_cand;
1495 #endif
1496 	/* Fields commonly accessed by the page reclaim scanner */
1497 
1498 	/*
1499 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1500 	 *
1501 	 * Use mem_cgroup_lruvec() to look up lruvecs.
1502 	 */
1503 	struct lruvec		__lruvec;
1504 
1505 	unsigned long		flags;
1506 
1507 #ifdef CONFIG_LRU_GEN
1508 	/* kswap mm walk data */
1509 	struct lru_gen_mm_walk mm_walk;
1510 	/* lru_gen_folio list */
1511 	struct lru_gen_memcg memcg_lru;
1512 #endif
1513 
1514 	CACHELINE_PADDING(_pad2_);
1515 
1516 	/* Per-node vmstats */
1517 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1518 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
1519 #ifdef CONFIG_NUMA
1520 	struct memory_tier __rcu *memtier;
1521 #endif
1522 #ifdef CONFIG_MEMORY_FAILURE
1523 	struct memory_failure_stats mf_stats;
1524 #endif
1525 } pg_data_t;
1526 
1527 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
1528 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
1529 
1530 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
1531 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1532 
pgdat_end_pfn(pg_data_t * pgdat)1533 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1534 {
1535 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1536 }
1537 
1538 #include <linux/memory_hotplug.h>
1539 
1540 void build_all_zonelists(pg_data_t *pgdat);
1541 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1542 		   enum zone_type highest_zoneidx);
1543 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1544 			 int highest_zoneidx, unsigned int alloc_flags,
1545 			 long free_pages);
1546 bool zone_watermark_ok(struct zone *z, unsigned int order,
1547 		unsigned long mark, int highest_zoneidx,
1548 		unsigned int alloc_flags);
1549 /*
1550  * Memory initialization context, use to differentiate memory added by
1551  * the platform statically or via memory hotplug interface.
1552  */
1553 enum meminit_context {
1554 	MEMINIT_EARLY,
1555 	MEMINIT_HOTPLUG,
1556 };
1557 
1558 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1559 				     unsigned long size);
1560 
1561 extern void lruvec_init(struct lruvec *lruvec);
1562 
lruvec_pgdat(struct lruvec * lruvec)1563 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1564 {
1565 #ifdef CONFIG_MEMCG
1566 	return lruvec->pgdat;
1567 #else
1568 	return container_of(lruvec, struct pglist_data, __lruvec);
1569 #endif
1570 }
1571 
1572 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1573 int local_memory_node(int node_id);
1574 #else
local_memory_node(int node_id)1575 static inline int local_memory_node(int node_id) { return node_id; };
1576 #endif
1577 
1578 /*
1579  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1580  */
1581 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
1582 
1583 #ifdef CONFIG_ZONE_DEVICE
zone_is_zone_device(const struct zone * zone)1584 static inline bool zone_is_zone_device(const struct zone *zone)
1585 {
1586 	return zone_idx(zone) == ZONE_DEVICE;
1587 }
1588 #else
zone_is_zone_device(const struct zone * zone)1589 static inline bool zone_is_zone_device(const struct zone *zone)
1590 {
1591 	return false;
1592 }
1593 #endif
1594 
1595 /*
1596  * Returns true if a zone has pages managed by the buddy allocator.
1597  * All the reclaim decisions have to use this function rather than
1598  * populated_zone(). If the whole zone is reserved then we can easily
1599  * end up with populated_zone() && !managed_zone().
1600  */
managed_zone(const struct zone * zone)1601 static inline bool managed_zone(const struct zone *zone)
1602 {
1603 	return zone_managed_pages(zone);
1604 }
1605 
1606 /* Returns true if a zone has memory */
populated_zone(const struct zone * zone)1607 static inline bool populated_zone(const struct zone *zone)
1608 {
1609 	return zone->present_pages;
1610 }
1611 
1612 #ifdef CONFIG_NUMA
zone_to_nid(const struct zone * zone)1613 static inline int zone_to_nid(const struct zone *zone)
1614 {
1615 	return zone->node;
1616 }
1617 
zone_set_nid(struct zone * zone,int nid)1618 static inline void zone_set_nid(struct zone *zone, int nid)
1619 {
1620 	zone->node = nid;
1621 }
1622 #else
zone_to_nid(const struct zone * zone)1623 static inline int zone_to_nid(const struct zone *zone)
1624 {
1625 	return 0;
1626 }
1627 
zone_set_nid(struct zone * zone,int nid)1628 static inline void zone_set_nid(struct zone *zone, int nid) {}
1629 #endif
1630 
1631 extern int movable_zone;
1632 
is_highmem_idx(enum zone_type idx)1633 static inline int is_highmem_idx(enum zone_type idx)
1634 {
1635 #ifdef CONFIG_HIGHMEM
1636 	return (idx == ZONE_HIGHMEM ||
1637 		(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1638 #else
1639 	return 0;
1640 #endif
1641 }
1642 
1643 /**
1644  * is_highmem - helper function to quickly check if a struct zone is a
1645  *              highmem zone or not.  This is an attempt to keep references
1646  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1647  * @zone: pointer to struct zone variable
1648  * Return: 1 for a highmem zone, 0 otherwise
1649  */
is_highmem(const struct zone * zone)1650 static inline int is_highmem(const struct zone *zone)
1651 {
1652 	return is_highmem_idx(zone_idx(zone));
1653 }
1654 
1655 #ifdef CONFIG_ZONE_DMA
1656 bool has_managed_dma(void);
1657 #else
has_managed_dma(void)1658 static inline bool has_managed_dma(void)
1659 {
1660 	return false;
1661 }
1662 #endif
1663 
1664 
1665 #ifndef CONFIG_NUMA
1666 
1667 extern struct pglist_data contig_page_data;
NODE_DATA(int nid)1668 static inline struct pglist_data *NODE_DATA(int nid)
1669 {
1670 	return &contig_page_data;
1671 }
1672 
1673 #else /* CONFIG_NUMA */
1674 
1675 #include <asm/mmzone.h>
1676 
1677 #endif /* !CONFIG_NUMA */
1678 
1679 extern struct pglist_data *first_online_pgdat(void);
1680 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1681 extern struct zone *next_zone(struct zone *zone);
1682 
1683 /**
1684  * for_each_online_pgdat - helper macro to iterate over all online nodes
1685  * @pgdat: pointer to a pg_data_t variable
1686  */
1687 #define for_each_online_pgdat(pgdat)			\
1688 	for (pgdat = first_online_pgdat();		\
1689 	     pgdat;					\
1690 	     pgdat = next_online_pgdat(pgdat))
1691 /**
1692  * for_each_zone - helper macro to iterate over all memory zones
1693  * @zone: pointer to struct zone variable
1694  *
1695  * The user only needs to declare the zone variable, for_each_zone
1696  * fills it in.
1697  */
1698 #define for_each_zone(zone)			        \
1699 	for (zone = (first_online_pgdat())->node_zones; \
1700 	     zone;					\
1701 	     zone = next_zone(zone))
1702 
1703 #define for_each_populated_zone(zone)		        \
1704 	for (zone = (first_online_pgdat())->node_zones; \
1705 	     zone;					\
1706 	     zone = next_zone(zone))			\
1707 		if (!populated_zone(zone))		\
1708 			; /* do nothing */		\
1709 		else
1710 
zonelist_zone(struct zoneref * zoneref)1711 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1712 {
1713 	return zoneref->zone;
1714 }
1715 
zonelist_zone_idx(const struct zoneref * zoneref)1716 static inline int zonelist_zone_idx(const struct zoneref *zoneref)
1717 {
1718 	return zoneref->zone_idx;
1719 }
1720 
zonelist_node_idx(const struct zoneref * zoneref)1721 static inline int zonelist_node_idx(const struct zoneref *zoneref)
1722 {
1723 	return zone_to_nid(zoneref->zone);
1724 }
1725 
1726 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1727 					enum zone_type highest_zoneidx,
1728 					nodemask_t *nodes);
1729 
1730 /**
1731  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1732  * @z: The cursor used as a starting point for the search
1733  * @highest_zoneidx: The zone index of the highest zone to return
1734  * @nodes: An optional nodemask to filter the zonelist with
1735  *
1736  * This function returns the next zone at or below a given zone index that is
1737  * within the allowed nodemask using a cursor as the starting point for the
1738  * search. The zoneref returned is a cursor that represents the current zone
1739  * being examined. It should be advanced by one before calling
1740  * next_zones_zonelist again.
1741  *
1742  * Return: the next zone at or below highest_zoneidx within the allowed
1743  * nodemask using a cursor within a zonelist as a starting point
1744  */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1745 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1746 					enum zone_type highest_zoneidx,
1747 					nodemask_t *nodes)
1748 {
1749 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1750 		return z;
1751 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1752 }
1753 
1754 /**
1755  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1756  * @zonelist: The zonelist to search for a suitable zone
1757  * @highest_zoneidx: The zone index of the highest zone to return
1758  * @nodes: An optional nodemask to filter the zonelist with
1759  *
1760  * This function returns the first zone at or below a given zone index that is
1761  * within the allowed nodemask. The zoneref returned is a cursor that can be
1762  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1763  * one before calling.
1764  *
1765  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1766  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1767  * update due to cpuset modification.
1768  *
1769  * Return: Zoneref pointer for the first suitable zone found
1770  */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1771 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1772 					enum zone_type highest_zoneidx,
1773 					nodemask_t *nodes)
1774 {
1775 	return next_zones_zonelist(zonelist->_zonerefs,
1776 							highest_zoneidx, nodes);
1777 }
1778 
1779 /**
1780  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1781  * @zone: The current zone in the iterator
1782  * @z: The current pointer within zonelist->_zonerefs being iterated
1783  * @zlist: The zonelist being iterated
1784  * @highidx: The zone index of the highest zone to return
1785  * @nodemask: Nodemask allowed by the allocator
1786  *
1787  * This iterator iterates though all zones at or below a given zone index and
1788  * within a given nodemask
1789  */
1790 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1791 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1792 		zone;							\
1793 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1794 			zone = zonelist_zone(z))
1795 
1796 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1797 	for (zone = zonelist_zone(z);	\
1798 		zone;							\
1799 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1800 			zone = zonelist_zone(z))
1801 
1802 
1803 /**
1804  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1805  * @zone: The current zone in the iterator
1806  * @z: The current pointer within zonelist->zones being iterated
1807  * @zlist: The zonelist being iterated
1808  * @highidx: The zone index of the highest zone to return
1809  *
1810  * This iterator iterates though all zones at or below a given zone index.
1811  */
1812 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1813 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1814 
1815 /* Whether the 'nodes' are all movable nodes */
movable_only_nodes(nodemask_t * nodes)1816 static inline bool movable_only_nodes(nodemask_t *nodes)
1817 {
1818 	struct zonelist *zonelist;
1819 	struct zoneref *z;
1820 	int nid;
1821 
1822 	if (nodes_empty(*nodes))
1823 		return false;
1824 
1825 	/*
1826 	 * We can chose arbitrary node from the nodemask to get a
1827 	 * zonelist as they are interlinked. We just need to find
1828 	 * at least one zone that can satisfy kernel allocations.
1829 	 */
1830 	nid = first_node(*nodes);
1831 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1832 	z = first_zones_zonelist(zonelist, ZONE_NORMAL,	nodes);
1833 	return (!zonelist_zone(z)) ? true : false;
1834 }
1835 
1836 
1837 #ifdef CONFIG_SPARSEMEM
1838 #include <asm/sparsemem.h>
1839 #endif
1840 
1841 #ifdef CONFIG_FLATMEM
1842 #define pfn_to_nid(pfn)		(0)
1843 #endif
1844 
1845 #ifdef CONFIG_SPARSEMEM
1846 
1847 /*
1848  * PA_SECTION_SHIFT		physical address to/from section number
1849  * PFN_SECTION_SHIFT		pfn to/from section number
1850  */
1851 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1852 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1853 
1854 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1855 
1856 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1857 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1858 
1859 #define SECTION_BLOCKFLAGS_BITS \
1860 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1861 
1862 #if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1863 #error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE
1864 #endif
1865 
pfn_to_section_nr(unsigned long pfn)1866 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1867 {
1868 	return pfn >> PFN_SECTION_SHIFT;
1869 }
section_nr_to_pfn(unsigned long sec)1870 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1871 {
1872 	return sec << PFN_SECTION_SHIFT;
1873 }
1874 
1875 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1876 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1877 
1878 #define SUBSECTION_SHIFT 21
1879 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1880 
1881 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1882 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1883 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1884 
1885 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1886 #error Subsection size exceeds section size
1887 #else
1888 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1889 #endif
1890 
1891 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1892 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1893 
1894 struct mem_section_usage {
1895 	struct rcu_head rcu;
1896 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1897 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1898 #endif
1899 	/* See declaration of similar field in struct zone */
1900 	unsigned long pageblock_flags[0];
1901 };
1902 
1903 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1904 
1905 struct page;
1906 struct page_ext;
1907 struct mem_section {
1908 	/*
1909 	 * This is, logically, a pointer to an array of struct
1910 	 * pages.  However, it is stored with some other magic.
1911 	 * (see sparse.c::sparse_init_one_section())
1912 	 *
1913 	 * Additionally during early boot we encode node id of
1914 	 * the location of the section here to guide allocation.
1915 	 * (see sparse.c::memory_present())
1916 	 *
1917 	 * Making it a UL at least makes someone do a cast
1918 	 * before using it wrong.
1919 	 */
1920 	unsigned long section_mem_map;
1921 
1922 	struct mem_section_usage *usage;
1923 #ifdef CONFIG_PAGE_EXTENSION
1924 	/*
1925 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1926 	 * section. (see page_ext.h about this.)
1927 	 */
1928 	struct page_ext *page_ext;
1929 	unsigned long pad;
1930 #endif
1931 	/*
1932 	 * WARNING: mem_section must be a power-of-2 in size for the
1933 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1934 	 */
1935 };
1936 
1937 #ifdef CONFIG_SPARSEMEM_EXTREME
1938 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1939 #else
1940 #define SECTIONS_PER_ROOT	1
1941 #endif
1942 
1943 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1944 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1945 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1946 
1947 #ifdef CONFIG_SPARSEMEM_EXTREME
1948 extern struct mem_section **mem_section;
1949 #else
1950 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1951 #endif
1952 
section_to_usemap(struct mem_section * ms)1953 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1954 {
1955 	return ms->usage->pageblock_flags;
1956 }
1957 
__nr_to_section(unsigned long nr)1958 static inline struct mem_section *__nr_to_section(unsigned long nr)
1959 {
1960 	unsigned long root = SECTION_NR_TO_ROOT(nr);
1961 
1962 	if (unlikely(root >= NR_SECTION_ROOTS))
1963 		return NULL;
1964 
1965 #ifdef CONFIG_SPARSEMEM_EXTREME
1966 	if (!mem_section || !mem_section[root])
1967 		return NULL;
1968 #endif
1969 	return &mem_section[root][nr & SECTION_ROOT_MASK];
1970 }
1971 extern size_t mem_section_usage_size(void);
1972 
1973 /*
1974  * We use the lower bits of the mem_map pointer to store
1975  * a little bit of information.  The pointer is calculated
1976  * as mem_map - section_nr_to_pfn(pnum).  The result is
1977  * aligned to the minimum alignment of the two values:
1978  *   1. All mem_map arrays are page-aligned.
1979  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1980  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1981  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1982  *      worst combination is powerpc with 256k pages,
1983  *      which results in PFN_SECTION_SHIFT equal 6.
1984  * To sum it up, at least 6 bits are available on all architectures.
1985  * However, we can exceed 6 bits on some other architectures except
1986  * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1987  * with the worst case of 64K pages on arm64) if we make sure the
1988  * exceeded bit is not applicable to powerpc.
1989  */
1990 enum {
1991 	SECTION_MARKED_PRESENT_BIT,
1992 	SECTION_HAS_MEM_MAP_BIT,
1993 	SECTION_IS_ONLINE_BIT,
1994 	SECTION_IS_EARLY_BIT,
1995 #ifdef CONFIG_ZONE_DEVICE
1996 	SECTION_TAINT_ZONE_DEVICE_BIT,
1997 #endif
1998 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
1999 	SECTION_IS_VMEMMAP_PREINIT_BIT,
2000 #endif
2001 	SECTION_MAP_LAST_BIT,
2002 };
2003 
2004 #define SECTION_MARKED_PRESENT		BIT(SECTION_MARKED_PRESENT_BIT)
2005 #define SECTION_HAS_MEM_MAP		BIT(SECTION_HAS_MEM_MAP_BIT)
2006 #define SECTION_IS_ONLINE		BIT(SECTION_IS_ONLINE_BIT)
2007 #define SECTION_IS_EARLY		BIT(SECTION_IS_EARLY_BIT)
2008 #ifdef CONFIG_ZONE_DEVICE
2009 #define SECTION_TAINT_ZONE_DEVICE	BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
2010 #endif
2011 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
2012 #define SECTION_IS_VMEMMAP_PREINIT	BIT(SECTION_IS_VMEMMAP_PREINIT_BIT)
2013 #endif
2014 #define SECTION_MAP_MASK		(~(BIT(SECTION_MAP_LAST_BIT) - 1))
2015 #define SECTION_NID_SHIFT		SECTION_MAP_LAST_BIT
2016 
__section_mem_map_addr(struct mem_section * section)2017 static inline struct page *__section_mem_map_addr(struct mem_section *section)
2018 {
2019 	unsigned long map = section->section_mem_map;
2020 	map &= SECTION_MAP_MASK;
2021 	return (struct page *)map;
2022 }
2023 
present_section(const struct mem_section * section)2024 static inline int present_section(const struct mem_section *section)
2025 {
2026 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
2027 }
2028 
present_section_nr(unsigned long nr)2029 static inline int present_section_nr(unsigned long nr)
2030 {
2031 	return present_section(__nr_to_section(nr));
2032 }
2033 
valid_section(const struct mem_section * section)2034 static inline int valid_section(const struct mem_section *section)
2035 {
2036 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
2037 }
2038 
early_section(const struct mem_section * section)2039 static inline int early_section(const struct mem_section *section)
2040 {
2041 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
2042 }
2043 
valid_section_nr(unsigned long nr)2044 static inline int valid_section_nr(unsigned long nr)
2045 {
2046 	return valid_section(__nr_to_section(nr));
2047 }
2048 
online_section(const struct mem_section * section)2049 static inline int online_section(const struct mem_section *section)
2050 {
2051 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
2052 }
2053 
2054 #ifdef CONFIG_ZONE_DEVICE
online_device_section(const struct mem_section * section)2055 static inline int online_device_section(const struct mem_section *section)
2056 {
2057 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
2058 
2059 	return section && ((section->section_mem_map & flags) == flags);
2060 }
2061 #else
online_device_section(const struct mem_section * section)2062 static inline int online_device_section(const struct mem_section *section)
2063 {
2064 	return 0;
2065 }
2066 #endif
2067 
2068 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
preinited_vmemmap_section(const struct mem_section * section)2069 static inline int preinited_vmemmap_section(const struct mem_section *section)
2070 {
2071 	return (section &&
2072 		(section->section_mem_map & SECTION_IS_VMEMMAP_PREINIT));
2073 }
2074 
2075 void sparse_vmemmap_init_nid_early(int nid);
2076 void sparse_vmemmap_init_nid_late(int nid);
2077 
2078 #else
preinited_vmemmap_section(const struct mem_section * section)2079 static inline int preinited_vmemmap_section(const struct mem_section *section)
2080 {
2081 	return 0;
2082 }
sparse_vmemmap_init_nid_early(int nid)2083 static inline void sparse_vmemmap_init_nid_early(int nid)
2084 {
2085 }
2086 
sparse_vmemmap_init_nid_late(int nid)2087 static inline void sparse_vmemmap_init_nid_late(int nid)
2088 {
2089 }
2090 #endif
2091 
online_section_nr(unsigned long nr)2092 static inline int online_section_nr(unsigned long nr)
2093 {
2094 	return online_section(__nr_to_section(nr));
2095 }
2096 
2097 #ifdef CONFIG_MEMORY_HOTPLUG
2098 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2099 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2100 #endif
2101 
__pfn_to_section(unsigned long pfn)2102 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
2103 {
2104 	return __nr_to_section(pfn_to_section_nr(pfn));
2105 }
2106 
2107 extern unsigned long __highest_present_section_nr;
2108 
subsection_map_index(unsigned long pfn)2109 static inline int subsection_map_index(unsigned long pfn)
2110 {
2111 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
2112 }
2113 
2114 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)2115 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2116 {
2117 	int idx = subsection_map_index(pfn);
2118 	struct mem_section_usage *usage = READ_ONCE(ms->usage);
2119 
2120 	return usage ? test_bit(idx, usage->subsection_map) : 0;
2121 }
2122 
pfn_section_first_valid(struct mem_section * ms,unsigned long * pfn)2123 static inline bool pfn_section_first_valid(struct mem_section *ms, unsigned long *pfn)
2124 {
2125 	struct mem_section_usage *usage = READ_ONCE(ms->usage);
2126 	int idx = subsection_map_index(*pfn);
2127 	unsigned long bit;
2128 
2129 	if (!usage)
2130 		return false;
2131 
2132 	if (test_bit(idx, usage->subsection_map))
2133 		return true;
2134 
2135 	/* Find the next subsection that exists */
2136 	bit = find_next_bit(usage->subsection_map, SUBSECTIONS_PER_SECTION, idx);
2137 	if (bit == SUBSECTIONS_PER_SECTION)
2138 		return false;
2139 
2140 	*pfn = (*pfn & PAGE_SECTION_MASK) + (bit * PAGES_PER_SUBSECTION);
2141 	return true;
2142 }
2143 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)2144 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2145 {
2146 	return 1;
2147 }
2148 
pfn_section_first_valid(struct mem_section * ms,unsigned long * pfn)2149 static inline bool pfn_section_first_valid(struct mem_section *ms, unsigned long *pfn)
2150 {
2151 	return true;
2152 }
2153 #endif
2154 
2155 void sparse_init_early_section(int nid, struct page *map, unsigned long pnum,
2156 			       unsigned long flags);
2157 
2158 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
2159 /**
2160  * pfn_valid - check if there is a valid memory map entry for a PFN
2161  * @pfn: the page frame number to check
2162  *
2163  * Check if there is a valid memory map entry aka struct page for the @pfn.
2164  * Note, that availability of the memory map entry does not imply that
2165  * there is actual usable memory at that @pfn. The struct page may
2166  * represent a hole or an unusable page frame.
2167  *
2168  * Return: 1 for PFNs that have memory map entries and 0 otherwise
2169  */
pfn_valid(unsigned long pfn)2170 static inline int pfn_valid(unsigned long pfn)
2171 {
2172 	struct mem_section *ms;
2173 	int ret;
2174 
2175 	/*
2176 	 * Ensure the upper PAGE_SHIFT bits are clear in the
2177 	 * pfn. Else it might lead to false positives when
2178 	 * some of the upper bits are set, but the lower bits
2179 	 * match a valid pfn.
2180 	 */
2181 	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2182 		return 0;
2183 
2184 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2185 		return 0;
2186 	ms = __pfn_to_section(pfn);
2187 	rcu_read_lock_sched();
2188 	if (!valid_section(ms)) {
2189 		rcu_read_unlock_sched();
2190 		return 0;
2191 	}
2192 	/*
2193 	 * Traditionally early sections always returned pfn_valid() for
2194 	 * the entire section-sized span.
2195 	 */
2196 	ret = early_section(ms) || pfn_section_valid(ms, pfn);
2197 	rcu_read_unlock_sched();
2198 
2199 	return ret;
2200 }
2201 
2202 /* Returns end_pfn or higher if no valid PFN remaining in range */
first_valid_pfn(unsigned long pfn,unsigned long end_pfn)2203 static inline unsigned long first_valid_pfn(unsigned long pfn, unsigned long end_pfn)
2204 {
2205 	unsigned long nr = pfn_to_section_nr(pfn);
2206 
2207 	rcu_read_lock_sched();
2208 
2209 	while (nr <= __highest_present_section_nr && pfn < end_pfn) {
2210 		struct mem_section *ms = __pfn_to_section(pfn);
2211 
2212 		if (valid_section(ms) &&
2213 		    (early_section(ms) || pfn_section_first_valid(ms, &pfn))) {
2214 			rcu_read_unlock_sched();
2215 			return pfn;
2216 		}
2217 
2218 		/* Nothing left in this section? Skip to next section */
2219 		nr++;
2220 		pfn = section_nr_to_pfn(nr);
2221 	}
2222 
2223 	rcu_read_unlock_sched();
2224 	return end_pfn;
2225 }
2226 
next_valid_pfn(unsigned long pfn,unsigned long end_pfn)2227 static inline unsigned long next_valid_pfn(unsigned long pfn, unsigned long end_pfn)
2228 {
2229 	pfn++;
2230 
2231 	if (pfn >= end_pfn)
2232 		return end_pfn;
2233 
2234 	/*
2235 	 * Either every PFN within the section (or subsection for VMEMMAP) is
2236 	 * valid, or none of them are. So there's no point repeating the check
2237 	 * for every PFN; only call first_valid_pfn() again when crossing a
2238 	 * (sub)section boundary (i.e. !(pfn & ~PAGE_{SUB,}SECTION_MASK)).
2239 	 */
2240 	if (pfn & ~(IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP) ?
2241 		   PAGE_SUBSECTION_MASK : PAGE_SECTION_MASK))
2242 		return pfn;
2243 
2244 	return first_valid_pfn(pfn, end_pfn);
2245 }
2246 
2247 
2248 #define for_each_valid_pfn(_pfn, _start_pfn, _end_pfn)			\
2249 	for ((_pfn) = first_valid_pfn((_start_pfn), (_end_pfn));	\
2250 	     (_pfn) < (_end_pfn);					\
2251 	     (_pfn) = next_valid_pfn((_pfn), (_end_pfn)))
2252 
2253 #endif
2254 
pfn_in_present_section(unsigned long pfn)2255 static inline int pfn_in_present_section(unsigned long pfn)
2256 {
2257 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2258 		return 0;
2259 	return present_section(__pfn_to_section(pfn));
2260 }
2261 
next_present_section_nr(unsigned long section_nr)2262 static inline unsigned long next_present_section_nr(unsigned long section_nr)
2263 {
2264 	while (++section_nr <= __highest_present_section_nr) {
2265 		if (present_section_nr(section_nr))
2266 			return section_nr;
2267 	}
2268 
2269 	return -1;
2270 }
2271 
2272 #define for_each_present_section_nr(start, section_nr)		\
2273 	for (section_nr = next_present_section_nr(start - 1);	\
2274 	     section_nr != -1;					\
2275 	     section_nr = next_present_section_nr(section_nr))
2276 
2277 /*
2278  * These are _only_ used during initialisation, therefore they
2279  * can use __initdata ...  They could have names to indicate
2280  * this restriction.
2281  */
2282 #ifdef CONFIG_NUMA
2283 #define pfn_to_nid(pfn)							\
2284 ({									\
2285 	unsigned long __pfn_to_nid_pfn = (pfn);				\
2286 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
2287 })
2288 #else
2289 #define pfn_to_nid(pfn)		(0)
2290 #endif
2291 
2292 void sparse_init(void);
2293 #else
2294 #define sparse_init()	do {} while (0)
2295 #define sparse_index_init(_sec, _nid)  do {} while (0)
2296 #define sparse_vmemmap_init_nid_early(_nid, _use) do {} while (0)
2297 #define sparse_vmemmap_init_nid_late(_nid) do {} while (0)
2298 #define pfn_in_present_section pfn_valid
2299 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2300 #endif /* CONFIG_SPARSEMEM */
2301 
2302 /*
2303  * Fallback case for when the architecture provides its own pfn_valid() but
2304  * not a corresponding for_each_valid_pfn().
2305  */
2306 #ifndef for_each_valid_pfn
2307 #define for_each_valid_pfn(_pfn, _start_pfn, _end_pfn)			\
2308 	for ((_pfn) = (_start_pfn); (_pfn) < (_end_pfn); (_pfn)++)	\
2309 		if (pfn_valid(_pfn))
2310 #endif
2311 
2312 #endif /* !__GENERATING_BOUNDS.H */
2313 #endif /* !__ASSEMBLY__ */
2314 #endif /* _LINUX_MMZONE_H */
2315