1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/vmstat.c
4 *
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * zoned VM statistics
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Christoph Lameter <christoph@lameter.com>
11 * Copyright (C) 2008-2014 Christoph Lameter
12 */
13 #include <linux/fs.h>
14 #include <linux/mm.h>
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_owner.h>
30 #include <linux/sched/isolation.h>
31
32 #include "internal.h"
33
34 #ifdef CONFIG_NUMA
35 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
36
37 /* zero numa counters within a zone */
zero_zone_numa_counters(struct zone * zone)38 static void zero_zone_numa_counters(struct zone *zone)
39 {
40 int item, cpu;
41
42 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
43 atomic_long_set(&zone->vm_numa_event[item], 0);
44 for_each_online_cpu(cpu) {
45 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
46 = 0;
47 }
48 }
49 }
50
51 /* zero numa counters of all the populated zones */
zero_zones_numa_counters(void)52 static void zero_zones_numa_counters(void)
53 {
54 struct zone *zone;
55
56 for_each_populated_zone(zone)
57 zero_zone_numa_counters(zone);
58 }
59
60 /* zero global numa counters */
zero_global_numa_counters(void)61 static void zero_global_numa_counters(void)
62 {
63 int item;
64
65 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
66 atomic_long_set(&vm_numa_event[item], 0);
67 }
68
invalid_numa_statistics(void)69 static void invalid_numa_statistics(void)
70 {
71 zero_zones_numa_counters();
72 zero_global_numa_counters();
73 }
74
75 static DEFINE_MUTEX(vm_numa_stat_lock);
76
sysctl_vm_numa_stat_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)77 int sysctl_vm_numa_stat_handler(const struct ctl_table *table, int write,
78 void *buffer, size_t *length, loff_t *ppos)
79 {
80 int ret, oldval;
81
82 mutex_lock(&vm_numa_stat_lock);
83 if (write)
84 oldval = sysctl_vm_numa_stat;
85 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
86 if (ret || !write)
87 goto out;
88
89 if (oldval == sysctl_vm_numa_stat)
90 goto out;
91 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
92 static_branch_enable(&vm_numa_stat_key);
93 pr_info("enable numa statistics\n");
94 } else {
95 static_branch_disable(&vm_numa_stat_key);
96 invalid_numa_statistics();
97 pr_info("disable numa statistics, and clear numa counters\n");
98 }
99
100 out:
101 mutex_unlock(&vm_numa_stat_lock);
102 return ret;
103 }
104 #endif
105
106 #ifdef CONFIG_VM_EVENT_COUNTERS
107 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
108 EXPORT_PER_CPU_SYMBOL(vm_event_states);
109
sum_vm_events(unsigned long * ret)110 static void sum_vm_events(unsigned long *ret)
111 {
112 int cpu;
113 int i;
114
115 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
116
117 for_each_online_cpu(cpu) {
118 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
119
120 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
121 ret[i] += this->event[i];
122 }
123 }
124
125 /*
126 * Accumulate the vm event counters across all CPUs.
127 * The result is unavoidably approximate - it can change
128 * during and after execution of this function.
129 */
all_vm_events(unsigned long * ret)130 void all_vm_events(unsigned long *ret)
131 {
132 cpus_read_lock();
133 sum_vm_events(ret);
134 cpus_read_unlock();
135 }
136 EXPORT_SYMBOL_GPL(all_vm_events);
137
138 /*
139 * Fold the foreign cpu events into our own.
140 *
141 * This is adding to the events on one processor
142 * but keeps the global counts constant.
143 */
vm_events_fold_cpu(int cpu)144 void vm_events_fold_cpu(int cpu)
145 {
146 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
147 int i;
148
149 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
150 count_vm_events(i, fold_state->event[i]);
151 fold_state->event[i] = 0;
152 }
153 }
154
155 #endif /* CONFIG_VM_EVENT_COUNTERS */
156
157 /*
158 * Manage combined zone based / global counters
159 *
160 * vm_stat contains the global counters
161 */
162 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
163 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
165 EXPORT_SYMBOL(vm_zone_stat);
166 EXPORT_SYMBOL(vm_node_stat);
167
168 #ifdef CONFIG_NUMA
fold_vm_zone_numa_events(struct zone * zone)169 static void fold_vm_zone_numa_events(struct zone *zone)
170 {
171 unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
172 int cpu;
173 enum numa_stat_item item;
174
175 for_each_online_cpu(cpu) {
176 struct per_cpu_zonestat *pzstats;
177
178 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
179 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
180 zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
181 }
182
183 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
184 zone_numa_event_add(zone_numa_events[item], zone, item);
185 }
186
fold_vm_numa_events(void)187 void fold_vm_numa_events(void)
188 {
189 struct zone *zone;
190
191 for_each_populated_zone(zone)
192 fold_vm_zone_numa_events(zone);
193 }
194 #endif
195
196 #ifdef CONFIG_SMP
197
calculate_pressure_threshold(struct zone * zone)198 int calculate_pressure_threshold(struct zone *zone)
199 {
200 int threshold;
201 int watermark_distance;
202
203 /*
204 * As vmstats are not up to date, there is drift between the estimated
205 * and real values. For high thresholds and a high number of CPUs, it
206 * is possible for the min watermark to be breached while the estimated
207 * value looks fine. The pressure threshold is a reduced value such
208 * that even the maximum amount of drift will not accidentally breach
209 * the min watermark
210 */
211 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
212 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
213
214 /*
215 * Maximum threshold is 125
216 */
217 threshold = min(125, threshold);
218
219 return threshold;
220 }
221
calculate_normal_threshold(struct zone * zone)222 int calculate_normal_threshold(struct zone *zone)
223 {
224 int threshold;
225 int mem; /* memory in 128 MB units */
226
227 /*
228 * The threshold scales with the number of processors and the amount
229 * of memory per zone. More memory means that we can defer updates for
230 * longer, more processors could lead to more contention.
231 * fls() is used to have a cheap way of logarithmic scaling.
232 *
233 * Some sample thresholds:
234 *
235 * Threshold Processors (fls) Zonesize fls(mem)+1
236 * ------------------------------------------------------------------
237 * 8 1 1 0.9-1 GB 4
238 * 16 2 2 0.9-1 GB 4
239 * 20 2 2 1-2 GB 5
240 * 24 2 2 2-4 GB 6
241 * 28 2 2 4-8 GB 7
242 * 32 2 2 8-16 GB 8
243 * 4 2 2 <128M 1
244 * 30 4 3 2-4 GB 5
245 * 48 4 3 8-16 GB 8
246 * 32 8 4 1-2 GB 4
247 * 32 8 4 0.9-1GB 4
248 * 10 16 5 <128M 1
249 * 40 16 5 900M 4
250 * 70 64 7 2-4 GB 5
251 * 84 64 7 4-8 GB 6
252 * 108 512 9 4-8 GB 6
253 * 125 1024 10 8-16 GB 8
254 * 125 1024 10 16-32 GB 9
255 */
256
257 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
258
259 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
260
261 /*
262 * Maximum threshold is 125
263 */
264 threshold = min(125, threshold);
265
266 return threshold;
267 }
268
269 /*
270 * Refresh the thresholds for each zone.
271 */
refresh_zone_stat_thresholds(void)272 void refresh_zone_stat_thresholds(void)
273 {
274 struct pglist_data *pgdat;
275 struct zone *zone;
276 int cpu;
277 int threshold;
278
279 /* Zero current pgdat thresholds */
280 for_each_online_pgdat(pgdat) {
281 for_each_online_cpu(cpu) {
282 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
283 }
284 }
285
286 for_each_populated_zone(zone) {
287 struct pglist_data *pgdat = zone->zone_pgdat;
288 unsigned long max_drift, tolerate_drift;
289
290 threshold = calculate_normal_threshold(zone);
291
292 for_each_online_cpu(cpu) {
293 int pgdat_threshold;
294
295 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
296 = threshold;
297
298 /* Base nodestat threshold on the largest populated zone. */
299 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
300 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
301 = max(threshold, pgdat_threshold);
302 }
303
304 /*
305 * Only set percpu_drift_mark if there is a danger that
306 * NR_FREE_PAGES reports the low watermark is ok when in fact
307 * the min watermark could be breached by an allocation
308 */
309 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
310 max_drift = num_online_cpus() * threshold;
311 if (max_drift > tolerate_drift)
312 zone->percpu_drift_mark = high_wmark_pages(zone) +
313 max_drift;
314 }
315 }
316
set_pgdat_percpu_threshold(pg_data_t * pgdat,int (* calculate_pressure)(struct zone *))317 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
318 int (*calculate_pressure)(struct zone *))
319 {
320 struct zone *zone;
321 int cpu;
322 int threshold;
323 int i;
324
325 for (i = 0; i < pgdat->nr_zones; i++) {
326 zone = &pgdat->node_zones[i];
327 if (!zone->percpu_drift_mark)
328 continue;
329
330 threshold = (*calculate_pressure)(zone);
331 for_each_online_cpu(cpu)
332 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
333 = threshold;
334 }
335 }
336
337 /*
338 * For use when we know that interrupts are disabled,
339 * or when we know that preemption is disabled and that
340 * particular counter cannot be updated from interrupt context.
341 */
__mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)342 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
343 long delta)
344 {
345 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
346 s8 __percpu *p = pcp->vm_stat_diff + item;
347 long x;
348 long t;
349
350 /*
351 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
352 * atomicity is provided by IRQs being disabled -- either explicitly
353 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
354 * CPU migrations and preemption potentially corrupts a counter so
355 * disable preemption.
356 */
357 preempt_disable_nested();
358
359 x = delta + __this_cpu_read(*p);
360
361 t = __this_cpu_read(pcp->stat_threshold);
362
363 if (unlikely(abs(x) > t)) {
364 zone_page_state_add(x, zone, item);
365 x = 0;
366 }
367 __this_cpu_write(*p, x);
368
369 preempt_enable_nested();
370 }
371 EXPORT_SYMBOL(__mod_zone_page_state);
372
__mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)373 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
374 long delta)
375 {
376 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
377 s8 __percpu *p = pcp->vm_node_stat_diff + item;
378 long x;
379 long t;
380
381 if (vmstat_item_in_bytes(item)) {
382 /*
383 * Only cgroups use subpage accounting right now; at
384 * the global level, these items still change in
385 * multiples of whole pages. Store them as pages
386 * internally to keep the per-cpu counters compact.
387 */
388 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
389 delta >>= PAGE_SHIFT;
390 }
391
392 /* See __mod_node_page_state */
393 preempt_disable_nested();
394
395 x = delta + __this_cpu_read(*p);
396
397 t = __this_cpu_read(pcp->stat_threshold);
398
399 if (unlikely(abs(x) > t)) {
400 node_page_state_add(x, pgdat, item);
401 x = 0;
402 }
403 __this_cpu_write(*p, x);
404
405 preempt_enable_nested();
406 }
407 EXPORT_SYMBOL(__mod_node_page_state);
408
409 /*
410 * Optimized increment and decrement functions.
411 *
412 * These are only for a single page and therefore can take a struct page *
413 * argument instead of struct zone *. This allows the inclusion of the code
414 * generated for page_zone(page) into the optimized functions.
415 *
416 * No overflow check is necessary and therefore the differential can be
417 * incremented or decremented in place which may allow the compilers to
418 * generate better code.
419 * The increment or decrement is known and therefore one boundary check can
420 * be omitted.
421 *
422 * NOTE: These functions are very performance sensitive. Change only
423 * with care.
424 *
425 * Some processors have inc/dec instructions that are atomic vs an interrupt.
426 * However, the code must first determine the differential location in a zone
427 * based on the processor number and then inc/dec the counter. There is no
428 * guarantee without disabling preemption that the processor will not change
429 * in between and therefore the atomicity vs. interrupt cannot be exploited
430 * in a useful way here.
431 */
__inc_zone_state(struct zone * zone,enum zone_stat_item item)432 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
433 {
434 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
435 s8 __percpu *p = pcp->vm_stat_diff + item;
436 s8 v, t;
437
438 /* See __mod_node_page_state */
439 preempt_disable_nested();
440
441 v = __this_cpu_inc_return(*p);
442 t = __this_cpu_read(pcp->stat_threshold);
443 if (unlikely(v > t)) {
444 s8 overstep = t >> 1;
445
446 zone_page_state_add(v + overstep, zone, item);
447 __this_cpu_write(*p, -overstep);
448 }
449
450 preempt_enable_nested();
451 }
452
__inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)453 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
454 {
455 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
456 s8 __percpu *p = pcp->vm_node_stat_diff + item;
457 s8 v, t;
458
459 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
460
461 /* See __mod_node_page_state */
462 preempt_disable_nested();
463
464 v = __this_cpu_inc_return(*p);
465 t = __this_cpu_read(pcp->stat_threshold);
466 if (unlikely(v > t)) {
467 s8 overstep = t >> 1;
468
469 node_page_state_add(v + overstep, pgdat, item);
470 __this_cpu_write(*p, -overstep);
471 }
472
473 preempt_enable_nested();
474 }
475
__inc_zone_page_state(struct page * page,enum zone_stat_item item)476 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
477 {
478 __inc_zone_state(page_zone(page), item);
479 }
480 EXPORT_SYMBOL(__inc_zone_page_state);
481
__inc_node_page_state(struct page * page,enum node_stat_item item)482 void __inc_node_page_state(struct page *page, enum node_stat_item item)
483 {
484 __inc_node_state(page_pgdat(page), item);
485 }
486 EXPORT_SYMBOL(__inc_node_page_state);
487
__dec_zone_state(struct zone * zone,enum zone_stat_item item)488 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
489 {
490 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
491 s8 __percpu *p = pcp->vm_stat_diff + item;
492 s8 v, t;
493
494 /* See __mod_node_page_state */
495 preempt_disable_nested();
496
497 v = __this_cpu_dec_return(*p);
498 t = __this_cpu_read(pcp->stat_threshold);
499 if (unlikely(v < - t)) {
500 s8 overstep = t >> 1;
501
502 zone_page_state_add(v - overstep, zone, item);
503 __this_cpu_write(*p, overstep);
504 }
505
506 preempt_enable_nested();
507 }
508
__dec_node_state(struct pglist_data * pgdat,enum node_stat_item item)509 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
510 {
511 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
512 s8 __percpu *p = pcp->vm_node_stat_diff + item;
513 s8 v, t;
514
515 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
516
517 /* See __mod_node_page_state */
518 preempt_disable_nested();
519
520 v = __this_cpu_dec_return(*p);
521 t = __this_cpu_read(pcp->stat_threshold);
522 if (unlikely(v < - t)) {
523 s8 overstep = t >> 1;
524
525 node_page_state_add(v - overstep, pgdat, item);
526 __this_cpu_write(*p, overstep);
527 }
528
529 preempt_enable_nested();
530 }
531
__dec_zone_page_state(struct page * page,enum zone_stat_item item)532 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
533 {
534 __dec_zone_state(page_zone(page), item);
535 }
536 EXPORT_SYMBOL(__dec_zone_page_state);
537
__dec_node_page_state(struct page * page,enum node_stat_item item)538 void __dec_node_page_state(struct page *page, enum node_stat_item item)
539 {
540 __dec_node_state(page_pgdat(page), item);
541 }
542 EXPORT_SYMBOL(__dec_node_page_state);
543
544 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
545 /*
546 * If we have cmpxchg_local support then we do not need to incur the overhead
547 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
548 *
549 * mod_state() modifies the zone counter state through atomic per cpu
550 * operations.
551 *
552 * Overstep mode specifies how overstep should handled:
553 * 0 No overstepping
554 * 1 Overstepping half of threshold
555 * -1 Overstepping minus half of threshold
556 */
mod_zone_state(struct zone * zone,enum zone_stat_item item,long delta,int overstep_mode)557 static inline void mod_zone_state(struct zone *zone,
558 enum zone_stat_item item, long delta, int overstep_mode)
559 {
560 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
561 s8 __percpu *p = pcp->vm_stat_diff + item;
562 long n, t, z;
563 s8 o;
564
565 o = this_cpu_read(*p);
566 do {
567 z = 0; /* overflow to zone counters */
568
569 /*
570 * The fetching of the stat_threshold is racy. We may apply
571 * a counter threshold to the wrong the cpu if we get
572 * rescheduled while executing here. However, the next
573 * counter update will apply the threshold again and
574 * therefore bring the counter under the threshold again.
575 *
576 * Most of the time the thresholds are the same anyways
577 * for all cpus in a zone.
578 */
579 t = this_cpu_read(pcp->stat_threshold);
580
581 n = delta + (long)o;
582
583 if (abs(n) > t) {
584 int os = overstep_mode * (t >> 1) ;
585
586 /* Overflow must be added to zone counters */
587 z = n + os;
588 n = -os;
589 }
590 } while (!this_cpu_try_cmpxchg(*p, &o, n));
591
592 if (z)
593 zone_page_state_add(z, zone, item);
594 }
595
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)596 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
597 long delta)
598 {
599 mod_zone_state(zone, item, delta, 0);
600 }
601 EXPORT_SYMBOL(mod_zone_page_state);
602
inc_zone_page_state(struct page * page,enum zone_stat_item item)603 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
604 {
605 mod_zone_state(page_zone(page), item, 1, 1);
606 }
607 EXPORT_SYMBOL(inc_zone_page_state);
608
dec_zone_page_state(struct page * page,enum zone_stat_item item)609 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
610 {
611 mod_zone_state(page_zone(page), item, -1, -1);
612 }
613 EXPORT_SYMBOL(dec_zone_page_state);
614
mod_node_state(struct pglist_data * pgdat,enum node_stat_item item,int delta,int overstep_mode)615 static inline void mod_node_state(struct pglist_data *pgdat,
616 enum node_stat_item item, int delta, int overstep_mode)
617 {
618 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
619 s8 __percpu *p = pcp->vm_node_stat_diff + item;
620 long n, t, z;
621 s8 o;
622
623 if (vmstat_item_in_bytes(item)) {
624 /*
625 * Only cgroups use subpage accounting right now; at
626 * the global level, these items still change in
627 * multiples of whole pages. Store them as pages
628 * internally to keep the per-cpu counters compact.
629 */
630 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
631 delta >>= PAGE_SHIFT;
632 }
633
634 o = this_cpu_read(*p);
635 do {
636 z = 0; /* overflow to node counters */
637
638 /*
639 * The fetching of the stat_threshold is racy. We may apply
640 * a counter threshold to the wrong the cpu if we get
641 * rescheduled while executing here. However, the next
642 * counter update will apply the threshold again and
643 * therefore bring the counter under the threshold again.
644 *
645 * Most of the time the thresholds are the same anyways
646 * for all cpus in a node.
647 */
648 t = this_cpu_read(pcp->stat_threshold);
649
650 n = delta + (long)o;
651
652 if (abs(n) > t) {
653 int os = overstep_mode * (t >> 1) ;
654
655 /* Overflow must be added to node counters */
656 z = n + os;
657 n = -os;
658 }
659 } while (!this_cpu_try_cmpxchg(*p, &o, n));
660
661 if (z)
662 node_page_state_add(z, pgdat, item);
663 }
664
mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)665 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
666 long delta)
667 {
668 mod_node_state(pgdat, item, delta, 0);
669 }
670 EXPORT_SYMBOL(mod_node_page_state);
671
inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)672 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
673 {
674 mod_node_state(pgdat, item, 1, 1);
675 }
676
inc_node_page_state(struct page * page,enum node_stat_item item)677 void inc_node_page_state(struct page *page, enum node_stat_item item)
678 {
679 mod_node_state(page_pgdat(page), item, 1, 1);
680 }
681 EXPORT_SYMBOL(inc_node_page_state);
682
dec_node_page_state(struct page * page,enum node_stat_item item)683 void dec_node_page_state(struct page *page, enum node_stat_item item)
684 {
685 mod_node_state(page_pgdat(page), item, -1, -1);
686 }
687 EXPORT_SYMBOL(dec_node_page_state);
688 #else
689 /*
690 * Use interrupt disable to serialize counter updates
691 */
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)692 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
693 long delta)
694 {
695 unsigned long flags;
696
697 local_irq_save(flags);
698 __mod_zone_page_state(zone, item, delta);
699 local_irq_restore(flags);
700 }
701 EXPORT_SYMBOL(mod_zone_page_state);
702
inc_zone_page_state(struct page * page,enum zone_stat_item item)703 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
704 {
705 unsigned long flags;
706 struct zone *zone;
707
708 zone = page_zone(page);
709 local_irq_save(flags);
710 __inc_zone_state(zone, item);
711 local_irq_restore(flags);
712 }
713 EXPORT_SYMBOL(inc_zone_page_state);
714
dec_zone_page_state(struct page * page,enum zone_stat_item item)715 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
716 {
717 unsigned long flags;
718
719 local_irq_save(flags);
720 __dec_zone_page_state(page, item);
721 local_irq_restore(flags);
722 }
723 EXPORT_SYMBOL(dec_zone_page_state);
724
inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)725 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
726 {
727 unsigned long flags;
728
729 local_irq_save(flags);
730 __inc_node_state(pgdat, item);
731 local_irq_restore(flags);
732 }
733 EXPORT_SYMBOL(inc_node_state);
734
mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)735 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
736 long delta)
737 {
738 unsigned long flags;
739
740 local_irq_save(flags);
741 __mod_node_page_state(pgdat, item, delta);
742 local_irq_restore(flags);
743 }
744 EXPORT_SYMBOL(mod_node_page_state);
745
inc_node_page_state(struct page * page,enum node_stat_item item)746 void inc_node_page_state(struct page *page, enum node_stat_item item)
747 {
748 unsigned long flags;
749 struct pglist_data *pgdat;
750
751 pgdat = page_pgdat(page);
752 local_irq_save(flags);
753 __inc_node_state(pgdat, item);
754 local_irq_restore(flags);
755 }
756 EXPORT_SYMBOL(inc_node_page_state);
757
dec_node_page_state(struct page * page,enum node_stat_item item)758 void dec_node_page_state(struct page *page, enum node_stat_item item)
759 {
760 unsigned long flags;
761
762 local_irq_save(flags);
763 __dec_node_page_state(page, item);
764 local_irq_restore(flags);
765 }
766 EXPORT_SYMBOL(dec_node_page_state);
767 #endif
768
769 /*
770 * Fold a differential into the global counters.
771 * Returns the number of counters updated.
772 */
fold_diff(int * zone_diff,int * node_diff)773 static int fold_diff(int *zone_diff, int *node_diff)
774 {
775 int i;
776 int changes = 0;
777
778 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
779 if (zone_diff[i]) {
780 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
781 changes++;
782 }
783
784 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
785 if (node_diff[i]) {
786 atomic_long_add(node_diff[i], &vm_node_stat[i]);
787 changes++;
788 }
789 return changes;
790 }
791
792 /*
793 * Update the zone counters for the current cpu.
794 *
795 * Note that refresh_cpu_vm_stats strives to only access
796 * node local memory. The per cpu pagesets on remote zones are placed
797 * in the memory local to the processor using that pageset. So the
798 * loop over all zones will access a series of cachelines local to
799 * the processor.
800 *
801 * The call to zone_page_state_add updates the cachelines with the
802 * statistics in the remote zone struct as well as the global cachelines
803 * with the global counters. These could cause remote node cache line
804 * bouncing and will have to be only done when necessary.
805 *
806 * The function returns the number of global counters updated.
807 */
refresh_cpu_vm_stats(bool do_pagesets)808 static int refresh_cpu_vm_stats(bool do_pagesets)
809 {
810 struct pglist_data *pgdat;
811 struct zone *zone;
812 int i;
813 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
814 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
815 int changes = 0;
816
817 for_each_populated_zone(zone) {
818 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
819 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
820
821 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
822 int v;
823
824 v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
825 if (v) {
826
827 atomic_long_add(v, &zone->vm_stat[i]);
828 global_zone_diff[i] += v;
829 #ifdef CONFIG_NUMA
830 /* 3 seconds idle till flush */
831 __this_cpu_write(pcp->expire, 3);
832 #endif
833 }
834 }
835
836 if (do_pagesets) {
837 cond_resched();
838
839 changes += decay_pcp_high(zone, this_cpu_ptr(pcp));
840 #ifdef CONFIG_NUMA
841 /*
842 * Deal with draining the remote pageset of this
843 * processor
844 *
845 * Check if there are pages remaining in this pageset
846 * if not then there is nothing to expire.
847 */
848 if (!__this_cpu_read(pcp->expire) ||
849 !__this_cpu_read(pcp->count))
850 continue;
851
852 /*
853 * We never drain zones local to this processor.
854 */
855 if (zone_to_nid(zone) == numa_node_id()) {
856 __this_cpu_write(pcp->expire, 0);
857 continue;
858 }
859
860 if (__this_cpu_dec_return(pcp->expire)) {
861 changes++;
862 continue;
863 }
864
865 if (__this_cpu_read(pcp->count)) {
866 drain_zone_pages(zone, this_cpu_ptr(pcp));
867 changes++;
868 }
869 #endif
870 }
871 }
872
873 for_each_online_pgdat(pgdat) {
874 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
875
876 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
877 int v;
878
879 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
880 if (v) {
881 atomic_long_add(v, &pgdat->vm_stat[i]);
882 global_node_diff[i] += v;
883 }
884 }
885 }
886
887 changes += fold_diff(global_zone_diff, global_node_diff);
888 return changes;
889 }
890
891 /*
892 * Fold the data for an offline cpu into the global array.
893 * There cannot be any access by the offline cpu and therefore
894 * synchronization is simplified.
895 */
cpu_vm_stats_fold(int cpu)896 void cpu_vm_stats_fold(int cpu)
897 {
898 struct pglist_data *pgdat;
899 struct zone *zone;
900 int i;
901 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
902 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
903
904 for_each_populated_zone(zone) {
905 struct per_cpu_zonestat *pzstats;
906
907 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
908
909 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
910 if (pzstats->vm_stat_diff[i]) {
911 int v;
912
913 v = pzstats->vm_stat_diff[i];
914 pzstats->vm_stat_diff[i] = 0;
915 atomic_long_add(v, &zone->vm_stat[i]);
916 global_zone_diff[i] += v;
917 }
918 }
919 #ifdef CONFIG_NUMA
920 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
921 if (pzstats->vm_numa_event[i]) {
922 unsigned long v;
923
924 v = pzstats->vm_numa_event[i];
925 pzstats->vm_numa_event[i] = 0;
926 zone_numa_event_add(v, zone, i);
927 }
928 }
929 #endif
930 }
931
932 for_each_online_pgdat(pgdat) {
933 struct per_cpu_nodestat *p;
934
935 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
936
937 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
938 if (p->vm_node_stat_diff[i]) {
939 int v;
940
941 v = p->vm_node_stat_diff[i];
942 p->vm_node_stat_diff[i] = 0;
943 atomic_long_add(v, &pgdat->vm_stat[i]);
944 global_node_diff[i] += v;
945 }
946 }
947
948 fold_diff(global_zone_diff, global_node_diff);
949 }
950
951 /*
952 * this is only called if !populated_zone(zone), which implies no other users of
953 * pset->vm_stat_diff[] exist.
954 */
drain_zonestat(struct zone * zone,struct per_cpu_zonestat * pzstats)955 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
956 {
957 unsigned long v;
958 int i;
959
960 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
961 if (pzstats->vm_stat_diff[i]) {
962 v = pzstats->vm_stat_diff[i];
963 pzstats->vm_stat_diff[i] = 0;
964 zone_page_state_add(v, zone, i);
965 }
966 }
967
968 #ifdef CONFIG_NUMA
969 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
970 if (pzstats->vm_numa_event[i]) {
971 v = pzstats->vm_numa_event[i];
972 pzstats->vm_numa_event[i] = 0;
973 zone_numa_event_add(v, zone, i);
974 }
975 }
976 #endif
977 }
978 #endif
979
980 #ifdef CONFIG_NUMA
981 /*
982 * Determine the per node value of a stat item. This function
983 * is called frequently in a NUMA machine, so try to be as
984 * frugal as possible.
985 */
sum_zone_node_page_state(int node,enum zone_stat_item item)986 unsigned long sum_zone_node_page_state(int node,
987 enum zone_stat_item item)
988 {
989 struct zone *zones = NODE_DATA(node)->node_zones;
990 int i;
991 unsigned long count = 0;
992
993 for (i = 0; i < MAX_NR_ZONES; i++)
994 count += zone_page_state(zones + i, item);
995
996 return count;
997 }
998
999 /* Determine the per node value of a numa stat item. */
sum_zone_numa_event_state(int node,enum numa_stat_item item)1000 unsigned long sum_zone_numa_event_state(int node,
1001 enum numa_stat_item item)
1002 {
1003 struct zone *zones = NODE_DATA(node)->node_zones;
1004 unsigned long count = 0;
1005 int i;
1006
1007 for (i = 0; i < MAX_NR_ZONES; i++)
1008 count += zone_numa_event_state(zones + i, item);
1009
1010 return count;
1011 }
1012
1013 /*
1014 * Determine the per node value of a stat item.
1015 */
node_page_state_pages(struct pglist_data * pgdat,enum node_stat_item item)1016 unsigned long node_page_state_pages(struct pglist_data *pgdat,
1017 enum node_stat_item item)
1018 {
1019 long x = atomic_long_read(&pgdat->vm_stat[item]);
1020 #ifdef CONFIG_SMP
1021 if (x < 0)
1022 x = 0;
1023 #endif
1024 return x;
1025 }
1026
node_page_state(struct pglist_data * pgdat,enum node_stat_item item)1027 unsigned long node_page_state(struct pglist_data *pgdat,
1028 enum node_stat_item item)
1029 {
1030 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1031
1032 return node_page_state_pages(pgdat, item);
1033 }
1034 #endif
1035
1036 /*
1037 * Count number of pages "struct page" and "struct page_ext" consume.
1038 * nr_memmap_boot_pages: # of pages allocated by boot allocator
1039 * nr_memmap_pages: # of pages that were allocated by buddy allocator
1040 */
1041 static atomic_long_t nr_memmap_boot_pages = ATOMIC_LONG_INIT(0);
1042 static atomic_long_t nr_memmap_pages = ATOMIC_LONG_INIT(0);
1043
memmap_boot_pages_add(long delta)1044 void memmap_boot_pages_add(long delta)
1045 {
1046 atomic_long_add(delta, &nr_memmap_boot_pages);
1047 }
1048
memmap_pages_add(long delta)1049 void memmap_pages_add(long delta)
1050 {
1051 atomic_long_add(delta, &nr_memmap_pages);
1052 }
1053
1054 #ifdef CONFIG_COMPACTION
1055
1056 struct contig_page_info {
1057 unsigned long free_pages;
1058 unsigned long free_blocks_total;
1059 unsigned long free_blocks_suitable;
1060 };
1061
1062 /*
1063 * Calculate the number of free pages in a zone, how many contiguous
1064 * pages are free and how many are large enough to satisfy an allocation of
1065 * the target size. Note that this function makes no attempt to estimate
1066 * how many suitable free blocks there *might* be if MOVABLE pages were
1067 * migrated. Calculating that is possible, but expensive and can be
1068 * figured out from userspace
1069 */
fill_contig_page_info(struct zone * zone,unsigned int suitable_order,struct contig_page_info * info)1070 static void fill_contig_page_info(struct zone *zone,
1071 unsigned int suitable_order,
1072 struct contig_page_info *info)
1073 {
1074 unsigned int order;
1075
1076 info->free_pages = 0;
1077 info->free_blocks_total = 0;
1078 info->free_blocks_suitable = 0;
1079
1080 for (order = 0; order < NR_PAGE_ORDERS; order++) {
1081 unsigned long blocks;
1082
1083 /*
1084 * Count number of free blocks.
1085 *
1086 * Access to nr_free is lockless as nr_free is used only for
1087 * diagnostic purposes. Use data_race to avoid KCSAN warning.
1088 */
1089 blocks = data_race(zone->free_area[order].nr_free);
1090 info->free_blocks_total += blocks;
1091
1092 /* Count free base pages */
1093 info->free_pages += blocks << order;
1094
1095 /* Count the suitable free blocks */
1096 if (order >= suitable_order)
1097 info->free_blocks_suitable += blocks <<
1098 (order - suitable_order);
1099 }
1100 }
1101
1102 /*
1103 * A fragmentation index only makes sense if an allocation of a requested
1104 * size would fail. If that is true, the fragmentation index indicates
1105 * whether external fragmentation or a lack of memory was the problem.
1106 * The value can be used to determine if page reclaim or compaction
1107 * should be used
1108 */
__fragmentation_index(unsigned int order,struct contig_page_info * info)1109 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1110 {
1111 unsigned long requested = 1UL << order;
1112
1113 if (WARN_ON_ONCE(order > MAX_PAGE_ORDER))
1114 return 0;
1115
1116 if (!info->free_blocks_total)
1117 return 0;
1118
1119 /* Fragmentation index only makes sense when a request would fail */
1120 if (info->free_blocks_suitable)
1121 return -1000;
1122
1123 /*
1124 * Index is between 0 and 1 so return within 3 decimal places
1125 *
1126 * 0 => allocation would fail due to lack of memory
1127 * 1 => allocation would fail due to fragmentation
1128 */
1129 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1130 }
1131
1132 /*
1133 * Calculates external fragmentation within a zone wrt the given order.
1134 * It is defined as the percentage of pages found in blocks of size
1135 * less than 1 << order. It returns values in range [0, 100].
1136 */
extfrag_for_order(struct zone * zone,unsigned int order)1137 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1138 {
1139 struct contig_page_info info;
1140
1141 fill_contig_page_info(zone, order, &info);
1142 if (info.free_pages == 0)
1143 return 0;
1144
1145 return div_u64((info.free_pages -
1146 (info.free_blocks_suitable << order)) * 100,
1147 info.free_pages);
1148 }
1149
1150 /* Same as __fragmentation index but allocs contig_page_info on stack */
fragmentation_index(struct zone * zone,unsigned int order)1151 int fragmentation_index(struct zone *zone, unsigned int order)
1152 {
1153 struct contig_page_info info;
1154
1155 fill_contig_page_info(zone, order, &info);
1156 return __fragmentation_index(order, &info);
1157 }
1158 #endif
1159
1160 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1161 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1162 #ifdef CONFIG_ZONE_DMA
1163 #define TEXT_FOR_DMA(xx) xx "_dma",
1164 #else
1165 #define TEXT_FOR_DMA(xx)
1166 #endif
1167
1168 #ifdef CONFIG_ZONE_DMA32
1169 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1170 #else
1171 #define TEXT_FOR_DMA32(xx)
1172 #endif
1173
1174 #ifdef CONFIG_HIGHMEM
1175 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1176 #else
1177 #define TEXT_FOR_HIGHMEM(xx)
1178 #endif
1179
1180 #ifdef CONFIG_ZONE_DEVICE
1181 #define TEXT_FOR_DEVICE(xx) xx "_device",
1182 #else
1183 #define TEXT_FOR_DEVICE(xx)
1184 #endif
1185
1186 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1187 TEXT_FOR_HIGHMEM(xx) xx "_movable", \
1188 TEXT_FOR_DEVICE(xx)
1189
1190 const char * const vmstat_text[] = {
1191 /* enum zone_stat_item counters */
1192 "nr_free_pages",
1193 "nr_zone_inactive_anon",
1194 "nr_zone_active_anon",
1195 "nr_zone_inactive_file",
1196 "nr_zone_active_file",
1197 "nr_zone_unevictable",
1198 "nr_zone_write_pending",
1199 "nr_mlock",
1200 "nr_bounce",
1201 #if IS_ENABLED(CONFIG_ZSMALLOC)
1202 "nr_zspages",
1203 #endif
1204 "nr_free_cma",
1205 #ifdef CONFIG_UNACCEPTED_MEMORY
1206 "nr_unaccepted",
1207 #endif
1208
1209 /* enum numa_stat_item counters */
1210 #ifdef CONFIG_NUMA
1211 "numa_hit",
1212 "numa_miss",
1213 "numa_foreign",
1214 "numa_interleave",
1215 "numa_local",
1216 "numa_other",
1217 #endif
1218
1219 /* enum node_stat_item counters */
1220 "nr_inactive_anon",
1221 "nr_active_anon",
1222 "nr_inactive_file",
1223 "nr_active_file",
1224 "nr_unevictable",
1225 "nr_slab_reclaimable",
1226 "nr_slab_unreclaimable",
1227 "nr_isolated_anon",
1228 "nr_isolated_file",
1229 "workingset_nodes",
1230 "workingset_refault_anon",
1231 "workingset_refault_file",
1232 "workingset_activate_anon",
1233 "workingset_activate_file",
1234 "workingset_restore_anon",
1235 "workingset_restore_file",
1236 "workingset_nodereclaim",
1237 "nr_anon_pages",
1238 "nr_mapped",
1239 "nr_file_pages",
1240 "nr_dirty",
1241 "nr_writeback",
1242 "nr_writeback_temp",
1243 "nr_shmem",
1244 "nr_shmem_hugepages",
1245 "nr_shmem_pmdmapped",
1246 "nr_file_hugepages",
1247 "nr_file_pmdmapped",
1248 "nr_anon_transparent_hugepages",
1249 "nr_vmscan_write",
1250 "nr_vmscan_immediate_reclaim",
1251 "nr_dirtied",
1252 "nr_written",
1253 "nr_throttled_written",
1254 "nr_kernel_misc_reclaimable",
1255 "nr_foll_pin_acquired",
1256 "nr_foll_pin_released",
1257 "nr_kernel_stack",
1258 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1259 "nr_shadow_call_stack",
1260 #endif
1261 "nr_page_table_pages",
1262 "nr_sec_page_table_pages",
1263 #ifdef CONFIG_IOMMU_SUPPORT
1264 "nr_iommu_pages",
1265 #endif
1266 #ifdef CONFIG_SWAP
1267 "nr_swapcached",
1268 #endif
1269 #ifdef CONFIG_NUMA_BALANCING
1270 "pgpromote_success",
1271 "pgpromote_candidate",
1272 #endif
1273 "pgdemote_kswapd",
1274 "pgdemote_direct",
1275 "pgdemote_khugepaged",
1276 /* system-wide enum vm_stat_item counters */
1277 "nr_dirty_threshold",
1278 "nr_dirty_background_threshold",
1279 "nr_memmap_pages",
1280 "nr_memmap_boot_pages",
1281
1282 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1283 /* enum vm_event_item counters */
1284 "pgpgin",
1285 "pgpgout",
1286 "pswpin",
1287 "pswpout",
1288
1289 TEXTS_FOR_ZONES("pgalloc")
1290 TEXTS_FOR_ZONES("allocstall")
1291 TEXTS_FOR_ZONES("pgskip")
1292
1293 "pgfree",
1294 "pgactivate",
1295 "pgdeactivate",
1296 "pglazyfree",
1297
1298 "pgfault",
1299 "pgmajfault",
1300 "pglazyfreed",
1301
1302 "pgrefill",
1303 "pgreuse",
1304 "pgsteal_kswapd",
1305 "pgsteal_direct",
1306 "pgsteal_khugepaged",
1307 "pgscan_kswapd",
1308 "pgscan_direct",
1309 "pgscan_khugepaged",
1310 "pgscan_direct_throttle",
1311 "pgscan_anon",
1312 "pgscan_file",
1313 "pgsteal_anon",
1314 "pgsteal_file",
1315
1316 #ifdef CONFIG_NUMA
1317 "zone_reclaim_success",
1318 "zone_reclaim_failed",
1319 #endif
1320 "pginodesteal",
1321 "slabs_scanned",
1322 "kswapd_inodesteal",
1323 "kswapd_low_wmark_hit_quickly",
1324 "kswapd_high_wmark_hit_quickly",
1325 "pageoutrun",
1326
1327 "pgrotated",
1328
1329 "drop_pagecache",
1330 "drop_slab",
1331 "oom_kill",
1332
1333 #ifdef CONFIG_NUMA_BALANCING
1334 "numa_pte_updates",
1335 "numa_huge_pte_updates",
1336 "numa_hint_faults",
1337 "numa_hint_faults_local",
1338 "numa_pages_migrated",
1339 #endif
1340 #ifdef CONFIG_MIGRATION
1341 "pgmigrate_success",
1342 "pgmigrate_fail",
1343 "thp_migration_success",
1344 "thp_migration_fail",
1345 "thp_migration_split",
1346 #endif
1347 #ifdef CONFIG_COMPACTION
1348 "compact_migrate_scanned",
1349 "compact_free_scanned",
1350 "compact_isolated",
1351 "compact_stall",
1352 "compact_fail",
1353 "compact_success",
1354 "compact_daemon_wake",
1355 "compact_daemon_migrate_scanned",
1356 "compact_daemon_free_scanned",
1357 #endif
1358
1359 #ifdef CONFIG_HUGETLB_PAGE
1360 "htlb_buddy_alloc_success",
1361 "htlb_buddy_alloc_fail",
1362 #endif
1363 #ifdef CONFIG_CMA
1364 "cma_alloc_success",
1365 "cma_alloc_fail",
1366 #endif
1367 "unevictable_pgs_culled",
1368 "unevictable_pgs_scanned",
1369 "unevictable_pgs_rescued",
1370 "unevictable_pgs_mlocked",
1371 "unevictable_pgs_munlocked",
1372 "unevictable_pgs_cleared",
1373 "unevictable_pgs_stranded",
1374
1375 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1376 "thp_fault_alloc",
1377 "thp_fault_fallback",
1378 "thp_fault_fallback_charge",
1379 "thp_collapse_alloc",
1380 "thp_collapse_alloc_failed",
1381 "thp_file_alloc",
1382 "thp_file_fallback",
1383 "thp_file_fallback_charge",
1384 "thp_file_mapped",
1385 "thp_split_page",
1386 "thp_split_page_failed",
1387 "thp_deferred_split_page",
1388 "thp_underused_split_page",
1389 "thp_split_pmd",
1390 "thp_scan_exceed_none_pte",
1391 "thp_scan_exceed_swap_pte",
1392 "thp_scan_exceed_share_pte",
1393 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1394 "thp_split_pud",
1395 #endif
1396 "thp_zero_page_alloc",
1397 "thp_zero_page_alloc_failed",
1398 "thp_swpout",
1399 "thp_swpout_fallback",
1400 #endif
1401 #ifdef CONFIG_MEMORY_BALLOON
1402 "balloon_inflate",
1403 "balloon_deflate",
1404 #ifdef CONFIG_BALLOON_COMPACTION
1405 "balloon_migrate",
1406 #endif
1407 #endif /* CONFIG_MEMORY_BALLOON */
1408 #ifdef CONFIG_DEBUG_TLBFLUSH
1409 "nr_tlb_remote_flush",
1410 "nr_tlb_remote_flush_received",
1411 "nr_tlb_local_flush_all",
1412 "nr_tlb_local_flush_one",
1413 #endif /* CONFIG_DEBUG_TLBFLUSH */
1414
1415 #ifdef CONFIG_SWAP
1416 "swap_ra",
1417 "swap_ra_hit",
1418 #ifdef CONFIG_KSM
1419 "ksm_swpin_copy",
1420 #endif
1421 #endif
1422 #ifdef CONFIG_KSM
1423 "cow_ksm",
1424 #endif
1425 #ifdef CONFIG_ZSWAP
1426 "zswpin",
1427 "zswpout",
1428 "zswpwb",
1429 #endif
1430 #ifdef CONFIG_X86
1431 "direct_map_level2_splits",
1432 "direct_map_level3_splits",
1433 #endif
1434 #ifdef CONFIG_PER_VMA_LOCK_STATS
1435 "vma_lock_success",
1436 "vma_lock_abort",
1437 "vma_lock_retry",
1438 "vma_lock_miss",
1439 #endif
1440 #ifdef CONFIG_DEBUG_STACK_USAGE
1441 "kstack_1k",
1442 #if THREAD_SIZE > 1024
1443 "kstack_2k",
1444 #endif
1445 #if THREAD_SIZE > 2048
1446 "kstack_4k",
1447 #endif
1448 #if THREAD_SIZE > 4096
1449 "kstack_8k",
1450 #endif
1451 #if THREAD_SIZE > 8192
1452 "kstack_16k",
1453 #endif
1454 #if THREAD_SIZE > 16384
1455 "kstack_32k",
1456 #endif
1457 #if THREAD_SIZE > 32768
1458 "kstack_64k",
1459 #endif
1460 #if THREAD_SIZE > 65536
1461 "kstack_rest",
1462 #endif
1463 #endif
1464 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1465 };
1466 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1467
1468 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1469 defined(CONFIG_PROC_FS)
frag_start(struct seq_file * m,loff_t * pos)1470 static void *frag_start(struct seq_file *m, loff_t *pos)
1471 {
1472 pg_data_t *pgdat;
1473 loff_t node = *pos;
1474
1475 for (pgdat = first_online_pgdat();
1476 pgdat && node;
1477 pgdat = next_online_pgdat(pgdat))
1478 --node;
1479
1480 return pgdat;
1481 }
1482
frag_next(struct seq_file * m,void * arg,loff_t * pos)1483 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1484 {
1485 pg_data_t *pgdat = (pg_data_t *)arg;
1486
1487 (*pos)++;
1488 return next_online_pgdat(pgdat);
1489 }
1490
frag_stop(struct seq_file * m,void * arg)1491 static void frag_stop(struct seq_file *m, void *arg)
1492 {
1493 }
1494
1495 /*
1496 * Walk zones in a node and print using a callback.
1497 * If @assert_populated is true, only use callback for zones that are populated.
1498 */
walk_zones_in_node(struct seq_file * m,pg_data_t * pgdat,bool assert_populated,bool nolock,void (* print)(struct seq_file * m,pg_data_t *,struct zone *))1499 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1500 bool assert_populated, bool nolock,
1501 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1502 {
1503 struct zone *zone;
1504 struct zone *node_zones = pgdat->node_zones;
1505 unsigned long flags;
1506
1507 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1508 if (assert_populated && !populated_zone(zone))
1509 continue;
1510
1511 if (!nolock)
1512 spin_lock_irqsave(&zone->lock, flags);
1513 print(m, pgdat, zone);
1514 if (!nolock)
1515 spin_unlock_irqrestore(&zone->lock, flags);
1516 }
1517 }
1518 #endif
1519
1520 #ifdef CONFIG_PROC_FS
frag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1521 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1522 struct zone *zone)
1523 {
1524 int order;
1525
1526 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1527 for (order = 0; order < NR_PAGE_ORDERS; ++order)
1528 /*
1529 * Access to nr_free is lockless as nr_free is used only for
1530 * printing purposes. Use data_race to avoid KCSAN warning.
1531 */
1532 seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1533 seq_putc(m, '\n');
1534 }
1535
1536 /*
1537 * This walks the free areas for each zone.
1538 */
frag_show(struct seq_file * m,void * arg)1539 static int frag_show(struct seq_file *m, void *arg)
1540 {
1541 pg_data_t *pgdat = (pg_data_t *)arg;
1542 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1543 return 0;
1544 }
1545
pagetypeinfo_showfree_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1546 static void pagetypeinfo_showfree_print(struct seq_file *m,
1547 pg_data_t *pgdat, struct zone *zone)
1548 {
1549 int order, mtype;
1550
1551 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1552 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1553 pgdat->node_id,
1554 zone->name,
1555 migratetype_names[mtype]);
1556 for (order = 0; order < NR_PAGE_ORDERS; ++order) {
1557 unsigned long freecount = 0;
1558 struct free_area *area;
1559 struct list_head *curr;
1560 bool overflow = false;
1561
1562 area = &(zone->free_area[order]);
1563
1564 list_for_each(curr, &area->free_list[mtype]) {
1565 /*
1566 * Cap the free_list iteration because it might
1567 * be really large and we are under a spinlock
1568 * so a long time spent here could trigger a
1569 * hard lockup detector. Anyway this is a
1570 * debugging tool so knowing there is a handful
1571 * of pages of this order should be more than
1572 * sufficient.
1573 */
1574 if (++freecount >= 100000) {
1575 overflow = true;
1576 break;
1577 }
1578 }
1579 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1580 spin_unlock_irq(&zone->lock);
1581 cond_resched();
1582 spin_lock_irq(&zone->lock);
1583 }
1584 seq_putc(m, '\n');
1585 }
1586 }
1587
1588 /* Print out the free pages at each order for each migatetype */
pagetypeinfo_showfree(struct seq_file * m,void * arg)1589 static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1590 {
1591 int order;
1592 pg_data_t *pgdat = (pg_data_t *)arg;
1593
1594 /* Print header */
1595 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1596 for (order = 0; order < NR_PAGE_ORDERS; ++order)
1597 seq_printf(m, "%6d ", order);
1598 seq_putc(m, '\n');
1599
1600 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1601 }
1602
pagetypeinfo_showblockcount_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1603 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1604 pg_data_t *pgdat, struct zone *zone)
1605 {
1606 int mtype;
1607 unsigned long pfn;
1608 unsigned long start_pfn = zone->zone_start_pfn;
1609 unsigned long end_pfn = zone_end_pfn(zone);
1610 unsigned long count[MIGRATE_TYPES] = { 0, };
1611
1612 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1613 struct page *page;
1614
1615 page = pfn_to_online_page(pfn);
1616 if (!page)
1617 continue;
1618
1619 if (page_zone(page) != zone)
1620 continue;
1621
1622 mtype = get_pageblock_migratetype(page);
1623
1624 if (mtype < MIGRATE_TYPES)
1625 count[mtype]++;
1626 }
1627
1628 /* Print counts */
1629 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1630 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1631 seq_printf(m, "%12lu ", count[mtype]);
1632 seq_putc(m, '\n');
1633 }
1634
1635 /* Print out the number of pageblocks for each migratetype */
pagetypeinfo_showblockcount(struct seq_file * m,void * arg)1636 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1637 {
1638 int mtype;
1639 pg_data_t *pgdat = (pg_data_t *)arg;
1640
1641 seq_printf(m, "\n%-23s", "Number of blocks type ");
1642 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1643 seq_printf(m, "%12s ", migratetype_names[mtype]);
1644 seq_putc(m, '\n');
1645 walk_zones_in_node(m, pgdat, true, false,
1646 pagetypeinfo_showblockcount_print);
1647 }
1648
1649 /*
1650 * Print out the number of pageblocks for each migratetype that contain pages
1651 * of other types. This gives an indication of how well fallbacks are being
1652 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1653 * to determine what is going on
1654 */
pagetypeinfo_showmixedcount(struct seq_file * m,pg_data_t * pgdat)1655 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1656 {
1657 #ifdef CONFIG_PAGE_OWNER
1658 int mtype;
1659
1660 if (!static_branch_unlikely(&page_owner_inited))
1661 return;
1662
1663 drain_all_pages(NULL);
1664
1665 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1666 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1667 seq_printf(m, "%12s ", migratetype_names[mtype]);
1668 seq_putc(m, '\n');
1669
1670 walk_zones_in_node(m, pgdat, true, true,
1671 pagetypeinfo_showmixedcount_print);
1672 #endif /* CONFIG_PAGE_OWNER */
1673 }
1674
1675 /*
1676 * This prints out statistics in relation to grouping pages by mobility.
1677 * It is expensive to collect so do not constantly read the file.
1678 */
pagetypeinfo_show(struct seq_file * m,void * arg)1679 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1680 {
1681 pg_data_t *pgdat = (pg_data_t *)arg;
1682
1683 /* check memoryless node */
1684 if (!node_state(pgdat->node_id, N_MEMORY))
1685 return 0;
1686
1687 seq_printf(m, "Page block order: %d\n", pageblock_order);
1688 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1689 seq_putc(m, '\n');
1690 pagetypeinfo_showfree(m, pgdat);
1691 pagetypeinfo_showblockcount(m, pgdat);
1692 pagetypeinfo_showmixedcount(m, pgdat);
1693
1694 return 0;
1695 }
1696
1697 static const struct seq_operations fragmentation_op = {
1698 .start = frag_start,
1699 .next = frag_next,
1700 .stop = frag_stop,
1701 .show = frag_show,
1702 };
1703
1704 static const struct seq_operations pagetypeinfo_op = {
1705 .start = frag_start,
1706 .next = frag_next,
1707 .stop = frag_stop,
1708 .show = pagetypeinfo_show,
1709 };
1710
is_zone_first_populated(pg_data_t * pgdat,struct zone * zone)1711 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1712 {
1713 int zid;
1714
1715 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1716 struct zone *compare = &pgdat->node_zones[zid];
1717
1718 if (populated_zone(compare))
1719 return zone == compare;
1720 }
1721
1722 return false;
1723 }
1724
zoneinfo_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1725 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1726 struct zone *zone)
1727 {
1728 int i;
1729 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1730 if (is_zone_first_populated(pgdat, zone)) {
1731 seq_printf(m, "\n per-node stats");
1732 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1733 unsigned long pages = node_page_state_pages(pgdat, i);
1734
1735 if (vmstat_item_print_in_thp(i))
1736 pages /= HPAGE_PMD_NR;
1737 seq_printf(m, "\n %-12s %lu", node_stat_name(i),
1738 pages);
1739 }
1740 }
1741 seq_printf(m,
1742 "\n pages free %lu"
1743 "\n boost %lu"
1744 "\n min %lu"
1745 "\n low %lu"
1746 "\n high %lu"
1747 "\n promo %lu"
1748 "\n spanned %lu"
1749 "\n present %lu"
1750 "\n managed %lu"
1751 "\n cma %lu",
1752 zone_page_state(zone, NR_FREE_PAGES),
1753 zone->watermark_boost,
1754 min_wmark_pages(zone),
1755 low_wmark_pages(zone),
1756 high_wmark_pages(zone),
1757 promo_wmark_pages(zone),
1758 zone->spanned_pages,
1759 zone->present_pages,
1760 zone_managed_pages(zone),
1761 zone_cma_pages(zone));
1762
1763 seq_printf(m,
1764 "\n protection: (%ld",
1765 zone->lowmem_reserve[0]);
1766 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1767 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1768 seq_putc(m, ')');
1769
1770 /* If unpopulated, no other information is useful */
1771 if (!populated_zone(zone)) {
1772 seq_putc(m, '\n');
1773 return;
1774 }
1775
1776 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1777 seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
1778 zone_page_state(zone, i));
1779
1780 #ifdef CONFIG_NUMA
1781 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1782 seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
1783 zone_numa_event_state(zone, i));
1784 #endif
1785
1786 seq_printf(m, "\n pagesets");
1787 for_each_online_cpu(i) {
1788 struct per_cpu_pages *pcp;
1789 struct per_cpu_zonestat __maybe_unused *pzstats;
1790
1791 pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1792 seq_printf(m,
1793 "\n cpu: %i"
1794 "\n count: %i"
1795 "\n high: %i"
1796 "\n batch: %i",
1797 i,
1798 pcp->count,
1799 pcp->high,
1800 pcp->batch);
1801 #ifdef CONFIG_SMP
1802 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1803 seq_printf(m, "\n vm stats threshold: %d",
1804 pzstats->stat_threshold);
1805 #endif
1806 }
1807 seq_printf(m,
1808 "\n node_unreclaimable: %u"
1809 "\n start_pfn: %lu",
1810 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1811 zone->zone_start_pfn);
1812 seq_putc(m, '\n');
1813 }
1814
1815 /*
1816 * Output information about zones in @pgdat. All zones are printed regardless
1817 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1818 * set of all zones and userspace would not be aware of such zones if they are
1819 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1820 */
zoneinfo_show(struct seq_file * m,void * arg)1821 static int zoneinfo_show(struct seq_file *m, void *arg)
1822 {
1823 pg_data_t *pgdat = (pg_data_t *)arg;
1824 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1825 return 0;
1826 }
1827
1828 static const struct seq_operations zoneinfo_op = {
1829 .start = frag_start, /* iterate over all zones. The same as in
1830 * fragmentation. */
1831 .next = frag_next,
1832 .stop = frag_stop,
1833 .show = zoneinfo_show,
1834 };
1835
1836 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1837 NR_VM_NUMA_EVENT_ITEMS + \
1838 NR_VM_NODE_STAT_ITEMS + \
1839 NR_VM_STAT_ITEMS + \
1840 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1841 NR_VM_EVENT_ITEMS : 0))
1842
vmstat_start(struct seq_file * m,loff_t * pos)1843 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1844 {
1845 unsigned long *v;
1846 int i;
1847
1848 if (*pos >= NR_VMSTAT_ITEMS)
1849 return NULL;
1850
1851 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1852 fold_vm_numa_events();
1853 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1854 m->private = v;
1855 if (!v)
1856 return ERR_PTR(-ENOMEM);
1857 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1858 v[i] = global_zone_page_state(i);
1859 v += NR_VM_ZONE_STAT_ITEMS;
1860
1861 #ifdef CONFIG_NUMA
1862 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1863 v[i] = global_numa_event_state(i);
1864 v += NR_VM_NUMA_EVENT_ITEMS;
1865 #endif
1866
1867 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1868 v[i] = global_node_page_state_pages(i);
1869 if (vmstat_item_print_in_thp(i))
1870 v[i] /= HPAGE_PMD_NR;
1871 }
1872 v += NR_VM_NODE_STAT_ITEMS;
1873
1874 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1875 v + NR_DIRTY_THRESHOLD);
1876 v[NR_MEMMAP_PAGES] = atomic_long_read(&nr_memmap_pages);
1877 v[NR_MEMMAP_BOOT_PAGES] = atomic_long_read(&nr_memmap_boot_pages);
1878 v += NR_VM_STAT_ITEMS;
1879
1880 #ifdef CONFIG_VM_EVENT_COUNTERS
1881 all_vm_events(v);
1882 v[PGPGIN] /= 2; /* sectors -> kbytes */
1883 v[PGPGOUT] /= 2;
1884 #endif
1885 return (unsigned long *)m->private + *pos;
1886 }
1887
vmstat_next(struct seq_file * m,void * arg,loff_t * pos)1888 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1889 {
1890 (*pos)++;
1891 if (*pos >= NR_VMSTAT_ITEMS)
1892 return NULL;
1893 return (unsigned long *)m->private + *pos;
1894 }
1895
vmstat_show(struct seq_file * m,void * arg)1896 static int vmstat_show(struct seq_file *m, void *arg)
1897 {
1898 unsigned long *l = arg;
1899 unsigned long off = l - (unsigned long *)m->private;
1900
1901 seq_puts(m, vmstat_text[off]);
1902 seq_put_decimal_ull(m, " ", *l);
1903 seq_putc(m, '\n');
1904
1905 if (off == NR_VMSTAT_ITEMS - 1) {
1906 /*
1907 * We've come to the end - add any deprecated counters to avoid
1908 * breaking userspace which might depend on them being present.
1909 */
1910 seq_puts(m, "nr_unstable 0\n");
1911 }
1912 return 0;
1913 }
1914
vmstat_stop(struct seq_file * m,void * arg)1915 static void vmstat_stop(struct seq_file *m, void *arg)
1916 {
1917 kfree(m->private);
1918 m->private = NULL;
1919 }
1920
1921 static const struct seq_operations vmstat_op = {
1922 .start = vmstat_start,
1923 .next = vmstat_next,
1924 .stop = vmstat_stop,
1925 .show = vmstat_show,
1926 };
1927 #endif /* CONFIG_PROC_FS */
1928
1929 #ifdef CONFIG_SMP
1930 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1931 int sysctl_stat_interval __read_mostly = HZ;
1932
1933 #ifdef CONFIG_PROC_FS
refresh_vm_stats(struct work_struct * work)1934 static void refresh_vm_stats(struct work_struct *work)
1935 {
1936 refresh_cpu_vm_stats(true);
1937 }
1938
vmstat_refresh(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1939 int vmstat_refresh(const struct ctl_table *table, int write,
1940 void *buffer, size_t *lenp, loff_t *ppos)
1941 {
1942 long val;
1943 int err;
1944 int i;
1945
1946 /*
1947 * The regular update, every sysctl_stat_interval, may come later
1948 * than expected: leaving a significant amount in per_cpu buckets.
1949 * This is particularly misleading when checking a quantity of HUGE
1950 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1951 * which can equally be echo'ed to or cat'ted from (by root),
1952 * can be used to update the stats just before reading them.
1953 *
1954 * Oh, and since global_zone_page_state() etc. are so careful to hide
1955 * transiently negative values, report an error here if any of
1956 * the stats is negative, so we know to go looking for imbalance.
1957 */
1958 err = schedule_on_each_cpu(refresh_vm_stats);
1959 if (err)
1960 return err;
1961 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1962 /*
1963 * Skip checking stats known to go negative occasionally.
1964 */
1965 switch (i) {
1966 case NR_ZONE_WRITE_PENDING:
1967 case NR_FREE_CMA_PAGES:
1968 continue;
1969 }
1970 val = atomic_long_read(&vm_zone_stat[i]);
1971 if (val < 0) {
1972 pr_warn("%s: %s %ld\n",
1973 __func__, zone_stat_name(i), val);
1974 }
1975 }
1976 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1977 /*
1978 * Skip checking stats known to go negative occasionally.
1979 */
1980 switch (i) {
1981 case NR_WRITEBACK:
1982 continue;
1983 }
1984 val = atomic_long_read(&vm_node_stat[i]);
1985 if (val < 0) {
1986 pr_warn("%s: %s %ld\n",
1987 __func__, node_stat_name(i), val);
1988 }
1989 }
1990 if (write)
1991 *ppos += *lenp;
1992 else
1993 *lenp = 0;
1994 return 0;
1995 }
1996 #endif /* CONFIG_PROC_FS */
1997
vmstat_update(struct work_struct * w)1998 static void vmstat_update(struct work_struct *w)
1999 {
2000 if (refresh_cpu_vm_stats(true)) {
2001 /*
2002 * Counters were updated so we expect more updates
2003 * to occur in the future. Keep on running the
2004 * update worker thread.
2005 */
2006 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
2007 this_cpu_ptr(&vmstat_work),
2008 round_jiffies_relative(sysctl_stat_interval));
2009 }
2010 }
2011
2012 /*
2013 * Check if the diffs for a certain cpu indicate that
2014 * an update is needed.
2015 */
need_update(int cpu)2016 static bool need_update(int cpu)
2017 {
2018 pg_data_t *last_pgdat = NULL;
2019 struct zone *zone;
2020
2021 for_each_populated_zone(zone) {
2022 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
2023 struct per_cpu_nodestat *n;
2024
2025 /*
2026 * The fast way of checking if there are any vmstat diffs.
2027 */
2028 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
2029 return true;
2030
2031 if (last_pgdat == zone->zone_pgdat)
2032 continue;
2033 last_pgdat = zone->zone_pgdat;
2034 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
2035 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
2036 return true;
2037 }
2038 return false;
2039 }
2040
2041 /*
2042 * Switch off vmstat processing and then fold all the remaining differentials
2043 * until the diffs stay at zero. The function is used by NOHZ and can only be
2044 * invoked when tick processing is not active.
2045 */
quiet_vmstat(void)2046 void quiet_vmstat(void)
2047 {
2048 if (system_state != SYSTEM_RUNNING)
2049 return;
2050
2051 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
2052 return;
2053
2054 if (!need_update(smp_processor_id()))
2055 return;
2056
2057 /*
2058 * Just refresh counters and do not care about the pending delayed
2059 * vmstat_update. It doesn't fire that often to matter and canceling
2060 * it would be too expensive from this path.
2061 * vmstat_shepherd will take care about that for us.
2062 */
2063 refresh_cpu_vm_stats(false);
2064 }
2065
2066 /*
2067 * Shepherd worker thread that checks the
2068 * differentials of processors that have their worker
2069 * threads for vm statistics updates disabled because of
2070 * inactivity.
2071 */
2072 static void vmstat_shepherd(struct work_struct *w);
2073
2074 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2075
vmstat_shepherd(struct work_struct * w)2076 static void vmstat_shepherd(struct work_struct *w)
2077 {
2078 int cpu;
2079
2080 cpus_read_lock();
2081 /* Check processors whose vmstat worker threads have been disabled */
2082 for_each_online_cpu(cpu) {
2083 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2084
2085 /*
2086 * In kernel users of vmstat counters either require the precise value and
2087 * they are using zone_page_state_snapshot interface or they can live with
2088 * an imprecision as the regular flushing can happen at arbitrary time and
2089 * cumulative error can grow (see calculate_normal_threshold).
2090 *
2091 * From that POV the regular flushing can be postponed for CPUs that have
2092 * been isolated from the kernel interference without critical
2093 * infrastructure ever noticing. Skip regular flushing from vmstat_shepherd
2094 * for all isolated CPUs to avoid interference with the isolated workload.
2095 */
2096 if (cpu_is_isolated(cpu))
2097 continue;
2098
2099 if (!delayed_work_pending(dw) && need_update(cpu))
2100 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2101
2102 cond_resched();
2103 }
2104 cpus_read_unlock();
2105
2106 schedule_delayed_work(&shepherd,
2107 round_jiffies_relative(sysctl_stat_interval));
2108 }
2109
start_shepherd_timer(void)2110 static void __init start_shepherd_timer(void)
2111 {
2112 int cpu;
2113
2114 for_each_possible_cpu(cpu)
2115 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2116 vmstat_update);
2117
2118 schedule_delayed_work(&shepherd,
2119 round_jiffies_relative(sysctl_stat_interval));
2120 }
2121
init_cpu_node_state(void)2122 static void __init init_cpu_node_state(void)
2123 {
2124 int node;
2125
2126 for_each_online_node(node) {
2127 if (!cpumask_empty(cpumask_of_node(node)))
2128 node_set_state(node, N_CPU);
2129 }
2130 }
2131
vmstat_cpu_online(unsigned int cpu)2132 static int vmstat_cpu_online(unsigned int cpu)
2133 {
2134 refresh_zone_stat_thresholds();
2135
2136 if (!node_state(cpu_to_node(cpu), N_CPU)) {
2137 node_set_state(cpu_to_node(cpu), N_CPU);
2138 }
2139
2140 return 0;
2141 }
2142
vmstat_cpu_down_prep(unsigned int cpu)2143 static int vmstat_cpu_down_prep(unsigned int cpu)
2144 {
2145 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2146 return 0;
2147 }
2148
vmstat_cpu_dead(unsigned int cpu)2149 static int vmstat_cpu_dead(unsigned int cpu)
2150 {
2151 const struct cpumask *node_cpus;
2152 int node;
2153
2154 node = cpu_to_node(cpu);
2155
2156 refresh_zone_stat_thresholds();
2157 node_cpus = cpumask_of_node(node);
2158 if (!cpumask_empty(node_cpus))
2159 return 0;
2160
2161 node_clear_state(node, N_CPU);
2162
2163 return 0;
2164 }
2165
2166 #endif
2167
2168 struct workqueue_struct *mm_percpu_wq;
2169
init_mm_internals(void)2170 void __init init_mm_internals(void)
2171 {
2172 int ret __maybe_unused;
2173
2174 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2175
2176 #ifdef CONFIG_SMP
2177 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2178 NULL, vmstat_cpu_dead);
2179 if (ret < 0)
2180 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2181
2182 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2183 vmstat_cpu_online,
2184 vmstat_cpu_down_prep);
2185 if (ret < 0)
2186 pr_err("vmstat: failed to register 'online' hotplug state\n");
2187
2188 cpus_read_lock();
2189 init_cpu_node_state();
2190 cpus_read_unlock();
2191
2192 start_shepherd_timer();
2193 #endif
2194 #ifdef CONFIG_PROC_FS
2195 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2196 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2197 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2198 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2199 #endif
2200 }
2201
2202 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2203
2204 /*
2205 * Return an index indicating how much of the available free memory is
2206 * unusable for an allocation of the requested size.
2207 */
unusable_free_index(unsigned int order,struct contig_page_info * info)2208 static int unusable_free_index(unsigned int order,
2209 struct contig_page_info *info)
2210 {
2211 /* No free memory is interpreted as all free memory is unusable */
2212 if (info->free_pages == 0)
2213 return 1000;
2214
2215 /*
2216 * Index should be a value between 0 and 1. Return a value to 3
2217 * decimal places.
2218 *
2219 * 0 => no fragmentation
2220 * 1 => high fragmentation
2221 */
2222 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2223
2224 }
2225
unusable_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)2226 static void unusable_show_print(struct seq_file *m,
2227 pg_data_t *pgdat, struct zone *zone)
2228 {
2229 unsigned int order;
2230 int index;
2231 struct contig_page_info info;
2232
2233 seq_printf(m, "Node %d, zone %8s ",
2234 pgdat->node_id,
2235 zone->name);
2236 for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2237 fill_contig_page_info(zone, order, &info);
2238 index = unusable_free_index(order, &info);
2239 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2240 }
2241
2242 seq_putc(m, '\n');
2243 }
2244
2245 /*
2246 * Display unusable free space index
2247 *
2248 * The unusable free space index measures how much of the available free
2249 * memory cannot be used to satisfy an allocation of a given size and is a
2250 * value between 0 and 1. The higher the value, the more of free memory is
2251 * unusable and by implication, the worse the external fragmentation is. This
2252 * can be expressed as a percentage by multiplying by 100.
2253 */
unusable_show(struct seq_file * m,void * arg)2254 static int unusable_show(struct seq_file *m, void *arg)
2255 {
2256 pg_data_t *pgdat = (pg_data_t *)arg;
2257
2258 /* check memoryless node */
2259 if (!node_state(pgdat->node_id, N_MEMORY))
2260 return 0;
2261
2262 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2263
2264 return 0;
2265 }
2266
2267 static const struct seq_operations unusable_sops = {
2268 .start = frag_start,
2269 .next = frag_next,
2270 .stop = frag_stop,
2271 .show = unusable_show,
2272 };
2273
2274 DEFINE_SEQ_ATTRIBUTE(unusable);
2275
extfrag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)2276 static void extfrag_show_print(struct seq_file *m,
2277 pg_data_t *pgdat, struct zone *zone)
2278 {
2279 unsigned int order;
2280 int index;
2281
2282 /* Alloc on stack as interrupts are disabled for zone walk */
2283 struct contig_page_info info;
2284
2285 seq_printf(m, "Node %d, zone %8s ",
2286 pgdat->node_id,
2287 zone->name);
2288 for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2289 fill_contig_page_info(zone, order, &info);
2290 index = __fragmentation_index(order, &info);
2291 seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2292 }
2293
2294 seq_putc(m, '\n');
2295 }
2296
2297 /*
2298 * Display fragmentation index for orders that allocations would fail for
2299 */
extfrag_show(struct seq_file * m,void * arg)2300 static int extfrag_show(struct seq_file *m, void *arg)
2301 {
2302 pg_data_t *pgdat = (pg_data_t *)arg;
2303
2304 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2305
2306 return 0;
2307 }
2308
2309 static const struct seq_operations extfrag_sops = {
2310 .start = frag_start,
2311 .next = frag_next,
2312 .stop = frag_stop,
2313 .show = extfrag_show,
2314 };
2315
2316 DEFINE_SEQ_ATTRIBUTE(extfrag);
2317
extfrag_debug_init(void)2318 static int __init extfrag_debug_init(void)
2319 {
2320 struct dentry *extfrag_debug_root;
2321
2322 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2323
2324 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2325 &unusable_fops);
2326
2327 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2328 &extfrag_fops);
2329
2330 return 0;
2331 }
2332
2333 module_init(extfrag_debug_init);
2334
2335 #endif
2336