1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * tools/testing/selftests/kvm/lib/kvm_util.c 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 #include "test_util.h" 8 #include "kvm_util.h" 9 #include "processor.h" 10 #include "ucall_common.h" 11 12 #include <assert.h> 13 #include <sched.h> 14 #include <sys/mman.h> 15 #include <sys/resource.h> 16 #include <sys/types.h> 17 #include <sys/stat.h> 18 #include <unistd.h> 19 #include <linux/kernel.h> 20 21 #define KVM_UTIL_MIN_PFN 2 22 23 uint32_t guest_random_seed; 24 struct guest_random_state guest_rng; 25 static uint32_t last_guest_seed; 26 27 static size_t vcpu_mmap_sz(void); 28 29 int __open_path_or_exit(const char *path, int flags, const char *enoent_help) 30 { 31 int fd; 32 33 fd = open(path, flags); 34 if (fd < 0) 35 goto error; 36 37 return fd; 38 39 error: 40 if (errno == EACCES || errno == ENOENT) 41 ksft_exit_skip("- Cannot open '%s': %s. %s\n", 42 path, strerror(errno), 43 errno == EACCES ? "Root required?" : enoent_help); 44 TEST_FAIL("Failed to open '%s'", path); 45 } 46 47 int open_path_or_exit(const char *path, int flags) 48 { 49 return __open_path_or_exit(path, flags, ""); 50 } 51 52 /* 53 * Open KVM_DEV_PATH if available, otherwise exit the entire program. 54 * 55 * Input Args: 56 * flags - The flags to pass when opening KVM_DEV_PATH. 57 * 58 * Return: 59 * The opened file descriptor of /dev/kvm. 60 */ 61 static int _open_kvm_dev_path_or_exit(int flags) 62 { 63 return __open_path_or_exit(KVM_DEV_PATH, flags, "Is KVM loaded and enabled?"); 64 } 65 66 int open_kvm_dev_path_or_exit(void) 67 { 68 return _open_kvm_dev_path_or_exit(O_RDONLY); 69 } 70 71 static ssize_t get_module_param(const char *module_name, const char *param, 72 void *buffer, size_t buffer_size) 73 { 74 const int path_size = 128; 75 char path[path_size]; 76 ssize_t bytes_read; 77 int fd, r; 78 79 /* Verify KVM is loaded, to provide a more helpful SKIP message. */ 80 close(open_kvm_dev_path_or_exit()); 81 82 r = snprintf(path, path_size, "/sys/module/%s/parameters/%s", 83 module_name, param); 84 TEST_ASSERT(r < path_size, 85 "Failed to construct sysfs path in %d bytes.", path_size); 86 87 fd = open_path_or_exit(path, O_RDONLY); 88 89 bytes_read = read(fd, buffer, buffer_size); 90 TEST_ASSERT(bytes_read > 0, "read(%s) returned %ld, wanted %ld bytes", 91 path, bytes_read, buffer_size); 92 93 r = close(fd); 94 TEST_ASSERT(!r, "close(%s) failed", path); 95 return bytes_read; 96 } 97 98 int kvm_get_module_param_integer(const char *module_name, const char *param) 99 { 100 /* 101 * 16 bytes to hold a 64-bit value (1 byte per char), 1 byte for the 102 * NUL char, and 1 byte because the kernel sucks and inserts a newline 103 * at the end. 104 */ 105 char value[16 + 1 + 1]; 106 ssize_t r; 107 108 memset(value, '\0', sizeof(value)); 109 110 r = get_module_param(module_name, param, value, sizeof(value)); 111 TEST_ASSERT(value[r - 1] == '\n', 112 "Expected trailing newline, got char '%c'", value[r - 1]); 113 114 /* 115 * Squash the newline, otherwise atoi_paranoid() will complain about 116 * trailing non-NUL characters in the string. 117 */ 118 value[r - 1] = '\0'; 119 return atoi_paranoid(value); 120 } 121 122 bool kvm_get_module_param_bool(const char *module_name, const char *param) 123 { 124 char value; 125 ssize_t r; 126 127 r = get_module_param(module_name, param, &value, sizeof(value)); 128 TEST_ASSERT_EQ(r, 1); 129 130 if (value == 'Y') 131 return true; 132 else if (value == 'N') 133 return false; 134 135 TEST_FAIL("Unrecognized value '%c' for boolean module param", value); 136 } 137 138 /* 139 * Capability 140 * 141 * Input Args: 142 * cap - Capability 143 * 144 * Output Args: None 145 * 146 * Return: 147 * On success, the Value corresponding to the capability (KVM_CAP_*) 148 * specified by the value of cap. On failure a TEST_ASSERT failure 149 * is produced. 150 * 151 * Looks up and returns the value corresponding to the capability 152 * (KVM_CAP_*) given by cap. 153 */ 154 unsigned int kvm_check_cap(long cap) 155 { 156 int ret; 157 int kvm_fd; 158 159 kvm_fd = open_kvm_dev_path_or_exit(); 160 ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap); 161 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret)); 162 163 close(kvm_fd); 164 165 return (unsigned int)ret; 166 } 167 168 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size) 169 { 170 if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL)) 171 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size); 172 else 173 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size); 174 vm->dirty_ring_size = ring_size; 175 } 176 177 static void vm_open(struct kvm_vm *vm) 178 { 179 vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR); 180 181 TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT)); 182 183 vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type); 184 TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd)); 185 186 if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD)) 187 vm->stats.fd = vm_get_stats_fd(vm); 188 else 189 vm->stats.fd = -1; 190 } 191 192 const char *vm_guest_mode_string(uint32_t i) 193 { 194 static const char * const strings[] = { 195 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages", 196 [VM_MODE_P52V48_16K] = "PA-bits:52, VA-bits:48, 16K pages", 197 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages", 198 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages", 199 [VM_MODE_P48V48_16K] = "PA-bits:48, VA-bits:48, 16K pages", 200 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages", 201 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages", 202 [VM_MODE_P40V48_16K] = "PA-bits:40, VA-bits:48, 16K pages", 203 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages", 204 [VM_MODE_PXXVYY_4K] = "PA-bits:ANY, VA-bits:48 or 57, 4K pages", 205 [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages", 206 [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages", 207 [VM_MODE_P36V48_4K] = "PA-bits:36, VA-bits:48, 4K pages", 208 [VM_MODE_P36V48_16K] = "PA-bits:36, VA-bits:48, 16K pages", 209 [VM_MODE_P36V48_64K] = "PA-bits:36, VA-bits:48, 64K pages", 210 [VM_MODE_P47V47_16K] = "PA-bits:47, VA-bits:47, 16K pages", 211 [VM_MODE_P36V47_16K] = "PA-bits:36, VA-bits:47, 16K pages", 212 [VM_MODE_P56V57_4K] = "PA-bits:56, VA-bits:57, 4K pages", 213 [VM_MODE_P56V48_4K] = "PA-bits:56, VA-bits:48, 4K pages", 214 [VM_MODE_P56V39_4K] = "PA-bits:56, VA-bits:39, 4K pages", 215 [VM_MODE_P50V57_4K] = "PA-bits:50, VA-bits:57, 4K pages", 216 [VM_MODE_P50V48_4K] = "PA-bits:50, VA-bits:48, 4K pages", 217 [VM_MODE_P50V39_4K] = "PA-bits:50, VA-bits:39, 4K pages", 218 [VM_MODE_P41V57_4K] = "PA-bits:41, VA-bits:57, 4K pages", 219 [VM_MODE_P41V48_4K] = "PA-bits:41, VA-bits:48, 4K pages", 220 [VM_MODE_P41V39_4K] = "PA-bits:41, VA-bits:39, 4K pages", 221 }; 222 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES, 223 "Missing new mode strings?"); 224 225 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i); 226 227 return strings[i]; 228 } 229 230 const struct vm_guest_mode_params vm_guest_mode_params[] = { 231 [VM_MODE_P52V48_4K] = { 52, 48, 0x1000, 12 }, 232 [VM_MODE_P52V48_16K] = { 52, 48, 0x4000, 14 }, 233 [VM_MODE_P52V48_64K] = { 52, 48, 0x10000, 16 }, 234 [VM_MODE_P48V48_4K] = { 48, 48, 0x1000, 12 }, 235 [VM_MODE_P48V48_16K] = { 48, 48, 0x4000, 14 }, 236 [VM_MODE_P48V48_64K] = { 48, 48, 0x10000, 16 }, 237 [VM_MODE_P40V48_4K] = { 40, 48, 0x1000, 12 }, 238 [VM_MODE_P40V48_16K] = { 40, 48, 0x4000, 14 }, 239 [VM_MODE_P40V48_64K] = { 40, 48, 0x10000, 16 }, 240 [VM_MODE_PXXVYY_4K] = { 0, 0, 0x1000, 12 }, 241 [VM_MODE_P47V64_4K] = { 47, 64, 0x1000, 12 }, 242 [VM_MODE_P44V64_4K] = { 44, 64, 0x1000, 12 }, 243 [VM_MODE_P36V48_4K] = { 36, 48, 0x1000, 12 }, 244 [VM_MODE_P36V48_16K] = { 36, 48, 0x4000, 14 }, 245 [VM_MODE_P36V48_64K] = { 36, 48, 0x10000, 16 }, 246 [VM_MODE_P47V47_16K] = { 47, 47, 0x4000, 14 }, 247 [VM_MODE_P36V47_16K] = { 36, 47, 0x4000, 14 }, 248 [VM_MODE_P56V57_4K] = { 56, 57, 0x1000, 12 }, 249 [VM_MODE_P56V48_4K] = { 56, 48, 0x1000, 12 }, 250 [VM_MODE_P56V39_4K] = { 56, 39, 0x1000, 12 }, 251 [VM_MODE_P50V57_4K] = { 50, 57, 0x1000, 12 }, 252 [VM_MODE_P50V48_4K] = { 50, 48, 0x1000, 12 }, 253 [VM_MODE_P50V39_4K] = { 50, 39, 0x1000, 12 }, 254 [VM_MODE_P41V57_4K] = { 41, 57, 0x1000, 12 }, 255 [VM_MODE_P41V48_4K] = { 41, 48, 0x1000, 12 }, 256 [VM_MODE_P41V39_4K] = { 41, 39, 0x1000, 12 }, 257 }; 258 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES, 259 "Missing new mode params?"); 260 261 /* 262 * Initializes vm->vpages_valid to match the canonical VA space of the 263 * architecture. 264 * 265 * The default implementation is valid for architectures which split the 266 * range addressed by a single page table into a low and high region 267 * based on the MSB of the VA. On architectures with this behavior 268 * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1]. 269 */ 270 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm) 271 { 272 sparsebit_set_num(vm->vpages_valid, 273 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 274 sparsebit_set_num(vm->vpages_valid, 275 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift, 276 (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 277 } 278 279 struct kvm_vm *____vm_create(struct vm_shape shape) 280 { 281 struct kvm_vm *vm; 282 283 vm = calloc(1, sizeof(*vm)); 284 TEST_ASSERT(vm != NULL, "Insufficient Memory"); 285 286 INIT_LIST_HEAD(&vm->vcpus); 287 vm->regions.gpa_tree = RB_ROOT; 288 vm->regions.hva_tree = RB_ROOT; 289 hash_init(vm->regions.slot_hash); 290 291 vm->mode = shape.mode; 292 vm->type = shape.type; 293 294 vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits; 295 vm->va_bits = vm_guest_mode_params[vm->mode].va_bits; 296 vm->page_size = vm_guest_mode_params[vm->mode].page_size; 297 vm->page_shift = vm_guest_mode_params[vm->mode].page_shift; 298 299 /* Setup mode specific traits. */ 300 switch (vm->mode) { 301 case VM_MODE_P52V48_4K: 302 vm->mmu.pgtable_levels = 4; 303 break; 304 case VM_MODE_P52V48_64K: 305 vm->mmu.pgtable_levels = 3; 306 break; 307 case VM_MODE_P48V48_4K: 308 vm->mmu.pgtable_levels = 4; 309 break; 310 case VM_MODE_P48V48_64K: 311 vm->mmu.pgtable_levels = 3; 312 break; 313 case VM_MODE_P40V48_4K: 314 case VM_MODE_P36V48_4K: 315 vm->mmu.pgtable_levels = 4; 316 break; 317 case VM_MODE_P40V48_64K: 318 case VM_MODE_P36V48_64K: 319 vm->mmu.pgtable_levels = 3; 320 break; 321 case VM_MODE_P52V48_16K: 322 case VM_MODE_P48V48_16K: 323 case VM_MODE_P40V48_16K: 324 case VM_MODE_P36V48_16K: 325 vm->mmu.pgtable_levels = 4; 326 break; 327 case VM_MODE_P47V47_16K: 328 case VM_MODE_P36V47_16K: 329 vm->mmu.pgtable_levels = 3; 330 break; 331 case VM_MODE_PXXVYY_4K: 332 #ifdef __x86_64__ 333 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits); 334 kvm_init_vm_address_properties(vm); 335 336 pr_debug("Guest physical address width detected: %d\n", 337 vm->pa_bits); 338 pr_debug("Guest virtual address width detected: %d\n", 339 vm->va_bits); 340 341 if (vm->va_bits == 57) { 342 vm->mmu.pgtable_levels = 5; 343 } else { 344 TEST_ASSERT(vm->va_bits == 48, 345 "Unexpected guest virtual address width: %d", 346 vm->va_bits); 347 vm->mmu.pgtable_levels = 4; 348 } 349 #else 350 TEST_FAIL("VM_MODE_PXXVYY_4K not supported on non-x86 platforms"); 351 #endif 352 break; 353 case VM_MODE_P47V64_4K: 354 vm->mmu.pgtable_levels = 5; 355 break; 356 case VM_MODE_P44V64_4K: 357 vm->mmu.pgtable_levels = 5; 358 break; 359 case VM_MODE_P56V57_4K: 360 case VM_MODE_P50V57_4K: 361 case VM_MODE_P41V57_4K: 362 vm->mmu.pgtable_levels = 5; 363 break; 364 case VM_MODE_P56V48_4K: 365 case VM_MODE_P50V48_4K: 366 case VM_MODE_P41V48_4K: 367 vm->mmu.pgtable_levels = 4; 368 break; 369 case VM_MODE_P56V39_4K: 370 case VM_MODE_P50V39_4K: 371 case VM_MODE_P41V39_4K: 372 vm->mmu.pgtable_levels = 3; 373 break; 374 default: 375 TEST_FAIL("Unknown guest mode: 0x%x", vm->mode); 376 } 377 378 #ifdef __aarch64__ 379 TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types"); 380 if (vm->pa_bits != 40) 381 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits); 382 #endif 383 384 vm_open(vm); 385 386 /* Limit to VA-bit canonical virtual addresses. */ 387 vm->vpages_valid = sparsebit_alloc(); 388 vm_vaddr_populate_bitmap(vm); 389 390 /* Limit physical addresses to PA-bits. */ 391 vm->max_gfn = vm_compute_max_gfn(vm); 392 393 /* Allocate and setup memory for guest. */ 394 vm->vpages_mapped = sparsebit_alloc(); 395 396 return vm; 397 } 398 399 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode, 400 uint32_t nr_runnable_vcpus, 401 uint64_t extra_mem_pages) 402 { 403 uint64_t page_size = vm_guest_mode_params[mode].page_size; 404 uint64_t nr_pages; 405 406 TEST_ASSERT(nr_runnable_vcpus, 407 "Use vm_create_barebones() for VMs that _never_ have vCPUs"); 408 409 TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS), 410 "nr_vcpus = %d too large for host, max-vcpus = %d", 411 nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS)); 412 413 /* 414 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the 415 * test code and other per-VM assets that will be loaded into memslot0. 416 */ 417 nr_pages = 512; 418 419 /* Account for the per-vCPU stacks on behalf of the test. */ 420 nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS; 421 422 /* 423 * Account for the number of pages needed for the page tables. The 424 * maximum page table size for a memory region will be when the 425 * smallest page size is used. Considering each page contains x page 426 * table descriptors, the total extra size for page tables (for extra 427 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller 428 * than N/x*2. 429 */ 430 nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2; 431 432 /* Account for the number of pages needed by ucall. */ 433 nr_pages += ucall_nr_pages_required(page_size); 434 435 return vm_adjust_num_guest_pages(mode, nr_pages); 436 } 437 438 void kvm_set_files_rlimit(uint32_t nr_vcpus) 439 { 440 /* 441 * Each vCPU will open two file descriptors: the vCPU itself and the 442 * vCPU's binary stats file descriptor. Add an arbitrary amount of 443 * buffer for all other files a test may open. 444 */ 445 int nr_fds_wanted = nr_vcpus * 2 + 100; 446 struct rlimit rl; 447 448 /* 449 * Check that we're allowed to open nr_fds_wanted file descriptors and 450 * try raising the limits if needed. 451 */ 452 TEST_ASSERT(!getrlimit(RLIMIT_NOFILE, &rl), "getrlimit() failed!"); 453 454 if (rl.rlim_cur < nr_fds_wanted) { 455 rl.rlim_cur = nr_fds_wanted; 456 if (rl.rlim_max < nr_fds_wanted) { 457 int old_rlim_max = rl.rlim_max; 458 459 rl.rlim_max = nr_fds_wanted; 460 __TEST_REQUIRE(setrlimit(RLIMIT_NOFILE, &rl) >= 0, 461 "RLIMIT_NOFILE hard limit is too low (%d, wanted %d)", 462 old_rlim_max, nr_fds_wanted); 463 } else { 464 TEST_ASSERT(!setrlimit(RLIMIT_NOFILE, &rl), "setrlimit() failed!"); 465 } 466 } 467 468 } 469 470 static bool is_guest_memfd_required(struct vm_shape shape) 471 { 472 #ifdef __x86_64__ 473 return shape.type == KVM_X86_SNP_VM; 474 #else 475 return false; 476 #endif 477 } 478 479 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus, 480 uint64_t nr_extra_pages) 481 { 482 uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus, 483 nr_extra_pages); 484 struct userspace_mem_region *slot0; 485 struct kvm_vm *vm; 486 int i, flags; 487 488 kvm_set_files_rlimit(nr_runnable_vcpus); 489 490 pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__, 491 vm_guest_mode_string(shape.mode), shape.type, nr_pages); 492 493 vm = ____vm_create(shape); 494 495 /* 496 * Force GUEST_MEMFD for the primary memory region if necessary, e.g. 497 * for CoCo VMs that require GUEST_MEMFD backed private memory. 498 */ 499 flags = 0; 500 if (is_guest_memfd_required(shape)) 501 flags |= KVM_MEM_GUEST_MEMFD; 502 503 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, flags); 504 for (i = 0; i < NR_MEM_REGIONS; i++) 505 vm->memslots[i] = 0; 506 507 kvm_vm_elf_load(vm, program_invocation_name); 508 509 /* 510 * TODO: Add proper defines to protect the library's memslots, and then 511 * carve out memslot1 for the ucall MMIO address. KVM treats writes to 512 * read-only memslots as MMIO, and creating a read-only memslot for the 513 * MMIO region would prevent silently clobbering the MMIO region. 514 */ 515 slot0 = memslot2region(vm, 0); 516 ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size); 517 518 if (guest_random_seed != last_guest_seed) { 519 pr_info("Random seed: 0x%x\n", guest_random_seed); 520 last_guest_seed = guest_random_seed; 521 } 522 guest_rng = new_guest_random_state(guest_random_seed); 523 sync_global_to_guest(vm, guest_rng); 524 525 kvm_arch_vm_post_create(vm, nr_runnable_vcpus); 526 527 return vm; 528 } 529 530 /* 531 * VM Create with customized parameters 532 * 533 * Input Args: 534 * mode - VM Mode (e.g. VM_MODE_P52V48_4K) 535 * nr_vcpus - VCPU count 536 * extra_mem_pages - Non-slot0 physical memory total size 537 * guest_code - Guest entry point 538 * vcpuids - VCPU IDs 539 * 540 * Output Args: None 541 * 542 * Return: 543 * Pointer to opaque structure that describes the created VM. 544 * 545 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K). 546 * extra_mem_pages is only used to calculate the maximum page table size, 547 * no real memory allocation for non-slot0 memory in this function. 548 */ 549 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus, 550 uint64_t extra_mem_pages, 551 void *guest_code, struct kvm_vcpu *vcpus[]) 552 { 553 struct kvm_vm *vm; 554 int i; 555 556 TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array"); 557 558 vm = __vm_create(shape, nr_vcpus, extra_mem_pages); 559 560 for (i = 0; i < nr_vcpus; ++i) 561 vcpus[i] = vm_vcpu_add(vm, i, guest_code); 562 563 kvm_arch_vm_finalize_vcpus(vm); 564 return vm; 565 } 566 567 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape, 568 struct kvm_vcpu **vcpu, 569 uint64_t extra_mem_pages, 570 void *guest_code) 571 { 572 struct kvm_vcpu *vcpus[1]; 573 struct kvm_vm *vm; 574 575 vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus); 576 577 *vcpu = vcpus[0]; 578 return vm; 579 } 580 581 /* 582 * VM Restart 583 * 584 * Input Args: 585 * vm - VM that has been released before 586 * 587 * Output Args: None 588 * 589 * Reopens the file descriptors associated to the VM and reinstates the 590 * global state, such as the irqchip and the memory regions that are mapped 591 * into the guest. 592 */ 593 void kvm_vm_restart(struct kvm_vm *vmp) 594 { 595 int ctr; 596 struct userspace_mem_region *region; 597 598 vm_open(vmp); 599 if (vmp->has_irqchip) 600 vm_create_irqchip(vmp); 601 602 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) { 603 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 604 605 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 606 " rc: %i errno: %i\n" 607 " slot: %u flags: 0x%x\n" 608 " guest_phys_addr: 0x%llx size: 0x%llx", 609 ret, errno, region->region.slot, 610 region->region.flags, 611 region->region.guest_phys_addr, 612 region->region.memory_size); 613 } 614 } 615 616 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, 617 uint32_t vcpu_id) 618 { 619 return __vm_vcpu_add(vm, vcpu_id); 620 } 621 622 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm) 623 { 624 kvm_vm_restart(vm); 625 626 return vm_vcpu_recreate(vm, 0); 627 } 628 629 int __pin_task_to_cpu(pthread_t task, int cpu) 630 { 631 cpu_set_t cpuset; 632 633 CPU_ZERO(&cpuset); 634 CPU_SET(cpu, &cpuset); 635 636 return pthread_setaffinity_np(task, sizeof(cpuset), &cpuset); 637 } 638 639 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask) 640 { 641 uint32_t pcpu = atoi_non_negative("CPU number", cpu_str); 642 643 TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask), 644 "Not allowed to run on pCPU '%d', check cgroups?", pcpu); 645 return pcpu; 646 } 647 648 void kvm_print_vcpu_pinning_help(void) 649 { 650 const char *name = program_invocation_name; 651 652 printf(" -c: Pin tasks to physical CPUs. Takes a list of comma separated\n" 653 " values (target pCPU), one for each vCPU, plus an optional\n" 654 " entry for the main application task (specified via entry\n" 655 " <nr_vcpus + 1>). If used, entries must be provided for all\n" 656 " vCPUs, i.e. pinning vCPUs is all or nothing.\n\n" 657 " E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n" 658 " vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n" 659 " %s -v 3 -c 22,23,24,50\n\n" 660 " To leave the application task unpinned, drop the final entry:\n\n" 661 " %s -v 3 -c 22,23,24\n\n" 662 " (default: no pinning)\n", name, name); 663 } 664 665 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[], 666 int nr_vcpus) 667 { 668 cpu_set_t allowed_mask; 669 char *cpu, *cpu_list; 670 char delim[2] = ","; 671 int i, r; 672 673 cpu_list = strdup(pcpus_string); 674 TEST_ASSERT(cpu_list, "strdup() allocation failed."); 675 676 r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask); 677 TEST_ASSERT(!r, "sched_getaffinity() failed"); 678 679 cpu = strtok(cpu_list, delim); 680 681 /* 1. Get all pcpus for vcpus. */ 682 for (i = 0; i < nr_vcpus; i++) { 683 TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i); 684 vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask); 685 cpu = strtok(NULL, delim); 686 } 687 688 /* 2. Check if the main worker needs to be pinned. */ 689 if (cpu) { 690 pin_self_to_cpu(parse_pcpu(cpu, &allowed_mask)); 691 cpu = strtok(NULL, delim); 692 } 693 694 TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu); 695 free(cpu_list); 696 } 697 698 /* 699 * Userspace Memory Region Find 700 * 701 * Input Args: 702 * vm - Virtual Machine 703 * start - Starting VM physical address 704 * end - Ending VM physical address, inclusive. 705 * 706 * Output Args: None 707 * 708 * Return: 709 * Pointer to overlapping region, NULL if no such region. 710 * 711 * Searches for a region with any physical memory that overlaps with 712 * any portion of the guest physical addresses from start to end 713 * inclusive. If multiple overlapping regions exist, a pointer to any 714 * of the regions is returned. Null is returned only when no overlapping 715 * region exists. 716 */ 717 static struct userspace_mem_region * 718 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end) 719 { 720 struct rb_node *node; 721 722 for (node = vm->regions.gpa_tree.rb_node; node; ) { 723 struct userspace_mem_region *region = 724 container_of(node, struct userspace_mem_region, gpa_node); 725 uint64_t existing_start = region->region.guest_phys_addr; 726 uint64_t existing_end = region->region.guest_phys_addr 727 + region->region.memory_size - 1; 728 if (start <= existing_end && end >= existing_start) 729 return region; 730 731 if (start < existing_start) 732 node = node->rb_left; 733 else 734 node = node->rb_right; 735 } 736 737 return NULL; 738 } 739 740 static void kvm_stats_release(struct kvm_binary_stats *stats) 741 { 742 if (stats->fd < 0) 743 return; 744 745 if (stats->desc) { 746 free(stats->desc); 747 stats->desc = NULL; 748 } 749 750 kvm_close(stats->fd); 751 stats->fd = -1; 752 } 753 754 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu) 755 { 756 757 } 758 759 /* 760 * VM VCPU Remove 761 * 762 * Input Args: 763 * vcpu - VCPU to remove 764 * 765 * Output Args: None 766 * 767 * Return: None, TEST_ASSERT failures for all error conditions 768 * 769 * Removes a vCPU from a VM and frees its resources. 770 */ 771 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu) 772 { 773 if (vcpu->dirty_gfns) { 774 kvm_munmap(vcpu->dirty_gfns, vm->dirty_ring_size); 775 vcpu->dirty_gfns = NULL; 776 } 777 778 kvm_munmap(vcpu->run, vcpu_mmap_sz()); 779 780 kvm_close(vcpu->fd); 781 kvm_stats_release(&vcpu->stats); 782 783 list_del(&vcpu->list); 784 785 vcpu_arch_free(vcpu); 786 free(vcpu); 787 } 788 789 void kvm_vm_release(struct kvm_vm *vmp) 790 { 791 struct kvm_vcpu *vcpu, *tmp; 792 793 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list) 794 vm_vcpu_rm(vmp, vcpu); 795 796 kvm_close(vmp->fd); 797 kvm_close(vmp->kvm_fd); 798 799 /* Free cached stats metadata and close FD */ 800 kvm_stats_release(&vmp->stats); 801 802 kvm_arch_vm_release(vmp); 803 } 804 805 static void __vm_mem_region_delete(struct kvm_vm *vm, 806 struct userspace_mem_region *region) 807 { 808 rb_erase(®ion->gpa_node, &vm->regions.gpa_tree); 809 rb_erase(®ion->hva_node, &vm->regions.hva_tree); 810 hash_del(®ion->slot_node); 811 812 sparsebit_free(®ion->unused_phy_pages); 813 sparsebit_free(®ion->protected_phy_pages); 814 kvm_munmap(region->mmap_start, region->mmap_size); 815 if (region->fd >= 0) { 816 /* There's an extra map when using shared memory. */ 817 kvm_munmap(region->mmap_alias, region->mmap_size); 818 close(region->fd); 819 } 820 if (region->region.guest_memfd >= 0) 821 close(region->region.guest_memfd); 822 823 free(region); 824 } 825 826 /* 827 * Destroys and frees the VM pointed to by vmp. 828 */ 829 void kvm_vm_free(struct kvm_vm *vmp) 830 { 831 int ctr; 832 struct hlist_node *node; 833 struct userspace_mem_region *region; 834 835 if (vmp == NULL) 836 return; 837 838 /* Free userspace_mem_regions. */ 839 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node) 840 __vm_mem_region_delete(vmp, region); 841 842 /* Free sparsebit arrays. */ 843 sparsebit_free(&vmp->vpages_valid); 844 sparsebit_free(&vmp->vpages_mapped); 845 846 kvm_vm_release(vmp); 847 848 /* Free the structure describing the VM. */ 849 free(vmp); 850 } 851 852 int kvm_memfd_alloc(size_t size, bool hugepages) 853 { 854 int memfd_flags = MFD_CLOEXEC; 855 int fd; 856 857 if (hugepages) 858 memfd_flags |= MFD_HUGETLB; 859 860 fd = memfd_create("kvm_selftest", memfd_flags); 861 TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd)); 862 863 kvm_ftruncate(fd, size); 864 kvm_fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size); 865 866 return fd; 867 } 868 869 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree, 870 struct userspace_mem_region *region) 871 { 872 struct rb_node **cur, *parent; 873 874 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) { 875 struct userspace_mem_region *cregion; 876 877 cregion = container_of(*cur, typeof(*cregion), gpa_node); 878 parent = *cur; 879 if (region->region.guest_phys_addr < 880 cregion->region.guest_phys_addr) 881 cur = &(*cur)->rb_left; 882 else { 883 TEST_ASSERT(region->region.guest_phys_addr != 884 cregion->region.guest_phys_addr, 885 "Duplicate GPA in region tree"); 886 887 cur = &(*cur)->rb_right; 888 } 889 } 890 891 rb_link_node(®ion->gpa_node, parent, cur); 892 rb_insert_color(®ion->gpa_node, gpa_tree); 893 } 894 895 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree, 896 struct userspace_mem_region *region) 897 { 898 struct rb_node **cur, *parent; 899 900 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) { 901 struct userspace_mem_region *cregion; 902 903 cregion = container_of(*cur, typeof(*cregion), hva_node); 904 parent = *cur; 905 if (region->host_mem < cregion->host_mem) 906 cur = &(*cur)->rb_left; 907 else { 908 TEST_ASSERT(region->host_mem != 909 cregion->host_mem, 910 "Duplicate HVA in region tree"); 911 912 cur = &(*cur)->rb_right; 913 } 914 } 915 916 rb_link_node(®ion->hva_node, parent, cur); 917 rb_insert_color(®ion->hva_node, hva_tree); 918 } 919 920 921 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 922 uint64_t gpa, uint64_t size, void *hva) 923 { 924 struct kvm_userspace_memory_region region = { 925 .slot = slot, 926 .flags = flags, 927 .guest_phys_addr = gpa, 928 .memory_size = size, 929 .userspace_addr = (uintptr_t)hva, 930 }; 931 932 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion); 933 } 934 935 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 936 uint64_t gpa, uint64_t size, void *hva) 937 { 938 int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva); 939 940 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)", 941 errno, strerror(errno)); 942 } 943 944 #define TEST_REQUIRE_SET_USER_MEMORY_REGION2() \ 945 __TEST_REQUIRE(kvm_has_cap(KVM_CAP_USER_MEMORY2), \ 946 "KVM selftests now require KVM_SET_USER_MEMORY_REGION2 (introduced in v6.8)") 947 948 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 949 uint64_t gpa, uint64_t size, void *hva, 950 uint32_t guest_memfd, uint64_t guest_memfd_offset) 951 { 952 struct kvm_userspace_memory_region2 region = { 953 .slot = slot, 954 .flags = flags, 955 .guest_phys_addr = gpa, 956 .memory_size = size, 957 .userspace_addr = (uintptr_t)hva, 958 .guest_memfd = guest_memfd, 959 .guest_memfd_offset = guest_memfd_offset, 960 }; 961 962 TEST_REQUIRE_SET_USER_MEMORY_REGION2(); 963 964 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, ®ion); 965 } 966 967 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 968 uint64_t gpa, uint64_t size, void *hva, 969 uint32_t guest_memfd, uint64_t guest_memfd_offset) 970 { 971 int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva, 972 guest_memfd, guest_memfd_offset); 973 974 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)", 975 errno, strerror(errno)); 976 } 977 978 979 /* FIXME: This thing needs to be ripped apart and rewritten. */ 980 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type, 981 uint64_t gpa, uint32_t slot, uint64_t npages, uint32_t flags, 982 int guest_memfd, uint64_t guest_memfd_offset) 983 { 984 int ret; 985 struct userspace_mem_region *region; 986 size_t backing_src_pagesz = get_backing_src_pagesz(src_type); 987 size_t mem_size = npages * vm->page_size; 988 size_t alignment; 989 990 TEST_REQUIRE_SET_USER_MEMORY_REGION2(); 991 992 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages, 993 "Number of guest pages is not compatible with the host. " 994 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages)); 995 996 TEST_ASSERT((gpa % vm->page_size) == 0, "Guest physical " 997 "address not on a page boundary.\n" 998 " gpa: 0x%lx vm->page_size: 0x%x", 999 gpa, vm->page_size); 1000 TEST_ASSERT((((gpa >> vm->page_shift) + npages) - 1) 1001 <= vm->max_gfn, "Physical range beyond maximum " 1002 "supported physical address,\n" 1003 " gpa: 0x%lx npages: 0x%lx\n" 1004 " vm->max_gfn: 0x%lx vm->page_size: 0x%x", 1005 gpa, npages, vm->max_gfn, vm->page_size); 1006 1007 /* 1008 * Confirm a mem region with an overlapping address doesn't 1009 * already exist. 1010 */ 1011 region = (struct userspace_mem_region *) userspace_mem_region_find( 1012 vm, gpa, (gpa + npages * vm->page_size) - 1); 1013 if (region != NULL) 1014 TEST_FAIL("overlapping userspace_mem_region already " 1015 "exists\n" 1016 " requested gpa: 0x%lx npages: 0x%lx page_size: 0x%x\n" 1017 " existing gpa: 0x%lx size: 0x%lx", 1018 gpa, npages, vm->page_size, 1019 (uint64_t) region->region.guest_phys_addr, 1020 (uint64_t) region->region.memory_size); 1021 1022 /* Confirm no region with the requested slot already exists. */ 1023 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 1024 slot) { 1025 if (region->region.slot != slot) 1026 continue; 1027 1028 TEST_FAIL("A mem region with the requested slot " 1029 "already exists.\n" 1030 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n" 1031 " existing slot: %u paddr: 0x%lx size: 0x%lx", 1032 slot, gpa, npages, region->region.slot, 1033 (uint64_t) region->region.guest_phys_addr, 1034 (uint64_t) region->region.memory_size); 1035 } 1036 1037 /* Allocate and initialize new mem region structure. */ 1038 region = calloc(1, sizeof(*region)); 1039 TEST_ASSERT(region != NULL, "Insufficient Memory"); 1040 region->mmap_size = mem_size; 1041 1042 #ifdef __s390x__ 1043 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */ 1044 alignment = 0x100000; 1045 #else 1046 alignment = 1; 1047 #endif 1048 1049 /* 1050 * When using THP mmap is not guaranteed to returned a hugepage aligned 1051 * address so we have to pad the mmap. Padding is not needed for HugeTLB 1052 * because mmap will always return an address aligned to the HugeTLB 1053 * page size. 1054 */ 1055 if (src_type == VM_MEM_SRC_ANONYMOUS_THP) 1056 alignment = max(backing_src_pagesz, alignment); 1057 1058 TEST_ASSERT_EQ(gpa, align_up(gpa, backing_src_pagesz)); 1059 1060 /* Add enough memory to align up if necessary */ 1061 if (alignment > 1) 1062 region->mmap_size += alignment; 1063 1064 region->fd = -1; 1065 if (backing_src_is_shared(src_type)) 1066 region->fd = kvm_memfd_alloc(region->mmap_size, 1067 src_type == VM_MEM_SRC_SHARED_HUGETLB); 1068 1069 region->mmap_start = kvm_mmap(region->mmap_size, PROT_READ | PROT_WRITE, 1070 vm_mem_backing_src_alias(src_type)->flag, 1071 region->fd); 1072 1073 TEST_ASSERT(!is_backing_src_hugetlb(src_type) || 1074 region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz), 1075 "mmap_start %p is not aligned to HugeTLB page size 0x%lx", 1076 region->mmap_start, backing_src_pagesz); 1077 1078 /* Align host address */ 1079 region->host_mem = align_ptr_up(region->mmap_start, alignment); 1080 1081 /* As needed perform madvise */ 1082 if ((src_type == VM_MEM_SRC_ANONYMOUS || 1083 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) { 1084 ret = madvise(region->host_mem, mem_size, 1085 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE); 1086 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s", 1087 region->host_mem, mem_size, 1088 vm_mem_backing_src_alias(src_type)->name); 1089 } 1090 1091 region->backing_src_type = src_type; 1092 1093 if (flags & KVM_MEM_GUEST_MEMFD) { 1094 if (guest_memfd < 0) { 1095 uint32_t guest_memfd_flags = 0; 1096 TEST_ASSERT(!guest_memfd_offset, 1097 "Offset must be zero when creating new guest_memfd"); 1098 guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags); 1099 } else { 1100 /* 1101 * Install a unique fd for each memslot so that the fd 1102 * can be closed when the region is deleted without 1103 * needing to track if the fd is owned by the framework 1104 * or by the caller. 1105 */ 1106 guest_memfd = kvm_dup(guest_memfd); 1107 } 1108 1109 region->region.guest_memfd = guest_memfd; 1110 region->region.guest_memfd_offset = guest_memfd_offset; 1111 } else { 1112 region->region.guest_memfd = -1; 1113 } 1114 1115 region->unused_phy_pages = sparsebit_alloc(); 1116 if (vm_arch_has_protected_memory(vm)) 1117 region->protected_phy_pages = sparsebit_alloc(); 1118 sparsebit_set_num(region->unused_phy_pages, gpa >> vm->page_shift, npages); 1119 region->region.slot = slot; 1120 region->region.flags = flags; 1121 region->region.guest_phys_addr = gpa; 1122 region->region.memory_size = npages * vm->page_size; 1123 region->region.userspace_addr = (uintptr_t) region->host_mem; 1124 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1125 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 1126 " rc: %i errno: %i\n" 1127 " slot: %u flags: 0x%x\n" 1128 " guest_phys_addr: 0x%lx size: 0x%llx guest_memfd: %d", 1129 ret, errno, slot, flags, gpa, region->region.memory_size, 1130 region->region.guest_memfd); 1131 1132 /* Add to quick lookup data structures */ 1133 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region); 1134 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region); 1135 hash_add(vm->regions.slot_hash, ®ion->slot_node, slot); 1136 1137 /* If shared memory, create an alias. */ 1138 if (region->fd >= 0) { 1139 region->mmap_alias = kvm_mmap(region->mmap_size, 1140 PROT_READ | PROT_WRITE, 1141 vm_mem_backing_src_alias(src_type)->flag, 1142 region->fd); 1143 1144 /* Align host alias address */ 1145 region->host_alias = align_ptr_up(region->mmap_alias, alignment); 1146 } 1147 } 1148 1149 void vm_userspace_mem_region_add(struct kvm_vm *vm, 1150 enum vm_mem_backing_src_type src_type, 1151 uint64_t gpa, uint32_t slot, uint64_t npages, 1152 uint32_t flags) 1153 { 1154 vm_mem_add(vm, src_type, gpa, slot, npages, flags, -1, 0); 1155 } 1156 1157 /* 1158 * Memslot to region 1159 * 1160 * Input Args: 1161 * vm - Virtual Machine 1162 * memslot - KVM memory slot ID 1163 * 1164 * Output Args: None 1165 * 1166 * Return: 1167 * Pointer to memory region structure that describe memory region 1168 * using kvm memory slot ID given by memslot. TEST_ASSERT failure 1169 * on error (e.g. currently no memory region using memslot as a KVM 1170 * memory slot ID). 1171 */ 1172 struct userspace_mem_region * 1173 memslot2region(struct kvm_vm *vm, uint32_t memslot) 1174 { 1175 struct userspace_mem_region *region; 1176 1177 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 1178 memslot) 1179 if (region->region.slot == memslot) 1180 return region; 1181 1182 fprintf(stderr, "No mem region with the requested slot found,\n" 1183 " requested slot: %u\n", memslot); 1184 fputs("---- vm dump ----\n", stderr); 1185 vm_dump(stderr, vm, 2); 1186 TEST_FAIL("Mem region not found"); 1187 return NULL; 1188 } 1189 1190 /* 1191 * VM Memory Region Flags Set 1192 * 1193 * Input Args: 1194 * vm - Virtual Machine 1195 * flags - Starting guest physical address 1196 * 1197 * Output Args: None 1198 * 1199 * Return: None 1200 * 1201 * Sets the flags of the memory region specified by the value of slot, 1202 * to the values given by flags. 1203 */ 1204 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags) 1205 { 1206 int ret; 1207 struct userspace_mem_region *region; 1208 1209 region = memslot2region(vm, slot); 1210 1211 region->region.flags = flags; 1212 1213 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1214 1215 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 1216 " rc: %i errno: %i slot: %u flags: 0x%x", 1217 ret, errno, slot, flags); 1218 } 1219 1220 void vm_mem_region_reload(struct kvm_vm *vm, uint32_t slot) 1221 { 1222 struct userspace_mem_region *region = memslot2region(vm, slot); 1223 struct kvm_userspace_memory_region2 tmp = region->region; 1224 1225 tmp.memory_size = 0; 1226 vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &tmp); 1227 vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1228 } 1229 1230 /* 1231 * VM Memory Region Move 1232 * 1233 * Input Args: 1234 * vm - Virtual Machine 1235 * slot - Slot of the memory region to move 1236 * new_gpa - Starting guest physical address 1237 * 1238 * Output Args: None 1239 * 1240 * Return: None 1241 * 1242 * Change the gpa of a memory region. 1243 */ 1244 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa) 1245 { 1246 struct userspace_mem_region *region; 1247 int ret; 1248 1249 region = memslot2region(vm, slot); 1250 1251 region->region.guest_phys_addr = new_gpa; 1252 1253 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1254 1255 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n" 1256 "ret: %i errno: %i slot: %u new_gpa: 0x%lx", 1257 ret, errno, slot, new_gpa); 1258 } 1259 1260 /* 1261 * VM Memory Region Delete 1262 * 1263 * Input Args: 1264 * vm - Virtual Machine 1265 * slot - Slot of the memory region to delete 1266 * 1267 * Output Args: None 1268 * 1269 * Return: None 1270 * 1271 * Delete a memory region. 1272 */ 1273 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot) 1274 { 1275 struct userspace_mem_region *region = memslot2region(vm, slot); 1276 1277 region->region.memory_size = 0; 1278 vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1279 1280 __vm_mem_region_delete(vm, region); 1281 } 1282 1283 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size, 1284 bool punch_hole) 1285 { 1286 const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0); 1287 struct userspace_mem_region *region; 1288 uint64_t end = base + size; 1289 uint64_t gpa, len; 1290 off_t fd_offset; 1291 int ret; 1292 1293 for (gpa = base; gpa < end; gpa += len) { 1294 uint64_t offset; 1295 1296 region = userspace_mem_region_find(vm, gpa, gpa); 1297 TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD, 1298 "Private memory region not found for GPA 0x%lx", gpa); 1299 1300 offset = gpa - region->region.guest_phys_addr; 1301 fd_offset = region->region.guest_memfd_offset + offset; 1302 len = min_t(uint64_t, end - gpa, region->region.memory_size - offset); 1303 1304 ret = fallocate(region->region.guest_memfd, mode, fd_offset, len); 1305 TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx", 1306 punch_hole ? "punch hole" : "allocate", gpa, len, 1307 region->region.guest_memfd, mode, fd_offset); 1308 } 1309 } 1310 1311 /* Returns the size of a vCPU's kvm_run structure. */ 1312 static size_t vcpu_mmap_sz(void) 1313 { 1314 int dev_fd, ret; 1315 1316 dev_fd = open_kvm_dev_path_or_exit(); 1317 1318 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL); 1319 TEST_ASSERT(ret >= 0 && ret >= sizeof(struct kvm_run), 1320 KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret)); 1321 1322 close(dev_fd); 1323 1324 return ret; 1325 } 1326 1327 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id) 1328 { 1329 struct kvm_vcpu *vcpu; 1330 1331 list_for_each_entry(vcpu, &vm->vcpus, list) { 1332 if (vcpu->id == vcpu_id) 1333 return true; 1334 } 1335 1336 return false; 1337 } 1338 1339 /* 1340 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id. 1341 * No additional vCPU setup is done. Returns the vCPU. 1342 */ 1343 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id) 1344 { 1345 struct kvm_vcpu *vcpu; 1346 1347 /* Confirm a vcpu with the specified id doesn't already exist. */ 1348 TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id); 1349 1350 /* Allocate and initialize new vcpu structure. */ 1351 vcpu = calloc(1, sizeof(*vcpu)); 1352 TEST_ASSERT(vcpu != NULL, "Insufficient Memory"); 1353 1354 vcpu->vm = vm; 1355 vcpu->id = vcpu_id; 1356 vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id); 1357 TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm); 1358 1359 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size " 1360 "smaller than expected, vcpu_mmap_sz: %zi expected_min: %zi", 1361 vcpu_mmap_sz(), sizeof(*vcpu->run)); 1362 vcpu->run = kvm_mmap(vcpu_mmap_sz(), PROT_READ | PROT_WRITE, 1363 MAP_SHARED, vcpu->fd); 1364 1365 if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD)) 1366 vcpu->stats.fd = vcpu_get_stats_fd(vcpu); 1367 else 1368 vcpu->stats.fd = -1; 1369 1370 /* Add to linked-list of VCPUs. */ 1371 list_add(&vcpu->list, &vm->vcpus); 1372 1373 return vcpu; 1374 } 1375 1376 /* 1377 * VM Virtual Address Unused Gap 1378 * 1379 * Input Args: 1380 * vm - Virtual Machine 1381 * sz - Size (bytes) 1382 * vaddr_min - Minimum Virtual Address 1383 * 1384 * Output Args: None 1385 * 1386 * Return: 1387 * Lowest virtual address at or above vaddr_min, with at least 1388 * sz unused bytes. TEST_ASSERT failure if no area of at least 1389 * size sz is available. 1390 * 1391 * Within the VM specified by vm, locates the lowest starting virtual 1392 * address >= vaddr_min, that has at least sz unallocated bytes. A 1393 * TEST_ASSERT failure occurs for invalid input or no area of at least 1394 * sz unallocated bytes >= vaddr_min is available. 1395 */ 1396 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, 1397 vm_vaddr_t vaddr_min) 1398 { 1399 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift; 1400 1401 /* Determine lowest permitted virtual page index. */ 1402 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift; 1403 if ((pgidx_start * vm->page_size) < vaddr_min) 1404 goto no_va_found; 1405 1406 /* Loop over section with enough valid virtual page indexes. */ 1407 if (!sparsebit_is_set_num(vm->vpages_valid, 1408 pgidx_start, pages)) 1409 pgidx_start = sparsebit_next_set_num(vm->vpages_valid, 1410 pgidx_start, pages); 1411 do { 1412 /* 1413 * Are there enough unused virtual pages available at 1414 * the currently proposed starting virtual page index. 1415 * If not, adjust proposed starting index to next 1416 * possible. 1417 */ 1418 if (sparsebit_is_clear_num(vm->vpages_mapped, 1419 pgidx_start, pages)) 1420 goto va_found; 1421 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped, 1422 pgidx_start, pages); 1423 if (pgidx_start == 0) 1424 goto no_va_found; 1425 1426 /* 1427 * If needed, adjust proposed starting virtual address, 1428 * to next range of valid virtual addresses. 1429 */ 1430 if (!sparsebit_is_set_num(vm->vpages_valid, 1431 pgidx_start, pages)) { 1432 pgidx_start = sparsebit_next_set_num( 1433 vm->vpages_valid, pgidx_start, pages); 1434 if (pgidx_start == 0) 1435 goto no_va_found; 1436 } 1437 } while (pgidx_start != 0); 1438 1439 no_va_found: 1440 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages); 1441 1442 /* NOT REACHED */ 1443 return -1; 1444 1445 va_found: 1446 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid, 1447 pgidx_start, pages), 1448 "Unexpected, invalid virtual page index range,\n" 1449 " pgidx_start: 0x%lx\n" 1450 " pages: 0x%lx", 1451 pgidx_start, pages); 1452 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped, 1453 pgidx_start, pages), 1454 "Unexpected, pages already mapped,\n" 1455 " pgidx_start: 0x%lx\n" 1456 " pages: 0x%lx", 1457 pgidx_start, pages); 1458 1459 return pgidx_start * vm->page_size; 1460 } 1461 1462 static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, 1463 vm_vaddr_t vaddr_min, 1464 enum kvm_mem_region_type type, 1465 bool protected) 1466 { 1467 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0); 1468 1469 virt_pgd_alloc(vm); 1470 vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages, 1471 KVM_UTIL_MIN_PFN * vm->page_size, 1472 vm->memslots[type], protected); 1473 1474 /* 1475 * Find an unused range of virtual page addresses of at least 1476 * pages in length. 1477 */ 1478 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min); 1479 1480 /* Map the virtual pages. */ 1481 for (vm_vaddr_t vaddr = vaddr_start; pages > 0; 1482 pages--, vaddr += vm->page_size, paddr += vm->page_size) { 1483 1484 virt_pg_map(vm, vaddr, paddr); 1485 } 1486 1487 return vaddr_start; 1488 } 1489 1490 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, 1491 enum kvm_mem_region_type type) 1492 { 1493 return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, 1494 vm_arch_has_protected_memory(vm)); 1495 } 1496 1497 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, 1498 vm_vaddr_t vaddr_min, 1499 enum kvm_mem_region_type type) 1500 { 1501 return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false); 1502 } 1503 1504 /* 1505 * VM Virtual Address Allocate 1506 * 1507 * Input Args: 1508 * vm - Virtual Machine 1509 * sz - Size in bytes 1510 * vaddr_min - Minimum starting virtual address 1511 * 1512 * Output Args: None 1513 * 1514 * Return: 1515 * Starting guest virtual address 1516 * 1517 * Allocates at least sz bytes within the virtual address space of the vm 1518 * given by vm. The allocated bytes are mapped to a virtual address >= 1519 * the address given by vaddr_min. Note that each allocation uses a 1520 * a unique set of pages, with the minimum real allocation being at least 1521 * a page. The allocated physical space comes from the TEST_DATA memory region. 1522 */ 1523 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min) 1524 { 1525 return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA); 1526 } 1527 1528 /* 1529 * VM Virtual Address Allocate Pages 1530 * 1531 * Input Args: 1532 * vm - Virtual Machine 1533 * 1534 * Output Args: None 1535 * 1536 * Return: 1537 * Starting guest virtual address 1538 * 1539 * Allocates at least N system pages worth of bytes within the virtual address 1540 * space of the vm. 1541 */ 1542 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages) 1543 { 1544 return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR); 1545 } 1546 1547 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type) 1548 { 1549 return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type); 1550 } 1551 1552 /* 1553 * VM Virtual Address Allocate Page 1554 * 1555 * Input Args: 1556 * vm - Virtual Machine 1557 * 1558 * Output Args: None 1559 * 1560 * Return: 1561 * Starting guest virtual address 1562 * 1563 * Allocates at least one system page worth of bytes within the virtual address 1564 * space of the vm. 1565 */ 1566 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm) 1567 { 1568 return vm_vaddr_alloc_pages(vm, 1); 1569 } 1570 1571 /* 1572 * Map a range of VM virtual address to the VM's physical address 1573 * 1574 * Input Args: 1575 * vm - Virtual Machine 1576 * vaddr - Virtuall address to map 1577 * paddr - VM Physical Address 1578 * npages - The number of pages to map 1579 * 1580 * Output Args: None 1581 * 1582 * Return: None 1583 * 1584 * Within the VM given by @vm, creates a virtual translation for 1585 * @npages starting at @vaddr to the page range starting at @paddr. 1586 */ 1587 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 1588 unsigned int npages) 1589 { 1590 size_t page_size = vm->page_size; 1591 size_t size = npages * page_size; 1592 1593 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow"); 1594 TEST_ASSERT(paddr + size > paddr, "Paddr overflow"); 1595 1596 while (npages--) { 1597 virt_pg_map(vm, vaddr, paddr); 1598 1599 vaddr += page_size; 1600 paddr += page_size; 1601 } 1602 } 1603 1604 /* 1605 * Address VM Physical to Host Virtual 1606 * 1607 * Input Args: 1608 * vm - Virtual Machine 1609 * gpa - VM physical address 1610 * 1611 * Output Args: None 1612 * 1613 * Return: 1614 * Equivalent host virtual address 1615 * 1616 * Locates the memory region containing the VM physical address given 1617 * by gpa, within the VM given by vm. When found, the host virtual 1618 * address providing the memory to the vm physical address is returned. 1619 * A TEST_ASSERT failure occurs if no region containing gpa exists. 1620 */ 1621 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa) 1622 { 1623 struct userspace_mem_region *region; 1624 1625 gpa = vm_untag_gpa(vm, gpa); 1626 1627 region = userspace_mem_region_find(vm, gpa, gpa); 1628 if (!region) { 1629 TEST_FAIL("No vm physical memory at 0x%lx", gpa); 1630 return NULL; 1631 } 1632 1633 return (void *)((uintptr_t)region->host_mem 1634 + (gpa - region->region.guest_phys_addr)); 1635 } 1636 1637 /* 1638 * Address Host Virtual to VM Physical 1639 * 1640 * Input Args: 1641 * vm - Virtual Machine 1642 * hva - Host virtual address 1643 * 1644 * Output Args: None 1645 * 1646 * Return: 1647 * Equivalent VM physical address 1648 * 1649 * Locates the memory region containing the host virtual address given 1650 * by hva, within the VM given by vm. When found, the equivalent 1651 * VM physical address is returned. A TEST_ASSERT failure occurs if no 1652 * region containing hva exists. 1653 */ 1654 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva) 1655 { 1656 struct rb_node *node; 1657 1658 for (node = vm->regions.hva_tree.rb_node; node; ) { 1659 struct userspace_mem_region *region = 1660 container_of(node, struct userspace_mem_region, hva_node); 1661 1662 if (hva >= region->host_mem) { 1663 if (hva <= (region->host_mem 1664 + region->region.memory_size - 1)) 1665 return (vm_paddr_t)((uintptr_t) 1666 region->region.guest_phys_addr 1667 + (hva - (uintptr_t)region->host_mem)); 1668 1669 node = node->rb_right; 1670 } else 1671 node = node->rb_left; 1672 } 1673 1674 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva); 1675 return -1; 1676 } 1677 1678 /* 1679 * Address VM physical to Host Virtual *alias*. 1680 * 1681 * Input Args: 1682 * vm - Virtual Machine 1683 * gpa - VM physical address 1684 * 1685 * Output Args: None 1686 * 1687 * Return: 1688 * Equivalent address within the host virtual *alias* area, or NULL 1689 * (without failing the test) if the guest memory is not shared (so 1690 * no alias exists). 1691 * 1692 * Create a writable, shared virtual=>physical alias for the specific GPA. 1693 * The primary use case is to allow the host selftest to manipulate guest 1694 * memory without mapping said memory in the guest's address space. And, for 1695 * userfaultfd-based demand paging, to do so without triggering userfaults. 1696 */ 1697 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa) 1698 { 1699 struct userspace_mem_region *region; 1700 uintptr_t offset; 1701 1702 region = userspace_mem_region_find(vm, gpa, gpa); 1703 if (!region) 1704 return NULL; 1705 1706 if (!region->host_alias) 1707 return NULL; 1708 1709 offset = gpa - region->region.guest_phys_addr; 1710 return (void *) ((uintptr_t) region->host_alias + offset); 1711 } 1712 1713 /* Create an interrupt controller chip for the specified VM. */ 1714 void vm_create_irqchip(struct kvm_vm *vm) 1715 { 1716 int r; 1717 1718 /* 1719 * Allocate a fully in-kernel IRQ chip by default, but fall back to a 1720 * split model (x86 only) if that fails (KVM x86 allows compiling out 1721 * support for KVM_CREATE_IRQCHIP). 1722 */ 1723 r = __vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL); 1724 if (r && errno == ENOTTY && kvm_has_cap(KVM_CAP_SPLIT_IRQCHIP)) 1725 vm_enable_cap(vm, KVM_CAP_SPLIT_IRQCHIP, 24); 1726 else 1727 TEST_ASSERT_VM_VCPU_IOCTL(!r, KVM_CREATE_IRQCHIP, r, vm); 1728 1729 vm->has_irqchip = true; 1730 } 1731 1732 int _vcpu_run(struct kvm_vcpu *vcpu) 1733 { 1734 int rc; 1735 1736 do { 1737 rc = __vcpu_run(vcpu); 1738 } while (rc == -1 && errno == EINTR); 1739 1740 if (!rc) 1741 assert_on_unhandled_exception(vcpu); 1742 1743 return rc; 1744 } 1745 1746 /* 1747 * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR. 1748 * Assert if the KVM returns an error (other than -EINTR). 1749 */ 1750 void vcpu_run(struct kvm_vcpu *vcpu) 1751 { 1752 int ret = _vcpu_run(vcpu); 1753 1754 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret)); 1755 } 1756 1757 void vcpu_run_complete_io(struct kvm_vcpu *vcpu) 1758 { 1759 int ret; 1760 1761 vcpu->run->immediate_exit = 1; 1762 ret = __vcpu_run(vcpu); 1763 vcpu->run->immediate_exit = 0; 1764 1765 TEST_ASSERT(ret == -1 && errno == EINTR, 1766 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i", 1767 ret, errno); 1768 } 1769 1770 /* 1771 * Get the list of guest registers which are supported for 1772 * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls. Returns a kvm_reg_list pointer, 1773 * it is the caller's responsibility to free the list. 1774 */ 1775 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu) 1776 { 1777 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list; 1778 int ret; 1779 1780 ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, ®_list_n); 1781 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0"); 1782 1783 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64)); 1784 reg_list->n = reg_list_n.n; 1785 vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list); 1786 return reg_list; 1787 } 1788 1789 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu) 1790 { 1791 uint32_t page_size = getpagesize(); 1792 uint32_t size = vcpu->vm->dirty_ring_size; 1793 1794 TEST_ASSERT(size > 0, "Should enable dirty ring first"); 1795 1796 if (!vcpu->dirty_gfns) { 1797 void *addr; 1798 1799 addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd, 1800 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1801 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private"); 1802 1803 addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd, 1804 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1805 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec"); 1806 1807 addr = __kvm_mmap(size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 1808 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1809 1810 vcpu->dirty_gfns = addr; 1811 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn); 1812 } 1813 1814 return vcpu->dirty_gfns; 1815 } 1816 1817 /* 1818 * Device Ioctl 1819 */ 1820 1821 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr) 1822 { 1823 struct kvm_device_attr attribute = { 1824 .group = group, 1825 .attr = attr, 1826 .flags = 0, 1827 }; 1828 1829 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute); 1830 } 1831 1832 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type) 1833 { 1834 struct kvm_create_device create_dev = { 1835 .type = type, 1836 .flags = KVM_CREATE_DEVICE_TEST, 1837 }; 1838 1839 return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev); 1840 } 1841 1842 int __kvm_create_device(struct kvm_vm *vm, uint64_t type) 1843 { 1844 struct kvm_create_device create_dev = { 1845 .type = type, 1846 .fd = -1, 1847 .flags = 0, 1848 }; 1849 int err; 1850 1851 err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev); 1852 TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value"); 1853 return err ? : create_dev.fd; 1854 } 1855 1856 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val) 1857 { 1858 struct kvm_device_attr kvmattr = { 1859 .group = group, 1860 .attr = attr, 1861 .flags = 0, 1862 .addr = (uintptr_t)val, 1863 }; 1864 1865 return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr); 1866 } 1867 1868 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val) 1869 { 1870 struct kvm_device_attr kvmattr = { 1871 .group = group, 1872 .attr = attr, 1873 .flags = 0, 1874 .addr = (uintptr_t)val, 1875 }; 1876 1877 return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr); 1878 } 1879 1880 /* 1881 * IRQ related functions. 1882 */ 1883 1884 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level) 1885 { 1886 struct kvm_irq_level irq_level = { 1887 .irq = irq, 1888 .level = level, 1889 }; 1890 1891 return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level); 1892 } 1893 1894 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level) 1895 { 1896 int ret = _kvm_irq_line(vm, irq, level); 1897 1898 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret)); 1899 } 1900 1901 struct kvm_irq_routing *kvm_gsi_routing_create(void) 1902 { 1903 struct kvm_irq_routing *routing; 1904 size_t size; 1905 1906 size = sizeof(struct kvm_irq_routing); 1907 /* Allocate space for the max number of entries: this wastes 196 KBs. */ 1908 size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry); 1909 routing = calloc(1, size); 1910 assert(routing); 1911 1912 return routing; 1913 } 1914 1915 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing, 1916 uint32_t gsi, uint32_t pin) 1917 { 1918 int i; 1919 1920 assert(routing); 1921 assert(routing->nr < KVM_MAX_IRQ_ROUTES); 1922 1923 i = routing->nr; 1924 routing->entries[i].gsi = gsi; 1925 routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP; 1926 routing->entries[i].flags = 0; 1927 routing->entries[i].u.irqchip.irqchip = 0; 1928 routing->entries[i].u.irqchip.pin = pin; 1929 routing->nr++; 1930 } 1931 1932 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing) 1933 { 1934 int ret; 1935 1936 assert(routing); 1937 ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing); 1938 free(routing); 1939 1940 return ret; 1941 } 1942 1943 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing) 1944 { 1945 int ret; 1946 1947 ret = _kvm_gsi_routing_write(vm, routing); 1948 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret)); 1949 } 1950 1951 /* 1952 * VM Dump 1953 * 1954 * Input Args: 1955 * vm - Virtual Machine 1956 * indent - Left margin indent amount 1957 * 1958 * Output Args: 1959 * stream - Output FILE stream 1960 * 1961 * Return: None 1962 * 1963 * Dumps the current state of the VM given by vm, to the FILE stream 1964 * given by stream. 1965 */ 1966 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 1967 { 1968 int ctr; 1969 struct userspace_mem_region *region; 1970 struct kvm_vcpu *vcpu; 1971 1972 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode); 1973 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd); 1974 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size); 1975 fprintf(stream, "%*sMem Regions:\n", indent, ""); 1976 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) { 1977 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx " 1978 "host_virt: %p\n", indent + 2, "", 1979 (uint64_t) region->region.guest_phys_addr, 1980 (uint64_t) region->region.memory_size, 1981 region->host_mem); 1982 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, ""); 1983 sparsebit_dump(stream, region->unused_phy_pages, 0); 1984 if (region->protected_phy_pages) { 1985 fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, ""); 1986 sparsebit_dump(stream, region->protected_phy_pages, 0); 1987 } 1988 } 1989 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, ""); 1990 sparsebit_dump(stream, vm->vpages_mapped, indent + 2); 1991 fprintf(stream, "%*spgd_created: %u\n", indent, "", 1992 vm->mmu.pgd_created); 1993 if (vm->mmu.pgd_created) { 1994 fprintf(stream, "%*sVirtual Translation Tables:\n", 1995 indent + 2, ""); 1996 virt_dump(stream, vm, indent + 4); 1997 } 1998 fprintf(stream, "%*sVCPUs:\n", indent, ""); 1999 2000 list_for_each_entry(vcpu, &vm->vcpus, list) 2001 vcpu_dump(stream, vcpu, indent + 2); 2002 } 2003 2004 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x} 2005 2006 /* Known KVM exit reasons */ 2007 static struct exit_reason { 2008 unsigned int reason; 2009 const char *name; 2010 } exit_reasons_known[] = { 2011 KVM_EXIT_STRING(UNKNOWN), 2012 KVM_EXIT_STRING(EXCEPTION), 2013 KVM_EXIT_STRING(IO), 2014 KVM_EXIT_STRING(HYPERCALL), 2015 KVM_EXIT_STRING(DEBUG), 2016 KVM_EXIT_STRING(HLT), 2017 KVM_EXIT_STRING(MMIO), 2018 KVM_EXIT_STRING(IRQ_WINDOW_OPEN), 2019 KVM_EXIT_STRING(SHUTDOWN), 2020 KVM_EXIT_STRING(FAIL_ENTRY), 2021 KVM_EXIT_STRING(INTR), 2022 KVM_EXIT_STRING(SET_TPR), 2023 KVM_EXIT_STRING(TPR_ACCESS), 2024 KVM_EXIT_STRING(S390_SIEIC), 2025 KVM_EXIT_STRING(S390_RESET), 2026 KVM_EXIT_STRING(DCR), 2027 KVM_EXIT_STRING(NMI), 2028 KVM_EXIT_STRING(INTERNAL_ERROR), 2029 KVM_EXIT_STRING(OSI), 2030 KVM_EXIT_STRING(PAPR_HCALL), 2031 KVM_EXIT_STRING(S390_UCONTROL), 2032 KVM_EXIT_STRING(WATCHDOG), 2033 KVM_EXIT_STRING(S390_TSCH), 2034 KVM_EXIT_STRING(EPR), 2035 KVM_EXIT_STRING(SYSTEM_EVENT), 2036 KVM_EXIT_STRING(S390_STSI), 2037 KVM_EXIT_STRING(IOAPIC_EOI), 2038 KVM_EXIT_STRING(HYPERV), 2039 KVM_EXIT_STRING(ARM_NISV), 2040 KVM_EXIT_STRING(X86_RDMSR), 2041 KVM_EXIT_STRING(X86_WRMSR), 2042 KVM_EXIT_STRING(DIRTY_RING_FULL), 2043 KVM_EXIT_STRING(AP_RESET_HOLD), 2044 KVM_EXIT_STRING(X86_BUS_LOCK), 2045 KVM_EXIT_STRING(XEN), 2046 KVM_EXIT_STRING(RISCV_SBI), 2047 KVM_EXIT_STRING(RISCV_CSR), 2048 KVM_EXIT_STRING(NOTIFY), 2049 KVM_EXIT_STRING(LOONGARCH_IOCSR), 2050 KVM_EXIT_STRING(MEMORY_FAULT), 2051 KVM_EXIT_STRING(ARM_SEA), 2052 }; 2053 2054 /* 2055 * Exit Reason String 2056 * 2057 * Input Args: 2058 * exit_reason - Exit reason 2059 * 2060 * Output Args: None 2061 * 2062 * Return: 2063 * Constant string pointer describing the exit reason. 2064 * 2065 * Locates and returns a constant string that describes the KVM exit 2066 * reason given by exit_reason. If no such string is found, a constant 2067 * string of "Unknown" is returned. 2068 */ 2069 const char *exit_reason_str(unsigned int exit_reason) 2070 { 2071 unsigned int n1; 2072 2073 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) { 2074 if (exit_reason == exit_reasons_known[n1].reason) 2075 return exit_reasons_known[n1].name; 2076 } 2077 2078 return "Unknown"; 2079 } 2080 2081 /* 2082 * Physical Contiguous Page Allocator 2083 * 2084 * Input Args: 2085 * vm - Virtual Machine 2086 * num - number of pages 2087 * paddr_min - Physical address minimum 2088 * memslot - Memory region to allocate page from 2089 * protected - True if the pages will be used as protected/private memory 2090 * 2091 * Output Args: None 2092 * 2093 * Return: 2094 * Starting physical address 2095 * 2096 * Within the VM specified by vm, locates a range of available physical 2097 * pages at or above paddr_min. If found, the pages are marked as in use 2098 * and their base address is returned. A TEST_ASSERT failure occurs if 2099 * not enough pages are available at or above paddr_min. 2100 */ 2101 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, 2102 vm_paddr_t paddr_min, uint32_t memslot, 2103 bool protected) 2104 { 2105 struct userspace_mem_region *region; 2106 sparsebit_idx_t pg, base; 2107 2108 TEST_ASSERT(num > 0, "Must allocate at least one page"); 2109 2110 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address " 2111 "not divisible by page size.\n" 2112 " paddr_min: 0x%lx page_size: 0x%x", 2113 paddr_min, vm->page_size); 2114 2115 region = memslot2region(vm, memslot); 2116 TEST_ASSERT(!protected || region->protected_phy_pages, 2117 "Region doesn't support protected memory"); 2118 2119 base = pg = paddr_min >> vm->page_shift; 2120 do { 2121 for (; pg < base + num; ++pg) { 2122 if (!sparsebit_is_set(region->unused_phy_pages, pg)) { 2123 base = pg = sparsebit_next_set(region->unused_phy_pages, pg); 2124 break; 2125 } 2126 } 2127 } while (pg && pg != base + num); 2128 2129 if (pg == 0) { 2130 fprintf(stderr, "No guest physical page available, " 2131 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n", 2132 paddr_min, vm->page_size, memslot); 2133 fputs("---- vm dump ----\n", stderr); 2134 vm_dump(stderr, vm, 2); 2135 abort(); 2136 } 2137 2138 for (pg = base; pg < base + num; ++pg) { 2139 sparsebit_clear(region->unused_phy_pages, pg); 2140 if (protected) 2141 sparsebit_set(region->protected_phy_pages, pg); 2142 } 2143 2144 return base * vm->page_size; 2145 } 2146 2147 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min, 2148 uint32_t memslot) 2149 { 2150 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot); 2151 } 2152 2153 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm) 2154 { 2155 return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 2156 vm->memslots[MEM_REGION_PT]); 2157 } 2158 2159 /* 2160 * Address Guest Virtual to Host Virtual 2161 * 2162 * Input Args: 2163 * vm - Virtual Machine 2164 * gva - VM virtual address 2165 * 2166 * Output Args: None 2167 * 2168 * Return: 2169 * Equivalent host virtual address 2170 */ 2171 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva) 2172 { 2173 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva)); 2174 } 2175 2176 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm) 2177 { 2178 return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1; 2179 } 2180 2181 static unsigned int vm_calc_num_pages(unsigned int num_pages, 2182 unsigned int page_shift, 2183 unsigned int new_page_shift, 2184 bool ceil) 2185 { 2186 unsigned int n = 1 << (new_page_shift - page_shift); 2187 2188 if (page_shift >= new_page_shift) 2189 return num_pages * (1 << (page_shift - new_page_shift)); 2190 2191 return num_pages / n + !!(ceil && num_pages % n); 2192 } 2193 2194 static inline int getpageshift(void) 2195 { 2196 return __builtin_ffs(getpagesize()) - 1; 2197 } 2198 2199 unsigned int 2200 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages) 2201 { 2202 return vm_calc_num_pages(num_guest_pages, 2203 vm_guest_mode_params[mode].page_shift, 2204 getpageshift(), true); 2205 } 2206 2207 unsigned int 2208 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages) 2209 { 2210 return vm_calc_num_pages(num_host_pages, getpageshift(), 2211 vm_guest_mode_params[mode].page_shift, false); 2212 } 2213 2214 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size) 2215 { 2216 unsigned int n; 2217 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size); 2218 return vm_adjust_num_guest_pages(mode, n); 2219 } 2220 2221 /* 2222 * Read binary stats descriptors 2223 * 2224 * Input Args: 2225 * stats_fd - the file descriptor for the binary stats file from which to read 2226 * header - the binary stats metadata header corresponding to the given FD 2227 * 2228 * Output Args: None 2229 * 2230 * Return: 2231 * A pointer to a newly allocated series of stat descriptors. 2232 * Caller is responsible for freeing the returned kvm_stats_desc. 2233 * 2234 * Read the stats descriptors from the binary stats interface. 2235 */ 2236 struct kvm_stats_desc *read_stats_descriptors(int stats_fd, 2237 struct kvm_stats_header *header) 2238 { 2239 struct kvm_stats_desc *stats_desc; 2240 ssize_t desc_size, total_size, ret; 2241 2242 desc_size = get_stats_descriptor_size(header); 2243 total_size = header->num_desc * desc_size; 2244 2245 stats_desc = calloc(header->num_desc, desc_size); 2246 TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors"); 2247 2248 ret = pread(stats_fd, stats_desc, total_size, header->desc_offset); 2249 TEST_ASSERT(ret == total_size, "Read KVM stats descriptors"); 2250 2251 return stats_desc; 2252 } 2253 2254 /* 2255 * Read stat data for a particular stat 2256 * 2257 * Input Args: 2258 * stats_fd - the file descriptor for the binary stats file from which to read 2259 * header - the binary stats metadata header corresponding to the given FD 2260 * desc - the binary stat metadata for the particular stat to be read 2261 * max_elements - the maximum number of 8-byte values to read into data 2262 * 2263 * Output Args: 2264 * data - the buffer into which stat data should be read 2265 * 2266 * Read the data values of a specified stat from the binary stats interface. 2267 */ 2268 void read_stat_data(int stats_fd, struct kvm_stats_header *header, 2269 struct kvm_stats_desc *desc, uint64_t *data, 2270 size_t max_elements) 2271 { 2272 size_t nr_elements = min_t(ssize_t, desc->size, max_elements); 2273 size_t size = nr_elements * sizeof(*data); 2274 ssize_t ret; 2275 2276 TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name); 2277 TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name); 2278 2279 ret = pread(stats_fd, data, size, 2280 header->data_offset + desc->offset); 2281 2282 TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)", 2283 desc->name, errno, strerror(errno)); 2284 TEST_ASSERT(ret == size, 2285 "pread() on stat '%s' read %ld bytes, wanted %lu bytes", 2286 desc->name, size, ret); 2287 } 2288 2289 void kvm_get_stat(struct kvm_binary_stats *stats, const char *name, 2290 uint64_t *data, size_t max_elements) 2291 { 2292 struct kvm_stats_desc *desc; 2293 size_t size_desc; 2294 int i; 2295 2296 if (!stats->desc) { 2297 read_stats_header(stats->fd, &stats->header); 2298 stats->desc = read_stats_descriptors(stats->fd, &stats->header); 2299 } 2300 2301 size_desc = get_stats_descriptor_size(&stats->header); 2302 2303 for (i = 0; i < stats->header.num_desc; ++i) { 2304 desc = (void *)stats->desc + (i * size_desc); 2305 2306 if (strcmp(desc->name, name)) 2307 continue; 2308 2309 read_stat_data(stats->fd, &stats->header, desc, data, max_elements); 2310 return; 2311 } 2312 2313 TEST_FAIL("Unable to find stat '%s'", name); 2314 } 2315 2316 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm, unsigned int nr_vcpus) 2317 { 2318 } 2319 2320 __weak void kvm_arch_vm_finalize_vcpus(struct kvm_vm *vm) 2321 { 2322 } 2323 2324 __weak void kvm_arch_vm_release(struct kvm_vm *vm) 2325 { 2326 } 2327 2328 __weak void kvm_selftest_arch_init(void) 2329 { 2330 } 2331 2332 static void report_unexpected_signal(int signum) 2333 { 2334 #define KVM_CASE_SIGNUM(sig) \ 2335 case sig: TEST_FAIL("Unexpected " #sig " (%d)\n", signum) 2336 2337 switch (signum) { 2338 KVM_CASE_SIGNUM(SIGBUS); 2339 KVM_CASE_SIGNUM(SIGSEGV); 2340 KVM_CASE_SIGNUM(SIGILL); 2341 KVM_CASE_SIGNUM(SIGFPE); 2342 default: 2343 TEST_FAIL("Unexpected signal %d\n", signum); 2344 } 2345 } 2346 2347 void __attribute((constructor)) kvm_selftest_init(void) 2348 { 2349 struct sigaction sig_sa = { 2350 .sa_handler = report_unexpected_signal, 2351 }; 2352 2353 /* Tell stdout not to buffer its content. */ 2354 setbuf(stdout, NULL); 2355 2356 sigaction(SIGBUS, &sig_sa, NULL); 2357 sigaction(SIGSEGV, &sig_sa, NULL); 2358 sigaction(SIGILL, &sig_sa, NULL); 2359 sigaction(SIGFPE, &sig_sa, NULL); 2360 2361 guest_random_seed = last_guest_seed = random(); 2362 pr_info("Random seed: 0x%x\n", guest_random_seed); 2363 2364 kvm_selftest_arch_init(); 2365 } 2366 2367 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr) 2368 { 2369 sparsebit_idx_t pg = 0; 2370 struct userspace_mem_region *region; 2371 2372 if (!vm_arch_has_protected_memory(vm)) 2373 return false; 2374 2375 region = userspace_mem_region_find(vm, paddr, paddr); 2376 TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr); 2377 2378 pg = paddr >> vm->page_shift; 2379 return sparsebit_is_set(region->protected_phy_pages, pg); 2380 } 2381 2382 __weak bool kvm_arch_has_default_irqchip(void) 2383 { 2384 return false; 2385 } 2386