1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2009 Red Hat, Inc.
3 * Copyright (C) 2006 Rusty Russell IBM Corporation
4 *
5 * Author: Michael S. Tsirkin <mst@redhat.com>
6 *
7 * Inspiration, some code, and most witty comments come from
8 * Documentation/virtual/lguest/lguest.c, by Rusty Russell
9 *
10 * Generic code for virtio server in host kernel.
11 */
12
13 #include <linux/eventfd.h>
14 #include <linux/vhost.h>
15 #include <linux/uio.h>
16 #include <linux/mm.h>
17 #include <linux/miscdevice.h>
18 #include <linux/mutex.h>
19 #include <linux/poll.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/kthread.h>
25 #include <linux/cgroup.h>
26 #include <linux/module.h>
27 #include <linux/sort.h>
28 #include <linux/sched/mm.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/vhost_task.h>
31 #include <linux/interval_tree_generic.h>
32 #include <linux/nospec.h>
33 #include <linux/kcov.h>
34
35 #include "vhost.h"
36
37 static ushort max_mem_regions = 64;
38 module_param(max_mem_regions, ushort, 0444);
39 MODULE_PARM_DESC(max_mem_regions,
40 "Maximum number of memory regions in memory map. (default: 64)");
41 static int max_iotlb_entries = 2048;
42 module_param(max_iotlb_entries, int, 0444);
43 MODULE_PARM_DESC(max_iotlb_entries,
44 "Maximum number of iotlb entries. (default: 2048)");
45 static bool fork_from_owner_default = VHOST_FORK_OWNER_TASK;
46
47 #ifdef CONFIG_VHOST_ENABLE_FORK_OWNER_CONTROL
48 module_param(fork_from_owner_default, bool, 0444);
49 MODULE_PARM_DESC(fork_from_owner_default,
50 "Set task mode as the default(default: Y)");
51 #endif
52
53 enum {
54 VHOST_MEMORY_F_LOG = 0x1,
55 };
56
57 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num])
58 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num])
59
60 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY
vhost_disable_cross_endian(struct vhost_virtqueue * vq)61 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq)
62 {
63 vq->user_be = !virtio_legacy_is_little_endian();
64 }
65
vhost_enable_cross_endian_big(struct vhost_virtqueue * vq)66 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq)
67 {
68 vq->user_be = true;
69 }
70
vhost_enable_cross_endian_little(struct vhost_virtqueue * vq)71 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq)
72 {
73 vq->user_be = false;
74 }
75
vhost_set_vring_endian(struct vhost_virtqueue * vq,int __user * argp)76 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp)
77 {
78 struct vhost_vring_state s;
79
80 if (vq->private_data)
81 return -EBUSY;
82
83 if (copy_from_user(&s, argp, sizeof(s)))
84 return -EFAULT;
85
86 if (s.num != VHOST_VRING_LITTLE_ENDIAN &&
87 s.num != VHOST_VRING_BIG_ENDIAN)
88 return -EINVAL;
89
90 if (s.num == VHOST_VRING_BIG_ENDIAN)
91 vhost_enable_cross_endian_big(vq);
92 else
93 vhost_enable_cross_endian_little(vq);
94
95 return 0;
96 }
97
vhost_get_vring_endian(struct vhost_virtqueue * vq,u32 idx,int __user * argp)98 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx,
99 int __user *argp)
100 {
101 struct vhost_vring_state s = {
102 .index = idx,
103 .num = vq->user_be
104 };
105
106 if (copy_to_user(argp, &s, sizeof(s)))
107 return -EFAULT;
108
109 return 0;
110 }
111
vhost_init_is_le(struct vhost_virtqueue * vq)112 static void vhost_init_is_le(struct vhost_virtqueue *vq)
113 {
114 /* Note for legacy virtio: user_be is initialized at reset time
115 * according to the host endianness. If userspace does not set an
116 * explicit endianness, the default behavior is native endian, as
117 * expected by legacy virtio.
118 */
119 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be;
120 }
121 #else
vhost_disable_cross_endian(struct vhost_virtqueue * vq)122 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq)
123 {
124 }
125
vhost_set_vring_endian(struct vhost_virtqueue * vq,int __user * argp)126 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp)
127 {
128 return -ENOIOCTLCMD;
129 }
130
vhost_get_vring_endian(struct vhost_virtqueue * vq,u32 idx,int __user * argp)131 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx,
132 int __user *argp)
133 {
134 return -ENOIOCTLCMD;
135 }
136
vhost_init_is_le(struct vhost_virtqueue * vq)137 static void vhost_init_is_le(struct vhost_virtqueue *vq)
138 {
139 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1)
140 || virtio_legacy_is_little_endian();
141 }
142 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */
143
vhost_reset_is_le(struct vhost_virtqueue * vq)144 static void vhost_reset_is_le(struct vhost_virtqueue *vq)
145 {
146 vhost_init_is_le(vq);
147 }
148
149 struct vhost_flush_struct {
150 struct vhost_work work;
151 struct completion wait_event;
152 };
153
vhost_flush_work(struct vhost_work * work)154 static void vhost_flush_work(struct vhost_work *work)
155 {
156 struct vhost_flush_struct *s;
157
158 s = container_of(work, struct vhost_flush_struct, work);
159 complete(&s->wait_event);
160 }
161
vhost_poll_func(struct file * file,wait_queue_head_t * wqh,poll_table * pt)162 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh,
163 poll_table *pt)
164 {
165 struct vhost_poll *poll;
166
167 poll = container_of(pt, struct vhost_poll, table);
168 poll->wqh = wqh;
169 add_wait_queue(wqh, &poll->wait);
170 }
171
vhost_poll_wakeup(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)172 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync,
173 void *key)
174 {
175 struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait);
176 struct vhost_work *work = &poll->work;
177
178 if (!(key_to_poll(key) & poll->mask))
179 return 0;
180
181 if (!poll->dev->use_worker)
182 work->fn(work);
183 else
184 vhost_poll_queue(poll);
185
186 return 0;
187 }
188
vhost_work_init(struct vhost_work * work,vhost_work_fn_t fn)189 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn)
190 {
191 clear_bit(VHOST_WORK_QUEUED, &work->flags);
192 work->fn = fn;
193 }
194 EXPORT_SYMBOL_GPL(vhost_work_init);
195
196 /* Init poll structure */
vhost_poll_init(struct vhost_poll * poll,vhost_work_fn_t fn,__poll_t mask,struct vhost_dev * dev,struct vhost_virtqueue * vq)197 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn,
198 __poll_t mask, struct vhost_dev *dev,
199 struct vhost_virtqueue *vq)
200 {
201 init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup);
202 init_poll_funcptr(&poll->table, vhost_poll_func);
203 poll->mask = mask;
204 poll->dev = dev;
205 poll->wqh = NULL;
206 poll->vq = vq;
207
208 vhost_work_init(&poll->work, fn);
209 }
210 EXPORT_SYMBOL_GPL(vhost_poll_init);
211
212 /* Start polling a file. We add ourselves to file's wait queue. The caller must
213 * keep a reference to a file until after vhost_poll_stop is called. */
vhost_poll_start(struct vhost_poll * poll,struct file * file)214 int vhost_poll_start(struct vhost_poll *poll, struct file *file)
215 {
216 __poll_t mask;
217
218 if (poll->wqh)
219 return 0;
220
221 mask = vfs_poll(file, &poll->table);
222 if (mask)
223 vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask));
224 if (mask & EPOLLERR) {
225 vhost_poll_stop(poll);
226 return -EINVAL;
227 }
228
229 return 0;
230 }
231 EXPORT_SYMBOL_GPL(vhost_poll_start);
232
233 /* Stop polling a file. After this function returns, it becomes safe to drop the
234 * file reference. You must also flush afterwards. */
vhost_poll_stop(struct vhost_poll * poll)235 void vhost_poll_stop(struct vhost_poll *poll)
236 {
237 if (poll->wqh) {
238 remove_wait_queue(poll->wqh, &poll->wait);
239 poll->wqh = NULL;
240 }
241 }
242 EXPORT_SYMBOL_GPL(vhost_poll_stop);
243
vhost_worker_queue(struct vhost_worker * worker,struct vhost_work * work)244 static void vhost_worker_queue(struct vhost_worker *worker,
245 struct vhost_work *work)
246 {
247 if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) {
248 /* We can only add the work to the list after we're
249 * sure it was not in the list.
250 * test_and_set_bit() implies a memory barrier.
251 */
252 llist_add(&work->node, &worker->work_list);
253 worker->ops->wakeup(worker);
254 }
255 }
256
vhost_vq_work_queue(struct vhost_virtqueue * vq,struct vhost_work * work)257 bool vhost_vq_work_queue(struct vhost_virtqueue *vq, struct vhost_work *work)
258 {
259 struct vhost_worker *worker;
260 bool queued = false;
261
262 rcu_read_lock();
263 worker = rcu_dereference(vq->worker);
264 if (worker) {
265 queued = true;
266 vhost_worker_queue(worker, work);
267 }
268 rcu_read_unlock();
269
270 return queued;
271 }
272 EXPORT_SYMBOL_GPL(vhost_vq_work_queue);
273
274 /**
275 * __vhost_worker_flush - flush a worker
276 * @worker: worker to flush
277 *
278 * The worker's flush_mutex must be held.
279 */
__vhost_worker_flush(struct vhost_worker * worker)280 static void __vhost_worker_flush(struct vhost_worker *worker)
281 {
282 struct vhost_flush_struct flush;
283
284 if (!worker->attachment_cnt || worker->killed)
285 return;
286
287 init_completion(&flush.wait_event);
288 vhost_work_init(&flush.work, vhost_flush_work);
289
290 vhost_worker_queue(worker, &flush.work);
291 /*
292 * Drop mutex in case our worker is killed and it needs to take the
293 * mutex to force cleanup.
294 */
295 mutex_unlock(&worker->mutex);
296 wait_for_completion(&flush.wait_event);
297 mutex_lock(&worker->mutex);
298 }
299
vhost_worker_flush(struct vhost_worker * worker)300 static void vhost_worker_flush(struct vhost_worker *worker)
301 {
302 mutex_lock(&worker->mutex);
303 __vhost_worker_flush(worker);
304 mutex_unlock(&worker->mutex);
305 }
306
vhost_dev_flush(struct vhost_dev * dev)307 void vhost_dev_flush(struct vhost_dev *dev)
308 {
309 struct vhost_worker *worker;
310 unsigned long i;
311
312 xa_for_each(&dev->worker_xa, i, worker)
313 vhost_worker_flush(worker);
314 }
315 EXPORT_SYMBOL_GPL(vhost_dev_flush);
316
317 /* A lockless hint for busy polling code to exit the loop */
vhost_vq_has_work(struct vhost_virtqueue * vq)318 bool vhost_vq_has_work(struct vhost_virtqueue *vq)
319 {
320 struct vhost_worker *worker;
321 bool has_work = false;
322
323 rcu_read_lock();
324 worker = rcu_dereference(vq->worker);
325 if (worker && !llist_empty(&worker->work_list))
326 has_work = true;
327 rcu_read_unlock();
328
329 return has_work;
330 }
331 EXPORT_SYMBOL_GPL(vhost_vq_has_work);
332
vhost_poll_queue(struct vhost_poll * poll)333 void vhost_poll_queue(struct vhost_poll *poll)
334 {
335 vhost_vq_work_queue(poll->vq, &poll->work);
336 }
337 EXPORT_SYMBOL_GPL(vhost_poll_queue);
338
__vhost_vq_meta_reset(struct vhost_virtqueue * vq)339 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq)
340 {
341 int j;
342
343 for (j = 0; j < VHOST_NUM_ADDRS; j++)
344 vq->meta_iotlb[j] = NULL;
345 }
346
vhost_vq_meta_reset(struct vhost_dev * d)347 static void vhost_vq_meta_reset(struct vhost_dev *d)
348 {
349 int i;
350
351 for (i = 0; i < d->nvqs; ++i)
352 __vhost_vq_meta_reset(d->vqs[i]);
353 }
354
vhost_vring_call_reset(struct vhost_vring_call * call_ctx)355 static void vhost_vring_call_reset(struct vhost_vring_call *call_ctx)
356 {
357 call_ctx->ctx = NULL;
358 memset(&call_ctx->producer, 0x0, sizeof(struct irq_bypass_producer));
359 }
360
vhost_vq_is_setup(struct vhost_virtqueue * vq)361 bool vhost_vq_is_setup(struct vhost_virtqueue *vq)
362 {
363 return vq->avail && vq->desc && vq->used && vhost_vq_access_ok(vq);
364 }
365 EXPORT_SYMBOL_GPL(vhost_vq_is_setup);
366
vhost_vq_reset(struct vhost_dev * dev,struct vhost_virtqueue * vq)367 static void vhost_vq_reset(struct vhost_dev *dev,
368 struct vhost_virtqueue *vq)
369 {
370 vq->num = 1;
371 vq->desc = NULL;
372 vq->avail = NULL;
373 vq->used = NULL;
374 vq->last_avail_idx = 0;
375 vq->next_avail_head = 0;
376 vq->avail_idx = 0;
377 vq->last_used_idx = 0;
378 vq->signalled_used = 0;
379 vq->signalled_used_valid = false;
380 vq->used_flags = 0;
381 vq->log_used = false;
382 vq->log_addr = -1ull;
383 vq->private_data = NULL;
384 virtio_features_zero(vq->acked_features_array);
385 vq->acked_backend_features = 0;
386 vq->log_base = NULL;
387 vq->error_ctx = NULL;
388 vq->kick = NULL;
389 vq->log_ctx = NULL;
390 vhost_disable_cross_endian(vq);
391 vhost_reset_is_le(vq);
392 vq->busyloop_timeout = 0;
393 vq->umem = NULL;
394 vq->iotlb = NULL;
395 rcu_assign_pointer(vq->worker, NULL);
396 vhost_vring_call_reset(&vq->call_ctx);
397 __vhost_vq_meta_reset(vq);
398 }
399
vhost_run_work_kthread_list(void * data)400 static int vhost_run_work_kthread_list(void *data)
401 {
402 struct vhost_worker *worker = data;
403 struct vhost_work *work, *work_next;
404 struct vhost_dev *dev = worker->dev;
405 struct llist_node *node;
406
407 kthread_use_mm(dev->mm);
408
409 for (;;) {
410 /* mb paired w/ kthread_stop */
411 set_current_state(TASK_INTERRUPTIBLE);
412
413 if (kthread_should_stop()) {
414 __set_current_state(TASK_RUNNING);
415 break;
416 }
417 node = llist_del_all(&worker->work_list);
418 if (!node)
419 schedule();
420
421 node = llist_reverse_order(node);
422 /* make sure flag is seen after deletion */
423 smp_wmb();
424 llist_for_each_entry_safe(work, work_next, node, node) {
425 clear_bit(VHOST_WORK_QUEUED, &work->flags);
426 __set_current_state(TASK_RUNNING);
427 kcov_remote_start_common(worker->kcov_handle);
428 work->fn(work);
429 kcov_remote_stop();
430 cond_resched();
431 }
432 }
433 kthread_unuse_mm(dev->mm);
434
435 return 0;
436 }
437
vhost_run_work_list(void * data)438 static bool vhost_run_work_list(void *data)
439 {
440 struct vhost_worker *worker = data;
441 struct vhost_work *work, *work_next;
442 struct llist_node *node;
443
444 node = llist_del_all(&worker->work_list);
445 if (node) {
446 __set_current_state(TASK_RUNNING);
447
448 node = llist_reverse_order(node);
449 /* make sure flag is seen after deletion */
450 smp_wmb();
451 llist_for_each_entry_safe(work, work_next, node, node) {
452 clear_bit(VHOST_WORK_QUEUED, &work->flags);
453 kcov_remote_start_common(worker->kcov_handle);
454 work->fn(work);
455 kcov_remote_stop();
456 cond_resched();
457 }
458 }
459
460 return !!node;
461 }
462
vhost_worker_killed(void * data)463 static void vhost_worker_killed(void *data)
464 {
465 struct vhost_worker *worker = data;
466 struct vhost_dev *dev = worker->dev;
467 struct vhost_virtqueue *vq;
468 int i, attach_cnt = 0;
469
470 mutex_lock(&worker->mutex);
471 worker->killed = true;
472
473 for (i = 0; i < dev->nvqs; i++) {
474 vq = dev->vqs[i];
475
476 mutex_lock(&vq->mutex);
477 if (worker ==
478 rcu_dereference_check(vq->worker,
479 lockdep_is_held(&vq->mutex))) {
480 rcu_assign_pointer(vq->worker, NULL);
481 attach_cnt++;
482 }
483 mutex_unlock(&vq->mutex);
484 }
485
486 worker->attachment_cnt -= attach_cnt;
487 if (attach_cnt)
488 synchronize_rcu();
489 /*
490 * Finish vhost_worker_flush calls and any other works that snuck in
491 * before the synchronize_rcu.
492 */
493 vhost_run_work_list(worker);
494 mutex_unlock(&worker->mutex);
495 }
496
vhost_vq_free_iovecs(struct vhost_virtqueue * vq)497 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq)
498 {
499 kfree(vq->indirect);
500 vq->indirect = NULL;
501 kfree(vq->log);
502 vq->log = NULL;
503 kfree(vq->heads);
504 vq->heads = NULL;
505 kfree(vq->nheads);
506 vq->nheads = NULL;
507 }
508
509 /* Helper to allocate iovec buffers for all vqs. */
vhost_dev_alloc_iovecs(struct vhost_dev * dev)510 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev)
511 {
512 struct vhost_virtqueue *vq;
513 int i;
514
515 for (i = 0; i < dev->nvqs; ++i) {
516 vq = dev->vqs[i];
517 vq->indirect = kmalloc_array(UIO_MAXIOV,
518 sizeof(*vq->indirect),
519 GFP_KERNEL);
520 vq->log = kmalloc_array(dev->iov_limit, sizeof(*vq->log),
521 GFP_KERNEL);
522 vq->heads = kmalloc_array(dev->iov_limit, sizeof(*vq->heads),
523 GFP_KERNEL);
524 vq->nheads = kmalloc_array(dev->iov_limit, sizeof(*vq->nheads),
525 GFP_KERNEL);
526 if (!vq->indirect || !vq->log || !vq->heads || !vq->nheads)
527 goto err_nomem;
528 }
529 return 0;
530
531 err_nomem:
532 for (; i >= 0; --i)
533 vhost_vq_free_iovecs(dev->vqs[i]);
534 return -ENOMEM;
535 }
536
vhost_dev_free_iovecs(struct vhost_dev * dev)537 static void vhost_dev_free_iovecs(struct vhost_dev *dev)
538 {
539 int i;
540
541 for (i = 0; i < dev->nvqs; ++i)
542 vhost_vq_free_iovecs(dev->vqs[i]);
543 }
544
vhost_exceeds_weight(struct vhost_virtqueue * vq,int pkts,int total_len)545 bool vhost_exceeds_weight(struct vhost_virtqueue *vq,
546 int pkts, int total_len)
547 {
548 struct vhost_dev *dev = vq->dev;
549
550 if ((dev->byte_weight && total_len >= dev->byte_weight) ||
551 pkts >= dev->weight) {
552 vhost_poll_queue(&vq->poll);
553 return true;
554 }
555
556 return false;
557 }
558 EXPORT_SYMBOL_GPL(vhost_exceeds_weight);
559
vhost_get_avail_size(struct vhost_virtqueue * vq,unsigned int num)560 static size_t vhost_get_avail_size(struct vhost_virtqueue *vq,
561 unsigned int num)
562 {
563 size_t event __maybe_unused =
564 vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
565
566 return size_add(struct_size(vq->avail, ring, num), event);
567 }
568
vhost_get_used_size(struct vhost_virtqueue * vq,unsigned int num)569 static size_t vhost_get_used_size(struct vhost_virtqueue *vq,
570 unsigned int num)
571 {
572 size_t event __maybe_unused =
573 vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
574
575 return size_add(struct_size(vq->used, ring, num), event);
576 }
577
vhost_get_desc_size(struct vhost_virtqueue * vq,unsigned int num)578 static size_t vhost_get_desc_size(struct vhost_virtqueue *vq,
579 unsigned int num)
580 {
581 return sizeof(*vq->desc) * num;
582 }
583
vhost_dev_init(struct vhost_dev * dev,struct vhost_virtqueue ** vqs,int nvqs,int iov_limit,int weight,int byte_weight,bool use_worker,int (* msg_handler)(struct vhost_dev * dev,u32 asid,struct vhost_iotlb_msg * msg))584 void vhost_dev_init(struct vhost_dev *dev,
585 struct vhost_virtqueue **vqs, int nvqs,
586 int iov_limit, int weight, int byte_weight,
587 bool use_worker,
588 int (*msg_handler)(struct vhost_dev *dev, u32 asid,
589 struct vhost_iotlb_msg *msg))
590 {
591 struct vhost_virtqueue *vq;
592 int i;
593
594 dev->vqs = vqs;
595 dev->nvqs = nvqs;
596 mutex_init(&dev->mutex);
597 dev->log_ctx = NULL;
598 dev->umem = NULL;
599 dev->iotlb = NULL;
600 dev->mm = NULL;
601 dev->iov_limit = iov_limit;
602 dev->weight = weight;
603 dev->byte_weight = byte_weight;
604 dev->use_worker = use_worker;
605 dev->msg_handler = msg_handler;
606 dev->fork_owner = fork_from_owner_default;
607 init_waitqueue_head(&dev->wait);
608 INIT_LIST_HEAD(&dev->read_list);
609 INIT_LIST_HEAD(&dev->pending_list);
610 spin_lock_init(&dev->iotlb_lock);
611 xa_init_flags(&dev->worker_xa, XA_FLAGS_ALLOC);
612
613 for (i = 0; i < dev->nvqs; ++i) {
614 vq = dev->vqs[i];
615 vq->log = NULL;
616 vq->indirect = NULL;
617 vq->heads = NULL;
618 vq->nheads = NULL;
619 vq->dev = dev;
620 mutex_init(&vq->mutex);
621 vhost_vq_reset(dev, vq);
622 if (vq->handle_kick)
623 vhost_poll_init(&vq->poll, vq->handle_kick,
624 EPOLLIN, dev, vq);
625 }
626 }
627 EXPORT_SYMBOL_GPL(vhost_dev_init);
628
629 /* Caller should have device mutex */
vhost_dev_check_owner(struct vhost_dev * dev)630 long vhost_dev_check_owner(struct vhost_dev *dev)
631 {
632 /* Are you the owner? If not, I don't think you mean to do that */
633 return dev->mm == current->mm ? 0 : -EPERM;
634 }
635 EXPORT_SYMBOL_GPL(vhost_dev_check_owner);
636
637 struct vhost_attach_cgroups_struct {
638 struct vhost_work work;
639 struct task_struct *owner;
640 int ret;
641 };
642
vhost_attach_cgroups_work(struct vhost_work * work)643 static void vhost_attach_cgroups_work(struct vhost_work *work)
644 {
645 struct vhost_attach_cgroups_struct *s;
646
647 s = container_of(work, struct vhost_attach_cgroups_struct, work);
648 s->ret = cgroup_attach_task_all(s->owner, current);
649 }
650
vhost_attach_task_to_cgroups(struct vhost_worker * worker)651 static int vhost_attach_task_to_cgroups(struct vhost_worker *worker)
652 {
653 struct vhost_attach_cgroups_struct attach;
654 int saved_cnt;
655
656 attach.owner = current;
657
658 vhost_work_init(&attach.work, vhost_attach_cgroups_work);
659 vhost_worker_queue(worker, &attach.work);
660
661 mutex_lock(&worker->mutex);
662
663 /*
664 * Bypass attachment_cnt check in __vhost_worker_flush:
665 * Temporarily change it to INT_MAX to bypass the check
666 */
667 saved_cnt = worker->attachment_cnt;
668 worker->attachment_cnt = INT_MAX;
669 __vhost_worker_flush(worker);
670 worker->attachment_cnt = saved_cnt;
671
672 mutex_unlock(&worker->mutex);
673
674 return attach.ret;
675 }
676
677 /* Caller should have device mutex */
vhost_dev_has_owner(struct vhost_dev * dev)678 bool vhost_dev_has_owner(struct vhost_dev *dev)
679 {
680 return dev->mm;
681 }
682 EXPORT_SYMBOL_GPL(vhost_dev_has_owner);
683
vhost_attach_mm(struct vhost_dev * dev)684 static void vhost_attach_mm(struct vhost_dev *dev)
685 {
686 /* No owner, become one */
687 if (dev->use_worker) {
688 dev->mm = get_task_mm(current);
689 } else {
690 /* vDPA device does not use worker thread, so there's
691 * no need to hold the address space for mm. This helps
692 * to avoid deadlock in the case of mmap() which may
693 * hold the refcnt of the file and depends on release
694 * method to remove vma.
695 */
696 dev->mm = current->mm;
697 mmgrab(dev->mm);
698 }
699 }
700
vhost_detach_mm(struct vhost_dev * dev)701 static void vhost_detach_mm(struct vhost_dev *dev)
702 {
703 if (!dev->mm)
704 return;
705
706 if (dev->use_worker)
707 mmput(dev->mm);
708 else
709 mmdrop(dev->mm);
710
711 dev->mm = NULL;
712 }
713
vhost_worker_destroy(struct vhost_dev * dev,struct vhost_worker * worker)714 static void vhost_worker_destroy(struct vhost_dev *dev,
715 struct vhost_worker *worker)
716 {
717 if (!worker)
718 return;
719
720 WARN_ON(!llist_empty(&worker->work_list));
721 xa_erase(&dev->worker_xa, worker->id);
722 worker->ops->stop(worker);
723 kfree(worker);
724 }
725
vhost_workers_free(struct vhost_dev * dev)726 static void vhost_workers_free(struct vhost_dev *dev)
727 {
728 struct vhost_worker *worker;
729 unsigned long i;
730
731 if (!dev->use_worker)
732 return;
733
734 for (i = 0; i < dev->nvqs; i++)
735 rcu_assign_pointer(dev->vqs[i]->worker, NULL);
736 /*
737 * Free the default worker we created and cleanup workers userspace
738 * created but couldn't clean up (it forgot or crashed).
739 */
740 xa_for_each(&dev->worker_xa, i, worker)
741 vhost_worker_destroy(dev, worker);
742 xa_destroy(&dev->worker_xa);
743 }
744
vhost_task_wakeup(struct vhost_worker * worker)745 static void vhost_task_wakeup(struct vhost_worker *worker)
746 {
747 return vhost_task_wake(worker->vtsk);
748 }
749
vhost_kthread_wakeup(struct vhost_worker * worker)750 static void vhost_kthread_wakeup(struct vhost_worker *worker)
751 {
752 wake_up_process(worker->kthread_task);
753 }
754
vhost_task_do_stop(struct vhost_worker * worker)755 static void vhost_task_do_stop(struct vhost_worker *worker)
756 {
757 return vhost_task_stop(worker->vtsk);
758 }
759
vhost_kthread_do_stop(struct vhost_worker * worker)760 static void vhost_kthread_do_stop(struct vhost_worker *worker)
761 {
762 kthread_stop(worker->kthread_task);
763 }
764
vhost_task_worker_create(struct vhost_worker * worker,struct vhost_dev * dev,const char * name)765 static int vhost_task_worker_create(struct vhost_worker *worker,
766 struct vhost_dev *dev, const char *name)
767 {
768 struct vhost_task *vtsk;
769 u32 id;
770 int ret;
771
772 vtsk = vhost_task_create(vhost_run_work_list, vhost_worker_killed,
773 worker, name);
774 if (IS_ERR(vtsk))
775 return PTR_ERR(vtsk);
776
777 worker->vtsk = vtsk;
778 vhost_task_start(vtsk);
779 ret = xa_alloc(&dev->worker_xa, &id, worker, xa_limit_32b, GFP_KERNEL);
780 if (ret < 0) {
781 vhost_task_do_stop(worker);
782 return ret;
783 }
784 worker->id = id;
785 return 0;
786 }
787
vhost_kthread_worker_create(struct vhost_worker * worker,struct vhost_dev * dev,const char * name)788 static int vhost_kthread_worker_create(struct vhost_worker *worker,
789 struct vhost_dev *dev, const char *name)
790 {
791 struct task_struct *task;
792 u32 id;
793 int ret;
794
795 task = kthread_create(vhost_run_work_kthread_list, worker, "%s", name);
796 if (IS_ERR(task))
797 return PTR_ERR(task);
798
799 worker->kthread_task = task;
800 wake_up_process(task);
801 ret = xa_alloc(&dev->worker_xa, &id, worker, xa_limit_32b, GFP_KERNEL);
802 if (ret < 0)
803 goto stop_worker;
804
805 ret = vhost_attach_task_to_cgroups(worker);
806 if (ret)
807 goto free_id;
808
809 worker->id = id;
810 return 0;
811
812 free_id:
813 xa_erase(&dev->worker_xa, id);
814 stop_worker:
815 vhost_kthread_do_stop(worker);
816 return ret;
817 }
818
819 static const struct vhost_worker_ops kthread_ops = {
820 .create = vhost_kthread_worker_create,
821 .stop = vhost_kthread_do_stop,
822 .wakeup = vhost_kthread_wakeup,
823 };
824
825 static const struct vhost_worker_ops vhost_task_ops = {
826 .create = vhost_task_worker_create,
827 .stop = vhost_task_do_stop,
828 .wakeup = vhost_task_wakeup,
829 };
830
vhost_worker_create(struct vhost_dev * dev)831 static struct vhost_worker *vhost_worker_create(struct vhost_dev *dev)
832 {
833 struct vhost_worker *worker;
834 char name[TASK_COMM_LEN];
835 int ret;
836 const struct vhost_worker_ops *ops = dev->fork_owner ? &vhost_task_ops :
837 &kthread_ops;
838
839 worker = kzalloc(sizeof(*worker), GFP_KERNEL_ACCOUNT);
840 if (!worker)
841 return NULL;
842
843 worker->dev = dev;
844 worker->ops = ops;
845 snprintf(name, sizeof(name), "vhost-%d", current->pid);
846
847 mutex_init(&worker->mutex);
848 init_llist_head(&worker->work_list);
849 worker->kcov_handle = kcov_common_handle();
850 ret = ops->create(worker, dev, name);
851 if (ret < 0)
852 goto free_worker;
853
854 return worker;
855
856 free_worker:
857 kfree(worker);
858 return NULL;
859 }
860
861 /* Caller must have device mutex */
__vhost_vq_attach_worker(struct vhost_virtqueue * vq,struct vhost_worker * worker)862 static void __vhost_vq_attach_worker(struct vhost_virtqueue *vq,
863 struct vhost_worker *worker)
864 {
865 struct vhost_worker *old_worker;
866
867 mutex_lock(&worker->mutex);
868 if (worker->killed) {
869 mutex_unlock(&worker->mutex);
870 return;
871 }
872
873 mutex_lock(&vq->mutex);
874
875 old_worker = rcu_dereference_check(vq->worker,
876 lockdep_is_held(&vq->mutex));
877 rcu_assign_pointer(vq->worker, worker);
878 worker->attachment_cnt++;
879
880 if (!old_worker) {
881 mutex_unlock(&vq->mutex);
882 mutex_unlock(&worker->mutex);
883 return;
884 }
885 mutex_unlock(&vq->mutex);
886 mutex_unlock(&worker->mutex);
887
888 /*
889 * Take the worker mutex to make sure we see the work queued from
890 * device wide flushes which doesn't use RCU for execution.
891 */
892 mutex_lock(&old_worker->mutex);
893 if (old_worker->killed) {
894 mutex_unlock(&old_worker->mutex);
895 return;
896 }
897
898 /*
899 * We don't want to call synchronize_rcu for every vq during setup
900 * because it will slow down VM startup. If we haven't done
901 * VHOST_SET_VRING_KICK and not done the driver specific
902 * SET_ENDPOINT/RUNNING then we can skip the sync since there will
903 * not be any works queued for scsi and net.
904 */
905 mutex_lock(&vq->mutex);
906 if (!vhost_vq_get_backend(vq) && !vq->kick) {
907 mutex_unlock(&vq->mutex);
908
909 old_worker->attachment_cnt--;
910 mutex_unlock(&old_worker->mutex);
911 /*
912 * vsock can queue anytime after VHOST_VSOCK_SET_GUEST_CID.
913 * Warn if it adds support for multiple workers but forgets to
914 * handle the early queueing case.
915 */
916 WARN_ON(!old_worker->attachment_cnt &&
917 !llist_empty(&old_worker->work_list));
918 return;
919 }
920 mutex_unlock(&vq->mutex);
921
922 /* Make sure new vq queue/flush/poll calls see the new worker */
923 synchronize_rcu();
924 /* Make sure whatever was queued gets run */
925 __vhost_worker_flush(old_worker);
926 old_worker->attachment_cnt--;
927 mutex_unlock(&old_worker->mutex);
928 }
929
930 /* Caller must have device mutex */
vhost_vq_attach_worker(struct vhost_virtqueue * vq,struct vhost_vring_worker * info)931 static int vhost_vq_attach_worker(struct vhost_virtqueue *vq,
932 struct vhost_vring_worker *info)
933 {
934 unsigned long index = info->worker_id;
935 struct vhost_dev *dev = vq->dev;
936 struct vhost_worker *worker;
937
938 if (!dev->use_worker)
939 return -EINVAL;
940
941 worker = xa_find(&dev->worker_xa, &index, UINT_MAX, XA_PRESENT);
942 if (!worker || worker->id != info->worker_id)
943 return -ENODEV;
944
945 __vhost_vq_attach_worker(vq, worker);
946 return 0;
947 }
948
949 /* Caller must have device mutex */
vhost_new_worker(struct vhost_dev * dev,struct vhost_worker_state * info)950 static int vhost_new_worker(struct vhost_dev *dev,
951 struct vhost_worker_state *info)
952 {
953 struct vhost_worker *worker;
954
955 worker = vhost_worker_create(dev);
956 if (!worker)
957 return -ENOMEM;
958
959 info->worker_id = worker->id;
960 return 0;
961 }
962
963 /* Caller must have device mutex */
vhost_free_worker(struct vhost_dev * dev,struct vhost_worker_state * info)964 static int vhost_free_worker(struct vhost_dev *dev,
965 struct vhost_worker_state *info)
966 {
967 unsigned long index = info->worker_id;
968 struct vhost_worker *worker;
969
970 worker = xa_find(&dev->worker_xa, &index, UINT_MAX, XA_PRESENT);
971 if (!worker || worker->id != info->worker_id)
972 return -ENODEV;
973
974 mutex_lock(&worker->mutex);
975 if (worker->attachment_cnt || worker->killed) {
976 mutex_unlock(&worker->mutex);
977 return -EBUSY;
978 }
979 /*
980 * A flush might have raced and snuck in before attachment_cnt was set
981 * to zero. Make sure flushes are flushed from the queue before
982 * freeing.
983 */
984 __vhost_worker_flush(worker);
985 mutex_unlock(&worker->mutex);
986
987 vhost_worker_destroy(dev, worker);
988 return 0;
989 }
990
vhost_get_vq_from_user(struct vhost_dev * dev,void __user * argp,struct vhost_virtqueue ** vq,u32 * id)991 static int vhost_get_vq_from_user(struct vhost_dev *dev, void __user *argp,
992 struct vhost_virtqueue **vq, u32 *id)
993 {
994 u32 __user *idxp = argp;
995 u32 idx;
996 long r;
997
998 r = get_user(idx, idxp);
999 if (r < 0)
1000 return r;
1001
1002 if (idx >= dev->nvqs)
1003 return -ENOBUFS;
1004
1005 idx = array_index_nospec(idx, dev->nvqs);
1006
1007 *vq = dev->vqs[idx];
1008 *id = idx;
1009 return 0;
1010 }
1011
1012 /* Caller must have device mutex */
vhost_worker_ioctl(struct vhost_dev * dev,unsigned int ioctl,void __user * argp)1013 long vhost_worker_ioctl(struct vhost_dev *dev, unsigned int ioctl,
1014 void __user *argp)
1015 {
1016 struct vhost_vring_worker ring_worker;
1017 struct vhost_worker_state state;
1018 struct vhost_worker *worker;
1019 struct vhost_virtqueue *vq;
1020 long ret;
1021 u32 idx;
1022
1023 if (!dev->use_worker)
1024 return -EINVAL;
1025
1026 if (!vhost_dev_has_owner(dev))
1027 return -EINVAL;
1028
1029 ret = vhost_dev_check_owner(dev);
1030 if (ret)
1031 return ret;
1032
1033 switch (ioctl) {
1034 /* dev worker ioctls */
1035 case VHOST_NEW_WORKER:
1036 /*
1037 * vhost_tasks will account for worker threads under the parent's
1038 * NPROC value but kthreads do not. To avoid userspace overflowing
1039 * the system with worker threads fork_owner must be true.
1040 */
1041 if (!dev->fork_owner)
1042 return -EFAULT;
1043
1044 ret = vhost_new_worker(dev, &state);
1045 if (!ret && copy_to_user(argp, &state, sizeof(state)))
1046 ret = -EFAULT;
1047 return ret;
1048 case VHOST_FREE_WORKER:
1049 if (copy_from_user(&state, argp, sizeof(state)))
1050 return -EFAULT;
1051 return vhost_free_worker(dev, &state);
1052 /* vring worker ioctls */
1053 case VHOST_ATTACH_VRING_WORKER:
1054 case VHOST_GET_VRING_WORKER:
1055 break;
1056 default:
1057 return -ENOIOCTLCMD;
1058 }
1059
1060 ret = vhost_get_vq_from_user(dev, argp, &vq, &idx);
1061 if (ret)
1062 return ret;
1063
1064 switch (ioctl) {
1065 case VHOST_ATTACH_VRING_WORKER:
1066 if (copy_from_user(&ring_worker, argp, sizeof(ring_worker))) {
1067 ret = -EFAULT;
1068 break;
1069 }
1070
1071 ret = vhost_vq_attach_worker(vq, &ring_worker);
1072 break;
1073 case VHOST_GET_VRING_WORKER:
1074 worker = rcu_dereference_check(vq->worker,
1075 lockdep_is_held(&dev->mutex));
1076 if (!worker) {
1077 ret = -EINVAL;
1078 break;
1079 }
1080
1081 ring_worker.index = idx;
1082 ring_worker.worker_id = worker->id;
1083
1084 if (copy_to_user(argp, &ring_worker, sizeof(ring_worker)))
1085 ret = -EFAULT;
1086 break;
1087 default:
1088 ret = -ENOIOCTLCMD;
1089 break;
1090 }
1091
1092 return ret;
1093 }
1094 EXPORT_SYMBOL_GPL(vhost_worker_ioctl);
1095
1096 /* Caller should have device mutex */
vhost_dev_set_owner(struct vhost_dev * dev)1097 long vhost_dev_set_owner(struct vhost_dev *dev)
1098 {
1099 struct vhost_worker *worker;
1100 int err, i;
1101
1102 /* Is there an owner already? */
1103 if (vhost_dev_has_owner(dev)) {
1104 err = -EBUSY;
1105 goto err_mm;
1106 }
1107
1108 vhost_attach_mm(dev);
1109
1110 err = vhost_dev_alloc_iovecs(dev);
1111 if (err)
1112 goto err_iovecs;
1113
1114 if (dev->use_worker) {
1115 /*
1116 * This should be done last, because vsock can queue work
1117 * before VHOST_SET_OWNER so it simplifies the failure path
1118 * below since we don't have to worry about vsock queueing
1119 * while we free the worker.
1120 */
1121 worker = vhost_worker_create(dev);
1122 if (!worker) {
1123 err = -ENOMEM;
1124 goto err_worker;
1125 }
1126
1127 for (i = 0; i < dev->nvqs; i++)
1128 __vhost_vq_attach_worker(dev->vqs[i], worker);
1129 }
1130
1131 return 0;
1132
1133 err_worker:
1134 vhost_dev_free_iovecs(dev);
1135 err_iovecs:
1136 vhost_detach_mm(dev);
1137 err_mm:
1138 return err;
1139 }
1140 EXPORT_SYMBOL_GPL(vhost_dev_set_owner);
1141
iotlb_alloc(void)1142 static struct vhost_iotlb *iotlb_alloc(void)
1143 {
1144 return vhost_iotlb_alloc(max_iotlb_entries,
1145 VHOST_IOTLB_FLAG_RETIRE);
1146 }
1147
vhost_dev_reset_owner_prepare(void)1148 struct vhost_iotlb *vhost_dev_reset_owner_prepare(void)
1149 {
1150 return iotlb_alloc();
1151 }
1152 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare);
1153
1154 /* Caller should have device mutex */
vhost_dev_reset_owner(struct vhost_dev * dev,struct vhost_iotlb * umem)1155 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_iotlb *umem)
1156 {
1157 int i;
1158
1159 vhost_dev_cleanup(dev);
1160
1161 dev->fork_owner = fork_from_owner_default;
1162 dev->umem = umem;
1163 /* We don't need VQ locks below since vhost_dev_cleanup makes sure
1164 * VQs aren't running.
1165 */
1166 for (i = 0; i < dev->nvqs; ++i)
1167 dev->vqs[i]->umem = umem;
1168 }
1169 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner);
1170
vhost_dev_stop(struct vhost_dev * dev)1171 void vhost_dev_stop(struct vhost_dev *dev)
1172 {
1173 int i;
1174
1175 for (i = 0; i < dev->nvqs; ++i) {
1176 if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick)
1177 vhost_poll_stop(&dev->vqs[i]->poll);
1178 }
1179
1180 vhost_dev_flush(dev);
1181 }
1182 EXPORT_SYMBOL_GPL(vhost_dev_stop);
1183
vhost_clear_msg(struct vhost_dev * dev)1184 void vhost_clear_msg(struct vhost_dev *dev)
1185 {
1186 struct vhost_msg_node *node, *n;
1187
1188 spin_lock(&dev->iotlb_lock);
1189
1190 list_for_each_entry_safe(node, n, &dev->read_list, node) {
1191 list_del(&node->node);
1192 kfree(node);
1193 }
1194
1195 list_for_each_entry_safe(node, n, &dev->pending_list, node) {
1196 list_del(&node->node);
1197 kfree(node);
1198 }
1199
1200 spin_unlock(&dev->iotlb_lock);
1201 }
1202 EXPORT_SYMBOL_GPL(vhost_clear_msg);
1203
vhost_dev_cleanup(struct vhost_dev * dev)1204 void vhost_dev_cleanup(struct vhost_dev *dev)
1205 {
1206 int i;
1207
1208 for (i = 0; i < dev->nvqs; ++i) {
1209 if (dev->vqs[i]->error_ctx)
1210 eventfd_ctx_put(dev->vqs[i]->error_ctx);
1211 if (dev->vqs[i]->kick)
1212 fput(dev->vqs[i]->kick);
1213 if (dev->vqs[i]->call_ctx.ctx)
1214 eventfd_ctx_put(dev->vqs[i]->call_ctx.ctx);
1215 vhost_vq_reset(dev, dev->vqs[i]);
1216 }
1217 vhost_dev_free_iovecs(dev);
1218 if (dev->log_ctx)
1219 eventfd_ctx_put(dev->log_ctx);
1220 dev->log_ctx = NULL;
1221 /* No one will access memory at this point */
1222 vhost_iotlb_free(dev->umem);
1223 dev->umem = NULL;
1224 vhost_iotlb_free(dev->iotlb);
1225 dev->iotlb = NULL;
1226 vhost_clear_msg(dev);
1227 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM);
1228 vhost_workers_free(dev);
1229 vhost_detach_mm(dev);
1230 }
1231 EXPORT_SYMBOL_GPL(vhost_dev_cleanup);
1232
log_access_ok(void __user * log_base,u64 addr,unsigned long sz)1233 static bool log_access_ok(void __user *log_base, u64 addr, unsigned long sz)
1234 {
1235 u64 a = addr / VHOST_PAGE_SIZE / 8;
1236
1237 /* Make sure 64 bit math will not overflow. */
1238 if (a > ULONG_MAX - (unsigned long)log_base ||
1239 a + (unsigned long)log_base > ULONG_MAX)
1240 return false;
1241
1242 return access_ok(log_base + a,
1243 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8);
1244 }
1245
1246 /* Make sure 64 bit math will not overflow. */
vhost_overflow(u64 uaddr,u64 size)1247 static bool vhost_overflow(u64 uaddr, u64 size)
1248 {
1249 if (uaddr > ULONG_MAX || size > ULONG_MAX)
1250 return true;
1251
1252 if (!size)
1253 return false;
1254
1255 return uaddr > ULONG_MAX - size + 1;
1256 }
1257
1258 /* Caller should have vq mutex and device mutex. */
vq_memory_access_ok(void __user * log_base,struct vhost_iotlb * umem,int log_all)1259 static bool vq_memory_access_ok(void __user *log_base, struct vhost_iotlb *umem,
1260 int log_all)
1261 {
1262 struct vhost_iotlb_map *map;
1263
1264 if (!umem)
1265 return false;
1266
1267 list_for_each_entry(map, &umem->list, link) {
1268 unsigned long a = map->addr;
1269
1270 if (vhost_overflow(map->addr, map->size))
1271 return false;
1272
1273
1274 if (!access_ok((void __user *)a, map->size))
1275 return false;
1276 else if (log_all && !log_access_ok(log_base,
1277 map->start,
1278 map->size))
1279 return false;
1280 }
1281 return true;
1282 }
1283
vhost_vq_meta_fetch(struct vhost_virtqueue * vq,u64 addr,unsigned int size,int type)1284 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq,
1285 u64 addr, unsigned int size,
1286 int type)
1287 {
1288 const struct vhost_iotlb_map *map = vq->meta_iotlb[type];
1289
1290 if (!map)
1291 return NULL;
1292
1293 return (void __user *)(uintptr_t)(map->addr + addr - map->start);
1294 }
1295
1296 /* Can we switch to this memory table? */
1297 /* Caller should have device mutex but not vq mutex */
memory_access_ok(struct vhost_dev * d,struct vhost_iotlb * umem,int log_all)1298 static bool memory_access_ok(struct vhost_dev *d, struct vhost_iotlb *umem,
1299 int log_all)
1300 {
1301 int i;
1302
1303 for (i = 0; i < d->nvqs; ++i) {
1304 bool ok;
1305 bool log;
1306
1307 mutex_lock(&d->vqs[i]->mutex);
1308 log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL);
1309 /* If ring is inactive, will check when it's enabled. */
1310 if (d->vqs[i]->private_data)
1311 ok = vq_memory_access_ok(d->vqs[i]->log_base,
1312 umem, log);
1313 else
1314 ok = true;
1315 mutex_unlock(&d->vqs[i]->mutex);
1316 if (!ok)
1317 return false;
1318 }
1319 return true;
1320 }
1321
1322 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len,
1323 struct iovec iov[], int iov_size, int access);
1324
vhost_copy_to_user(struct vhost_virtqueue * vq,void __user * to,const void * from,unsigned size)1325 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to,
1326 const void *from, unsigned size)
1327 {
1328 int ret;
1329
1330 if (!vq->iotlb)
1331 return __copy_to_user(to, from, size);
1332 else {
1333 /* This function should be called after iotlb
1334 * prefetch, which means we're sure that all vq
1335 * could be access through iotlb. So -EAGAIN should
1336 * not happen in this case.
1337 */
1338 struct iov_iter t;
1339 void __user *uaddr = vhost_vq_meta_fetch(vq,
1340 (u64)(uintptr_t)to, size,
1341 VHOST_ADDR_USED);
1342
1343 if (uaddr)
1344 return __copy_to_user(uaddr, from, size);
1345
1346 ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov,
1347 ARRAY_SIZE(vq->iotlb_iov),
1348 VHOST_ACCESS_WO);
1349 if (ret < 0)
1350 goto out;
1351 iov_iter_init(&t, ITER_DEST, vq->iotlb_iov, ret, size);
1352 ret = copy_to_iter(from, size, &t);
1353 if (ret == size)
1354 ret = 0;
1355 }
1356 out:
1357 return ret;
1358 }
1359
vhost_copy_from_user(struct vhost_virtqueue * vq,void * to,void __user * from,unsigned size)1360 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to,
1361 void __user *from, unsigned size)
1362 {
1363 int ret;
1364
1365 if (!vq->iotlb)
1366 return __copy_from_user(to, from, size);
1367 else {
1368 /* This function should be called after iotlb
1369 * prefetch, which means we're sure that vq
1370 * could be access through iotlb. So -EAGAIN should
1371 * not happen in this case.
1372 */
1373 void __user *uaddr = vhost_vq_meta_fetch(vq,
1374 (u64)(uintptr_t)from, size,
1375 VHOST_ADDR_DESC);
1376 struct iov_iter f;
1377
1378 if (uaddr)
1379 return __copy_from_user(to, uaddr, size);
1380
1381 ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov,
1382 ARRAY_SIZE(vq->iotlb_iov),
1383 VHOST_ACCESS_RO);
1384 if (ret < 0) {
1385 vq_err(vq, "IOTLB translation failure: uaddr "
1386 "%p size 0x%llx\n", from,
1387 (unsigned long long) size);
1388 goto out;
1389 }
1390 iov_iter_init(&f, ITER_SOURCE, vq->iotlb_iov, ret, size);
1391 ret = copy_from_iter(to, size, &f);
1392 if (ret == size)
1393 ret = 0;
1394 }
1395
1396 out:
1397 return ret;
1398 }
1399
__vhost_get_user_slow(struct vhost_virtqueue * vq,void __user * addr,unsigned int size,int type)1400 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq,
1401 void __user *addr, unsigned int size,
1402 int type)
1403 {
1404 int ret;
1405
1406 ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov,
1407 ARRAY_SIZE(vq->iotlb_iov),
1408 VHOST_ACCESS_RO);
1409 if (ret < 0) {
1410 vq_err(vq, "IOTLB translation failure: uaddr "
1411 "%p size 0x%llx\n", addr,
1412 (unsigned long long) size);
1413 return NULL;
1414 }
1415
1416 if (ret != 1 || vq->iotlb_iov[0].iov_len != size) {
1417 vq_err(vq, "Non atomic userspace memory access: uaddr "
1418 "%p size 0x%llx\n", addr,
1419 (unsigned long long) size);
1420 return NULL;
1421 }
1422
1423 return vq->iotlb_iov[0].iov_base;
1424 }
1425
1426 /* This function should be called after iotlb
1427 * prefetch, which means we're sure that vq
1428 * could be access through iotlb. So -EAGAIN should
1429 * not happen in this case.
1430 */
__vhost_get_user(struct vhost_virtqueue * vq,void __user * addr,unsigned int size,int type)1431 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq,
1432 void __user *addr, unsigned int size,
1433 int type)
1434 {
1435 void __user *uaddr = vhost_vq_meta_fetch(vq,
1436 (u64)(uintptr_t)addr, size, type);
1437 if (uaddr)
1438 return uaddr;
1439
1440 return __vhost_get_user_slow(vq, addr, size, type);
1441 }
1442
1443 #define vhost_put_user(vq, x, ptr) \
1444 ({ \
1445 int ret; \
1446 if (!vq->iotlb) { \
1447 ret = __put_user(x, ptr); \
1448 } else { \
1449 __typeof__(ptr) to = \
1450 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \
1451 sizeof(*ptr), VHOST_ADDR_USED); \
1452 if (to != NULL) \
1453 ret = __put_user(x, to); \
1454 else \
1455 ret = -EFAULT; \
1456 } \
1457 ret; \
1458 })
1459
vhost_put_avail_event(struct vhost_virtqueue * vq)1460 static inline int vhost_put_avail_event(struct vhost_virtqueue *vq)
1461 {
1462 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx),
1463 vhost_avail_event(vq));
1464 }
1465
vhost_put_used(struct vhost_virtqueue * vq,struct vring_used_elem * head,int idx,int count)1466 static inline int vhost_put_used(struct vhost_virtqueue *vq,
1467 struct vring_used_elem *head, int idx,
1468 int count)
1469 {
1470 return vhost_copy_to_user(vq, vq->used->ring + idx, head,
1471 count * sizeof(*head));
1472 }
1473
vhost_put_used_flags(struct vhost_virtqueue * vq)1474 static inline int vhost_put_used_flags(struct vhost_virtqueue *vq)
1475
1476 {
1477 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags),
1478 &vq->used->flags);
1479 }
1480
vhost_put_used_idx(struct vhost_virtqueue * vq)1481 static inline int vhost_put_used_idx(struct vhost_virtqueue *vq)
1482
1483 {
1484 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx),
1485 &vq->used->idx);
1486 }
1487
1488 #define vhost_get_user(vq, x, ptr, type) \
1489 ({ \
1490 int ret; \
1491 if (!vq->iotlb) { \
1492 ret = __get_user(x, ptr); \
1493 } else { \
1494 __typeof__(ptr) from = \
1495 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \
1496 sizeof(*ptr), \
1497 type); \
1498 if (from != NULL) \
1499 ret = __get_user(x, from); \
1500 else \
1501 ret = -EFAULT; \
1502 } \
1503 ret; \
1504 })
1505
1506 #define vhost_get_avail(vq, x, ptr) \
1507 vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL)
1508
1509 #define vhost_get_used(vq, x, ptr) \
1510 vhost_get_user(vq, x, ptr, VHOST_ADDR_USED)
1511
vhost_dev_lock_vqs(struct vhost_dev * d)1512 static void vhost_dev_lock_vqs(struct vhost_dev *d)
1513 {
1514 int i = 0;
1515 for (i = 0; i < d->nvqs; ++i)
1516 mutex_lock_nested(&d->vqs[i]->mutex, i);
1517 }
1518
vhost_dev_unlock_vqs(struct vhost_dev * d)1519 static void vhost_dev_unlock_vqs(struct vhost_dev *d)
1520 {
1521 int i = 0;
1522 for (i = 0; i < d->nvqs; ++i)
1523 mutex_unlock(&d->vqs[i]->mutex);
1524 }
1525
vhost_get_avail_idx(struct vhost_virtqueue * vq)1526 static inline int vhost_get_avail_idx(struct vhost_virtqueue *vq)
1527 {
1528 __virtio16 idx;
1529 int r;
1530
1531 r = vhost_get_avail(vq, idx, &vq->avail->idx);
1532 if (unlikely(r < 0)) {
1533 vq_err(vq, "Failed to access available index at %p (%d)\n",
1534 &vq->avail->idx, r);
1535 return r;
1536 }
1537
1538 /* Check it isn't doing very strange thing with available indexes */
1539 vq->avail_idx = vhost16_to_cpu(vq, idx);
1540 if (unlikely((u16)(vq->avail_idx - vq->last_avail_idx) > vq->num)) {
1541 vq_err(vq, "Invalid available index change from %u to %u",
1542 vq->last_avail_idx, vq->avail_idx);
1543 return -EINVAL;
1544 }
1545
1546 /* We're done if there is nothing new */
1547 if (vq->avail_idx == vq->last_avail_idx)
1548 return 0;
1549
1550 /*
1551 * We updated vq->avail_idx so we need a memory barrier between
1552 * the index read above and the caller reading avail ring entries.
1553 */
1554 smp_rmb();
1555 return 1;
1556 }
1557
vhost_get_avail_head(struct vhost_virtqueue * vq,__virtio16 * head,int idx)1558 static inline int vhost_get_avail_head(struct vhost_virtqueue *vq,
1559 __virtio16 *head, int idx)
1560 {
1561 return vhost_get_avail(vq, *head,
1562 &vq->avail->ring[idx & (vq->num - 1)]);
1563 }
1564
vhost_get_avail_flags(struct vhost_virtqueue * vq,__virtio16 * flags)1565 static inline int vhost_get_avail_flags(struct vhost_virtqueue *vq,
1566 __virtio16 *flags)
1567 {
1568 return vhost_get_avail(vq, *flags, &vq->avail->flags);
1569 }
1570
vhost_get_used_event(struct vhost_virtqueue * vq,__virtio16 * event)1571 static inline int vhost_get_used_event(struct vhost_virtqueue *vq,
1572 __virtio16 *event)
1573 {
1574 return vhost_get_avail(vq, *event, vhost_used_event(vq));
1575 }
1576
vhost_get_used_idx(struct vhost_virtqueue * vq,__virtio16 * idx)1577 static inline int vhost_get_used_idx(struct vhost_virtqueue *vq,
1578 __virtio16 *idx)
1579 {
1580 return vhost_get_used(vq, *idx, &vq->used->idx);
1581 }
1582
vhost_get_desc(struct vhost_virtqueue * vq,struct vring_desc * desc,int idx)1583 static inline int vhost_get_desc(struct vhost_virtqueue *vq,
1584 struct vring_desc *desc, int idx)
1585 {
1586 return vhost_copy_from_user(vq, desc, vq->desc + idx, sizeof(*desc));
1587 }
1588
vhost_iotlb_notify_vq(struct vhost_dev * d,struct vhost_iotlb_msg * msg)1589 static void vhost_iotlb_notify_vq(struct vhost_dev *d,
1590 struct vhost_iotlb_msg *msg)
1591 {
1592 struct vhost_msg_node *node, *n;
1593
1594 spin_lock(&d->iotlb_lock);
1595
1596 list_for_each_entry_safe(node, n, &d->pending_list, node) {
1597 struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb;
1598 if (msg->iova <= vq_msg->iova &&
1599 msg->iova + msg->size - 1 >= vq_msg->iova &&
1600 vq_msg->type == VHOST_IOTLB_MISS) {
1601 vhost_poll_queue(&node->vq->poll);
1602 list_del(&node->node);
1603 kfree(node);
1604 }
1605 }
1606
1607 spin_unlock(&d->iotlb_lock);
1608 }
1609
umem_access_ok(u64 uaddr,u64 size,int access)1610 static bool umem_access_ok(u64 uaddr, u64 size, int access)
1611 {
1612 unsigned long a = uaddr;
1613
1614 /* Make sure 64 bit math will not overflow. */
1615 if (vhost_overflow(uaddr, size))
1616 return false;
1617
1618 if ((access & VHOST_ACCESS_RO) &&
1619 !access_ok((void __user *)a, size))
1620 return false;
1621 if ((access & VHOST_ACCESS_WO) &&
1622 !access_ok((void __user *)a, size))
1623 return false;
1624 return true;
1625 }
1626
vhost_process_iotlb_msg(struct vhost_dev * dev,u32 asid,struct vhost_iotlb_msg * msg)1627 static int vhost_process_iotlb_msg(struct vhost_dev *dev, u32 asid,
1628 struct vhost_iotlb_msg *msg)
1629 {
1630 int ret = 0;
1631
1632 if (asid != 0)
1633 return -EINVAL;
1634
1635 mutex_lock(&dev->mutex);
1636 vhost_dev_lock_vqs(dev);
1637 switch (msg->type) {
1638 case VHOST_IOTLB_UPDATE:
1639 if (!dev->iotlb) {
1640 ret = -EFAULT;
1641 break;
1642 }
1643 if (!umem_access_ok(msg->uaddr, msg->size, msg->perm)) {
1644 ret = -EFAULT;
1645 break;
1646 }
1647 vhost_vq_meta_reset(dev);
1648 if (vhost_iotlb_add_range(dev->iotlb, msg->iova,
1649 msg->iova + msg->size - 1,
1650 msg->uaddr, msg->perm)) {
1651 ret = -ENOMEM;
1652 break;
1653 }
1654 vhost_iotlb_notify_vq(dev, msg);
1655 break;
1656 case VHOST_IOTLB_INVALIDATE:
1657 if (!dev->iotlb) {
1658 ret = -EFAULT;
1659 break;
1660 }
1661 vhost_vq_meta_reset(dev);
1662 vhost_iotlb_del_range(dev->iotlb, msg->iova,
1663 msg->iova + msg->size - 1);
1664 break;
1665 default:
1666 ret = -EINVAL;
1667 break;
1668 }
1669
1670 vhost_dev_unlock_vqs(dev);
1671 mutex_unlock(&dev->mutex);
1672
1673 return ret;
1674 }
vhost_chr_write_iter(struct vhost_dev * dev,struct iov_iter * from)1675 ssize_t vhost_chr_write_iter(struct vhost_dev *dev,
1676 struct iov_iter *from)
1677 {
1678 struct vhost_iotlb_msg msg;
1679 size_t offset;
1680 int type, ret;
1681 u32 asid = 0;
1682
1683 ret = copy_from_iter(&type, sizeof(type), from);
1684 if (ret != sizeof(type)) {
1685 ret = -EINVAL;
1686 goto done;
1687 }
1688
1689 switch (type) {
1690 case VHOST_IOTLB_MSG:
1691 /* There maybe a hole after type for V1 message type,
1692 * so skip it here.
1693 */
1694 offset = offsetof(struct vhost_msg, iotlb) - sizeof(int);
1695 break;
1696 case VHOST_IOTLB_MSG_V2:
1697 if (vhost_backend_has_feature(dev->vqs[0],
1698 VHOST_BACKEND_F_IOTLB_ASID)) {
1699 ret = copy_from_iter(&asid, sizeof(asid), from);
1700 if (ret != sizeof(asid)) {
1701 ret = -EINVAL;
1702 goto done;
1703 }
1704 offset = 0;
1705 } else
1706 offset = sizeof(__u32);
1707 break;
1708 default:
1709 ret = -EINVAL;
1710 goto done;
1711 }
1712
1713 iov_iter_advance(from, offset);
1714 ret = copy_from_iter(&msg, sizeof(msg), from);
1715 if (ret != sizeof(msg)) {
1716 ret = -EINVAL;
1717 goto done;
1718 }
1719
1720 if (msg.type == VHOST_IOTLB_UPDATE && msg.size == 0) {
1721 ret = -EINVAL;
1722 goto done;
1723 }
1724
1725 if (dev->msg_handler)
1726 ret = dev->msg_handler(dev, asid, &msg);
1727 else
1728 ret = vhost_process_iotlb_msg(dev, asid, &msg);
1729 if (ret) {
1730 ret = -EFAULT;
1731 goto done;
1732 }
1733
1734 ret = (type == VHOST_IOTLB_MSG) ? sizeof(struct vhost_msg) :
1735 sizeof(struct vhost_msg_v2);
1736 done:
1737 return ret;
1738 }
1739 EXPORT_SYMBOL(vhost_chr_write_iter);
1740
vhost_chr_poll(struct file * file,struct vhost_dev * dev,poll_table * wait)1741 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev,
1742 poll_table *wait)
1743 {
1744 __poll_t mask = 0;
1745
1746 poll_wait(file, &dev->wait, wait);
1747
1748 if (!list_empty(&dev->read_list))
1749 mask |= EPOLLIN | EPOLLRDNORM;
1750
1751 return mask;
1752 }
1753 EXPORT_SYMBOL(vhost_chr_poll);
1754
vhost_chr_read_iter(struct vhost_dev * dev,struct iov_iter * to,int noblock)1755 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to,
1756 int noblock)
1757 {
1758 DEFINE_WAIT(wait);
1759 struct vhost_msg_node *node;
1760 ssize_t ret = 0;
1761 unsigned size = sizeof(struct vhost_msg);
1762
1763 if (iov_iter_count(to) < size)
1764 return 0;
1765
1766 while (1) {
1767 if (!noblock)
1768 prepare_to_wait(&dev->wait, &wait,
1769 TASK_INTERRUPTIBLE);
1770
1771 node = vhost_dequeue_msg(dev, &dev->read_list);
1772 if (node)
1773 break;
1774 if (noblock) {
1775 ret = -EAGAIN;
1776 break;
1777 }
1778 if (signal_pending(current)) {
1779 ret = -ERESTARTSYS;
1780 break;
1781 }
1782 if (!dev->iotlb) {
1783 ret = -EBADFD;
1784 break;
1785 }
1786
1787 schedule();
1788 }
1789
1790 if (!noblock)
1791 finish_wait(&dev->wait, &wait);
1792
1793 if (node) {
1794 struct vhost_iotlb_msg *msg;
1795 void *start = &node->msg;
1796
1797 switch (node->msg.type) {
1798 case VHOST_IOTLB_MSG:
1799 size = sizeof(node->msg);
1800 msg = &node->msg.iotlb;
1801 break;
1802 case VHOST_IOTLB_MSG_V2:
1803 size = sizeof(node->msg_v2);
1804 msg = &node->msg_v2.iotlb;
1805 break;
1806 default:
1807 BUG();
1808 break;
1809 }
1810
1811 ret = copy_to_iter(start, size, to);
1812 if (ret != size || msg->type != VHOST_IOTLB_MISS) {
1813 kfree(node);
1814 return ret;
1815 }
1816 vhost_enqueue_msg(dev, &dev->pending_list, node);
1817 }
1818
1819 return ret;
1820 }
1821 EXPORT_SYMBOL_GPL(vhost_chr_read_iter);
1822
vhost_iotlb_miss(struct vhost_virtqueue * vq,u64 iova,int access)1823 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access)
1824 {
1825 struct vhost_dev *dev = vq->dev;
1826 struct vhost_msg_node *node;
1827 struct vhost_iotlb_msg *msg;
1828 bool v2 = vhost_backend_has_feature(vq, VHOST_BACKEND_F_IOTLB_MSG_V2);
1829
1830 node = vhost_new_msg(vq, v2 ? VHOST_IOTLB_MSG_V2 : VHOST_IOTLB_MSG);
1831 if (!node)
1832 return -ENOMEM;
1833
1834 if (v2) {
1835 node->msg_v2.type = VHOST_IOTLB_MSG_V2;
1836 msg = &node->msg_v2.iotlb;
1837 } else {
1838 msg = &node->msg.iotlb;
1839 }
1840
1841 msg->type = VHOST_IOTLB_MISS;
1842 msg->iova = iova;
1843 msg->perm = access;
1844
1845 vhost_enqueue_msg(dev, &dev->read_list, node);
1846
1847 return 0;
1848 }
1849
vq_access_ok(struct vhost_virtqueue * vq,unsigned int num,vring_desc_t __user * desc,vring_avail_t __user * avail,vring_used_t __user * used)1850 static bool vq_access_ok(struct vhost_virtqueue *vq, unsigned int num,
1851 vring_desc_t __user *desc,
1852 vring_avail_t __user *avail,
1853 vring_used_t __user *used)
1854
1855 {
1856 /* If an IOTLB device is present, the vring addresses are
1857 * GIOVAs. Access validation occurs at prefetch time. */
1858 if (vq->iotlb)
1859 return true;
1860
1861 return access_ok(desc, vhost_get_desc_size(vq, num)) &&
1862 access_ok(avail, vhost_get_avail_size(vq, num)) &&
1863 access_ok(used, vhost_get_used_size(vq, num));
1864 }
1865
vhost_vq_meta_update(struct vhost_virtqueue * vq,const struct vhost_iotlb_map * map,int type)1866 static void vhost_vq_meta_update(struct vhost_virtqueue *vq,
1867 const struct vhost_iotlb_map *map,
1868 int type)
1869 {
1870 int access = (type == VHOST_ADDR_USED) ?
1871 VHOST_ACCESS_WO : VHOST_ACCESS_RO;
1872
1873 if (likely(map->perm & access))
1874 vq->meta_iotlb[type] = map;
1875 }
1876
iotlb_access_ok(struct vhost_virtqueue * vq,int access,u64 addr,u64 len,int type)1877 static bool iotlb_access_ok(struct vhost_virtqueue *vq,
1878 int access, u64 addr, u64 len, int type)
1879 {
1880 const struct vhost_iotlb_map *map;
1881 struct vhost_iotlb *umem = vq->iotlb;
1882 u64 s = 0, size, orig_addr = addr, last = addr + len - 1;
1883
1884 if (vhost_vq_meta_fetch(vq, addr, len, type))
1885 return true;
1886
1887 while (len > s) {
1888 map = vhost_iotlb_itree_first(umem, addr, last);
1889 if (map == NULL || map->start > addr) {
1890 vhost_iotlb_miss(vq, addr, access);
1891 return false;
1892 } else if (!(map->perm & access)) {
1893 /* Report the possible access violation by
1894 * request another translation from userspace.
1895 */
1896 return false;
1897 }
1898
1899 size = map->size - addr + map->start;
1900
1901 if (orig_addr == addr && size >= len)
1902 vhost_vq_meta_update(vq, map, type);
1903
1904 s += size;
1905 addr += size;
1906 }
1907
1908 return true;
1909 }
1910
vq_meta_prefetch(struct vhost_virtqueue * vq)1911 int vq_meta_prefetch(struct vhost_virtqueue *vq)
1912 {
1913 unsigned int num = vq->num;
1914
1915 if (!vq->iotlb)
1916 return 1;
1917
1918 return iotlb_access_ok(vq, VHOST_MAP_RO, (u64)(uintptr_t)vq->desc,
1919 vhost_get_desc_size(vq, num), VHOST_ADDR_DESC) &&
1920 iotlb_access_ok(vq, VHOST_MAP_RO, (u64)(uintptr_t)vq->avail,
1921 vhost_get_avail_size(vq, num),
1922 VHOST_ADDR_AVAIL) &&
1923 iotlb_access_ok(vq, VHOST_MAP_WO, (u64)(uintptr_t)vq->used,
1924 vhost_get_used_size(vq, num), VHOST_ADDR_USED);
1925 }
1926 EXPORT_SYMBOL_GPL(vq_meta_prefetch);
1927
1928 /* Can we log writes? */
1929 /* Caller should have device mutex but not vq mutex */
vhost_log_access_ok(struct vhost_dev * dev)1930 bool vhost_log_access_ok(struct vhost_dev *dev)
1931 {
1932 return memory_access_ok(dev, dev->umem, 1);
1933 }
1934 EXPORT_SYMBOL_GPL(vhost_log_access_ok);
1935
vq_log_used_access_ok(struct vhost_virtqueue * vq,void __user * log_base,bool log_used,u64 log_addr)1936 static bool vq_log_used_access_ok(struct vhost_virtqueue *vq,
1937 void __user *log_base,
1938 bool log_used,
1939 u64 log_addr)
1940 {
1941 /* If an IOTLB device is present, log_addr is a GIOVA that
1942 * will never be logged by log_used(). */
1943 if (vq->iotlb)
1944 return true;
1945
1946 return !log_used || log_access_ok(log_base, log_addr,
1947 vhost_get_used_size(vq, vq->num));
1948 }
1949
1950 /* Verify access for write logging. */
1951 /* Caller should have vq mutex and device mutex */
vq_log_access_ok(struct vhost_virtqueue * vq,void __user * log_base)1952 static bool vq_log_access_ok(struct vhost_virtqueue *vq,
1953 void __user *log_base)
1954 {
1955 return vq_memory_access_ok(log_base, vq->umem,
1956 vhost_has_feature(vq, VHOST_F_LOG_ALL)) &&
1957 vq_log_used_access_ok(vq, log_base, vq->log_used, vq->log_addr);
1958 }
1959
1960 /* Can we start vq? */
1961 /* Caller should have vq mutex and device mutex */
vhost_vq_access_ok(struct vhost_virtqueue * vq)1962 bool vhost_vq_access_ok(struct vhost_virtqueue *vq)
1963 {
1964 if (!vq_log_access_ok(vq, vq->log_base))
1965 return false;
1966
1967 return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used);
1968 }
1969 EXPORT_SYMBOL_GPL(vhost_vq_access_ok);
1970
vhost_set_memory(struct vhost_dev * d,struct vhost_memory __user * m)1971 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m)
1972 {
1973 struct vhost_memory mem, *newmem;
1974 struct vhost_memory_region *region;
1975 struct vhost_iotlb *newumem, *oldumem;
1976 unsigned long size = offsetof(struct vhost_memory, regions);
1977 int i;
1978
1979 if (copy_from_user(&mem, m, size))
1980 return -EFAULT;
1981 if (mem.padding)
1982 return -EOPNOTSUPP;
1983 if (mem.nregions > max_mem_regions)
1984 return -E2BIG;
1985 newmem = kvzalloc(struct_size(newmem, regions, mem.nregions),
1986 GFP_KERNEL);
1987 if (!newmem)
1988 return -ENOMEM;
1989
1990 memcpy(newmem, &mem, size);
1991 if (copy_from_user(newmem->regions, m->regions,
1992 flex_array_size(newmem, regions, mem.nregions))) {
1993 kvfree(newmem);
1994 return -EFAULT;
1995 }
1996
1997 newumem = iotlb_alloc();
1998 if (!newumem) {
1999 kvfree(newmem);
2000 return -ENOMEM;
2001 }
2002
2003 for (region = newmem->regions;
2004 region < newmem->regions + mem.nregions;
2005 region++) {
2006 if (vhost_iotlb_add_range(newumem,
2007 region->guest_phys_addr,
2008 region->guest_phys_addr +
2009 region->memory_size - 1,
2010 region->userspace_addr,
2011 VHOST_MAP_RW))
2012 goto err;
2013 }
2014
2015 if (!memory_access_ok(d, newumem, 0))
2016 goto err;
2017
2018 oldumem = d->umem;
2019 d->umem = newumem;
2020
2021 /* All memory accesses are done under some VQ mutex. */
2022 for (i = 0; i < d->nvqs; ++i) {
2023 mutex_lock(&d->vqs[i]->mutex);
2024 d->vqs[i]->umem = newumem;
2025 mutex_unlock(&d->vqs[i]->mutex);
2026 }
2027
2028 kvfree(newmem);
2029 vhost_iotlb_free(oldumem);
2030 return 0;
2031
2032 err:
2033 vhost_iotlb_free(newumem);
2034 kvfree(newmem);
2035 return -EFAULT;
2036 }
2037
vhost_vring_set_num(struct vhost_dev * d,struct vhost_virtqueue * vq,void __user * argp)2038 static long vhost_vring_set_num(struct vhost_dev *d,
2039 struct vhost_virtqueue *vq,
2040 void __user *argp)
2041 {
2042 struct vhost_vring_state s;
2043
2044 /* Resizing ring with an active backend?
2045 * You don't want to do that. */
2046 if (vq->private_data)
2047 return -EBUSY;
2048
2049 if (copy_from_user(&s, argp, sizeof s))
2050 return -EFAULT;
2051
2052 if (!s.num || s.num > 0xffff || (s.num & (s.num - 1)))
2053 return -EINVAL;
2054 vq->num = s.num;
2055
2056 return 0;
2057 }
2058
vhost_vring_set_addr(struct vhost_dev * d,struct vhost_virtqueue * vq,void __user * argp)2059 static long vhost_vring_set_addr(struct vhost_dev *d,
2060 struct vhost_virtqueue *vq,
2061 void __user *argp)
2062 {
2063 struct vhost_vring_addr a;
2064
2065 if (copy_from_user(&a, argp, sizeof a))
2066 return -EFAULT;
2067 if (a.flags & ~(0x1 << VHOST_VRING_F_LOG))
2068 return -EOPNOTSUPP;
2069
2070 /* For 32bit, verify that the top 32bits of the user
2071 data are set to zero. */
2072 if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr ||
2073 (u64)(unsigned long)a.used_user_addr != a.used_user_addr ||
2074 (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr)
2075 return -EFAULT;
2076
2077 /* Make sure it's safe to cast pointers to vring types. */
2078 BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE);
2079 BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE);
2080 if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) ||
2081 (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) ||
2082 (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1)))
2083 return -EINVAL;
2084
2085 /* We only verify access here if backend is configured.
2086 * If it is not, we don't as size might not have been setup.
2087 * We will verify when backend is configured. */
2088 if (vq->private_data) {
2089 if (!vq_access_ok(vq, vq->num,
2090 (void __user *)(unsigned long)a.desc_user_addr,
2091 (void __user *)(unsigned long)a.avail_user_addr,
2092 (void __user *)(unsigned long)a.used_user_addr))
2093 return -EINVAL;
2094
2095 /* Also validate log access for used ring if enabled. */
2096 if (!vq_log_used_access_ok(vq, vq->log_base,
2097 a.flags & (0x1 << VHOST_VRING_F_LOG),
2098 a.log_guest_addr))
2099 return -EINVAL;
2100 }
2101
2102 vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG));
2103 vq->desc = (void __user *)(unsigned long)a.desc_user_addr;
2104 vq->avail = (void __user *)(unsigned long)a.avail_user_addr;
2105 vq->log_addr = a.log_guest_addr;
2106 vq->used = (void __user *)(unsigned long)a.used_user_addr;
2107
2108 return 0;
2109 }
2110
vhost_vring_set_num_addr(struct vhost_dev * d,struct vhost_virtqueue * vq,unsigned int ioctl,void __user * argp)2111 static long vhost_vring_set_num_addr(struct vhost_dev *d,
2112 struct vhost_virtqueue *vq,
2113 unsigned int ioctl,
2114 void __user *argp)
2115 {
2116 long r;
2117
2118 mutex_lock(&vq->mutex);
2119
2120 switch (ioctl) {
2121 case VHOST_SET_VRING_NUM:
2122 r = vhost_vring_set_num(d, vq, argp);
2123 break;
2124 case VHOST_SET_VRING_ADDR:
2125 r = vhost_vring_set_addr(d, vq, argp);
2126 break;
2127 default:
2128 BUG();
2129 }
2130
2131 mutex_unlock(&vq->mutex);
2132
2133 return r;
2134 }
vhost_vring_ioctl(struct vhost_dev * d,unsigned int ioctl,void __user * argp)2135 long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp)
2136 {
2137 struct file *eventfp, *filep = NULL;
2138 bool pollstart = false, pollstop = false;
2139 struct eventfd_ctx *ctx = NULL;
2140 struct vhost_virtqueue *vq;
2141 struct vhost_vring_state s;
2142 struct vhost_vring_file f;
2143 u32 idx;
2144 long r;
2145
2146 r = vhost_get_vq_from_user(d, argp, &vq, &idx);
2147 if (r < 0)
2148 return r;
2149
2150 if (ioctl == VHOST_SET_VRING_NUM ||
2151 ioctl == VHOST_SET_VRING_ADDR) {
2152 return vhost_vring_set_num_addr(d, vq, ioctl, argp);
2153 }
2154
2155 mutex_lock(&vq->mutex);
2156
2157 switch (ioctl) {
2158 case VHOST_SET_VRING_BASE:
2159 /* Moving base with an active backend?
2160 * You don't want to do that. */
2161 if (vq->private_data) {
2162 r = -EBUSY;
2163 break;
2164 }
2165 if (copy_from_user(&s, argp, sizeof s)) {
2166 r = -EFAULT;
2167 break;
2168 }
2169 if (vhost_has_feature(vq, VIRTIO_F_RING_PACKED)) {
2170 vq->next_avail_head = vq->last_avail_idx =
2171 s.num & 0xffff;
2172 vq->last_used_idx = (s.num >> 16) & 0xffff;
2173 } else {
2174 if (s.num > 0xffff) {
2175 r = -EINVAL;
2176 break;
2177 }
2178 vq->next_avail_head = vq->last_avail_idx = s.num;
2179 }
2180 /* Forget the cached index value. */
2181 vq->avail_idx = vq->last_avail_idx;
2182 break;
2183 case VHOST_GET_VRING_BASE:
2184 s.index = idx;
2185 if (vhost_has_feature(vq, VIRTIO_F_RING_PACKED))
2186 s.num = (u32)vq->last_avail_idx | ((u32)vq->last_used_idx << 16);
2187 else
2188 s.num = vq->last_avail_idx;
2189 if (copy_to_user(argp, &s, sizeof s))
2190 r = -EFAULT;
2191 break;
2192 case VHOST_SET_VRING_KICK:
2193 if (copy_from_user(&f, argp, sizeof f)) {
2194 r = -EFAULT;
2195 break;
2196 }
2197 eventfp = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_fget(f.fd);
2198 if (IS_ERR(eventfp)) {
2199 r = PTR_ERR(eventfp);
2200 break;
2201 }
2202 if (eventfp != vq->kick) {
2203 pollstop = (filep = vq->kick) != NULL;
2204 pollstart = (vq->kick = eventfp) != NULL;
2205 } else
2206 filep = eventfp;
2207 break;
2208 case VHOST_SET_VRING_CALL:
2209 if (copy_from_user(&f, argp, sizeof f)) {
2210 r = -EFAULT;
2211 break;
2212 }
2213 ctx = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(f.fd);
2214 if (IS_ERR(ctx)) {
2215 r = PTR_ERR(ctx);
2216 break;
2217 }
2218
2219 swap(ctx, vq->call_ctx.ctx);
2220 break;
2221 case VHOST_SET_VRING_ERR:
2222 if (copy_from_user(&f, argp, sizeof f)) {
2223 r = -EFAULT;
2224 break;
2225 }
2226 ctx = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(f.fd);
2227 if (IS_ERR(ctx)) {
2228 r = PTR_ERR(ctx);
2229 break;
2230 }
2231 swap(ctx, vq->error_ctx);
2232 break;
2233 case VHOST_SET_VRING_ENDIAN:
2234 r = vhost_set_vring_endian(vq, argp);
2235 break;
2236 case VHOST_GET_VRING_ENDIAN:
2237 r = vhost_get_vring_endian(vq, idx, argp);
2238 break;
2239 case VHOST_SET_VRING_BUSYLOOP_TIMEOUT:
2240 if (copy_from_user(&s, argp, sizeof(s))) {
2241 r = -EFAULT;
2242 break;
2243 }
2244 vq->busyloop_timeout = s.num;
2245 break;
2246 case VHOST_GET_VRING_BUSYLOOP_TIMEOUT:
2247 s.index = idx;
2248 s.num = vq->busyloop_timeout;
2249 if (copy_to_user(argp, &s, sizeof(s)))
2250 r = -EFAULT;
2251 break;
2252 default:
2253 r = -ENOIOCTLCMD;
2254 }
2255
2256 if (pollstop && vq->handle_kick)
2257 vhost_poll_stop(&vq->poll);
2258
2259 if (!IS_ERR_OR_NULL(ctx))
2260 eventfd_ctx_put(ctx);
2261 if (filep)
2262 fput(filep);
2263
2264 if (pollstart && vq->handle_kick)
2265 r = vhost_poll_start(&vq->poll, vq->kick);
2266
2267 mutex_unlock(&vq->mutex);
2268
2269 if (pollstop && vq->handle_kick)
2270 vhost_dev_flush(vq->poll.dev);
2271 return r;
2272 }
2273 EXPORT_SYMBOL_GPL(vhost_vring_ioctl);
2274
vhost_init_device_iotlb(struct vhost_dev * d)2275 int vhost_init_device_iotlb(struct vhost_dev *d)
2276 {
2277 struct vhost_iotlb *niotlb, *oiotlb;
2278 int i;
2279
2280 niotlb = iotlb_alloc();
2281 if (!niotlb)
2282 return -ENOMEM;
2283
2284 oiotlb = d->iotlb;
2285 d->iotlb = niotlb;
2286
2287 for (i = 0; i < d->nvqs; ++i) {
2288 struct vhost_virtqueue *vq = d->vqs[i];
2289
2290 mutex_lock(&vq->mutex);
2291 vq->iotlb = niotlb;
2292 __vhost_vq_meta_reset(vq);
2293 mutex_unlock(&vq->mutex);
2294 }
2295
2296 vhost_iotlb_free(oiotlb);
2297
2298 return 0;
2299 }
2300 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb);
2301
2302 /* Caller must have device mutex */
vhost_dev_ioctl(struct vhost_dev * d,unsigned int ioctl,void __user * argp)2303 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp)
2304 {
2305 struct eventfd_ctx *ctx;
2306 u64 p;
2307 long r;
2308 int i, fd;
2309
2310 /* If you are not the owner, you can become one */
2311 if (ioctl == VHOST_SET_OWNER) {
2312 r = vhost_dev_set_owner(d);
2313 goto done;
2314 }
2315
2316 #ifdef CONFIG_VHOST_ENABLE_FORK_OWNER_CONTROL
2317 if (ioctl == VHOST_SET_FORK_FROM_OWNER) {
2318 /* Only allow modification before owner is set */
2319 if (vhost_dev_has_owner(d)) {
2320 r = -EBUSY;
2321 goto done;
2322 }
2323 u8 fork_owner_val;
2324
2325 if (get_user(fork_owner_val, (u8 __user *)argp)) {
2326 r = -EFAULT;
2327 goto done;
2328 }
2329 if (fork_owner_val != VHOST_FORK_OWNER_TASK &&
2330 fork_owner_val != VHOST_FORK_OWNER_KTHREAD) {
2331 r = -EINVAL;
2332 goto done;
2333 }
2334 d->fork_owner = !!fork_owner_val;
2335 r = 0;
2336 goto done;
2337 }
2338 if (ioctl == VHOST_GET_FORK_FROM_OWNER) {
2339 u8 fork_owner_val = d->fork_owner;
2340
2341 if (fork_owner_val != VHOST_FORK_OWNER_TASK &&
2342 fork_owner_val != VHOST_FORK_OWNER_KTHREAD) {
2343 r = -EINVAL;
2344 goto done;
2345 }
2346 if (put_user(fork_owner_val, (u8 __user *)argp)) {
2347 r = -EFAULT;
2348 goto done;
2349 }
2350 r = 0;
2351 goto done;
2352 }
2353 #endif
2354
2355 /* You must be the owner to do anything else */
2356 r = vhost_dev_check_owner(d);
2357 if (r)
2358 goto done;
2359
2360 switch (ioctl) {
2361 case VHOST_SET_MEM_TABLE:
2362 r = vhost_set_memory(d, argp);
2363 break;
2364 case VHOST_SET_LOG_BASE:
2365 if (copy_from_user(&p, argp, sizeof p)) {
2366 r = -EFAULT;
2367 break;
2368 }
2369 if ((u64)(unsigned long)p != p) {
2370 r = -EFAULT;
2371 break;
2372 }
2373 for (i = 0; i < d->nvqs; ++i) {
2374 struct vhost_virtqueue *vq;
2375 void __user *base = (void __user *)(unsigned long)p;
2376 vq = d->vqs[i];
2377 mutex_lock(&vq->mutex);
2378 /* If ring is inactive, will check when it's enabled. */
2379 if (vq->private_data && !vq_log_access_ok(vq, base))
2380 r = -EFAULT;
2381 else
2382 vq->log_base = base;
2383 mutex_unlock(&vq->mutex);
2384 }
2385 break;
2386 case VHOST_SET_LOG_FD:
2387 r = get_user(fd, (int __user *)argp);
2388 if (r < 0)
2389 break;
2390 ctx = fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(fd);
2391 if (IS_ERR(ctx)) {
2392 r = PTR_ERR(ctx);
2393 break;
2394 }
2395 swap(ctx, d->log_ctx);
2396 for (i = 0; i < d->nvqs; ++i) {
2397 mutex_lock(&d->vqs[i]->mutex);
2398 d->vqs[i]->log_ctx = d->log_ctx;
2399 mutex_unlock(&d->vqs[i]->mutex);
2400 }
2401 if (ctx)
2402 eventfd_ctx_put(ctx);
2403 break;
2404 default:
2405 r = -ENOIOCTLCMD;
2406 break;
2407 }
2408 done:
2409 return r;
2410 }
2411 EXPORT_SYMBOL_GPL(vhost_dev_ioctl);
2412
2413 /* TODO: This is really inefficient. We need something like get_user()
2414 * (instruction directly accesses the data, with an exception table entry
2415 * returning -EFAULT). See Documentation/arch/x86/exception-tables.rst.
2416 */
set_bit_to_user(int nr,void __user * addr)2417 static int set_bit_to_user(int nr, void __user *addr)
2418 {
2419 unsigned long log = (unsigned long)addr;
2420 struct page *page;
2421 void *base;
2422 int bit = nr + (log % PAGE_SIZE) * 8;
2423 int r;
2424
2425 r = pin_user_pages_fast(log, 1, FOLL_WRITE, &page);
2426 if (r < 0)
2427 return r;
2428 BUG_ON(r != 1);
2429 base = kmap_atomic(page);
2430 set_bit(bit, base);
2431 kunmap_atomic(base);
2432 unpin_user_pages_dirty_lock(&page, 1, true);
2433 return 0;
2434 }
2435
log_write(void __user * log_base,u64 write_address,u64 write_length)2436 static int log_write(void __user *log_base,
2437 u64 write_address, u64 write_length)
2438 {
2439 u64 write_page = write_address / VHOST_PAGE_SIZE;
2440 int r;
2441
2442 if (!write_length)
2443 return 0;
2444 write_length += write_address % VHOST_PAGE_SIZE;
2445 for (;;) {
2446 u64 base = (u64)(unsigned long)log_base;
2447 u64 log = base + write_page / 8;
2448 int bit = write_page % 8;
2449 if ((u64)(unsigned long)log != log)
2450 return -EFAULT;
2451 r = set_bit_to_user(bit, (void __user *)(unsigned long)log);
2452 if (r < 0)
2453 return r;
2454 if (write_length <= VHOST_PAGE_SIZE)
2455 break;
2456 write_length -= VHOST_PAGE_SIZE;
2457 write_page += 1;
2458 }
2459 return r;
2460 }
2461
log_write_hva(struct vhost_virtqueue * vq,u64 hva,u64 len)2462 static int log_write_hva(struct vhost_virtqueue *vq, u64 hva, u64 len)
2463 {
2464 struct vhost_iotlb *umem = vq->umem;
2465 struct vhost_iotlb_map *u;
2466 u64 start, end, l, min;
2467 int r;
2468 bool hit = false;
2469
2470 while (len) {
2471 min = len;
2472 /* More than one GPAs can be mapped into a single HVA. So
2473 * iterate all possible umems here to be safe.
2474 */
2475 list_for_each_entry(u, &umem->list, link) {
2476 if (u->addr > hva - 1 + len ||
2477 u->addr - 1 + u->size < hva)
2478 continue;
2479 start = max(u->addr, hva);
2480 end = min(u->addr - 1 + u->size, hva - 1 + len);
2481 l = end - start + 1;
2482 r = log_write(vq->log_base,
2483 u->start + start - u->addr,
2484 l);
2485 if (r < 0)
2486 return r;
2487 hit = true;
2488 min = min(l, min);
2489 }
2490
2491 if (!hit)
2492 return -EFAULT;
2493
2494 len -= min;
2495 hva += min;
2496 }
2497
2498 return 0;
2499 }
2500
log_used(struct vhost_virtqueue * vq,u64 used_offset,u64 len)2501 static int log_used(struct vhost_virtqueue *vq, u64 used_offset, u64 len)
2502 {
2503 struct iovec *iov = vq->log_iov;
2504 int i, ret;
2505
2506 if (!vq->iotlb)
2507 return log_write(vq->log_base, vq->log_addr + used_offset, len);
2508
2509 ret = translate_desc(vq, (uintptr_t)vq->used + used_offset,
2510 len, iov, 64, VHOST_ACCESS_WO);
2511 if (ret < 0)
2512 return ret;
2513
2514 for (i = 0; i < ret; i++) {
2515 ret = log_write_hva(vq, (uintptr_t)iov[i].iov_base,
2516 iov[i].iov_len);
2517 if (ret)
2518 return ret;
2519 }
2520
2521 return 0;
2522 }
2523
2524 /*
2525 * vhost_log_write() - Log in dirty page bitmap
2526 * @vq: vhost virtqueue.
2527 * @log: Array of dirty memory in GPA.
2528 * @log_num: Size of vhost_log arrary.
2529 * @len: The total length of memory buffer to log in the dirty bitmap.
2530 * Some drivers may only partially use pages shared via the last
2531 * vring descriptor (i.e. vhost-net RX buffer).
2532 * Use (len == U64_MAX) to indicate the driver would log all
2533 * pages of vring descriptors.
2534 * @iov: Array of dirty memory in HVA.
2535 * @count: Size of iovec array.
2536 */
vhost_log_write(struct vhost_virtqueue * vq,struct vhost_log * log,unsigned int log_num,u64 len,struct iovec * iov,int count)2537 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log,
2538 unsigned int log_num, u64 len, struct iovec *iov, int count)
2539 {
2540 int i, r;
2541
2542 /* Make sure data written is seen before log. */
2543 smp_wmb();
2544
2545 if (vq->iotlb) {
2546 for (i = 0; i < count; i++) {
2547 r = log_write_hva(vq, (uintptr_t)iov[i].iov_base,
2548 iov[i].iov_len);
2549 if (r < 0)
2550 return r;
2551 }
2552 return 0;
2553 }
2554
2555 for (i = 0; i < log_num; ++i) {
2556 u64 l = min(log[i].len, len);
2557 r = log_write(vq->log_base, log[i].addr, l);
2558 if (r < 0)
2559 return r;
2560
2561 if (len != U64_MAX)
2562 len -= l;
2563 }
2564
2565 if (vq->log_ctx)
2566 eventfd_signal(vq->log_ctx);
2567
2568 return 0;
2569 }
2570 EXPORT_SYMBOL_GPL(vhost_log_write);
2571
vhost_update_used_flags(struct vhost_virtqueue * vq)2572 static int vhost_update_used_flags(struct vhost_virtqueue *vq)
2573 {
2574 void __user *used;
2575 if (vhost_put_used_flags(vq))
2576 return -EFAULT;
2577 if (unlikely(vq->log_used)) {
2578 /* Make sure the flag is seen before log. */
2579 smp_wmb();
2580 /* Log used flag write. */
2581 used = &vq->used->flags;
2582 log_used(vq, (used - (void __user *)vq->used),
2583 sizeof vq->used->flags);
2584 if (vq->log_ctx)
2585 eventfd_signal(vq->log_ctx);
2586 }
2587 return 0;
2588 }
2589
vhost_update_avail_event(struct vhost_virtqueue * vq)2590 static int vhost_update_avail_event(struct vhost_virtqueue *vq)
2591 {
2592 if (vhost_put_avail_event(vq))
2593 return -EFAULT;
2594 if (unlikely(vq->log_used)) {
2595 void __user *used;
2596 /* Make sure the event is seen before log. */
2597 smp_wmb();
2598 /* Log avail event write */
2599 used = vhost_avail_event(vq);
2600 log_used(vq, (used - (void __user *)vq->used),
2601 sizeof *vhost_avail_event(vq));
2602 if (vq->log_ctx)
2603 eventfd_signal(vq->log_ctx);
2604 }
2605 return 0;
2606 }
2607
vhost_vq_init_access(struct vhost_virtqueue * vq)2608 int vhost_vq_init_access(struct vhost_virtqueue *vq)
2609 {
2610 __virtio16 last_used_idx;
2611 int r;
2612 bool is_le = vq->is_le;
2613
2614 if (!vq->private_data)
2615 return 0;
2616
2617 vhost_init_is_le(vq);
2618
2619 r = vhost_update_used_flags(vq);
2620 if (r)
2621 goto err;
2622 vq->signalled_used_valid = false;
2623 if (!vq->iotlb &&
2624 !access_ok(&vq->used->idx, sizeof vq->used->idx)) {
2625 r = -EFAULT;
2626 goto err;
2627 }
2628 r = vhost_get_used_idx(vq, &last_used_idx);
2629 if (r) {
2630 vq_err(vq, "Can't access used idx at %p\n",
2631 &vq->used->idx);
2632 goto err;
2633 }
2634 vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx);
2635 return 0;
2636
2637 err:
2638 vq->is_le = is_le;
2639 return r;
2640 }
2641 EXPORT_SYMBOL_GPL(vhost_vq_init_access);
2642
translate_desc(struct vhost_virtqueue * vq,u64 addr,u32 len,struct iovec iov[],int iov_size,int access)2643 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len,
2644 struct iovec iov[], int iov_size, int access)
2645 {
2646 const struct vhost_iotlb_map *map;
2647 struct vhost_dev *dev = vq->dev;
2648 struct vhost_iotlb *umem = dev->iotlb ? dev->iotlb : dev->umem;
2649 struct iovec *_iov;
2650 u64 s = 0, last = addr + len - 1;
2651 int ret = 0;
2652
2653 while ((u64)len > s) {
2654 u64 size;
2655 if (unlikely(ret >= iov_size)) {
2656 ret = -ENOBUFS;
2657 break;
2658 }
2659
2660 map = vhost_iotlb_itree_first(umem, addr, last);
2661 if (map == NULL || map->start > addr) {
2662 if (umem != dev->iotlb) {
2663 ret = -EFAULT;
2664 break;
2665 }
2666 ret = -EAGAIN;
2667 break;
2668 } else if (!(map->perm & access)) {
2669 ret = -EPERM;
2670 break;
2671 }
2672
2673 _iov = iov + ret;
2674 size = map->size - addr + map->start;
2675 _iov->iov_len = min((u64)len - s, size);
2676 _iov->iov_base = (void __user *)(unsigned long)
2677 (map->addr + addr - map->start);
2678 s += size;
2679 addr += size;
2680 ++ret;
2681 }
2682
2683 if (ret == -EAGAIN)
2684 vhost_iotlb_miss(vq, addr, access);
2685 return ret;
2686 }
2687
2688 /* Each buffer in the virtqueues is actually a chain of descriptors. This
2689 * function returns the next descriptor in the chain,
2690 * or -1U if we're at the end. */
next_desc(struct vhost_virtqueue * vq,struct vring_desc * desc)2691 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc)
2692 {
2693 unsigned int next;
2694
2695 /* If this descriptor says it doesn't chain, we're done. */
2696 if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT)))
2697 return -1U;
2698
2699 /* Check they're not leading us off end of descriptors. */
2700 next = vhost16_to_cpu(vq, READ_ONCE(desc->next));
2701 return next;
2702 }
2703
get_indirect(struct vhost_virtqueue * vq,struct iovec iov[],unsigned int iov_size,unsigned int * out_num,unsigned int * in_num,struct vhost_log * log,unsigned int * log_num,struct vring_desc * indirect)2704 static int get_indirect(struct vhost_virtqueue *vq,
2705 struct iovec iov[], unsigned int iov_size,
2706 unsigned int *out_num, unsigned int *in_num,
2707 struct vhost_log *log, unsigned int *log_num,
2708 struct vring_desc *indirect)
2709 {
2710 struct vring_desc desc;
2711 unsigned int i = 0, count, found = 0;
2712 u32 len = vhost32_to_cpu(vq, indirect->len);
2713 struct iov_iter from;
2714 int ret, access;
2715
2716 /* Sanity check */
2717 if (unlikely(len % sizeof desc)) {
2718 vq_err(vq, "Invalid length in indirect descriptor: "
2719 "len 0x%llx not multiple of 0x%zx\n",
2720 (unsigned long long)len,
2721 sizeof desc);
2722 return -EINVAL;
2723 }
2724
2725 ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect,
2726 UIO_MAXIOV, VHOST_ACCESS_RO);
2727 if (unlikely(ret < 0)) {
2728 if (ret != -EAGAIN)
2729 vq_err(vq, "Translation failure %d in indirect.\n", ret);
2730 return ret;
2731 }
2732 iov_iter_init(&from, ITER_SOURCE, vq->indirect, ret, len);
2733 count = len / sizeof desc;
2734 /* Buffers are chained via a 16 bit next field, so
2735 * we can have at most 2^16 of these. */
2736 if (unlikely(count > USHRT_MAX + 1)) {
2737 vq_err(vq, "Indirect buffer length too big: %d\n",
2738 indirect->len);
2739 return -E2BIG;
2740 }
2741
2742 do {
2743 unsigned iov_count = *in_num + *out_num;
2744 if (unlikely(++found > count)) {
2745 vq_err(vq, "Loop detected: last one at %u "
2746 "indirect size %u\n",
2747 i, count);
2748 return -EINVAL;
2749 }
2750 if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) {
2751 vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n",
2752 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc);
2753 return -EINVAL;
2754 }
2755 if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) {
2756 vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n",
2757 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc);
2758 return -EINVAL;
2759 }
2760
2761 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE))
2762 access = VHOST_ACCESS_WO;
2763 else
2764 access = VHOST_ACCESS_RO;
2765
2766 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr),
2767 vhost32_to_cpu(vq, desc.len), iov + iov_count,
2768 iov_size - iov_count, access);
2769 if (unlikely(ret < 0)) {
2770 if (ret != -EAGAIN)
2771 vq_err(vq, "Translation failure %d indirect idx %d\n",
2772 ret, i);
2773 return ret;
2774 }
2775 /* If this is an input descriptor, increment that count. */
2776 if (access == VHOST_ACCESS_WO) {
2777 *in_num += ret;
2778 if (unlikely(log && ret)) {
2779 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr);
2780 log[*log_num].len = vhost32_to_cpu(vq, desc.len);
2781 ++*log_num;
2782 }
2783 } else {
2784 /* If it's an output descriptor, they're all supposed
2785 * to come before any input descriptors. */
2786 if (unlikely(*in_num)) {
2787 vq_err(vq, "Indirect descriptor "
2788 "has out after in: idx %d\n", i);
2789 return -EINVAL;
2790 }
2791 *out_num += ret;
2792 }
2793 } while ((i = next_desc(vq, &desc)) != -1);
2794 return 0;
2795 }
2796
2797 /**
2798 * vhost_get_vq_desc_n - Fetch the next available descriptor chain and build iovecs
2799 * @vq: target virtqueue
2800 * @iov: array that receives the scatter/gather segments
2801 * @iov_size: capacity of @iov in elements
2802 * @out_num: the number of output segments
2803 * @in_num: the number of input segments
2804 * @log: optional array to record addr/len for each writable segment; NULL if unused
2805 * @log_num: optional output; number of entries written to @log when provided
2806 * @ndesc: optional output; number of descriptors consumed from the available ring
2807 * (useful for rollback via vhost_discard_vq_desc)
2808 *
2809 * Extracts one available descriptor chain from @vq and translates guest addresses
2810 * into host iovecs.
2811 *
2812 * On success, advances @vq->last_avail_idx by 1 and @vq->next_avail_head by the
2813 * number of descriptors consumed (also stored via @ndesc when non-NULL).
2814 *
2815 * Return:
2816 * - head index in [0, @vq->num) on success;
2817 * - @vq->num if no descriptor is currently available;
2818 * - negative errno on failure
2819 */
vhost_get_vq_desc_n(struct vhost_virtqueue * vq,struct iovec iov[],unsigned int iov_size,unsigned int * out_num,unsigned int * in_num,struct vhost_log * log,unsigned int * log_num,unsigned int * ndesc)2820 int vhost_get_vq_desc_n(struct vhost_virtqueue *vq,
2821 struct iovec iov[], unsigned int iov_size,
2822 unsigned int *out_num, unsigned int *in_num,
2823 struct vhost_log *log, unsigned int *log_num,
2824 unsigned int *ndesc)
2825 {
2826 bool in_order = vhost_has_feature(vq, VIRTIO_F_IN_ORDER);
2827 struct vring_desc desc;
2828 unsigned int i, head, found = 0;
2829 u16 last_avail_idx = vq->last_avail_idx;
2830 __virtio16 ring_head;
2831 int ret, access, c = 0;
2832
2833 if (vq->avail_idx == vq->last_avail_idx) {
2834 ret = vhost_get_avail_idx(vq);
2835 if (unlikely(ret < 0))
2836 return ret;
2837
2838 if (!ret)
2839 return vq->num;
2840 }
2841
2842 if (in_order)
2843 head = vq->next_avail_head & (vq->num - 1);
2844 else {
2845 /* Grab the next descriptor number they're
2846 * advertising, and increment the index we've seen. */
2847 if (unlikely(vhost_get_avail_head(vq, &ring_head,
2848 last_avail_idx))) {
2849 vq_err(vq, "Failed to read head: idx %d address %p\n",
2850 last_avail_idx,
2851 &vq->avail->ring[last_avail_idx % vq->num]);
2852 return -EFAULT;
2853 }
2854 head = vhost16_to_cpu(vq, ring_head);
2855 }
2856
2857 /* If their number is silly, that's an error. */
2858 if (unlikely(head >= vq->num)) {
2859 vq_err(vq, "Guest says index %u > %u is available",
2860 head, vq->num);
2861 return -EINVAL;
2862 }
2863
2864 /* When we start there are none of either input nor output. */
2865 *out_num = *in_num = 0;
2866 if (unlikely(log))
2867 *log_num = 0;
2868
2869 i = head;
2870 do {
2871 unsigned iov_count = *in_num + *out_num;
2872 if (unlikely(i >= vq->num)) {
2873 vq_err(vq, "Desc index is %u > %u, head = %u",
2874 i, vq->num, head);
2875 return -EINVAL;
2876 }
2877 if (unlikely(++found > vq->num)) {
2878 vq_err(vq, "Loop detected: last one at %u "
2879 "vq size %u head %u\n",
2880 i, vq->num, head);
2881 return -EINVAL;
2882 }
2883 ret = vhost_get_desc(vq, &desc, i);
2884 if (unlikely(ret)) {
2885 vq_err(vq, "Failed to get descriptor: idx %d addr %p\n",
2886 i, vq->desc + i);
2887 return -EFAULT;
2888 }
2889 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) {
2890 ret = get_indirect(vq, iov, iov_size,
2891 out_num, in_num,
2892 log, log_num, &desc);
2893 if (unlikely(ret < 0)) {
2894 if (ret != -EAGAIN)
2895 vq_err(vq, "Failure detected "
2896 "in indirect descriptor at idx %d\n", i);
2897 return ret;
2898 }
2899 ++c;
2900 continue;
2901 }
2902
2903 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE))
2904 access = VHOST_ACCESS_WO;
2905 else
2906 access = VHOST_ACCESS_RO;
2907 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr),
2908 vhost32_to_cpu(vq, desc.len), iov + iov_count,
2909 iov_size - iov_count, access);
2910 if (unlikely(ret < 0)) {
2911 if (ret != -EAGAIN)
2912 vq_err(vq, "Translation failure %d descriptor idx %d\n",
2913 ret, i);
2914 return ret;
2915 }
2916 if (access == VHOST_ACCESS_WO) {
2917 /* If this is an input descriptor,
2918 * increment that count. */
2919 *in_num += ret;
2920 if (unlikely(log && ret)) {
2921 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr);
2922 log[*log_num].len = vhost32_to_cpu(vq, desc.len);
2923 ++*log_num;
2924 }
2925 } else {
2926 /* If it's an output descriptor, they're all supposed
2927 * to come before any input descriptors. */
2928 if (unlikely(*in_num)) {
2929 vq_err(vq, "Descriptor has out after in: "
2930 "idx %d\n", i);
2931 return -EINVAL;
2932 }
2933 *out_num += ret;
2934 }
2935 ++c;
2936 } while ((i = next_desc(vq, &desc)) != -1);
2937
2938 /* On success, increment avail index. */
2939 vq->last_avail_idx++;
2940 vq->next_avail_head += c;
2941
2942 if (ndesc)
2943 *ndesc = c;
2944
2945 /* Assume notifications from guest are disabled at this point,
2946 * if they aren't we would need to update avail_event index. */
2947 BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY));
2948 return head;
2949 }
2950 EXPORT_SYMBOL_GPL(vhost_get_vq_desc_n);
2951
2952 /* This looks in the virtqueue and for the first available buffer, and converts
2953 * it to an iovec for convenient access. Since descriptors consist of some
2954 * number of output then some number of input descriptors, it's actually two
2955 * iovecs, but we pack them into one and note how many of each there were.
2956 *
2957 * This function returns the descriptor number found, or vq->num (which is
2958 * never a valid descriptor number) if none was found. A negative code is
2959 * returned on error.
2960 */
vhost_get_vq_desc(struct vhost_virtqueue * vq,struct iovec iov[],unsigned int iov_size,unsigned int * out_num,unsigned int * in_num,struct vhost_log * log,unsigned int * log_num)2961 int vhost_get_vq_desc(struct vhost_virtqueue *vq,
2962 struct iovec iov[], unsigned int iov_size,
2963 unsigned int *out_num, unsigned int *in_num,
2964 struct vhost_log *log, unsigned int *log_num)
2965 {
2966 return vhost_get_vq_desc_n(vq, iov, iov_size, out_num, in_num,
2967 log, log_num, NULL);
2968 }
2969 EXPORT_SYMBOL_GPL(vhost_get_vq_desc);
2970
2971 /**
2972 * vhost_discard_vq_desc - Reverse the effect of vhost_get_vq_desc_n()
2973 * @vq: target virtqueue
2974 * @nbufs: number of buffers to roll back
2975 * @ndesc: number of descriptors to roll back
2976 *
2977 * Rewinds the internal consumer cursors after a failed attempt to use buffers
2978 * returned by vhost_get_vq_desc_n().
2979 */
vhost_discard_vq_desc(struct vhost_virtqueue * vq,int nbufs,unsigned int ndesc)2980 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int nbufs,
2981 unsigned int ndesc)
2982 {
2983 vq->next_avail_head -= ndesc;
2984 vq->last_avail_idx -= nbufs;
2985 }
2986 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc);
2987
2988 /* After we've used one of their buffers, we tell them about it. We'll then
2989 * want to notify the guest, using eventfd. */
vhost_add_used(struct vhost_virtqueue * vq,unsigned int head,int len)2990 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len)
2991 {
2992 struct vring_used_elem heads = {
2993 cpu_to_vhost32(vq, head),
2994 cpu_to_vhost32(vq, len)
2995 };
2996 u16 nheads = 1;
2997
2998 return vhost_add_used_n(vq, &heads, &nheads, 1);
2999 }
3000 EXPORT_SYMBOL_GPL(vhost_add_used);
3001
__vhost_add_used_n(struct vhost_virtqueue * vq,struct vring_used_elem * heads,unsigned count)3002 static int __vhost_add_used_n(struct vhost_virtqueue *vq,
3003 struct vring_used_elem *heads,
3004 unsigned count)
3005 {
3006 vring_used_elem_t __user *used;
3007 u16 old, new;
3008 int start;
3009
3010 start = vq->last_used_idx & (vq->num - 1);
3011 used = vq->used->ring + start;
3012 if (vhost_put_used(vq, heads, start, count)) {
3013 vq_err(vq, "Failed to write used");
3014 return -EFAULT;
3015 }
3016 if (unlikely(vq->log_used)) {
3017 /* Make sure data is seen before log. */
3018 smp_wmb();
3019 /* Log used ring entry write. */
3020 log_used(vq, ((void __user *)used - (void __user *)vq->used),
3021 count * sizeof *used);
3022 }
3023 old = vq->last_used_idx;
3024 new = (vq->last_used_idx += count);
3025 /* If the driver never bothers to signal in a very long while,
3026 * used index might wrap around. If that happens, invalidate
3027 * signalled_used index we stored. TODO: make sure driver
3028 * signals at least once in 2^16 and remove this. */
3029 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old)))
3030 vq->signalled_used_valid = false;
3031 return 0;
3032 }
3033
vhost_add_used_n_ooo(struct vhost_virtqueue * vq,struct vring_used_elem * heads,unsigned count)3034 static int vhost_add_used_n_ooo(struct vhost_virtqueue *vq,
3035 struct vring_used_elem *heads,
3036 unsigned count)
3037 {
3038 int start, n, r;
3039
3040 start = vq->last_used_idx & (vq->num - 1);
3041 n = vq->num - start;
3042 if (n < count) {
3043 r = __vhost_add_used_n(vq, heads, n);
3044 if (r < 0)
3045 return r;
3046 heads += n;
3047 count -= n;
3048 }
3049 return __vhost_add_used_n(vq, heads, count);
3050 }
3051
vhost_add_used_n_in_order(struct vhost_virtqueue * vq,struct vring_used_elem * heads,const u16 * nheads,unsigned count)3052 static int vhost_add_used_n_in_order(struct vhost_virtqueue *vq,
3053 struct vring_used_elem *heads,
3054 const u16 *nheads,
3055 unsigned count)
3056 {
3057 vring_used_elem_t __user *used;
3058 u16 old, new = vq->last_used_idx;
3059 int start, i;
3060
3061 if (!nheads)
3062 return -EINVAL;
3063
3064 start = vq->last_used_idx & (vq->num - 1);
3065 used = vq->used->ring + start;
3066
3067 for (i = 0; i < count; i++) {
3068 if (vhost_put_used(vq, &heads[i], start, 1)) {
3069 vq_err(vq, "Failed to write used");
3070 return -EFAULT;
3071 }
3072 start += nheads[i];
3073 new += nheads[i];
3074 if (start >= vq->num)
3075 start -= vq->num;
3076 }
3077
3078 if (unlikely(vq->log_used)) {
3079 /* Make sure data is seen before log. */
3080 smp_wmb();
3081 /* Log used ring entry write. */
3082 log_used(vq, ((void __user *)used - (void __user *)vq->used),
3083 (vq->num - start) * sizeof *used);
3084 if (start + count > vq->num)
3085 log_used(vq, 0,
3086 (start + count - vq->num) * sizeof *used);
3087 }
3088
3089 old = vq->last_used_idx;
3090 vq->last_used_idx = new;
3091 /* If the driver never bothers to signal in a very long while,
3092 * used index might wrap around. If that happens, invalidate
3093 * signalled_used index we stored. TODO: make sure driver
3094 * signals at least once in 2^16 and remove this. */
3095 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old)))
3096 vq->signalled_used_valid = false;
3097 return 0;
3098 }
3099
3100 /* After we've used one of their buffers, we tell them about it. We'll then
3101 * want to notify the guest, using eventfd. */
vhost_add_used_n(struct vhost_virtqueue * vq,struct vring_used_elem * heads,u16 * nheads,unsigned count)3102 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads,
3103 u16 *nheads, unsigned count)
3104 {
3105 bool in_order = vhost_has_feature(vq, VIRTIO_F_IN_ORDER);
3106 int r;
3107
3108 if (!in_order || !nheads)
3109 r = vhost_add_used_n_ooo(vq, heads, count);
3110 else
3111 r = vhost_add_used_n_in_order(vq, heads, nheads, count);
3112
3113 if (r < 0)
3114 return r;
3115
3116 /* Make sure buffer is written before we update index. */
3117 smp_wmb();
3118 if (vhost_put_used_idx(vq)) {
3119 vq_err(vq, "Failed to increment used idx");
3120 return -EFAULT;
3121 }
3122 if (unlikely(vq->log_used)) {
3123 /* Make sure used idx is seen before log. */
3124 smp_wmb();
3125 /* Log used index update. */
3126 log_used(vq, offsetof(struct vring_used, idx),
3127 sizeof vq->used->idx);
3128 if (vq->log_ctx)
3129 eventfd_signal(vq->log_ctx);
3130 }
3131 return r;
3132 }
3133 EXPORT_SYMBOL_GPL(vhost_add_used_n);
3134
vhost_notify(struct vhost_dev * dev,struct vhost_virtqueue * vq)3135 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
3136 {
3137 __u16 old, new;
3138 __virtio16 event;
3139 bool v;
3140 /* Flush out used index updates. This is paired
3141 * with the barrier that the Guest executes when enabling
3142 * interrupts. */
3143 smp_mb();
3144
3145 if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) &&
3146 unlikely(vq->avail_idx == vq->last_avail_idx))
3147 return true;
3148
3149 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
3150 __virtio16 flags;
3151 if (vhost_get_avail_flags(vq, &flags)) {
3152 vq_err(vq, "Failed to get flags");
3153 return true;
3154 }
3155 return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT));
3156 }
3157 old = vq->signalled_used;
3158 v = vq->signalled_used_valid;
3159 new = vq->signalled_used = vq->last_used_idx;
3160 vq->signalled_used_valid = true;
3161
3162 if (unlikely(!v))
3163 return true;
3164
3165 if (vhost_get_used_event(vq, &event)) {
3166 vq_err(vq, "Failed to get used event idx");
3167 return true;
3168 }
3169 return vring_need_event(vhost16_to_cpu(vq, event), new, old);
3170 }
3171
3172 /* This actually signals the guest, using eventfd. */
vhost_signal(struct vhost_dev * dev,struct vhost_virtqueue * vq)3173 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq)
3174 {
3175 /* Signal the Guest tell them we used something up. */
3176 if (vq->call_ctx.ctx && vhost_notify(dev, vq))
3177 eventfd_signal(vq->call_ctx.ctx);
3178 }
3179 EXPORT_SYMBOL_GPL(vhost_signal);
3180
3181 /* And here's the combo meal deal. Supersize me! */
vhost_add_used_and_signal(struct vhost_dev * dev,struct vhost_virtqueue * vq,unsigned int head,int len)3182 void vhost_add_used_and_signal(struct vhost_dev *dev,
3183 struct vhost_virtqueue *vq,
3184 unsigned int head, int len)
3185 {
3186 vhost_add_used(vq, head, len);
3187 vhost_signal(dev, vq);
3188 }
3189 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal);
3190
3191 /* multi-buffer version of vhost_add_used_and_signal */
vhost_add_used_and_signal_n(struct vhost_dev * dev,struct vhost_virtqueue * vq,struct vring_used_elem * heads,u16 * nheads,unsigned count)3192 void vhost_add_used_and_signal_n(struct vhost_dev *dev,
3193 struct vhost_virtqueue *vq,
3194 struct vring_used_elem *heads,
3195 u16 *nheads,
3196 unsigned count)
3197 {
3198 vhost_add_used_n(vq, heads, nheads, count);
3199 vhost_signal(dev, vq);
3200 }
3201 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n);
3202
3203 /* return true if we're sure that available ring is empty */
vhost_vq_avail_empty(struct vhost_dev * dev,struct vhost_virtqueue * vq)3204 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq)
3205 {
3206 int r;
3207
3208 if (vq->avail_idx != vq->last_avail_idx)
3209 return false;
3210
3211 r = vhost_get_avail_idx(vq);
3212
3213 /* Note: we treat error as non-empty here */
3214 return r == 0;
3215 }
3216 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty);
3217
3218 /* OK, now we need to know about added descriptors. */
vhost_enable_notify(struct vhost_dev * dev,struct vhost_virtqueue * vq)3219 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
3220 {
3221 int r;
3222
3223 if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY))
3224 return false;
3225 vq->used_flags &= ~VRING_USED_F_NO_NOTIFY;
3226 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
3227 r = vhost_update_used_flags(vq);
3228 if (r) {
3229 vq_err(vq, "Failed to enable notification at %p: %d\n",
3230 &vq->used->flags, r);
3231 return false;
3232 }
3233 } else {
3234 r = vhost_update_avail_event(vq);
3235 if (r) {
3236 vq_err(vq, "Failed to update avail event index at %p: %d\n",
3237 vhost_avail_event(vq), r);
3238 return false;
3239 }
3240 }
3241 /* They could have slipped one in as we were doing that: make
3242 * sure it's written, then check again. */
3243 smp_mb();
3244
3245 r = vhost_get_avail_idx(vq);
3246 /* Note: we treat error as empty here */
3247 if (unlikely(r < 0))
3248 return false;
3249
3250 return r;
3251 }
3252 EXPORT_SYMBOL_GPL(vhost_enable_notify);
3253
3254 /* We don't need to be notified again. */
vhost_disable_notify(struct vhost_dev * dev,struct vhost_virtqueue * vq)3255 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
3256 {
3257 int r;
3258
3259 if (vq->used_flags & VRING_USED_F_NO_NOTIFY)
3260 return;
3261 vq->used_flags |= VRING_USED_F_NO_NOTIFY;
3262 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
3263 r = vhost_update_used_flags(vq);
3264 if (r)
3265 vq_err(vq, "Failed to disable notification at %p: %d\n",
3266 &vq->used->flags, r);
3267 }
3268 }
3269 EXPORT_SYMBOL_GPL(vhost_disable_notify);
3270
3271 /* Create a new message. */
vhost_new_msg(struct vhost_virtqueue * vq,int type)3272 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type)
3273 {
3274 /* Make sure all padding within the structure is initialized. */
3275 struct vhost_msg_node *node = kzalloc(sizeof(*node), GFP_KERNEL);
3276 if (!node)
3277 return NULL;
3278
3279 node->vq = vq;
3280 node->msg.type = type;
3281 return node;
3282 }
3283 EXPORT_SYMBOL_GPL(vhost_new_msg);
3284
vhost_enqueue_msg(struct vhost_dev * dev,struct list_head * head,struct vhost_msg_node * node)3285 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head,
3286 struct vhost_msg_node *node)
3287 {
3288 spin_lock(&dev->iotlb_lock);
3289 list_add_tail(&node->node, head);
3290 spin_unlock(&dev->iotlb_lock);
3291
3292 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM);
3293 }
3294 EXPORT_SYMBOL_GPL(vhost_enqueue_msg);
3295
vhost_dequeue_msg(struct vhost_dev * dev,struct list_head * head)3296 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev,
3297 struct list_head *head)
3298 {
3299 struct vhost_msg_node *node = NULL;
3300
3301 spin_lock(&dev->iotlb_lock);
3302 if (!list_empty(head)) {
3303 node = list_first_entry(head, struct vhost_msg_node,
3304 node);
3305 list_del(&node->node);
3306 }
3307 spin_unlock(&dev->iotlb_lock);
3308
3309 return node;
3310 }
3311 EXPORT_SYMBOL_GPL(vhost_dequeue_msg);
3312
vhost_set_backend_features(struct vhost_dev * dev,u64 features)3313 void vhost_set_backend_features(struct vhost_dev *dev, u64 features)
3314 {
3315 struct vhost_virtqueue *vq;
3316 int i;
3317
3318 mutex_lock(&dev->mutex);
3319 for (i = 0; i < dev->nvqs; ++i) {
3320 vq = dev->vqs[i];
3321 mutex_lock(&vq->mutex);
3322 vq->acked_backend_features = features;
3323 mutex_unlock(&vq->mutex);
3324 }
3325 mutex_unlock(&dev->mutex);
3326 }
3327 EXPORT_SYMBOL_GPL(vhost_set_backend_features);
3328
vhost_init(void)3329 static int __init vhost_init(void)
3330 {
3331 return 0;
3332 }
3333
vhost_exit(void)3334 static void __exit vhost_exit(void)
3335 {
3336 }
3337
3338 module_init(vhost_init);
3339 module_exit(vhost_exit);
3340
3341 MODULE_VERSION("0.0.1");
3342 MODULE_LICENSE("GPL v2");
3343 MODULE_AUTHOR("Michael S. Tsirkin");
3344 MODULE_DESCRIPTION("Host kernel accelerator for virtio");
3345