1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/kmsan.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/memory-tiers.h>
70 #include <linux/debugfs.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/dax.h>
73 #include <linux/oom.h>
74 #include <linux/numa.h>
75 #include <linux/perf_event.h>
76 #include <linux/ptrace.h>
77 #include <linux/vmalloc.h>
78 #include <linux/sched/sysctl.h>
79
80 #include <trace/events/kmem.h>
81
82 #include <asm/io.h>
83 #include <asm/mmu_context.h>
84 #include <asm/pgalloc.h>
85 #include <linux/uaccess.h>
86 #include <asm/tlb.h>
87 #include <asm/tlbflush.h>
88
89 #include "pgalloc-track.h"
90 #include "internal.h"
91 #include "swap.h"
92
93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
95 #endif
96
97 #ifndef CONFIG_NUMA
98 unsigned long max_mapnr;
99 EXPORT_SYMBOL(max_mapnr);
100
101 struct page *mem_map;
102 EXPORT_SYMBOL(mem_map);
103 #endif
104
105 static vm_fault_t do_fault(struct vm_fault *vmf);
106 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
107 static bool vmf_pte_changed(struct vm_fault *vmf);
108
109 /*
110 * Return true if the original pte was a uffd-wp pte marker (so the pte was
111 * wr-protected).
112 */
vmf_orig_pte_uffd_wp(struct vm_fault * vmf)113 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
114 {
115 if (!userfaultfd_wp(vmf->vma))
116 return false;
117 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
118 return false;
119
120 return pte_marker_uffd_wp(vmf->orig_pte);
121 }
122
123 /*
124 * A number of key systems in x86 including ioremap() rely on the assumption
125 * that high_memory defines the upper bound on direct map memory, then end
126 * of ZONE_NORMAL.
127 */
128 void *high_memory;
129 EXPORT_SYMBOL(high_memory);
130
131 /*
132 * Randomize the address space (stacks, mmaps, brk, etc.).
133 *
134 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
135 * as ancient (libc5 based) binaries can segfault. )
136 */
137 int randomize_va_space __read_mostly =
138 #ifdef CONFIG_COMPAT_BRK
139 1;
140 #else
141 2;
142 #endif
143
144 #ifndef arch_wants_old_prefaulted_pte
arch_wants_old_prefaulted_pte(void)145 static inline bool arch_wants_old_prefaulted_pte(void)
146 {
147 /*
148 * Transitioning a PTE from 'old' to 'young' can be expensive on
149 * some architectures, even if it's performed in hardware. By
150 * default, "false" means prefaulted entries will be 'young'.
151 */
152 return false;
153 }
154 #endif
155
disable_randmaps(char * s)156 static int __init disable_randmaps(char *s)
157 {
158 randomize_va_space = 0;
159 return 1;
160 }
161 __setup("norandmaps", disable_randmaps);
162
163 unsigned long zero_pfn __read_mostly;
164 EXPORT_SYMBOL(zero_pfn);
165
166 unsigned long highest_memmap_pfn __read_mostly;
167
168 /*
169 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
170 */
init_zero_pfn(void)171 static int __init init_zero_pfn(void)
172 {
173 zero_pfn = page_to_pfn(ZERO_PAGE(0));
174 return 0;
175 }
176 early_initcall(init_zero_pfn);
177
mm_trace_rss_stat(struct mm_struct * mm,int member)178 void mm_trace_rss_stat(struct mm_struct *mm, int member)
179 {
180 trace_rss_stat(mm, member);
181 }
182
183 /*
184 * Note: this doesn't free the actual pages themselves. That
185 * has been handled earlier when unmapping all the memory regions.
186 */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)187 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
188 unsigned long addr)
189 {
190 pgtable_t token = pmd_pgtable(*pmd);
191 pmd_clear(pmd);
192 pte_free_tlb(tlb, token, addr);
193 mm_dec_nr_ptes(tlb->mm);
194 }
195
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)196 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
197 unsigned long addr, unsigned long end,
198 unsigned long floor, unsigned long ceiling)
199 {
200 pmd_t *pmd;
201 unsigned long next;
202 unsigned long start;
203
204 start = addr;
205 pmd = pmd_offset(pud, addr);
206 do {
207 next = pmd_addr_end(addr, end);
208 if (pmd_none_or_clear_bad(pmd))
209 continue;
210 free_pte_range(tlb, pmd, addr);
211 } while (pmd++, addr = next, addr != end);
212
213 start &= PUD_MASK;
214 if (start < floor)
215 return;
216 if (ceiling) {
217 ceiling &= PUD_MASK;
218 if (!ceiling)
219 return;
220 }
221 if (end - 1 > ceiling - 1)
222 return;
223
224 pmd = pmd_offset(pud, start);
225 pud_clear(pud);
226 pmd_free_tlb(tlb, pmd, start);
227 mm_dec_nr_pmds(tlb->mm);
228 }
229
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)230 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
231 unsigned long addr, unsigned long end,
232 unsigned long floor, unsigned long ceiling)
233 {
234 pud_t *pud;
235 unsigned long next;
236 unsigned long start;
237
238 start = addr;
239 pud = pud_offset(p4d, addr);
240 do {
241 next = pud_addr_end(addr, end);
242 if (pud_none_or_clear_bad(pud))
243 continue;
244 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
245 } while (pud++, addr = next, addr != end);
246
247 start &= P4D_MASK;
248 if (start < floor)
249 return;
250 if (ceiling) {
251 ceiling &= P4D_MASK;
252 if (!ceiling)
253 return;
254 }
255 if (end - 1 > ceiling - 1)
256 return;
257
258 pud = pud_offset(p4d, start);
259 p4d_clear(p4d);
260 pud_free_tlb(tlb, pud, start);
261 mm_dec_nr_puds(tlb->mm);
262 }
263
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)264 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
265 unsigned long addr, unsigned long end,
266 unsigned long floor, unsigned long ceiling)
267 {
268 p4d_t *p4d;
269 unsigned long next;
270 unsigned long start;
271
272 start = addr;
273 p4d = p4d_offset(pgd, addr);
274 do {
275 next = p4d_addr_end(addr, end);
276 if (p4d_none_or_clear_bad(p4d))
277 continue;
278 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
279 } while (p4d++, addr = next, addr != end);
280
281 start &= PGDIR_MASK;
282 if (start < floor)
283 return;
284 if (ceiling) {
285 ceiling &= PGDIR_MASK;
286 if (!ceiling)
287 return;
288 }
289 if (end - 1 > ceiling - 1)
290 return;
291
292 p4d = p4d_offset(pgd, start);
293 pgd_clear(pgd);
294 p4d_free_tlb(tlb, p4d, start);
295 }
296
297 /*
298 * This function frees user-level page tables of a process.
299 */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)300 void free_pgd_range(struct mmu_gather *tlb,
301 unsigned long addr, unsigned long end,
302 unsigned long floor, unsigned long ceiling)
303 {
304 pgd_t *pgd;
305 unsigned long next;
306
307 /*
308 * The next few lines have given us lots of grief...
309 *
310 * Why are we testing PMD* at this top level? Because often
311 * there will be no work to do at all, and we'd prefer not to
312 * go all the way down to the bottom just to discover that.
313 *
314 * Why all these "- 1"s? Because 0 represents both the bottom
315 * of the address space and the top of it (using -1 for the
316 * top wouldn't help much: the masks would do the wrong thing).
317 * The rule is that addr 0 and floor 0 refer to the bottom of
318 * the address space, but end 0 and ceiling 0 refer to the top
319 * Comparisons need to use "end - 1" and "ceiling - 1" (though
320 * that end 0 case should be mythical).
321 *
322 * Wherever addr is brought up or ceiling brought down, we must
323 * be careful to reject "the opposite 0" before it confuses the
324 * subsequent tests. But what about where end is brought down
325 * by PMD_SIZE below? no, end can't go down to 0 there.
326 *
327 * Whereas we round start (addr) and ceiling down, by different
328 * masks at different levels, in order to test whether a table
329 * now has no other vmas using it, so can be freed, we don't
330 * bother to round floor or end up - the tests don't need that.
331 */
332
333 addr &= PMD_MASK;
334 if (addr < floor) {
335 addr += PMD_SIZE;
336 if (!addr)
337 return;
338 }
339 if (ceiling) {
340 ceiling &= PMD_MASK;
341 if (!ceiling)
342 return;
343 }
344 if (end - 1 > ceiling - 1)
345 end -= PMD_SIZE;
346 if (addr > end - 1)
347 return;
348 /*
349 * We add page table cache pages with PAGE_SIZE,
350 * (see pte_free_tlb()), flush the tlb if we need
351 */
352 tlb_change_page_size(tlb, PAGE_SIZE);
353 pgd = pgd_offset(tlb->mm, addr);
354 do {
355 next = pgd_addr_end(addr, end);
356 if (pgd_none_or_clear_bad(pgd))
357 continue;
358 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
359 } while (pgd++, addr = next, addr != end);
360 }
361
free_pgtables(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling,bool mm_wr_locked)362 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
363 struct vm_area_struct *vma, unsigned long floor,
364 unsigned long ceiling, bool mm_wr_locked)
365 {
366 struct unlink_vma_file_batch vb;
367
368 do {
369 unsigned long addr = vma->vm_start;
370 struct vm_area_struct *next;
371
372 /*
373 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
374 * be 0. This will underflow and is okay.
375 */
376 next = mas_find(mas, ceiling - 1);
377 if (unlikely(xa_is_zero(next)))
378 next = NULL;
379
380 /*
381 * Hide vma from rmap and truncate_pagecache before freeing
382 * pgtables
383 */
384 if (mm_wr_locked)
385 vma_start_write(vma);
386 unlink_anon_vmas(vma);
387
388 if (is_vm_hugetlb_page(vma)) {
389 unlink_file_vma(vma);
390 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
391 floor, next ? next->vm_start : ceiling);
392 } else {
393 unlink_file_vma_batch_init(&vb);
394 unlink_file_vma_batch_add(&vb, vma);
395
396 /*
397 * Optimization: gather nearby vmas into one call down
398 */
399 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
400 && !is_vm_hugetlb_page(next)) {
401 vma = next;
402 next = mas_find(mas, ceiling - 1);
403 if (unlikely(xa_is_zero(next)))
404 next = NULL;
405 if (mm_wr_locked)
406 vma_start_write(vma);
407 unlink_anon_vmas(vma);
408 unlink_file_vma_batch_add(&vb, vma);
409 }
410 unlink_file_vma_batch_final(&vb);
411 free_pgd_range(tlb, addr, vma->vm_end,
412 floor, next ? next->vm_start : ceiling);
413 }
414 vma = next;
415 } while (vma);
416 }
417
pmd_install(struct mm_struct * mm,pmd_t * pmd,pgtable_t * pte)418 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
419 {
420 spinlock_t *ptl = pmd_lock(mm, pmd);
421
422 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
423 mm_inc_nr_ptes(mm);
424 /*
425 * Ensure all pte setup (eg. pte page lock and page clearing) are
426 * visible before the pte is made visible to other CPUs by being
427 * put into page tables.
428 *
429 * The other side of the story is the pointer chasing in the page
430 * table walking code (when walking the page table without locking;
431 * ie. most of the time). Fortunately, these data accesses consist
432 * of a chain of data-dependent loads, meaning most CPUs (alpha
433 * being the notable exception) will already guarantee loads are
434 * seen in-order. See the alpha page table accessors for the
435 * smp_rmb() barriers in page table walking code.
436 */
437 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
438 pmd_populate(mm, pmd, *pte);
439 *pte = NULL;
440 }
441 spin_unlock(ptl);
442 }
443
__pte_alloc(struct mm_struct * mm,pmd_t * pmd)444 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
445 {
446 pgtable_t new = pte_alloc_one(mm);
447 if (!new)
448 return -ENOMEM;
449
450 pmd_install(mm, pmd, &new);
451 if (new)
452 pte_free(mm, new);
453 return 0;
454 }
455
__pte_alloc_kernel(pmd_t * pmd)456 int __pte_alloc_kernel(pmd_t *pmd)
457 {
458 pte_t *new = pte_alloc_one_kernel(&init_mm);
459 if (!new)
460 return -ENOMEM;
461
462 spin_lock(&init_mm.page_table_lock);
463 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
464 smp_wmb(); /* See comment in pmd_install() */
465 pmd_populate_kernel(&init_mm, pmd, new);
466 new = NULL;
467 }
468 spin_unlock(&init_mm.page_table_lock);
469 if (new)
470 pte_free_kernel(&init_mm, new);
471 return 0;
472 }
473
init_rss_vec(int * rss)474 static inline void init_rss_vec(int *rss)
475 {
476 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
477 }
478
add_mm_rss_vec(struct mm_struct * mm,int * rss)479 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
480 {
481 int i;
482
483 for (i = 0; i < NR_MM_COUNTERS; i++)
484 if (rss[i])
485 add_mm_counter(mm, i, rss[i]);
486 }
487
488 /*
489 * This function is called to print an error when a bad pte
490 * is found. For example, we might have a PFN-mapped pte in
491 * a region that doesn't allow it.
492 *
493 * The calling function must still handle the error.
494 */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)495 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
496 pte_t pte, struct page *page)
497 {
498 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
499 p4d_t *p4d = p4d_offset(pgd, addr);
500 pud_t *pud = pud_offset(p4d, addr);
501 pmd_t *pmd = pmd_offset(pud, addr);
502 struct address_space *mapping;
503 pgoff_t index;
504 static unsigned long resume;
505 static unsigned long nr_shown;
506 static unsigned long nr_unshown;
507
508 /*
509 * Allow a burst of 60 reports, then keep quiet for that minute;
510 * or allow a steady drip of one report per second.
511 */
512 if (nr_shown == 60) {
513 if (time_before(jiffies, resume)) {
514 nr_unshown++;
515 return;
516 }
517 if (nr_unshown) {
518 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
519 nr_unshown);
520 nr_unshown = 0;
521 }
522 nr_shown = 0;
523 }
524 if (nr_shown++ == 0)
525 resume = jiffies + 60 * HZ;
526
527 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
528 index = linear_page_index(vma, addr);
529
530 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
531 current->comm,
532 (long long)pte_val(pte), (long long)pmd_val(*pmd));
533 if (page)
534 dump_page(page, "bad pte");
535 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
536 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
537 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
538 vma->vm_file,
539 vma->vm_ops ? vma->vm_ops->fault : NULL,
540 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
541 mapping ? mapping->a_ops->read_folio : NULL);
542 dump_stack();
543 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
544 }
545
546 /*
547 * vm_normal_page -- This function gets the "struct page" associated with a pte.
548 *
549 * "Special" mappings do not wish to be associated with a "struct page" (either
550 * it doesn't exist, or it exists but they don't want to touch it). In this
551 * case, NULL is returned here. "Normal" mappings do have a struct page.
552 *
553 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
554 * pte bit, in which case this function is trivial. Secondly, an architecture
555 * may not have a spare pte bit, which requires a more complicated scheme,
556 * described below.
557 *
558 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
559 * special mapping (even if there are underlying and valid "struct pages").
560 * COWed pages of a VM_PFNMAP are always normal.
561 *
562 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
563 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
564 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
565 * mapping will always honor the rule
566 *
567 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
568 *
569 * And for normal mappings this is false.
570 *
571 * This restricts such mappings to be a linear translation from virtual address
572 * to pfn. To get around this restriction, we allow arbitrary mappings so long
573 * as the vma is not a COW mapping; in that case, we know that all ptes are
574 * special (because none can have been COWed).
575 *
576 *
577 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
578 *
579 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
580 * page" backing, however the difference is that _all_ pages with a struct
581 * page (that is, those where pfn_valid is true) are refcounted and considered
582 * normal pages by the VM. The only exception are zeropages, which are
583 * *never* refcounted.
584 *
585 * The disadvantage is that pages are refcounted (which can be slower and
586 * simply not an option for some PFNMAP users). The advantage is that we
587 * don't have to follow the strict linearity rule of PFNMAP mappings in
588 * order to support COWable mappings.
589 *
590 */
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)591 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
592 pte_t pte)
593 {
594 unsigned long pfn = pte_pfn(pte);
595
596 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
597 if (likely(!pte_special(pte)))
598 goto check_pfn;
599 if (vma->vm_ops && vma->vm_ops->find_special_page)
600 return vma->vm_ops->find_special_page(vma, addr);
601 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
602 return NULL;
603 if (is_zero_pfn(pfn))
604 return NULL;
605 if (pte_devmap(pte))
606 /*
607 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
608 * and will have refcounts incremented on their struct pages
609 * when they are inserted into PTEs, thus they are safe to
610 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
611 * do not have refcounts. Example of legacy ZONE_DEVICE is
612 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
613 */
614 return NULL;
615
616 print_bad_pte(vma, addr, pte, NULL);
617 return NULL;
618 }
619
620 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
621
622 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
623 if (vma->vm_flags & VM_MIXEDMAP) {
624 if (!pfn_valid(pfn))
625 return NULL;
626 if (is_zero_pfn(pfn))
627 return NULL;
628 goto out;
629 } else {
630 unsigned long off;
631 off = (addr - vma->vm_start) >> PAGE_SHIFT;
632 if (pfn == vma->vm_pgoff + off)
633 return NULL;
634 if (!is_cow_mapping(vma->vm_flags))
635 return NULL;
636 }
637 }
638
639 if (is_zero_pfn(pfn))
640 return NULL;
641
642 check_pfn:
643 if (unlikely(pfn > highest_memmap_pfn)) {
644 print_bad_pte(vma, addr, pte, NULL);
645 return NULL;
646 }
647
648 /*
649 * NOTE! We still have PageReserved() pages in the page tables.
650 * eg. VDSO mappings can cause them to exist.
651 */
652 out:
653 VM_WARN_ON_ONCE(is_zero_pfn(pfn));
654 return pfn_to_page(pfn);
655 }
656
vm_normal_folio(struct vm_area_struct * vma,unsigned long addr,pte_t pte)657 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
658 pte_t pte)
659 {
660 struct page *page = vm_normal_page(vma, addr, pte);
661
662 if (page)
663 return page_folio(page);
664 return NULL;
665 }
666
667 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)668 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
669 pmd_t pmd)
670 {
671 unsigned long pfn = pmd_pfn(pmd);
672
673 /* Currently it's only used for huge pfnmaps */
674 if (unlikely(pmd_special(pmd)))
675 return NULL;
676
677 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
678 if (vma->vm_flags & VM_MIXEDMAP) {
679 if (!pfn_valid(pfn))
680 return NULL;
681 goto out;
682 } else {
683 unsigned long off;
684 off = (addr - vma->vm_start) >> PAGE_SHIFT;
685 if (pfn == vma->vm_pgoff + off)
686 return NULL;
687 if (!is_cow_mapping(vma->vm_flags))
688 return NULL;
689 }
690 }
691
692 if (pmd_devmap(pmd))
693 return NULL;
694 if (is_huge_zero_pmd(pmd))
695 return NULL;
696 if (unlikely(pfn > highest_memmap_pfn))
697 return NULL;
698
699 /*
700 * NOTE! We still have PageReserved() pages in the page tables.
701 * eg. VDSO mappings can cause them to exist.
702 */
703 out:
704 return pfn_to_page(pfn);
705 }
706
vm_normal_folio_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)707 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
708 unsigned long addr, pmd_t pmd)
709 {
710 struct page *page = vm_normal_page_pmd(vma, addr, pmd);
711
712 if (page)
713 return page_folio(page);
714 return NULL;
715 }
716 #endif
717
restore_exclusive_pte(struct vm_area_struct * vma,struct page * page,unsigned long address,pte_t * ptep)718 static void restore_exclusive_pte(struct vm_area_struct *vma,
719 struct page *page, unsigned long address,
720 pte_t *ptep)
721 {
722 struct folio *folio = page_folio(page);
723 pte_t orig_pte;
724 pte_t pte;
725 swp_entry_t entry;
726
727 orig_pte = ptep_get(ptep);
728 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
729 if (pte_swp_soft_dirty(orig_pte))
730 pte = pte_mksoft_dirty(pte);
731
732 entry = pte_to_swp_entry(orig_pte);
733 if (pte_swp_uffd_wp(orig_pte))
734 pte = pte_mkuffd_wp(pte);
735 else if (is_writable_device_exclusive_entry(entry))
736 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
737
738 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
739 PageAnonExclusive(page)), folio);
740
741 /*
742 * No need to take a page reference as one was already
743 * created when the swap entry was made.
744 */
745 if (folio_test_anon(folio))
746 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
747 else
748 /*
749 * Currently device exclusive access only supports anonymous
750 * memory so the entry shouldn't point to a filebacked page.
751 */
752 WARN_ON_ONCE(1);
753
754 set_pte_at(vma->vm_mm, address, ptep, pte);
755
756 /*
757 * No need to invalidate - it was non-present before. However
758 * secondary CPUs may have mappings that need invalidating.
759 */
760 update_mmu_cache(vma, address, ptep);
761 }
762
763 /*
764 * Tries to restore an exclusive pte if the page lock can be acquired without
765 * sleeping.
766 */
767 static int
try_restore_exclusive_pte(pte_t * src_pte,struct vm_area_struct * vma,unsigned long addr)768 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
769 unsigned long addr)
770 {
771 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
772 struct page *page = pfn_swap_entry_to_page(entry);
773
774 if (trylock_page(page)) {
775 restore_exclusive_pte(vma, page, addr, src_pte);
776 unlock_page(page);
777 return 0;
778 }
779
780 return -EBUSY;
781 }
782
783 /*
784 * copy one vm_area from one task to the other. Assumes the page tables
785 * already present in the new task to be cleared in the whole range
786 * covered by this vma.
787 */
788
789 static unsigned long
copy_nonpresent_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long addr,int * rss)790 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
791 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
792 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
793 {
794 unsigned long vm_flags = dst_vma->vm_flags;
795 pte_t orig_pte = ptep_get(src_pte);
796 pte_t pte = orig_pte;
797 struct folio *folio;
798 struct page *page;
799 swp_entry_t entry = pte_to_swp_entry(orig_pte);
800
801 if (likely(!non_swap_entry(entry))) {
802 if (swap_duplicate(entry) < 0)
803 return -EIO;
804
805 /* make sure dst_mm is on swapoff's mmlist. */
806 if (unlikely(list_empty(&dst_mm->mmlist))) {
807 spin_lock(&mmlist_lock);
808 if (list_empty(&dst_mm->mmlist))
809 list_add(&dst_mm->mmlist,
810 &src_mm->mmlist);
811 spin_unlock(&mmlist_lock);
812 }
813 /* Mark the swap entry as shared. */
814 if (pte_swp_exclusive(orig_pte)) {
815 pte = pte_swp_clear_exclusive(orig_pte);
816 set_pte_at(src_mm, addr, src_pte, pte);
817 }
818 rss[MM_SWAPENTS]++;
819 } else if (is_migration_entry(entry)) {
820 folio = pfn_swap_entry_folio(entry);
821
822 rss[mm_counter(folio)]++;
823
824 if (!is_readable_migration_entry(entry) &&
825 is_cow_mapping(vm_flags)) {
826 /*
827 * COW mappings require pages in both parent and child
828 * to be set to read. A previously exclusive entry is
829 * now shared.
830 */
831 entry = make_readable_migration_entry(
832 swp_offset(entry));
833 pte = swp_entry_to_pte(entry);
834 if (pte_swp_soft_dirty(orig_pte))
835 pte = pte_swp_mksoft_dirty(pte);
836 if (pte_swp_uffd_wp(orig_pte))
837 pte = pte_swp_mkuffd_wp(pte);
838 set_pte_at(src_mm, addr, src_pte, pte);
839 }
840 } else if (is_device_private_entry(entry)) {
841 page = pfn_swap_entry_to_page(entry);
842 folio = page_folio(page);
843
844 /*
845 * Update rss count even for unaddressable pages, as
846 * they should treated just like normal pages in this
847 * respect.
848 *
849 * We will likely want to have some new rss counters
850 * for unaddressable pages, at some point. But for now
851 * keep things as they are.
852 */
853 folio_get(folio);
854 rss[mm_counter(folio)]++;
855 /* Cannot fail as these pages cannot get pinned. */
856 folio_try_dup_anon_rmap_pte(folio, page, src_vma);
857
858 /*
859 * We do not preserve soft-dirty information, because so
860 * far, checkpoint/restore is the only feature that
861 * requires that. And checkpoint/restore does not work
862 * when a device driver is involved (you cannot easily
863 * save and restore device driver state).
864 */
865 if (is_writable_device_private_entry(entry) &&
866 is_cow_mapping(vm_flags)) {
867 entry = make_readable_device_private_entry(
868 swp_offset(entry));
869 pte = swp_entry_to_pte(entry);
870 if (pte_swp_uffd_wp(orig_pte))
871 pte = pte_swp_mkuffd_wp(pte);
872 set_pte_at(src_mm, addr, src_pte, pte);
873 }
874 } else if (is_device_exclusive_entry(entry)) {
875 /*
876 * Make device exclusive entries present by restoring the
877 * original entry then copying as for a present pte. Device
878 * exclusive entries currently only support private writable
879 * (ie. COW) mappings.
880 */
881 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
882 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
883 return -EBUSY;
884 return -ENOENT;
885 } else if (is_pte_marker_entry(entry)) {
886 pte_marker marker = copy_pte_marker(entry, dst_vma);
887
888 if (marker)
889 set_pte_at(dst_mm, addr, dst_pte,
890 make_pte_marker(marker));
891 return 0;
892 }
893 if (!userfaultfd_wp(dst_vma))
894 pte = pte_swp_clear_uffd_wp(pte);
895 set_pte_at(dst_mm, addr, dst_pte, pte);
896 return 0;
897 }
898
899 /*
900 * Copy a present and normal page.
901 *
902 * NOTE! The usual case is that this isn't required;
903 * instead, the caller can just increase the page refcount
904 * and re-use the pte the traditional way.
905 *
906 * And if we need a pre-allocated page but don't yet have
907 * one, return a negative error to let the preallocation
908 * code know so that it can do so outside the page table
909 * lock.
910 */
911 static inline int
copy_present_page(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct folio ** prealloc,struct page * page)912 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
913 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
914 struct folio **prealloc, struct page *page)
915 {
916 struct folio *new_folio;
917 pte_t pte;
918
919 new_folio = *prealloc;
920 if (!new_folio)
921 return -EAGAIN;
922
923 /*
924 * We have a prealloc page, all good! Take it
925 * over and copy the page & arm it.
926 */
927
928 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma))
929 return -EHWPOISON;
930
931 *prealloc = NULL;
932 __folio_mark_uptodate(new_folio);
933 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
934 folio_add_lru_vma(new_folio, dst_vma);
935 rss[MM_ANONPAGES]++;
936
937 /* All done, just insert the new page copy in the child */
938 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
939 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
940 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
941 /* Uffd-wp needs to be delivered to dest pte as well */
942 pte = pte_mkuffd_wp(pte);
943 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
944 return 0;
945 }
946
__copy_present_ptes(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,pte_t pte,unsigned long addr,int nr)947 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
948 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
949 pte_t pte, unsigned long addr, int nr)
950 {
951 struct mm_struct *src_mm = src_vma->vm_mm;
952
953 /* If it's a COW mapping, write protect it both processes. */
954 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
955 wrprotect_ptes(src_mm, addr, src_pte, nr);
956 pte = pte_wrprotect(pte);
957 }
958
959 /* If it's a shared mapping, mark it clean in the child. */
960 if (src_vma->vm_flags & VM_SHARED)
961 pte = pte_mkclean(pte);
962 pte = pte_mkold(pte);
963
964 if (!userfaultfd_wp(dst_vma))
965 pte = pte_clear_uffd_wp(pte);
966
967 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
968 }
969
970 /*
971 * Copy one present PTE, trying to batch-process subsequent PTEs that map
972 * consecutive pages of the same folio by copying them as well.
973 *
974 * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
975 * Otherwise, returns the number of copied PTEs (at least 1).
976 */
977 static inline int
copy_present_ptes(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,pte_t pte,unsigned long addr,int max_nr,int * rss,struct folio ** prealloc)978 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
979 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
980 int max_nr, int *rss, struct folio **prealloc)
981 {
982 struct page *page;
983 struct folio *folio;
984 bool any_writable;
985 fpb_t flags = 0;
986 int err, nr;
987
988 page = vm_normal_page(src_vma, addr, pte);
989 if (unlikely(!page))
990 goto copy_pte;
991
992 folio = page_folio(page);
993
994 /*
995 * If we likely have to copy, just don't bother with batching. Make
996 * sure that the common "small folio" case is as fast as possible
997 * by keeping the batching logic separate.
998 */
999 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
1000 if (src_vma->vm_flags & VM_SHARED)
1001 flags |= FPB_IGNORE_DIRTY;
1002 if (!vma_soft_dirty_enabled(src_vma))
1003 flags |= FPB_IGNORE_SOFT_DIRTY;
1004
1005 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
1006 &any_writable, NULL, NULL);
1007 folio_ref_add(folio, nr);
1008 if (folio_test_anon(folio)) {
1009 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
1010 nr, src_vma))) {
1011 folio_ref_sub(folio, nr);
1012 return -EAGAIN;
1013 }
1014 rss[MM_ANONPAGES] += nr;
1015 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1016 } else {
1017 folio_dup_file_rmap_ptes(folio, page, nr);
1018 rss[mm_counter_file(folio)] += nr;
1019 }
1020 if (any_writable)
1021 pte = pte_mkwrite(pte, src_vma);
1022 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1023 addr, nr);
1024 return nr;
1025 }
1026
1027 folio_get(folio);
1028 if (folio_test_anon(folio)) {
1029 /*
1030 * If this page may have been pinned by the parent process,
1031 * copy the page immediately for the child so that we'll always
1032 * guarantee the pinned page won't be randomly replaced in the
1033 * future.
1034 */
1035 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
1036 /* Page may be pinned, we have to copy. */
1037 folio_put(folio);
1038 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1039 addr, rss, prealloc, page);
1040 return err ? err : 1;
1041 }
1042 rss[MM_ANONPAGES]++;
1043 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1044 } else {
1045 folio_dup_file_rmap_pte(folio, page);
1046 rss[mm_counter_file(folio)]++;
1047 }
1048
1049 copy_pte:
1050 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1051 return 1;
1052 }
1053
folio_prealloc(struct mm_struct * src_mm,struct vm_area_struct * vma,unsigned long addr,bool need_zero)1054 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1055 struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1056 {
1057 struct folio *new_folio;
1058
1059 if (need_zero)
1060 new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1061 else
1062 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
1063
1064 if (!new_folio)
1065 return NULL;
1066
1067 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1068 folio_put(new_folio);
1069 return NULL;
1070 }
1071 folio_throttle_swaprate(new_folio, GFP_KERNEL);
1072
1073 return new_folio;
1074 }
1075
1076 static int
copy_pte_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,unsigned long end)1077 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1078 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1079 unsigned long end)
1080 {
1081 struct mm_struct *dst_mm = dst_vma->vm_mm;
1082 struct mm_struct *src_mm = src_vma->vm_mm;
1083 pte_t *orig_src_pte, *orig_dst_pte;
1084 pte_t *src_pte, *dst_pte;
1085 pmd_t dummy_pmdval;
1086 pte_t ptent;
1087 spinlock_t *src_ptl, *dst_ptl;
1088 int progress, max_nr, ret = 0;
1089 int rss[NR_MM_COUNTERS];
1090 swp_entry_t entry = (swp_entry_t){0};
1091 struct folio *prealloc = NULL;
1092 int nr;
1093
1094 again:
1095 progress = 0;
1096 init_rss_vec(rss);
1097
1098 /*
1099 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1100 * error handling here, assume that exclusive mmap_lock on dst and src
1101 * protects anon from unexpected THP transitions; with shmem and file
1102 * protected by mmap_lock-less collapse skipping areas with anon_vma
1103 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1104 * can remove such assumptions later, but this is good enough for now.
1105 */
1106 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1107 if (!dst_pte) {
1108 ret = -ENOMEM;
1109 goto out;
1110 }
1111
1112 /*
1113 * We already hold the exclusive mmap_lock, the copy_pte_range() and
1114 * retract_page_tables() are using vma->anon_vma to be exclusive, so
1115 * the PTE page is stable, and there is no need to get pmdval and do
1116 * pmd_same() check.
1117 */
1118 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval,
1119 &src_ptl);
1120 if (!src_pte) {
1121 pte_unmap_unlock(dst_pte, dst_ptl);
1122 /* ret == 0 */
1123 goto out;
1124 }
1125 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1126 orig_src_pte = src_pte;
1127 orig_dst_pte = dst_pte;
1128 arch_enter_lazy_mmu_mode();
1129
1130 do {
1131 nr = 1;
1132
1133 /*
1134 * We are holding two locks at this point - either of them
1135 * could generate latencies in another task on another CPU.
1136 */
1137 if (progress >= 32) {
1138 progress = 0;
1139 if (need_resched() ||
1140 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1141 break;
1142 }
1143 ptent = ptep_get(src_pte);
1144 if (pte_none(ptent)) {
1145 progress++;
1146 continue;
1147 }
1148 if (unlikely(!pte_present(ptent))) {
1149 ret = copy_nonpresent_pte(dst_mm, src_mm,
1150 dst_pte, src_pte,
1151 dst_vma, src_vma,
1152 addr, rss);
1153 if (ret == -EIO) {
1154 entry = pte_to_swp_entry(ptep_get(src_pte));
1155 break;
1156 } else if (ret == -EBUSY) {
1157 break;
1158 } else if (!ret) {
1159 progress += 8;
1160 continue;
1161 }
1162 ptent = ptep_get(src_pte);
1163 VM_WARN_ON_ONCE(!pte_present(ptent));
1164
1165 /*
1166 * Device exclusive entry restored, continue by copying
1167 * the now present pte.
1168 */
1169 WARN_ON_ONCE(ret != -ENOENT);
1170 }
1171 /* copy_present_ptes() will clear `*prealloc' if consumed */
1172 max_nr = (end - addr) / PAGE_SIZE;
1173 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1174 ptent, addr, max_nr, rss, &prealloc);
1175 /*
1176 * If we need a pre-allocated page for this pte, drop the
1177 * locks, allocate, and try again.
1178 * If copy failed due to hwpoison in source page, break out.
1179 */
1180 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON))
1181 break;
1182 if (unlikely(prealloc)) {
1183 /*
1184 * pre-alloc page cannot be reused by next time so as
1185 * to strictly follow mempolicy (e.g., alloc_page_vma()
1186 * will allocate page according to address). This
1187 * could only happen if one pinned pte changed.
1188 */
1189 folio_put(prealloc);
1190 prealloc = NULL;
1191 }
1192 nr = ret;
1193 progress += 8 * nr;
1194 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1195 addr != end);
1196
1197 arch_leave_lazy_mmu_mode();
1198 pte_unmap_unlock(orig_src_pte, src_ptl);
1199 add_mm_rss_vec(dst_mm, rss);
1200 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1201 cond_resched();
1202
1203 if (ret == -EIO) {
1204 VM_WARN_ON_ONCE(!entry.val);
1205 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1206 ret = -ENOMEM;
1207 goto out;
1208 }
1209 entry.val = 0;
1210 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) {
1211 goto out;
1212 } else if (ret == -EAGAIN) {
1213 prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1214 if (!prealloc)
1215 return -ENOMEM;
1216 } else if (ret < 0) {
1217 VM_WARN_ON_ONCE(1);
1218 }
1219
1220 /* We've captured and resolved the error. Reset, try again. */
1221 ret = 0;
1222
1223 if (addr != end)
1224 goto again;
1225 out:
1226 if (unlikely(prealloc))
1227 folio_put(prealloc);
1228 return ret;
1229 }
1230
1231 static inline int
copy_pmd_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,unsigned long end)1232 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1233 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1234 unsigned long end)
1235 {
1236 struct mm_struct *dst_mm = dst_vma->vm_mm;
1237 struct mm_struct *src_mm = src_vma->vm_mm;
1238 pmd_t *src_pmd, *dst_pmd;
1239 unsigned long next;
1240
1241 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1242 if (!dst_pmd)
1243 return -ENOMEM;
1244 src_pmd = pmd_offset(src_pud, addr);
1245 do {
1246 next = pmd_addr_end(addr, end);
1247 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1248 || pmd_devmap(*src_pmd)) {
1249 int err;
1250 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1251 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1252 addr, dst_vma, src_vma);
1253 if (err == -ENOMEM)
1254 return -ENOMEM;
1255 if (!err)
1256 continue;
1257 /* fall through */
1258 }
1259 if (pmd_none_or_clear_bad(src_pmd))
1260 continue;
1261 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1262 addr, next))
1263 return -ENOMEM;
1264 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1265 return 0;
1266 }
1267
1268 static inline int
copy_pud_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,p4d_t * dst_p4d,p4d_t * src_p4d,unsigned long addr,unsigned long end)1269 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1270 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1271 unsigned long end)
1272 {
1273 struct mm_struct *dst_mm = dst_vma->vm_mm;
1274 struct mm_struct *src_mm = src_vma->vm_mm;
1275 pud_t *src_pud, *dst_pud;
1276 unsigned long next;
1277
1278 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1279 if (!dst_pud)
1280 return -ENOMEM;
1281 src_pud = pud_offset(src_p4d, addr);
1282 do {
1283 next = pud_addr_end(addr, end);
1284 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1285 int err;
1286
1287 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1288 err = copy_huge_pud(dst_mm, src_mm,
1289 dst_pud, src_pud, addr, src_vma);
1290 if (err == -ENOMEM)
1291 return -ENOMEM;
1292 if (!err)
1293 continue;
1294 /* fall through */
1295 }
1296 if (pud_none_or_clear_bad(src_pud))
1297 continue;
1298 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1299 addr, next))
1300 return -ENOMEM;
1301 } while (dst_pud++, src_pud++, addr = next, addr != end);
1302 return 0;
1303 }
1304
1305 static inline int
copy_p4d_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pgd_t * dst_pgd,pgd_t * src_pgd,unsigned long addr,unsigned long end)1306 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1307 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1308 unsigned long end)
1309 {
1310 struct mm_struct *dst_mm = dst_vma->vm_mm;
1311 p4d_t *src_p4d, *dst_p4d;
1312 unsigned long next;
1313
1314 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1315 if (!dst_p4d)
1316 return -ENOMEM;
1317 src_p4d = p4d_offset(src_pgd, addr);
1318 do {
1319 next = p4d_addr_end(addr, end);
1320 if (p4d_none_or_clear_bad(src_p4d))
1321 continue;
1322 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1323 addr, next))
1324 return -ENOMEM;
1325 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1326 return 0;
1327 }
1328
1329 /*
1330 * Return true if the vma needs to copy the pgtable during this fork(). Return
1331 * false when we can speed up fork() by allowing lazy page faults later until
1332 * when the child accesses the memory range.
1333 */
1334 static bool
vma_needs_copy(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1335 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1336 {
1337 /*
1338 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1339 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1340 * contains uffd-wp protection information, that's something we can't
1341 * retrieve from page cache, and skip copying will lose those info.
1342 */
1343 if (userfaultfd_wp(dst_vma))
1344 return true;
1345
1346 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1347 return true;
1348
1349 if (src_vma->anon_vma)
1350 return true;
1351
1352 /*
1353 * Don't copy ptes where a page fault will fill them correctly. Fork
1354 * becomes much lighter when there are big shared or private readonly
1355 * mappings. The tradeoff is that copy_page_range is more efficient
1356 * than faulting.
1357 */
1358 return false;
1359 }
1360
1361 int
copy_page_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1362 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1363 {
1364 pgd_t *src_pgd, *dst_pgd;
1365 unsigned long next;
1366 unsigned long addr = src_vma->vm_start;
1367 unsigned long end = src_vma->vm_end;
1368 struct mm_struct *dst_mm = dst_vma->vm_mm;
1369 struct mm_struct *src_mm = src_vma->vm_mm;
1370 struct mmu_notifier_range range;
1371 bool is_cow;
1372 int ret;
1373
1374 if (!vma_needs_copy(dst_vma, src_vma))
1375 return 0;
1376
1377 if (is_vm_hugetlb_page(src_vma))
1378 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1379
1380 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1381 /*
1382 * We do not free on error cases below as remove_vma
1383 * gets called on error from higher level routine
1384 */
1385 ret = track_pfn_copy(src_vma);
1386 if (ret)
1387 return ret;
1388 }
1389
1390 /*
1391 * We need to invalidate the secondary MMU mappings only when
1392 * there could be a permission downgrade on the ptes of the
1393 * parent mm. And a permission downgrade will only happen if
1394 * is_cow_mapping() returns true.
1395 */
1396 is_cow = is_cow_mapping(src_vma->vm_flags);
1397
1398 if (is_cow) {
1399 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1400 0, src_mm, addr, end);
1401 mmu_notifier_invalidate_range_start(&range);
1402 /*
1403 * Disabling preemption is not needed for the write side, as
1404 * the read side doesn't spin, but goes to the mmap_lock.
1405 *
1406 * Use the raw variant of the seqcount_t write API to avoid
1407 * lockdep complaining about preemptibility.
1408 */
1409 vma_assert_write_locked(src_vma);
1410 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1411 }
1412
1413 ret = 0;
1414 dst_pgd = pgd_offset(dst_mm, addr);
1415 src_pgd = pgd_offset(src_mm, addr);
1416 do {
1417 next = pgd_addr_end(addr, end);
1418 if (pgd_none_or_clear_bad(src_pgd))
1419 continue;
1420 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1421 addr, next))) {
1422 untrack_pfn_clear(dst_vma);
1423 ret = -ENOMEM;
1424 break;
1425 }
1426 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1427
1428 if (is_cow) {
1429 raw_write_seqcount_end(&src_mm->write_protect_seq);
1430 mmu_notifier_invalidate_range_end(&range);
1431 }
1432 return ret;
1433 }
1434
1435 /* Whether we should zap all COWed (private) pages too */
should_zap_cows(struct zap_details * details)1436 static inline bool should_zap_cows(struct zap_details *details)
1437 {
1438 /* By default, zap all pages */
1439 if (!details || details->reclaim_pt)
1440 return true;
1441
1442 /* Or, we zap COWed pages only if the caller wants to */
1443 return details->even_cows;
1444 }
1445
1446 /* Decides whether we should zap this folio with the folio pointer specified */
should_zap_folio(struct zap_details * details,struct folio * folio)1447 static inline bool should_zap_folio(struct zap_details *details,
1448 struct folio *folio)
1449 {
1450 /* If we can make a decision without *folio.. */
1451 if (should_zap_cows(details))
1452 return true;
1453
1454 /* Otherwise we should only zap non-anon folios */
1455 return !folio_test_anon(folio);
1456 }
1457
zap_drop_markers(struct zap_details * details)1458 static inline bool zap_drop_markers(struct zap_details *details)
1459 {
1460 if (!details)
1461 return false;
1462
1463 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1464 }
1465
1466 /*
1467 * This function makes sure that we'll replace the none pte with an uffd-wp
1468 * swap special pte marker when necessary. Must be with the pgtable lock held.
1469 *
1470 * Returns true if uffd-wp ptes was installed, false otherwise.
1471 */
1472 static inline bool
zap_install_uffd_wp_if_needed(struct vm_area_struct * vma,unsigned long addr,pte_t * pte,int nr,struct zap_details * details,pte_t pteval)1473 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1474 unsigned long addr, pte_t *pte, int nr,
1475 struct zap_details *details, pte_t pteval)
1476 {
1477 bool was_installed = false;
1478
1479 #ifdef CONFIG_PTE_MARKER_UFFD_WP
1480 /* Zap on anonymous always means dropping everything */
1481 if (vma_is_anonymous(vma))
1482 return false;
1483
1484 if (zap_drop_markers(details))
1485 return false;
1486
1487 for (;;) {
1488 /* the PFN in the PTE is irrelevant. */
1489 if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval))
1490 was_installed = true;
1491 if (--nr == 0)
1492 break;
1493 pte++;
1494 addr += PAGE_SIZE;
1495 }
1496 #endif
1497 return was_installed;
1498 }
1499
zap_present_folio_ptes(struct mmu_gather * tlb,struct vm_area_struct * vma,struct folio * folio,struct page * page,pte_t * pte,pte_t ptent,unsigned int nr,unsigned long addr,struct zap_details * details,int * rss,bool * force_flush,bool * force_break,bool * any_skipped)1500 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1501 struct vm_area_struct *vma, struct folio *folio,
1502 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1503 unsigned long addr, struct zap_details *details, int *rss,
1504 bool *force_flush, bool *force_break, bool *any_skipped)
1505 {
1506 struct mm_struct *mm = tlb->mm;
1507 bool delay_rmap = false;
1508
1509 if (!folio_test_anon(folio)) {
1510 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1511 if (pte_dirty(ptent)) {
1512 folio_mark_dirty(folio);
1513 if (tlb_delay_rmap(tlb)) {
1514 delay_rmap = true;
1515 *force_flush = true;
1516 }
1517 }
1518 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1519 folio_mark_accessed(folio);
1520 rss[mm_counter(folio)] -= nr;
1521 } else {
1522 /* We don't need up-to-date accessed/dirty bits. */
1523 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1524 rss[MM_ANONPAGES] -= nr;
1525 }
1526 /* Checking a single PTE in a batch is sufficient. */
1527 arch_check_zapped_pte(vma, ptent);
1528 tlb_remove_tlb_entries(tlb, pte, nr, addr);
1529 if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1530 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte,
1531 nr, details, ptent);
1532
1533 if (!delay_rmap) {
1534 folio_remove_rmap_ptes(folio, page, nr, vma);
1535
1536 if (unlikely(folio_mapcount(folio) < 0))
1537 print_bad_pte(vma, addr, ptent, page);
1538 }
1539 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1540 *force_flush = true;
1541 *force_break = true;
1542 }
1543 }
1544
1545 /*
1546 * Zap or skip at least one present PTE, trying to batch-process subsequent
1547 * PTEs that map consecutive pages of the same folio.
1548 *
1549 * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1550 */
zap_present_ptes(struct mmu_gather * tlb,struct vm_area_struct * vma,pte_t * pte,pte_t ptent,unsigned int max_nr,unsigned long addr,struct zap_details * details,int * rss,bool * force_flush,bool * force_break,bool * any_skipped)1551 static inline int zap_present_ptes(struct mmu_gather *tlb,
1552 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1553 unsigned int max_nr, unsigned long addr,
1554 struct zap_details *details, int *rss, bool *force_flush,
1555 bool *force_break, bool *any_skipped)
1556 {
1557 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1558 struct mm_struct *mm = tlb->mm;
1559 struct folio *folio;
1560 struct page *page;
1561 int nr;
1562
1563 page = vm_normal_page(vma, addr, ptent);
1564 if (!page) {
1565 /* We don't need up-to-date accessed/dirty bits. */
1566 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1567 arch_check_zapped_pte(vma, ptent);
1568 tlb_remove_tlb_entry(tlb, pte, addr);
1569 if (userfaultfd_pte_wp(vma, ptent))
1570 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr,
1571 pte, 1, details, ptent);
1572 ksm_might_unmap_zero_page(mm, ptent);
1573 return 1;
1574 }
1575
1576 folio = page_folio(page);
1577 if (unlikely(!should_zap_folio(details, folio))) {
1578 *any_skipped = true;
1579 return 1;
1580 }
1581
1582 /*
1583 * Make sure that the common "small folio" case is as fast as possible
1584 * by keeping the batching logic separate.
1585 */
1586 if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1587 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1588 NULL, NULL, NULL);
1589
1590 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1591 addr, details, rss, force_flush,
1592 force_break, any_skipped);
1593 return nr;
1594 }
1595 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1596 details, rss, force_flush, force_break, any_skipped);
1597 return 1;
1598 }
1599
zap_nonpresent_ptes(struct mmu_gather * tlb,struct vm_area_struct * vma,pte_t * pte,pte_t ptent,unsigned int max_nr,unsigned long addr,struct zap_details * details,int * rss,bool * any_skipped)1600 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb,
1601 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1602 unsigned int max_nr, unsigned long addr,
1603 struct zap_details *details, int *rss, bool *any_skipped)
1604 {
1605 swp_entry_t entry;
1606 int nr = 1;
1607
1608 *any_skipped = true;
1609 entry = pte_to_swp_entry(ptent);
1610 if (is_device_private_entry(entry) ||
1611 is_device_exclusive_entry(entry)) {
1612 struct page *page = pfn_swap_entry_to_page(entry);
1613 struct folio *folio = page_folio(page);
1614
1615 if (unlikely(!should_zap_folio(details, folio)))
1616 return 1;
1617 /*
1618 * Both device private/exclusive mappings should only
1619 * work with anonymous page so far, so we don't need to
1620 * consider uffd-wp bit when zap. For more information,
1621 * see zap_install_uffd_wp_if_needed().
1622 */
1623 WARN_ON_ONCE(!vma_is_anonymous(vma));
1624 rss[mm_counter(folio)]--;
1625 if (is_device_private_entry(entry))
1626 folio_remove_rmap_pte(folio, page, vma);
1627 folio_put(folio);
1628 } else if (!non_swap_entry(entry)) {
1629 /* Genuine swap entries, hence a private anon pages */
1630 if (!should_zap_cows(details))
1631 return 1;
1632
1633 nr = swap_pte_batch(pte, max_nr, ptent);
1634 rss[MM_SWAPENTS] -= nr;
1635 free_swap_and_cache_nr(entry, nr);
1636 } else if (is_migration_entry(entry)) {
1637 struct folio *folio = pfn_swap_entry_folio(entry);
1638
1639 if (!should_zap_folio(details, folio))
1640 return 1;
1641 rss[mm_counter(folio)]--;
1642 } else if (pte_marker_entry_uffd_wp(entry)) {
1643 /*
1644 * For anon: always drop the marker; for file: only
1645 * drop the marker if explicitly requested.
1646 */
1647 if (!vma_is_anonymous(vma) && !zap_drop_markers(details))
1648 return 1;
1649 } else if (is_guard_swp_entry(entry)) {
1650 /*
1651 * Ordinary zapping should not remove guard PTE
1652 * markers. Only do so if we should remove PTE markers
1653 * in general.
1654 */
1655 if (!zap_drop_markers(details))
1656 return 1;
1657 } else if (is_hwpoison_entry(entry) || is_poisoned_swp_entry(entry)) {
1658 if (!should_zap_cows(details))
1659 return 1;
1660 } else {
1661 /* We should have covered all the swap entry types */
1662 pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1663 WARN_ON_ONCE(1);
1664 }
1665 clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm);
1666 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1667
1668 return nr;
1669 }
1670
do_zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pte_t * pte,unsigned long addr,unsigned long end,struct zap_details * details,int * rss,bool * force_flush,bool * force_break,bool * any_skipped)1671 static inline int do_zap_pte_range(struct mmu_gather *tlb,
1672 struct vm_area_struct *vma, pte_t *pte,
1673 unsigned long addr, unsigned long end,
1674 struct zap_details *details, int *rss,
1675 bool *force_flush, bool *force_break,
1676 bool *any_skipped)
1677 {
1678 pte_t ptent = ptep_get(pte);
1679 int max_nr = (end - addr) / PAGE_SIZE;
1680 int nr = 0;
1681
1682 /* Skip all consecutive none ptes */
1683 if (pte_none(ptent)) {
1684 for (nr = 1; nr < max_nr; nr++) {
1685 ptent = ptep_get(pte + nr);
1686 if (!pte_none(ptent))
1687 break;
1688 }
1689 max_nr -= nr;
1690 if (!max_nr)
1691 return nr;
1692 pte += nr;
1693 addr += nr * PAGE_SIZE;
1694 }
1695
1696 if (pte_present(ptent))
1697 nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr,
1698 details, rss, force_flush, force_break,
1699 any_skipped);
1700 else
1701 nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr,
1702 details, rss, any_skipped);
1703
1704 return nr;
1705 }
1706
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1707 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1708 struct vm_area_struct *vma, pmd_t *pmd,
1709 unsigned long addr, unsigned long end,
1710 struct zap_details *details)
1711 {
1712 bool force_flush = false, force_break = false;
1713 struct mm_struct *mm = tlb->mm;
1714 int rss[NR_MM_COUNTERS];
1715 spinlock_t *ptl;
1716 pte_t *start_pte;
1717 pte_t *pte;
1718 pmd_t pmdval;
1719 unsigned long start = addr;
1720 bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details);
1721 bool direct_reclaim = true;
1722 int nr;
1723
1724 retry:
1725 tlb_change_page_size(tlb, PAGE_SIZE);
1726 init_rss_vec(rss);
1727 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1728 if (!pte)
1729 return addr;
1730
1731 flush_tlb_batched_pending(mm);
1732 arch_enter_lazy_mmu_mode();
1733 do {
1734 bool any_skipped = false;
1735
1736 if (need_resched()) {
1737 direct_reclaim = false;
1738 break;
1739 }
1740
1741 nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss,
1742 &force_flush, &force_break, &any_skipped);
1743 if (any_skipped)
1744 can_reclaim_pt = false;
1745 if (unlikely(force_break)) {
1746 addr += nr * PAGE_SIZE;
1747 direct_reclaim = false;
1748 break;
1749 }
1750 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1751
1752 /*
1753 * Fast path: try to hold the pmd lock and unmap the PTE page.
1754 *
1755 * If the pte lock was released midway (retry case), or if the attempt
1756 * to hold the pmd lock failed, then we need to recheck all pte entries
1757 * to ensure they are still none, thereby preventing the pte entries
1758 * from being repopulated by another thread.
1759 */
1760 if (can_reclaim_pt && direct_reclaim && addr == end)
1761 direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval);
1762
1763 add_mm_rss_vec(mm, rss);
1764 arch_leave_lazy_mmu_mode();
1765
1766 /* Do the actual TLB flush before dropping ptl */
1767 if (force_flush) {
1768 tlb_flush_mmu_tlbonly(tlb);
1769 tlb_flush_rmaps(tlb, vma);
1770 }
1771 pte_unmap_unlock(start_pte, ptl);
1772
1773 /*
1774 * If we forced a TLB flush (either due to running out of
1775 * batch buffers or because we needed to flush dirty TLB
1776 * entries before releasing the ptl), free the batched
1777 * memory too. Come back again if we didn't do everything.
1778 */
1779 if (force_flush)
1780 tlb_flush_mmu(tlb);
1781
1782 if (addr != end) {
1783 cond_resched();
1784 force_flush = false;
1785 force_break = false;
1786 goto retry;
1787 }
1788
1789 if (can_reclaim_pt) {
1790 if (direct_reclaim)
1791 free_pte(mm, start, tlb, pmdval);
1792 else
1793 try_to_free_pte(mm, pmd, start, tlb);
1794 }
1795
1796 return addr;
1797 }
1798
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1799 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1800 struct vm_area_struct *vma, pud_t *pud,
1801 unsigned long addr, unsigned long end,
1802 struct zap_details *details)
1803 {
1804 pmd_t *pmd;
1805 unsigned long next;
1806
1807 pmd = pmd_offset(pud, addr);
1808 do {
1809 next = pmd_addr_end(addr, end);
1810 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1811 if (next - addr != HPAGE_PMD_SIZE)
1812 __split_huge_pmd(vma, pmd, addr, false, NULL);
1813 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1814 addr = next;
1815 continue;
1816 }
1817 /* fall through */
1818 } else if (details && details->single_folio &&
1819 folio_test_pmd_mappable(details->single_folio) &&
1820 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1821 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1822 /*
1823 * Take and drop THP pmd lock so that we cannot return
1824 * prematurely, while zap_huge_pmd() has cleared *pmd,
1825 * but not yet decremented compound_mapcount().
1826 */
1827 spin_unlock(ptl);
1828 }
1829 if (pmd_none(*pmd)) {
1830 addr = next;
1831 continue;
1832 }
1833 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1834 if (addr != next)
1835 pmd--;
1836 } while (pmd++, cond_resched(), addr != end);
1837
1838 return addr;
1839 }
1840
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1841 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1842 struct vm_area_struct *vma, p4d_t *p4d,
1843 unsigned long addr, unsigned long end,
1844 struct zap_details *details)
1845 {
1846 pud_t *pud;
1847 unsigned long next;
1848
1849 pud = pud_offset(p4d, addr);
1850 do {
1851 next = pud_addr_end(addr, end);
1852 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1853 if (next - addr != HPAGE_PUD_SIZE) {
1854 mmap_assert_locked(tlb->mm);
1855 split_huge_pud(vma, pud, addr);
1856 } else if (zap_huge_pud(tlb, vma, pud, addr))
1857 goto next;
1858 /* fall through */
1859 }
1860 if (pud_none_or_clear_bad(pud))
1861 continue;
1862 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1863 next:
1864 cond_resched();
1865 } while (pud++, addr = next, addr != end);
1866
1867 return addr;
1868 }
1869
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1870 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1871 struct vm_area_struct *vma, pgd_t *pgd,
1872 unsigned long addr, unsigned long end,
1873 struct zap_details *details)
1874 {
1875 p4d_t *p4d;
1876 unsigned long next;
1877
1878 p4d = p4d_offset(pgd, addr);
1879 do {
1880 next = p4d_addr_end(addr, end);
1881 if (p4d_none_or_clear_bad(p4d))
1882 continue;
1883 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1884 } while (p4d++, addr = next, addr != end);
1885
1886 return addr;
1887 }
1888
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1889 void unmap_page_range(struct mmu_gather *tlb,
1890 struct vm_area_struct *vma,
1891 unsigned long addr, unsigned long end,
1892 struct zap_details *details)
1893 {
1894 pgd_t *pgd;
1895 unsigned long next;
1896
1897 BUG_ON(addr >= end);
1898 tlb_start_vma(tlb, vma);
1899 pgd = pgd_offset(vma->vm_mm, addr);
1900 do {
1901 next = pgd_addr_end(addr, end);
1902 if (pgd_none_or_clear_bad(pgd))
1903 continue;
1904 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1905 } while (pgd++, addr = next, addr != end);
1906 tlb_end_vma(tlb, vma);
1907 }
1908
1909
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details,bool mm_wr_locked)1910 static void unmap_single_vma(struct mmu_gather *tlb,
1911 struct vm_area_struct *vma, unsigned long start_addr,
1912 unsigned long end_addr,
1913 struct zap_details *details, bool mm_wr_locked)
1914 {
1915 unsigned long start = max(vma->vm_start, start_addr);
1916 unsigned long end;
1917
1918 if (start >= vma->vm_end)
1919 return;
1920 end = min(vma->vm_end, end_addr);
1921 if (end <= vma->vm_start)
1922 return;
1923
1924 if (vma->vm_file)
1925 uprobe_munmap(vma, start, end);
1926
1927 if (unlikely(vma->vm_flags & VM_PFNMAP))
1928 untrack_pfn(vma, 0, 0, mm_wr_locked);
1929
1930 if (start != end) {
1931 if (unlikely(is_vm_hugetlb_page(vma))) {
1932 /*
1933 * It is undesirable to test vma->vm_file as it
1934 * should be non-null for valid hugetlb area.
1935 * However, vm_file will be NULL in the error
1936 * cleanup path of mmap_region. When
1937 * hugetlbfs ->mmap method fails,
1938 * mmap_region() nullifies vma->vm_file
1939 * before calling this function to clean up.
1940 * Since no pte has actually been setup, it is
1941 * safe to do nothing in this case.
1942 */
1943 if (vma->vm_file) {
1944 zap_flags_t zap_flags = details ?
1945 details->zap_flags : 0;
1946 __unmap_hugepage_range(tlb, vma, start, end,
1947 NULL, zap_flags);
1948 }
1949 } else
1950 unmap_page_range(tlb, vma, start, end, details);
1951 }
1952 }
1953
1954 /**
1955 * unmap_vmas - unmap a range of memory covered by a list of vma's
1956 * @tlb: address of the caller's struct mmu_gather
1957 * @mas: the maple state
1958 * @vma: the starting vma
1959 * @start_addr: virtual address at which to start unmapping
1960 * @end_addr: virtual address at which to end unmapping
1961 * @tree_end: The maximum index to check
1962 * @mm_wr_locked: lock flag
1963 *
1964 * Unmap all pages in the vma list.
1965 *
1966 * Only addresses between `start' and `end' will be unmapped.
1967 *
1968 * The VMA list must be sorted in ascending virtual address order.
1969 *
1970 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1971 * range after unmap_vmas() returns. So the only responsibility here is to
1972 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1973 * drops the lock and schedules.
1974 */
unmap_vmas(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,unsigned long tree_end,bool mm_wr_locked)1975 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1976 struct vm_area_struct *vma, unsigned long start_addr,
1977 unsigned long end_addr, unsigned long tree_end,
1978 bool mm_wr_locked)
1979 {
1980 struct mmu_notifier_range range;
1981 struct zap_details details = {
1982 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1983 /* Careful - we need to zap private pages too! */
1984 .even_cows = true,
1985 };
1986
1987 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1988 start_addr, end_addr);
1989 mmu_notifier_invalidate_range_start(&range);
1990 do {
1991 unsigned long start = start_addr;
1992 unsigned long end = end_addr;
1993 hugetlb_zap_begin(vma, &start, &end);
1994 unmap_single_vma(tlb, vma, start, end, &details,
1995 mm_wr_locked);
1996 hugetlb_zap_end(vma, &details);
1997 vma = mas_find(mas, tree_end - 1);
1998 } while (vma && likely(!xa_is_zero(vma)));
1999 mmu_notifier_invalidate_range_end(&range);
2000 }
2001
2002 /**
2003 * zap_page_range_single - remove user pages in a given range
2004 * @vma: vm_area_struct holding the applicable pages
2005 * @address: starting address of pages to zap
2006 * @size: number of bytes to zap
2007 * @details: details of shared cache invalidation
2008 *
2009 * The range must fit into one VMA.
2010 */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)2011 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2012 unsigned long size, struct zap_details *details)
2013 {
2014 const unsigned long end = address + size;
2015 struct mmu_notifier_range range;
2016 struct mmu_gather tlb;
2017
2018 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2019 address, end);
2020 hugetlb_zap_begin(vma, &range.start, &range.end);
2021 tlb_gather_mmu(&tlb, vma->vm_mm);
2022 update_hiwater_rss(vma->vm_mm);
2023 mmu_notifier_invalidate_range_start(&range);
2024 /*
2025 * unmap 'address-end' not 'range.start-range.end' as range
2026 * could have been expanded for hugetlb pmd sharing.
2027 */
2028 unmap_single_vma(&tlb, vma, address, end, details, false);
2029 mmu_notifier_invalidate_range_end(&range);
2030 tlb_finish_mmu(&tlb);
2031 hugetlb_zap_end(vma, details);
2032 }
2033
2034 /**
2035 * zap_vma_ptes - remove ptes mapping the vma
2036 * @vma: vm_area_struct holding ptes to be zapped
2037 * @address: starting address of pages to zap
2038 * @size: number of bytes to zap
2039 *
2040 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
2041 *
2042 * The entire address range must be fully contained within the vma.
2043 *
2044 */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)2045 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2046 unsigned long size)
2047 {
2048 if (!range_in_vma(vma, address, address + size) ||
2049 !(vma->vm_flags & VM_PFNMAP))
2050 return;
2051
2052 zap_page_range_single(vma, address, size, NULL);
2053 }
2054 EXPORT_SYMBOL_GPL(zap_vma_ptes);
2055
walk_to_pmd(struct mm_struct * mm,unsigned long addr)2056 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
2057 {
2058 pgd_t *pgd;
2059 p4d_t *p4d;
2060 pud_t *pud;
2061 pmd_t *pmd;
2062
2063 pgd = pgd_offset(mm, addr);
2064 p4d = p4d_alloc(mm, pgd, addr);
2065 if (!p4d)
2066 return NULL;
2067 pud = pud_alloc(mm, p4d, addr);
2068 if (!pud)
2069 return NULL;
2070 pmd = pmd_alloc(mm, pud, addr);
2071 if (!pmd)
2072 return NULL;
2073
2074 VM_BUG_ON(pmd_trans_huge(*pmd));
2075 return pmd;
2076 }
2077
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2078 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2079 spinlock_t **ptl)
2080 {
2081 pmd_t *pmd = walk_to_pmd(mm, addr);
2082
2083 if (!pmd)
2084 return NULL;
2085 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2086 }
2087
vm_mixed_zeropage_allowed(struct vm_area_struct * vma)2088 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
2089 {
2090 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
2091 /*
2092 * Whoever wants to forbid the zeropage after some zeropages
2093 * might already have been mapped has to scan the page tables and
2094 * bail out on any zeropages. Zeropages in COW mappings can
2095 * be unshared using FAULT_FLAG_UNSHARE faults.
2096 */
2097 if (mm_forbids_zeropage(vma->vm_mm))
2098 return false;
2099 /* zeropages in COW mappings are common and unproblematic. */
2100 if (is_cow_mapping(vma->vm_flags))
2101 return true;
2102 /* Mappings that do not allow for writable PTEs are unproblematic. */
2103 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
2104 return true;
2105 /*
2106 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2107 * find the shared zeropage and longterm-pin it, which would
2108 * be problematic as soon as the zeropage gets replaced by a different
2109 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2110 * now differ to what GUP looked up. FSDAX is incompatible to
2111 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2112 * check_vma_flags).
2113 */
2114 return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
2115 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
2116 }
2117
validate_page_before_insert(struct vm_area_struct * vma,struct page * page)2118 static int validate_page_before_insert(struct vm_area_struct *vma,
2119 struct page *page)
2120 {
2121 struct folio *folio = page_folio(page);
2122
2123 if (!folio_ref_count(folio))
2124 return -EINVAL;
2125 if (unlikely(is_zero_folio(folio))) {
2126 if (!vm_mixed_zeropage_allowed(vma))
2127 return -EINVAL;
2128 return 0;
2129 }
2130 if (folio_test_anon(folio) || folio_test_slab(folio) ||
2131 page_has_type(page))
2132 return -EINVAL;
2133 flush_dcache_folio(folio);
2134 return 0;
2135 }
2136
insert_page_into_pte_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)2137 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
2138 unsigned long addr, struct page *page, pgprot_t prot)
2139 {
2140 struct folio *folio = page_folio(page);
2141 pte_t pteval;
2142
2143 if (!pte_none(ptep_get(pte)))
2144 return -EBUSY;
2145 /* Ok, finally just insert the thing.. */
2146 pteval = mk_pte(page, prot);
2147 if (unlikely(is_zero_folio(folio))) {
2148 pteval = pte_mkspecial(pteval);
2149 } else {
2150 folio_get(folio);
2151 inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2152 folio_add_file_rmap_pte(folio, page, vma);
2153 }
2154 set_pte_at(vma->vm_mm, addr, pte, pteval);
2155 return 0;
2156 }
2157
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)2158 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2159 struct page *page, pgprot_t prot)
2160 {
2161 int retval;
2162 pte_t *pte;
2163 spinlock_t *ptl;
2164
2165 retval = validate_page_before_insert(vma, page);
2166 if (retval)
2167 goto out;
2168 retval = -ENOMEM;
2169 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2170 if (!pte)
2171 goto out;
2172 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
2173 pte_unmap_unlock(pte, ptl);
2174 out:
2175 return retval;
2176 }
2177
insert_page_in_batch_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)2178 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2179 unsigned long addr, struct page *page, pgprot_t prot)
2180 {
2181 int err;
2182
2183 err = validate_page_before_insert(vma, page);
2184 if (err)
2185 return err;
2186 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
2187 }
2188
2189 /* insert_pages() amortizes the cost of spinlock operations
2190 * when inserting pages in a loop.
2191 */
insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num,pgprot_t prot)2192 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2193 struct page **pages, unsigned long *num, pgprot_t prot)
2194 {
2195 pmd_t *pmd = NULL;
2196 pte_t *start_pte, *pte;
2197 spinlock_t *pte_lock;
2198 struct mm_struct *const mm = vma->vm_mm;
2199 unsigned long curr_page_idx = 0;
2200 unsigned long remaining_pages_total = *num;
2201 unsigned long pages_to_write_in_pmd;
2202 int ret;
2203 more:
2204 ret = -EFAULT;
2205 pmd = walk_to_pmd(mm, addr);
2206 if (!pmd)
2207 goto out;
2208
2209 pages_to_write_in_pmd = min_t(unsigned long,
2210 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2211
2212 /* Allocate the PTE if necessary; takes PMD lock once only. */
2213 ret = -ENOMEM;
2214 if (pte_alloc(mm, pmd))
2215 goto out;
2216
2217 while (pages_to_write_in_pmd) {
2218 int pte_idx = 0;
2219 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2220
2221 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2222 if (!start_pte) {
2223 ret = -EFAULT;
2224 goto out;
2225 }
2226 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2227 int err = insert_page_in_batch_locked(vma, pte,
2228 addr, pages[curr_page_idx], prot);
2229 if (unlikely(err)) {
2230 pte_unmap_unlock(start_pte, pte_lock);
2231 ret = err;
2232 remaining_pages_total -= pte_idx;
2233 goto out;
2234 }
2235 addr += PAGE_SIZE;
2236 ++curr_page_idx;
2237 }
2238 pte_unmap_unlock(start_pte, pte_lock);
2239 pages_to_write_in_pmd -= batch_size;
2240 remaining_pages_total -= batch_size;
2241 }
2242 if (remaining_pages_total)
2243 goto more;
2244 ret = 0;
2245 out:
2246 *num = remaining_pages_total;
2247 return ret;
2248 }
2249
2250 /**
2251 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2252 * @vma: user vma to map to
2253 * @addr: target start user address of these pages
2254 * @pages: source kernel pages
2255 * @num: in: number of pages to map. out: number of pages that were *not*
2256 * mapped. (0 means all pages were successfully mapped).
2257 *
2258 * Preferred over vm_insert_page() when inserting multiple pages.
2259 *
2260 * In case of error, we may have mapped a subset of the provided
2261 * pages. It is the caller's responsibility to account for this case.
2262 *
2263 * The same restrictions apply as in vm_insert_page().
2264 */
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)2265 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2266 struct page **pages, unsigned long *num)
2267 {
2268 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2269
2270 if (addr < vma->vm_start || end_addr >= vma->vm_end)
2271 return -EFAULT;
2272 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2273 BUG_ON(mmap_read_trylock(vma->vm_mm));
2274 BUG_ON(vma->vm_flags & VM_PFNMAP);
2275 vm_flags_set(vma, VM_MIXEDMAP);
2276 }
2277 /* Defer page refcount checking till we're about to map that page. */
2278 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2279 }
2280 EXPORT_SYMBOL(vm_insert_pages);
2281
2282 /**
2283 * vm_insert_page - insert single page into user vma
2284 * @vma: user vma to map to
2285 * @addr: target user address of this page
2286 * @page: source kernel page
2287 *
2288 * This allows drivers to insert individual pages they've allocated
2289 * into a user vma. The zeropage is supported in some VMAs,
2290 * see vm_mixed_zeropage_allowed().
2291 *
2292 * The page has to be a nice clean _individual_ kernel allocation.
2293 * If you allocate a compound page, you need to have marked it as
2294 * such (__GFP_COMP), or manually just split the page up yourself
2295 * (see split_page()).
2296 *
2297 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2298 * took an arbitrary page protection parameter. This doesn't allow
2299 * that. Your vma protection will have to be set up correctly, which
2300 * means that if you want a shared writable mapping, you'd better
2301 * ask for a shared writable mapping!
2302 *
2303 * The page does not need to be reserved.
2304 *
2305 * Usually this function is called from f_op->mmap() handler
2306 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2307 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2308 * function from other places, for example from page-fault handler.
2309 *
2310 * Return: %0 on success, negative error code otherwise.
2311 */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2312 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2313 struct page *page)
2314 {
2315 if (addr < vma->vm_start || addr >= vma->vm_end)
2316 return -EFAULT;
2317 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2318 BUG_ON(mmap_read_trylock(vma->vm_mm));
2319 BUG_ON(vma->vm_flags & VM_PFNMAP);
2320 vm_flags_set(vma, VM_MIXEDMAP);
2321 }
2322 return insert_page(vma, addr, page, vma->vm_page_prot);
2323 }
2324 EXPORT_SYMBOL(vm_insert_page);
2325
2326 /*
2327 * __vm_map_pages - maps range of kernel pages into user vma
2328 * @vma: user vma to map to
2329 * @pages: pointer to array of source kernel pages
2330 * @num: number of pages in page array
2331 * @offset: user's requested vm_pgoff
2332 *
2333 * This allows drivers to map range of kernel pages into a user vma.
2334 * The zeropage is supported in some VMAs, see
2335 * vm_mixed_zeropage_allowed().
2336 *
2337 * Return: 0 on success and error code otherwise.
2338 */
__vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num,unsigned long offset)2339 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2340 unsigned long num, unsigned long offset)
2341 {
2342 unsigned long count = vma_pages(vma);
2343 unsigned long uaddr = vma->vm_start;
2344 int ret, i;
2345
2346 /* Fail if the user requested offset is beyond the end of the object */
2347 if (offset >= num)
2348 return -ENXIO;
2349
2350 /* Fail if the user requested size exceeds available object size */
2351 if (count > num - offset)
2352 return -ENXIO;
2353
2354 for (i = 0; i < count; i++) {
2355 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2356 if (ret < 0)
2357 return ret;
2358 uaddr += PAGE_SIZE;
2359 }
2360
2361 return 0;
2362 }
2363
2364 /**
2365 * vm_map_pages - maps range of kernel pages starts with non zero offset
2366 * @vma: user vma to map to
2367 * @pages: pointer to array of source kernel pages
2368 * @num: number of pages in page array
2369 *
2370 * Maps an object consisting of @num pages, catering for the user's
2371 * requested vm_pgoff
2372 *
2373 * If we fail to insert any page into the vma, the function will return
2374 * immediately leaving any previously inserted pages present. Callers
2375 * from the mmap handler may immediately return the error as their caller
2376 * will destroy the vma, removing any successfully inserted pages. Other
2377 * callers should make their own arrangements for calling unmap_region().
2378 *
2379 * Context: Process context. Called by mmap handlers.
2380 * Return: 0 on success and error code otherwise.
2381 */
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2382 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2383 unsigned long num)
2384 {
2385 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2386 }
2387 EXPORT_SYMBOL(vm_map_pages);
2388
2389 /**
2390 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2391 * @vma: user vma to map to
2392 * @pages: pointer to array of source kernel pages
2393 * @num: number of pages in page array
2394 *
2395 * Similar to vm_map_pages(), except that it explicitly sets the offset
2396 * to 0. This function is intended for the drivers that did not consider
2397 * vm_pgoff.
2398 *
2399 * Context: Process context. Called by mmap handlers.
2400 * Return: 0 on success and error code otherwise.
2401 */
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2402 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2403 unsigned long num)
2404 {
2405 return __vm_map_pages(vma, pages, num, 0);
2406 }
2407 EXPORT_SYMBOL(vm_map_pages_zero);
2408
insert_pfn(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t prot,bool mkwrite)2409 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2410 pfn_t pfn, pgprot_t prot, bool mkwrite)
2411 {
2412 struct mm_struct *mm = vma->vm_mm;
2413 pte_t *pte, entry;
2414 spinlock_t *ptl;
2415
2416 pte = get_locked_pte(mm, addr, &ptl);
2417 if (!pte)
2418 return VM_FAULT_OOM;
2419 entry = ptep_get(pte);
2420 if (!pte_none(entry)) {
2421 if (mkwrite) {
2422 /*
2423 * For read faults on private mappings the PFN passed
2424 * in may not match the PFN we have mapped if the
2425 * mapped PFN is a writeable COW page. In the mkwrite
2426 * case we are creating a writable PTE for a shared
2427 * mapping and we expect the PFNs to match. If they
2428 * don't match, we are likely racing with block
2429 * allocation and mapping invalidation so just skip the
2430 * update.
2431 */
2432 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2433 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2434 goto out_unlock;
2435 }
2436 entry = pte_mkyoung(entry);
2437 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2438 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2439 update_mmu_cache(vma, addr, pte);
2440 }
2441 goto out_unlock;
2442 }
2443
2444 /* Ok, finally just insert the thing.. */
2445 if (pfn_t_devmap(pfn))
2446 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2447 else
2448 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2449
2450 if (mkwrite) {
2451 entry = pte_mkyoung(entry);
2452 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2453 }
2454
2455 set_pte_at(mm, addr, pte, entry);
2456 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2457
2458 out_unlock:
2459 pte_unmap_unlock(pte, ptl);
2460 return VM_FAULT_NOPAGE;
2461 }
2462
2463 /**
2464 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2465 * @vma: user vma to map to
2466 * @addr: target user address of this page
2467 * @pfn: source kernel pfn
2468 * @pgprot: pgprot flags for the inserted page
2469 *
2470 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2471 * to override pgprot on a per-page basis.
2472 *
2473 * This only makes sense for IO mappings, and it makes no sense for
2474 * COW mappings. In general, using multiple vmas is preferable;
2475 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2476 * impractical.
2477 *
2478 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2479 * caching- and encryption bits different than those of @vma->vm_page_prot,
2480 * because the caching- or encryption mode may not be known at mmap() time.
2481 *
2482 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2483 * to set caching and encryption bits for those vmas (except for COW pages).
2484 * This is ensured by core vm only modifying these page table entries using
2485 * functions that don't touch caching- or encryption bits, using pte_modify()
2486 * if needed. (See for example mprotect()).
2487 *
2488 * Also when new page-table entries are created, this is only done using the
2489 * fault() callback, and never using the value of vma->vm_page_prot,
2490 * except for page-table entries that point to anonymous pages as the result
2491 * of COW.
2492 *
2493 * Context: Process context. May allocate using %GFP_KERNEL.
2494 * Return: vm_fault_t value.
2495 */
vmf_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)2496 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2497 unsigned long pfn, pgprot_t pgprot)
2498 {
2499 /*
2500 * Technically, architectures with pte_special can avoid all these
2501 * restrictions (same for remap_pfn_range). However we would like
2502 * consistency in testing and feature parity among all, so we should
2503 * try to keep these invariants in place for everybody.
2504 */
2505 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2506 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2507 (VM_PFNMAP|VM_MIXEDMAP));
2508 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2509 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2510
2511 if (addr < vma->vm_start || addr >= vma->vm_end)
2512 return VM_FAULT_SIGBUS;
2513
2514 if (!pfn_modify_allowed(pfn, pgprot))
2515 return VM_FAULT_SIGBUS;
2516
2517 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2518
2519 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2520 false);
2521 }
2522 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2523
2524 /**
2525 * vmf_insert_pfn - insert single pfn into user vma
2526 * @vma: user vma to map to
2527 * @addr: target user address of this page
2528 * @pfn: source kernel pfn
2529 *
2530 * Similar to vm_insert_page, this allows drivers to insert individual pages
2531 * they've allocated into a user vma. Same comments apply.
2532 *
2533 * This function should only be called from a vm_ops->fault handler, and
2534 * in that case the handler should return the result of this function.
2535 *
2536 * vma cannot be a COW mapping.
2537 *
2538 * As this is called only for pages that do not currently exist, we
2539 * do not need to flush old virtual caches or the TLB.
2540 *
2541 * Context: Process context. May allocate using %GFP_KERNEL.
2542 * Return: vm_fault_t value.
2543 */
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2544 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2545 unsigned long pfn)
2546 {
2547 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2548 }
2549 EXPORT_SYMBOL(vmf_insert_pfn);
2550
vm_mixed_ok(struct vm_area_struct * vma,pfn_t pfn,bool mkwrite)2551 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite)
2552 {
2553 if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) &&
2554 (mkwrite || !vm_mixed_zeropage_allowed(vma)))
2555 return false;
2556 /* these checks mirror the abort conditions in vm_normal_page */
2557 if (vma->vm_flags & VM_MIXEDMAP)
2558 return true;
2559 if (pfn_t_devmap(pfn))
2560 return true;
2561 if (pfn_t_special(pfn))
2562 return true;
2563 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2564 return true;
2565 return false;
2566 }
2567
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,bool mkwrite)2568 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2569 unsigned long addr, pfn_t pfn, bool mkwrite)
2570 {
2571 pgprot_t pgprot = vma->vm_page_prot;
2572 int err;
2573
2574 if (!vm_mixed_ok(vma, pfn, mkwrite))
2575 return VM_FAULT_SIGBUS;
2576
2577 if (addr < vma->vm_start || addr >= vma->vm_end)
2578 return VM_FAULT_SIGBUS;
2579
2580 track_pfn_insert(vma, &pgprot, pfn);
2581
2582 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2583 return VM_FAULT_SIGBUS;
2584
2585 /*
2586 * If we don't have pte special, then we have to use the pfn_valid()
2587 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2588 * refcount the page if pfn_valid is true (hence insert_page rather
2589 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2590 * without pte special, it would there be refcounted as a normal page.
2591 */
2592 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2593 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2594 struct page *page;
2595
2596 /*
2597 * At this point we are committed to insert_page()
2598 * regardless of whether the caller specified flags that
2599 * result in pfn_t_has_page() == false.
2600 */
2601 page = pfn_to_page(pfn_t_to_pfn(pfn));
2602 err = insert_page(vma, addr, page, pgprot);
2603 } else {
2604 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2605 }
2606
2607 if (err == -ENOMEM)
2608 return VM_FAULT_OOM;
2609 if (err < 0 && err != -EBUSY)
2610 return VM_FAULT_SIGBUS;
2611
2612 return VM_FAULT_NOPAGE;
2613 }
2614
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2615 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2616 pfn_t pfn)
2617 {
2618 return __vm_insert_mixed(vma, addr, pfn, false);
2619 }
2620 EXPORT_SYMBOL(vmf_insert_mixed);
2621
2622 /*
2623 * If the insertion of PTE failed because someone else already added a
2624 * different entry in the mean time, we treat that as success as we assume
2625 * the same entry was actually inserted.
2626 */
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2627 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2628 unsigned long addr, pfn_t pfn)
2629 {
2630 return __vm_insert_mixed(vma, addr, pfn, true);
2631 }
2632
2633 /*
2634 * maps a range of physical memory into the requested pages. the old
2635 * mappings are removed. any references to nonexistent pages results
2636 * in null mappings (currently treated as "copy-on-access")
2637 */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2638 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2639 unsigned long addr, unsigned long end,
2640 unsigned long pfn, pgprot_t prot)
2641 {
2642 pte_t *pte, *mapped_pte;
2643 spinlock_t *ptl;
2644 int err = 0;
2645
2646 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2647 if (!pte)
2648 return -ENOMEM;
2649 arch_enter_lazy_mmu_mode();
2650 do {
2651 BUG_ON(!pte_none(ptep_get(pte)));
2652 if (!pfn_modify_allowed(pfn, prot)) {
2653 err = -EACCES;
2654 break;
2655 }
2656 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2657 pfn++;
2658 } while (pte++, addr += PAGE_SIZE, addr != end);
2659 arch_leave_lazy_mmu_mode();
2660 pte_unmap_unlock(mapped_pte, ptl);
2661 return err;
2662 }
2663
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2664 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2665 unsigned long addr, unsigned long end,
2666 unsigned long pfn, pgprot_t prot)
2667 {
2668 pmd_t *pmd;
2669 unsigned long next;
2670 int err;
2671
2672 pfn -= addr >> PAGE_SHIFT;
2673 pmd = pmd_alloc(mm, pud, addr);
2674 if (!pmd)
2675 return -ENOMEM;
2676 VM_BUG_ON(pmd_trans_huge(*pmd));
2677 do {
2678 next = pmd_addr_end(addr, end);
2679 err = remap_pte_range(mm, pmd, addr, next,
2680 pfn + (addr >> PAGE_SHIFT), prot);
2681 if (err)
2682 return err;
2683 } while (pmd++, addr = next, addr != end);
2684 return 0;
2685 }
2686
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2687 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2688 unsigned long addr, unsigned long end,
2689 unsigned long pfn, pgprot_t prot)
2690 {
2691 pud_t *pud;
2692 unsigned long next;
2693 int err;
2694
2695 pfn -= addr >> PAGE_SHIFT;
2696 pud = pud_alloc(mm, p4d, addr);
2697 if (!pud)
2698 return -ENOMEM;
2699 do {
2700 next = pud_addr_end(addr, end);
2701 err = remap_pmd_range(mm, pud, addr, next,
2702 pfn + (addr >> PAGE_SHIFT), prot);
2703 if (err)
2704 return err;
2705 } while (pud++, addr = next, addr != end);
2706 return 0;
2707 }
2708
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2709 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2710 unsigned long addr, unsigned long end,
2711 unsigned long pfn, pgprot_t prot)
2712 {
2713 p4d_t *p4d;
2714 unsigned long next;
2715 int err;
2716
2717 pfn -= addr >> PAGE_SHIFT;
2718 p4d = p4d_alloc(mm, pgd, addr);
2719 if (!p4d)
2720 return -ENOMEM;
2721 do {
2722 next = p4d_addr_end(addr, end);
2723 err = remap_pud_range(mm, p4d, addr, next,
2724 pfn + (addr >> PAGE_SHIFT), prot);
2725 if (err)
2726 return err;
2727 } while (p4d++, addr = next, addr != end);
2728 return 0;
2729 }
2730
remap_pfn_range_internal(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2731 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2732 unsigned long pfn, unsigned long size, pgprot_t prot)
2733 {
2734 pgd_t *pgd;
2735 unsigned long next;
2736 unsigned long end = addr + PAGE_ALIGN(size);
2737 struct mm_struct *mm = vma->vm_mm;
2738 int err;
2739
2740 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2741 return -EINVAL;
2742
2743 /*
2744 * Physically remapped pages are special. Tell the
2745 * rest of the world about it:
2746 * VM_IO tells people not to look at these pages
2747 * (accesses can have side effects).
2748 * VM_PFNMAP tells the core MM that the base pages are just
2749 * raw PFN mappings, and do not have a "struct page" associated
2750 * with them.
2751 * VM_DONTEXPAND
2752 * Disable vma merging and expanding with mremap().
2753 * VM_DONTDUMP
2754 * Omit vma from core dump, even when VM_IO turned off.
2755 *
2756 * There's a horrible special case to handle copy-on-write
2757 * behaviour that some programs depend on. We mark the "original"
2758 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2759 * See vm_normal_page() for details.
2760 */
2761 if (is_cow_mapping(vma->vm_flags)) {
2762 if (addr != vma->vm_start || end != vma->vm_end)
2763 return -EINVAL;
2764 vma->vm_pgoff = pfn;
2765 }
2766
2767 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2768
2769 BUG_ON(addr >= end);
2770 pfn -= addr >> PAGE_SHIFT;
2771 pgd = pgd_offset(mm, addr);
2772 flush_cache_range(vma, addr, end);
2773 do {
2774 next = pgd_addr_end(addr, end);
2775 err = remap_p4d_range(mm, pgd, addr, next,
2776 pfn + (addr >> PAGE_SHIFT), prot);
2777 if (err)
2778 return err;
2779 } while (pgd++, addr = next, addr != end);
2780
2781 return 0;
2782 }
2783
2784 /*
2785 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2786 * must have pre-validated the caching bits of the pgprot_t.
2787 */
remap_pfn_range_notrack(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2788 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2789 unsigned long pfn, unsigned long size, pgprot_t prot)
2790 {
2791 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2792
2793 if (!error)
2794 return 0;
2795
2796 /*
2797 * A partial pfn range mapping is dangerous: it does not
2798 * maintain page reference counts, and callers may free
2799 * pages due to the error. So zap it early.
2800 */
2801 zap_page_range_single(vma, addr, size, NULL);
2802 return error;
2803 }
2804
2805 /**
2806 * remap_pfn_range - remap kernel memory to userspace
2807 * @vma: user vma to map to
2808 * @addr: target page aligned user address to start at
2809 * @pfn: page frame number of kernel physical memory address
2810 * @size: size of mapping area
2811 * @prot: page protection flags for this mapping
2812 *
2813 * Note: this is only safe if the mm semaphore is held when called.
2814 *
2815 * Return: %0 on success, negative error code otherwise.
2816 */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2817 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2818 unsigned long pfn, unsigned long size, pgprot_t prot)
2819 {
2820 int err;
2821
2822 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2823 if (err)
2824 return -EINVAL;
2825
2826 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2827 if (err)
2828 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2829 return err;
2830 }
2831 EXPORT_SYMBOL(remap_pfn_range);
2832
2833 /**
2834 * vm_iomap_memory - remap memory to userspace
2835 * @vma: user vma to map to
2836 * @start: start of the physical memory to be mapped
2837 * @len: size of area
2838 *
2839 * This is a simplified io_remap_pfn_range() for common driver use. The
2840 * driver just needs to give us the physical memory range to be mapped,
2841 * we'll figure out the rest from the vma information.
2842 *
2843 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2844 * whatever write-combining details or similar.
2845 *
2846 * Return: %0 on success, negative error code otherwise.
2847 */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)2848 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2849 {
2850 unsigned long vm_len, pfn, pages;
2851
2852 /* Check that the physical memory area passed in looks valid */
2853 if (start + len < start)
2854 return -EINVAL;
2855 /*
2856 * You *really* shouldn't map things that aren't page-aligned,
2857 * but we've historically allowed it because IO memory might
2858 * just have smaller alignment.
2859 */
2860 len += start & ~PAGE_MASK;
2861 pfn = start >> PAGE_SHIFT;
2862 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2863 if (pfn + pages < pfn)
2864 return -EINVAL;
2865
2866 /* We start the mapping 'vm_pgoff' pages into the area */
2867 if (vma->vm_pgoff > pages)
2868 return -EINVAL;
2869 pfn += vma->vm_pgoff;
2870 pages -= vma->vm_pgoff;
2871
2872 /* Can we fit all of the mapping? */
2873 vm_len = vma->vm_end - vma->vm_start;
2874 if (vm_len >> PAGE_SHIFT > pages)
2875 return -EINVAL;
2876
2877 /* Ok, let it rip */
2878 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2879 }
2880 EXPORT_SYMBOL(vm_iomap_memory);
2881
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2882 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2883 unsigned long addr, unsigned long end,
2884 pte_fn_t fn, void *data, bool create,
2885 pgtbl_mod_mask *mask)
2886 {
2887 pte_t *pte, *mapped_pte;
2888 int err = 0;
2889 spinlock_t *ptl;
2890
2891 if (create) {
2892 mapped_pte = pte = (mm == &init_mm) ?
2893 pte_alloc_kernel_track(pmd, addr, mask) :
2894 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2895 if (!pte)
2896 return -ENOMEM;
2897 } else {
2898 mapped_pte = pte = (mm == &init_mm) ?
2899 pte_offset_kernel(pmd, addr) :
2900 pte_offset_map_lock(mm, pmd, addr, &ptl);
2901 if (!pte)
2902 return -EINVAL;
2903 }
2904
2905 arch_enter_lazy_mmu_mode();
2906
2907 if (fn) {
2908 do {
2909 if (create || !pte_none(ptep_get(pte))) {
2910 err = fn(pte++, addr, data);
2911 if (err)
2912 break;
2913 }
2914 } while (addr += PAGE_SIZE, addr != end);
2915 }
2916 *mask |= PGTBL_PTE_MODIFIED;
2917
2918 arch_leave_lazy_mmu_mode();
2919
2920 if (mm != &init_mm)
2921 pte_unmap_unlock(mapped_pte, ptl);
2922 return err;
2923 }
2924
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2925 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2926 unsigned long addr, unsigned long end,
2927 pte_fn_t fn, void *data, bool create,
2928 pgtbl_mod_mask *mask)
2929 {
2930 pmd_t *pmd;
2931 unsigned long next;
2932 int err = 0;
2933
2934 BUG_ON(pud_leaf(*pud));
2935
2936 if (create) {
2937 pmd = pmd_alloc_track(mm, pud, addr, mask);
2938 if (!pmd)
2939 return -ENOMEM;
2940 } else {
2941 pmd = pmd_offset(pud, addr);
2942 }
2943 do {
2944 next = pmd_addr_end(addr, end);
2945 if (pmd_none(*pmd) && !create)
2946 continue;
2947 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2948 return -EINVAL;
2949 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2950 if (!create)
2951 continue;
2952 pmd_clear_bad(pmd);
2953 }
2954 err = apply_to_pte_range(mm, pmd, addr, next,
2955 fn, data, create, mask);
2956 if (err)
2957 break;
2958 } while (pmd++, addr = next, addr != end);
2959
2960 return err;
2961 }
2962
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2963 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2964 unsigned long addr, unsigned long end,
2965 pte_fn_t fn, void *data, bool create,
2966 pgtbl_mod_mask *mask)
2967 {
2968 pud_t *pud;
2969 unsigned long next;
2970 int err = 0;
2971
2972 if (create) {
2973 pud = pud_alloc_track(mm, p4d, addr, mask);
2974 if (!pud)
2975 return -ENOMEM;
2976 } else {
2977 pud = pud_offset(p4d, addr);
2978 }
2979 do {
2980 next = pud_addr_end(addr, end);
2981 if (pud_none(*pud) && !create)
2982 continue;
2983 if (WARN_ON_ONCE(pud_leaf(*pud)))
2984 return -EINVAL;
2985 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2986 if (!create)
2987 continue;
2988 pud_clear_bad(pud);
2989 }
2990 err = apply_to_pmd_range(mm, pud, addr, next,
2991 fn, data, create, mask);
2992 if (err)
2993 break;
2994 } while (pud++, addr = next, addr != end);
2995
2996 return err;
2997 }
2998
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2999 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
3000 unsigned long addr, unsigned long end,
3001 pte_fn_t fn, void *data, bool create,
3002 pgtbl_mod_mask *mask)
3003 {
3004 p4d_t *p4d;
3005 unsigned long next;
3006 int err = 0;
3007
3008 if (create) {
3009 p4d = p4d_alloc_track(mm, pgd, addr, mask);
3010 if (!p4d)
3011 return -ENOMEM;
3012 } else {
3013 p4d = p4d_offset(pgd, addr);
3014 }
3015 do {
3016 next = p4d_addr_end(addr, end);
3017 if (p4d_none(*p4d) && !create)
3018 continue;
3019 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
3020 return -EINVAL;
3021 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
3022 if (!create)
3023 continue;
3024 p4d_clear_bad(p4d);
3025 }
3026 err = apply_to_pud_range(mm, p4d, addr, next,
3027 fn, data, create, mask);
3028 if (err)
3029 break;
3030 } while (p4d++, addr = next, addr != end);
3031
3032 return err;
3033 }
3034
__apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data,bool create)3035 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3036 unsigned long size, pte_fn_t fn,
3037 void *data, bool create)
3038 {
3039 pgd_t *pgd;
3040 unsigned long start = addr, next;
3041 unsigned long end = addr + size;
3042 pgtbl_mod_mask mask = 0;
3043 int err = 0;
3044
3045 if (WARN_ON(addr >= end))
3046 return -EINVAL;
3047
3048 pgd = pgd_offset(mm, addr);
3049 do {
3050 next = pgd_addr_end(addr, end);
3051 if (pgd_none(*pgd) && !create)
3052 continue;
3053 if (WARN_ON_ONCE(pgd_leaf(*pgd))) {
3054 err = -EINVAL;
3055 break;
3056 }
3057 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
3058 if (!create)
3059 continue;
3060 pgd_clear_bad(pgd);
3061 }
3062 err = apply_to_p4d_range(mm, pgd, addr, next,
3063 fn, data, create, &mask);
3064 if (err)
3065 break;
3066 } while (pgd++, addr = next, addr != end);
3067
3068 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
3069 arch_sync_kernel_mappings(start, start + size);
3070
3071 return err;
3072 }
3073
3074 /*
3075 * Scan a region of virtual memory, filling in page tables as necessary
3076 * and calling a provided function on each leaf page table.
3077 */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)3078 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3079 unsigned long size, pte_fn_t fn, void *data)
3080 {
3081 return __apply_to_page_range(mm, addr, size, fn, data, true);
3082 }
3083 EXPORT_SYMBOL_GPL(apply_to_page_range);
3084
3085 /*
3086 * Scan a region of virtual memory, calling a provided function on
3087 * each leaf page table where it exists.
3088 *
3089 * Unlike apply_to_page_range, this does _not_ fill in page tables
3090 * where they are absent.
3091 */
apply_to_existing_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)3092 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
3093 unsigned long size, pte_fn_t fn, void *data)
3094 {
3095 return __apply_to_page_range(mm, addr, size, fn, data, false);
3096 }
3097
3098 /*
3099 * handle_pte_fault chooses page fault handler according to an entry which was
3100 * read non-atomically. Before making any commitment, on those architectures
3101 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
3102 * parts, do_swap_page must check under lock before unmapping the pte and
3103 * proceeding (but do_wp_page is only called after already making such a check;
3104 * and do_anonymous_page can safely check later on).
3105 */
pte_unmap_same(struct vm_fault * vmf)3106 static inline int pte_unmap_same(struct vm_fault *vmf)
3107 {
3108 int same = 1;
3109 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
3110 if (sizeof(pte_t) > sizeof(unsigned long)) {
3111 spin_lock(vmf->ptl);
3112 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
3113 spin_unlock(vmf->ptl);
3114 }
3115 #endif
3116 pte_unmap(vmf->pte);
3117 vmf->pte = NULL;
3118 return same;
3119 }
3120
3121 /*
3122 * Return:
3123 * 0: copied succeeded
3124 * -EHWPOISON: copy failed due to hwpoison in source page
3125 * -EAGAIN: copied failed (some other reason)
3126 */
__wp_page_copy_user(struct page * dst,struct page * src,struct vm_fault * vmf)3127 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
3128 struct vm_fault *vmf)
3129 {
3130 int ret;
3131 void *kaddr;
3132 void __user *uaddr;
3133 struct vm_area_struct *vma = vmf->vma;
3134 struct mm_struct *mm = vma->vm_mm;
3135 unsigned long addr = vmf->address;
3136
3137 if (likely(src)) {
3138 if (copy_mc_user_highpage(dst, src, addr, vma))
3139 return -EHWPOISON;
3140 return 0;
3141 }
3142
3143 /*
3144 * If the source page was a PFN mapping, we don't have
3145 * a "struct page" for it. We do a best-effort copy by
3146 * just copying from the original user address. If that
3147 * fails, we just zero-fill it. Live with it.
3148 */
3149 kaddr = kmap_local_page(dst);
3150 pagefault_disable();
3151 uaddr = (void __user *)(addr & PAGE_MASK);
3152
3153 /*
3154 * On architectures with software "accessed" bits, we would
3155 * take a double page fault, so mark it accessed here.
3156 */
3157 vmf->pte = NULL;
3158 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3159 pte_t entry;
3160
3161 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3162 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3163 /*
3164 * Other thread has already handled the fault
3165 * and update local tlb only
3166 */
3167 if (vmf->pte)
3168 update_mmu_tlb(vma, addr, vmf->pte);
3169 ret = -EAGAIN;
3170 goto pte_unlock;
3171 }
3172
3173 entry = pte_mkyoung(vmf->orig_pte);
3174 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3175 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3176 }
3177
3178 /*
3179 * This really shouldn't fail, because the page is there
3180 * in the page tables. But it might just be unreadable,
3181 * in which case we just give up and fill the result with
3182 * zeroes.
3183 */
3184 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3185 if (vmf->pte)
3186 goto warn;
3187
3188 /* Re-validate under PTL if the page is still mapped */
3189 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3190 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3191 /* The PTE changed under us, update local tlb */
3192 if (vmf->pte)
3193 update_mmu_tlb(vma, addr, vmf->pte);
3194 ret = -EAGAIN;
3195 goto pte_unlock;
3196 }
3197
3198 /*
3199 * The same page can be mapped back since last copy attempt.
3200 * Try to copy again under PTL.
3201 */
3202 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3203 /*
3204 * Give a warn in case there can be some obscure
3205 * use-case
3206 */
3207 warn:
3208 WARN_ON_ONCE(1);
3209 clear_page(kaddr);
3210 }
3211 }
3212
3213 ret = 0;
3214
3215 pte_unlock:
3216 if (vmf->pte)
3217 pte_unmap_unlock(vmf->pte, vmf->ptl);
3218 pagefault_enable();
3219 kunmap_local(kaddr);
3220 flush_dcache_page(dst);
3221
3222 return ret;
3223 }
3224
__get_fault_gfp_mask(struct vm_area_struct * vma)3225 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3226 {
3227 struct file *vm_file = vma->vm_file;
3228
3229 if (vm_file)
3230 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3231
3232 /*
3233 * Special mappings (e.g. VDSO) do not have any file so fake
3234 * a default GFP_KERNEL for them.
3235 */
3236 return GFP_KERNEL;
3237 }
3238
3239 /*
3240 * Notify the address space that the page is about to become writable so that
3241 * it can prohibit this or wait for the page to get into an appropriate state.
3242 *
3243 * We do this without the lock held, so that it can sleep if it needs to.
3244 */
do_page_mkwrite(struct vm_fault * vmf,struct folio * folio)3245 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3246 {
3247 vm_fault_t ret;
3248 unsigned int old_flags = vmf->flags;
3249
3250 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3251
3252 if (vmf->vma->vm_file &&
3253 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3254 return VM_FAULT_SIGBUS;
3255
3256 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3257 /* Restore original flags so that caller is not surprised */
3258 vmf->flags = old_flags;
3259 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3260 return ret;
3261 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3262 folio_lock(folio);
3263 if (!folio->mapping) {
3264 folio_unlock(folio);
3265 return 0; /* retry */
3266 }
3267 ret |= VM_FAULT_LOCKED;
3268 } else
3269 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3270 return ret;
3271 }
3272
3273 /*
3274 * Handle dirtying of a page in shared file mapping on a write fault.
3275 *
3276 * The function expects the page to be locked and unlocks it.
3277 */
fault_dirty_shared_page(struct vm_fault * vmf)3278 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3279 {
3280 struct vm_area_struct *vma = vmf->vma;
3281 struct address_space *mapping;
3282 struct folio *folio = page_folio(vmf->page);
3283 bool dirtied;
3284 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3285
3286 dirtied = folio_mark_dirty(folio);
3287 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3288 /*
3289 * Take a local copy of the address_space - folio.mapping may be zeroed
3290 * by truncate after folio_unlock(). The address_space itself remains
3291 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
3292 * release semantics to prevent the compiler from undoing this copying.
3293 */
3294 mapping = folio_raw_mapping(folio);
3295 folio_unlock(folio);
3296
3297 if (!page_mkwrite)
3298 file_update_time(vma->vm_file);
3299
3300 /*
3301 * Throttle page dirtying rate down to writeback speed.
3302 *
3303 * mapping may be NULL here because some device drivers do not
3304 * set page.mapping but still dirty their pages
3305 *
3306 * Drop the mmap_lock before waiting on IO, if we can. The file
3307 * is pinning the mapping, as per above.
3308 */
3309 if ((dirtied || page_mkwrite) && mapping) {
3310 struct file *fpin;
3311
3312 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3313 balance_dirty_pages_ratelimited(mapping);
3314 if (fpin) {
3315 fput(fpin);
3316 return VM_FAULT_COMPLETED;
3317 }
3318 }
3319
3320 return 0;
3321 }
3322
3323 /*
3324 * Handle write page faults for pages that can be reused in the current vma
3325 *
3326 * This can happen either due to the mapping being with the VM_SHARED flag,
3327 * or due to us being the last reference standing to the page. In either
3328 * case, all we need to do here is to mark the page as writable and update
3329 * any related book-keeping.
3330 */
wp_page_reuse(struct vm_fault * vmf,struct folio * folio)3331 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3332 __releases(vmf->ptl)
3333 {
3334 struct vm_area_struct *vma = vmf->vma;
3335 pte_t entry;
3336
3337 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3338 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
3339
3340 if (folio) {
3341 VM_BUG_ON(folio_test_anon(folio) &&
3342 !PageAnonExclusive(vmf->page));
3343 /*
3344 * Clear the folio's cpupid information as the existing
3345 * information potentially belongs to a now completely
3346 * unrelated process.
3347 */
3348 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3349 }
3350
3351 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3352 entry = pte_mkyoung(vmf->orig_pte);
3353 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3354 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3355 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3356 pte_unmap_unlock(vmf->pte, vmf->ptl);
3357 count_vm_event(PGREUSE);
3358 }
3359
3360 /*
3361 * We could add a bitflag somewhere, but for now, we know that all
3362 * vm_ops that have a ->map_pages have been audited and don't need
3363 * the mmap_lock to be held.
3364 */
vmf_can_call_fault(const struct vm_fault * vmf)3365 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3366 {
3367 struct vm_area_struct *vma = vmf->vma;
3368
3369 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3370 return 0;
3371 vma_end_read(vma);
3372 return VM_FAULT_RETRY;
3373 }
3374
3375 /**
3376 * __vmf_anon_prepare - Prepare to handle an anonymous fault.
3377 * @vmf: The vm_fault descriptor passed from the fault handler.
3378 *
3379 * When preparing to insert an anonymous page into a VMA from a
3380 * fault handler, call this function rather than anon_vma_prepare().
3381 * If this vma does not already have an associated anon_vma and we are
3382 * only protected by the per-VMA lock, the caller must retry with the
3383 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to
3384 * determine if this VMA can share its anon_vma, and that's not safe to
3385 * do with only the per-VMA lock held for this VMA.
3386 *
3387 * Return: 0 if fault handling can proceed. Any other value should be
3388 * returned to the caller.
3389 */
__vmf_anon_prepare(struct vm_fault * vmf)3390 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf)
3391 {
3392 struct vm_area_struct *vma = vmf->vma;
3393 vm_fault_t ret = 0;
3394
3395 if (likely(vma->anon_vma))
3396 return 0;
3397 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3398 if (!mmap_read_trylock(vma->vm_mm))
3399 return VM_FAULT_RETRY;
3400 }
3401 if (__anon_vma_prepare(vma))
3402 ret = VM_FAULT_OOM;
3403 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3404 mmap_read_unlock(vma->vm_mm);
3405 return ret;
3406 }
3407
3408 /*
3409 * Handle the case of a page which we actually need to copy to a new page,
3410 * either due to COW or unsharing.
3411 *
3412 * Called with mmap_lock locked and the old page referenced, but
3413 * without the ptl held.
3414 *
3415 * High level logic flow:
3416 *
3417 * - Allocate a page, copy the content of the old page to the new one.
3418 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3419 * - Take the PTL. If the pte changed, bail out and release the allocated page
3420 * - If the pte is still the way we remember it, update the page table and all
3421 * relevant references. This includes dropping the reference the page-table
3422 * held to the old page, as well as updating the rmap.
3423 * - In any case, unlock the PTL and drop the reference we took to the old page.
3424 */
wp_page_copy(struct vm_fault * vmf)3425 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3426 {
3427 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3428 struct vm_area_struct *vma = vmf->vma;
3429 struct mm_struct *mm = vma->vm_mm;
3430 struct folio *old_folio = NULL;
3431 struct folio *new_folio = NULL;
3432 pte_t entry;
3433 int page_copied = 0;
3434 struct mmu_notifier_range range;
3435 vm_fault_t ret;
3436 bool pfn_is_zero;
3437
3438 delayacct_wpcopy_start();
3439
3440 if (vmf->page)
3441 old_folio = page_folio(vmf->page);
3442 ret = vmf_anon_prepare(vmf);
3443 if (unlikely(ret))
3444 goto out;
3445
3446 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3447 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3448 if (!new_folio)
3449 goto oom;
3450
3451 if (!pfn_is_zero) {
3452 int err;
3453
3454 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3455 if (err) {
3456 /*
3457 * COW failed, if the fault was solved by other,
3458 * it's fine. If not, userspace would re-fault on
3459 * the same address and we will handle the fault
3460 * from the second attempt.
3461 * The -EHWPOISON case will not be retried.
3462 */
3463 folio_put(new_folio);
3464 if (old_folio)
3465 folio_put(old_folio);
3466
3467 delayacct_wpcopy_end();
3468 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3469 }
3470 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3471 }
3472
3473 __folio_mark_uptodate(new_folio);
3474
3475 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3476 vmf->address & PAGE_MASK,
3477 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3478 mmu_notifier_invalidate_range_start(&range);
3479
3480 /*
3481 * Re-check the pte - we dropped the lock
3482 */
3483 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3484 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3485 if (old_folio) {
3486 if (!folio_test_anon(old_folio)) {
3487 dec_mm_counter(mm, mm_counter_file(old_folio));
3488 inc_mm_counter(mm, MM_ANONPAGES);
3489 }
3490 } else {
3491 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3492 inc_mm_counter(mm, MM_ANONPAGES);
3493 }
3494 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3495 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3496 entry = pte_sw_mkyoung(entry);
3497 if (unlikely(unshare)) {
3498 if (pte_soft_dirty(vmf->orig_pte))
3499 entry = pte_mksoft_dirty(entry);
3500 if (pte_uffd_wp(vmf->orig_pte))
3501 entry = pte_mkuffd_wp(entry);
3502 } else {
3503 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3504 }
3505
3506 /*
3507 * Clear the pte entry and flush it first, before updating the
3508 * pte with the new entry, to keep TLBs on different CPUs in
3509 * sync. This code used to set the new PTE then flush TLBs, but
3510 * that left a window where the new PTE could be loaded into
3511 * some TLBs while the old PTE remains in others.
3512 */
3513 ptep_clear_flush(vma, vmf->address, vmf->pte);
3514 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
3515 folio_add_lru_vma(new_folio, vma);
3516 BUG_ON(unshare && pte_write(entry));
3517 set_pte_at(mm, vmf->address, vmf->pte, entry);
3518 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3519 if (old_folio) {
3520 /*
3521 * Only after switching the pte to the new page may
3522 * we remove the mapcount here. Otherwise another
3523 * process may come and find the rmap count decremented
3524 * before the pte is switched to the new page, and
3525 * "reuse" the old page writing into it while our pte
3526 * here still points into it and can be read by other
3527 * threads.
3528 *
3529 * The critical issue is to order this
3530 * folio_remove_rmap_pte() with the ptp_clear_flush
3531 * above. Those stores are ordered by (if nothing else,)
3532 * the barrier present in the atomic_add_negative
3533 * in folio_remove_rmap_pte();
3534 *
3535 * Then the TLB flush in ptep_clear_flush ensures that
3536 * no process can access the old page before the
3537 * decremented mapcount is visible. And the old page
3538 * cannot be reused until after the decremented
3539 * mapcount is visible. So transitively, TLBs to
3540 * old page will be flushed before it can be reused.
3541 */
3542 folio_remove_rmap_pte(old_folio, vmf->page, vma);
3543 }
3544
3545 /* Free the old page.. */
3546 new_folio = old_folio;
3547 page_copied = 1;
3548 pte_unmap_unlock(vmf->pte, vmf->ptl);
3549 } else if (vmf->pte) {
3550 update_mmu_tlb(vma, vmf->address, vmf->pte);
3551 pte_unmap_unlock(vmf->pte, vmf->ptl);
3552 }
3553
3554 mmu_notifier_invalidate_range_end(&range);
3555
3556 if (new_folio)
3557 folio_put(new_folio);
3558 if (old_folio) {
3559 if (page_copied)
3560 free_swap_cache(old_folio);
3561 folio_put(old_folio);
3562 }
3563
3564 delayacct_wpcopy_end();
3565 return 0;
3566 oom:
3567 ret = VM_FAULT_OOM;
3568 out:
3569 if (old_folio)
3570 folio_put(old_folio);
3571
3572 delayacct_wpcopy_end();
3573 return ret;
3574 }
3575
3576 /**
3577 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3578 * writeable once the page is prepared
3579 *
3580 * @vmf: structure describing the fault
3581 * @folio: the folio of vmf->page
3582 *
3583 * This function handles all that is needed to finish a write page fault in a
3584 * shared mapping due to PTE being read-only once the mapped page is prepared.
3585 * It handles locking of PTE and modifying it.
3586 *
3587 * The function expects the page to be locked or other protection against
3588 * concurrent faults / writeback (such as DAX radix tree locks).
3589 *
3590 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3591 * we acquired PTE lock.
3592 */
finish_mkwrite_fault(struct vm_fault * vmf,struct folio * folio)3593 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3594 {
3595 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3596 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3597 &vmf->ptl);
3598 if (!vmf->pte)
3599 return VM_FAULT_NOPAGE;
3600 /*
3601 * We might have raced with another page fault while we released the
3602 * pte_offset_map_lock.
3603 */
3604 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3605 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3606 pte_unmap_unlock(vmf->pte, vmf->ptl);
3607 return VM_FAULT_NOPAGE;
3608 }
3609 wp_page_reuse(vmf, folio);
3610 return 0;
3611 }
3612
3613 /*
3614 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3615 * mapping
3616 */
wp_pfn_shared(struct vm_fault * vmf)3617 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3618 {
3619 struct vm_area_struct *vma = vmf->vma;
3620
3621 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3622 vm_fault_t ret;
3623
3624 pte_unmap_unlock(vmf->pte, vmf->ptl);
3625 ret = vmf_can_call_fault(vmf);
3626 if (ret)
3627 return ret;
3628
3629 vmf->flags |= FAULT_FLAG_MKWRITE;
3630 ret = vma->vm_ops->pfn_mkwrite(vmf);
3631 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3632 return ret;
3633 return finish_mkwrite_fault(vmf, NULL);
3634 }
3635 wp_page_reuse(vmf, NULL);
3636 return 0;
3637 }
3638
wp_page_shared(struct vm_fault * vmf,struct folio * folio)3639 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3640 __releases(vmf->ptl)
3641 {
3642 struct vm_area_struct *vma = vmf->vma;
3643 vm_fault_t ret = 0;
3644
3645 folio_get(folio);
3646
3647 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3648 vm_fault_t tmp;
3649
3650 pte_unmap_unlock(vmf->pte, vmf->ptl);
3651 tmp = vmf_can_call_fault(vmf);
3652 if (tmp) {
3653 folio_put(folio);
3654 return tmp;
3655 }
3656
3657 tmp = do_page_mkwrite(vmf, folio);
3658 if (unlikely(!tmp || (tmp &
3659 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3660 folio_put(folio);
3661 return tmp;
3662 }
3663 tmp = finish_mkwrite_fault(vmf, folio);
3664 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3665 folio_unlock(folio);
3666 folio_put(folio);
3667 return tmp;
3668 }
3669 } else {
3670 wp_page_reuse(vmf, folio);
3671 folio_lock(folio);
3672 }
3673 ret |= fault_dirty_shared_page(vmf);
3674 folio_put(folio);
3675
3676 return ret;
3677 }
3678
wp_can_reuse_anon_folio(struct folio * folio,struct vm_area_struct * vma)3679 static bool wp_can_reuse_anon_folio(struct folio *folio,
3680 struct vm_area_struct *vma)
3681 {
3682 /*
3683 * We could currently only reuse a subpage of a large folio if no
3684 * other subpages of the large folios are still mapped. However,
3685 * let's just consistently not reuse subpages even if we could
3686 * reuse in that scenario, and give back a large folio a bit
3687 * sooner.
3688 */
3689 if (folio_test_large(folio))
3690 return false;
3691
3692 /*
3693 * We have to verify under folio lock: these early checks are
3694 * just an optimization to avoid locking the folio and freeing
3695 * the swapcache if there is little hope that we can reuse.
3696 *
3697 * KSM doesn't necessarily raise the folio refcount.
3698 */
3699 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3700 return false;
3701 if (!folio_test_lru(folio))
3702 /*
3703 * We cannot easily detect+handle references from
3704 * remote LRU caches or references to LRU folios.
3705 */
3706 lru_add_drain();
3707 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3708 return false;
3709 if (!folio_trylock(folio))
3710 return false;
3711 if (folio_test_swapcache(folio))
3712 folio_free_swap(folio);
3713 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3714 folio_unlock(folio);
3715 return false;
3716 }
3717 /*
3718 * Ok, we've got the only folio reference from our mapping
3719 * and the folio is locked, it's dark out, and we're wearing
3720 * sunglasses. Hit it.
3721 */
3722 folio_move_anon_rmap(folio, vma);
3723 folio_unlock(folio);
3724 return true;
3725 }
3726
3727 /*
3728 * This routine handles present pages, when
3729 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3730 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3731 * (FAULT_FLAG_UNSHARE)
3732 *
3733 * It is done by copying the page to a new address and decrementing the
3734 * shared-page counter for the old page.
3735 *
3736 * Note that this routine assumes that the protection checks have been
3737 * done by the caller (the low-level page fault routine in most cases).
3738 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3739 * done any necessary COW.
3740 *
3741 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3742 * though the page will change only once the write actually happens. This
3743 * avoids a few races, and potentially makes it more efficient.
3744 *
3745 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3746 * but allow concurrent faults), with pte both mapped and locked.
3747 * We return with mmap_lock still held, but pte unmapped and unlocked.
3748 */
do_wp_page(struct vm_fault * vmf)3749 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3750 __releases(vmf->ptl)
3751 {
3752 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3753 struct vm_area_struct *vma = vmf->vma;
3754 struct folio *folio = NULL;
3755 pte_t pte;
3756
3757 if (likely(!unshare)) {
3758 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3759 if (!userfaultfd_wp_async(vma)) {
3760 pte_unmap_unlock(vmf->pte, vmf->ptl);
3761 return handle_userfault(vmf, VM_UFFD_WP);
3762 }
3763
3764 /*
3765 * Nothing needed (cache flush, TLB invalidations,
3766 * etc.) because we're only removing the uffd-wp bit,
3767 * which is completely invisible to the user.
3768 */
3769 pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3770
3771 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3772 /*
3773 * Update this to be prepared for following up CoW
3774 * handling
3775 */
3776 vmf->orig_pte = pte;
3777 }
3778
3779 /*
3780 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3781 * is flushed in this case before copying.
3782 */
3783 if (unlikely(userfaultfd_wp(vmf->vma) &&
3784 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3785 flush_tlb_page(vmf->vma, vmf->address);
3786 }
3787
3788 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3789
3790 if (vmf->page)
3791 folio = page_folio(vmf->page);
3792
3793 /*
3794 * Shared mapping: we are guaranteed to have VM_WRITE and
3795 * FAULT_FLAG_WRITE set at this point.
3796 */
3797 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3798 /*
3799 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3800 * VM_PFNMAP VMA.
3801 *
3802 * We should not cow pages in a shared writeable mapping.
3803 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3804 */
3805 if (!vmf->page)
3806 return wp_pfn_shared(vmf);
3807 return wp_page_shared(vmf, folio);
3808 }
3809
3810 /*
3811 * Private mapping: create an exclusive anonymous page copy if reuse
3812 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3813 *
3814 * If we encounter a page that is marked exclusive, we must reuse
3815 * the page without further checks.
3816 */
3817 if (folio && folio_test_anon(folio) &&
3818 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3819 if (!PageAnonExclusive(vmf->page))
3820 SetPageAnonExclusive(vmf->page);
3821 if (unlikely(unshare)) {
3822 pte_unmap_unlock(vmf->pte, vmf->ptl);
3823 return 0;
3824 }
3825 wp_page_reuse(vmf, folio);
3826 return 0;
3827 }
3828 /*
3829 * Ok, we need to copy. Oh, well..
3830 */
3831 if (folio)
3832 folio_get(folio);
3833
3834 pte_unmap_unlock(vmf->pte, vmf->ptl);
3835 #ifdef CONFIG_KSM
3836 if (folio && folio_test_ksm(folio))
3837 count_vm_event(COW_KSM);
3838 #endif
3839 return wp_page_copy(vmf);
3840 }
3841
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)3842 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3843 unsigned long start_addr, unsigned long end_addr,
3844 struct zap_details *details)
3845 {
3846 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3847 }
3848
unmap_mapping_range_tree(struct rb_root_cached * root,pgoff_t first_index,pgoff_t last_index,struct zap_details * details)3849 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3850 pgoff_t first_index,
3851 pgoff_t last_index,
3852 struct zap_details *details)
3853 {
3854 struct vm_area_struct *vma;
3855 pgoff_t vba, vea, zba, zea;
3856
3857 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3858 vba = vma->vm_pgoff;
3859 vea = vba + vma_pages(vma) - 1;
3860 zba = max(first_index, vba);
3861 zea = min(last_index, vea);
3862
3863 unmap_mapping_range_vma(vma,
3864 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3865 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3866 details);
3867 }
3868 }
3869
3870 /**
3871 * unmap_mapping_folio() - Unmap single folio from processes.
3872 * @folio: The locked folio to be unmapped.
3873 *
3874 * Unmap this folio from any userspace process which still has it mmaped.
3875 * Typically, for efficiency, the range of nearby pages has already been
3876 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3877 * truncation or invalidation holds the lock on a folio, it may find that
3878 * the page has been remapped again: and then uses unmap_mapping_folio()
3879 * to unmap it finally.
3880 */
unmap_mapping_folio(struct folio * folio)3881 void unmap_mapping_folio(struct folio *folio)
3882 {
3883 struct address_space *mapping = folio->mapping;
3884 struct zap_details details = { };
3885 pgoff_t first_index;
3886 pgoff_t last_index;
3887
3888 VM_BUG_ON(!folio_test_locked(folio));
3889
3890 first_index = folio->index;
3891 last_index = folio_next_index(folio) - 1;
3892
3893 details.even_cows = false;
3894 details.single_folio = folio;
3895 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3896
3897 i_mmap_lock_read(mapping);
3898 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3899 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3900 last_index, &details);
3901 i_mmap_unlock_read(mapping);
3902 }
3903
3904 /**
3905 * unmap_mapping_pages() - Unmap pages from processes.
3906 * @mapping: The address space containing pages to be unmapped.
3907 * @start: Index of first page to be unmapped.
3908 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3909 * @even_cows: Whether to unmap even private COWed pages.
3910 *
3911 * Unmap the pages in this address space from any userspace process which
3912 * has them mmaped. Generally, you want to remove COWed pages as well when
3913 * a file is being truncated, but not when invalidating pages from the page
3914 * cache.
3915 */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)3916 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3917 pgoff_t nr, bool even_cows)
3918 {
3919 struct zap_details details = { };
3920 pgoff_t first_index = start;
3921 pgoff_t last_index = start + nr - 1;
3922
3923 details.even_cows = even_cows;
3924 if (last_index < first_index)
3925 last_index = ULONG_MAX;
3926
3927 i_mmap_lock_read(mapping);
3928 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3929 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3930 last_index, &details);
3931 i_mmap_unlock_read(mapping);
3932 }
3933 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3934
3935 /**
3936 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3937 * address_space corresponding to the specified byte range in the underlying
3938 * file.
3939 *
3940 * @mapping: the address space containing mmaps to be unmapped.
3941 * @holebegin: byte in first page to unmap, relative to the start of
3942 * the underlying file. This will be rounded down to a PAGE_SIZE
3943 * boundary. Note that this is different from truncate_pagecache(), which
3944 * must keep the partial page. In contrast, we must get rid of
3945 * partial pages.
3946 * @holelen: size of prospective hole in bytes. This will be rounded
3947 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3948 * end of the file.
3949 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3950 * but 0 when invalidating pagecache, don't throw away private data.
3951 */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)3952 void unmap_mapping_range(struct address_space *mapping,
3953 loff_t const holebegin, loff_t const holelen, int even_cows)
3954 {
3955 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3956 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3957
3958 /* Check for overflow. */
3959 if (sizeof(holelen) > sizeof(hlen)) {
3960 long long holeend =
3961 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3962 if (holeend & ~(long long)ULONG_MAX)
3963 hlen = ULONG_MAX - hba + 1;
3964 }
3965
3966 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3967 }
3968 EXPORT_SYMBOL(unmap_mapping_range);
3969
3970 /*
3971 * Restore a potential device exclusive pte to a working pte entry
3972 */
remove_device_exclusive_entry(struct vm_fault * vmf)3973 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3974 {
3975 struct folio *folio = page_folio(vmf->page);
3976 struct vm_area_struct *vma = vmf->vma;
3977 struct mmu_notifier_range range;
3978 vm_fault_t ret;
3979
3980 /*
3981 * We need a reference to lock the folio because we don't hold
3982 * the PTL so a racing thread can remove the device-exclusive
3983 * entry and unmap it. If the folio is free the entry must
3984 * have been removed already. If it happens to have already
3985 * been re-allocated after being freed all we do is lock and
3986 * unlock it.
3987 */
3988 if (!folio_try_get(folio))
3989 return 0;
3990
3991 ret = folio_lock_or_retry(folio, vmf);
3992 if (ret) {
3993 folio_put(folio);
3994 return ret;
3995 }
3996 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3997 vma->vm_mm, vmf->address & PAGE_MASK,
3998 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3999 mmu_notifier_invalidate_range_start(&range);
4000
4001 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4002 &vmf->ptl);
4003 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4004 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
4005
4006 if (vmf->pte)
4007 pte_unmap_unlock(vmf->pte, vmf->ptl);
4008 folio_unlock(folio);
4009 folio_put(folio);
4010
4011 mmu_notifier_invalidate_range_end(&range);
4012 return 0;
4013 }
4014
should_try_to_free_swap(struct folio * folio,struct vm_area_struct * vma,unsigned int fault_flags)4015 static inline bool should_try_to_free_swap(struct folio *folio,
4016 struct vm_area_struct *vma,
4017 unsigned int fault_flags)
4018 {
4019 if (!folio_test_swapcache(folio))
4020 return false;
4021 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
4022 folio_test_mlocked(folio))
4023 return true;
4024 /*
4025 * If we want to map a page that's in the swapcache writable, we
4026 * have to detect via the refcount if we're really the exclusive
4027 * user. Try freeing the swapcache to get rid of the swapcache
4028 * reference only in case it's likely that we'll be the exlusive user.
4029 */
4030 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
4031 folio_ref_count(folio) == (1 + folio_nr_pages(folio));
4032 }
4033
pte_marker_clear(struct vm_fault * vmf)4034 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
4035 {
4036 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4037 vmf->address, &vmf->ptl);
4038 if (!vmf->pte)
4039 return 0;
4040 /*
4041 * Be careful so that we will only recover a special uffd-wp pte into a
4042 * none pte. Otherwise it means the pte could have changed, so retry.
4043 *
4044 * This should also cover the case where e.g. the pte changed
4045 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
4046 * So is_pte_marker() check is not enough to safely drop the pte.
4047 */
4048 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
4049 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
4050 pte_unmap_unlock(vmf->pte, vmf->ptl);
4051 return 0;
4052 }
4053
do_pte_missing(struct vm_fault * vmf)4054 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
4055 {
4056 if (vma_is_anonymous(vmf->vma))
4057 return do_anonymous_page(vmf);
4058 else
4059 return do_fault(vmf);
4060 }
4061
4062 /*
4063 * This is actually a page-missing access, but with uffd-wp special pte
4064 * installed. It means this pte was wr-protected before being unmapped.
4065 */
pte_marker_handle_uffd_wp(struct vm_fault * vmf)4066 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
4067 {
4068 /*
4069 * Just in case there're leftover special ptes even after the region
4070 * got unregistered - we can simply clear them.
4071 */
4072 if (unlikely(!userfaultfd_wp(vmf->vma)))
4073 return pte_marker_clear(vmf);
4074
4075 return do_pte_missing(vmf);
4076 }
4077
handle_pte_marker(struct vm_fault * vmf)4078 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
4079 {
4080 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
4081 unsigned long marker = pte_marker_get(entry);
4082
4083 /*
4084 * PTE markers should never be empty. If anything weird happened,
4085 * the best thing to do is to kill the process along with its mm.
4086 */
4087 if (WARN_ON_ONCE(!marker))
4088 return VM_FAULT_SIGBUS;
4089
4090 /* Higher priority than uffd-wp when data corrupted */
4091 if (marker & PTE_MARKER_POISONED)
4092 return VM_FAULT_HWPOISON;
4093
4094 /* Hitting a guard page is always a fatal condition. */
4095 if (marker & PTE_MARKER_GUARD)
4096 return VM_FAULT_SIGSEGV;
4097
4098 if (pte_marker_entry_uffd_wp(entry))
4099 return pte_marker_handle_uffd_wp(vmf);
4100
4101 /* This is an unknown pte marker */
4102 return VM_FAULT_SIGBUS;
4103 }
4104
__alloc_swap_folio(struct vm_fault * vmf)4105 static struct folio *__alloc_swap_folio(struct vm_fault *vmf)
4106 {
4107 struct vm_area_struct *vma = vmf->vma;
4108 struct folio *folio;
4109 swp_entry_t entry;
4110
4111 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address);
4112 if (!folio)
4113 return NULL;
4114
4115 entry = pte_to_swp_entry(vmf->orig_pte);
4116 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4117 GFP_KERNEL, entry)) {
4118 folio_put(folio);
4119 return NULL;
4120 }
4121
4122 return folio;
4123 }
4124
4125 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
non_swapcache_batch(swp_entry_t entry,int max_nr)4126 static inline int non_swapcache_batch(swp_entry_t entry, int max_nr)
4127 {
4128 struct swap_info_struct *si = swp_swap_info(entry);
4129 pgoff_t offset = swp_offset(entry);
4130 int i;
4131
4132 /*
4133 * While allocating a large folio and doing swap_read_folio, which is
4134 * the case the being faulted pte doesn't have swapcache. We need to
4135 * ensure all PTEs have no cache as well, otherwise, we might go to
4136 * swap devices while the content is in swapcache.
4137 */
4138 for (i = 0; i < max_nr; i++) {
4139 if ((si->swap_map[offset + i] & SWAP_HAS_CACHE))
4140 return i;
4141 }
4142
4143 return i;
4144 }
4145
4146 /*
4147 * Check if the PTEs within a range are contiguous swap entries
4148 * and have consistent swapcache, zeromap.
4149 */
can_swapin_thp(struct vm_fault * vmf,pte_t * ptep,int nr_pages)4150 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages)
4151 {
4152 unsigned long addr;
4153 swp_entry_t entry;
4154 int idx;
4155 pte_t pte;
4156
4157 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4158 idx = (vmf->address - addr) / PAGE_SIZE;
4159 pte = ptep_get(ptep);
4160
4161 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx)))
4162 return false;
4163 entry = pte_to_swp_entry(pte);
4164 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages)
4165 return false;
4166
4167 /*
4168 * swap_read_folio() can't handle the case a large folio is hybridly
4169 * from different backends. And they are likely corner cases. Similar
4170 * things might be added once zswap support large folios.
4171 */
4172 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages))
4173 return false;
4174 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages))
4175 return false;
4176
4177 return true;
4178 }
4179
thp_swap_suitable_orders(pgoff_t swp_offset,unsigned long addr,unsigned long orders)4180 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset,
4181 unsigned long addr,
4182 unsigned long orders)
4183 {
4184 int order, nr;
4185
4186 order = highest_order(orders);
4187
4188 /*
4189 * To swap in a THP with nr pages, we require that its first swap_offset
4190 * is aligned with that number, as it was when the THP was swapped out.
4191 * This helps filter out most invalid entries.
4192 */
4193 while (orders) {
4194 nr = 1 << order;
4195 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr)
4196 break;
4197 order = next_order(&orders, order);
4198 }
4199
4200 return orders;
4201 }
4202
alloc_swap_folio(struct vm_fault * vmf)4203 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4204 {
4205 struct vm_area_struct *vma = vmf->vma;
4206 unsigned long orders;
4207 struct folio *folio;
4208 unsigned long addr;
4209 swp_entry_t entry;
4210 spinlock_t *ptl;
4211 pte_t *pte;
4212 gfp_t gfp;
4213 int order;
4214
4215 /*
4216 * If uffd is active for the vma we need per-page fault fidelity to
4217 * maintain the uffd semantics.
4218 */
4219 if (unlikely(userfaultfd_armed(vma)))
4220 goto fallback;
4221
4222 /*
4223 * A large swapped out folio could be partially or fully in zswap. We
4224 * lack handling for such cases, so fallback to swapping in order-0
4225 * folio.
4226 */
4227 if (!zswap_never_enabled())
4228 goto fallback;
4229
4230 entry = pte_to_swp_entry(vmf->orig_pte);
4231 /*
4232 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4233 * and suitable for swapping THP.
4234 */
4235 orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4236 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4237 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4238 orders = thp_swap_suitable_orders(swp_offset(entry),
4239 vmf->address, orders);
4240
4241 if (!orders)
4242 goto fallback;
4243
4244 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4245 vmf->address & PMD_MASK, &ptl);
4246 if (unlikely(!pte))
4247 goto fallback;
4248
4249 /*
4250 * For do_swap_page, find the highest order where the aligned range is
4251 * completely swap entries with contiguous swap offsets.
4252 */
4253 order = highest_order(orders);
4254 while (orders) {
4255 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4256 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order))
4257 break;
4258 order = next_order(&orders, order);
4259 }
4260
4261 pte_unmap_unlock(pte, ptl);
4262
4263 /* Try allocating the highest of the remaining orders. */
4264 gfp = vma_thp_gfp_mask(vma);
4265 while (orders) {
4266 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4267 folio = vma_alloc_folio(gfp, order, vma, addr);
4268 if (folio) {
4269 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4270 gfp, entry))
4271 return folio;
4272 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE);
4273 folio_put(folio);
4274 }
4275 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK);
4276 order = next_order(&orders, order);
4277 }
4278
4279 fallback:
4280 return __alloc_swap_folio(vmf);
4281 }
4282 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
alloc_swap_folio(struct vm_fault * vmf)4283 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4284 {
4285 return __alloc_swap_folio(vmf);
4286 }
4287 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4288
4289 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq);
4290
4291 /*
4292 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4293 * but allow concurrent faults), and pte mapped but not yet locked.
4294 * We return with pte unmapped and unlocked.
4295 *
4296 * We return with the mmap_lock locked or unlocked in the same cases
4297 * as does filemap_fault().
4298 */
do_swap_page(struct vm_fault * vmf)4299 vm_fault_t do_swap_page(struct vm_fault *vmf)
4300 {
4301 struct vm_area_struct *vma = vmf->vma;
4302 struct folio *swapcache, *folio = NULL;
4303 DECLARE_WAITQUEUE(wait, current);
4304 struct page *page;
4305 struct swap_info_struct *si = NULL;
4306 rmap_t rmap_flags = RMAP_NONE;
4307 bool need_clear_cache = false;
4308 bool exclusive = false;
4309 swp_entry_t entry;
4310 pte_t pte;
4311 vm_fault_t ret = 0;
4312 void *shadow = NULL;
4313 int nr_pages;
4314 unsigned long page_idx;
4315 unsigned long address;
4316 pte_t *ptep;
4317
4318 if (!pte_unmap_same(vmf))
4319 goto out;
4320
4321 entry = pte_to_swp_entry(vmf->orig_pte);
4322 if (unlikely(non_swap_entry(entry))) {
4323 if (is_migration_entry(entry)) {
4324 migration_entry_wait(vma->vm_mm, vmf->pmd,
4325 vmf->address);
4326 } else if (is_device_exclusive_entry(entry)) {
4327 vmf->page = pfn_swap_entry_to_page(entry);
4328 ret = remove_device_exclusive_entry(vmf);
4329 } else if (is_device_private_entry(entry)) {
4330 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4331 /*
4332 * migrate_to_ram is not yet ready to operate
4333 * under VMA lock.
4334 */
4335 vma_end_read(vma);
4336 ret = VM_FAULT_RETRY;
4337 goto out;
4338 }
4339
4340 vmf->page = pfn_swap_entry_to_page(entry);
4341 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4342 vmf->address, &vmf->ptl);
4343 if (unlikely(!vmf->pte ||
4344 !pte_same(ptep_get(vmf->pte),
4345 vmf->orig_pte)))
4346 goto unlock;
4347
4348 /*
4349 * Get a page reference while we know the page can't be
4350 * freed.
4351 */
4352 get_page(vmf->page);
4353 pte_unmap_unlock(vmf->pte, vmf->ptl);
4354 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
4355 put_page(vmf->page);
4356 } else if (is_hwpoison_entry(entry)) {
4357 ret = VM_FAULT_HWPOISON;
4358 } else if (is_pte_marker_entry(entry)) {
4359 ret = handle_pte_marker(vmf);
4360 } else {
4361 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4362 ret = VM_FAULT_SIGBUS;
4363 }
4364 goto out;
4365 }
4366
4367 /* Prevent swapoff from happening to us. */
4368 si = get_swap_device(entry);
4369 if (unlikely(!si))
4370 goto out;
4371
4372 folio = swap_cache_get_folio(entry, vma, vmf->address);
4373 if (folio)
4374 page = folio_file_page(folio, swp_offset(entry));
4375 swapcache = folio;
4376
4377 if (!folio) {
4378 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4379 __swap_count(entry) == 1) {
4380 /* skip swapcache */
4381 folio = alloc_swap_folio(vmf);
4382 if (folio) {
4383 __folio_set_locked(folio);
4384 __folio_set_swapbacked(folio);
4385
4386 nr_pages = folio_nr_pages(folio);
4387 if (folio_test_large(folio))
4388 entry.val = ALIGN_DOWN(entry.val, nr_pages);
4389 /*
4390 * Prevent parallel swapin from proceeding with
4391 * the cache flag. Otherwise, another thread
4392 * may finish swapin first, free the entry, and
4393 * swapout reusing the same entry. It's
4394 * undetectable as pte_same() returns true due
4395 * to entry reuse.
4396 */
4397 if (swapcache_prepare(entry, nr_pages)) {
4398 /*
4399 * Relax a bit to prevent rapid
4400 * repeated page faults.
4401 */
4402 add_wait_queue(&swapcache_wq, &wait);
4403 schedule_timeout_uninterruptible(1);
4404 remove_wait_queue(&swapcache_wq, &wait);
4405 goto out_page;
4406 }
4407 need_clear_cache = true;
4408
4409 mem_cgroup_swapin_uncharge_swap(entry, nr_pages);
4410
4411 shadow = get_shadow_from_swap_cache(entry);
4412 if (shadow)
4413 workingset_refault(folio, shadow);
4414
4415 folio_add_lru(folio);
4416
4417 /* To provide entry to swap_read_folio() */
4418 folio->swap = entry;
4419 swap_read_folio(folio, NULL);
4420 folio->private = NULL;
4421 }
4422 } else {
4423 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4424 vmf);
4425 swapcache = folio;
4426 }
4427
4428 if (!folio) {
4429 /*
4430 * Back out if somebody else faulted in this pte
4431 * while we released the pte lock.
4432 */
4433 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4434 vmf->address, &vmf->ptl);
4435 if (likely(vmf->pte &&
4436 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4437 ret = VM_FAULT_OOM;
4438 goto unlock;
4439 }
4440
4441 /* Had to read the page from swap area: Major fault */
4442 ret = VM_FAULT_MAJOR;
4443 count_vm_event(PGMAJFAULT);
4444 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4445 page = folio_file_page(folio, swp_offset(entry));
4446 } else if (PageHWPoison(page)) {
4447 /*
4448 * hwpoisoned dirty swapcache pages are kept for killing
4449 * owner processes (which may be unknown at hwpoison time)
4450 */
4451 ret = VM_FAULT_HWPOISON;
4452 goto out_release;
4453 }
4454
4455 ret |= folio_lock_or_retry(folio, vmf);
4456 if (ret & VM_FAULT_RETRY)
4457 goto out_release;
4458
4459 if (swapcache) {
4460 /*
4461 * Make sure folio_free_swap() or swapoff did not release the
4462 * swapcache from under us. The page pin, and pte_same test
4463 * below, are not enough to exclude that. Even if it is still
4464 * swapcache, we need to check that the page's swap has not
4465 * changed.
4466 */
4467 if (unlikely(!folio_test_swapcache(folio) ||
4468 page_swap_entry(page).val != entry.val))
4469 goto out_page;
4470
4471 /*
4472 * KSM sometimes has to copy on read faults, for example, if
4473 * page->index of !PageKSM() pages would be nonlinear inside the
4474 * anon VMA -- PageKSM() is lost on actual swapout.
4475 */
4476 folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4477 if (unlikely(!folio)) {
4478 ret = VM_FAULT_OOM;
4479 folio = swapcache;
4480 goto out_page;
4481 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4482 ret = VM_FAULT_HWPOISON;
4483 folio = swapcache;
4484 goto out_page;
4485 }
4486 if (folio != swapcache)
4487 page = folio_page(folio, 0);
4488
4489 /*
4490 * If we want to map a page that's in the swapcache writable, we
4491 * have to detect via the refcount if we're really the exclusive
4492 * owner. Try removing the extra reference from the local LRU
4493 * caches if required.
4494 */
4495 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4496 !folio_test_ksm(folio) && !folio_test_lru(folio))
4497 lru_add_drain();
4498 }
4499
4500 folio_throttle_swaprate(folio, GFP_KERNEL);
4501
4502 /*
4503 * Back out if somebody else already faulted in this pte.
4504 */
4505 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4506 &vmf->ptl);
4507 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4508 goto out_nomap;
4509
4510 if (unlikely(!folio_test_uptodate(folio))) {
4511 ret = VM_FAULT_SIGBUS;
4512 goto out_nomap;
4513 }
4514
4515 /* allocated large folios for SWP_SYNCHRONOUS_IO */
4516 if (folio_test_large(folio) && !folio_test_swapcache(folio)) {
4517 unsigned long nr = folio_nr_pages(folio);
4518 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE);
4519 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE;
4520 pte_t *folio_ptep = vmf->pte - idx;
4521 pte_t folio_pte = ptep_get(folio_ptep);
4522
4523 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4524 swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4525 goto out_nomap;
4526
4527 page_idx = idx;
4528 address = folio_start;
4529 ptep = folio_ptep;
4530 goto check_folio;
4531 }
4532
4533 nr_pages = 1;
4534 page_idx = 0;
4535 address = vmf->address;
4536 ptep = vmf->pte;
4537 if (folio_test_large(folio) && folio_test_swapcache(folio)) {
4538 int nr = folio_nr_pages(folio);
4539 unsigned long idx = folio_page_idx(folio, page);
4540 unsigned long folio_start = address - idx * PAGE_SIZE;
4541 unsigned long folio_end = folio_start + nr * PAGE_SIZE;
4542 pte_t *folio_ptep;
4543 pte_t folio_pte;
4544
4545 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
4546 goto check_folio;
4547 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
4548 goto check_folio;
4549
4550 folio_ptep = vmf->pte - idx;
4551 folio_pte = ptep_get(folio_ptep);
4552 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4553 swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4554 goto check_folio;
4555
4556 page_idx = idx;
4557 address = folio_start;
4558 ptep = folio_ptep;
4559 nr_pages = nr;
4560 entry = folio->swap;
4561 page = &folio->page;
4562 }
4563
4564 check_folio:
4565 /*
4566 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4567 * must never point at an anonymous page in the swapcache that is
4568 * PG_anon_exclusive. Sanity check that this holds and especially, that
4569 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4570 * check after taking the PT lock and making sure that nobody
4571 * concurrently faulted in this page and set PG_anon_exclusive.
4572 */
4573 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4574 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4575
4576 /*
4577 * Check under PT lock (to protect against concurrent fork() sharing
4578 * the swap entry concurrently) for certainly exclusive pages.
4579 */
4580 if (!folio_test_ksm(folio)) {
4581 exclusive = pte_swp_exclusive(vmf->orig_pte);
4582 if (folio != swapcache) {
4583 /*
4584 * We have a fresh page that is not exposed to the
4585 * swapcache -> certainly exclusive.
4586 */
4587 exclusive = true;
4588 } else if (exclusive && folio_test_writeback(folio) &&
4589 data_race(si->flags & SWP_STABLE_WRITES)) {
4590 /*
4591 * This is tricky: not all swap backends support
4592 * concurrent page modifications while under writeback.
4593 *
4594 * So if we stumble over such a page in the swapcache
4595 * we must not set the page exclusive, otherwise we can
4596 * map it writable without further checks and modify it
4597 * while still under writeback.
4598 *
4599 * For these problematic swap backends, simply drop the
4600 * exclusive marker: this is perfectly fine as we start
4601 * writeback only if we fully unmapped the page and
4602 * there are no unexpected references on the page after
4603 * unmapping succeeded. After fully unmapped, no
4604 * further GUP references (FOLL_GET and FOLL_PIN) can
4605 * appear, so dropping the exclusive marker and mapping
4606 * it only R/O is fine.
4607 */
4608 exclusive = false;
4609 }
4610 }
4611
4612 /*
4613 * Some architectures may have to restore extra metadata to the page
4614 * when reading from swap. This metadata may be indexed by swap entry
4615 * so this must be called before swap_free().
4616 */
4617 arch_swap_restore(folio_swap(entry, folio), folio);
4618
4619 /*
4620 * Remove the swap entry and conditionally try to free up the swapcache.
4621 * We're already holding a reference on the page but haven't mapped it
4622 * yet.
4623 */
4624 swap_free_nr(entry, nr_pages);
4625 if (should_try_to_free_swap(folio, vma, vmf->flags))
4626 folio_free_swap(folio);
4627
4628 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4629 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
4630 pte = mk_pte(page, vma->vm_page_prot);
4631 if (pte_swp_soft_dirty(vmf->orig_pte))
4632 pte = pte_mksoft_dirty(pte);
4633 if (pte_swp_uffd_wp(vmf->orig_pte))
4634 pte = pte_mkuffd_wp(pte);
4635
4636 /*
4637 * Same logic as in do_wp_page(); however, optimize for pages that are
4638 * certainly not shared either because we just allocated them without
4639 * exposing them to the swapcache or because the swap entry indicates
4640 * exclusivity.
4641 */
4642 if (!folio_test_ksm(folio) &&
4643 (exclusive || folio_ref_count(folio) == 1)) {
4644 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
4645 !pte_needs_soft_dirty_wp(vma, pte)) {
4646 pte = pte_mkwrite(pte, vma);
4647 if (vmf->flags & FAULT_FLAG_WRITE) {
4648 pte = pte_mkdirty(pte);
4649 vmf->flags &= ~FAULT_FLAG_WRITE;
4650 }
4651 }
4652 rmap_flags |= RMAP_EXCLUSIVE;
4653 }
4654 folio_ref_add(folio, nr_pages - 1);
4655 flush_icache_pages(vma, page, nr_pages);
4656 vmf->orig_pte = pte_advance_pfn(pte, page_idx);
4657
4658 /* ksm created a completely new copy */
4659 if (unlikely(folio != swapcache && swapcache)) {
4660 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
4661 folio_add_lru_vma(folio, vma);
4662 } else if (!folio_test_anon(folio)) {
4663 /*
4664 * We currently only expect small !anon folios which are either
4665 * fully exclusive or fully shared, or new allocated large
4666 * folios which are fully exclusive. If we ever get large
4667 * folios within swapcache here, we have to be careful.
4668 */
4669 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio));
4670 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
4671 folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
4672 } else {
4673 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
4674 rmap_flags);
4675 }
4676
4677 VM_BUG_ON(!folio_test_anon(folio) ||
4678 (pte_write(pte) && !PageAnonExclusive(page)));
4679 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
4680 arch_do_swap_page_nr(vma->vm_mm, vma, address,
4681 pte, pte, nr_pages);
4682
4683 folio_unlock(folio);
4684 if (folio != swapcache && swapcache) {
4685 /*
4686 * Hold the lock to avoid the swap entry to be reused
4687 * until we take the PT lock for the pte_same() check
4688 * (to avoid false positives from pte_same). For
4689 * further safety release the lock after the swap_free
4690 * so that the swap count won't change under a
4691 * parallel locked swapcache.
4692 */
4693 folio_unlock(swapcache);
4694 folio_put(swapcache);
4695 }
4696
4697 if (vmf->flags & FAULT_FLAG_WRITE) {
4698 ret |= do_wp_page(vmf);
4699 if (ret & VM_FAULT_ERROR)
4700 ret &= VM_FAULT_ERROR;
4701 goto out;
4702 }
4703
4704 /* No need to invalidate - it was non-present before */
4705 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
4706 unlock:
4707 if (vmf->pte)
4708 pte_unmap_unlock(vmf->pte, vmf->ptl);
4709 out:
4710 /* Clear the swap cache pin for direct swapin after PTL unlock */
4711 if (need_clear_cache) {
4712 swapcache_clear(si, entry, nr_pages);
4713 if (waitqueue_active(&swapcache_wq))
4714 wake_up(&swapcache_wq);
4715 }
4716 if (si)
4717 put_swap_device(si);
4718 return ret;
4719 out_nomap:
4720 if (vmf->pte)
4721 pte_unmap_unlock(vmf->pte, vmf->ptl);
4722 out_page:
4723 folio_unlock(folio);
4724 out_release:
4725 folio_put(folio);
4726 if (folio != swapcache && swapcache) {
4727 folio_unlock(swapcache);
4728 folio_put(swapcache);
4729 }
4730 if (need_clear_cache) {
4731 swapcache_clear(si, entry, nr_pages);
4732 if (waitqueue_active(&swapcache_wq))
4733 wake_up(&swapcache_wq);
4734 }
4735 if (si)
4736 put_swap_device(si);
4737 return ret;
4738 }
4739
pte_range_none(pte_t * pte,int nr_pages)4740 static bool pte_range_none(pte_t *pte, int nr_pages)
4741 {
4742 int i;
4743
4744 for (i = 0; i < nr_pages; i++) {
4745 if (!pte_none(ptep_get_lockless(pte + i)))
4746 return false;
4747 }
4748
4749 return true;
4750 }
4751
alloc_anon_folio(struct vm_fault * vmf)4752 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4753 {
4754 struct vm_area_struct *vma = vmf->vma;
4755 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4756 unsigned long orders;
4757 struct folio *folio;
4758 unsigned long addr;
4759 pte_t *pte;
4760 gfp_t gfp;
4761 int order;
4762
4763 /*
4764 * If uffd is active for the vma we need per-page fault fidelity to
4765 * maintain the uffd semantics.
4766 */
4767 if (unlikely(userfaultfd_armed(vma)))
4768 goto fallback;
4769
4770 /*
4771 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4772 * for this vma. Then filter out the orders that can't be allocated over
4773 * the faulting address and still be fully contained in the vma.
4774 */
4775 orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4776 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4777 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4778
4779 if (!orders)
4780 goto fallback;
4781
4782 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4783 if (!pte)
4784 return ERR_PTR(-EAGAIN);
4785
4786 /*
4787 * Find the highest order where the aligned range is completely
4788 * pte_none(). Note that all remaining orders will be completely
4789 * pte_none().
4790 */
4791 order = highest_order(orders);
4792 while (orders) {
4793 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4794 if (pte_range_none(pte + pte_index(addr), 1 << order))
4795 break;
4796 order = next_order(&orders, order);
4797 }
4798
4799 pte_unmap(pte);
4800
4801 if (!orders)
4802 goto fallback;
4803
4804 /* Try allocating the highest of the remaining orders. */
4805 gfp = vma_thp_gfp_mask(vma);
4806 while (orders) {
4807 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4808 folio = vma_alloc_folio(gfp, order, vma, addr);
4809 if (folio) {
4810 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4811 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
4812 folio_put(folio);
4813 goto next;
4814 }
4815 folio_throttle_swaprate(folio, gfp);
4816 /*
4817 * When a folio is not zeroed during allocation
4818 * (__GFP_ZERO not used) or user folios require special
4819 * handling, folio_zero_user() is used to make sure
4820 * that the page corresponding to the faulting address
4821 * will be hot in the cache after zeroing.
4822 */
4823 if (user_alloc_needs_zeroing())
4824 folio_zero_user(folio, vmf->address);
4825 return folio;
4826 }
4827 next:
4828 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
4829 order = next_order(&orders, order);
4830 }
4831
4832 fallback:
4833 #endif
4834 return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4835 }
4836
4837 /*
4838 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4839 * but allow concurrent faults), and pte mapped but not yet locked.
4840 * We return with mmap_lock still held, but pte unmapped and unlocked.
4841 */
do_anonymous_page(struct vm_fault * vmf)4842 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4843 {
4844 struct vm_area_struct *vma = vmf->vma;
4845 unsigned long addr = vmf->address;
4846 struct folio *folio;
4847 vm_fault_t ret = 0;
4848 int nr_pages = 1;
4849 pte_t entry;
4850
4851 /* File mapping without ->vm_ops ? */
4852 if (vma->vm_flags & VM_SHARED)
4853 return VM_FAULT_SIGBUS;
4854
4855 /*
4856 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4857 * be distinguished from a transient failure of pte_offset_map().
4858 */
4859 if (pte_alloc(vma->vm_mm, vmf->pmd))
4860 return VM_FAULT_OOM;
4861
4862 /* Use the zero-page for reads */
4863 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4864 !mm_forbids_zeropage(vma->vm_mm)) {
4865 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4866 vma->vm_page_prot));
4867 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4868 vmf->address, &vmf->ptl);
4869 if (!vmf->pte)
4870 goto unlock;
4871 if (vmf_pte_changed(vmf)) {
4872 update_mmu_tlb(vma, vmf->address, vmf->pte);
4873 goto unlock;
4874 }
4875 ret = check_stable_address_space(vma->vm_mm);
4876 if (ret)
4877 goto unlock;
4878 /* Deliver the page fault to userland, check inside PT lock */
4879 if (userfaultfd_missing(vma)) {
4880 pte_unmap_unlock(vmf->pte, vmf->ptl);
4881 return handle_userfault(vmf, VM_UFFD_MISSING);
4882 }
4883 goto setpte;
4884 }
4885
4886 /* Allocate our own private page. */
4887 ret = vmf_anon_prepare(vmf);
4888 if (ret)
4889 return ret;
4890 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4891 folio = alloc_anon_folio(vmf);
4892 if (IS_ERR(folio))
4893 return 0;
4894 if (!folio)
4895 goto oom;
4896
4897 nr_pages = folio_nr_pages(folio);
4898 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4899
4900 /*
4901 * The memory barrier inside __folio_mark_uptodate makes sure that
4902 * preceding stores to the page contents become visible before
4903 * the set_pte_at() write.
4904 */
4905 __folio_mark_uptodate(folio);
4906
4907 entry = mk_pte(&folio->page, vma->vm_page_prot);
4908 entry = pte_sw_mkyoung(entry);
4909 if (vma->vm_flags & VM_WRITE)
4910 entry = pte_mkwrite(pte_mkdirty(entry), vma);
4911
4912 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4913 if (!vmf->pte)
4914 goto release;
4915 if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4916 update_mmu_tlb(vma, addr, vmf->pte);
4917 goto release;
4918 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4919 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
4920 goto release;
4921 }
4922
4923 ret = check_stable_address_space(vma->vm_mm);
4924 if (ret)
4925 goto release;
4926
4927 /* Deliver the page fault to userland, check inside PT lock */
4928 if (userfaultfd_missing(vma)) {
4929 pte_unmap_unlock(vmf->pte, vmf->ptl);
4930 folio_put(folio);
4931 return handle_userfault(vmf, VM_UFFD_MISSING);
4932 }
4933
4934 folio_ref_add(folio, nr_pages - 1);
4935 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4936 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
4937 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
4938 folio_add_lru_vma(folio, vma);
4939 setpte:
4940 if (vmf_orig_pte_uffd_wp(vmf))
4941 entry = pte_mkuffd_wp(entry);
4942 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4943
4944 /* No need to invalidate - it was non-present before */
4945 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4946 unlock:
4947 if (vmf->pte)
4948 pte_unmap_unlock(vmf->pte, vmf->ptl);
4949 return ret;
4950 release:
4951 folio_put(folio);
4952 goto unlock;
4953 oom:
4954 return VM_FAULT_OOM;
4955 }
4956
4957 /*
4958 * The mmap_lock must have been held on entry, and may have been
4959 * released depending on flags and vma->vm_ops->fault() return value.
4960 * See filemap_fault() and __lock_page_retry().
4961 */
__do_fault(struct vm_fault * vmf)4962 static vm_fault_t __do_fault(struct vm_fault *vmf)
4963 {
4964 struct vm_area_struct *vma = vmf->vma;
4965 struct folio *folio;
4966 vm_fault_t ret;
4967
4968 /*
4969 * Preallocate pte before we take page_lock because this might lead to
4970 * deadlocks for memcg reclaim which waits for pages under writeback:
4971 * lock_page(A)
4972 * SetPageWriteback(A)
4973 * unlock_page(A)
4974 * lock_page(B)
4975 * lock_page(B)
4976 * pte_alloc_one
4977 * shrink_folio_list
4978 * wait_on_page_writeback(A)
4979 * SetPageWriteback(B)
4980 * unlock_page(B)
4981 * # flush A, B to clear the writeback
4982 */
4983 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4984 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4985 if (!vmf->prealloc_pte)
4986 return VM_FAULT_OOM;
4987 }
4988
4989 ret = vma->vm_ops->fault(vmf);
4990 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4991 VM_FAULT_DONE_COW)))
4992 return ret;
4993
4994 folio = page_folio(vmf->page);
4995 if (unlikely(PageHWPoison(vmf->page))) {
4996 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4997 if (ret & VM_FAULT_LOCKED) {
4998 if (page_mapped(vmf->page))
4999 unmap_mapping_folio(folio);
5000 /* Retry if a clean folio was removed from the cache. */
5001 if (mapping_evict_folio(folio->mapping, folio))
5002 poisonret = VM_FAULT_NOPAGE;
5003 folio_unlock(folio);
5004 }
5005 folio_put(folio);
5006 vmf->page = NULL;
5007 return poisonret;
5008 }
5009
5010 if (unlikely(!(ret & VM_FAULT_LOCKED)))
5011 folio_lock(folio);
5012 else
5013 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
5014
5015 return ret;
5016 }
5017
5018 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
deposit_prealloc_pte(struct vm_fault * vmf)5019 static void deposit_prealloc_pte(struct vm_fault *vmf)
5020 {
5021 struct vm_area_struct *vma = vmf->vma;
5022
5023 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
5024 /*
5025 * We are going to consume the prealloc table,
5026 * count that as nr_ptes.
5027 */
5028 mm_inc_nr_ptes(vma->vm_mm);
5029 vmf->prealloc_pte = NULL;
5030 }
5031
do_set_pmd(struct vm_fault * vmf,struct page * page)5032 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
5033 {
5034 struct folio *folio = page_folio(page);
5035 struct vm_area_struct *vma = vmf->vma;
5036 bool write = vmf->flags & FAULT_FLAG_WRITE;
5037 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
5038 pmd_t entry;
5039 vm_fault_t ret = VM_FAULT_FALLBACK;
5040
5041 /*
5042 * It is too late to allocate a small folio, we already have a large
5043 * folio in the pagecache: especially s390 KVM cannot tolerate any
5044 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
5045 * PMD mappings if THPs are disabled.
5046 */
5047 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags))
5048 return ret;
5049
5050 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
5051 return ret;
5052
5053 if (folio_order(folio) != HPAGE_PMD_ORDER)
5054 return ret;
5055 page = &folio->page;
5056
5057 /*
5058 * Just backoff if any subpage of a THP is corrupted otherwise
5059 * the corrupted page may mapped by PMD silently to escape the
5060 * check. This kind of THP just can be PTE mapped. Access to
5061 * the corrupted subpage should trigger SIGBUS as expected.
5062 */
5063 if (unlikely(folio_test_has_hwpoisoned(folio)))
5064 return ret;
5065
5066 /*
5067 * Archs like ppc64 need additional space to store information
5068 * related to pte entry. Use the preallocated table for that.
5069 */
5070 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
5071 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
5072 if (!vmf->prealloc_pte)
5073 return VM_FAULT_OOM;
5074 }
5075
5076 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
5077 if (unlikely(!pmd_none(*vmf->pmd)))
5078 goto out;
5079
5080 flush_icache_pages(vma, page, HPAGE_PMD_NR);
5081
5082 entry = mk_huge_pmd(page, vma->vm_page_prot);
5083 if (write)
5084 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
5085
5086 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
5087 folio_add_file_rmap_pmd(folio, page, vma);
5088
5089 /*
5090 * deposit and withdraw with pmd lock held
5091 */
5092 if (arch_needs_pgtable_deposit())
5093 deposit_prealloc_pte(vmf);
5094
5095 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
5096
5097 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
5098
5099 /* fault is handled */
5100 ret = 0;
5101 count_vm_event(THP_FILE_MAPPED);
5102 out:
5103 spin_unlock(vmf->ptl);
5104 return ret;
5105 }
5106 #else
do_set_pmd(struct vm_fault * vmf,struct page * page)5107 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
5108 {
5109 return VM_FAULT_FALLBACK;
5110 }
5111 #endif
5112
5113 /**
5114 * set_pte_range - Set a range of PTEs to point to pages in a folio.
5115 * @vmf: Fault decription.
5116 * @folio: The folio that contains @page.
5117 * @page: The first page to create a PTE for.
5118 * @nr: The number of PTEs to create.
5119 * @addr: The first address to create a PTE for.
5120 */
set_pte_range(struct vm_fault * vmf,struct folio * folio,struct page * page,unsigned int nr,unsigned long addr)5121 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
5122 struct page *page, unsigned int nr, unsigned long addr)
5123 {
5124 struct vm_area_struct *vma = vmf->vma;
5125 bool write = vmf->flags & FAULT_FLAG_WRITE;
5126 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
5127 pte_t entry;
5128
5129 flush_icache_pages(vma, page, nr);
5130 entry = mk_pte(page, vma->vm_page_prot);
5131
5132 if (prefault && arch_wants_old_prefaulted_pte())
5133 entry = pte_mkold(entry);
5134 else
5135 entry = pte_sw_mkyoung(entry);
5136
5137 if (write)
5138 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
5139 if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
5140 entry = pte_mkuffd_wp(entry);
5141 /* copy-on-write page */
5142 if (write && !(vma->vm_flags & VM_SHARED)) {
5143 VM_BUG_ON_FOLIO(nr != 1, folio);
5144 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5145 folio_add_lru_vma(folio, vma);
5146 } else {
5147 folio_add_file_rmap_ptes(folio, page, nr, vma);
5148 }
5149 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
5150
5151 /* no need to invalidate: a not-present page won't be cached */
5152 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
5153 }
5154
vmf_pte_changed(struct vm_fault * vmf)5155 static bool vmf_pte_changed(struct vm_fault *vmf)
5156 {
5157 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
5158 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
5159
5160 return !pte_none(ptep_get(vmf->pte));
5161 }
5162
5163 /**
5164 * finish_fault - finish page fault once we have prepared the page to fault
5165 *
5166 * @vmf: structure describing the fault
5167 *
5168 * This function handles all that is needed to finish a page fault once the
5169 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
5170 * given page, adds reverse page mapping, handles memcg charges and LRU
5171 * addition.
5172 *
5173 * The function expects the page to be locked and on success it consumes a
5174 * reference of a page being mapped (for the PTE which maps it).
5175 *
5176 * Return: %0 on success, %VM_FAULT_ code in case of error.
5177 */
finish_fault(struct vm_fault * vmf)5178 vm_fault_t finish_fault(struct vm_fault *vmf)
5179 {
5180 struct vm_area_struct *vma = vmf->vma;
5181 struct page *page;
5182 struct folio *folio;
5183 vm_fault_t ret;
5184 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
5185 !(vma->vm_flags & VM_SHARED);
5186 int type, nr_pages;
5187 unsigned long addr;
5188 bool needs_fallback = false;
5189
5190 fallback:
5191 addr = vmf->address;
5192
5193 /* Did we COW the page? */
5194 if (is_cow)
5195 page = vmf->cow_page;
5196 else
5197 page = vmf->page;
5198
5199 /*
5200 * check even for read faults because we might have lost our CoWed
5201 * page
5202 */
5203 if (!(vma->vm_flags & VM_SHARED)) {
5204 ret = check_stable_address_space(vma->vm_mm);
5205 if (ret)
5206 return ret;
5207 }
5208
5209 if (pmd_none(*vmf->pmd)) {
5210 if (PageTransCompound(page)) {
5211 ret = do_set_pmd(vmf, page);
5212 if (ret != VM_FAULT_FALLBACK)
5213 return ret;
5214 }
5215
5216 if (vmf->prealloc_pte)
5217 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
5218 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
5219 return VM_FAULT_OOM;
5220 }
5221
5222 folio = page_folio(page);
5223 nr_pages = folio_nr_pages(folio);
5224
5225 /*
5226 * Using per-page fault to maintain the uffd semantics, and same
5227 * approach also applies to non-anonymous-shmem faults to avoid
5228 * inflating the RSS of the process.
5229 */
5230 if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma)) ||
5231 unlikely(needs_fallback)) {
5232 nr_pages = 1;
5233 } else if (nr_pages > 1) {
5234 pgoff_t idx = folio_page_idx(folio, page);
5235 /* The page offset of vmf->address within the VMA. */
5236 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5237 /* The index of the entry in the pagetable for fault page. */
5238 pgoff_t pte_off = pte_index(vmf->address);
5239
5240 /*
5241 * Fallback to per-page fault in case the folio size in page
5242 * cache beyond the VMA limits and PMD pagetable limits.
5243 */
5244 if (unlikely(vma_off < idx ||
5245 vma_off + (nr_pages - idx) > vma_pages(vma) ||
5246 pte_off < idx ||
5247 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) {
5248 nr_pages = 1;
5249 } else {
5250 /* Now we can set mappings for the whole large folio. */
5251 addr = vmf->address - idx * PAGE_SIZE;
5252 page = &folio->page;
5253 }
5254 }
5255
5256 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5257 addr, &vmf->ptl);
5258 if (!vmf->pte)
5259 return VM_FAULT_NOPAGE;
5260
5261 /* Re-check under ptl */
5262 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
5263 update_mmu_tlb(vma, addr, vmf->pte);
5264 ret = VM_FAULT_NOPAGE;
5265 goto unlock;
5266 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5267 needs_fallback = true;
5268 pte_unmap_unlock(vmf->pte, vmf->ptl);
5269 goto fallback;
5270 }
5271
5272 folio_ref_add(folio, nr_pages - 1);
5273 set_pte_range(vmf, folio, page, nr_pages, addr);
5274 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
5275 add_mm_counter(vma->vm_mm, type, nr_pages);
5276 ret = 0;
5277
5278 unlock:
5279 pte_unmap_unlock(vmf->pte, vmf->ptl);
5280 return ret;
5281 }
5282
5283 static unsigned long fault_around_pages __read_mostly =
5284 65536 >> PAGE_SHIFT;
5285
5286 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)5287 static int fault_around_bytes_get(void *data, u64 *val)
5288 {
5289 *val = fault_around_pages << PAGE_SHIFT;
5290 return 0;
5291 }
5292
5293 /*
5294 * fault_around_bytes must be rounded down to the nearest page order as it's
5295 * what do_fault_around() expects to see.
5296 */
fault_around_bytes_set(void * data,u64 val)5297 static int fault_around_bytes_set(void *data, u64 val)
5298 {
5299 if (val / PAGE_SIZE > PTRS_PER_PTE)
5300 return -EINVAL;
5301
5302 /*
5303 * The minimum value is 1 page, however this results in no fault-around
5304 * at all. See should_fault_around().
5305 */
5306 val = max(val, PAGE_SIZE);
5307 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
5308
5309 return 0;
5310 }
5311 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
5312 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
5313
fault_around_debugfs(void)5314 static int __init fault_around_debugfs(void)
5315 {
5316 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
5317 &fault_around_bytes_fops);
5318 return 0;
5319 }
5320 late_initcall(fault_around_debugfs);
5321 #endif
5322
5323 /*
5324 * do_fault_around() tries to map few pages around the fault address. The hope
5325 * is that the pages will be needed soon and this will lower the number of
5326 * faults to handle.
5327 *
5328 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
5329 * not ready to be mapped: not up-to-date, locked, etc.
5330 *
5331 * This function doesn't cross VMA or page table boundaries, in order to call
5332 * map_pages() and acquire a PTE lock only once.
5333 *
5334 * fault_around_pages defines how many pages we'll try to map.
5335 * do_fault_around() expects it to be set to a power of two less than or equal
5336 * to PTRS_PER_PTE.
5337 *
5338 * The virtual address of the area that we map is naturally aligned to
5339 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
5340 * (and therefore to page order). This way it's easier to guarantee
5341 * that we don't cross page table boundaries.
5342 */
do_fault_around(struct vm_fault * vmf)5343 static vm_fault_t do_fault_around(struct vm_fault *vmf)
5344 {
5345 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
5346 pgoff_t pte_off = pte_index(vmf->address);
5347 /* The page offset of vmf->address within the VMA. */
5348 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5349 pgoff_t from_pte, to_pte;
5350 vm_fault_t ret;
5351
5352 /* The PTE offset of the start address, clamped to the VMA. */
5353 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
5354 pte_off - min(pte_off, vma_off));
5355
5356 /* The PTE offset of the end address, clamped to the VMA and PTE. */
5357 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
5358 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
5359
5360 if (pmd_none(*vmf->pmd)) {
5361 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
5362 if (!vmf->prealloc_pte)
5363 return VM_FAULT_OOM;
5364 }
5365
5366 rcu_read_lock();
5367 ret = vmf->vma->vm_ops->map_pages(vmf,
5368 vmf->pgoff + from_pte - pte_off,
5369 vmf->pgoff + to_pte - pte_off);
5370 rcu_read_unlock();
5371
5372 return ret;
5373 }
5374
5375 /* Return true if we should do read fault-around, false otherwise */
should_fault_around(struct vm_fault * vmf)5376 static inline bool should_fault_around(struct vm_fault *vmf)
5377 {
5378 /* No ->map_pages? No way to fault around... */
5379 if (!vmf->vma->vm_ops->map_pages)
5380 return false;
5381
5382 if (uffd_disable_fault_around(vmf->vma))
5383 return false;
5384
5385 /* A single page implies no faulting 'around' at all. */
5386 return fault_around_pages > 1;
5387 }
5388
do_read_fault(struct vm_fault * vmf)5389 static vm_fault_t do_read_fault(struct vm_fault *vmf)
5390 {
5391 vm_fault_t ret = 0;
5392 struct folio *folio;
5393
5394 /*
5395 * Let's call ->map_pages() first and use ->fault() as fallback
5396 * if page by the offset is not ready to be mapped (cold cache or
5397 * something).
5398 */
5399 if (should_fault_around(vmf)) {
5400 ret = do_fault_around(vmf);
5401 if (ret)
5402 return ret;
5403 }
5404
5405 ret = vmf_can_call_fault(vmf);
5406 if (ret)
5407 return ret;
5408
5409 ret = __do_fault(vmf);
5410 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5411 return ret;
5412
5413 ret |= finish_fault(vmf);
5414 folio = page_folio(vmf->page);
5415 folio_unlock(folio);
5416 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5417 folio_put(folio);
5418 return ret;
5419 }
5420
do_cow_fault(struct vm_fault * vmf)5421 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
5422 {
5423 struct vm_area_struct *vma = vmf->vma;
5424 struct folio *folio;
5425 vm_fault_t ret;
5426
5427 ret = vmf_can_call_fault(vmf);
5428 if (!ret)
5429 ret = vmf_anon_prepare(vmf);
5430 if (ret)
5431 return ret;
5432
5433 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
5434 if (!folio)
5435 return VM_FAULT_OOM;
5436
5437 vmf->cow_page = &folio->page;
5438
5439 ret = __do_fault(vmf);
5440 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5441 goto uncharge_out;
5442 if (ret & VM_FAULT_DONE_COW)
5443 return ret;
5444
5445 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) {
5446 ret = VM_FAULT_HWPOISON;
5447 goto unlock;
5448 }
5449 __folio_mark_uptodate(folio);
5450
5451 ret |= finish_fault(vmf);
5452 unlock:
5453 unlock_page(vmf->page);
5454 put_page(vmf->page);
5455 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5456 goto uncharge_out;
5457 return ret;
5458 uncharge_out:
5459 folio_put(folio);
5460 return ret;
5461 }
5462
do_shared_fault(struct vm_fault * vmf)5463 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
5464 {
5465 struct vm_area_struct *vma = vmf->vma;
5466 vm_fault_t ret, tmp;
5467 struct folio *folio;
5468
5469 ret = vmf_can_call_fault(vmf);
5470 if (ret)
5471 return ret;
5472
5473 ret = __do_fault(vmf);
5474 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5475 return ret;
5476
5477 folio = page_folio(vmf->page);
5478
5479 /*
5480 * Check if the backing address space wants to know that the page is
5481 * about to become writable
5482 */
5483 if (vma->vm_ops->page_mkwrite) {
5484 folio_unlock(folio);
5485 tmp = do_page_mkwrite(vmf, folio);
5486 if (unlikely(!tmp ||
5487 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5488 folio_put(folio);
5489 return tmp;
5490 }
5491 }
5492
5493 ret |= finish_fault(vmf);
5494 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5495 VM_FAULT_RETRY))) {
5496 folio_unlock(folio);
5497 folio_put(folio);
5498 return ret;
5499 }
5500
5501 ret |= fault_dirty_shared_page(vmf);
5502 return ret;
5503 }
5504
5505 /*
5506 * We enter with non-exclusive mmap_lock (to exclude vma changes,
5507 * but allow concurrent faults).
5508 * The mmap_lock may have been released depending on flags and our
5509 * return value. See filemap_fault() and __folio_lock_or_retry().
5510 * If mmap_lock is released, vma may become invalid (for example
5511 * by other thread calling munmap()).
5512 */
do_fault(struct vm_fault * vmf)5513 static vm_fault_t do_fault(struct vm_fault *vmf)
5514 {
5515 struct vm_area_struct *vma = vmf->vma;
5516 struct mm_struct *vm_mm = vma->vm_mm;
5517 vm_fault_t ret;
5518
5519 /*
5520 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5521 */
5522 if (!vma->vm_ops->fault) {
5523 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5524 vmf->address, &vmf->ptl);
5525 if (unlikely(!vmf->pte))
5526 ret = VM_FAULT_SIGBUS;
5527 else {
5528 /*
5529 * Make sure this is not a temporary clearing of pte
5530 * by holding ptl and checking again. A R/M/W update
5531 * of pte involves: take ptl, clearing the pte so that
5532 * we don't have concurrent modification by hardware
5533 * followed by an update.
5534 */
5535 if (unlikely(pte_none(ptep_get(vmf->pte))))
5536 ret = VM_FAULT_SIGBUS;
5537 else
5538 ret = VM_FAULT_NOPAGE;
5539
5540 pte_unmap_unlock(vmf->pte, vmf->ptl);
5541 }
5542 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
5543 ret = do_read_fault(vmf);
5544 else if (!(vma->vm_flags & VM_SHARED))
5545 ret = do_cow_fault(vmf);
5546 else
5547 ret = do_shared_fault(vmf);
5548
5549 /* preallocated pagetable is unused: free it */
5550 if (vmf->prealloc_pte) {
5551 pte_free(vm_mm, vmf->prealloc_pte);
5552 vmf->prealloc_pte = NULL;
5553 }
5554 return ret;
5555 }
5556
numa_migrate_check(struct folio * folio,struct vm_fault * vmf,unsigned long addr,int * flags,bool writable,int * last_cpupid)5557 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
5558 unsigned long addr, int *flags,
5559 bool writable, int *last_cpupid)
5560 {
5561 struct vm_area_struct *vma = vmf->vma;
5562
5563 /*
5564 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5565 * much anyway since they can be in shared cache state. This misses
5566 * the case where a mapping is writable but the process never writes
5567 * to it but pte_write gets cleared during protection updates and
5568 * pte_dirty has unpredictable behaviour between PTE scan updates,
5569 * background writeback, dirty balancing and application behaviour.
5570 */
5571 if (!writable)
5572 *flags |= TNF_NO_GROUP;
5573
5574 /*
5575 * Flag if the folio is shared between multiple address spaces. This
5576 * is later used when determining whether to group tasks together
5577 */
5578 if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5579 *flags |= TNF_SHARED;
5580 /*
5581 * For memory tiering mode, cpupid of slow memory page is used
5582 * to record page access time. So use default value.
5583 */
5584 if (folio_use_access_time(folio))
5585 *last_cpupid = (-1 & LAST_CPUPID_MASK);
5586 else
5587 *last_cpupid = folio_last_cpupid(folio);
5588
5589 /* Record the current PID acceesing VMA */
5590 vma_set_access_pid_bit(vma);
5591
5592 count_vm_numa_event(NUMA_HINT_FAULTS);
5593 #ifdef CONFIG_NUMA_BALANCING
5594 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1);
5595 #endif
5596 if (folio_nid(folio) == numa_node_id()) {
5597 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5598 *flags |= TNF_FAULT_LOCAL;
5599 }
5600
5601 return mpol_misplaced(folio, vmf, addr);
5602 }
5603
numa_rebuild_single_mapping(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long fault_addr,pte_t * fault_pte,bool writable)5604 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5605 unsigned long fault_addr, pte_t *fault_pte,
5606 bool writable)
5607 {
5608 pte_t pte, old_pte;
5609
5610 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5611 pte = pte_modify(old_pte, vma->vm_page_prot);
5612 pte = pte_mkyoung(pte);
5613 if (writable)
5614 pte = pte_mkwrite(pte, vma);
5615 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5616 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5617 }
5618
numa_rebuild_large_mapping(struct vm_fault * vmf,struct vm_area_struct * vma,struct folio * folio,pte_t fault_pte,bool ignore_writable,bool pte_write_upgrade)5619 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5620 struct folio *folio, pte_t fault_pte,
5621 bool ignore_writable, bool pte_write_upgrade)
5622 {
5623 int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5624 unsigned long start, end, addr = vmf->address;
5625 unsigned long addr_start = addr - (nr << PAGE_SHIFT);
5626 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
5627 pte_t *start_ptep;
5628
5629 /* Stay within the VMA and within the page table. */
5630 start = max3(addr_start, pt_start, vma->vm_start);
5631 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
5632 vma->vm_end);
5633 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
5634
5635 /* Restore all PTEs' mapping of the large folio */
5636 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5637 pte_t ptent = ptep_get(start_ptep);
5638 bool writable = false;
5639
5640 if (!pte_present(ptent) || !pte_protnone(ptent))
5641 continue;
5642
5643 if (pfn_folio(pte_pfn(ptent)) != folio)
5644 continue;
5645
5646 if (!ignore_writable) {
5647 ptent = pte_modify(ptent, vma->vm_page_prot);
5648 writable = pte_write(ptent);
5649 if (!writable && pte_write_upgrade &&
5650 can_change_pte_writable(vma, addr, ptent))
5651 writable = true;
5652 }
5653
5654 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
5655 }
5656 }
5657
do_numa_page(struct vm_fault * vmf)5658 static vm_fault_t do_numa_page(struct vm_fault *vmf)
5659 {
5660 struct vm_area_struct *vma = vmf->vma;
5661 struct folio *folio = NULL;
5662 int nid = NUMA_NO_NODE;
5663 bool writable = false, ignore_writable = false;
5664 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
5665 int last_cpupid;
5666 int target_nid;
5667 pte_t pte, old_pte;
5668 int flags = 0, nr_pages;
5669
5670 /*
5671 * The pte cannot be used safely until we verify, while holding the page
5672 * table lock, that its contents have not changed during fault handling.
5673 */
5674 spin_lock(vmf->ptl);
5675 /* Read the live PTE from the page tables: */
5676 old_pte = ptep_get(vmf->pte);
5677
5678 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5679 pte_unmap_unlock(vmf->pte, vmf->ptl);
5680 return 0;
5681 }
5682
5683 pte = pte_modify(old_pte, vma->vm_page_prot);
5684
5685 /*
5686 * Detect now whether the PTE could be writable; this information
5687 * is only valid while holding the PT lock.
5688 */
5689 writable = pte_write(pte);
5690 if (!writable && pte_write_upgrade &&
5691 can_change_pte_writable(vma, vmf->address, pte))
5692 writable = true;
5693
5694 folio = vm_normal_folio(vma, vmf->address, pte);
5695 if (!folio || folio_is_zone_device(folio))
5696 goto out_map;
5697
5698 nid = folio_nid(folio);
5699 nr_pages = folio_nr_pages(folio);
5700
5701 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags,
5702 writable, &last_cpupid);
5703 if (target_nid == NUMA_NO_NODE)
5704 goto out_map;
5705 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
5706 flags |= TNF_MIGRATE_FAIL;
5707 goto out_map;
5708 }
5709 /* The folio is isolated and isolation code holds a folio reference. */
5710 pte_unmap_unlock(vmf->pte, vmf->ptl);
5711 writable = false;
5712 ignore_writable = true;
5713
5714 /* Migrate to the requested node */
5715 if (!migrate_misplaced_folio(folio, target_nid)) {
5716 nid = target_nid;
5717 flags |= TNF_MIGRATED;
5718 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5719 return 0;
5720 }
5721
5722 flags |= TNF_MIGRATE_FAIL;
5723 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5724 vmf->address, &vmf->ptl);
5725 if (unlikely(!vmf->pte))
5726 return 0;
5727 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5728 pte_unmap_unlock(vmf->pte, vmf->ptl);
5729 return 0;
5730 }
5731 out_map:
5732 /*
5733 * Make it present again, depending on how arch implements
5734 * non-accessible ptes, some can allow access by kernel mode.
5735 */
5736 if (folio && folio_test_large(folio))
5737 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
5738 pte_write_upgrade);
5739 else
5740 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
5741 writable);
5742 pte_unmap_unlock(vmf->pte, vmf->ptl);
5743
5744 if (nid != NUMA_NO_NODE)
5745 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5746 return 0;
5747 }
5748
create_huge_pmd(struct vm_fault * vmf)5749 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5750 {
5751 struct vm_area_struct *vma = vmf->vma;
5752 if (vma_is_anonymous(vma))
5753 return do_huge_pmd_anonymous_page(vmf);
5754 if (vma->vm_ops->huge_fault)
5755 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5756 return VM_FAULT_FALLBACK;
5757 }
5758
5759 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf)5760 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5761 {
5762 struct vm_area_struct *vma = vmf->vma;
5763 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5764 vm_fault_t ret;
5765
5766 if (vma_is_anonymous(vma)) {
5767 if (likely(!unshare) &&
5768 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5769 if (userfaultfd_wp_async(vmf->vma))
5770 goto split;
5771 return handle_userfault(vmf, VM_UFFD_WP);
5772 }
5773 return do_huge_pmd_wp_page(vmf);
5774 }
5775
5776 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5777 if (vma->vm_ops->huge_fault) {
5778 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5779 if (!(ret & VM_FAULT_FALLBACK))
5780 return ret;
5781 }
5782 }
5783
5784 split:
5785 /* COW or write-notify handled on pte level: split pmd. */
5786 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5787
5788 return VM_FAULT_FALLBACK;
5789 }
5790
create_huge_pud(struct vm_fault * vmf)5791 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5792 {
5793 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5794 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5795 struct vm_area_struct *vma = vmf->vma;
5796 /* No support for anonymous transparent PUD pages yet */
5797 if (vma_is_anonymous(vma))
5798 return VM_FAULT_FALLBACK;
5799 if (vma->vm_ops->huge_fault)
5800 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5801 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5802 return VM_FAULT_FALLBACK;
5803 }
5804
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)5805 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5806 {
5807 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5808 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5809 struct vm_area_struct *vma = vmf->vma;
5810 vm_fault_t ret;
5811
5812 /* No support for anonymous transparent PUD pages yet */
5813 if (vma_is_anonymous(vma))
5814 goto split;
5815 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5816 if (vma->vm_ops->huge_fault) {
5817 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5818 if (!(ret & VM_FAULT_FALLBACK))
5819 return ret;
5820 }
5821 }
5822 split:
5823 /* COW or write-notify not handled on PUD level: split pud.*/
5824 __split_huge_pud(vma, vmf->pud, vmf->address);
5825 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5826 return VM_FAULT_FALLBACK;
5827 }
5828
5829 /*
5830 * These routines also need to handle stuff like marking pages dirty
5831 * and/or accessed for architectures that don't do it in hardware (most
5832 * RISC architectures). The early dirtying is also good on the i386.
5833 *
5834 * There is also a hook called "update_mmu_cache()" that architectures
5835 * with external mmu caches can use to update those (ie the Sparc or
5836 * PowerPC hashed page tables that act as extended TLBs).
5837 *
5838 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5839 * concurrent faults).
5840 *
5841 * The mmap_lock may have been released depending on flags and our return value.
5842 * See filemap_fault() and __folio_lock_or_retry().
5843 */
handle_pte_fault(struct vm_fault * vmf)5844 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5845 {
5846 pte_t entry;
5847
5848 if (unlikely(pmd_none(*vmf->pmd))) {
5849 /*
5850 * Leave __pte_alloc() until later: because vm_ops->fault may
5851 * want to allocate huge page, and if we expose page table
5852 * for an instant, it will be difficult to retract from
5853 * concurrent faults and from rmap lookups.
5854 */
5855 vmf->pte = NULL;
5856 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5857 } else {
5858 pmd_t dummy_pmdval;
5859
5860 /*
5861 * A regular pmd is established and it can't morph into a huge
5862 * pmd by anon khugepaged, since that takes mmap_lock in write
5863 * mode; but shmem or file collapse to THP could still morph
5864 * it into a huge pmd: just retry later if so.
5865 *
5866 * Use the maywrite version to indicate that vmf->pte may be
5867 * modified, but since we will use pte_same() to detect the
5868 * change of the !pte_none() entry, there is no need to recheck
5869 * the pmdval. Here we chooes to pass a dummy variable instead
5870 * of NULL, which helps new user think about why this place is
5871 * special.
5872 */
5873 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd,
5874 vmf->address, &dummy_pmdval,
5875 &vmf->ptl);
5876 if (unlikely(!vmf->pte))
5877 return 0;
5878 vmf->orig_pte = ptep_get_lockless(vmf->pte);
5879 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5880
5881 if (pte_none(vmf->orig_pte)) {
5882 pte_unmap(vmf->pte);
5883 vmf->pte = NULL;
5884 }
5885 }
5886
5887 if (!vmf->pte)
5888 return do_pte_missing(vmf);
5889
5890 if (!pte_present(vmf->orig_pte))
5891 return do_swap_page(vmf);
5892
5893 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5894 return do_numa_page(vmf);
5895
5896 spin_lock(vmf->ptl);
5897 entry = vmf->orig_pte;
5898 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5899 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5900 goto unlock;
5901 }
5902 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5903 if (!pte_write(entry))
5904 return do_wp_page(vmf);
5905 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5906 entry = pte_mkdirty(entry);
5907 }
5908 entry = pte_mkyoung(entry);
5909 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5910 vmf->flags & FAULT_FLAG_WRITE)) {
5911 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5912 vmf->pte, 1);
5913 } else {
5914 /* Skip spurious TLB flush for retried page fault */
5915 if (vmf->flags & FAULT_FLAG_TRIED)
5916 goto unlock;
5917 /*
5918 * This is needed only for protection faults but the arch code
5919 * is not yet telling us if this is a protection fault or not.
5920 * This still avoids useless tlb flushes for .text page faults
5921 * with threads.
5922 */
5923 if (vmf->flags & FAULT_FLAG_WRITE)
5924 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5925 vmf->pte);
5926 }
5927 unlock:
5928 pte_unmap_unlock(vmf->pte, vmf->ptl);
5929 return 0;
5930 }
5931
5932 /*
5933 * On entry, we hold either the VMA lock or the mmap_lock
5934 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5935 * the result, the mmap_lock is not held on exit. See filemap_fault()
5936 * and __folio_lock_or_retry().
5937 */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)5938 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5939 unsigned long address, unsigned int flags)
5940 {
5941 struct vm_fault vmf = {
5942 .vma = vma,
5943 .address = address & PAGE_MASK,
5944 .real_address = address,
5945 .flags = flags,
5946 .pgoff = linear_page_index(vma, address),
5947 .gfp_mask = __get_fault_gfp_mask(vma),
5948 };
5949 struct mm_struct *mm = vma->vm_mm;
5950 unsigned long vm_flags = vma->vm_flags;
5951 pgd_t *pgd;
5952 p4d_t *p4d;
5953 vm_fault_t ret;
5954
5955 pgd = pgd_offset(mm, address);
5956 p4d = p4d_alloc(mm, pgd, address);
5957 if (!p4d)
5958 return VM_FAULT_OOM;
5959
5960 vmf.pud = pud_alloc(mm, p4d, address);
5961 if (!vmf.pud)
5962 return VM_FAULT_OOM;
5963 retry_pud:
5964 if (pud_none(*vmf.pud) &&
5965 thp_vma_allowable_order(vma, vm_flags,
5966 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) {
5967 ret = create_huge_pud(&vmf);
5968 if (!(ret & VM_FAULT_FALLBACK))
5969 return ret;
5970 } else {
5971 pud_t orig_pud = *vmf.pud;
5972
5973 barrier();
5974 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5975
5976 /*
5977 * TODO once we support anonymous PUDs: NUMA case and
5978 * FAULT_FLAG_UNSHARE handling.
5979 */
5980 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5981 ret = wp_huge_pud(&vmf, orig_pud);
5982 if (!(ret & VM_FAULT_FALLBACK))
5983 return ret;
5984 } else {
5985 huge_pud_set_accessed(&vmf, orig_pud);
5986 return 0;
5987 }
5988 }
5989 }
5990
5991 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5992 if (!vmf.pmd)
5993 return VM_FAULT_OOM;
5994
5995 /* Huge pud page fault raced with pmd_alloc? */
5996 if (pud_trans_unstable(vmf.pud))
5997 goto retry_pud;
5998
5999 if (pmd_none(*vmf.pmd) &&
6000 thp_vma_allowable_order(vma, vm_flags,
6001 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) {
6002 ret = create_huge_pmd(&vmf);
6003 if (!(ret & VM_FAULT_FALLBACK))
6004 return ret;
6005 } else {
6006 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
6007
6008 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
6009 VM_BUG_ON(thp_migration_supported() &&
6010 !is_pmd_migration_entry(vmf.orig_pmd));
6011 if (is_pmd_migration_entry(vmf.orig_pmd))
6012 pmd_migration_entry_wait(mm, vmf.pmd);
6013 return 0;
6014 }
6015 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
6016 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
6017 return do_huge_pmd_numa_page(&vmf);
6018
6019 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6020 !pmd_write(vmf.orig_pmd)) {
6021 ret = wp_huge_pmd(&vmf);
6022 if (!(ret & VM_FAULT_FALLBACK))
6023 return ret;
6024 } else {
6025 huge_pmd_set_accessed(&vmf);
6026 return 0;
6027 }
6028 }
6029 }
6030
6031 return handle_pte_fault(&vmf);
6032 }
6033
6034 /**
6035 * mm_account_fault - Do page fault accounting
6036 * @mm: mm from which memcg should be extracted. It can be NULL.
6037 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
6038 * of perf event counters, but we'll still do the per-task accounting to
6039 * the task who triggered this page fault.
6040 * @address: the faulted address.
6041 * @flags: the fault flags.
6042 * @ret: the fault retcode.
6043 *
6044 * This will take care of most of the page fault accounting. Meanwhile, it
6045 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
6046 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
6047 * still be in per-arch page fault handlers at the entry of page fault.
6048 */
mm_account_fault(struct mm_struct * mm,struct pt_regs * regs,unsigned long address,unsigned int flags,vm_fault_t ret)6049 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
6050 unsigned long address, unsigned int flags,
6051 vm_fault_t ret)
6052 {
6053 bool major;
6054
6055 /* Incomplete faults will be accounted upon completion. */
6056 if (ret & VM_FAULT_RETRY)
6057 return;
6058
6059 /*
6060 * To preserve the behavior of older kernels, PGFAULT counters record
6061 * both successful and failed faults, as opposed to perf counters,
6062 * which ignore failed cases.
6063 */
6064 count_vm_event(PGFAULT);
6065 count_memcg_event_mm(mm, PGFAULT);
6066
6067 /*
6068 * Do not account for unsuccessful faults (e.g. when the address wasn't
6069 * valid). That includes arch_vma_access_permitted() failing before
6070 * reaching here. So this is not a "this many hardware page faults"
6071 * counter. We should use the hw profiling for that.
6072 */
6073 if (ret & VM_FAULT_ERROR)
6074 return;
6075
6076 /*
6077 * We define the fault as a major fault when the final successful fault
6078 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
6079 * handle it immediately previously).
6080 */
6081 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
6082
6083 if (major)
6084 current->maj_flt++;
6085 else
6086 current->min_flt++;
6087
6088 /*
6089 * If the fault is done for GUP, regs will be NULL. We only do the
6090 * accounting for the per thread fault counters who triggered the
6091 * fault, and we skip the perf event updates.
6092 */
6093 if (!regs)
6094 return;
6095
6096 if (major)
6097 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
6098 else
6099 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
6100 }
6101
6102 #ifdef CONFIG_LRU_GEN
lru_gen_enter_fault(struct vm_area_struct * vma)6103 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6104 {
6105 /* the LRU algorithm only applies to accesses with recency */
6106 current->in_lru_fault = vma_has_recency(vma);
6107 }
6108
lru_gen_exit_fault(void)6109 static void lru_gen_exit_fault(void)
6110 {
6111 current->in_lru_fault = false;
6112 }
6113 #else
lru_gen_enter_fault(struct vm_area_struct * vma)6114 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6115 {
6116 }
6117
lru_gen_exit_fault(void)6118 static void lru_gen_exit_fault(void)
6119 {
6120 }
6121 #endif /* CONFIG_LRU_GEN */
6122
sanitize_fault_flags(struct vm_area_struct * vma,unsigned int * flags)6123 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
6124 unsigned int *flags)
6125 {
6126 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
6127 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
6128 return VM_FAULT_SIGSEGV;
6129 /*
6130 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
6131 * just treat it like an ordinary read-fault otherwise.
6132 */
6133 if (!is_cow_mapping(vma->vm_flags))
6134 *flags &= ~FAULT_FLAG_UNSHARE;
6135 } else if (*flags & FAULT_FLAG_WRITE) {
6136 /* Write faults on read-only mappings are impossible ... */
6137 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
6138 return VM_FAULT_SIGSEGV;
6139 /* ... and FOLL_FORCE only applies to COW mappings. */
6140 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
6141 !is_cow_mapping(vma->vm_flags)))
6142 return VM_FAULT_SIGSEGV;
6143 }
6144 #ifdef CONFIG_PER_VMA_LOCK
6145 /*
6146 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
6147 * the assumption that lock is dropped on VM_FAULT_RETRY.
6148 */
6149 if (WARN_ON_ONCE((*flags &
6150 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
6151 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
6152 return VM_FAULT_SIGSEGV;
6153 #endif
6154
6155 return 0;
6156 }
6157
6158 /*
6159 * By the time we get here, we already hold either the VMA lock or the
6160 * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which).
6161 *
6162 * The mmap_lock may have been released depending on flags and our
6163 * return value. See filemap_fault() and __folio_lock_or_retry().
6164 */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)6165 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
6166 unsigned int flags, struct pt_regs *regs)
6167 {
6168 /* If the fault handler drops the mmap_lock, vma may be freed */
6169 struct mm_struct *mm = vma->vm_mm;
6170 vm_fault_t ret;
6171 bool is_droppable;
6172
6173 __set_current_state(TASK_RUNNING);
6174
6175 ret = sanitize_fault_flags(vma, &flags);
6176 if (ret)
6177 goto out;
6178
6179 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
6180 flags & FAULT_FLAG_INSTRUCTION,
6181 flags & FAULT_FLAG_REMOTE)) {
6182 ret = VM_FAULT_SIGSEGV;
6183 goto out;
6184 }
6185
6186 is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
6187
6188 /*
6189 * Enable the memcg OOM handling for faults triggered in user
6190 * space. Kernel faults are handled more gracefully.
6191 */
6192 if (flags & FAULT_FLAG_USER)
6193 mem_cgroup_enter_user_fault();
6194
6195 lru_gen_enter_fault(vma);
6196
6197 if (unlikely(is_vm_hugetlb_page(vma)))
6198 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
6199 else
6200 ret = __handle_mm_fault(vma, address, flags);
6201
6202 /*
6203 * Warning: It is no longer safe to dereference vma-> after this point,
6204 * because mmap_lock might have been dropped by __handle_mm_fault(), so
6205 * vma might be destroyed from underneath us.
6206 */
6207
6208 lru_gen_exit_fault();
6209
6210 /* If the mapping is droppable, then errors due to OOM aren't fatal. */
6211 if (is_droppable)
6212 ret &= ~VM_FAULT_OOM;
6213
6214 if (flags & FAULT_FLAG_USER) {
6215 mem_cgroup_exit_user_fault();
6216 /*
6217 * The task may have entered a memcg OOM situation but
6218 * if the allocation error was handled gracefully (no
6219 * VM_FAULT_OOM), there is no need to kill anything.
6220 * Just clean up the OOM state peacefully.
6221 */
6222 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
6223 mem_cgroup_oom_synchronize(false);
6224 }
6225 out:
6226 mm_account_fault(mm, regs, address, flags, ret);
6227
6228 return ret;
6229 }
6230 EXPORT_SYMBOL_GPL(handle_mm_fault);
6231
6232 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
6233 #include <linux/extable.h>
6234
get_mmap_lock_carefully(struct mm_struct * mm,struct pt_regs * regs)6235 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6236 {
6237 if (likely(mmap_read_trylock(mm)))
6238 return true;
6239
6240 if (regs && !user_mode(regs)) {
6241 unsigned long ip = exception_ip(regs);
6242 if (!search_exception_tables(ip))
6243 return false;
6244 }
6245
6246 return !mmap_read_lock_killable(mm);
6247 }
6248
mmap_upgrade_trylock(struct mm_struct * mm)6249 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
6250 {
6251 /*
6252 * We don't have this operation yet.
6253 *
6254 * It should be easy enough to do: it's basically a
6255 * atomic_long_try_cmpxchg_acquire()
6256 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
6257 * it also needs the proper lockdep magic etc.
6258 */
6259 return false;
6260 }
6261
upgrade_mmap_lock_carefully(struct mm_struct * mm,struct pt_regs * regs)6262 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6263 {
6264 mmap_read_unlock(mm);
6265 if (regs && !user_mode(regs)) {
6266 unsigned long ip = exception_ip(regs);
6267 if (!search_exception_tables(ip))
6268 return false;
6269 }
6270 return !mmap_write_lock_killable(mm);
6271 }
6272
6273 /*
6274 * Helper for page fault handling.
6275 *
6276 * This is kind of equivalent to "mmap_read_lock()" followed
6277 * by "find_extend_vma()", except it's a lot more careful about
6278 * the locking (and will drop the lock on failure).
6279 *
6280 * For example, if we have a kernel bug that causes a page
6281 * fault, we don't want to just use mmap_read_lock() to get
6282 * the mm lock, because that would deadlock if the bug were
6283 * to happen while we're holding the mm lock for writing.
6284 *
6285 * So this checks the exception tables on kernel faults in
6286 * order to only do this all for instructions that are actually
6287 * expected to fault.
6288 *
6289 * We can also actually take the mm lock for writing if we
6290 * need to extend the vma, which helps the VM layer a lot.
6291 */
lock_mm_and_find_vma(struct mm_struct * mm,unsigned long addr,struct pt_regs * regs)6292 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
6293 unsigned long addr, struct pt_regs *regs)
6294 {
6295 struct vm_area_struct *vma;
6296
6297 if (!get_mmap_lock_carefully(mm, regs))
6298 return NULL;
6299
6300 vma = find_vma(mm, addr);
6301 if (likely(vma && (vma->vm_start <= addr)))
6302 return vma;
6303
6304 /*
6305 * Well, dang. We might still be successful, but only
6306 * if we can extend a vma to do so.
6307 */
6308 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
6309 mmap_read_unlock(mm);
6310 return NULL;
6311 }
6312
6313 /*
6314 * We can try to upgrade the mmap lock atomically,
6315 * in which case we can continue to use the vma
6316 * we already looked up.
6317 *
6318 * Otherwise we'll have to drop the mmap lock and
6319 * re-take it, and also look up the vma again,
6320 * re-checking it.
6321 */
6322 if (!mmap_upgrade_trylock(mm)) {
6323 if (!upgrade_mmap_lock_carefully(mm, regs))
6324 return NULL;
6325
6326 vma = find_vma(mm, addr);
6327 if (!vma)
6328 goto fail;
6329 if (vma->vm_start <= addr)
6330 goto success;
6331 if (!(vma->vm_flags & VM_GROWSDOWN))
6332 goto fail;
6333 }
6334
6335 if (expand_stack_locked(vma, addr))
6336 goto fail;
6337
6338 success:
6339 mmap_write_downgrade(mm);
6340 return vma;
6341
6342 fail:
6343 mmap_write_unlock(mm);
6344 return NULL;
6345 }
6346 #endif
6347
6348 #ifdef CONFIG_PER_VMA_LOCK
6349 /*
6350 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
6351 * stable and not isolated. If the VMA is not found or is being modified the
6352 * function returns NULL.
6353 */
lock_vma_under_rcu(struct mm_struct * mm,unsigned long address)6354 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
6355 unsigned long address)
6356 {
6357 MA_STATE(mas, &mm->mm_mt, address, address);
6358 struct vm_area_struct *vma;
6359
6360 rcu_read_lock();
6361 retry:
6362 vma = mas_walk(&mas);
6363 if (!vma)
6364 goto inval;
6365
6366 if (!vma_start_read(vma))
6367 goto inval;
6368
6369 /* Check if the VMA got isolated after we found it */
6370 if (vma->detached) {
6371 vma_end_read(vma);
6372 count_vm_vma_lock_event(VMA_LOCK_MISS);
6373 /* The area was replaced with another one */
6374 goto retry;
6375 }
6376 /*
6377 * At this point, we have a stable reference to a VMA: The VMA is
6378 * locked and we know it hasn't already been isolated.
6379 * From here on, we can access the VMA without worrying about which
6380 * fields are accessible for RCU readers.
6381 */
6382
6383 /* Check since vm_start/vm_end might change before we lock the VMA */
6384 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6385 goto inval_end_read;
6386
6387 rcu_read_unlock();
6388 return vma;
6389
6390 inval_end_read:
6391 vma_end_read(vma);
6392 inval:
6393 rcu_read_unlock();
6394 count_vm_vma_lock_event(VMA_LOCK_ABORT);
6395 return NULL;
6396 }
6397 #endif /* CONFIG_PER_VMA_LOCK */
6398
6399 #ifndef __PAGETABLE_P4D_FOLDED
6400 /*
6401 * Allocate p4d page table.
6402 * We've already handled the fast-path in-line.
6403 */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)6404 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
6405 {
6406 p4d_t *new = p4d_alloc_one(mm, address);
6407 if (!new)
6408 return -ENOMEM;
6409
6410 spin_lock(&mm->page_table_lock);
6411 if (pgd_present(*pgd)) { /* Another has populated it */
6412 p4d_free(mm, new);
6413 } else {
6414 smp_wmb(); /* See comment in pmd_install() */
6415 pgd_populate(mm, pgd, new);
6416 }
6417 spin_unlock(&mm->page_table_lock);
6418 return 0;
6419 }
6420 #endif /* __PAGETABLE_P4D_FOLDED */
6421
6422 #ifndef __PAGETABLE_PUD_FOLDED
6423 /*
6424 * Allocate page upper directory.
6425 * We've already handled the fast-path in-line.
6426 */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)6427 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
6428 {
6429 pud_t *new = pud_alloc_one(mm, address);
6430 if (!new)
6431 return -ENOMEM;
6432
6433 spin_lock(&mm->page_table_lock);
6434 if (!p4d_present(*p4d)) {
6435 mm_inc_nr_puds(mm);
6436 smp_wmb(); /* See comment in pmd_install() */
6437 p4d_populate(mm, p4d, new);
6438 } else /* Another has populated it */
6439 pud_free(mm, new);
6440 spin_unlock(&mm->page_table_lock);
6441 return 0;
6442 }
6443 #endif /* __PAGETABLE_PUD_FOLDED */
6444
6445 #ifndef __PAGETABLE_PMD_FOLDED
6446 /*
6447 * Allocate page middle directory.
6448 * We've already handled the fast-path in-line.
6449 */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)6450 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
6451 {
6452 spinlock_t *ptl;
6453 pmd_t *new = pmd_alloc_one(mm, address);
6454 if (!new)
6455 return -ENOMEM;
6456
6457 ptl = pud_lock(mm, pud);
6458 if (!pud_present(*pud)) {
6459 mm_inc_nr_pmds(mm);
6460 smp_wmb(); /* See comment in pmd_install() */
6461 pud_populate(mm, pud, new);
6462 } else { /* Another has populated it */
6463 pmd_free(mm, new);
6464 }
6465 spin_unlock(ptl);
6466 return 0;
6467 }
6468 #endif /* __PAGETABLE_PMD_FOLDED */
6469
pfnmap_args_setup(struct follow_pfnmap_args * args,spinlock_t * lock,pte_t * ptep,pgprot_t pgprot,unsigned long pfn_base,unsigned long addr_mask,bool writable,bool special)6470 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args,
6471 spinlock_t *lock, pte_t *ptep,
6472 pgprot_t pgprot, unsigned long pfn_base,
6473 unsigned long addr_mask, bool writable,
6474 bool special)
6475 {
6476 args->lock = lock;
6477 args->ptep = ptep;
6478 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT);
6479 args->pgprot = pgprot;
6480 args->writable = writable;
6481 args->special = special;
6482 }
6483
pfnmap_lockdep_assert(struct vm_area_struct * vma)6484 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma)
6485 {
6486 #ifdef CONFIG_LOCKDEP
6487 struct file *file = vma->vm_file;
6488 struct address_space *mapping = file ? file->f_mapping : NULL;
6489
6490 if (mapping)
6491 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) ||
6492 lockdep_is_held(&vma->vm_mm->mmap_lock));
6493 else
6494 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock));
6495 #endif
6496 }
6497
6498 /**
6499 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address
6500 * @args: Pointer to struct @follow_pfnmap_args
6501 *
6502 * The caller needs to setup args->vma and args->address to point to the
6503 * virtual address as the target of such lookup. On a successful return,
6504 * the results will be put into other output fields.
6505 *
6506 * After the caller finished using the fields, the caller must invoke
6507 * another follow_pfnmap_end() to proper releases the locks and resources
6508 * of such look up request.
6509 *
6510 * During the start() and end() calls, the results in @args will be valid
6511 * as proper locks will be held. After the end() is called, all the fields
6512 * in @follow_pfnmap_args will be invalid to be further accessed. Further
6513 * use of such information after end() may require proper synchronizations
6514 * by the caller with page table updates, otherwise it can create a
6515 * security bug.
6516 *
6517 * If the PTE maps a refcounted page, callers are responsible to protect
6518 * against invalidation with MMU notifiers; otherwise access to the PFN at
6519 * a later point in time can trigger use-after-free.
6520 *
6521 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
6522 * should be taken for read, and the mmap semaphore cannot be released
6523 * before the end() is invoked.
6524 *
6525 * This function must not be used to modify PTE content.
6526 *
6527 * Return: zero on success, negative otherwise.
6528 */
follow_pfnmap_start(struct follow_pfnmap_args * args)6529 int follow_pfnmap_start(struct follow_pfnmap_args *args)
6530 {
6531 struct vm_area_struct *vma = args->vma;
6532 unsigned long address = args->address;
6533 struct mm_struct *mm = vma->vm_mm;
6534 spinlock_t *lock;
6535 pgd_t *pgdp;
6536 p4d_t *p4dp, p4d;
6537 pud_t *pudp, pud;
6538 pmd_t *pmdp, pmd;
6539 pte_t *ptep, pte;
6540
6541 pfnmap_lockdep_assert(vma);
6542
6543 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6544 goto out;
6545
6546 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6547 goto out;
6548 retry:
6549 pgdp = pgd_offset(mm, address);
6550 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
6551 goto out;
6552
6553 p4dp = p4d_offset(pgdp, address);
6554 p4d = READ_ONCE(*p4dp);
6555 if (p4d_none(p4d) || unlikely(p4d_bad(p4d)))
6556 goto out;
6557
6558 pudp = pud_offset(p4dp, address);
6559 pud = READ_ONCE(*pudp);
6560 if (pud_none(pud))
6561 goto out;
6562 if (pud_leaf(pud)) {
6563 lock = pud_lock(mm, pudp);
6564 if (!unlikely(pud_leaf(pud))) {
6565 spin_unlock(lock);
6566 goto retry;
6567 }
6568 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud),
6569 pud_pfn(pud), PUD_MASK, pud_write(pud),
6570 pud_special(pud));
6571 return 0;
6572 }
6573
6574 pmdp = pmd_offset(pudp, address);
6575 pmd = pmdp_get_lockless(pmdp);
6576 if (pmd_leaf(pmd)) {
6577 lock = pmd_lock(mm, pmdp);
6578 if (!unlikely(pmd_leaf(pmd))) {
6579 spin_unlock(lock);
6580 goto retry;
6581 }
6582 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd),
6583 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd),
6584 pmd_special(pmd));
6585 return 0;
6586 }
6587
6588 ptep = pte_offset_map_lock(mm, pmdp, address, &lock);
6589 if (!ptep)
6590 goto out;
6591 pte = ptep_get(ptep);
6592 if (!pte_present(pte))
6593 goto unlock;
6594 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte),
6595 pte_pfn(pte), PAGE_MASK, pte_write(pte),
6596 pte_special(pte));
6597 return 0;
6598 unlock:
6599 pte_unmap_unlock(ptep, lock);
6600 out:
6601 return -EINVAL;
6602 }
6603 EXPORT_SYMBOL_GPL(follow_pfnmap_start);
6604
6605 /**
6606 * follow_pfnmap_end(): End a follow_pfnmap_start() process
6607 * @args: Pointer to struct @follow_pfnmap_args
6608 *
6609 * Must be used in pair of follow_pfnmap_start(). See the start() function
6610 * above for more information.
6611 */
follow_pfnmap_end(struct follow_pfnmap_args * args)6612 void follow_pfnmap_end(struct follow_pfnmap_args *args)
6613 {
6614 if (args->lock)
6615 spin_unlock(args->lock);
6616 if (args->ptep)
6617 pte_unmap(args->ptep);
6618 }
6619 EXPORT_SYMBOL_GPL(follow_pfnmap_end);
6620
6621 #ifdef CONFIG_HAVE_IOREMAP_PROT
6622 /**
6623 * generic_access_phys - generic implementation for iomem mmap access
6624 * @vma: the vma to access
6625 * @addr: userspace address, not relative offset within @vma
6626 * @buf: buffer to read/write
6627 * @len: length of transfer
6628 * @write: set to FOLL_WRITE when writing, otherwise reading
6629 *
6630 * This is a generic implementation for &vm_operations_struct.access for an
6631 * iomem mapping. This callback is used by access_process_vm() when the @vma is
6632 * not page based.
6633 */
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)6634 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6635 void *buf, int len, int write)
6636 {
6637 resource_size_t phys_addr;
6638 unsigned long prot = 0;
6639 void __iomem *maddr;
6640 int offset = offset_in_page(addr);
6641 int ret = -EINVAL;
6642 bool writable;
6643 struct follow_pfnmap_args args = { .vma = vma, .address = addr };
6644
6645 retry:
6646 if (follow_pfnmap_start(&args))
6647 return -EINVAL;
6648 prot = pgprot_val(args.pgprot);
6649 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT;
6650 writable = args.writable;
6651 follow_pfnmap_end(&args);
6652
6653 if ((write & FOLL_WRITE) && !writable)
6654 return -EINVAL;
6655
6656 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6657 if (!maddr)
6658 return -ENOMEM;
6659
6660 if (follow_pfnmap_start(&args))
6661 goto out_unmap;
6662
6663 if ((prot != pgprot_val(args.pgprot)) ||
6664 (phys_addr != (args.pfn << PAGE_SHIFT)) ||
6665 (writable != args.writable)) {
6666 follow_pfnmap_end(&args);
6667 iounmap(maddr);
6668 goto retry;
6669 }
6670
6671 if (write)
6672 memcpy_toio(maddr + offset, buf, len);
6673 else
6674 memcpy_fromio(buf, maddr + offset, len);
6675 ret = len;
6676 follow_pfnmap_end(&args);
6677 out_unmap:
6678 iounmap(maddr);
6679
6680 return ret;
6681 }
6682 EXPORT_SYMBOL_GPL(generic_access_phys);
6683 #endif
6684
6685 /*
6686 * Access another process' address space as given in mm.
6687 */
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)6688 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6689 void *buf, int len, unsigned int gup_flags)
6690 {
6691 void *old_buf = buf;
6692 int write = gup_flags & FOLL_WRITE;
6693
6694 if (mmap_read_lock_killable(mm))
6695 return 0;
6696
6697 /* Untag the address before looking up the VMA */
6698 addr = untagged_addr_remote(mm, addr);
6699
6700 /* Avoid triggering the temporary warning in __get_user_pages */
6701 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6702 return 0;
6703
6704 /* ignore errors, just check how much was successfully transferred */
6705 while (len) {
6706 int bytes, offset;
6707 void *maddr;
6708 struct vm_area_struct *vma = NULL;
6709 struct page *page = get_user_page_vma_remote(mm, addr,
6710 gup_flags, &vma);
6711
6712 if (IS_ERR(page)) {
6713 /* We might need to expand the stack to access it */
6714 vma = vma_lookup(mm, addr);
6715 if (!vma) {
6716 vma = expand_stack(mm, addr);
6717
6718 /* mmap_lock was dropped on failure */
6719 if (!vma)
6720 return buf - old_buf;
6721
6722 /* Try again if stack expansion worked */
6723 continue;
6724 }
6725
6726 /*
6727 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6728 * we can access using slightly different code.
6729 */
6730 bytes = 0;
6731 #ifdef CONFIG_HAVE_IOREMAP_PROT
6732 if (vma->vm_ops && vma->vm_ops->access)
6733 bytes = vma->vm_ops->access(vma, addr, buf,
6734 len, write);
6735 #endif
6736 if (bytes <= 0)
6737 break;
6738 } else {
6739 bytes = len;
6740 offset = addr & (PAGE_SIZE-1);
6741 if (bytes > PAGE_SIZE-offset)
6742 bytes = PAGE_SIZE-offset;
6743
6744 maddr = kmap_local_page(page);
6745 if (write) {
6746 copy_to_user_page(vma, page, addr,
6747 maddr + offset, buf, bytes);
6748 set_page_dirty_lock(page);
6749 } else {
6750 copy_from_user_page(vma, page, addr,
6751 buf, maddr + offset, bytes);
6752 }
6753 unmap_and_put_page(page, maddr);
6754 }
6755 len -= bytes;
6756 buf += bytes;
6757 addr += bytes;
6758 }
6759 mmap_read_unlock(mm);
6760
6761 return buf - old_buf;
6762 }
6763
6764 /**
6765 * access_remote_vm - access another process' address space
6766 * @mm: the mm_struct of the target address space
6767 * @addr: start address to access
6768 * @buf: source or destination buffer
6769 * @len: number of bytes to transfer
6770 * @gup_flags: flags modifying lookup behaviour
6771 *
6772 * The caller must hold a reference on @mm.
6773 *
6774 * Return: number of bytes copied from source to destination.
6775 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)6776 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6777 void *buf, int len, unsigned int gup_flags)
6778 {
6779 return __access_remote_vm(mm, addr, buf, len, gup_flags);
6780 }
6781
6782 /*
6783 * Access another process' address space.
6784 * Source/target buffer must be kernel space,
6785 * Do not walk the page table directly, use get_user_pages
6786 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)6787 int access_process_vm(struct task_struct *tsk, unsigned long addr,
6788 void *buf, int len, unsigned int gup_flags)
6789 {
6790 struct mm_struct *mm;
6791 int ret;
6792
6793 mm = get_task_mm(tsk);
6794 if (!mm)
6795 return 0;
6796
6797 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6798
6799 mmput(mm);
6800
6801 return ret;
6802 }
6803 EXPORT_SYMBOL_GPL(access_process_vm);
6804
6805 /*
6806 * Print the name of a VMA.
6807 */
print_vma_addr(char * prefix,unsigned long ip)6808 void print_vma_addr(char *prefix, unsigned long ip)
6809 {
6810 struct mm_struct *mm = current->mm;
6811 struct vm_area_struct *vma;
6812
6813 /*
6814 * we might be running from an atomic context so we cannot sleep
6815 */
6816 if (!mmap_read_trylock(mm))
6817 return;
6818
6819 vma = vma_lookup(mm, ip);
6820 if (vma && vma->vm_file) {
6821 struct file *f = vma->vm_file;
6822 ip -= vma->vm_start;
6823 ip += vma->vm_pgoff << PAGE_SHIFT;
6824 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
6825 vma->vm_start,
6826 vma->vm_end - vma->vm_start);
6827 }
6828 mmap_read_unlock(mm);
6829 }
6830
6831 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)6832 void __might_fault(const char *file, int line)
6833 {
6834 if (pagefault_disabled())
6835 return;
6836 __might_sleep(file, line);
6837 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6838 if (current->mm)
6839 might_lock_read(¤t->mm->mmap_lock);
6840 #endif
6841 }
6842 EXPORT_SYMBOL(__might_fault);
6843 #endif
6844
6845 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6846 /*
6847 * Process all subpages of the specified huge page with the specified
6848 * operation. The target subpage will be processed last to keep its
6849 * cache lines hot.
6850 */
process_huge_page(unsigned long addr_hint,unsigned int nr_pages,int (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)6851 static inline int process_huge_page(
6852 unsigned long addr_hint, unsigned int nr_pages,
6853 int (*process_subpage)(unsigned long addr, int idx, void *arg),
6854 void *arg)
6855 {
6856 int i, n, base, l, ret;
6857 unsigned long addr = addr_hint &
6858 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
6859
6860 /* Process target subpage last to keep its cache lines hot */
6861 might_sleep();
6862 n = (addr_hint - addr) / PAGE_SIZE;
6863 if (2 * n <= nr_pages) {
6864 /* If target subpage in first half of huge page */
6865 base = 0;
6866 l = n;
6867 /* Process subpages at the end of huge page */
6868 for (i = nr_pages - 1; i >= 2 * n; i--) {
6869 cond_resched();
6870 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6871 if (ret)
6872 return ret;
6873 }
6874 } else {
6875 /* If target subpage in second half of huge page */
6876 base = nr_pages - 2 * (nr_pages - n);
6877 l = nr_pages - n;
6878 /* Process subpages at the begin of huge page */
6879 for (i = 0; i < base; i++) {
6880 cond_resched();
6881 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6882 if (ret)
6883 return ret;
6884 }
6885 }
6886 /*
6887 * Process remaining subpages in left-right-left-right pattern
6888 * towards the target subpage
6889 */
6890 for (i = 0; i < l; i++) {
6891 int left_idx = base + i;
6892 int right_idx = base + 2 * l - 1 - i;
6893
6894 cond_resched();
6895 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6896 if (ret)
6897 return ret;
6898 cond_resched();
6899 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6900 if (ret)
6901 return ret;
6902 }
6903 return 0;
6904 }
6905
clear_gigantic_page(struct folio * folio,unsigned long addr_hint,unsigned int nr_pages)6906 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint,
6907 unsigned int nr_pages)
6908 {
6909 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio));
6910 int i;
6911
6912 might_sleep();
6913 for (i = 0; i < nr_pages; i++) {
6914 cond_resched();
6915 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE);
6916 }
6917 }
6918
clear_subpage(unsigned long addr,int idx,void * arg)6919 static int clear_subpage(unsigned long addr, int idx, void *arg)
6920 {
6921 struct folio *folio = arg;
6922
6923 clear_user_highpage(folio_page(folio, idx), addr);
6924 return 0;
6925 }
6926
6927 /**
6928 * folio_zero_user - Zero a folio which will be mapped to userspace.
6929 * @folio: The folio to zero.
6930 * @addr_hint: The address will be accessed or the base address if uncelar.
6931 */
folio_zero_user(struct folio * folio,unsigned long addr_hint)6932 void folio_zero_user(struct folio *folio, unsigned long addr_hint)
6933 {
6934 unsigned int nr_pages = folio_nr_pages(folio);
6935
6936 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6937 clear_gigantic_page(folio, addr_hint, nr_pages);
6938 else
6939 process_huge_page(addr_hint, nr_pages, clear_subpage, folio);
6940 }
6941
copy_user_gigantic_page(struct folio * dst,struct folio * src,unsigned long addr_hint,struct vm_area_struct * vma,unsigned int nr_pages)6942 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6943 unsigned long addr_hint,
6944 struct vm_area_struct *vma,
6945 unsigned int nr_pages)
6946 {
6947 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst));
6948 struct page *dst_page;
6949 struct page *src_page;
6950 int i;
6951
6952 for (i = 0; i < nr_pages; i++) {
6953 dst_page = folio_page(dst, i);
6954 src_page = folio_page(src, i);
6955
6956 cond_resched();
6957 if (copy_mc_user_highpage(dst_page, src_page,
6958 addr + i*PAGE_SIZE, vma))
6959 return -EHWPOISON;
6960 }
6961 return 0;
6962 }
6963
6964 struct copy_subpage_arg {
6965 struct folio *dst;
6966 struct folio *src;
6967 struct vm_area_struct *vma;
6968 };
6969
copy_subpage(unsigned long addr,int idx,void * arg)6970 static int copy_subpage(unsigned long addr, int idx, void *arg)
6971 {
6972 struct copy_subpage_arg *copy_arg = arg;
6973 struct page *dst = folio_page(copy_arg->dst, idx);
6974 struct page *src = folio_page(copy_arg->src, idx);
6975
6976 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
6977 return -EHWPOISON;
6978 return 0;
6979 }
6980
copy_user_large_folio(struct folio * dst,struct folio * src,unsigned long addr_hint,struct vm_area_struct * vma)6981 int copy_user_large_folio(struct folio *dst, struct folio *src,
6982 unsigned long addr_hint, struct vm_area_struct *vma)
6983 {
6984 unsigned int nr_pages = folio_nr_pages(dst);
6985 struct copy_subpage_arg arg = {
6986 .dst = dst,
6987 .src = src,
6988 .vma = vma,
6989 };
6990
6991 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6992 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
6993
6994 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
6995 }
6996
copy_folio_from_user(struct folio * dst_folio,const void __user * usr_src,bool allow_pagefault)6997 long copy_folio_from_user(struct folio *dst_folio,
6998 const void __user *usr_src,
6999 bool allow_pagefault)
7000 {
7001 void *kaddr;
7002 unsigned long i, rc = 0;
7003 unsigned int nr_pages = folio_nr_pages(dst_folio);
7004 unsigned long ret_val = nr_pages * PAGE_SIZE;
7005 struct page *subpage;
7006
7007 for (i = 0; i < nr_pages; i++) {
7008 subpage = folio_page(dst_folio, i);
7009 kaddr = kmap_local_page(subpage);
7010 if (!allow_pagefault)
7011 pagefault_disable();
7012 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
7013 if (!allow_pagefault)
7014 pagefault_enable();
7015 kunmap_local(kaddr);
7016
7017 ret_val -= (PAGE_SIZE - rc);
7018 if (rc)
7019 break;
7020
7021 flush_dcache_page(subpage);
7022
7023 cond_resched();
7024 }
7025 return ret_val;
7026 }
7027 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
7028
7029 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS
7030
7031 static struct kmem_cache *page_ptl_cachep;
7032
ptlock_cache_init(void)7033 void __init ptlock_cache_init(void)
7034 {
7035 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
7036 SLAB_PANIC, NULL);
7037 }
7038
ptlock_alloc(struct ptdesc * ptdesc)7039 bool ptlock_alloc(struct ptdesc *ptdesc)
7040 {
7041 spinlock_t *ptl;
7042
7043 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
7044 if (!ptl)
7045 return false;
7046 ptdesc->ptl = ptl;
7047 return true;
7048 }
7049
ptlock_free(struct ptdesc * ptdesc)7050 void ptlock_free(struct ptdesc *ptdesc)
7051 {
7052 if (ptdesc->ptl)
7053 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
7054 }
7055 #endif
7056
vma_pgtable_walk_begin(struct vm_area_struct * vma)7057 void vma_pgtable_walk_begin(struct vm_area_struct *vma)
7058 {
7059 if (is_vm_hugetlb_page(vma))
7060 hugetlb_vma_lock_read(vma);
7061 }
7062
vma_pgtable_walk_end(struct vm_area_struct * vma)7063 void vma_pgtable_walk_end(struct vm_area_struct *vma)
7064 {
7065 if (is_vm_hugetlb_page(vma))
7066 hugetlb_vma_unlock_read(vma);
7067 }
7068