1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Virtio ring implementation.
3 *
4 * Copyright 2007 Rusty Russell IBM Corporation
5 */
6 #include <linux/virtio.h>
7 #include <linux/virtio_ring.h>
8 #include <linux/virtio_config.h>
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/hrtimer.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/kmsan.h>
15 #include <linux/spinlock.h>
16 #include <xen/xen.h>
17
18 #ifdef DEBUG
19 /* For development, we want to crash whenever the ring is screwed. */
20 #define BAD_RING(_vq, fmt, args...) \
21 do { \
22 dev_err(&(_vq)->vq.vdev->dev, \
23 "%s:"fmt, (_vq)->vq.name, ##args); \
24 BUG(); \
25 } while (0)
26 /* Caller is supposed to guarantee no reentry. */
27 #define START_USE(_vq) \
28 do { \
29 if ((_vq)->in_use) \
30 panic("%s:in_use = %i\n", \
31 (_vq)->vq.name, (_vq)->in_use); \
32 (_vq)->in_use = __LINE__; \
33 } while (0)
34 #define END_USE(_vq) \
35 do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; } while(0)
36 #define LAST_ADD_TIME_UPDATE(_vq) \
37 do { \
38 ktime_t now = ktime_get(); \
39 \
40 /* No kick or get, with .1 second between? Warn. */ \
41 if ((_vq)->last_add_time_valid) \
42 WARN_ON(ktime_to_ms(ktime_sub(now, \
43 (_vq)->last_add_time)) > 100); \
44 (_vq)->last_add_time = now; \
45 (_vq)->last_add_time_valid = true; \
46 } while (0)
47 #define LAST_ADD_TIME_CHECK(_vq) \
48 do { \
49 if ((_vq)->last_add_time_valid) { \
50 WARN_ON(ktime_to_ms(ktime_sub(ktime_get(), \
51 (_vq)->last_add_time)) > 100); \
52 } \
53 } while (0)
54 #define LAST_ADD_TIME_INVALID(_vq) \
55 ((_vq)->last_add_time_valid = false)
56 #else
57 #define BAD_RING(_vq, fmt, args...) \
58 do { \
59 dev_err(&_vq->vq.vdev->dev, \
60 "%s:"fmt, (_vq)->vq.name, ##args); \
61 (_vq)->broken = true; \
62 } while (0)
63 #define START_USE(vq)
64 #define END_USE(vq)
65 #define LAST_ADD_TIME_UPDATE(vq)
66 #define LAST_ADD_TIME_CHECK(vq)
67 #define LAST_ADD_TIME_INVALID(vq)
68 #endif
69
70 struct vring_desc_state_split {
71 void *data; /* Data for callback. */
72
73 /* Indirect desc table and extra table, if any. These two will be
74 * allocated together. So we won't stress more to the memory allocator.
75 */
76 struct vring_desc *indir_desc;
77 };
78
79 struct vring_desc_state_packed {
80 void *data; /* Data for callback. */
81
82 /* Indirect desc table and extra table, if any. These two will be
83 * allocated together. So we won't stress more to the memory allocator.
84 */
85 struct vring_packed_desc *indir_desc;
86 u16 num; /* Descriptor list length. */
87 u16 last; /* The last desc state in a list. */
88 };
89
90 struct vring_desc_extra {
91 dma_addr_t addr; /* Descriptor DMA addr. */
92 u32 len; /* Descriptor length. */
93 u16 flags; /* Descriptor flags. */
94 u16 next; /* The next desc state in a list. */
95 };
96
97 struct vring_virtqueue_split {
98 /* Actual memory layout for this queue. */
99 struct vring vring;
100
101 /* Last written value to avail->flags */
102 u16 avail_flags_shadow;
103
104 /*
105 * Last written value to avail->idx in
106 * guest byte order.
107 */
108 u16 avail_idx_shadow;
109
110 /* Per-descriptor state. */
111 struct vring_desc_state_split *desc_state;
112 struct vring_desc_extra *desc_extra;
113
114 /* DMA address and size information */
115 dma_addr_t queue_dma_addr;
116 size_t queue_size_in_bytes;
117
118 /*
119 * The parameters for creating vrings are reserved for creating new
120 * vring.
121 */
122 u32 vring_align;
123 bool may_reduce_num;
124 };
125
126 struct vring_virtqueue_packed {
127 /* Actual memory layout for this queue. */
128 struct {
129 unsigned int num;
130 struct vring_packed_desc *desc;
131 struct vring_packed_desc_event *driver;
132 struct vring_packed_desc_event *device;
133 } vring;
134
135 /* Driver ring wrap counter. */
136 bool avail_wrap_counter;
137
138 /* Avail used flags. */
139 u16 avail_used_flags;
140
141 /* Index of the next avail descriptor. */
142 u16 next_avail_idx;
143
144 /*
145 * Last written value to driver->flags in
146 * guest byte order.
147 */
148 u16 event_flags_shadow;
149
150 /* Per-descriptor state. */
151 struct vring_desc_state_packed *desc_state;
152 struct vring_desc_extra *desc_extra;
153
154 /* DMA address and size information */
155 dma_addr_t ring_dma_addr;
156 dma_addr_t driver_event_dma_addr;
157 dma_addr_t device_event_dma_addr;
158 size_t ring_size_in_bytes;
159 size_t event_size_in_bytes;
160 };
161
162 struct vring_virtqueue {
163 struct virtqueue vq;
164
165 /* Is this a packed ring? */
166 bool packed_ring;
167
168 /* Is DMA API used? */
169 bool use_map_api;
170
171 /* Can we use weak barriers? */
172 bool weak_barriers;
173
174 /* Other side has made a mess, don't try any more. */
175 bool broken;
176
177 /* Host supports indirect buffers */
178 bool indirect;
179
180 /* Host publishes avail event idx */
181 bool event;
182
183 /* Head of free buffer list. */
184 unsigned int free_head;
185 /* Number we've added since last sync. */
186 unsigned int num_added;
187
188 /* Last used index we've seen.
189 * for split ring, it just contains last used index
190 * for packed ring:
191 * bits up to VRING_PACKED_EVENT_F_WRAP_CTR include the last used index.
192 * bits from VRING_PACKED_EVENT_F_WRAP_CTR include the used wrap counter.
193 */
194 u16 last_used_idx;
195
196 /* Hint for event idx: already triggered no need to disable. */
197 bool event_triggered;
198
199 union {
200 /* Available for split ring */
201 struct vring_virtqueue_split split;
202
203 /* Available for packed ring */
204 struct vring_virtqueue_packed packed;
205 };
206
207 /* How to notify other side. FIXME: commonalize hcalls! */
208 bool (*notify)(struct virtqueue *vq);
209
210 /* DMA, allocation, and size information */
211 bool we_own_ring;
212
213 union virtio_map map;
214
215 #ifdef DEBUG
216 /* They're supposed to lock for us. */
217 unsigned int in_use;
218
219 /* Figure out if their kicks are too delayed. */
220 bool last_add_time_valid;
221 ktime_t last_add_time;
222 #endif
223 };
224
225 static struct vring_desc_extra *vring_alloc_desc_extra(unsigned int num);
226 static void vring_free(struct virtqueue *_vq);
227
228 /*
229 * Helpers.
230 */
231
232 #define to_vvq(_vq) container_of_const(_vq, struct vring_virtqueue, vq)
233
virtqueue_use_indirect(const struct vring_virtqueue * vq,unsigned int total_sg)234 static bool virtqueue_use_indirect(const struct vring_virtqueue *vq,
235 unsigned int total_sg)
236 {
237 /*
238 * If the host supports indirect descriptor tables, and we have multiple
239 * buffers, then go indirect. FIXME: tune this threshold
240 */
241 return (vq->indirect && total_sg > 1 && vq->vq.num_free);
242 }
243
244 /*
245 * Modern virtio devices have feature bits to specify whether they need a
246 * quirk and bypass the IOMMU. If not there, just use the DMA API.
247 *
248 * If there, the interaction between virtio and DMA API is messy.
249 *
250 * On most systems with virtio, physical addresses match bus addresses,
251 * and it doesn't particularly matter whether we use the DMA API.
252 *
253 * On some systems, including Xen and any system with a physical device
254 * that speaks virtio behind a physical IOMMU, we must use the DMA API
255 * for virtio DMA to work at all.
256 *
257 * On other systems, including SPARC and PPC64, virtio-pci devices are
258 * enumerated as though they are behind an IOMMU, but the virtio host
259 * ignores the IOMMU, so we must either pretend that the IOMMU isn't
260 * there or somehow map everything as the identity.
261 *
262 * For the time being, we preserve historic behavior and bypass the DMA
263 * API.
264 *
265 * TODO: install a per-device DMA ops structure that does the right thing
266 * taking into account all the above quirks, and use the DMA API
267 * unconditionally on data path.
268 */
269
vring_use_map_api(const struct virtio_device * vdev)270 static bool vring_use_map_api(const struct virtio_device *vdev)
271 {
272 if (!virtio_has_dma_quirk(vdev))
273 return true;
274
275 /* Otherwise, we are left to guess. */
276 /*
277 * In theory, it's possible to have a buggy QEMU-supposed
278 * emulated Q35 IOMMU and Xen enabled at the same time. On
279 * such a configuration, virtio has never worked and will
280 * not work without an even larger kludge. Instead, enable
281 * the DMA API if we're a Xen guest, which at least allows
282 * all of the sensible Xen configurations to work correctly.
283 */
284 if (xen_domain())
285 return true;
286
287 return false;
288 }
289
vring_need_unmap_buffer(const struct vring_virtqueue * vring,const struct vring_desc_extra * extra)290 static bool vring_need_unmap_buffer(const struct vring_virtqueue *vring,
291 const struct vring_desc_extra *extra)
292 {
293 return vring->use_map_api && (extra->addr != DMA_MAPPING_ERROR);
294 }
295
virtio_max_dma_size(const struct virtio_device * vdev)296 size_t virtio_max_dma_size(const struct virtio_device *vdev)
297 {
298 size_t max_segment_size = SIZE_MAX;
299
300 if (vring_use_map_api(vdev)) {
301 if (vdev->map) {
302 max_segment_size =
303 vdev->map->max_mapping_size(vdev->vmap);
304 } else
305 max_segment_size =
306 dma_max_mapping_size(vdev->dev.parent);
307 }
308
309 return max_segment_size;
310 }
311 EXPORT_SYMBOL_GPL(virtio_max_dma_size);
312
vring_alloc_queue(struct virtio_device * vdev,size_t size,dma_addr_t * map_handle,gfp_t flag,union virtio_map map)313 static void *vring_alloc_queue(struct virtio_device *vdev, size_t size,
314 dma_addr_t *map_handle, gfp_t flag,
315 union virtio_map map)
316 {
317 if (vring_use_map_api(vdev)) {
318 return virtqueue_map_alloc_coherent(vdev, map, size,
319 map_handle, flag);
320 } else {
321 void *queue = alloc_pages_exact(PAGE_ALIGN(size), flag);
322
323 if (queue) {
324 phys_addr_t phys_addr = virt_to_phys(queue);
325 *map_handle = (dma_addr_t)phys_addr;
326
327 /*
328 * Sanity check: make sure we dind't truncate
329 * the address. The only arches I can find that
330 * have 64-bit phys_addr_t but 32-bit dma_addr_t
331 * are certain non-highmem MIPS and x86
332 * configurations, but these configurations
333 * should never allocate physical pages above 32
334 * bits, so this is fine. Just in case, throw a
335 * warning and abort if we end up with an
336 * unrepresentable address.
337 */
338 if (WARN_ON_ONCE(*map_handle != phys_addr)) {
339 free_pages_exact(queue, PAGE_ALIGN(size));
340 return NULL;
341 }
342 }
343 return queue;
344 }
345 }
346
vring_free_queue(struct virtio_device * vdev,size_t size,void * queue,dma_addr_t map_handle,union virtio_map map)347 static void vring_free_queue(struct virtio_device *vdev, size_t size,
348 void *queue, dma_addr_t map_handle,
349 union virtio_map map)
350 {
351 if (vring_use_map_api(vdev))
352 virtqueue_map_free_coherent(vdev, map, size,
353 queue, map_handle);
354 else
355 free_pages_exact(queue, PAGE_ALIGN(size));
356 }
357
358 /*
359 * The DMA ops on various arches are rather gnarly right now, and
360 * making all of the arch DMA ops work on the vring device itself
361 * is a mess.
362 */
vring_dma_dev(const struct vring_virtqueue * vq)363 static struct device *vring_dma_dev(const struct vring_virtqueue *vq)
364 {
365 return vq->map.dma_dev;
366 }
367
vring_mapping_error(const struct vring_virtqueue * vq,dma_addr_t addr)368 static int vring_mapping_error(const struct vring_virtqueue *vq,
369 dma_addr_t addr)
370 {
371 struct virtio_device *vdev = vq->vq.vdev;
372
373 if (!vq->use_map_api)
374 return 0;
375
376 if (vdev->map)
377 return vdev->map->mapping_error(vq->map, addr);
378 else
379 return dma_mapping_error(vring_dma_dev(vq), addr);
380 }
381
382 /* Map one sg entry. */
vring_map_one_sg(const struct vring_virtqueue * vq,struct scatterlist * sg,enum dma_data_direction direction,dma_addr_t * addr,u32 * len,bool premapped)383 static int vring_map_one_sg(const struct vring_virtqueue *vq, struct scatterlist *sg,
384 enum dma_data_direction direction, dma_addr_t *addr,
385 u32 *len, bool premapped)
386 {
387 if (premapped) {
388 *addr = sg_dma_address(sg);
389 *len = sg_dma_len(sg);
390 return 0;
391 }
392
393 *len = sg->length;
394
395 if (!vq->use_map_api) {
396 /*
397 * If DMA is not used, KMSAN doesn't know that the scatterlist
398 * is initialized by the hardware. Explicitly check/unpoison it
399 * depending on the direction.
400 */
401 kmsan_handle_dma(sg_phys(sg), sg->length, direction);
402 *addr = (dma_addr_t)sg_phys(sg);
403 return 0;
404 }
405
406 /*
407 * We can't use dma_map_sg, because we don't use scatterlists in
408 * the way it expects (we don't guarantee that the scatterlist
409 * will exist for the lifetime of the mapping).
410 */
411 *addr = virtqueue_map_page_attrs(&vq->vq, sg_page(sg),
412 sg->offset, sg->length,
413 direction, 0);
414
415 if (vring_mapping_error(vq, *addr))
416 return -ENOMEM;
417
418 return 0;
419 }
420
vring_map_single(const struct vring_virtqueue * vq,void * cpu_addr,size_t size,enum dma_data_direction direction)421 static dma_addr_t vring_map_single(const struct vring_virtqueue *vq,
422 void *cpu_addr, size_t size,
423 enum dma_data_direction direction)
424 {
425 if (!vq->use_map_api)
426 return (dma_addr_t)virt_to_phys(cpu_addr);
427
428 return virtqueue_map_single_attrs(&vq->vq, cpu_addr,
429 size, direction, 0);
430 }
431
virtqueue_init(struct vring_virtqueue * vq,u32 num)432 static void virtqueue_init(struct vring_virtqueue *vq, u32 num)
433 {
434 vq->vq.num_free = num;
435
436 if (vq->packed_ring)
437 vq->last_used_idx = 0 | (1 << VRING_PACKED_EVENT_F_WRAP_CTR);
438 else
439 vq->last_used_idx = 0;
440
441 vq->event_triggered = false;
442 vq->num_added = 0;
443
444 #ifdef DEBUG
445 vq->in_use = false;
446 vq->last_add_time_valid = false;
447 #endif
448 }
449
450
451 /*
452 * Split ring specific functions - *_split().
453 */
454
vring_unmap_one_split(const struct vring_virtqueue * vq,struct vring_desc_extra * extra)455 static unsigned int vring_unmap_one_split(const struct vring_virtqueue *vq,
456 struct vring_desc_extra *extra)
457 {
458 u16 flags;
459
460 flags = extra->flags;
461
462 if (flags & VRING_DESC_F_INDIRECT) {
463 if (!vq->use_map_api)
464 goto out;
465 } else if (!vring_need_unmap_buffer(vq, extra))
466 goto out;
467
468 virtqueue_unmap_page_attrs(&vq->vq,
469 extra->addr,
470 extra->len,
471 (flags & VRING_DESC_F_WRITE) ?
472 DMA_FROM_DEVICE : DMA_TO_DEVICE,
473 0);
474
475 out:
476 return extra->next;
477 }
478
alloc_indirect_split(struct virtqueue * _vq,unsigned int total_sg,gfp_t gfp)479 static struct vring_desc *alloc_indirect_split(struct virtqueue *_vq,
480 unsigned int total_sg,
481 gfp_t gfp)
482 {
483 struct vring_desc_extra *extra;
484 struct vring_desc *desc;
485 unsigned int i, size;
486
487 /*
488 * We require lowmem mappings for the descriptors because
489 * otherwise virt_to_phys will give us bogus addresses in the
490 * virtqueue.
491 */
492 gfp &= ~__GFP_HIGHMEM;
493
494 size = sizeof(*desc) * total_sg + sizeof(*extra) * total_sg;
495
496 desc = kmalloc(size, gfp);
497 if (!desc)
498 return NULL;
499
500 extra = (struct vring_desc_extra *)&desc[total_sg];
501
502 for (i = 0; i < total_sg; i++)
503 extra[i].next = i + 1;
504
505 return desc;
506 }
507
virtqueue_add_desc_split(struct virtqueue * vq,struct vring_desc * desc,struct vring_desc_extra * extra,unsigned int i,dma_addr_t addr,unsigned int len,u16 flags,bool premapped)508 static inline unsigned int virtqueue_add_desc_split(struct virtqueue *vq,
509 struct vring_desc *desc,
510 struct vring_desc_extra *extra,
511 unsigned int i,
512 dma_addr_t addr,
513 unsigned int len,
514 u16 flags, bool premapped)
515 {
516 u16 next;
517
518 desc[i].flags = cpu_to_virtio16(vq->vdev, flags);
519 desc[i].addr = cpu_to_virtio64(vq->vdev, addr);
520 desc[i].len = cpu_to_virtio32(vq->vdev, len);
521
522 extra[i].addr = premapped ? DMA_MAPPING_ERROR : addr;
523 extra[i].len = len;
524 extra[i].flags = flags;
525
526 next = extra[i].next;
527
528 desc[i].next = cpu_to_virtio16(vq->vdev, next);
529
530 return next;
531 }
532
virtqueue_add_split(struct virtqueue * _vq,struct scatterlist * sgs[],unsigned int total_sg,unsigned int out_sgs,unsigned int in_sgs,void * data,void * ctx,bool premapped,gfp_t gfp)533 static inline int virtqueue_add_split(struct virtqueue *_vq,
534 struct scatterlist *sgs[],
535 unsigned int total_sg,
536 unsigned int out_sgs,
537 unsigned int in_sgs,
538 void *data,
539 void *ctx,
540 bool premapped,
541 gfp_t gfp)
542 {
543 struct vring_virtqueue *vq = to_vvq(_vq);
544 struct vring_desc_extra *extra;
545 struct scatterlist *sg;
546 struct vring_desc *desc;
547 unsigned int i, n, avail, descs_used, prev, err_idx;
548 int head;
549 bool indirect;
550
551 START_USE(vq);
552
553 BUG_ON(data == NULL);
554 BUG_ON(ctx && vq->indirect);
555
556 if (unlikely(vq->broken)) {
557 END_USE(vq);
558 return -EIO;
559 }
560
561 LAST_ADD_TIME_UPDATE(vq);
562
563 BUG_ON(total_sg == 0);
564
565 head = vq->free_head;
566
567 if (virtqueue_use_indirect(vq, total_sg))
568 desc = alloc_indirect_split(_vq, total_sg, gfp);
569 else {
570 desc = NULL;
571 WARN_ON_ONCE(total_sg > vq->split.vring.num && !vq->indirect);
572 }
573
574 if (desc) {
575 /* Use a single buffer which doesn't continue */
576 indirect = true;
577 /* Set up rest to use this indirect table. */
578 i = 0;
579 descs_used = 1;
580 extra = (struct vring_desc_extra *)&desc[total_sg];
581 } else {
582 indirect = false;
583 desc = vq->split.vring.desc;
584 extra = vq->split.desc_extra;
585 i = head;
586 descs_used = total_sg;
587 }
588
589 if (unlikely(vq->vq.num_free < descs_used)) {
590 pr_debug("Can't add buf len %i - avail = %i\n",
591 descs_used, vq->vq.num_free);
592 /* FIXME: for historical reasons, we force a notify here if
593 * there are outgoing parts to the buffer. Presumably the
594 * host should service the ring ASAP. */
595 if (out_sgs)
596 vq->notify(&vq->vq);
597 if (indirect)
598 kfree(desc);
599 END_USE(vq);
600 return -ENOSPC;
601 }
602
603 for (n = 0; n < out_sgs; n++) {
604 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
605 dma_addr_t addr;
606 u32 len;
607
608 if (vring_map_one_sg(vq, sg, DMA_TO_DEVICE, &addr, &len, premapped))
609 goto unmap_release;
610
611 prev = i;
612 /* Note that we trust indirect descriptor
613 * table since it use stream DMA mapping.
614 */
615 i = virtqueue_add_desc_split(_vq, desc, extra, i, addr, len,
616 VRING_DESC_F_NEXT,
617 premapped);
618 }
619 }
620 for (; n < (out_sgs + in_sgs); n++) {
621 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
622 dma_addr_t addr;
623 u32 len;
624
625 if (vring_map_one_sg(vq, sg, DMA_FROM_DEVICE, &addr, &len, premapped))
626 goto unmap_release;
627
628 prev = i;
629 /* Note that we trust indirect descriptor
630 * table since it use stream DMA mapping.
631 */
632 i = virtqueue_add_desc_split(_vq, desc, extra, i, addr, len,
633 VRING_DESC_F_NEXT |
634 VRING_DESC_F_WRITE,
635 premapped);
636 }
637 }
638 /* Last one doesn't continue. */
639 desc[prev].flags &= cpu_to_virtio16(_vq->vdev, ~VRING_DESC_F_NEXT);
640 if (!indirect && vring_need_unmap_buffer(vq, &extra[prev]))
641 vq->split.desc_extra[prev & (vq->split.vring.num - 1)].flags &=
642 ~VRING_DESC_F_NEXT;
643
644 if (indirect) {
645 /* Now that the indirect table is filled in, map it. */
646 dma_addr_t addr = vring_map_single(
647 vq, desc, total_sg * sizeof(struct vring_desc),
648 DMA_TO_DEVICE);
649 if (vring_mapping_error(vq, addr))
650 goto unmap_release;
651
652 virtqueue_add_desc_split(_vq, vq->split.vring.desc,
653 vq->split.desc_extra,
654 head, addr,
655 total_sg * sizeof(struct vring_desc),
656 VRING_DESC_F_INDIRECT, false);
657 }
658
659 /* We're using some buffers from the free list. */
660 vq->vq.num_free -= descs_used;
661
662 /* Update free pointer */
663 if (indirect)
664 vq->free_head = vq->split.desc_extra[head].next;
665 else
666 vq->free_head = i;
667
668 /* Store token and indirect buffer state. */
669 vq->split.desc_state[head].data = data;
670 if (indirect)
671 vq->split.desc_state[head].indir_desc = desc;
672 else
673 vq->split.desc_state[head].indir_desc = ctx;
674
675 /* Put entry in available array (but don't update avail->idx until they
676 * do sync). */
677 avail = vq->split.avail_idx_shadow & (vq->split.vring.num - 1);
678 vq->split.vring.avail->ring[avail] = cpu_to_virtio16(_vq->vdev, head);
679
680 /* Descriptors and available array need to be set before we expose the
681 * new available array entries. */
682 virtio_wmb(vq->weak_barriers);
683 vq->split.avail_idx_shadow++;
684 vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
685 vq->split.avail_idx_shadow);
686 vq->num_added++;
687
688 pr_debug("Added buffer head %i to %p\n", head, vq);
689 END_USE(vq);
690
691 /* This is very unlikely, but theoretically possible. Kick
692 * just in case. */
693 if (unlikely(vq->num_added == (1 << 16) - 1))
694 virtqueue_kick(_vq);
695
696 return 0;
697
698 unmap_release:
699 err_idx = i;
700
701 if (indirect)
702 i = 0;
703 else
704 i = head;
705
706 for (n = 0; n < total_sg; n++) {
707 if (i == err_idx)
708 break;
709
710 i = vring_unmap_one_split(vq, &extra[i]);
711 }
712
713 if (indirect)
714 kfree(desc);
715
716 END_USE(vq);
717 return -ENOMEM;
718 }
719
virtqueue_kick_prepare_split(struct virtqueue * _vq)720 static bool virtqueue_kick_prepare_split(struct virtqueue *_vq)
721 {
722 struct vring_virtqueue *vq = to_vvq(_vq);
723 u16 new, old;
724 bool needs_kick;
725
726 START_USE(vq);
727 /* We need to expose available array entries before checking avail
728 * event. */
729 virtio_mb(vq->weak_barriers);
730
731 old = vq->split.avail_idx_shadow - vq->num_added;
732 new = vq->split.avail_idx_shadow;
733 vq->num_added = 0;
734
735 LAST_ADD_TIME_CHECK(vq);
736 LAST_ADD_TIME_INVALID(vq);
737
738 if (vq->event) {
739 needs_kick = vring_need_event(virtio16_to_cpu(_vq->vdev,
740 vring_avail_event(&vq->split.vring)),
741 new, old);
742 } else {
743 needs_kick = !(vq->split.vring.used->flags &
744 cpu_to_virtio16(_vq->vdev,
745 VRING_USED_F_NO_NOTIFY));
746 }
747 END_USE(vq);
748 return needs_kick;
749 }
750
detach_buf_split(struct vring_virtqueue * vq,unsigned int head,void ** ctx)751 static void detach_buf_split(struct vring_virtqueue *vq, unsigned int head,
752 void **ctx)
753 {
754 struct vring_desc_extra *extra;
755 unsigned int i, j;
756 __virtio16 nextflag = cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_NEXT);
757
758 /* Clear data ptr. */
759 vq->split.desc_state[head].data = NULL;
760
761 extra = vq->split.desc_extra;
762
763 /* Put back on free list: unmap first-level descriptors and find end */
764 i = head;
765
766 while (vq->split.vring.desc[i].flags & nextflag) {
767 vring_unmap_one_split(vq, &extra[i]);
768 i = vq->split.desc_extra[i].next;
769 vq->vq.num_free++;
770 }
771
772 vring_unmap_one_split(vq, &extra[i]);
773 vq->split.desc_extra[i].next = vq->free_head;
774 vq->free_head = head;
775
776 /* Plus final descriptor */
777 vq->vq.num_free++;
778
779 if (vq->indirect) {
780 struct vring_desc *indir_desc =
781 vq->split.desc_state[head].indir_desc;
782 u32 len, num;
783
784 /* Free the indirect table, if any, now that it's unmapped. */
785 if (!indir_desc)
786 return;
787 len = vq->split.desc_extra[head].len;
788
789 BUG_ON(!(vq->split.desc_extra[head].flags &
790 VRING_DESC_F_INDIRECT));
791 BUG_ON(len == 0 || len % sizeof(struct vring_desc));
792
793 num = len / sizeof(struct vring_desc);
794
795 extra = (struct vring_desc_extra *)&indir_desc[num];
796
797 if (vq->use_map_api) {
798 for (j = 0; j < num; j++)
799 vring_unmap_one_split(vq, &extra[j]);
800 }
801
802 kfree(indir_desc);
803 vq->split.desc_state[head].indir_desc = NULL;
804 } else if (ctx) {
805 *ctx = vq->split.desc_state[head].indir_desc;
806 }
807 }
808
more_used_split(const struct vring_virtqueue * vq)809 static bool more_used_split(const struct vring_virtqueue *vq)
810 {
811 return vq->last_used_idx != virtio16_to_cpu(vq->vq.vdev,
812 vq->split.vring.used->idx);
813 }
814
virtqueue_get_buf_ctx_split(struct virtqueue * _vq,unsigned int * len,void ** ctx)815 static void *virtqueue_get_buf_ctx_split(struct virtqueue *_vq,
816 unsigned int *len,
817 void **ctx)
818 {
819 struct vring_virtqueue *vq = to_vvq(_vq);
820 void *ret;
821 unsigned int i;
822 u16 last_used;
823
824 START_USE(vq);
825
826 if (unlikely(vq->broken)) {
827 END_USE(vq);
828 return NULL;
829 }
830
831 if (!more_used_split(vq)) {
832 pr_debug("No more buffers in queue\n");
833 END_USE(vq);
834 return NULL;
835 }
836
837 /* Only get used array entries after they have been exposed by host. */
838 virtio_rmb(vq->weak_barriers);
839
840 last_used = (vq->last_used_idx & (vq->split.vring.num - 1));
841 i = virtio32_to_cpu(_vq->vdev,
842 vq->split.vring.used->ring[last_used].id);
843 *len = virtio32_to_cpu(_vq->vdev,
844 vq->split.vring.used->ring[last_used].len);
845
846 if (unlikely(i >= vq->split.vring.num)) {
847 BAD_RING(vq, "id %u out of range\n", i);
848 return NULL;
849 }
850 if (unlikely(!vq->split.desc_state[i].data)) {
851 BAD_RING(vq, "id %u is not a head!\n", i);
852 return NULL;
853 }
854
855 /* detach_buf_split clears data, so grab it now. */
856 ret = vq->split.desc_state[i].data;
857 detach_buf_split(vq, i, ctx);
858 vq->last_used_idx++;
859 /* If we expect an interrupt for the next entry, tell host
860 * by writing event index and flush out the write before
861 * the read in the next get_buf call. */
862 if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT))
863 virtio_store_mb(vq->weak_barriers,
864 &vring_used_event(&vq->split.vring),
865 cpu_to_virtio16(_vq->vdev, vq->last_used_idx));
866
867 LAST_ADD_TIME_INVALID(vq);
868
869 END_USE(vq);
870 return ret;
871 }
872
virtqueue_disable_cb_split(struct virtqueue * _vq)873 static void virtqueue_disable_cb_split(struct virtqueue *_vq)
874 {
875 struct vring_virtqueue *vq = to_vvq(_vq);
876
877 if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) {
878 vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
879
880 /*
881 * If device triggered an event already it won't trigger one again:
882 * no need to disable.
883 */
884 if (vq->event_triggered)
885 return;
886
887 if (vq->event)
888 /* TODO: this is a hack. Figure out a cleaner value to write. */
889 vring_used_event(&vq->split.vring) = 0x0;
890 else
891 vq->split.vring.avail->flags =
892 cpu_to_virtio16(_vq->vdev,
893 vq->split.avail_flags_shadow);
894 }
895 }
896
virtqueue_enable_cb_prepare_split(struct virtqueue * _vq)897 static unsigned int virtqueue_enable_cb_prepare_split(struct virtqueue *_vq)
898 {
899 struct vring_virtqueue *vq = to_vvq(_vq);
900 u16 last_used_idx;
901
902 START_USE(vq);
903
904 /* We optimistically turn back on interrupts, then check if there was
905 * more to do. */
906 /* Depending on the VIRTIO_RING_F_EVENT_IDX feature, we need to
907 * either clear the flags bit or point the event index at the next
908 * entry. Always do both to keep code simple. */
909 if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
910 vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
911 if (!vq->event)
912 vq->split.vring.avail->flags =
913 cpu_to_virtio16(_vq->vdev,
914 vq->split.avail_flags_shadow);
915 }
916 vring_used_event(&vq->split.vring) = cpu_to_virtio16(_vq->vdev,
917 last_used_idx = vq->last_used_idx);
918 END_USE(vq);
919 return last_used_idx;
920 }
921
virtqueue_poll_split(struct virtqueue * _vq,unsigned int last_used_idx)922 static bool virtqueue_poll_split(struct virtqueue *_vq, unsigned int last_used_idx)
923 {
924 struct vring_virtqueue *vq = to_vvq(_vq);
925
926 return (u16)last_used_idx != virtio16_to_cpu(_vq->vdev,
927 vq->split.vring.used->idx);
928 }
929
virtqueue_enable_cb_delayed_split(struct virtqueue * _vq)930 static bool virtqueue_enable_cb_delayed_split(struct virtqueue *_vq)
931 {
932 struct vring_virtqueue *vq = to_vvq(_vq);
933 u16 bufs;
934
935 START_USE(vq);
936
937 /* We optimistically turn back on interrupts, then check if there was
938 * more to do. */
939 /* Depending on the VIRTIO_RING_F_USED_EVENT_IDX feature, we need to
940 * either clear the flags bit or point the event index at the next
941 * entry. Always update the event index to keep code simple. */
942 if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
943 vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
944 if (!vq->event)
945 vq->split.vring.avail->flags =
946 cpu_to_virtio16(_vq->vdev,
947 vq->split.avail_flags_shadow);
948 }
949 /* TODO: tune this threshold */
950 bufs = (u16)(vq->split.avail_idx_shadow - vq->last_used_idx) * 3 / 4;
951
952 virtio_store_mb(vq->weak_barriers,
953 &vring_used_event(&vq->split.vring),
954 cpu_to_virtio16(_vq->vdev, vq->last_used_idx + bufs));
955
956 if (unlikely((u16)(virtio16_to_cpu(_vq->vdev, vq->split.vring.used->idx)
957 - vq->last_used_idx) > bufs)) {
958 END_USE(vq);
959 return false;
960 }
961
962 END_USE(vq);
963 return true;
964 }
965
virtqueue_detach_unused_buf_split(struct virtqueue * _vq)966 static void *virtqueue_detach_unused_buf_split(struct virtqueue *_vq)
967 {
968 struct vring_virtqueue *vq = to_vvq(_vq);
969 unsigned int i;
970 void *buf;
971
972 START_USE(vq);
973
974 for (i = 0; i < vq->split.vring.num; i++) {
975 if (!vq->split.desc_state[i].data)
976 continue;
977 /* detach_buf_split clears data, so grab it now. */
978 buf = vq->split.desc_state[i].data;
979 detach_buf_split(vq, i, NULL);
980 vq->split.avail_idx_shadow--;
981 vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
982 vq->split.avail_idx_shadow);
983 END_USE(vq);
984 return buf;
985 }
986 /* That should have freed everything. */
987 BUG_ON(vq->vq.num_free != vq->split.vring.num);
988
989 END_USE(vq);
990 return NULL;
991 }
992
virtqueue_vring_init_split(struct vring_virtqueue_split * vring_split,struct vring_virtqueue * vq)993 static void virtqueue_vring_init_split(struct vring_virtqueue_split *vring_split,
994 struct vring_virtqueue *vq)
995 {
996 struct virtio_device *vdev;
997
998 vdev = vq->vq.vdev;
999
1000 vring_split->avail_flags_shadow = 0;
1001 vring_split->avail_idx_shadow = 0;
1002
1003 /* No callback? Tell other side not to bother us. */
1004 if (!vq->vq.callback) {
1005 vring_split->avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
1006 if (!vq->event)
1007 vring_split->vring.avail->flags = cpu_to_virtio16(vdev,
1008 vring_split->avail_flags_shadow);
1009 }
1010 }
1011
virtqueue_reinit_split(struct vring_virtqueue * vq)1012 static void virtqueue_reinit_split(struct vring_virtqueue *vq)
1013 {
1014 int num;
1015
1016 num = vq->split.vring.num;
1017
1018 vq->split.vring.avail->flags = 0;
1019 vq->split.vring.avail->idx = 0;
1020
1021 /* reset avail event */
1022 vq->split.vring.avail->ring[num] = 0;
1023
1024 vq->split.vring.used->flags = 0;
1025 vq->split.vring.used->idx = 0;
1026
1027 /* reset used event */
1028 *(__virtio16 *)&(vq->split.vring.used->ring[num]) = 0;
1029
1030 virtqueue_init(vq, num);
1031
1032 virtqueue_vring_init_split(&vq->split, vq);
1033 }
1034
virtqueue_vring_attach_split(struct vring_virtqueue * vq,struct vring_virtqueue_split * vring_split)1035 static void virtqueue_vring_attach_split(struct vring_virtqueue *vq,
1036 struct vring_virtqueue_split *vring_split)
1037 {
1038 vq->split = *vring_split;
1039
1040 /* Put everything in free lists. */
1041 vq->free_head = 0;
1042 }
1043
vring_alloc_state_extra_split(struct vring_virtqueue_split * vring_split)1044 static int vring_alloc_state_extra_split(struct vring_virtqueue_split *vring_split)
1045 {
1046 struct vring_desc_state_split *state;
1047 struct vring_desc_extra *extra;
1048 u32 num = vring_split->vring.num;
1049
1050 state = kmalloc_array(num, sizeof(struct vring_desc_state_split), GFP_KERNEL);
1051 if (!state)
1052 goto err_state;
1053
1054 extra = vring_alloc_desc_extra(num);
1055 if (!extra)
1056 goto err_extra;
1057
1058 memset(state, 0, num * sizeof(struct vring_desc_state_split));
1059
1060 vring_split->desc_state = state;
1061 vring_split->desc_extra = extra;
1062 return 0;
1063
1064 err_extra:
1065 kfree(state);
1066 err_state:
1067 return -ENOMEM;
1068 }
1069
vring_free_split(struct vring_virtqueue_split * vring_split,struct virtio_device * vdev,union virtio_map map)1070 static void vring_free_split(struct vring_virtqueue_split *vring_split,
1071 struct virtio_device *vdev,
1072 union virtio_map map)
1073 {
1074 vring_free_queue(vdev, vring_split->queue_size_in_bytes,
1075 vring_split->vring.desc,
1076 vring_split->queue_dma_addr,
1077 map);
1078
1079 kfree(vring_split->desc_state);
1080 kfree(vring_split->desc_extra);
1081 }
1082
vring_alloc_queue_split(struct vring_virtqueue_split * vring_split,struct virtio_device * vdev,u32 num,unsigned int vring_align,bool may_reduce_num,union virtio_map map)1083 static int vring_alloc_queue_split(struct vring_virtqueue_split *vring_split,
1084 struct virtio_device *vdev,
1085 u32 num,
1086 unsigned int vring_align,
1087 bool may_reduce_num,
1088 union virtio_map map)
1089 {
1090 void *queue = NULL;
1091 dma_addr_t dma_addr;
1092
1093 /* We assume num is a power of 2. */
1094 if (!is_power_of_2(num)) {
1095 dev_warn(&vdev->dev, "Bad virtqueue length %u\n", num);
1096 return -EINVAL;
1097 }
1098
1099 /* TODO: allocate each queue chunk individually */
1100 for (; num && vring_size(num, vring_align) > PAGE_SIZE; num /= 2) {
1101 queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
1102 &dma_addr,
1103 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1104 map);
1105 if (queue)
1106 break;
1107 if (!may_reduce_num)
1108 return -ENOMEM;
1109 }
1110
1111 if (!num)
1112 return -ENOMEM;
1113
1114 if (!queue) {
1115 /* Try to get a single page. You are my only hope! */
1116 queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
1117 &dma_addr, GFP_KERNEL | __GFP_ZERO,
1118 map);
1119 }
1120 if (!queue)
1121 return -ENOMEM;
1122
1123 vring_init(&vring_split->vring, num, queue, vring_align);
1124
1125 vring_split->queue_dma_addr = dma_addr;
1126 vring_split->queue_size_in_bytes = vring_size(num, vring_align);
1127
1128 vring_split->vring_align = vring_align;
1129 vring_split->may_reduce_num = may_reduce_num;
1130
1131 return 0;
1132 }
1133
__vring_new_virtqueue_split(unsigned int index,struct vring_virtqueue_split * vring_split,struct virtio_device * vdev,bool weak_barriers,bool context,bool (* notify)(struct virtqueue *),void (* callback)(struct virtqueue *),const char * name,union virtio_map map)1134 static struct virtqueue *__vring_new_virtqueue_split(unsigned int index,
1135 struct vring_virtqueue_split *vring_split,
1136 struct virtio_device *vdev,
1137 bool weak_barriers,
1138 bool context,
1139 bool (*notify)(struct virtqueue *),
1140 void (*callback)(struct virtqueue *),
1141 const char *name,
1142 union virtio_map map)
1143 {
1144 struct vring_virtqueue *vq;
1145 int err;
1146
1147 vq = kmalloc(sizeof(*vq), GFP_KERNEL);
1148 if (!vq)
1149 return NULL;
1150
1151 vq->packed_ring = false;
1152 vq->vq.callback = callback;
1153 vq->vq.vdev = vdev;
1154 vq->vq.name = name;
1155 vq->vq.index = index;
1156 vq->vq.reset = false;
1157 vq->we_own_ring = false;
1158 vq->notify = notify;
1159 vq->weak_barriers = weak_barriers;
1160 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION
1161 vq->broken = true;
1162 #else
1163 vq->broken = false;
1164 #endif
1165 vq->map = map;
1166 vq->use_map_api = vring_use_map_api(vdev);
1167
1168 vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
1169 !context;
1170 vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
1171
1172 if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
1173 vq->weak_barriers = false;
1174
1175 err = vring_alloc_state_extra_split(vring_split);
1176 if (err) {
1177 kfree(vq);
1178 return NULL;
1179 }
1180
1181 virtqueue_vring_init_split(vring_split, vq);
1182
1183 virtqueue_init(vq, vring_split->vring.num);
1184 virtqueue_vring_attach_split(vq, vring_split);
1185
1186 spin_lock(&vdev->vqs_list_lock);
1187 list_add_tail(&vq->vq.list, &vdev->vqs);
1188 spin_unlock(&vdev->vqs_list_lock);
1189 return &vq->vq;
1190 }
1191
vring_create_virtqueue_split(unsigned int index,unsigned int num,unsigned int vring_align,struct virtio_device * vdev,bool weak_barriers,bool may_reduce_num,bool context,bool (* notify)(struct virtqueue *),void (* callback)(struct virtqueue *),const char * name,union virtio_map map)1192 static struct virtqueue *vring_create_virtqueue_split(
1193 unsigned int index,
1194 unsigned int num,
1195 unsigned int vring_align,
1196 struct virtio_device *vdev,
1197 bool weak_barriers,
1198 bool may_reduce_num,
1199 bool context,
1200 bool (*notify)(struct virtqueue *),
1201 void (*callback)(struct virtqueue *),
1202 const char *name,
1203 union virtio_map map)
1204 {
1205 struct vring_virtqueue_split vring_split = {};
1206 struct virtqueue *vq;
1207 int err;
1208
1209 err = vring_alloc_queue_split(&vring_split, vdev, num, vring_align,
1210 may_reduce_num, map);
1211 if (err)
1212 return NULL;
1213
1214 vq = __vring_new_virtqueue_split(index, &vring_split, vdev, weak_barriers,
1215 context, notify, callback, name, map);
1216 if (!vq) {
1217 vring_free_split(&vring_split, vdev, map);
1218 return NULL;
1219 }
1220
1221 to_vvq(vq)->we_own_ring = true;
1222
1223 return vq;
1224 }
1225
virtqueue_resize_split(struct virtqueue * _vq,u32 num)1226 static int virtqueue_resize_split(struct virtqueue *_vq, u32 num)
1227 {
1228 struct vring_virtqueue_split vring_split = {};
1229 struct vring_virtqueue *vq = to_vvq(_vq);
1230 struct virtio_device *vdev = _vq->vdev;
1231 int err;
1232
1233 err = vring_alloc_queue_split(&vring_split, vdev, num,
1234 vq->split.vring_align,
1235 vq->split.may_reduce_num,
1236 vq->map);
1237 if (err)
1238 goto err;
1239
1240 err = vring_alloc_state_extra_split(&vring_split);
1241 if (err)
1242 goto err_state_extra;
1243
1244 vring_free(&vq->vq);
1245
1246 virtqueue_vring_init_split(&vring_split, vq);
1247
1248 virtqueue_init(vq, vring_split.vring.num);
1249 virtqueue_vring_attach_split(vq, &vring_split);
1250
1251 return 0;
1252
1253 err_state_extra:
1254 vring_free_split(&vring_split, vdev, vq->map);
1255 err:
1256 virtqueue_reinit_split(vq);
1257 return -ENOMEM;
1258 }
1259
1260
1261 /*
1262 * Packed ring specific functions - *_packed().
1263 */
packed_used_wrap_counter(u16 last_used_idx)1264 static bool packed_used_wrap_counter(u16 last_used_idx)
1265 {
1266 return !!(last_used_idx & (1 << VRING_PACKED_EVENT_F_WRAP_CTR));
1267 }
1268
packed_last_used(u16 last_used_idx)1269 static u16 packed_last_used(u16 last_used_idx)
1270 {
1271 return last_used_idx & ~(-(1 << VRING_PACKED_EVENT_F_WRAP_CTR));
1272 }
1273
vring_unmap_extra_packed(const struct vring_virtqueue * vq,const struct vring_desc_extra * extra)1274 static void vring_unmap_extra_packed(const struct vring_virtqueue *vq,
1275 const struct vring_desc_extra *extra)
1276 {
1277 u16 flags;
1278
1279 flags = extra->flags;
1280
1281 if (flags & VRING_DESC_F_INDIRECT) {
1282 if (!vq->use_map_api)
1283 return;
1284 } else if (!vring_need_unmap_buffer(vq, extra))
1285 return;
1286
1287 virtqueue_unmap_page_attrs(&vq->vq,
1288 extra->addr, extra->len,
1289 (flags & VRING_DESC_F_WRITE) ?
1290 DMA_FROM_DEVICE : DMA_TO_DEVICE,
1291 0);
1292 }
1293
alloc_indirect_packed(unsigned int total_sg,gfp_t gfp)1294 static struct vring_packed_desc *alloc_indirect_packed(unsigned int total_sg,
1295 gfp_t gfp)
1296 {
1297 struct vring_desc_extra *extra;
1298 struct vring_packed_desc *desc;
1299 int i, size;
1300
1301 /*
1302 * We require lowmem mappings for the descriptors because
1303 * otherwise virt_to_phys will give us bogus addresses in the
1304 * virtqueue.
1305 */
1306 gfp &= ~__GFP_HIGHMEM;
1307
1308 size = (sizeof(*desc) + sizeof(*extra)) * total_sg;
1309
1310 desc = kmalloc(size, gfp);
1311 if (!desc)
1312 return NULL;
1313
1314 extra = (struct vring_desc_extra *)&desc[total_sg];
1315
1316 for (i = 0; i < total_sg; i++)
1317 extra[i].next = i + 1;
1318
1319 return desc;
1320 }
1321
virtqueue_add_indirect_packed(struct vring_virtqueue * vq,struct scatterlist * sgs[],unsigned int total_sg,unsigned int out_sgs,unsigned int in_sgs,void * data,bool premapped,gfp_t gfp)1322 static int virtqueue_add_indirect_packed(struct vring_virtqueue *vq,
1323 struct scatterlist *sgs[],
1324 unsigned int total_sg,
1325 unsigned int out_sgs,
1326 unsigned int in_sgs,
1327 void *data,
1328 bool premapped,
1329 gfp_t gfp)
1330 {
1331 struct vring_desc_extra *extra;
1332 struct vring_packed_desc *desc;
1333 struct scatterlist *sg;
1334 unsigned int i, n, err_idx, len;
1335 u16 head, id;
1336 dma_addr_t addr;
1337
1338 head = vq->packed.next_avail_idx;
1339 desc = alloc_indirect_packed(total_sg, gfp);
1340 if (!desc)
1341 return -ENOMEM;
1342
1343 extra = (struct vring_desc_extra *)&desc[total_sg];
1344
1345 if (unlikely(vq->vq.num_free < 1)) {
1346 pr_debug("Can't add buf len 1 - avail = 0\n");
1347 kfree(desc);
1348 END_USE(vq);
1349 return -ENOSPC;
1350 }
1351
1352 i = 0;
1353 id = vq->free_head;
1354 BUG_ON(id == vq->packed.vring.num);
1355
1356 for (n = 0; n < out_sgs + in_sgs; n++) {
1357 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1358 if (vring_map_one_sg(vq, sg, n < out_sgs ?
1359 DMA_TO_DEVICE : DMA_FROM_DEVICE,
1360 &addr, &len, premapped))
1361 goto unmap_release;
1362
1363 desc[i].flags = cpu_to_le16(n < out_sgs ?
1364 0 : VRING_DESC_F_WRITE);
1365 desc[i].addr = cpu_to_le64(addr);
1366 desc[i].len = cpu_to_le32(len);
1367
1368 if (unlikely(vq->use_map_api)) {
1369 extra[i].addr = premapped ? DMA_MAPPING_ERROR : addr;
1370 extra[i].len = len;
1371 extra[i].flags = n < out_sgs ? 0 : VRING_DESC_F_WRITE;
1372 }
1373
1374 i++;
1375 }
1376 }
1377
1378 /* Now that the indirect table is filled in, map it. */
1379 addr = vring_map_single(vq, desc,
1380 total_sg * sizeof(struct vring_packed_desc),
1381 DMA_TO_DEVICE);
1382 if (vring_mapping_error(vq, addr))
1383 goto unmap_release;
1384
1385 vq->packed.vring.desc[head].addr = cpu_to_le64(addr);
1386 vq->packed.vring.desc[head].len = cpu_to_le32(total_sg *
1387 sizeof(struct vring_packed_desc));
1388 vq->packed.vring.desc[head].id = cpu_to_le16(id);
1389
1390 if (vq->use_map_api) {
1391 vq->packed.desc_extra[id].addr = addr;
1392 vq->packed.desc_extra[id].len = total_sg *
1393 sizeof(struct vring_packed_desc);
1394 vq->packed.desc_extra[id].flags = VRING_DESC_F_INDIRECT |
1395 vq->packed.avail_used_flags;
1396 }
1397
1398 /*
1399 * A driver MUST NOT make the first descriptor in the list
1400 * available before all subsequent descriptors comprising
1401 * the list are made available.
1402 */
1403 virtio_wmb(vq->weak_barriers);
1404 vq->packed.vring.desc[head].flags = cpu_to_le16(VRING_DESC_F_INDIRECT |
1405 vq->packed.avail_used_flags);
1406
1407 /* We're using some buffers from the free list. */
1408 vq->vq.num_free -= 1;
1409
1410 /* Update free pointer */
1411 n = head + 1;
1412 if (n >= vq->packed.vring.num) {
1413 n = 0;
1414 vq->packed.avail_wrap_counter ^= 1;
1415 vq->packed.avail_used_flags ^=
1416 1 << VRING_PACKED_DESC_F_AVAIL |
1417 1 << VRING_PACKED_DESC_F_USED;
1418 }
1419 vq->packed.next_avail_idx = n;
1420 vq->free_head = vq->packed.desc_extra[id].next;
1421
1422 /* Store token and indirect buffer state. */
1423 vq->packed.desc_state[id].num = 1;
1424 vq->packed.desc_state[id].data = data;
1425 vq->packed.desc_state[id].indir_desc = desc;
1426 vq->packed.desc_state[id].last = id;
1427
1428 vq->num_added += 1;
1429
1430 pr_debug("Added buffer head %i to %p\n", head, vq);
1431 END_USE(vq);
1432
1433 return 0;
1434
1435 unmap_release:
1436 err_idx = i;
1437
1438 for (i = 0; i < err_idx; i++)
1439 vring_unmap_extra_packed(vq, &extra[i]);
1440
1441 kfree(desc);
1442
1443 END_USE(vq);
1444 return -ENOMEM;
1445 }
1446
virtqueue_add_packed(struct virtqueue * _vq,struct scatterlist * sgs[],unsigned int total_sg,unsigned int out_sgs,unsigned int in_sgs,void * data,void * ctx,bool premapped,gfp_t gfp)1447 static inline int virtqueue_add_packed(struct virtqueue *_vq,
1448 struct scatterlist *sgs[],
1449 unsigned int total_sg,
1450 unsigned int out_sgs,
1451 unsigned int in_sgs,
1452 void *data,
1453 void *ctx,
1454 bool premapped,
1455 gfp_t gfp)
1456 {
1457 struct vring_virtqueue *vq = to_vvq(_vq);
1458 struct vring_packed_desc *desc;
1459 struct scatterlist *sg;
1460 unsigned int i, n, c, descs_used, err_idx, len;
1461 __le16 head_flags, flags;
1462 u16 head, id, prev, curr, avail_used_flags;
1463 int err;
1464
1465 START_USE(vq);
1466
1467 BUG_ON(data == NULL);
1468 BUG_ON(ctx && vq->indirect);
1469
1470 if (unlikely(vq->broken)) {
1471 END_USE(vq);
1472 return -EIO;
1473 }
1474
1475 LAST_ADD_TIME_UPDATE(vq);
1476
1477 BUG_ON(total_sg == 0);
1478
1479 if (virtqueue_use_indirect(vq, total_sg)) {
1480 err = virtqueue_add_indirect_packed(vq, sgs, total_sg, out_sgs,
1481 in_sgs, data, premapped, gfp);
1482 if (err != -ENOMEM) {
1483 END_USE(vq);
1484 return err;
1485 }
1486
1487 /* fall back on direct */
1488 }
1489
1490 head = vq->packed.next_avail_idx;
1491 avail_used_flags = vq->packed.avail_used_flags;
1492
1493 WARN_ON_ONCE(total_sg > vq->packed.vring.num && !vq->indirect);
1494
1495 desc = vq->packed.vring.desc;
1496 i = head;
1497 descs_used = total_sg;
1498
1499 if (unlikely(vq->vq.num_free < descs_used)) {
1500 pr_debug("Can't add buf len %i - avail = %i\n",
1501 descs_used, vq->vq.num_free);
1502 END_USE(vq);
1503 return -ENOSPC;
1504 }
1505
1506 id = vq->free_head;
1507 BUG_ON(id == vq->packed.vring.num);
1508
1509 curr = id;
1510 c = 0;
1511 for (n = 0; n < out_sgs + in_sgs; n++) {
1512 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1513 dma_addr_t addr;
1514
1515 if (vring_map_one_sg(vq, sg, n < out_sgs ?
1516 DMA_TO_DEVICE : DMA_FROM_DEVICE,
1517 &addr, &len, premapped))
1518 goto unmap_release;
1519
1520 flags = cpu_to_le16(vq->packed.avail_used_flags |
1521 (++c == total_sg ? 0 : VRING_DESC_F_NEXT) |
1522 (n < out_sgs ? 0 : VRING_DESC_F_WRITE));
1523 if (i == head)
1524 head_flags = flags;
1525 else
1526 desc[i].flags = flags;
1527
1528 desc[i].addr = cpu_to_le64(addr);
1529 desc[i].len = cpu_to_le32(len);
1530 desc[i].id = cpu_to_le16(id);
1531
1532 if (unlikely(vq->use_map_api)) {
1533 vq->packed.desc_extra[curr].addr = premapped ?
1534 DMA_MAPPING_ERROR : addr;
1535 vq->packed.desc_extra[curr].len = len;
1536 vq->packed.desc_extra[curr].flags =
1537 le16_to_cpu(flags);
1538 }
1539 prev = curr;
1540 curr = vq->packed.desc_extra[curr].next;
1541
1542 if ((unlikely(++i >= vq->packed.vring.num))) {
1543 i = 0;
1544 vq->packed.avail_used_flags ^=
1545 1 << VRING_PACKED_DESC_F_AVAIL |
1546 1 << VRING_PACKED_DESC_F_USED;
1547 }
1548 }
1549 }
1550
1551 if (i <= head)
1552 vq->packed.avail_wrap_counter ^= 1;
1553
1554 /* We're using some buffers from the free list. */
1555 vq->vq.num_free -= descs_used;
1556
1557 /* Update free pointer */
1558 vq->packed.next_avail_idx = i;
1559 vq->free_head = curr;
1560
1561 /* Store token. */
1562 vq->packed.desc_state[id].num = descs_used;
1563 vq->packed.desc_state[id].data = data;
1564 vq->packed.desc_state[id].indir_desc = ctx;
1565 vq->packed.desc_state[id].last = prev;
1566
1567 /*
1568 * A driver MUST NOT make the first descriptor in the list
1569 * available before all subsequent descriptors comprising
1570 * the list are made available.
1571 */
1572 virtio_wmb(vq->weak_barriers);
1573 vq->packed.vring.desc[head].flags = head_flags;
1574 vq->num_added += descs_used;
1575
1576 pr_debug("Added buffer head %i to %p\n", head, vq);
1577 END_USE(vq);
1578
1579 return 0;
1580
1581 unmap_release:
1582 err_idx = i;
1583 i = head;
1584 curr = vq->free_head;
1585
1586 vq->packed.avail_used_flags = avail_used_flags;
1587
1588 for (n = 0; n < total_sg; n++) {
1589 if (i == err_idx)
1590 break;
1591 vring_unmap_extra_packed(vq, &vq->packed.desc_extra[curr]);
1592 curr = vq->packed.desc_extra[curr].next;
1593 i++;
1594 if (i >= vq->packed.vring.num)
1595 i = 0;
1596 }
1597
1598 END_USE(vq);
1599 return -EIO;
1600 }
1601
virtqueue_kick_prepare_packed(struct virtqueue * _vq)1602 static bool virtqueue_kick_prepare_packed(struct virtqueue *_vq)
1603 {
1604 struct vring_virtqueue *vq = to_vvq(_vq);
1605 u16 new, old, off_wrap, flags, wrap_counter, event_idx;
1606 bool needs_kick;
1607 union {
1608 struct {
1609 __le16 off_wrap;
1610 __le16 flags;
1611 };
1612 u32 u32;
1613 } snapshot;
1614
1615 START_USE(vq);
1616
1617 /*
1618 * We need to expose the new flags value before checking notification
1619 * suppressions.
1620 */
1621 virtio_mb(vq->weak_barriers);
1622
1623 old = vq->packed.next_avail_idx - vq->num_added;
1624 new = vq->packed.next_avail_idx;
1625 vq->num_added = 0;
1626
1627 snapshot.u32 = *(u32 *)vq->packed.vring.device;
1628 flags = le16_to_cpu(snapshot.flags);
1629
1630 LAST_ADD_TIME_CHECK(vq);
1631 LAST_ADD_TIME_INVALID(vq);
1632
1633 if (flags != VRING_PACKED_EVENT_FLAG_DESC) {
1634 needs_kick = (flags != VRING_PACKED_EVENT_FLAG_DISABLE);
1635 goto out;
1636 }
1637
1638 off_wrap = le16_to_cpu(snapshot.off_wrap);
1639
1640 wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1641 event_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1642 if (wrap_counter != vq->packed.avail_wrap_counter)
1643 event_idx -= vq->packed.vring.num;
1644
1645 needs_kick = vring_need_event(event_idx, new, old);
1646 out:
1647 END_USE(vq);
1648 return needs_kick;
1649 }
1650
detach_buf_packed(struct vring_virtqueue * vq,unsigned int id,void ** ctx)1651 static void detach_buf_packed(struct vring_virtqueue *vq,
1652 unsigned int id, void **ctx)
1653 {
1654 struct vring_desc_state_packed *state = NULL;
1655 struct vring_packed_desc *desc;
1656 unsigned int i, curr;
1657
1658 state = &vq->packed.desc_state[id];
1659
1660 /* Clear data ptr. */
1661 state->data = NULL;
1662
1663 vq->packed.desc_extra[state->last].next = vq->free_head;
1664 vq->free_head = id;
1665 vq->vq.num_free += state->num;
1666
1667 if (unlikely(vq->use_map_api)) {
1668 curr = id;
1669 for (i = 0; i < state->num; i++) {
1670 vring_unmap_extra_packed(vq,
1671 &vq->packed.desc_extra[curr]);
1672 curr = vq->packed.desc_extra[curr].next;
1673 }
1674 }
1675
1676 if (vq->indirect) {
1677 struct vring_desc_extra *extra;
1678 u32 len, num;
1679
1680 /* Free the indirect table, if any, now that it's unmapped. */
1681 desc = state->indir_desc;
1682 if (!desc)
1683 return;
1684
1685 if (vq->use_map_api) {
1686 len = vq->packed.desc_extra[id].len;
1687 num = len / sizeof(struct vring_packed_desc);
1688
1689 extra = (struct vring_desc_extra *)&desc[num];
1690
1691 for (i = 0; i < num; i++)
1692 vring_unmap_extra_packed(vq, &extra[i]);
1693 }
1694 kfree(desc);
1695 state->indir_desc = NULL;
1696 } else if (ctx) {
1697 *ctx = state->indir_desc;
1698 }
1699 }
1700
is_used_desc_packed(const struct vring_virtqueue * vq,u16 idx,bool used_wrap_counter)1701 static inline bool is_used_desc_packed(const struct vring_virtqueue *vq,
1702 u16 idx, bool used_wrap_counter)
1703 {
1704 bool avail, used;
1705 u16 flags;
1706
1707 flags = le16_to_cpu(vq->packed.vring.desc[idx].flags);
1708 avail = !!(flags & (1 << VRING_PACKED_DESC_F_AVAIL));
1709 used = !!(flags & (1 << VRING_PACKED_DESC_F_USED));
1710
1711 return avail == used && used == used_wrap_counter;
1712 }
1713
more_used_packed(const struct vring_virtqueue * vq)1714 static bool more_used_packed(const struct vring_virtqueue *vq)
1715 {
1716 u16 last_used;
1717 u16 last_used_idx;
1718 bool used_wrap_counter;
1719
1720 last_used_idx = READ_ONCE(vq->last_used_idx);
1721 last_used = packed_last_used(last_used_idx);
1722 used_wrap_counter = packed_used_wrap_counter(last_used_idx);
1723 return is_used_desc_packed(vq, last_used, used_wrap_counter);
1724 }
1725
virtqueue_get_buf_ctx_packed(struct virtqueue * _vq,unsigned int * len,void ** ctx)1726 static void *virtqueue_get_buf_ctx_packed(struct virtqueue *_vq,
1727 unsigned int *len,
1728 void **ctx)
1729 {
1730 struct vring_virtqueue *vq = to_vvq(_vq);
1731 u16 last_used, id, last_used_idx;
1732 bool used_wrap_counter;
1733 void *ret;
1734
1735 START_USE(vq);
1736
1737 if (unlikely(vq->broken)) {
1738 END_USE(vq);
1739 return NULL;
1740 }
1741
1742 if (!more_used_packed(vq)) {
1743 pr_debug("No more buffers in queue\n");
1744 END_USE(vq);
1745 return NULL;
1746 }
1747
1748 /* Only get used elements after they have been exposed by host. */
1749 virtio_rmb(vq->weak_barriers);
1750
1751 last_used_idx = READ_ONCE(vq->last_used_idx);
1752 used_wrap_counter = packed_used_wrap_counter(last_used_idx);
1753 last_used = packed_last_used(last_used_idx);
1754 id = le16_to_cpu(vq->packed.vring.desc[last_used].id);
1755 *len = le32_to_cpu(vq->packed.vring.desc[last_used].len);
1756
1757 if (unlikely(id >= vq->packed.vring.num)) {
1758 BAD_RING(vq, "id %u out of range\n", id);
1759 return NULL;
1760 }
1761 if (unlikely(!vq->packed.desc_state[id].data)) {
1762 BAD_RING(vq, "id %u is not a head!\n", id);
1763 return NULL;
1764 }
1765
1766 /* detach_buf_packed clears data, so grab it now. */
1767 ret = vq->packed.desc_state[id].data;
1768 detach_buf_packed(vq, id, ctx);
1769
1770 last_used += vq->packed.desc_state[id].num;
1771 if (unlikely(last_used >= vq->packed.vring.num)) {
1772 last_used -= vq->packed.vring.num;
1773 used_wrap_counter ^= 1;
1774 }
1775
1776 last_used = (last_used | (used_wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR));
1777 WRITE_ONCE(vq->last_used_idx, last_used);
1778
1779 /*
1780 * If we expect an interrupt for the next entry, tell host
1781 * by writing event index and flush out the write before
1782 * the read in the next get_buf call.
1783 */
1784 if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DESC)
1785 virtio_store_mb(vq->weak_barriers,
1786 &vq->packed.vring.driver->off_wrap,
1787 cpu_to_le16(vq->last_used_idx));
1788
1789 LAST_ADD_TIME_INVALID(vq);
1790
1791 END_USE(vq);
1792 return ret;
1793 }
1794
virtqueue_disable_cb_packed(struct virtqueue * _vq)1795 static void virtqueue_disable_cb_packed(struct virtqueue *_vq)
1796 {
1797 struct vring_virtqueue *vq = to_vvq(_vq);
1798
1799 if (vq->packed.event_flags_shadow != VRING_PACKED_EVENT_FLAG_DISABLE) {
1800 vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1801
1802 /*
1803 * If device triggered an event already it won't trigger one again:
1804 * no need to disable.
1805 */
1806 if (vq->event_triggered)
1807 return;
1808
1809 vq->packed.vring.driver->flags =
1810 cpu_to_le16(vq->packed.event_flags_shadow);
1811 }
1812 }
1813
virtqueue_enable_cb_prepare_packed(struct virtqueue * _vq)1814 static unsigned int virtqueue_enable_cb_prepare_packed(struct virtqueue *_vq)
1815 {
1816 struct vring_virtqueue *vq = to_vvq(_vq);
1817
1818 START_USE(vq);
1819
1820 /*
1821 * We optimistically turn back on interrupts, then check if there was
1822 * more to do.
1823 */
1824
1825 if (vq->event) {
1826 vq->packed.vring.driver->off_wrap =
1827 cpu_to_le16(vq->last_used_idx);
1828 /*
1829 * We need to update event offset and event wrap
1830 * counter first before updating event flags.
1831 */
1832 virtio_wmb(vq->weak_barriers);
1833 }
1834
1835 if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1836 vq->packed.event_flags_shadow = vq->event ?
1837 VRING_PACKED_EVENT_FLAG_DESC :
1838 VRING_PACKED_EVENT_FLAG_ENABLE;
1839 vq->packed.vring.driver->flags =
1840 cpu_to_le16(vq->packed.event_flags_shadow);
1841 }
1842
1843 END_USE(vq);
1844 return vq->last_used_idx;
1845 }
1846
virtqueue_poll_packed(struct virtqueue * _vq,u16 off_wrap)1847 static bool virtqueue_poll_packed(struct virtqueue *_vq, u16 off_wrap)
1848 {
1849 struct vring_virtqueue *vq = to_vvq(_vq);
1850 bool wrap_counter;
1851 u16 used_idx;
1852
1853 wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1854 used_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1855
1856 return is_used_desc_packed(vq, used_idx, wrap_counter);
1857 }
1858
virtqueue_enable_cb_delayed_packed(struct virtqueue * _vq)1859 static bool virtqueue_enable_cb_delayed_packed(struct virtqueue *_vq)
1860 {
1861 struct vring_virtqueue *vq = to_vvq(_vq);
1862 u16 used_idx, wrap_counter, last_used_idx;
1863 u16 bufs;
1864
1865 START_USE(vq);
1866
1867 /*
1868 * We optimistically turn back on interrupts, then check if there was
1869 * more to do.
1870 */
1871
1872 if (vq->event) {
1873 /* TODO: tune this threshold */
1874 bufs = (vq->packed.vring.num - vq->vq.num_free) * 3 / 4;
1875 last_used_idx = READ_ONCE(vq->last_used_idx);
1876 wrap_counter = packed_used_wrap_counter(last_used_idx);
1877
1878 used_idx = packed_last_used(last_used_idx) + bufs;
1879 if (used_idx >= vq->packed.vring.num) {
1880 used_idx -= vq->packed.vring.num;
1881 wrap_counter ^= 1;
1882 }
1883
1884 vq->packed.vring.driver->off_wrap = cpu_to_le16(used_idx |
1885 (wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR));
1886
1887 /*
1888 * We need to update event offset and event wrap
1889 * counter first before updating event flags.
1890 */
1891 virtio_wmb(vq->weak_barriers);
1892 }
1893
1894 if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1895 vq->packed.event_flags_shadow = vq->event ?
1896 VRING_PACKED_EVENT_FLAG_DESC :
1897 VRING_PACKED_EVENT_FLAG_ENABLE;
1898 vq->packed.vring.driver->flags =
1899 cpu_to_le16(vq->packed.event_flags_shadow);
1900 }
1901
1902 /*
1903 * We need to update event suppression structure first
1904 * before re-checking for more used buffers.
1905 */
1906 virtio_mb(vq->weak_barriers);
1907
1908 last_used_idx = READ_ONCE(vq->last_used_idx);
1909 wrap_counter = packed_used_wrap_counter(last_used_idx);
1910 used_idx = packed_last_used(last_used_idx);
1911 if (is_used_desc_packed(vq, used_idx, wrap_counter)) {
1912 END_USE(vq);
1913 return false;
1914 }
1915
1916 END_USE(vq);
1917 return true;
1918 }
1919
virtqueue_detach_unused_buf_packed(struct virtqueue * _vq)1920 static void *virtqueue_detach_unused_buf_packed(struct virtqueue *_vq)
1921 {
1922 struct vring_virtqueue *vq = to_vvq(_vq);
1923 unsigned int i;
1924 void *buf;
1925
1926 START_USE(vq);
1927
1928 for (i = 0; i < vq->packed.vring.num; i++) {
1929 if (!vq->packed.desc_state[i].data)
1930 continue;
1931 /* detach_buf clears data, so grab it now. */
1932 buf = vq->packed.desc_state[i].data;
1933 detach_buf_packed(vq, i, NULL);
1934 END_USE(vq);
1935 return buf;
1936 }
1937 /* That should have freed everything. */
1938 BUG_ON(vq->vq.num_free != vq->packed.vring.num);
1939
1940 END_USE(vq);
1941 return NULL;
1942 }
1943
vring_alloc_desc_extra(unsigned int num)1944 static struct vring_desc_extra *vring_alloc_desc_extra(unsigned int num)
1945 {
1946 struct vring_desc_extra *desc_extra;
1947 unsigned int i;
1948
1949 desc_extra = kmalloc_array(num, sizeof(struct vring_desc_extra),
1950 GFP_KERNEL);
1951 if (!desc_extra)
1952 return NULL;
1953
1954 memset(desc_extra, 0, num * sizeof(struct vring_desc_extra));
1955
1956 for (i = 0; i < num - 1; i++)
1957 desc_extra[i].next = i + 1;
1958
1959 return desc_extra;
1960 }
1961
vring_free_packed(struct vring_virtqueue_packed * vring_packed,struct virtio_device * vdev,union virtio_map map)1962 static void vring_free_packed(struct vring_virtqueue_packed *vring_packed,
1963 struct virtio_device *vdev,
1964 union virtio_map map)
1965 {
1966 if (vring_packed->vring.desc)
1967 vring_free_queue(vdev, vring_packed->ring_size_in_bytes,
1968 vring_packed->vring.desc,
1969 vring_packed->ring_dma_addr,
1970 map);
1971
1972 if (vring_packed->vring.driver)
1973 vring_free_queue(vdev, vring_packed->event_size_in_bytes,
1974 vring_packed->vring.driver,
1975 vring_packed->driver_event_dma_addr,
1976 map);
1977
1978 if (vring_packed->vring.device)
1979 vring_free_queue(vdev, vring_packed->event_size_in_bytes,
1980 vring_packed->vring.device,
1981 vring_packed->device_event_dma_addr,
1982 map);
1983
1984 kfree(vring_packed->desc_state);
1985 kfree(vring_packed->desc_extra);
1986 }
1987
vring_alloc_queue_packed(struct vring_virtqueue_packed * vring_packed,struct virtio_device * vdev,u32 num,union virtio_map map)1988 static int vring_alloc_queue_packed(struct vring_virtqueue_packed *vring_packed,
1989 struct virtio_device *vdev,
1990 u32 num, union virtio_map map)
1991 {
1992 struct vring_packed_desc *ring;
1993 struct vring_packed_desc_event *driver, *device;
1994 dma_addr_t ring_dma_addr, driver_event_dma_addr, device_event_dma_addr;
1995 size_t ring_size_in_bytes, event_size_in_bytes;
1996
1997 ring_size_in_bytes = num * sizeof(struct vring_packed_desc);
1998
1999 ring = vring_alloc_queue(vdev, ring_size_in_bytes,
2000 &ring_dma_addr,
2001 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
2002 map);
2003 if (!ring)
2004 goto err;
2005
2006 vring_packed->vring.desc = ring;
2007 vring_packed->ring_dma_addr = ring_dma_addr;
2008 vring_packed->ring_size_in_bytes = ring_size_in_bytes;
2009
2010 event_size_in_bytes = sizeof(struct vring_packed_desc_event);
2011
2012 driver = vring_alloc_queue(vdev, event_size_in_bytes,
2013 &driver_event_dma_addr,
2014 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
2015 map);
2016 if (!driver)
2017 goto err;
2018
2019 vring_packed->vring.driver = driver;
2020 vring_packed->event_size_in_bytes = event_size_in_bytes;
2021 vring_packed->driver_event_dma_addr = driver_event_dma_addr;
2022
2023 device = vring_alloc_queue(vdev, event_size_in_bytes,
2024 &device_event_dma_addr,
2025 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
2026 map);
2027 if (!device)
2028 goto err;
2029
2030 vring_packed->vring.device = device;
2031 vring_packed->device_event_dma_addr = device_event_dma_addr;
2032
2033 vring_packed->vring.num = num;
2034
2035 return 0;
2036
2037 err:
2038 vring_free_packed(vring_packed, vdev, map);
2039 return -ENOMEM;
2040 }
2041
vring_alloc_state_extra_packed(struct vring_virtqueue_packed * vring_packed)2042 static int vring_alloc_state_extra_packed(struct vring_virtqueue_packed *vring_packed)
2043 {
2044 struct vring_desc_state_packed *state;
2045 struct vring_desc_extra *extra;
2046 u32 num = vring_packed->vring.num;
2047
2048 state = kmalloc_array(num, sizeof(struct vring_desc_state_packed), GFP_KERNEL);
2049 if (!state)
2050 goto err_desc_state;
2051
2052 memset(state, 0, num * sizeof(struct vring_desc_state_packed));
2053
2054 extra = vring_alloc_desc_extra(num);
2055 if (!extra)
2056 goto err_desc_extra;
2057
2058 vring_packed->desc_state = state;
2059 vring_packed->desc_extra = extra;
2060
2061 return 0;
2062
2063 err_desc_extra:
2064 kfree(state);
2065 err_desc_state:
2066 return -ENOMEM;
2067 }
2068
virtqueue_vring_init_packed(struct vring_virtqueue_packed * vring_packed,bool callback)2069 static void virtqueue_vring_init_packed(struct vring_virtqueue_packed *vring_packed,
2070 bool callback)
2071 {
2072 vring_packed->next_avail_idx = 0;
2073 vring_packed->avail_wrap_counter = 1;
2074 vring_packed->event_flags_shadow = 0;
2075 vring_packed->avail_used_flags = 1 << VRING_PACKED_DESC_F_AVAIL;
2076
2077 /* No callback? Tell other side not to bother us. */
2078 if (!callback) {
2079 vring_packed->event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
2080 vring_packed->vring.driver->flags =
2081 cpu_to_le16(vring_packed->event_flags_shadow);
2082 }
2083 }
2084
virtqueue_vring_attach_packed(struct vring_virtqueue * vq,struct vring_virtqueue_packed * vring_packed)2085 static void virtqueue_vring_attach_packed(struct vring_virtqueue *vq,
2086 struct vring_virtqueue_packed *vring_packed)
2087 {
2088 vq->packed = *vring_packed;
2089
2090 /* Put everything in free lists. */
2091 vq->free_head = 0;
2092 }
2093
virtqueue_reinit_packed(struct vring_virtqueue * vq)2094 static void virtqueue_reinit_packed(struct vring_virtqueue *vq)
2095 {
2096 memset(vq->packed.vring.device, 0, vq->packed.event_size_in_bytes);
2097 memset(vq->packed.vring.driver, 0, vq->packed.event_size_in_bytes);
2098
2099 /* we need to reset the desc.flags. For more, see is_used_desc_packed() */
2100 memset(vq->packed.vring.desc, 0, vq->packed.ring_size_in_bytes);
2101
2102 virtqueue_init(vq, vq->packed.vring.num);
2103 virtqueue_vring_init_packed(&vq->packed, !!vq->vq.callback);
2104 }
2105
__vring_new_virtqueue_packed(unsigned int index,struct vring_virtqueue_packed * vring_packed,struct virtio_device * vdev,bool weak_barriers,bool context,bool (* notify)(struct virtqueue *),void (* callback)(struct virtqueue *),const char * name,union virtio_map map)2106 static struct virtqueue *__vring_new_virtqueue_packed(unsigned int index,
2107 struct vring_virtqueue_packed *vring_packed,
2108 struct virtio_device *vdev,
2109 bool weak_barriers,
2110 bool context,
2111 bool (*notify)(struct virtqueue *),
2112 void (*callback)(struct virtqueue *),
2113 const char *name,
2114 union virtio_map map)
2115 {
2116 struct vring_virtqueue *vq;
2117 int err;
2118
2119 vq = kmalloc(sizeof(*vq), GFP_KERNEL);
2120 if (!vq)
2121 return NULL;
2122
2123 vq->vq.callback = callback;
2124 vq->vq.vdev = vdev;
2125 vq->vq.name = name;
2126 vq->vq.index = index;
2127 vq->vq.reset = false;
2128 vq->we_own_ring = false;
2129 vq->notify = notify;
2130 vq->weak_barriers = weak_barriers;
2131 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION
2132 vq->broken = true;
2133 #else
2134 vq->broken = false;
2135 #endif
2136 vq->packed_ring = true;
2137 vq->map = map;
2138 vq->use_map_api = vring_use_map_api(vdev);
2139
2140 vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
2141 !context;
2142 vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
2143
2144 if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
2145 vq->weak_barriers = false;
2146
2147 err = vring_alloc_state_extra_packed(vring_packed);
2148 if (err) {
2149 kfree(vq);
2150 return NULL;
2151 }
2152
2153 virtqueue_vring_init_packed(vring_packed, !!callback);
2154
2155 virtqueue_init(vq, vring_packed->vring.num);
2156 virtqueue_vring_attach_packed(vq, vring_packed);
2157
2158 spin_lock(&vdev->vqs_list_lock);
2159 list_add_tail(&vq->vq.list, &vdev->vqs);
2160 spin_unlock(&vdev->vqs_list_lock);
2161 return &vq->vq;
2162 }
2163
vring_create_virtqueue_packed(unsigned int index,unsigned int num,unsigned int vring_align,struct virtio_device * vdev,bool weak_barriers,bool may_reduce_num,bool context,bool (* notify)(struct virtqueue *),void (* callback)(struct virtqueue *),const char * name,union virtio_map map)2164 static struct virtqueue *vring_create_virtqueue_packed(
2165 unsigned int index,
2166 unsigned int num,
2167 unsigned int vring_align,
2168 struct virtio_device *vdev,
2169 bool weak_barriers,
2170 bool may_reduce_num,
2171 bool context,
2172 bool (*notify)(struct virtqueue *),
2173 void (*callback)(struct virtqueue *),
2174 const char *name,
2175 union virtio_map map)
2176 {
2177 struct vring_virtqueue_packed vring_packed = {};
2178 struct virtqueue *vq;
2179
2180 if (vring_alloc_queue_packed(&vring_packed, vdev, num, map))
2181 return NULL;
2182
2183 vq = __vring_new_virtqueue_packed(index, &vring_packed, vdev, weak_barriers,
2184 context, notify, callback, name, map);
2185 if (!vq) {
2186 vring_free_packed(&vring_packed, vdev, map);
2187 return NULL;
2188 }
2189
2190 to_vvq(vq)->we_own_ring = true;
2191
2192 return vq;
2193 }
2194
virtqueue_resize_packed(struct virtqueue * _vq,u32 num)2195 static int virtqueue_resize_packed(struct virtqueue *_vq, u32 num)
2196 {
2197 struct vring_virtqueue_packed vring_packed = {};
2198 struct vring_virtqueue *vq = to_vvq(_vq);
2199 struct virtio_device *vdev = _vq->vdev;
2200 int err;
2201
2202 if (vring_alloc_queue_packed(&vring_packed, vdev, num, vq->map))
2203 goto err_ring;
2204
2205 err = vring_alloc_state_extra_packed(&vring_packed);
2206 if (err)
2207 goto err_state_extra;
2208
2209 vring_free(&vq->vq);
2210
2211 virtqueue_vring_init_packed(&vring_packed, !!vq->vq.callback);
2212
2213 virtqueue_init(vq, vring_packed.vring.num);
2214 virtqueue_vring_attach_packed(vq, &vring_packed);
2215
2216 return 0;
2217
2218 err_state_extra:
2219 vring_free_packed(&vring_packed, vdev, vq->map);
2220 err_ring:
2221 virtqueue_reinit_packed(vq);
2222 return -ENOMEM;
2223 }
2224
virtqueue_disable_and_recycle(struct virtqueue * _vq,void (* recycle)(struct virtqueue * vq,void * buf))2225 static int virtqueue_disable_and_recycle(struct virtqueue *_vq,
2226 void (*recycle)(struct virtqueue *vq, void *buf))
2227 {
2228 struct vring_virtqueue *vq = to_vvq(_vq);
2229 struct virtio_device *vdev = vq->vq.vdev;
2230 void *buf;
2231 int err;
2232
2233 if (!vq->we_own_ring)
2234 return -EPERM;
2235
2236 if (!vdev->config->disable_vq_and_reset)
2237 return -ENOENT;
2238
2239 if (!vdev->config->enable_vq_after_reset)
2240 return -ENOENT;
2241
2242 err = vdev->config->disable_vq_and_reset(_vq);
2243 if (err)
2244 return err;
2245
2246 while ((buf = virtqueue_detach_unused_buf(_vq)) != NULL)
2247 recycle(_vq, buf);
2248
2249 return 0;
2250 }
2251
virtqueue_enable_after_reset(struct virtqueue * _vq)2252 static int virtqueue_enable_after_reset(struct virtqueue *_vq)
2253 {
2254 struct vring_virtqueue *vq = to_vvq(_vq);
2255 struct virtio_device *vdev = vq->vq.vdev;
2256
2257 if (vdev->config->enable_vq_after_reset(_vq))
2258 return -EBUSY;
2259
2260 return 0;
2261 }
2262
2263 /*
2264 * Generic functions and exported symbols.
2265 */
2266
virtqueue_add(struct virtqueue * _vq,struct scatterlist * sgs[],unsigned int total_sg,unsigned int out_sgs,unsigned int in_sgs,void * data,void * ctx,bool premapped,gfp_t gfp)2267 static inline int virtqueue_add(struct virtqueue *_vq,
2268 struct scatterlist *sgs[],
2269 unsigned int total_sg,
2270 unsigned int out_sgs,
2271 unsigned int in_sgs,
2272 void *data,
2273 void *ctx,
2274 bool premapped,
2275 gfp_t gfp)
2276 {
2277 struct vring_virtqueue *vq = to_vvq(_vq);
2278
2279 return vq->packed_ring ? virtqueue_add_packed(_vq, sgs, total_sg,
2280 out_sgs, in_sgs, data, ctx, premapped, gfp) :
2281 virtqueue_add_split(_vq, sgs, total_sg,
2282 out_sgs, in_sgs, data, ctx, premapped, gfp);
2283 }
2284
2285 /**
2286 * virtqueue_add_sgs - expose buffers to other end
2287 * @_vq: the struct virtqueue we're talking about.
2288 * @sgs: array of terminated scatterlists.
2289 * @out_sgs: the number of scatterlists readable by other side
2290 * @in_sgs: the number of scatterlists which are writable (after readable ones)
2291 * @data: the token identifying the buffer.
2292 * @gfp: how to do memory allocations (if necessary).
2293 *
2294 * Caller must ensure we don't call this with other virtqueue operations
2295 * at the same time (except where noted).
2296 *
2297 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2298 *
2299 * NB: ENOSPC is a special code that is only returned on an attempt to add a
2300 * buffer to a full VQ. It indicates that some buffers are outstanding and that
2301 * the operation can be retried after some buffers have been used.
2302 */
virtqueue_add_sgs(struct virtqueue * _vq,struct scatterlist * sgs[],unsigned int out_sgs,unsigned int in_sgs,void * data,gfp_t gfp)2303 int virtqueue_add_sgs(struct virtqueue *_vq,
2304 struct scatterlist *sgs[],
2305 unsigned int out_sgs,
2306 unsigned int in_sgs,
2307 void *data,
2308 gfp_t gfp)
2309 {
2310 unsigned int i, total_sg = 0;
2311
2312 /* Count them first. */
2313 for (i = 0; i < out_sgs + in_sgs; i++) {
2314 struct scatterlist *sg;
2315
2316 for (sg = sgs[i]; sg; sg = sg_next(sg))
2317 total_sg++;
2318 }
2319 return virtqueue_add(_vq, sgs, total_sg, out_sgs, in_sgs,
2320 data, NULL, false, gfp);
2321 }
2322 EXPORT_SYMBOL_GPL(virtqueue_add_sgs);
2323
2324 /**
2325 * virtqueue_add_outbuf - expose output buffers to other end
2326 * @vq: the struct virtqueue we're talking about.
2327 * @sg: scatterlist (must be well-formed and terminated!)
2328 * @num: the number of entries in @sg readable by other side
2329 * @data: the token identifying the buffer.
2330 * @gfp: how to do memory allocations (if necessary).
2331 *
2332 * Caller must ensure we don't call this with other virtqueue operations
2333 * at the same time (except where noted).
2334 *
2335 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2336 */
virtqueue_add_outbuf(struct virtqueue * vq,struct scatterlist * sg,unsigned int num,void * data,gfp_t gfp)2337 int virtqueue_add_outbuf(struct virtqueue *vq,
2338 struct scatterlist *sg, unsigned int num,
2339 void *data,
2340 gfp_t gfp)
2341 {
2342 return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, false, gfp);
2343 }
2344 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf);
2345
2346 /**
2347 * virtqueue_add_outbuf_premapped - expose output buffers to other end
2348 * @vq: the struct virtqueue we're talking about.
2349 * @sg: scatterlist (must be well-formed and terminated!)
2350 * @num: the number of entries in @sg readable by other side
2351 * @data: the token identifying the buffer.
2352 * @gfp: how to do memory allocations (if necessary).
2353 *
2354 * Caller must ensure we don't call this with other virtqueue operations
2355 * at the same time (except where noted).
2356 *
2357 * Return:
2358 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2359 */
virtqueue_add_outbuf_premapped(struct virtqueue * vq,struct scatterlist * sg,unsigned int num,void * data,gfp_t gfp)2360 int virtqueue_add_outbuf_premapped(struct virtqueue *vq,
2361 struct scatterlist *sg, unsigned int num,
2362 void *data,
2363 gfp_t gfp)
2364 {
2365 return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, true, gfp);
2366 }
2367 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf_premapped);
2368
2369 /**
2370 * virtqueue_add_inbuf - expose input buffers to other end
2371 * @vq: the struct virtqueue we're talking about.
2372 * @sg: scatterlist (must be well-formed and terminated!)
2373 * @num: the number of entries in @sg writable by other side
2374 * @data: the token identifying the buffer.
2375 * @gfp: how to do memory allocations (if necessary).
2376 *
2377 * Caller must ensure we don't call this with other virtqueue operations
2378 * at the same time (except where noted).
2379 *
2380 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2381 */
virtqueue_add_inbuf(struct virtqueue * vq,struct scatterlist * sg,unsigned int num,void * data,gfp_t gfp)2382 int virtqueue_add_inbuf(struct virtqueue *vq,
2383 struct scatterlist *sg, unsigned int num,
2384 void *data,
2385 gfp_t gfp)
2386 {
2387 return virtqueue_add(vq, &sg, num, 0, 1, data, NULL, false, gfp);
2388 }
2389 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf);
2390
2391 /**
2392 * virtqueue_add_inbuf_ctx - expose input buffers to other end
2393 * @vq: the struct virtqueue we're talking about.
2394 * @sg: scatterlist (must be well-formed and terminated!)
2395 * @num: the number of entries in @sg writable by other side
2396 * @data: the token identifying the buffer.
2397 * @ctx: extra context for the token
2398 * @gfp: how to do memory allocations (if necessary).
2399 *
2400 * Caller must ensure we don't call this with other virtqueue operations
2401 * at the same time (except where noted).
2402 *
2403 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2404 */
virtqueue_add_inbuf_ctx(struct virtqueue * vq,struct scatterlist * sg,unsigned int num,void * data,void * ctx,gfp_t gfp)2405 int virtqueue_add_inbuf_ctx(struct virtqueue *vq,
2406 struct scatterlist *sg, unsigned int num,
2407 void *data,
2408 void *ctx,
2409 gfp_t gfp)
2410 {
2411 return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, false, gfp);
2412 }
2413 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_ctx);
2414
2415 /**
2416 * virtqueue_add_inbuf_premapped - expose input buffers to other end
2417 * @vq: the struct virtqueue we're talking about.
2418 * @sg: scatterlist (must be well-formed and terminated!)
2419 * @num: the number of entries in @sg writable by other side
2420 * @data: the token identifying the buffer.
2421 * @ctx: extra context for the token
2422 * @gfp: how to do memory allocations (if necessary).
2423 *
2424 * Caller must ensure we don't call this with other virtqueue operations
2425 * at the same time (except where noted).
2426 *
2427 * Return:
2428 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2429 */
virtqueue_add_inbuf_premapped(struct virtqueue * vq,struct scatterlist * sg,unsigned int num,void * data,void * ctx,gfp_t gfp)2430 int virtqueue_add_inbuf_premapped(struct virtqueue *vq,
2431 struct scatterlist *sg, unsigned int num,
2432 void *data,
2433 void *ctx,
2434 gfp_t gfp)
2435 {
2436 return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, true, gfp);
2437 }
2438 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_premapped);
2439
2440 /**
2441 * virtqueue_dma_dev - get the dma dev
2442 * @_vq: the struct virtqueue we're talking about.
2443 *
2444 * Returns the dma dev. That can been used for dma api.
2445 */
virtqueue_dma_dev(struct virtqueue * _vq)2446 struct device *virtqueue_dma_dev(struct virtqueue *_vq)
2447 {
2448 struct vring_virtqueue *vq = to_vvq(_vq);
2449
2450 if (vq->use_map_api && !_vq->vdev->map)
2451 return vq->map.dma_dev;
2452 else
2453 return NULL;
2454 }
2455 EXPORT_SYMBOL_GPL(virtqueue_dma_dev);
2456
2457 /**
2458 * virtqueue_kick_prepare - first half of split virtqueue_kick call.
2459 * @_vq: the struct virtqueue
2460 *
2461 * Instead of virtqueue_kick(), you can do:
2462 * if (virtqueue_kick_prepare(vq))
2463 * virtqueue_notify(vq);
2464 *
2465 * This is sometimes useful because the virtqueue_kick_prepare() needs
2466 * to be serialized, but the actual virtqueue_notify() call does not.
2467 */
virtqueue_kick_prepare(struct virtqueue * _vq)2468 bool virtqueue_kick_prepare(struct virtqueue *_vq)
2469 {
2470 struct vring_virtqueue *vq = to_vvq(_vq);
2471
2472 return vq->packed_ring ? virtqueue_kick_prepare_packed(_vq) :
2473 virtqueue_kick_prepare_split(_vq);
2474 }
2475 EXPORT_SYMBOL_GPL(virtqueue_kick_prepare);
2476
2477 /**
2478 * virtqueue_notify - second half of split virtqueue_kick call.
2479 * @_vq: the struct virtqueue
2480 *
2481 * This does not need to be serialized.
2482 *
2483 * Returns false if host notify failed or queue is broken, otherwise true.
2484 */
virtqueue_notify(struct virtqueue * _vq)2485 bool virtqueue_notify(struct virtqueue *_vq)
2486 {
2487 struct vring_virtqueue *vq = to_vvq(_vq);
2488
2489 if (unlikely(vq->broken))
2490 return false;
2491
2492 /* Prod other side to tell it about changes. */
2493 if (!vq->notify(_vq)) {
2494 vq->broken = true;
2495 return false;
2496 }
2497 return true;
2498 }
2499 EXPORT_SYMBOL_GPL(virtqueue_notify);
2500
2501 /**
2502 * virtqueue_kick - update after add_buf
2503 * @vq: the struct virtqueue
2504 *
2505 * After one or more virtqueue_add_* calls, invoke this to kick
2506 * the other side.
2507 *
2508 * Caller must ensure we don't call this with other virtqueue
2509 * operations at the same time (except where noted).
2510 *
2511 * Returns false if kick failed, otherwise true.
2512 */
virtqueue_kick(struct virtqueue * vq)2513 bool virtqueue_kick(struct virtqueue *vq)
2514 {
2515 if (virtqueue_kick_prepare(vq))
2516 return virtqueue_notify(vq);
2517 return true;
2518 }
2519 EXPORT_SYMBOL_GPL(virtqueue_kick);
2520
2521 /**
2522 * virtqueue_get_buf_ctx - get the next used buffer
2523 * @_vq: the struct virtqueue we're talking about.
2524 * @len: the length written into the buffer
2525 * @ctx: extra context for the token
2526 *
2527 * If the device wrote data into the buffer, @len will be set to the
2528 * amount written. This means you don't need to clear the buffer
2529 * beforehand to ensure there's no data leakage in the case of short
2530 * writes.
2531 *
2532 * Caller must ensure we don't call this with other virtqueue
2533 * operations at the same time (except where noted).
2534 *
2535 * Returns NULL if there are no used buffers, or the "data" token
2536 * handed to virtqueue_add_*().
2537 */
virtqueue_get_buf_ctx(struct virtqueue * _vq,unsigned int * len,void ** ctx)2538 void *virtqueue_get_buf_ctx(struct virtqueue *_vq, unsigned int *len,
2539 void **ctx)
2540 {
2541 struct vring_virtqueue *vq = to_vvq(_vq);
2542
2543 return vq->packed_ring ? virtqueue_get_buf_ctx_packed(_vq, len, ctx) :
2544 virtqueue_get_buf_ctx_split(_vq, len, ctx);
2545 }
2546 EXPORT_SYMBOL_GPL(virtqueue_get_buf_ctx);
2547
virtqueue_get_buf(struct virtqueue * _vq,unsigned int * len)2548 void *virtqueue_get_buf(struct virtqueue *_vq, unsigned int *len)
2549 {
2550 return virtqueue_get_buf_ctx(_vq, len, NULL);
2551 }
2552 EXPORT_SYMBOL_GPL(virtqueue_get_buf);
2553 /**
2554 * virtqueue_disable_cb - disable callbacks
2555 * @_vq: the struct virtqueue we're talking about.
2556 *
2557 * Note that this is not necessarily synchronous, hence unreliable and only
2558 * useful as an optimization.
2559 *
2560 * Unlike other operations, this need not be serialized.
2561 */
virtqueue_disable_cb(struct virtqueue * _vq)2562 void virtqueue_disable_cb(struct virtqueue *_vq)
2563 {
2564 struct vring_virtqueue *vq = to_vvq(_vq);
2565
2566 if (vq->packed_ring)
2567 virtqueue_disable_cb_packed(_vq);
2568 else
2569 virtqueue_disable_cb_split(_vq);
2570 }
2571 EXPORT_SYMBOL_GPL(virtqueue_disable_cb);
2572
2573 /**
2574 * virtqueue_enable_cb_prepare - restart callbacks after disable_cb
2575 * @_vq: the struct virtqueue we're talking about.
2576 *
2577 * This re-enables callbacks; it returns current queue state
2578 * in an opaque unsigned value. This value should be later tested by
2579 * virtqueue_poll, to detect a possible race between the driver checking for
2580 * more work, and enabling callbacks.
2581 *
2582 * Caller must ensure we don't call this with other virtqueue
2583 * operations at the same time (except where noted).
2584 */
virtqueue_enable_cb_prepare(struct virtqueue * _vq)2585 unsigned int virtqueue_enable_cb_prepare(struct virtqueue *_vq)
2586 {
2587 struct vring_virtqueue *vq = to_vvq(_vq);
2588
2589 if (vq->event_triggered)
2590 vq->event_triggered = false;
2591
2592 return vq->packed_ring ? virtqueue_enable_cb_prepare_packed(_vq) :
2593 virtqueue_enable_cb_prepare_split(_vq);
2594 }
2595 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_prepare);
2596
2597 /**
2598 * virtqueue_poll - query pending used buffers
2599 * @_vq: the struct virtqueue we're talking about.
2600 * @last_used_idx: virtqueue state (from call to virtqueue_enable_cb_prepare).
2601 *
2602 * Returns "true" if there are pending used buffers in the queue.
2603 *
2604 * This does not need to be serialized.
2605 */
virtqueue_poll(struct virtqueue * _vq,unsigned int last_used_idx)2606 bool virtqueue_poll(struct virtqueue *_vq, unsigned int last_used_idx)
2607 {
2608 struct vring_virtqueue *vq = to_vvq(_vq);
2609
2610 if (unlikely(vq->broken))
2611 return false;
2612
2613 virtio_mb(vq->weak_barriers);
2614 return vq->packed_ring ? virtqueue_poll_packed(_vq, last_used_idx) :
2615 virtqueue_poll_split(_vq, last_used_idx);
2616 }
2617 EXPORT_SYMBOL_GPL(virtqueue_poll);
2618
2619 /**
2620 * virtqueue_enable_cb - restart callbacks after disable_cb.
2621 * @_vq: the struct virtqueue we're talking about.
2622 *
2623 * This re-enables callbacks; it returns "false" if there are pending
2624 * buffers in the queue, to detect a possible race between the driver
2625 * checking for more work, and enabling callbacks.
2626 *
2627 * Caller must ensure we don't call this with other virtqueue
2628 * operations at the same time (except where noted).
2629 */
virtqueue_enable_cb(struct virtqueue * _vq)2630 bool virtqueue_enable_cb(struct virtqueue *_vq)
2631 {
2632 unsigned int last_used_idx = virtqueue_enable_cb_prepare(_vq);
2633
2634 return !virtqueue_poll(_vq, last_used_idx);
2635 }
2636 EXPORT_SYMBOL_GPL(virtqueue_enable_cb);
2637
2638 /**
2639 * virtqueue_enable_cb_delayed - restart callbacks after disable_cb.
2640 * @_vq: the struct virtqueue we're talking about.
2641 *
2642 * This re-enables callbacks but hints to the other side to delay
2643 * interrupts until most of the available buffers have been processed;
2644 * it returns "false" if there are many pending buffers in the queue,
2645 * to detect a possible race between the driver checking for more work,
2646 * and enabling callbacks.
2647 *
2648 * Caller must ensure we don't call this with other virtqueue
2649 * operations at the same time (except where noted).
2650 */
virtqueue_enable_cb_delayed(struct virtqueue * _vq)2651 bool virtqueue_enable_cb_delayed(struct virtqueue *_vq)
2652 {
2653 struct vring_virtqueue *vq = to_vvq(_vq);
2654
2655 if (vq->event_triggered)
2656 data_race(vq->event_triggered = false);
2657
2658 return vq->packed_ring ? virtqueue_enable_cb_delayed_packed(_vq) :
2659 virtqueue_enable_cb_delayed_split(_vq);
2660 }
2661 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_delayed);
2662
2663 /**
2664 * virtqueue_detach_unused_buf - detach first unused buffer
2665 * @_vq: the struct virtqueue we're talking about.
2666 *
2667 * Returns NULL or the "data" token handed to virtqueue_add_*().
2668 * This is not valid on an active queue; it is useful for device
2669 * shutdown or the reset queue.
2670 */
virtqueue_detach_unused_buf(struct virtqueue * _vq)2671 void *virtqueue_detach_unused_buf(struct virtqueue *_vq)
2672 {
2673 struct vring_virtqueue *vq = to_vvq(_vq);
2674
2675 return vq->packed_ring ? virtqueue_detach_unused_buf_packed(_vq) :
2676 virtqueue_detach_unused_buf_split(_vq);
2677 }
2678 EXPORT_SYMBOL_GPL(virtqueue_detach_unused_buf);
2679
more_used(const struct vring_virtqueue * vq)2680 static inline bool more_used(const struct vring_virtqueue *vq)
2681 {
2682 return vq->packed_ring ? more_used_packed(vq) : more_used_split(vq);
2683 }
2684
2685 /**
2686 * vring_interrupt - notify a virtqueue on an interrupt
2687 * @irq: the IRQ number (ignored)
2688 * @_vq: the struct virtqueue to notify
2689 *
2690 * Calls the callback function of @_vq to process the virtqueue
2691 * notification.
2692 */
vring_interrupt(int irq,void * _vq)2693 irqreturn_t vring_interrupt(int irq, void *_vq)
2694 {
2695 struct vring_virtqueue *vq = to_vvq(_vq);
2696
2697 if (!more_used(vq)) {
2698 pr_debug("virtqueue interrupt with no work for %p\n", vq);
2699 return IRQ_NONE;
2700 }
2701
2702 if (unlikely(vq->broken)) {
2703 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION
2704 dev_warn_once(&vq->vq.vdev->dev,
2705 "virtio vring IRQ raised before DRIVER_OK");
2706 return IRQ_NONE;
2707 #else
2708 return IRQ_HANDLED;
2709 #endif
2710 }
2711
2712 /* Just a hint for performance: so it's ok that this can be racy! */
2713 if (vq->event)
2714 data_race(vq->event_triggered = true);
2715
2716 pr_debug("virtqueue callback for %p (%p)\n", vq, vq->vq.callback);
2717 if (vq->vq.callback)
2718 vq->vq.callback(&vq->vq);
2719
2720 return IRQ_HANDLED;
2721 }
2722 EXPORT_SYMBOL_GPL(vring_interrupt);
2723
vring_create_virtqueue(unsigned int index,unsigned int num,unsigned int vring_align,struct virtio_device * vdev,bool weak_barriers,bool may_reduce_num,bool context,bool (* notify)(struct virtqueue *),void (* callback)(struct virtqueue *),const char * name)2724 struct virtqueue *vring_create_virtqueue(
2725 unsigned int index,
2726 unsigned int num,
2727 unsigned int vring_align,
2728 struct virtio_device *vdev,
2729 bool weak_barriers,
2730 bool may_reduce_num,
2731 bool context,
2732 bool (*notify)(struct virtqueue *),
2733 void (*callback)(struct virtqueue *),
2734 const char *name)
2735 {
2736 union virtio_map map = {.dma_dev = vdev->dev.parent};
2737
2738 if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2739 return vring_create_virtqueue_packed(index, num, vring_align,
2740 vdev, weak_barriers, may_reduce_num,
2741 context, notify, callback, name, map);
2742
2743 return vring_create_virtqueue_split(index, num, vring_align,
2744 vdev, weak_barriers, may_reduce_num,
2745 context, notify, callback, name, map);
2746 }
2747 EXPORT_SYMBOL_GPL(vring_create_virtqueue);
2748
vring_create_virtqueue_map(unsigned int index,unsigned int num,unsigned int vring_align,struct virtio_device * vdev,bool weak_barriers,bool may_reduce_num,bool context,bool (* notify)(struct virtqueue *),void (* callback)(struct virtqueue *),const char * name,union virtio_map map)2749 struct virtqueue *vring_create_virtqueue_map(
2750 unsigned int index,
2751 unsigned int num,
2752 unsigned int vring_align,
2753 struct virtio_device *vdev,
2754 bool weak_barriers,
2755 bool may_reduce_num,
2756 bool context,
2757 bool (*notify)(struct virtqueue *),
2758 void (*callback)(struct virtqueue *),
2759 const char *name,
2760 union virtio_map map)
2761 {
2762
2763 if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2764 return vring_create_virtqueue_packed(index, num, vring_align,
2765 vdev, weak_barriers, may_reduce_num,
2766 context, notify, callback, name, map);
2767
2768 return vring_create_virtqueue_split(index, num, vring_align,
2769 vdev, weak_barriers, may_reduce_num,
2770 context, notify, callback, name, map);
2771 }
2772 EXPORT_SYMBOL_GPL(vring_create_virtqueue_map);
2773
2774 /**
2775 * virtqueue_resize - resize the vring of vq
2776 * @_vq: the struct virtqueue we're talking about.
2777 * @num: new ring num
2778 * @recycle: callback to recycle unused buffers
2779 * @recycle_done: callback to be invoked when recycle for all unused buffers done
2780 *
2781 * When it is really necessary to create a new vring, it will set the current vq
2782 * into the reset state. Then call the passed callback to recycle the buffer
2783 * that is no longer used. Only after the new vring is successfully created, the
2784 * old vring will be released.
2785 *
2786 * Caller must ensure we don't call this with other virtqueue operations
2787 * at the same time (except where noted).
2788 *
2789 * Returns zero or a negative error.
2790 * 0: success.
2791 * -ENOMEM: Failed to allocate a new ring, fall back to the original ring size.
2792 * vq can still work normally
2793 * -EBUSY: Failed to sync with device, vq may not work properly
2794 * -ENOENT: Transport or device not supported
2795 * -E2BIG/-EINVAL: num error
2796 * -EPERM: Operation not permitted
2797 *
2798 */
virtqueue_resize(struct virtqueue * _vq,u32 num,void (* recycle)(struct virtqueue * vq,void * buf),void (* recycle_done)(struct virtqueue * vq))2799 int virtqueue_resize(struct virtqueue *_vq, u32 num,
2800 void (*recycle)(struct virtqueue *vq, void *buf),
2801 void (*recycle_done)(struct virtqueue *vq))
2802 {
2803 struct vring_virtqueue *vq = to_vvq(_vq);
2804 int err, err_reset;
2805
2806 if (num > vq->vq.num_max)
2807 return -E2BIG;
2808
2809 if (!num)
2810 return -EINVAL;
2811
2812 if ((vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num) == num)
2813 return 0;
2814
2815 err = virtqueue_disable_and_recycle(_vq, recycle);
2816 if (err)
2817 return err;
2818 if (recycle_done)
2819 recycle_done(_vq);
2820
2821 if (vq->packed_ring)
2822 err = virtqueue_resize_packed(_vq, num);
2823 else
2824 err = virtqueue_resize_split(_vq, num);
2825
2826 err_reset = virtqueue_enable_after_reset(_vq);
2827 if (err_reset)
2828 return err_reset;
2829
2830 return err;
2831 }
2832 EXPORT_SYMBOL_GPL(virtqueue_resize);
2833
2834 /**
2835 * virtqueue_reset - detach and recycle all unused buffers
2836 * @_vq: the struct virtqueue we're talking about.
2837 * @recycle: callback to recycle unused buffers
2838 * @recycle_done: callback to be invoked when recycle for all unused buffers done
2839 *
2840 * Caller must ensure we don't call this with other virtqueue operations
2841 * at the same time (except where noted).
2842 *
2843 * Returns zero or a negative error.
2844 * 0: success.
2845 * -EBUSY: Failed to sync with device, vq may not work properly
2846 * -ENOENT: Transport or device not supported
2847 * -EPERM: Operation not permitted
2848 */
virtqueue_reset(struct virtqueue * _vq,void (* recycle)(struct virtqueue * vq,void * buf),void (* recycle_done)(struct virtqueue * vq))2849 int virtqueue_reset(struct virtqueue *_vq,
2850 void (*recycle)(struct virtqueue *vq, void *buf),
2851 void (*recycle_done)(struct virtqueue *vq))
2852 {
2853 struct vring_virtqueue *vq = to_vvq(_vq);
2854 int err;
2855
2856 err = virtqueue_disable_and_recycle(_vq, recycle);
2857 if (err)
2858 return err;
2859 if (recycle_done)
2860 recycle_done(_vq);
2861
2862 if (vq->packed_ring)
2863 virtqueue_reinit_packed(vq);
2864 else
2865 virtqueue_reinit_split(vq);
2866
2867 return virtqueue_enable_after_reset(_vq);
2868 }
2869 EXPORT_SYMBOL_GPL(virtqueue_reset);
2870
vring_new_virtqueue(unsigned int index,unsigned int num,unsigned int vring_align,struct virtio_device * vdev,bool weak_barriers,bool context,void * pages,bool (* notify)(struct virtqueue * vq),void (* callback)(struct virtqueue * vq),const char * name)2871 struct virtqueue *vring_new_virtqueue(unsigned int index,
2872 unsigned int num,
2873 unsigned int vring_align,
2874 struct virtio_device *vdev,
2875 bool weak_barriers,
2876 bool context,
2877 void *pages,
2878 bool (*notify)(struct virtqueue *vq),
2879 void (*callback)(struct virtqueue *vq),
2880 const char *name)
2881 {
2882 struct vring_virtqueue_split vring_split = {};
2883 union virtio_map map = {.dma_dev = vdev->dev.parent};
2884
2885 if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED)) {
2886 struct vring_virtqueue_packed vring_packed = {};
2887
2888 vring_packed.vring.num = num;
2889 vring_packed.vring.desc = pages;
2890 return __vring_new_virtqueue_packed(index, &vring_packed,
2891 vdev, weak_barriers,
2892 context, notify, callback,
2893 name, map);
2894 }
2895
2896 vring_init(&vring_split.vring, num, pages, vring_align);
2897 return __vring_new_virtqueue_split(index, &vring_split, vdev, weak_barriers,
2898 context, notify, callback, name,
2899 map);
2900 }
2901 EXPORT_SYMBOL_GPL(vring_new_virtqueue);
2902
vring_free(struct virtqueue * _vq)2903 static void vring_free(struct virtqueue *_vq)
2904 {
2905 struct vring_virtqueue *vq = to_vvq(_vq);
2906
2907 if (vq->we_own_ring) {
2908 if (vq->packed_ring) {
2909 vring_free_queue(vq->vq.vdev,
2910 vq->packed.ring_size_in_bytes,
2911 vq->packed.vring.desc,
2912 vq->packed.ring_dma_addr,
2913 vq->map);
2914
2915 vring_free_queue(vq->vq.vdev,
2916 vq->packed.event_size_in_bytes,
2917 vq->packed.vring.driver,
2918 vq->packed.driver_event_dma_addr,
2919 vq->map);
2920
2921 vring_free_queue(vq->vq.vdev,
2922 vq->packed.event_size_in_bytes,
2923 vq->packed.vring.device,
2924 vq->packed.device_event_dma_addr,
2925 vq->map);
2926
2927 kfree(vq->packed.desc_state);
2928 kfree(vq->packed.desc_extra);
2929 } else {
2930 vring_free_queue(vq->vq.vdev,
2931 vq->split.queue_size_in_bytes,
2932 vq->split.vring.desc,
2933 vq->split.queue_dma_addr,
2934 vq->map);
2935 }
2936 }
2937 if (!vq->packed_ring) {
2938 kfree(vq->split.desc_state);
2939 kfree(vq->split.desc_extra);
2940 }
2941 }
2942
vring_del_virtqueue(struct virtqueue * _vq)2943 void vring_del_virtqueue(struct virtqueue *_vq)
2944 {
2945 struct vring_virtqueue *vq = to_vvq(_vq);
2946
2947 spin_lock(&vq->vq.vdev->vqs_list_lock);
2948 list_del(&_vq->list);
2949 spin_unlock(&vq->vq.vdev->vqs_list_lock);
2950
2951 vring_free(_vq);
2952
2953 kfree(vq);
2954 }
2955 EXPORT_SYMBOL_GPL(vring_del_virtqueue);
2956
vring_notification_data(struct virtqueue * _vq)2957 u32 vring_notification_data(struct virtqueue *_vq)
2958 {
2959 struct vring_virtqueue *vq = to_vvq(_vq);
2960 u16 next;
2961
2962 if (vq->packed_ring)
2963 next = (vq->packed.next_avail_idx &
2964 ~(-(1 << VRING_PACKED_EVENT_F_WRAP_CTR))) |
2965 vq->packed.avail_wrap_counter <<
2966 VRING_PACKED_EVENT_F_WRAP_CTR;
2967 else
2968 next = vq->split.avail_idx_shadow;
2969
2970 return next << 16 | _vq->index;
2971 }
2972 EXPORT_SYMBOL_GPL(vring_notification_data);
2973
2974 /* Manipulates transport-specific feature bits. */
vring_transport_features(struct virtio_device * vdev)2975 void vring_transport_features(struct virtio_device *vdev)
2976 {
2977 unsigned int i;
2978
2979 for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++) {
2980 switch (i) {
2981 case VIRTIO_RING_F_INDIRECT_DESC:
2982 break;
2983 case VIRTIO_RING_F_EVENT_IDX:
2984 break;
2985 case VIRTIO_F_VERSION_1:
2986 break;
2987 case VIRTIO_F_ACCESS_PLATFORM:
2988 break;
2989 case VIRTIO_F_RING_PACKED:
2990 break;
2991 case VIRTIO_F_ORDER_PLATFORM:
2992 break;
2993 case VIRTIO_F_NOTIFICATION_DATA:
2994 break;
2995 default:
2996 /* We don't understand this bit. */
2997 __virtio_clear_bit(vdev, i);
2998 }
2999 }
3000 }
3001 EXPORT_SYMBOL_GPL(vring_transport_features);
3002
3003 /**
3004 * virtqueue_get_vring_size - return the size of the virtqueue's vring
3005 * @_vq: the struct virtqueue containing the vring of interest.
3006 *
3007 * Returns the size of the vring. This is mainly used for boasting to
3008 * userspace. Unlike other operations, this need not be serialized.
3009 */
virtqueue_get_vring_size(const struct virtqueue * _vq)3010 unsigned int virtqueue_get_vring_size(const struct virtqueue *_vq)
3011 {
3012
3013 const struct vring_virtqueue *vq = to_vvq(_vq);
3014
3015 return vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num;
3016 }
3017 EXPORT_SYMBOL_GPL(virtqueue_get_vring_size);
3018
3019 /*
3020 * This function should only be called by the core, not directly by the driver.
3021 */
__virtqueue_break(struct virtqueue * _vq)3022 void __virtqueue_break(struct virtqueue *_vq)
3023 {
3024 struct vring_virtqueue *vq = to_vvq(_vq);
3025
3026 /* Pairs with READ_ONCE() in virtqueue_is_broken(). */
3027 WRITE_ONCE(vq->broken, true);
3028 }
3029 EXPORT_SYMBOL_GPL(__virtqueue_break);
3030
3031 /*
3032 * This function should only be called by the core, not directly by the driver.
3033 */
__virtqueue_unbreak(struct virtqueue * _vq)3034 void __virtqueue_unbreak(struct virtqueue *_vq)
3035 {
3036 struct vring_virtqueue *vq = to_vvq(_vq);
3037
3038 /* Pairs with READ_ONCE() in virtqueue_is_broken(). */
3039 WRITE_ONCE(vq->broken, false);
3040 }
3041 EXPORT_SYMBOL_GPL(__virtqueue_unbreak);
3042
virtqueue_is_broken(const struct virtqueue * _vq)3043 bool virtqueue_is_broken(const struct virtqueue *_vq)
3044 {
3045 const struct vring_virtqueue *vq = to_vvq(_vq);
3046
3047 return READ_ONCE(vq->broken);
3048 }
3049 EXPORT_SYMBOL_GPL(virtqueue_is_broken);
3050
3051 /*
3052 * This should prevent the device from being used, allowing drivers to
3053 * recover. You may need to grab appropriate locks to flush.
3054 */
virtio_break_device(struct virtio_device * dev)3055 void virtio_break_device(struct virtio_device *dev)
3056 {
3057 struct virtqueue *_vq;
3058
3059 spin_lock(&dev->vqs_list_lock);
3060 list_for_each_entry(_vq, &dev->vqs, list) {
3061 struct vring_virtqueue *vq = to_vvq(_vq);
3062
3063 /* Pairs with READ_ONCE() in virtqueue_is_broken(). */
3064 WRITE_ONCE(vq->broken, true);
3065 }
3066 spin_unlock(&dev->vqs_list_lock);
3067 }
3068 EXPORT_SYMBOL_GPL(virtio_break_device);
3069
3070 /*
3071 * This should allow the device to be used by the driver. You may
3072 * need to grab appropriate locks to flush the write to
3073 * vq->broken. This should only be used in some specific case e.g
3074 * (probing and restoring). This function should only be called by the
3075 * core, not directly by the driver.
3076 */
__virtio_unbreak_device(struct virtio_device * dev)3077 void __virtio_unbreak_device(struct virtio_device *dev)
3078 {
3079 struct virtqueue *_vq;
3080
3081 spin_lock(&dev->vqs_list_lock);
3082 list_for_each_entry(_vq, &dev->vqs, list) {
3083 struct vring_virtqueue *vq = to_vvq(_vq);
3084
3085 /* Pairs with READ_ONCE() in virtqueue_is_broken(). */
3086 WRITE_ONCE(vq->broken, false);
3087 }
3088 spin_unlock(&dev->vqs_list_lock);
3089 }
3090 EXPORT_SYMBOL_GPL(__virtio_unbreak_device);
3091
virtqueue_get_desc_addr(const struct virtqueue * _vq)3092 dma_addr_t virtqueue_get_desc_addr(const struct virtqueue *_vq)
3093 {
3094 const struct vring_virtqueue *vq = to_vvq(_vq);
3095
3096 BUG_ON(!vq->we_own_ring);
3097
3098 if (vq->packed_ring)
3099 return vq->packed.ring_dma_addr;
3100
3101 return vq->split.queue_dma_addr;
3102 }
3103 EXPORT_SYMBOL_GPL(virtqueue_get_desc_addr);
3104
virtqueue_get_avail_addr(const struct virtqueue * _vq)3105 dma_addr_t virtqueue_get_avail_addr(const struct virtqueue *_vq)
3106 {
3107 const struct vring_virtqueue *vq = to_vvq(_vq);
3108
3109 BUG_ON(!vq->we_own_ring);
3110
3111 if (vq->packed_ring)
3112 return vq->packed.driver_event_dma_addr;
3113
3114 return vq->split.queue_dma_addr +
3115 ((char *)vq->split.vring.avail - (char *)vq->split.vring.desc);
3116 }
3117 EXPORT_SYMBOL_GPL(virtqueue_get_avail_addr);
3118
virtqueue_get_used_addr(const struct virtqueue * _vq)3119 dma_addr_t virtqueue_get_used_addr(const struct virtqueue *_vq)
3120 {
3121 const struct vring_virtqueue *vq = to_vvq(_vq);
3122
3123 BUG_ON(!vq->we_own_ring);
3124
3125 if (vq->packed_ring)
3126 return vq->packed.device_event_dma_addr;
3127
3128 return vq->split.queue_dma_addr +
3129 ((char *)vq->split.vring.used - (char *)vq->split.vring.desc);
3130 }
3131 EXPORT_SYMBOL_GPL(virtqueue_get_used_addr);
3132
3133 /* Only available for split ring */
virtqueue_get_vring(const struct virtqueue * vq)3134 const struct vring *virtqueue_get_vring(const struct virtqueue *vq)
3135 {
3136 return &to_vvq(vq)->split.vring;
3137 }
3138 EXPORT_SYMBOL_GPL(virtqueue_get_vring);
3139
3140 /**
3141 * virtqueue_map_alloc_coherent - alloc coherent mapping
3142 * @vdev: the virtio device we are talking to
3143 * @map: metadata for performing mapping
3144 * @size: the size of the buffer
3145 * @map_handle: the pointer to the mapped address
3146 * @gfp: allocation flag (GFP_XXX)
3147 *
3148 * return virtual address or NULL on error
3149 */
virtqueue_map_alloc_coherent(struct virtio_device * vdev,union virtio_map map,size_t size,dma_addr_t * map_handle,gfp_t gfp)3150 void *virtqueue_map_alloc_coherent(struct virtio_device *vdev,
3151 union virtio_map map,
3152 size_t size, dma_addr_t *map_handle,
3153 gfp_t gfp)
3154 {
3155 if (vdev->map)
3156 return vdev->map->alloc(map, size,
3157 map_handle, gfp);
3158 else
3159 return dma_alloc_coherent(map.dma_dev, size,
3160 map_handle, gfp);
3161 }
3162 EXPORT_SYMBOL_GPL(virtqueue_map_alloc_coherent);
3163
3164 /**
3165 * virtqueue_map_free_coherent - free coherent mapping
3166 * @vdev: the virtio device we are talking to
3167 * @map: metadata for performing mapping
3168 * @size: the size of the buffer
3169 * @vaddr: the virtual address that needs to be freed
3170 * @map_handle: the mapped address that needs to be freed
3171 *
3172 */
virtqueue_map_free_coherent(struct virtio_device * vdev,union virtio_map map,size_t size,void * vaddr,dma_addr_t map_handle)3173 void virtqueue_map_free_coherent(struct virtio_device *vdev,
3174 union virtio_map map, size_t size, void *vaddr,
3175 dma_addr_t map_handle)
3176 {
3177 if (vdev->map)
3178 vdev->map->free(map, size, vaddr,
3179 map_handle, 0);
3180 else
3181 dma_free_coherent(map.dma_dev, size, vaddr, map_handle);
3182 }
3183 EXPORT_SYMBOL_GPL(virtqueue_map_free_coherent);
3184
3185 /**
3186 * virtqueue_map_page_attrs - map a page to the device
3187 * @_vq: the virtqueue we are talking to
3188 * @page: the page that will be mapped by the device
3189 * @offset: the offset in the page for a buffer
3190 * @size: the buffer size
3191 * @dir: mapping direction
3192 * @attrs: mapping attributes
3193 *
3194 * Returns mapped address. Caller should check that by virtqueue_map_mapping_error().
3195 */
virtqueue_map_page_attrs(const struct virtqueue * _vq,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)3196 dma_addr_t virtqueue_map_page_attrs(const struct virtqueue *_vq,
3197 struct page *page,
3198 unsigned long offset,
3199 size_t size,
3200 enum dma_data_direction dir,
3201 unsigned long attrs)
3202 {
3203 const struct vring_virtqueue *vq = to_vvq(_vq);
3204 struct virtio_device *vdev = _vq->vdev;
3205
3206 if (vdev->map)
3207 return vdev->map->map_page(vq->map,
3208 page, offset, size,
3209 dir, attrs);
3210
3211 return dma_map_page_attrs(vring_dma_dev(vq),
3212 page, offset, size,
3213 dir, attrs);
3214 }
3215 EXPORT_SYMBOL_GPL(virtqueue_map_page_attrs);
3216
3217 /**
3218 * virtqueue_unmap_page_attrs - map a page to the device
3219 * @_vq: the virtqueue we are talking to
3220 * @map_handle: the mapped address
3221 * @size: the buffer size
3222 * @dir: mapping direction
3223 * @attrs: unmapping attributes
3224 */
virtqueue_unmap_page_attrs(const struct virtqueue * _vq,dma_addr_t map_handle,size_t size,enum dma_data_direction dir,unsigned long attrs)3225 void virtqueue_unmap_page_attrs(const struct virtqueue *_vq,
3226 dma_addr_t map_handle,
3227 size_t size, enum dma_data_direction dir,
3228 unsigned long attrs)
3229 {
3230 const struct vring_virtqueue *vq = to_vvq(_vq);
3231 struct virtio_device *vdev = _vq->vdev;
3232
3233 if (vdev->map)
3234 vdev->map->unmap_page(vq->map,
3235 map_handle, size, dir, attrs);
3236 else
3237 dma_unmap_page_attrs(vring_dma_dev(vq), map_handle,
3238 size, dir, attrs);
3239 }
3240 EXPORT_SYMBOL_GPL(virtqueue_unmap_page_attrs);
3241
3242 /**
3243 * virtqueue_map_single_attrs - map DMA for _vq
3244 * @_vq: the struct virtqueue we're talking about.
3245 * @ptr: the pointer of the buffer to do dma
3246 * @size: the size of the buffer to do dma
3247 * @dir: DMA direction
3248 * @attrs: DMA Attrs
3249 *
3250 * The caller calls this to do dma mapping in advance. The DMA address can be
3251 * passed to this _vq when it is in pre-mapped mode.
3252 *
3253 * return mapped address. Caller should check that by virtqueue_map_mapping_error().
3254 */
virtqueue_map_single_attrs(const struct virtqueue * _vq,void * ptr,size_t size,enum dma_data_direction dir,unsigned long attrs)3255 dma_addr_t virtqueue_map_single_attrs(const struct virtqueue *_vq, void *ptr,
3256 size_t size,
3257 enum dma_data_direction dir,
3258 unsigned long attrs)
3259 {
3260 const struct vring_virtqueue *vq = to_vvq(_vq);
3261
3262 if (!vq->use_map_api) {
3263 kmsan_handle_dma(virt_to_phys(ptr), size, dir);
3264 return (dma_addr_t)virt_to_phys(ptr);
3265 }
3266
3267 /* DMA must never operate on areas that might be remapped. */
3268 if (dev_WARN_ONCE(&_vq->vdev->dev, is_vmalloc_addr(ptr),
3269 "rejecting DMA map of vmalloc memory\n"))
3270 return DMA_MAPPING_ERROR;
3271
3272 return virtqueue_map_page_attrs(&vq->vq, virt_to_page(ptr),
3273 offset_in_page(ptr), size, dir, attrs);
3274 }
3275 EXPORT_SYMBOL_GPL(virtqueue_map_single_attrs);
3276
3277 /**
3278 * virtqueue_unmap_single_attrs - unmap map for _vq
3279 * @_vq: the struct virtqueue we're talking about.
3280 * @addr: the dma address to unmap
3281 * @size: the size of the buffer
3282 * @dir: DMA direction
3283 * @attrs: DMA Attrs
3284 *
3285 * Unmap the address that is mapped by the virtqueue_map_* APIs.
3286 *
3287 */
virtqueue_unmap_single_attrs(const struct virtqueue * _vq,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)3288 void virtqueue_unmap_single_attrs(const struct virtqueue *_vq,
3289 dma_addr_t addr,
3290 size_t size, enum dma_data_direction dir,
3291 unsigned long attrs)
3292 {
3293 const struct vring_virtqueue *vq = to_vvq(_vq);
3294
3295 if (!vq->use_map_api)
3296 return;
3297
3298 virtqueue_unmap_page_attrs(_vq, addr, size, dir, attrs);
3299 }
3300 EXPORT_SYMBOL_GPL(virtqueue_unmap_single_attrs);
3301
3302 /**
3303 * virtqueue_map_mapping_error - check dma address
3304 * @_vq: the struct virtqueue we're talking about.
3305 * @addr: DMA address
3306 *
3307 * Returns 0 means dma valid. Other means invalid dma address.
3308 */
virtqueue_map_mapping_error(const struct virtqueue * _vq,dma_addr_t addr)3309 int virtqueue_map_mapping_error(const struct virtqueue *_vq, dma_addr_t addr)
3310 {
3311 const struct vring_virtqueue *vq = to_vvq(_vq);
3312
3313 return vring_mapping_error(vq, addr);
3314 }
3315 EXPORT_SYMBOL_GPL(virtqueue_map_mapping_error);
3316
3317 /**
3318 * virtqueue_map_need_sync - check a dma address needs sync
3319 * @_vq: the struct virtqueue we're talking about.
3320 * @addr: DMA address
3321 *
3322 * Check if the dma address mapped by the virtqueue_map_* APIs needs to be
3323 * synchronized
3324 *
3325 * return bool
3326 */
virtqueue_map_need_sync(const struct virtqueue * _vq,dma_addr_t addr)3327 bool virtqueue_map_need_sync(const struct virtqueue *_vq, dma_addr_t addr)
3328 {
3329 const struct vring_virtqueue *vq = to_vvq(_vq);
3330 struct virtio_device *vdev = _vq->vdev;
3331
3332 if (!vq->use_map_api)
3333 return false;
3334
3335 if (vdev->map)
3336 return vdev->map->need_sync(vq->map, addr);
3337 else
3338 return dma_need_sync(vring_dma_dev(vq), addr);
3339 }
3340 EXPORT_SYMBOL_GPL(virtqueue_map_need_sync);
3341
3342 /**
3343 * virtqueue_map_sync_single_range_for_cpu - map sync for cpu
3344 * @_vq: the struct virtqueue we're talking about.
3345 * @addr: DMA address
3346 * @offset: DMA address offset
3347 * @size: buf size for sync
3348 * @dir: DMA direction
3349 *
3350 * Before calling this function, use virtqueue_map_need_sync() to confirm that
3351 * the DMA address really needs to be synchronized
3352 *
3353 */
virtqueue_map_sync_single_range_for_cpu(const struct virtqueue * _vq,dma_addr_t addr,unsigned long offset,size_t size,enum dma_data_direction dir)3354 void virtqueue_map_sync_single_range_for_cpu(const struct virtqueue *_vq,
3355 dma_addr_t addr,
3356 unsigned long offset, size_t size,
3357 enum dma_data_direction dir)
3358 {
3359 const struct vring_virtqueue *vq = to_vvq(_vq);
3360 struct virtio_device *vdev = _vq->vdev;
3361
3362 if (!vq->use_map_api)
3363 return;
3364
3365 if (vdev->map)
3366 vdev->map->sync_single_for_cpu(vq->map,
3367 addr + offset, size, dir);
3368 else
3369 dma_sync_single_range_for_cpu(vring_dma_dev(vq),
3370 addr, offset, size, dir);
3371 }
3372 EXPORT_SYMBOL_GPL(virtqueue_map_sync_single_range_for_cpu);
3373
3374 /**
3375 * virtqueue_map_sync_single_range_for_device - map sync for device
3376 * @_vq: the struct virtqueue we're talking about.
3377 * @addr: DMA address
3378 * @offset: DMA address offset
3379 * @size: buf size for sync
3380 * @dir: DMA direction
3381 *
3382 * Before calling this function, use virtqueue_map_need_sync() to confirm that
3383 * the DMA address really needs to be synchronized
3384 */
virtqueue_map_sync_single_range_for_device(const struct virtqueue * _vq,dma_addr_t addr,unsigned long offset,size_t size,enum dma_data_direction dir)3385 void virtqueue_map_sync_single_range_for_device(const struct virtqueue *_vq,
3386 dma_addr_t addr,
3387 unsigned long offset, size_t size,
3388 enum dma_data_direction dir)
3389 {
3390 const struct vring_virtqueue *vq = to_vvq(_vq);
3391 struct virtio_device *vdev = _vq->vdev;
3392
3393 if (!vq->use_map_api)
3394 return;
3395
3396 if (vdev->map)
3397 vdev->map->sync_single_for_device(vq->map,
3398 addr + offset,
3399 size, dir);
3400 else
3401 dma_sync_single_range_for_device(vring_dma_dev(vq), addr,
3402 offset, size, dir);
3403 }
3404 EXPORT_SYMBOL_GPL(virtqueue_map_sync_single_range_for_device);
3405
3406 MODULE_DESCRIPTION("Virtio ring implementation");
3407 MODULE_LICENSE("GPL");
3408