xref: /linux/arch/arm64/kvm/vgic/vgic-v3-nested.c (revision e669e322c52c49c161e46492963e64319fbb53a8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 #include <linux/cpu.h>
4 #include <linux/kvm.h>
5 #include <linux/kvm_host.h>
6 #include <linux/interrupt.h>
7 #include <linux/io.h>
8 #include <linux/uaccess.h>
9 
10 #include <kvm/arm_vgic.h>
11 
12 #include <asm/kvm_arm.h>
13 #include <asm/kvm_emulate.h>
14 #include <asm/kvm_nested.h>
15 
16 #include "vgic.h"
17 
18 #define ICH_LRN(n)	(ICH_LR0_EL2 + (n))
19 #define ICH_AP0RN(n)	(ICH_AP0R0_EL2 + (n))
20 #define ICH_AP1RN(n)	(ICH_AP1R0_EL2 + (n))
21 
22 struct mi_state {
23 	u16	eisr;
24 	u16	elrsr;
25 	bool	pend;
26 };
27 
28 /*
29  * The shadow registers loaded to the hardware when running a L2 guest
30  * with the virtual IMO/FMO bits set.
31  */
32 struct shadow_if {
33 	struct vgic_v3_cpu_if	cpuif;
34 	unsigned long		lr_map;
35 };
36 
37 static DEFINE_PER_CPU(struct shadow_if, shadow_if);
38 
lr_map_idx_to_shadow_idx(struct shadow_if * shadow_if,int idx)39 static int lr_map_idx_to_shadow_idx(struct shadow_if *shadow_if, int idx)
40 {
41 	return hweight16(shadow_if->lr_map & (BIT(idx) - 1));
42 }
43 
44 /*
45  * Nesting GICv3 support
46  *
47  * On a non-nesting VM (only running at EL0/EL1), the host hypervisor
48  * completely controls the interrupts injected via the list registers.
49  * Consequently, most of the state that is modified by the guest (by ACK-ing
50  * and EOI-ing interrupts) is synced by KVM on each entry/exit, so that we
51  * keep a semi-consistent view of the interrupts.
52  *
53  * This still applies for a NV guest, but only while "InHost" (either
54  * running at EL2, or at EL0 with HCR_EL2.{E2H.TGE}=={1,1}.
55  *
56  * When running a L2 guest ("not InHost"), things are radically different,
57  * as the L1 guest is in charge of provisioning the interrupts via its own
58  * view of the ICH_LR*_EL2 registers, which conveniently live in the VNCR
59  * page.  This means that the flow described above does work (there is no
60  * state to rebuild in the L0 hypervisor), and that most things happed on L2
61  * load/put:
62  *
63  * - on L2 load: move the in-memory L1 vGIC configuration into a shadow,
64  *   per-CPU data structure that is used to populate the actual LRs. This is
65  *   an extra copy that we could avoid, but life is short. In the process,
66  *   we remap any interrupt that has the HW bit set to the mapped interrupt
67  *   on the host, should the host consider it a HW one. This allows the HW
68  *   deactivation to take its course, such as for the timer.
69  *
70  * - on L2 put: perform the inverse transformation, so that the result of L2
71  *   running becomes visible to L1 in the VNCR-accessible registers.
72  *
73  * - there is nothing to do on L2 entry, as everything will have happened
74  *   on load. However, this is the point where we detect that an interrupt
75  *   targeting L1 and prepare the grand switcheroo.
76  *
77  * - on L2 exit: emulate the HW bit, and deactivate corresponding the L1
78  *   interrupt. The L0 active state will be cleared by the HW if the L1
79  *   interrupt was itself backed by a HW interrupt.
80  *
81  * Maintenance Interrupt (MI) management:
82  *
83  * Since the L2 guest runs the vgic in its full glory, MIs get delivered and
84  * used as a handover point between L2 and L1.
85  *
86  * - on delivery of a MI to L0 while L2 is running: make the L1 MI pending,
87  *   and let it rip. This will initiate a vcpu_put() on L2, and allow L1 to
88  *   run and process the MI.
89  *
90  * - L1 MI is a fully virtual interrupt, not linked to the host's MI. Its
91  *   state must be computed at each entry/exit of the guest, much like we do
92  *   it for the PMU interrupt.
93  *
94  * - because most of the ICH_*_EL2 registers live in the VNCR page, the
95  *   quality of emulation is poor: L1 can setup the vgic so that an MI would
96  *   immediately fire, and not observe anything until the next exit. Trying
97  *   to read ICH_MISR_EL2 would do the trick, for example.
98  *
99  * System register emulation:
100  *
101  * We get two classes of registers:
102  *
103  * - those backed by memory (LRs, APRs, HCR, VMCR): L1 can freely access
104  *   them, and L0 doesn't see a thing.
105  *
106  * - those that always trap (ELRSR, EISR, MISR): these are status registers
107  *   that are built on the fly based on the in-memory state.
108  *
109  * Only L1 can access the ICH_*_EL2 registers. A non-NV L2 obviously cannot,
110  * and a NV L2 would either access the VNCR page provided by L1 (memory
111  * based registers), or see the access redirected to L1 (registers that
112  * trap) thanks to NV being set by L1.
113  */
114 
vgic_state_is_nested(struct kvm_vcpu * vcpu)115 bool vgic_state_is_nested(struct kvm_vcpu *vcpu)
116 {
117 	u64 xmo;
118 
119 	if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
120 		xmo = __vcpu_sys_reg(vcpu, HCR_EL2) & (HCR_IMO | HCR_FMO);
121 		WARN_ONCE(xmo && xmo != (HCR_IMO | HCR_FMO),
122 			  "Separate virtual IRQ/FIQ settings not supported\n");
123 
124 		return !!xmo;
125 	}
126 
127 	return false;
128 }
129 
get_shadow_if(void)130 static struct shadow_if *get_shadow_if(void)
131 {
132 	return this_cpu_ptr(&shadow_if);
133 }
134 
lr_triggers_eoi(u64 lr)135 static bool lr_triggers_eoi(u64 lr)
136 {
137 	return !(lr & (ICH_LR_STATE | ICH_LR_HW)) && (lr & ICH_LR_EOI);
138 }
139 
vgic_compute_mi_state(struct kvm_vcpu * vcpu,struct mi_state * mi_state)140 static void vgic_compute_mi_state(struct kvm_vcpu *vcpu, struct mi_state *mi_state)
141 {
142 	u16 eisr = 0, elrsr = 0;
143 	bool pend = false;
144 
145 	for (int i = 0; i < kvm_vgic_global_state.nr_lr; i++) {
146 		u64 lr = __vcpu_sys_reg(vcpu, ICH_LRN(i));
147 
148 		if (lr_triggers_eoi(lr))
149 			eisr |= BIT(i);
150 		if (!(lr & ICH_LR_STATE))
151 			elrsr |= BIT(i);
152 		pend |= (lr & ICH_LR_PENDING_BIT);
153 	}
154 
155 	mi_state->eisr	= eisr;
156 	mi_state->elrsr	= elrsr;
157 	mi_state->pend	= pend;
158 }
159 
vgic_v3_get_eisr(struct kvm_vcpu * vcpu)160 u16 vgic_v3_get_eisr(struct kvm_vcpu *vcpu)
161 {
162 	struct mi_state mi_state;
163 
164 	vgic_compute_mi_state(vcpu, &mi_state);
165 	return mi_state.eisr;
166 }
167 
vgic_v3_get_elrsr(struct kvm_vcpu * vcpu)168 u16 vgic_v3_get_elrsr(struct kvm_vcpu *vcpu)
169 {
170 	struct mi_state mi_state;
171 
172 	vgic_compute_mi_state(vcpu, &mi_state);
173 	return mi_state.elrsr;
174 }
175 
vgic_v3_get_misr(struct kvm_vcpu * vcpu)176 u64 vgic_v3_get_misr(struct kvm_vcpu *vcpu)
177 {
178 	struct mi_state mi_state;
179 	u64 reg = 0, hcr, vmcr;
180 
181 	hcr = __vcpu_sys_reg(vcpu, ICH_HCR_EL2);
182 	vmcr = __vcpu_sys_reg(vcpu, ICH_VMCR_EL2);
183 
184 	vgic_compute_mi_state(vcpu, &mi_state);
185 
186 	if (mi_state.eisr)
187 		reg |= ICH_MISR_EL2_EOI;
188 
189 	if (__vcpu_sys_reg(vcpu, ICH_HCR_EL2) & ICH_HCR_EL2_UIE) {
190 		int used_lrs = kvm_vgic_global_state.nr_lr;
191 
192 		used_lrs -= hweight16(mi_state.elrsr);
193 		reg |= (used_lrs <= 1) ? ICH_MISR_EL2_U : 0;
194 	}
195 
196 	if ((hcr & ICH_HCR_EL2_LRENPIE) && FIELD_GET(ICH_HCR_EL2_EOIcount_MASK, hcr))
197 		reg |= ICH_MISR_EL2_LRENP;
198 
199 	if ((hcr & ICH_HCR_EL2_NPIE) && !mi_state.pend)
200 		reg |= ICH_MISR_EL2_NP;
201 
202 	if ((hcr & ICH_HCR_EL2_VGrp0EIE) && (vmcr & ICH_VMCR_ENG0_MASK))
203 		reg |= ICH_MISR_EL2_VGrp0E;
204 
205 	if ((hcr & ICH_HCR_EL2_VGrp0DIE) && !(vmcr & ICH_VMCR_ENG0_MASK))
206 		reg |= ICH_MISR_EL2_VGrp0D;
207 
208 	if ((hcr & ICH_HCR_EL2_VGrp1EIE) && (vmcr & ICH_VMCR_ENG1_MASK))
209 		reg |= ICH_MISR_EL2_VGrp1E;
210 
211 	if ((hcr & ICH_HCR_EL2_VGrp1DIE) && !(vmcr & ICH_VMCR_ENG1_MASK))
212 		reg |= ICH_MISR_EL2_VGrp1D;
213 
214 	return reg;
215 }
216 
translate_lr_pintid(struct kvm_vcpu * vcpu,u64 lr)217 static u64 translate_lr_pintid(struct kvm_vcpu *vcpu, u64 lr)
218 {
219 	struct vgic_irq *irq;
220 
221 	if (!(lr & ICH_LR_HW))
222 		return lr;
223 
224 	/* We have the HW bit set, check for validity of pINTID */
225 	irq = vgic_get_vcpu_irq(vcpu, FIELD_GET(ICH_LR_PHYS_ID_MASK, lr));
226 	/* If there was no real mapping, nuke the HW bit */
227 	if (!irq || !irq->hw || irq->intid > VGIC_MAX_SPI)
228 		lr &= ~ICH_LR_HW;
229 
230 	/* Translate the virtual mapping to the real one, even if invalid */
231 	if (irq) {
232 		lr &= ~ICH_LR_PHYS_ID_MASK;
233 		lr |= FIELD_PREP(ICH_LR_PHYS_ID_MASK, (u64)irq->hwintid);
234 		vgic_put_irq(vcpu->kvm, irq);
235 	}
236 
237 	return lr;
238 }
239 
240 /*
241  * For LRs which have HW bit set such as timer interrupts, we modify them to
242  * have the host hardware interrupt number instead of the virtual one programmed
243  * by the guest hypervisor.
244  */
vgic_v3_create_shadow_lr(struct kvm_vcpu * vcpu,struct vgic_v3_cpu_if * s_cpu_if)245 static void vgic_v3_create_shadow_lr(struct kvm_vcpu *vcpu,
246 				     struct vgic_v3_cpu_if *s_cpu_if)
247 {
248 	struct shadow_if *shadow_if;
249 
250 	shadow_if = container_of(s_cpu_if, struct shadow_if, cpuif);
251 	shadow_if->lr_map = 0;
252 
253 	for (int i = 0; i < kvm_vgic_global_state.nr_lr; i++) {
254 		u64 lr = __vcpu_sys_reg(vcpu, ICH_LRN(i));
255 
256 		if (!(lr & ICH_LR_STATE))
257 			continue;
258 
259 		lr = translate_lr_pintid(vcpu, lr);
260 
261 		s_cpu_if->vgic_lr[hweight16(shadow_if->lr_map)] = lr;
262 		shadow_if->lr_map |= BIT(i);
263 	}
264 
265 	s_cpu_if->used_lrs = hweight16(shadow_if->lr_map);
266 }
267 
vgic_v3_sync_nested(struct kvm_vcpu * vcpu)268 void vgic_v3_sync_nested(struct kvm_vcpu *vcpu)
269 {
270 	struct shadow_if *shadow_if = get_shadow_if();
271 	int i;
272 
273 	for_each_set_bit(i, &shadow_if->lr_map, kvm_vgic_global_state.nr_lr) {
274 		u64 lr = __vcpu_sys_reg(vcpu, ICH_LRN(i));
275 		struct vgic_irq *irq;
276 
277 		if (!(lr & ICH_LR_HW) || !(lr & ICH_LR_STATE))
278 			continue;
279 
280 		/*
281 		 * If we had a HW lr programmed by the guest hypervisor, we
282 		 * need to emulate the HW effect between the guest hypervisor
283 		 * and the nested guest.
284 		 */
285 		irq = vgic_get_vcpu_irq(vcpu, FIELD_GET(ICH_LR_PHYS_ID_MASK, lr));
286 		if (WARN_ON(!irq)) /* Shouldn't happen as we check on load */
287 			continue;
288 
289 		lr = __gic_v3_get_lr(lr_map_idx_to_shadow_idx(shadow_if, i));
290 		if (!(lr & ICH_LR_STATE))
291 			irq->active = false;
292 
293 		vgic_put_irq(vcpu->kvm, irq);
294 	}
295 }
296 
vgic_v3_create_shadow_state(struct kvm_vcpu * vcpu,struct vgic_v3_cpu_if * s_cpu_if)297 static void vgic_v3_create_shadow_state(struct kvm_vcpu *vcpu,
298 					struct vgic_v3_cpu_if *s_cpu_if)
299 {
300 	struct vgic_v3_cpu_if *host_if = &vcpu->arch.vgic_cpu.vgic_v3;
301 	u64 val = 0;
302 	int i;
303 
304 	/*
305 	 * If we're on a system with a broken vgic that requires
306 	 * trapping, propagate the trapping requirements.
307 	 *
308 	 * Ah, the smell of rotten fruits...
309 	 */
310 	if (static_branch_unlikely(&vgic_v3_cpuif_trap))
311 		val = host_if->vgic_hcr & (ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 |
312 					   ICH_HCR_EL2_TC | ICH_HCR_EL2_TDIR);
313 	s_cpu_if->vgic_hcr = __vcpu_sys_reg(vcpu, ICH_HCR_EL2) | val;
314 	s_cpu_if->vgic_vmcr = __vcpu_sys_reg(vcpu, ICH_VMCR_EL2);
315 	s_cpu_if->vgic_sre = host_if->vgic_sre;
316 
317 	for (i = 0; i < 4; i++) {
318 		s_cpu_if->vgic_ap0r[i] = __vcpu_sys_reg(vcpu, ICH_AP0RN(i));
319 		s_cpu_if->vgic_ap1r[i] = __vcpu_sys_reg(vcpu, ICH_AP1RN(i));
320 	}
321 
322 	vgic_v3_create_shadow_lr(vcpu, s_cpu_if);
323 }
324 
vgic_v3_load_nested(struct kvm_vcpu * vcpu)325 void vgic_v3_load_nested(struct kvm_vcpu *vcpu)
326 {
327 	struct shadow_if *shadow_if = get_shadow_if();
328 	struct vgic_v3_cpu_if *cpu_if = &shadow_if->cpuif;
329 
330 	BUG_ON(!vgic_state_is_nested(vcpu));
331 
332 	vgic_v3_create_shadow_state(vcpu, cpu_if);
333 
334 	__vgic_v3_restore_vmcr_aprs(cpu_if);
335 	__vgic_v3_activate_traps(cpu_if);
336 
337 	__vgic_v3_restore_state(cpu_if);
338 
339 	/*
340 	 * Propagate the number of used LRs for the benefit of the HYP
341 	 * GICv3 emulation code. Yes, this is a pretty sorry hack.
342 	 */
343 	vcpu->arch.vgic_cpu.vgic_v3.used_lrs = cpu_if->used_lrs;
344 }
345 
vgic_v3_put_nested(struct kvm_vcpu * vcpu)346 void vgic_v3_put_nested(struct kvm_vcpu *vcpu)
347 {
348 	struct shadow_if *shadow_if = get_shadow_if();
349 	struct vgic_v3_cpu_if *s_cpu_if = &shadow_if->cpuif;
350 	u64 val;
351 	int i;
352 
353 	__vgic_v3_save_vmcr_aprs(s_cpu_if);
354 	__vgic_v3_deactivate_traps(s_cpu_if);
355 	__vgic_v3_save_state(s_cpu_if);
356 
357 	/*
358 	 * Translate the shadow state HW fields back to the virtual ones
359 	 * before copying the shadow struct back to the nested one.
360 	 */
361 	val = __vcpu_sys_reg(vcpu, ICH_HCR_EL2);
362 	val &= ~ICH_HCR_EL2_EOIcount_MASK;
363 	val |= (s_cpu_if->vgic_hcr & ICH_HCR_EL2_EOIcount_MASK);
364 	__vcpu_assign_sys_reg(vcpu, ICH_HCR_EL2, val);
365 	__vcpu_assign_sys_reg(vcpu, ICH_VMCR_EL2, s_cpu_if->vgic_vmcr);
366 
367 	for (i = 0; i < 4; i++) {
368 		__vcpu_assign_sys_reg(vcpu, ICH_AP0RN(i), s_cpu_if->vgic_ap0r[i]);
369 		__vcpu_assign_sys_reg(vcpu, ICH_AP1RN(i), s_cpu_if->vgic_ap1r[i]);
370 	}
371 
372 	for_each_set_bit(i, &shadow_if->lr_map, kvm_vgic_global_state.nr_lr) {
373 		val = __vcpu_sys_reg(vcpu, ICH_LRN(i));
374 
375 		val &= ~ICH_LR_STATE;
376 		val |= s_cpu_if->vgic_lr[lr_map_idx_to_shadow_idx(shadow_if, i)] & ICH_LR_STATE;
377 
378 		__vcpu_assign_sys_reg(vcpu, ICH_LRN(i), val);
379 	}
380 
381 	vcpu->arch.vgic_cpu.vgic_v3.used_lrs = 0;
382 }
383 
384 /*
385  * If we exit a L2 VM with a pending maintenance interrupt from the GIC,
386  * then we need to forward this to L1 so that it can re-sync the appropriate
387  * LRs and sample level triggered interrupts again.
388  */
vgic_v3_handle_nested_maint_irq(struct kvm_vcpu * vcpu)389 void vgic_v3_handle_nested_maint_irq(struct kvm_vcpu *vcpu)
390 {
391 	bool state = read_sysreg_s(SYS_ICH_MISR_EL2);
392 
393 	/* This will force a switch back to L1 if the level is high */
394 	kvm_vgic_inject_irq(vcpu->kvm, vcpu,
395 			    vcpu->kvm->arch.vgic.mi_intid, state, vcpu);
396 
397 	sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EL2_En, 0);
398 }
399 
vgic_v3_nested_update_mi(struct kvm_vcpu * vcpu)400 void vgic_v3_nested_update_mi(struct kvm_vcpu *vcpu)
401 {
402 	bool level;
403 
404 	level  = __vcpu_sys_reg(vcpu, ICH_HCR_EL2) & ICH_HCR_EL2_En;
405 	if (level)
406 		level &= vgic_v3_get_misr(vcpu);
407 	kvm_vgic_inject_irq(vcpu->kvm, vcpu,
408 			    vcpu->kvm->arch.vgic.mi_intid, level, vcpu);
409 }
410