xref: /linux/tools/testing/selftests/kvm/lib/kvm_util.c (revision c34e9ab9a612ee8b18273398ef75c207b01f516d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/kvm_util.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 #include "test_util.h"
8 #include "kvm_util.h"
9 #include "processor.h"
10 #include "ucall_common.h"
11 
12 #include <assert.h>
13 #include <sched.h>
14 #include <sys/mman.h>
15 #include <sys/types.h>
16 #include <sys/stat.h>
17 #include <unistd.h>
18 #include <linux/kernel.h>
19 
20 #define KVM_UTIL_MIN_PFN	2
21 
22 uint32_t guest_random_seed;
23 struct guest_random_state guest_rng;
24 static uint32_t last_guest_seed;
25 
26 static int vcpu_mmap_sz(void);
27 
28 int open_path_or_exit(const char *path, int flags)
29 {
30 	int fd;
31 
32 	fd = open(path, flags);
33 	__TEST_REQUIRE(fd >= 0 || errno != ENOENT, "Cannot open %s: %s", path, strerror(errno));
34 	TEST_ASSERT(fd >= 0, "Failed to open '%s'", path);
35 
36 	return fd;
37 }
38 
39 /*
40  * Open KVM_DEV_PATH if available, otherwise exit the entire program.
41  *
42  * Input Args:
43  *   flags - The flags to pass when opening KVM_DEV_PATH.
44  *
45  * Return:
46  *   The opened file descriptor of /dev/kvm.
47  */
48 static int _open_kvm_dev_path_or_exit(int flags)
49 {
50 	return open_path_or_exit(KVM_DEV_PATH, flags);
51 }
52 
53 int open_kvm_dev_path_or_exit(void)
54 {
55 	return _open_kvm_dev_path_or_exit(O_RDONLY);
56 }
57 
58 static ssize_t get_module_param(const char *module_name, const char *param,
59 				void *buffer, size_t buffer_size)
60 {
61 	const int path_size = 128;
62 	char path[path_size];
63 	ssize_t bytes_read;
64 	int fd, r;
65 
66 	r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
67 		     module_name, param);
68 	TEST_ASSERT(r < path_size,
69 		    "Failed to construct sysfs path in %d bytes.", path_size);
70 
71 	fd = open_path_or_exit(path, O_RDONLY);
72 
73 	bytes_read = read(fd, buffer, buffer_size);
74 	TEST_ASSERT(bytes_read > 0, "read(%s) returned %ld, wanted %ld bytes",
75 		    path, bytes_read, buffer_size);
76 
77 	r = close(fd);
78 	TEST_ASSERT(!r, "close(%s) failed", path);
79 	return bytes_read;
80 }
81 
82 static int get_module_param_integer(const char *module_name, const char *param)
83 {
84 	/*
85 	 * 16 bytes to hold a 64-bit value (1 byte per char), 1 byte for the
86 	 * NUL char, and 1 byte because the kernel sucks and inserts a newline
87 	 * at the end.
88 	 */
89 	char value[16 + 1 + 1];
90 	ssize_t r;
91 
92 	memset(value, '\0', sizeof(value));
93 
94 	r = get_module_param(module_name, param, value, sizeof(value));
95 	TEST_ASSERT(value[r - 1] == '\n',
96 		    "Expected trailing newline, got char '%c'", value[r - 1]);
97 
98 	/*
99 	 * Squash the newline, otherwise atoi_paranoid() will complain about
100 	 * trailing non-NUL characters in the string.
101 	 */
102 	value[r - 1] = '\0';
103 	return atoi_paranoid(value);
104 }
105 
106 static bool get_module_param_bool(const char *module_name, const char *param)
107 {
108 	char value;
109 	ssize_t r;
110 
111 	r = get_module_param(module_name, param, &value, sizeof(value));
112 	TEST_ASSERT_EQ(r, 1);
113 
114 	if (value == 'Y')
115 		return true;
116 	else if (value == 'N')
117 		return false;
118 
119 	TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
120 }
121 
122 bool get_kvm_param_bool(const char *param)
123 {
124 	return get_module_param_bool("kvm", param);
125 }
126 
127 bool get_kvm_intel_param_bool(const char *param)
128 {
129 	return get_module_param_bool("kvm_intel", param);
130 }
131 
132 bool get_kvm_amd_param_bool(const char *param)
133 {
134 	return get_module_param_bool("kvm_amd", param);
135 }
136 
137 int get_kvm_param_integer(const char *param)
138 {
139 	return get_module_param_integer("kvm", param);
140 }
141 
142 int get_kvm_intel_param_integer(const char *param)
143 {
144 	return get_module_param_integer("kvm_intel", param);
145 }
146 
147 int get_kvm_amd_param_integer(const char *param)
148 {
149 	return get_module_param_integer("kvm_amd", param);
150 }
151 
152 /*
153  * Capability
154  *
155  * Input Args:
156  *   cap - Capability
157  *
158  * Output Args: None
159  *
160  * Return:
161  *   On success, the Value corresponding to the capability (KVM_CAP_*)
162  *   specified by the value of cap.  On failure a TEST_ASSERT failure
163  *   is produced.
164  *
165  * Looks up and returns the value corresponding to the capability
166  * (KVM_CAP_*) given by cap.
167  */
168 unsigned int kvm_check_cap(long cap)
169 {
170 	int ret;
171 	int kvm_fd;
172 
173 	kvm_fd = open_kvm_dev_path_or_exit();
174 	ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
175 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
176 
177 	close(kvm_fd);
178 
179 	return (unsigned int)ret;
180 }
181 
182 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
183 {
184 	if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
185 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
186 	else
187 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
188 	vm->dirty_ring_size = ring_size;
189 }
190 
191 static void vm_open(struct kvm_vm *vm)
192 {
193 	vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
194 
195 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
196 
197 	vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
198 	TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
199 }
200 
201 const char *vm_guest_mode_string(uint32_t i)
202 {
203 	static const char * const strings[] = {
204 		[VM_MODE_P52V48_4K]	= "PA-bits:52,  VA-bits:48,  4K pages",
205 		[VM_MODE_P52V48_16K]	= "PA-bits:52,  VA-bits:48, 16K pages",
206 		[VM_MODE_P52V48_64K]	= "PA-bits:52,  VA-bits:48, 64K pages",
207 		[VM_MODE_P48V48_4K]	= "PA-bits:48,  VA-bits:48,  4K pages",
208 		[VM_MODE_P48V48_16K]	= "PA-bits:48,  VA-bits:48, 16K pages",
209 		[VM_MODE_P48V48_64K]	= "PA-bits:48,  VA-bits:48, 64K pages",
210 		[VM_MODE_P40V48_4K]	= "PA-bits:40,  VA-bits:48,  4K pages",
211 		[VM_MODE_P40V48_16K]	= "PA-bits:40,  VA-bits:48, 16K pages",
212 		[VM_MODE_P40V48_64K]	= "PA-bits:40,  VA-bits:48, 64K pages",
213 		[VM_MODE_PXXV48_4K]	= "PA-bits:ANY, VA-bits:48,  4K pages",
214 		[VM_MODE_P47V64_4K]	= "PA-bits:47,  VA-bits:64,  4K pages",
215 		[VM_MODE_P44V64_4K]	= "PA-bits:44,  VA-bits:64,  4K pages",
216 		[VM_MODE_P36V48_4K]	= "PA-bits:36,  VA-bits:48,  4K pages",
217 		[VM_MODE_P36V48_16K]	= "PA-bits:36,  VA-bits:48, 16K pages",
218 		[VM_MODE_P36V48_64K]	= "PA-bits:36,  VA-bits:48, 64K pages",
219 		[VM_MODE_P36V47_16K]	= "PA-bits:36,  VA-bits:47, 16K pages",
220 	};
221 	_Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
222 		       "Missing new mode strings?");
223 
224 	TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
225 
226 	return strings[i];
227 }
228 
229 const struct vm_guest_mode_params vm_guest_mode_params[] = {
230 	[VM_MODE_P52V48_4K]	= { 52, 48,  0x1000, 12 },
231 	[VM_MODE_P52V48_16K]	= { 52, 48,  0x4000, 14 },
232 	[VM_MODE_P52V48_64K]	= { 52, 48, 0x10000, 16 },
233 	[VM_MODE_P48V48_4K]	= { 48, 48,  0x1000, 12 },
234 	[VM_MODE_P48V48_16K]	= { 48, 48,  0x4000, 14 },
235 	[VM_MODE_P48V48_64K]	= { 48, 48, 0x10000, 16 },
236 	[VM_MODE_P40V48_4K]	= { 40, 48,  0x1000, 12 },
237 	[VM_MODE_P40V48_16K]	= { 40, 48,  0x4000, 14 },
238 	[VM_MODE_P40V48_64K]	= { 40, 48, 0x10000, 16 },
239 	[VM_MODE_PXXV48_4K]	= {  0,  0,  0x1000, 12 },
240 	[VM_MODE_P47V64_4K]	= { 47, 64,  0x1000, 12 },
241 	[VM_MODE_P44V64_4K]	= { 44, 64,  0x1000, 12 },
242 	[VM_MODE_P36V48_4K]	= { 36, 48,  0x1000, 12 },
243 	[VM_MODE_P36V48_16K]	= { 36, 48,  0x4000, 14 },
244 	[VM_MODE_P36V48_64K]	= { 36, 48, 0x10000, 16 },
245 	[VM_MODE_P36V47_16K]	= { 36, 47,  0x4000, 14 },
246 };
247 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
248 	       "Missing new mode params?");
249 
250 /*
251  * Initializes vm->vpages_valid to match the canonical VA space of the
252  * architecture.
253  *
254  * The default implementation is valid for architectures which split the
255  * range addressed by a single page table into a low and high region
256  * based on the MSB of the VA. On architectures with this behavior
257  * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1].
258  */
259 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
260 {
261 	sparsebit_set_num(vm->vpages_valid,
262 		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
263 	sparsebit_set_num(vm->vpages_valid,
264 		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
265 		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
266 }
267 
268 struct kvm_vm *____vm_create(struct vm_shape shape)
269 {
270 	struct kvm_vm *vm;
271 
272 	vm = calloc(1, sizeof(*vm));
273 	TEST_ASSERT(vm != NULL, "Insufficient Memory");
274 
275 	INIT_LIST_HEAD(&vm->vcpus);
276 	vm->regions.gpa_tree = RB_ROOT;
277 	vm->regions.hva_tree = RB_ROOT;
278 	hash_init(vm->regions.slot_hash);
279 
280 	vm->mode = shape.mode;
281 	vm->type = shape.type;
282 
283 	vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits;
284 	vm->va_bits = vm_guest_mode_params[vm->mode].va_bits;
285 	vm->page_size = vm_guest_mode_params[vm->mode].page_size;
286 	vm->page_shift = vm_guest_mode_params[vm->mode].page_shift;
287 
288 	/* Setup mode specific traits. */
289 	switch (vm->mode) {
290 	case VM_MODE_P52V48_4K:
291 		vm->pgtable_levels = 4;
292 		break;
293 	case VM_MODE_P52V48_64K:
294 		vm->pgtable_levels = 3;
295 		break;
296 	case VM_MODE_P48V48_4K:
297 		vm->pgtable_levels = 4;
298 		break;
299 	case VM_MODE_P48V48_64K:
300 		vm->pgtable_levels = 3;
301 		break;
302 	case VM_MODE_P40V48_4K:
303 	case VM_MODE_P36V48_4K:
304 		vm->pgtable_levels = 4;
305 		break;
306 	case VM_MODE_P40V48_64K:
307 	case VM_MODE_P36V48_64K:
308 		vm->pgtable_levels = 3;
309 		break;
310 	case VM_MODE_P52V48_16K:
311 	case VM_MODE_P48V48_16K:
312 	case VM_MODE_P40V48_16K:
313 	case VM_MODE_P36V48_16K:
314 		vm->pgtable_levels = 4;
315 		break;
316 	case VM_MODE_P36V47_16K:
317 		vm->pgtable_levels = 3;
318 		break;
319 	case VM_MODE_PXXV48_4K:
320 #ifdef __x86_64__
321 		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
322 		kvm_init_vm_address_properties(vm);
323 		/*
324 		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
325 		 * it doesn't take effect unless a CR4.LA57 is set, which it
326 		 * isn't for this mode (48-bit virtual address space).
327 		 */
328 		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
329 			    "Linear address width (%d bits) not supported",
330 			    vm->va_bits);
331 		pr_debug("Guest physical address width detected: %d\n",
332 			 vm->pa_bits);
333 		vm->pgtable_levels = 4;
334 		vm->va_bits = 48;
335 #else
336 		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
337 #endif
338 		break;
339 	case VM_MODE_P47V64_4K:
340 		vm->pgtable_levels = 5;
341 		break;
342 	case VM_MODE_P44V64_4K:
343 		vm->pgtable_levels = 5;
344 		break;
345 	default:
346 		TEST_FAIL("Unknown guest mode: 0x%x", vm->mode);
347 	}
348 
349 #ifdef __aarch64__
350 	TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types");
351 	if (vm->pa_bits != 40)
352 		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
353 #endif
354 
355 	vm_open(vm);
356 
357 	/* Limit to VA-bit canonical virtual addresses. */
358 	vm->vpages_valid = sparsebit_alloc();
359 	vm_vaddr_populate_bitmap(vm);
360 
361 	/* Limit physical addresses to PA-bits. */
362 	vm->max_gfn = vm_compute_max_gfn(vm);
363 
364 	/* Allocate and setup memory for guest. */
365 	vm->vpages_mapped = sparsebit_alloc();
366 
367 	return vm;
368 }
369 
370 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
371 				     uint32_t nr_runnable_vcpus,
372 				     uint64_t extra_mem_pages)
373 {
374 	uint64_t page_size = vm_guest_mode_params[mode].page_size;
375 	uint64_t nr_pages;
376 
377 	TEST_ASSERT(nr_runnable_vcpus,
378 		    "Use vm_create_barebones() for VMs that _never_ have vCPUs");
379 
380 	TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
381 		    "nr_vcpus = %d too large for host, max-vcpus = %d",
382 		    nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
383 
384 	/*
385 	 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
386 	 * test code and other per-VM assets that will be loaded into memslot0.
387 	 */
388 	nr_pages = 512;
389 
390 	/* Account for the per-vCPU stacks on behalf of the test. */
391 	nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
392 
393 	/*
394 	 * Account for the number of pages needed for the page tables.  The
395 	 * maximum page table size for a memory region will be when the
396 	 * smallest page size is used. Considering each page contains x page
397 	 * table descriptors, the total extra size for page tables (for extra
398 	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
399 	 * than N/x*2.
400 	 */
401 	nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
402 
403 	/* Account for the number of pages needed by ucall. */
404 	nr_pages += ucall_nr_pages_required(page_size);
405 
406 	return vm_adjust_num_guest_pages(mode, nr_pages);
407 }
408 
409 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
410 			   uint64_t nr_extra_pages)
411 {
412 	uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus,
413 						 nr_extra_pages);
414 	struct userspace_mem_region *slot0;
415 	struct kvm_vm *vm;
416 	int i;
417 
418 	pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__,
419 		 vm_guest_mode_string(shape.mode), shape.type, nr_pages);
420 
421 	vm = ____vm_create(shape);
422 
423 	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, 0);
424 	for (i = 0; i < NR_MEM_REGIONS; i++)
425 		vm->memslots[i] = 0;
426 
427 	kvm_vm_elf_load(vm, program_invocation_name);
428 
429 	/*
430 	 * TODO: Add proper defines to protect the library's memslots, and then
431 	 * carve out memslot1 for the ucall MMIO address.  KVM treats writes to
432 	 * read-only memslots as MMIO, and creating a read-only memslot for the
433 	 * MMIO region would prevent silently clobbering the MMIO region.
434 	 */
435 	slot0 = memslot2region(vm, 0);
436 	ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
437 
438 	if (guest_random_seed != last_guest_seed) {
439 		pr_info("Random seed: 0x%x\n", guest_random_seed);
440 		last_guest_seed = guest_random_seed;
441 	}
442 	guest_rng = new_guest_random_state(guest_random_seed);
443 	sync_global_to_guest(vm, guest_rng);
444 
445 	kvm_arch_vm_post_create(vm);
446 
447 	return vm;
448 }
449 
450 /*
451  * VM Create with customized parameters
452  *
453  * Input Args:
454  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
455  *   nr_vcpus - VCPU count
456  *   extra_mem_pages - Non-slot0 physical memory total size
457  *   guest_code - Guest entry point
458  *   vcpuids - VCPU IDs
459  *
460  * Output Args: None
461  *
462  * Return:
463  *   Pointer to opaque structure that describes the created VM.
464  *
465  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
466  * extra_mem_pages is only used to calculate the maximum page table size,
467  * no real memory allocation for non-slot0 memory in this function.
468  */
469 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
470 				      uint64_t extra_mem_pages,
471 				      void *guest_code, struct kvm_vcpu *vcpus[])
472 {
473 	struct kvm_vm *vm;
474 	int i;
475 
476 	TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
477 
478 	vm = __vm_create(shape, nr_vcpus, extra_mem_pages);
479 
480 	for (i = 0; i < nr_vcpus; ++i)
481 		vcpus[i] = vm_vcpu_add(vm, i, guest_code);
482 
483 	return vm;
484 }
485 
486 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
487 					       struct kvm_vcpu **vcpu,
488 					       uint64_t extra_mem_pages,
489 					       void *guest_code)
490 {
491 	struct kvm_vcpu *vcpus[1];
492 	struct kvm_vm *vm;
493 
494 	vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus);
495 
496 	*vcpu = vcpus[0];
497 	return vm;
498 }
499 
500 /*
501  * VM Restart
502  *
503  * Input Args:
504  *   vm - VM that has been released before
505  *
506  * Output Args: None
507  *
508  * Reopens the file descriptors associated to the VM and reinstates the
509  * global state, such as the irqchip and the memory regions that are mapped
510  * into the guest.
511  */
512 void kvm_vm_restart(struct kvm_vm *vmp)
513 {
514 	int ctr;
515 	struct userspace_mem_region *region;
516 
517 	vm_open(vmp);
518 	if (vmp->has_irqchip)
519 		vm_create_irqchip(vmp);
520 
521 	hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
522 		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, &region->region);
523 
524 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
525 			    "  rc: %i errno: %i\n"
526 			    "  slot: %u flags: 0x%x\n"
527 			    "  guest_phys_addr: 0x%llx size: 0x%llx",
528 			    ret, errno, region->region.slot,
529 			    region->region.flags,
530 			    region->region.guest_phys_addr,
531 			    region->region.memory_size);
532 	}
533 }
534 
535 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
536 					      uint32_t vcpu_id)
537 {
538 	return __vm_vcpu_add(vm, vcpu_id);
539 }
540 
541 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
542 {
543 	kvm_vm_restart(vm);
544 
545 	return vm_vcpu_recreate(vm, 0);
546 }
547 
548 void kvm_pin_this_task_to_pcpu(uint32_t pcpu)
549 {
550 	cpu_set_t mask;
551 	int r;
552 
553 	CPU_ZERO(&mask);
554 	CPU_SET(pcpu, &mask);
555 	r = sched_setaffinity(0, sizeof(mask), &mask);
556 	TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.", pcpu);
557 }
558 
559 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask)
560 {
561 	uint32_t pcpu = atoi_non_negative("CPU number", cpu_str);
562 
563 	TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask),
564 		    "Not allowed to run on pCPU '%d', check cgroups?", pcpu);
565 	return pcpu;
566 }
567 
568 void kvm_print_vcpu_pinning_help(void)
569 {
570 	const char *name = program_invocation_name;
571 
572 	printf(" -c: Pin tasks to physical CPUs.  Takes a list of comma separated\n"
573 	       "     values (target pCPU), one for each vCPU, plus an optional\n"
574 	       "     entry for the main application task (specified via entry\n"
575 	       "     <nr_vcpus + 1>).  If used, entries must be provided for all\n"
576 	       "     vCPUs, i.e. pinning vCPUs is all or nothing.\n\n"
577 	       "     E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n"
578 	       "     vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n"
579 	       "         %s -v 3 -c 22,23,24,50\n\n"
580 	       "     To leave the application task unpinned, drop the final entry:\n\n"
581 	       "         %s -v 3 -c 22,23,24\n\n"
582 	       "     (default: no pinning)\n", name, name);
583 }
584 
585 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
586 			    int nr_vcpus)
587 {
588 	cpu_set_t allowed_mask;
589 	char *cpu, *cpu_list;
590 	char delim[2] = ",";
591 	int i, r;
592 
593 	cpu_list = strdup(pcpus_string);
594 	TEST_ASSERT(cpu_list, "strdup() allocation failed.");
595 
596 	r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask);
597 	TEST_ASSERT(!r, "sched_getaffinity() failed");
598 
599 	cpu = strtok(cpu_list, delim);
600 
601 	/* 1. Get all pcpus for vcpus. */
602 	for (i = 0; i < nr_vcpus; i++) {
603 		TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i);
604 		vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask);
605 		cpu = strtok(NULL, delim);
606 	}
607 
608 	/* 2. Check if the main worker needs to be pinned. */
609 	if (cpu) {
610 		kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask));
611 		cpu = strtok(NULL, delim);
612 	}
613 
614 	TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu);
615 	free(cpu_list);
616 }
617 
618 /*
619  * Userspace Memory Region Find
620  *
621  * Input Args:
622  *   vm - Virtual Machine
623  *   start - Starting VM physical address
624  *   end - Ending VM physical address, inclusive.
625  *
626  * Output Args: None
627  *
628  * Return:
629  *   Pointer to overlapping region, NULL if no such region.
630  *
631  * Searches for a region with any physical memory that overlaps with
632  * any portion of the guest physical addresses from start to end
633  * inclusive.  If multiple overlapping regions exist, a pointer to any
634  * of the regions is returned.  Null is returned only when no overlapping
635  * region exists.
636  */
637 static struct userspace_mem_region *
638 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
639 {
640 	struct rb_node *node;
641 
642 	for (node = vm->regions.gpa_tree.rb_node; node; ) {
643 		struct userspace_mem_region *region =
644 			container_of(node, struct userspace_mem_region, gpa_node);
645 		uint64_t existing_start = region->region.guest_phys_addr;
646 		uint64_t existing_end = region->region.guest_phys_addr
647 			+ region->region.memory_size - 1;
648 		if (start <= existing_end && end >= existing_start)
649 			return region;
650 
651 		if (start < existing_start)
652 			node = node->rb_left;
653 		else
654 			node = node->rb_right;
655 	}
656 
657 	return NULL;
658 }
659 
660 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
661 {
662 
663 }
664 
665 /*
666  * VM VCPU Remove
667  *
668  * Input Args:
669  *   vcpu - VCPU to remove
670  *
671  * Output Args: None
672  *
673  * Return: None, TEST_ASSERT failures for all error conditions
674  *
675  * Removes a vCPU from a VM and frees its resources.
676  */
677 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
678 {
679 	int ret;
680 
681 	if (vcpu->dirty_gfns) {
682 		ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
683 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
684 		vcpu->dirty_gfns = NULL;
685 	}
686 
687 	ret = munmap(vcpu->run, vcpu_mmap_sz());
688 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
689 
690 	ret = close(vcpu->fd);
691 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
692 
693 	list_del(&vcpu->list);
694 
695 	vcpu_arch_free(vcpu);
696 	free(vcpu);
697 }
698 
699 void kvm_vm_release(struct kvm_vm *vmp)
700 {
701 	struct kvm_vcpu *vcpu, *tmp;
702 	int ret;
703 
704 	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
705 		vm_vcpu_rm(vmp, vcpu);
706 
707 	ret = close(vmp->fd);
708 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
709 
710 	ret = close(vmp->kvm_fd);
711 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
712 }
713 
714 static void __vm_mem_region_delete(struct kvm_vm *vm,
715 				   struct userspace_mem_region *region)
716 {
717 	int ret;
718 
719 	rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
720 	rb_erase(&region->hva_node, &vm->regions.hva_tree);
721 	hash_del(&region->slot_node);
722 
723 	sparsebit_free(&region->unused_phy_pages);
724 	sparsebit_free(&region->protected_phy_pages);
725 	ret = munmap(region->mmap_start, region->mmap_size);
726 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
727 	if (region->fd >= 0) {
728 		/* There's an extra map when using shared memory. */
729 		ret = munmap(region->mmap_alias, region->mmap_size);
730 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
731 		close(region->fd);
732 	}
733 	if (region->region.guest_memfd >= 0)
734 		close(region->region.guest_memfd);
735 
736 	free(region);
737 }
738 
739 /*
740  * Destroys and frees the VM pointed to by vmp.
741  */
742 void kvm_vm_free(struct kvm_vm *vmp)
743 {
744 	int ctr;
745 	struct hlist_node *node;
746 	struct userspace_mem_region *region;
747 
748 	if (vmp == NULL)
749 		return;
750 
751 	/* Free cached stats metadata and close FD */
752 	if (vmp->stats_fd) {
753 		free(vmp->stats_desc);
754 		close(vmp->stats_fd);
755 	}
756 
757 	/* Free userspace_mem_regions. */
758 	hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
759 		__vm_mem_region_delete(vmp, region);
760 
761 	/* Free sparsebit arrays. */
762 	sparsebit_free(&vmp->vpages_valid);
763 	sparsebit_free(&vmp->vpages_mapped);
764 
765 	kvm_vm_release(vmp);
766 
767 	/* Free the structure describing the VM. */
768 	free(vmp);
769 }
770 
771 int kvm_memfd_alloc(size_t size, bool hugepages)
772 {
773 	int memfd_flags = MFD_CLOEXEC;
774 	int fd, r;
775 
776 	if (hugepages)
777 		memfd_flags |= MFD_HUGETLB;
778 
779 	fd = memfd_create("kvm_selftest", memfd_flags);
780 	TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
781 
782 	r = ftruncate(fd, size);
783 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
784 
785 	r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
786 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
787 
788 	return fd;
789 }
790 
791 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
792 					       struct userspace_mem_region *region)
793 {
794 	struct rb_node **cur, *parent;
795 
796 	for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
797 		struct userspace_mem_region *cregion;
798 
799 		cregion = container_of(*cur, typeof(*cregion), gpa_node);
800 		parent = *cur;
801 		if (region->region.guest_phys_addr <
802 		    cregion->region.guest_phys_addr)
803 			cur = &(*cur)->rb_left;
804 		else {
805 			TEST_ASSERT(region->region.guest_phys_addr !=
806 				    cregion->region.guest_phys_addr,
807 				    "Duplicate GPA in region tree");
808 
809 			cur = &(*cur)->rb_right;
810 		}
811 	}
812 
813 	rb_link_node(&region->gpa_node, parent, cur);
814 	rb_insert_color(&region->gpa_node, gpa_tree);
815 }
816 
817 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
818 					       struct userspace_mem_region *region)
819 {
820 	struct rb_node **cur, *parent;
821 
822 	for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
823 		struct userspace_mem_region *cregion;
824 
825 		cregion = container_of(*cur, typeof(*cregion), hva_node);
826 		parent = *cur;
827 		if (region->host_mem < cregion->host_mem)
828 			cur = &(*cur)->rb_left;
829 		else {
830 			TEST_ASSERT(region->host_mem !=
831 				    cregion->host_mem,
832 				    "Duplicate HVA in region tree");
833 
834 			cur = &(*cur)->rb_right;
835 		}
836 	}
837 
838 	rb_link_node(&region->hva_node, parent, cur);
839 	rb_insert_color(&region->hva_node, hva_tree);
840 }
841 
842 
843 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
844 				uint64_t gpa, uint64_t size, void *hva)
845 {
846 	struct kvm_userspace_memory_region region = {
847 		.slot = slot,
848 		.flags = flags,
849 		.guest_phys_addr = gpa,
850 		.memory_size = size,
851 		.userspace_addr = (uintptr_t)hva,
852 	};
853 
854 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region);
855 }
856 
857 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
858 			       uint64_t gpa, uint64_t size, void *hva)
859 {
860 	int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
861 
862 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
863 		    errno, strerror(errno));
864 }
865 
866 #define TEST_REQUIRE_SET_USER_MEMORY_REGION2()			\
867 	__TEST_REQUIRE(kvm_has_cap(KVM_CAP_USER_MEMORY2),	\
868 		       "KVM selftests now require KVM_SET_USER_MEMORY_REGION2 (introduced in v6.8)")
869 
870 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
871 				 uint64_t gpa, uint64_t size, void *hva,
872 				 uint32_t guest_memfd, uint64_t guest_memfd_offset)
873 {
874 	struct kvm_userspace_memory_region2 region = {
875 		.slot = slot,
876 		.flags = flags,
877 		.guest_phys_addr = gpa,
878 		.memory_size = size,
879 		.userspace_addr = (uintptr_t)hva,
880 		.guest_memfd = guest_memfd,
881 		.guest_memfd_offset = guest_memfd_offset,
882 	};
883 
884 	TEST_REQUIRE_SET_USER_MEMORY_REGION2();
885 
886 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, &region);
887 }
888 
889 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
890 				uint64_t gpa, uint64_t size, void *hva,
891 				uint32_t guest_memfd, uint64_t guest_memfd_offset)
892 {
893 	int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva,
894 					       guest_memfd, guest_memfd_offset);
895 
896 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)",
897 		    errno, strerror(errno));
898 }
899 
900 
901 /* FIXME: This thing needs to be ripped apart and rewritten. */
902 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
903 		uint64_t guest_paddr, uint32_t slot, uint64_t npages,
904 		uint32_t flags, int guest_memfd, uint64_t guest_memfd_offset)
905 {
906 	int ret;
907 	struct userspace_mem_region *region;
908 	size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
909 	size_t mem_size = npages * vm->page_size;
910 	size_t alignment;
911 
912 	TEST_REQUIRE_SET_USER_MEMORY_REGION2();
913 
914 	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
915 		"Number of guest pages is not compatible with the host. "
916 		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
917 
918 	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
919 		"address not on a page boundary.\n"
920 		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
921 		guest_paddr, vm->page_size);
922 	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
923 		<= vm->max_gfn, "Physical range beyond maximum "
924 		"supported physical address,\n"
925 		"  guest_paddr: 0x%lx npages: 0x%lx\n"
926 		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
927 		guest_paddr, npages, vm->max_gfn, vm->page_size);
928 
929 	/*
930 	 * Confirm a mem region with an overlapping address doesn't
931 	 * already exist.
932 	 */
933 	region = (struct userspace_mem_region *) userspace_mem_region_find(
934 		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
935 	if (region != NULL)
936 		TEST_FAIL("overlapping userspace_mem_region already "
937 			"exists\n"
938 			"  requested guest_paddr: 0x%lx npages: 0x%lx "
939 			"page_size: 0x%x\n"
940 			"  existing guest_paddr: 0x%lx size: 0x%lx",
941 			guest_paddr, npages, vm->page_size,
942 			(uint64_t) region->region.guest_phys_addr,
943 			(uint64_t) region->region.memory_size);
944 
945 	/* Confirm no region with the requested slot already exists. */
946 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
947 			       slot) {
948 		if (region->region.slot != slot)
949 			continue;
950 
951 		TEST_FAIL("A mem region with the requested slot "
952 			"already exists.\n"
953 			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
954 			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
955 			slot, guest_paddr, npages,
956 			region->region.slot,
957 			(uint64_t) region->region.guest_phys_addr,
958 			(uint64_t) region->region.memory_size);
959 	}
960 
961 	/* Allocate and initialize new mem region structure. */
962 	region = calloc(1, sizeof(*region));
963 	TEST_ASSERT(region != NULL, "Insufficient Memory");
964 	region->mmap_size = mem_size;
965 
966 #ifdef __s390x__
967 	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
968 	alignment = 0x100000;
969 #else
970 	alignment = 1;
971 #endif
972 
973 	/*
974 	 * When using THP mmap is not guaranteed to returned a hugepage aligned
975 	 * address so we have to pad the mmap. Padding is not needed for HugeTLB
976 	 * because mmap will always return an address aligned to the HugeTLB
977 	 * page size.
978 	 */
979 	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
980 		alignment = max(backing_src_pagesz, alignment);
981 
982 	TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
983 
984 	/* Add enough memory to align up if necessary */
985 	if (alignment > 1)
986 		region->mmap_size += alignment;
987 
988 	region->fd = -1;
989 	if (backing_src_is_shared(src_type))
990 		region->fd = kvm_memfd_alloc(region->mmap_size,
991 					     src_type == VM_MEM_SRC_SHARED_HUGETLB);
992 
993 	region->mmap_start = mmap(NULL, region->mmap_size,
994 				  PROT_READ | PROT_WRITE,
995 				  vm_mem_backing_src_alias(src_type)->flag,
996 				  region->fd, 0);
997 	TEST_ASSERT(region->mmap_start != MAP_FAILED,
998 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
999 
1000 	TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
1001 		    region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
1002 		    "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
1003 		    region->mmap_start, backing_src_pagesz);
1004 
1005 	/* Align host address */
1006 	region->host_mem = align_ptr_up(region->mmap_start, alignment);
1007 
1008 	/* As needed perform madvise */
1009 	if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1010 	     src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1011 		ret = madvise(region->host_mem, mem_size,
1012 			      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1013 		TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1014 			    region->host_mem, mem_size,
1015 			    vm_mem_backing_src_alias(src_type)->name);
1016 	}
1017 
1018 	region->backing_src_type = src_type;
1019 
1020 	if (flags & KVM_MEM_GUEST_MEMFD) {
1021 		if (guest_memfd < 0) {
1022 			uint32_t guest_memfd_flags = 0;
1023 			TEST_ASSERT(!guest_memfd_offset,
1024 				    "Offset must be zero when creating new guest_memfd");
1025 			guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags);
1026 		} else {
1027 			/*
1028 			 * Install a unique fd for each memslot so that the fd
1029 			 * can be closed when the region is deleted without
1030 			 * needing to track if the fd is owned by the framework
1031 			 * or by the caller.
1032 			 */
1033 			guest_memfd = dup(guest_memfd);
1034 			TEST_ASSERT(guest_memfd >= 0, __KVM_SYSCALL_ERROR("dup()", guest_memfd));
1035 		}
1036 
1037 		region->region.guest_memfd = guest_memfd;
1038 		region->region.guest_memfd_offset = guest_memfd_offset;
1039 	} else {
1040 		region->region.guest_memfd = -1;
1041 	}
1042 
1043 	region->unused_phy_pages = sparsebit_alloc();
1044 	if (vm_arch_has_protected_memory(vm))
1045 		region->protected_phy_pages = sparsebit_alloc();
1046 	sparsebit_set_num(region->unused_phy_pages,
1047 		guest_paddr >> vm->page_shift, npages);
1048 	region->region.slot = slot;
1049 	region->region.flags = flags;
1050 	region->region.guest_phys_addr = guest_paddr;
1051 	region->region.memory_size = npages * vm->page_size;
1052 	region->region.userspace_addr = (uintptr_t) region->host_mem;
1053 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1054 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1055 		"  rc: %i errno: %i\n"
1056 		"  slot: %u flags: 0x%x\n"
1057 		"  guest_phys_addr: 0x%lx size: 0x%lx guest_memfd: %d",
1058 		ret, errno, slot, flags,
1059 		guest_paddr, (uint64_t) region->region.memory_size,
1060 		region->region.guest_memfd);
1061 
1062 	/* Add to quick lookup data structures */
1063 	vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1064 	vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1065 	hash_add(vm->regions.slot_hash, &region->slot_node, slot);
1066 
1067 	/* If shared memory, create an alias. */
1068 	if (region->fd >= 0) {
1069 		region->mmap_alias = mmap(NULL, region->mmap_size,
1070 					  PROT_READ | PROT_WRITE,
1071 					  vm_mem_backing_src_alias(src_type)->flag,
1072 					  region->fd, 0);
1073 		TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1074 			    __KVM_SYSCALL_ERROR("mmap()",  (int)(unsigned long)MAP_FAILED));
1075 
1076 		/* Align host alias address */
1077 		region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1078 	}
1079 }
1080 
1081 void vm_userspace_mem_region_add(struct kvm_vm *vm,
1082 				 enum vm_mem_backing_src_type src_type,
1083 				 uint64_t guest_paddr, uint32_t slot,
1084 				 uint64_t npages, uint32_t flags)
1085 {
1086 	vm_mem_add(vm, src_type, guest_paddr, slot, npages, flags, -1, 0);
1087 }
1088 
1089 /*
1090  * Memslot to region
1091  *
1092  * Input Args:
1093  *   vm - Virtual Machine
1094  *   memslot - KVM memory slot ID
1095  *
1096  * Output Args: None
1097  *
1098  * Return:
1099  *   Pointer to memory region structure that describe memory region
1100  *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
1101  *   on error (e.g. currently no memory region using memslot as a KVM
1102  *   memory slot ID).
1103  */
1104 struct userspace_mem_region *
1105 memslot2region(struct kvm_vm *vm, uint32_t memslot)
1106 {
1107 	struct userspace_mem_region *region;
1108 
1109 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1110 			       memslot)
1111 		if (region->region.slot == memslot)
1112 			return region;
1113 
1114 	fprintf(stderr, "No mem region with the requested slot found,\n"
1115 		"  requested slot: %u\n", memslot);
1116 	fputs("---- vm dump ----\n", stderr);
1117 	vm_dump(stderr, vm, 2);
1118 	TEST_FAIL("Mem region not found");
1119 	return NULL;
1120 }
1121 
1122 /*
1123  * VM Memory Region Flags Set
1124  *
1125  * Input Args:
1126  *   vm - Virtual Machine
1127  *   flags - Starting guest physical address
1128  *
1129  * Output Args: None
1130  *
1131  * Return: None
1132  *
1133  * Sets the flags of the memory region specified by the value of slot,
1134  * to the values given by flags.
1135  */
1136 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1137 {
1138 	int ret;
1139 	struct userspace_mem_region *region;
1140 
1141 	region = memslot2region(vm, slot);
1142 
1143 	region->region.flags = flags;
1144 
1145 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1146 
1147 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1148 		"  rc: %i errno: %i slot: %u flags: 0x%x",
1149 		ret, errno, slot, flags);
1150 }
1151 
1152 /*
1153  * VM Memory Region Move
1154  *
1155  * Input Args:
1156  *   vm - Virtual Machine
1157  *   slot - Slot of the memory region to move
1158  *   new_gpa - Starting guest physical address
1159  *
1160  * Output Args: None
1161  *
1162  * Return: None
1163  *
1164  * Change the gpa of a memory region.
1165  */
1166 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1167 {
1168 	struct userspace_mem_region *region;
1169 	int ret;
1170 
1171 	region = memslot2region(vm, slot);
1172 
1173 	region->region.guest_phys_addr = new_gpa;
1174 
1175 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1176 
1177 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n"
1178 		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1179 		    ret, errno, slot, new_gpa);
1180 }
1181 
1182 /*
1183  * VM Memory Region Delete
1184  *
1185  * Input Args:
1186  *   vm - Virtual Machine
1187  *   slot - Slot of the memory region to delete
1188  *
1189  * Output Args: None
1190  *
1191  * Return: None
1192  *
1193  * Delete a memory region.
1194  */
1195 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1196 {
1197 	struct userspace_mem_region *region = memslot2region(vm, slot);
1198 
1199 	region->region.memory_size = 0;
1200 	vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1201 
1202 	__vm_mem_region_delete(vm, region);
1203 }
1204 
1205 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size,
1206 			    bool punch_hole)
1207 {
1208 	const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0);
1209 	struct userspace_mem_region *region;
1210 	uint64_t end = base + size;
1211 	uint64_t gpa, len;
1212 	off_t fd_offset;
1213 	int ret;
1214 
1215 	for (gpa = base; gpa < end; gpa += len) {
1216 		uint64_t offset;
1217 
1218 		region = userspace_mem_region_find(vm, gpa, gpa);
1219 		TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD,
1220 			    "Private memory region not found for GPA 0x%lx", gpa);
1221 
1222 		offset = gpa - region->region.guest_phys_addr;
1223 		fd_offset = region->region.guest_memfd_offset + offset;
1224 		len = min_t(uint64_t, end - gpa, region->region.memory_size - offset);
1225 
1226 		ret = fallocate(region->region.guest_memfd, mode, fd_offset, len);
1227 		TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx",
1228 			    punch_hole ? "punch hole" : "allocate", gpa, len,
1229 			    region->region.guest_memfd, mode, fd_offset);
1230 	}
1231 }
1232 
1233 /* Returns the size of a vCPU's kvm_run structure. */
1234 static int vcpu_mmap_sz(void)
1235 {
1236 	int dev_fd, ret;
1237 
1238 	dev_fd = open_kvm_dev_path_or_exit();
1239 
1240 	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1241 	TEST_ASSERT(ret >= sizeof(struct kvm_run),
1242 		    KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1243 
1244 	close(dev_fd);
1245 
1246 	return ret;
1247 }
1248 
1249 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1250 {
1251 	struct kvm_vcpu *vcpu;
1252 
1253 	list_for_each_entry(vcpu, &vm->vcpus, list) {
1254 		if (vcpu->id == vcpu_id)
1255 			return true;
1256 	}
1257 
1258 	return false;
1259 }
1260 
1261 /*
1262  * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1263  * No additional vCPU setup is done.  Returns the vCPU.
1264  */
1265 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1266 {
1267 	struct kvm_vcpu *vcpu;
1268 
1269 	/* Confirm a vcpu with the specified id doesn't already exist. */
1270 	TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id);
1271 
1272 	/* Allocate and initialize new vcpu structure. */
1273 	vcpu = calloc(1, sizeof(*vcpu));
1274 	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1275 
1276 	vcpu->vm = vm;
1277 	vcpu->id = vcpu_id;
1278 	vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1279 	TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm);
1280 
1281 	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1282 		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1283 		vcpu_mmap_sz(), sizeof(*vcpu->run));
1284 	vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1285 		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1286 	TEST_ASSERT(vcpu->run != MAP_FAILED,
1287 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1288 
1289 	/* Add to linked-list of VCPUs. */
1290 	list_add(&vcpu->list, &vm->vcpus);
1291 
1292 	return vcpu;
1293 }
1294 
1295 /*
1296  * VM Virtual Address Unused Gap
1297  *
1298  * Input Args:
1299  *   vm - Virtual Machine
1300  *   sz - Size (bytes)
1301  *   vaddr_min - Minimum Virtual Address
1302  *
1303  * Output Args: None
1304  *
1305  * Return:
1306  *   Lowest virtual address at or below vaddr_min, with at least
1307  *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1308  *   size sz is available.
1309  *
1310  * Within the VM specified by vm, locates the lowest starting virtual
1311  * address >= vaddr_min, that has at least sz unallocated bytes.  A
1312  * TEST_ASSERT failure occurs for invalid input or no area of at least
1313  * sz unallocated bytes >= vaddr_min is available.
1314  */
1315 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1316 			       vm_vaddr_t vaddr_min)
1317 {
1318 	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1319 
1320 	/* Determine lowest permitted virtual page index. */
1321 	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1322 	if ((pgidx_start * vm->page_size) < vaddr_min)
1323 		goto no_va_found;
1324 
1325 	/* Loop over section with enough valid virtual page indexes. */
1326 	if (!sparsebit_is_set_num(vm->vpages_valid,
1327 		pgidx_start, pages))
1328 		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1329 			pgidx_start, pages);
1330 	do {
1331 		/*
1332 		 * Are there enough unused virtual pages available at
1333 		 * the currently proposed starting virtual page index.
1334 		 * If not, adjust proposed starting index to next
1335 		 * possible.
1336 		 */
1337 		if (sparsebit_is_clear_num(vm->vpages_mapped,
1338 			pgidx_start, pages))
1339 			goto va_found;
1340 		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1341 			pgidx_start, pages);
1342 		if (pgidx_start == 0)
1343 			goto no_va_found;
1344 
1345 		/*
1346 		 * If needed, adjust proposed starting virtual address,
1347 		 * to next range of valid virtual addresses.
1348 		 */
1349 		if (!sparsebit_is_set_num(vm->vpages_valid,
1350 			pgidx_start, pages)) {
1351 			pgidx_start = sparsebit_next_set_num(
1352 				vm->vpages_valid, pgidx_start, pages);
1353 			if (pgidx_start == 0)
1354 				goto no_va_found;
1355 		}
1356 	} while (pgidx_start != 0);
1357 
1358 no_va_found:
1359 	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1360 
1361 	/* NOT REACHED */
1362 	return -1;
1363 
1364 va_found:
1365 	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1366 		pgidx_start, pages),
1367 		"Unexpected, invalid virtual page index range,\n"
1368 		"  pgidx_start: 0x%lx\n"
1369 		"  pages: 0x%lx",
1370 		pgidx_start, pages);
1371 	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1372 		pgidx_start, pages),
1373 		"Unexpected, pages already mapped,\n"
1374 		"  pgidx_start: 0x%lx\n"
1375 		"  pages: 0x%lx",
1376 		pgidx_start, pages);
1377 
1378 	return pgidx_start * vm->page_size;
1379 }
1380 
1381 static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
1382 				     vm_vaddr_t vaddr_min,
1383 				     enum kvm_mem_region_type type,
1384 				     bool protected)
1385 {
1386 	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1387 
1388 	virt_pgd_alloc(vm);
1389 	vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages,
1390 						KVM_UTIL_MIN_PFN * vm->page_size,
1391 						vm->memslots[type], protected);
1392 
1393 	/*
1394 	 * Find an unused range of virtual page addresses of at least
1395 	 * pages in length.
1396 	 */
1397 	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1398 
1399 	/* Map the virtual pages. */
1400 	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1401 		pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1402 
1403 		virt_pg_map(vm, vaddr, paddr);
1404 
1405 		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1406 	}
1407 
1408 	return vaddr_start;
1409 }
1410 
1411 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1412 			    enum kvm_mem_region_type type)
1413 {
1414 	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type,
1415 				  vm_arch_has_protected_memory(vm));
1416 }
1417 
1418 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
1419 				 vm_vaddr_t vaddr_min,
1420 				 enum kvm_mem_region_type type)
1421 {
1422 	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false);
1423 }
1424 
1425 /*
1426  * VM Virtual Address Allocate
1427  *
1428  * Input Args:
1429  *   vm - Virtual Machine
1430  *   sz - Size in bytes
1431  *   vaddr_min - Minimum starting virtual address
1432  *
1433  * Output Args: None
1434  *
1435  * Return:
1436  *   Starting guest virtual address
1437  *
1438  * Allocates at least sz bytes within the virtual address space of the vm
1439  * given by vm.  The allocated bytes are mapped to a virtual address >=
1440  * the address given by vaddr_min.  Note that each allocation uses a
1441  * a unique set of pages, with the minimum real allocation being at least
1442  * a page. The allocated physical space comes from the TEST_DATA memory region.
1443  */
1444 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1445 {
1446 	return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
1447 }
1448 
1449 /*
1450  * VM Virtual Address Allocate Pages
1451  *
1452  * Input Args:
1453  *   vm - Virtual Machine
1454  *
1455  * Output Args: None
1456  *
1457  * Return:
1458  *   Starting guest virtual address
1459  *
1460  * Allocates at least N system pages worth of bytes within the virtual address
1461  * space of the vm.
1462  */
1463 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1464 {
1465 	return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1466 }
1467 
1468 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
1469 {
1470 	return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
1471 }
1472 
1473 /*
1474  * VM Virtual Address Allocate Page
1475  *
1476  * Input Args:
1477  *   vm - Virtual Machine
1478  *
1479  * Output Args: None
1480  *
1481  * Return:
1482  *   Starting guest virtual address
1483  *
1484  * Allocates at least one system page worth of bytes within the virtual address
1485  * space of the vm.
1486  */
1487 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1488 {
1489 	return vm_vaddr_alloc_pages(vm, 1);
1490 }
1491 
1492 /*
1493  * Map a range of VM virtual address to the VM's physical address
1494  *
1495  * Input Args:
1496  *   vm - Virtual Machine
1497  *   vaddr - Virtuall address to map
1498  *   paddr - VM Physical Address
1499  *   npages - The number of pages to map
1500  *
1501  * Output Args: None
1502  *
1503  * Return: None
1504  *
1505  * Within the VM given by @vm, creates a virtual translation for
1506  * @npages starting at @vaddr to the page range starting at @paddr.
1507  */
1508 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1509 	      unsigned int npages)
1510 {
1511 	size_t page_size = vm->page_size;
1512 	size_t size = npages * page_size;
1513 
1514 	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1515 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1516 
1517 	while (npages--) {
1518 		virt_pg_map(vm, vaddr, paddr);
1519 		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1520 
1521 		vaddr += page_size;
1522 		paddr += page_size;
1523 	}
1524 }
1525 
1526 /*
1527  * Address VM Physical to Host Virtual
1528  *
1529  * Input Args:
1530  *   vm - Virtual Machine
1531  *   gpa - VM physical address
1532  *
1533  * Output Args: None
1534  *
1535  * Return:
1536  *   Equivalent host virtual address
1537  *
1538  * Locates the memory region containing the VM physical address given
1539  * by gpa, within the VM given by vm.  When found, the host virtual
1540  * address providing the memory to the vm physical address is returned.
1541  * A TEST_ASSERT failure occurs if no region containing gpa exists.
1542  */
1543 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1544 {
1545 	struct userspace_mem_region *region;
1546 
1547 	gpa = vm_untag_gpa(vm, gpa);
1548 
1549 	region = userspace_mem_region_find(vm, gpa, gpa);
1550 	if (!region) {
1551 		TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1552 		return NULL;
1553 	}
1554 
1555 	return (void *)((uintptr_t)region->host_mem
1556 		+ (gpa - region->region.guest_phys_addr));
1557 }
1558 
1559 /*
1560  * Address Host Virtual to VM Physical
1561  *
1562  * Input Args:
1563  *   vm - Virtual Machine
1564  *   hva - Host virtual address
1565  *
1566  * Output Args: None
1567  *
1568  * Return:
1569  *   Equivalent VM physical address
1570  *
1571  * Locates the memory region containing the host virtual address given
1572  * by hva, within the VM given by vm.  When found, the equivalent
1573  * VM physical address is returned. A TEST_ASSERT failure occurs if no
1574  * region containing hva exists.
1575  */
1576 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1577 {
1578 	struct rb_node *node;
1579 
1580 	for (node = vm->regions.hva_tree.rb_node; node; ) {
1581 		struct userspace_mem_region *region =
1582 			container_of(node, struct userspace_mem_region, hva_node);
1583 
1584 		if (hva >= region->host_mem) {
1585 			if (hva <= (region->host_mem
1586 				+ region->region.memory_size - 1))
1587 				return (vm_paddr_t)((uintptr_t)
1588 					region->region.guest_phys_addr
1589 					+ (hva - (uintptr_t)region->host_mem));
1590 
1591 			node = node->rb_right;
1592 		} else
1593 			node = node->rb_left;
1594 	}
1595 
1596 	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1597 	return -1;
1598 }
1599 
1600 /*
1601  * Address VM physical to Host Virtual *alias*.
1602  *
1603  * Input Args:
1604  *   vm - Virtual Machine
1605  *   gpa - VM physical address
1606  *
1607  * Output Args: None
1608  *
1609  * Return:
1610  *   Equivalent address within the host virtual *alias* area, or NULL
1611  *   (without failing the test) if the guest memory is not shared (so
1612  *   no alias exists).
1613  *
1614  * Create a writable, shared virtual=>physical alias for the specific GPA.
1615  * The primary use case is to allow the host selftest to manipulate guest
1616  * memory without mapping said memory in the guest's address space. And, for
1617  * userfaultfd-based demand paging, to do so without triggering userfaults.
1618  */
1619 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1620 {
1621 	struct userspace_mem_region *region;
1622 	uintptr_t offset;
1623 
1624 	region = userspace_mem_region_find(vm, gpa, gpa);
1625 	if (!region)
1626 		return NULL;
1627 
1628 	if (!region->host_alias)
1629 		return NULL;
1630 
1631 	offset = gpa - region->region.guest_phys_addr;
1632 	return (void *) ((uintptr_t) region->host_alias + offset);
1633 }
1634 
1635 /* Create an interrupt controller chip for the specified VM. */
1636 void vm_create_irqchip(struct kvm_vm *vm)
1637 {
1638 	vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1639 
1640 	vm->has_irqchip = true;
1641 }
1642 
1643 int _vcpu_run(struct kvm_vcpu *vcpu)
1644 {
1645 	int rc;
1646 
1647 	do {
1648 		rc = __vcpu_run(vcpu);
1649 	} while (rc == -1 && errno == EINTR);
1650 
1651 	assert_on_unhandled_exception(vcpu);
1652 
1653 	return rc;
1654 }
1655 
1656 /*
1657  * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1658  * Assert if the KVM returns an error (other than -EINTR).
1659  */
1660 void vcpu_run(struct kvm_vcpu *vcpu)
1661 {
1662 	int ret = _vcpu_run(vcpu);
1663 
1664 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1665 }
1666 
1667 void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1668 {
1669 	int ret;
1670 
1671 	vcpu->run->immediate_exit = 1;
1672 	ret = __vcpu_run(vcpu);
1673 	vcpu->run->immediate_exit = 0;
1674 
1675 	TEST_ASSERT(ret == -1 && errno == EINTR,
1676 		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1677 		    ret, errno);
1678 }
1679 
1680 /*
1681  * Get the list of guest registers which are supported for
1682  * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls.  Returns a kvm_reg_list pointer,
1683  * it is the caller's responsibility to free the list.
1684  */
1685 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1686 {
1687 	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1688 	int ret;
1689 
1690 	ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, &reg_list_n);
1691 	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1692 
1693 	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1694 	reg_list->n = reg_list_n.n;
1695 	vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1696 	return reg_list;
1697 }
1698 
1699 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1700 {
1701 	uint32_t page_size = getpagesize();
1702 	uint32_t size = vcpu->vm->dirty_ring_size;
1703 
1704 	TEST_ASSERT(size > 0, "Should enable dirty ring first");
1705 
1706 	if (!vcpu->dirty_gfns) {
1707 		void *addr;
1708 
1709 		addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1710 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1711 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1712 
1713 		addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1714 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1715 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1716 
1717 		addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1718 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1719 		TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1720 
1721 		vcpu->dirty_gfns = addr;
1722 		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1723 	}
1724 
1725 	return vcpu->dirty_gfns;
1726 }
1727 
1728 /*
1729  * Device Ioctl
1730  */
1731 
1732 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1733 {
1734 	struct kvm_device_attr attribute = {
1735 		.group = group,
1736 		.attr = attr,
1737 		.flags = 0,
1738 	};
1739 
1740 	return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1741 }
1742 
1743 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1744 {
1745 	struct kvm_create_device create_dev = {
1746 		.type = type,
1747 		.flags = KVM_CREATE_DEVICE_TEST,
1748 	};
1749 
1750 	return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1751 }
1752 
1753 int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1754 {
1755 	struct kvm_create_device create_dev = {
1756 		.type = type,
1757 		.fd = -1,
1758 		.flags = 0,
1759 	};
1760 	int err;
1761 
1762 	err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1763 	TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1764 	return err ? : create_dev.fd;
1765 }
1766 
1767 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1768 {
1769 	struct kvm_device_attr kvmattr = {
1770 		.group = group,
1771 		.attr = attr,
1772 		.flags = 0,
1773 		.addr = (uintptr_t)val,
1774 	};
1775 
1776 	return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1777 }
1778 
1779 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1780 {
1781 	struct kvm_device_attr kvmattr = {
1782 		.group = group,
1783 		.attr = attr,
1784 		.flags = 0,
1785 		.addr = (uintptr_t)val,
1786 	};
1787 
1788 	return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1789 }
1790 
1791 /*
1792  * IRQ related functions.
1793  */
1794 
1795 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1796 {
1797 	struct kvm_irq_level irq_level = {
1798 		.irq    = irq,
1799 		.level  = level,
1800 	};
1801 
1802 	return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1803 }
1804 
1805 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1806 {
1807 	int ret = _kvm_irq_line(vm, irq, level);
1808 
1809 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1810 }
1811 
1812 struct kvm_irq_routing *kvm_gsi_routing_create(void)
1813 {
1814 	struct kvm_irq_routing *routing;
1815 	size_t size;
1816 
1817 	size = sizeof(struct kvm_irq_routing);
1818 	/* Allocate space for the max number of entries: this wastes 196 KBs. */
1819 	size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1820 	routing = calloc(1, size);
1821 	assert(routing);
1822 
1823 	return routing;
1824 }
1825 
1826 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1827 		uint32_t gsi, uint32_t pin)
1828 {
1829 	int i;
1830 
1831 	assert(routing);
1832 	assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1833 
1834 	i = routing->nr;
1835 	routing->entries[i].gsi = gsi;
1836 	routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1837 	routing->entries[i].flags = 0;
1838 	routing->entries[i].u.irqchip.irqchip = 0;
1839 	routing->entries[i].u.irqchip.pin = pin;
1840 	routing->nr++;
1841 }
1842 
1843 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1844 {
1845 	int ret;
1846 
1847 	assert(routing);
1848 	ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1849 	free(routing);
1850 
1851 	return ret;
1852 }
1853 
1854 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1855 {
1856 	int ret;
1857 
1858 	ret = _kvm_gsi_routing_write(vm, routing);
1859 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1860 }
1861 
1862 /*
1863  * VM Dump
1864  *
1865  * Input Args:
1866  *   vm - Virtual Machine
1867  *   indent - Left margin indent amount
1868  *
1869  * Output Args:
1870  *   stream - Output FILE stream
1871  *
1872  * Return: None
1873  *
1874  * Dumps the current state of the VM given by vm, to the FILE stream
1875  * given by stream.
1876  */
1877 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1878 {
1879 	int ctr;
1880 	struct userspace_mem_region *region;
1881 	struct kvm_vcpu *vcpu;
1882 
1883 	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1884 	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1885 	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1886 	fprintf(stream, "%*sMem Regions:\n", indent, "");
1887 	hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1888 		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1889 			"host_virt: %p\n", indent + 2, "",
1890 			(uint64_t) region->region.guest_phys_addr,
1891 			(uint64_t) region->region.memory_size,
1892 			region->host_mem);
1893 		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1894 		sparsebit_dump(stream, region->unused_phy_pages, 0);
1895 		if (region->protected_phy_pages) {
1896 			fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, "");
1897 			sparsebit_dump(stream, region->protected_phy_pages, 0);
1898 		}
1899 	}
1900 	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1901 	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1902 	fprintf(stream, "%*spgd_created: %u\n", indent, "",
1903 		vm->pgd_created);
1904 	if (vm->pgd_created) {
1905 		fprintf(stream, "%*sVirtual Translation Tables:\n",
1906 			indent + 2, "");
1907 		virt_dump(stream, vm, indent + 4);
1908 	}
1909 	fprintf(stream, "%*sVCPUs:\n", indent, "");
1910 
1911 	list_for_each_entry(vcpu, &vm->vcpus, list)
1912 		vcpu_dump(stream, vcpu, indent + 2);
1913 }
1914 
1915 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x}
1916 
1917 /* Known KVM exit reasons */
1918 static struct exit_reason {
1919 	unsigned int reason;
1920 	const char *name;
1921 } exit_reasons_known[] = {
1922 	KVM_EXIT_STRING(UNKNOWN),
1923 	KVM_EXIT_STRING(EXCEPTION),
1924 	KVM_EXIT_STRING(IO),
1925 	KVM_EXIT_STRING(HYPERCALL),
1926 	KVM_EXIT_STRING(DEBUG),
1927 	KVM_EXIT_STRING(HLT),
1928 	KVM_EXIT_STRING(MMIO),
1929 	KVM_EXIT_STRING(IRQ_WINDOW_OPEN),
1930 	KVM_EXIT_STRING(SHUTDOWN),
1931 	KVM_EXIT_STRING(FAIL_ENTRY),
1932 	KVM_EXIT_STRING(INTR),
1933 	KVM_EXIT_STRING(SET_TPR),
1934 	KVM_EXIT_STRING(TPR_ACCESS),
1935 	KVM_EXIT_STRING(S390_SIEIC),
1936 	KVM_EXIT_STRING(S390_RESET),
1937 	KVM_EXIT_STRING(DCR),
1938 	KVM_EXIT_STRING(NMI),
1939 	KVM_EXIT_STRING(INTERNAL_ERROR),
1940 	KVM_EXIT_STRING(OSI),
1941 	KVM_EXIT_STRING(PAPR_HCALL),
1942 	KVM_EXIT_STRING(S390_UCONTROL),
1943 	KVM_EXIT_STRING(WATCHDOG),
1944 	KVM_EXIT_STRING(S390_TSCH),
1945 	KVM_EXIT_STRING(EPR),
1946 	KVM_EXIT_STRING(SYSTEM_EVENT),
1947 	KVM_EXIT_STRING(S390_STSI),
1948 	KVM_EXIT_STRING(IOAPIC_EOI),
1949 	KVM_EXIT_STRING(HYPERV),
1950 	KVM_EXIT_STRING(ARM_NISV),
1951 	KVM_EXIT_STRING(X86_RDMSR),
1952 	KVM_EXIT_STRING(X86_WRMSR),
1953 	KVM_EXIT_STRING(DIRTY_RING_FULL),
1954 	KVM_EXIT_STRING(AP_RESET_HOLD),
1955 	KVM_EXIT_STRING(X86_BUS_LOCK),
1956 	KVM_EXIT_STRING(XEN),
1957 	KVM_EXIT_STRING(RISCV_SBI),
1958 	KVM_EXIT_STRING(RISCV_CSR),
1959 	KVM_EXIT_STRING(NOTIFY),
1960 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1961 	KVM_EXIT_STRING(MEMORY_NOT_PRESENT),
1962 #endif
1963 };
1964 
1965 /*
1966  * Exit Reason String
1967  *
1968  * Input Args:
1969  *   exit_reason - Exit reason
1970  *
1971  * Output Args: None
1972  *
1973  * Return:
1974  *   Constant string pointer describing the exit reason.
1975  *
1976  * Locates and returns a constant string that describes the KVM exit
1977  * reason given by exit_reason.  If no such string is found, a constant
1978  * string of "Unknown" is returned.
1979  */
1980 const char *exit_reason_str(unsigned int exit_reason)
1981 {
1982 	unsigned int n1;
1983 
1984 	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1985 		if (exit_reason == exit_reasons_known[n1].reason)
1986 			return exit_reasons_known[n1].name;
1987 	}
1988 
1989 	return "Unknown";
1990 }
1991 
1992 /*
1993  * Physical Contiguous Page Allocator
1994  *
1995  * Input Args:
1996  *   vm - Virtual Machine
1997  *   num - number of pages
1998  *   paddr_min - Physical address minimum
1999  *   memslot - Memory region to allocate page from
2000  *   protected - True if the pages will be used as protected/private memory
2001  *
2002  * Output Args: None
2003  *
2004  * Return:
2005  *   Starting physical address
2006  *
2007  * Within the VM specified by vm, locates a range of available physical
2008  * pages at or above paddr_min. If found, the pages are marked as in use
2009  * and their base address is returned. A TEST_ASSERT failure occurs if
2010  * not enough pages are available at or above paddr_min.
2011  */
2012 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2013 				vm_paddr_t paddr_min, uint32_t memslot,
2014 				bool protected)
2015 {
2016 	struct userspace_mem_region *region;
2017 	sparsebit_idx_t pg, base;
2018 
2019 	TEST_ASSERT(num > 0, "Must allocate at least one page");
2020 
2021 	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2022 		"not divisible by page size.\n"
2023 		"  paddr_min: 0x%lx page_size: 0x%x",
2024 		paddr_min, vm->page_size);
2025 
2026 	region = memslot2region(vm, memslot);
2027 	TEST_ASSERT(!protected || region->protected_phy_pages,
2028 		    "Region doesn't support protected memory");
2029 
2030 	base = pg = paddr_min >> vm->page_shift;
2031 	do {
2032 		for (; pg < base + num; ++pg) {
2033 			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2034 				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2035 				break;
2036 			}
2037 		}
2038 	} while (pg && pg != base + num);
2039 
2040 	if (pg == 0) {
2041 		fprintf(stderr, "No guest physical page available, "
2042 			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2043 			paddr_min, vm->page_size, memslot);
2044 		fputs("---- vm dump ----\n", stderr);
2045 		vm_dump(stderr, vm, 2);
2046 		abort();
2047 	}
2048 
2049 	for (pg = base; pg < base + num; ++pg) {
2050 		sparsebit_clear(region->unused_phy_pages, pg);
2051 		if (protected)
2052 			sparsebit_set(region->protected_phy_pages, pg);
2053 	}
2054 
2055 	return base * vm->page_size;
2056 }
2057 
2058 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2059 			     uint32_t memslot)
2060 {
2061 	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2062 }
2063 
2064 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2065 {
2066 	return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
2067 				 vm->memslots[MEM_REGION_PT]);
2068 }
2069 
2070 /*
2071  * Address Guest Virtual to Host Virtual
2072  *
2073  * Input Args:
2074  *   vm - Virtual Machine
2075  *   gva - VM virtual address
2076  *
2077  * Output Args: None
2078  *
2079  * Return:
2080  *   Equivalent host virtual address
2081  */
2082 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2083 {
2084 	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2085 }
2086 
2087 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
2088 {
2089 	return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2090 }
2091 
2092 static unsigned int vm_calc_num_pages(unsigned int num_pages,
2093 				      unsigned int page_shift,
2094 				      unsigned int new_page_shift,
2095 				      bool ceil)
2096 {
2097 	unsigned int n = 1 << (new_page_shift - page_shift);
2098 
2099 	if (page_shift >= new_page_shift)
2100 		return num_pages * (1 << (page_shift - new_page_shift));
2101 
2102 	return num_pages / n + !!(ceil && num_pages % n);
2103 }
2104 
2105 static inline int getpageshift(void)
2106 {
2107 	return __builtin_ffs(getpagesize()) - 1;
2108 }
2109 
2110 unsigned int
2111 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2112 {
2113 	return vm_calc_num_pages(num_guest_pages,
2114 				 vm_guest_mode_params[mode].page_shift,
2115 				 getpageshift(), true);
2116 }
2117 
2118 unsigned int
2119 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2120 {
2121 	return vm_calc_num_pages(num_host_pages, getpageshift(),
2122 				 vm_guest_mode_params[mode].page_shift, false);
2123 }
2124 
2125 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2126 {
2127 	unsigned int n;
2128 	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2129 	return vm_adjust_num_guest_pages(mode, n);
2130 }
2131 
2132 /*
2133  * Read binary stats descriptors
2134  *
2135  * Input Args:
2136  *   stats_fd - the file descriptor for the binary stats file from which to read
2137  *   header - the binary stats metadata header corresponding to the given FD
2138  *
2139  * Output Args: None
2140  *
2141  * Return:
2142  *   A pointer to a newly allocated series of stat descriptors.
2143  *   Caller is responsible for freeing the returned kvm_stats_desc.
2144  *
2145  * Read the stats descriptors from the binary stats interface.
2146  */
2147 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
2148 					      struct kvm_stats_header *header)
2149 {
2150 	struct kvm_stats_desc *stats_desc;
2151 	ssize_t desc_size, total_size, ret;
2152 
2153 	desc_size = get_stats_descriptor_size(header);
2154 	total_size = header->num_desc * desc_size;
2155 
2156 	stats_desc = calloc(header->num_desc, desc_size);
2157 	TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
2158 
2159 	ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
2160 	TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
2161 
2162 	return stats_desc;
2163 }
2164 
2165 /*
2166  * Read stat data for a particular stat
2167  *
2168  * Input Args:
2169  *   stats_fd - the file descriptor for the binary stats file from which to read
2170  *   header - the binary stats metadata header corresponding to the given FD
2171  *   desc - the binary stat metadata for the particular stat to be read
2172  *   max_elements - the maximum number of 8-byte values to read into data
2173  *
2174  * Output Args:
2175  *   data - the buffer into which stat data should be read
2176  *
2177  * Read the data values of a specified stat from the binary stats interface.
2178  */
2179 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
2180 		    struct kvm_stats_desc *desc, uint64_t *data,
2181 		    size_t max_elements)
2182 {
2183 	size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
2184 	size_t size = nr_elements * sizeof(*data);
2185 	ssize_t ret;
2186 
2187 	TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
2188 	TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
2189 
2190 	ret = pread(stats_fd, data, size,
2191 		    header->data_offset + desc->offset);
2192 
2193 	TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
2194 		    desc->name, errno, strerror(errno));
2195 	TEST_ASSERT(ret == size,
2196 		    "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
2197 		    desc->name, size, ret);
2198 }
2199 
2200 /*
2201  * Read the data of the named stat
2202  *
2203  * Input Args:
2204  *   vm - the VM for which the stat should be read
2205  *   stat_name - the name of the stat to read
2206  *   max_elements - the maximum number of 8-byte values to read into data
2207  *
2208  * Output Args:
2209  *   data - the buffer into which stat data should be read
2210  *
2211  * Read the data values of a specified stat from the binary stats interface.
2212  */
2213 void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
2214 		   size_t max_elements)
2215 {
2216 	struct kvm_stats_desc *desc;
2217 	size_t size_desc;
2218 	int i;
2219 
2220 	if (!vm->stats_fd) {
2221 		vm->stats_fd = vm_get_stats_fd(vm);
2222 		read_stats_header(vm->stats_fd, &vm->stats_header);
2223 		vm->stats_desc = read_stats_descriptors(vm->stats_fd,
2224 							&vm->stats_header);
2225 	}
2226 
2227 	size_desc = get_stats_descriptor_size(&vm->stats_header);
2228 
2229 	for (i = 0; i < vm->stats_header.num_desc; ++i) {
2230 		desc = (void *)vm->stats_desc + (i * size_desc);
2231 
2232 		if (strcmp(desc->name, stat_name))
2233 			continue;
2234 
2235 		read_stat_data(vm->stats_fd, &vm->stats_header, desc,
2236 			       data, max_elements);
2237 
2238 		break;
2239 	}
2240 }
2241 
2242 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm)
2243 {
2244 }
2245 
2246 __weak void kvm_selftest_arch_init(void)
2247 {
2248 }
2249 
2250 void __attribute((constructor)) kvm_selftest_init(void)
2251 {
2252 	/* Tell stdout not to buffer its content. */
2253 	setbuf(stdout, NULL);
2254 
2255 	guest_random_seed = last_guest_seed = random();
2256 	pr_info("Random seed: 0x%x\n", guest_random_seed);
2257 
2258 	kvm_selftest_arch_init();
2259 }
2260 
2261 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr)
2262 {
2263 	sparsebit_idx_t pg = 0;
2264 	struct userspace_mem_region *region;
2265 
2266 	if (!vm_arch_has_protected_memory(vm))
2267 		return false;
2268 
2269 	region = userspace_mem_region_find(vm, paddr, paddr);
2270 	TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr);
2271 
2272 	pg = paddr >> vm->page_shift;
2273 	return sparsebit_is_set(region->protected_phy_pages, pg);
2274 }
2275