xref: /linux/arch/arm64/kvm/vgic/vgic-mmio-v3.c (revision 63eb28bb1402891b1ad2be02a530f29a9dd7f1cd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VGICv3 MMIO handling functions
4  */
5 
6 #include <linux/bitfield.h>
7 #include <linux/irqchip/arm-gic-v3.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <kvm/iodev.h>
12 #include <kvm/arm_vgic.h>
13 
14 #include <asm/kvm_emulate.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 
18 #include "vgic.h"
19 #include "vgic-mmio.h"
20 
21 /* extract @num bytes at @offset bytes offset in data */
extract_bytes(u64 data,unsigned int offset,unsigned int num)22 unsigned long extract_bytes(u64 data, unsigned int offset,
23 			    unsigned int num)
24 {
25 	return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
26 }
27 
28 /* allows updates of any half of a 64-bit register (or the whole thing) */
update_64bit_reg(u64 reg,unsigned int offset,unsigned int len,unsigned long val)29 u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
30 		     unsigned long val)
31 {
32 	int lower = (offset & 4) * 8;
33 	int upper = lower + 8 * len - 1;
34 
35 	reg &= ~GENMASK_ULL(upper, lower);
36 	val &= GENMASK_ULL(len * 8 - 1, 0);
37 
38 	return reg | ((u64)val << lower);
39 }
40 
vgic_has_its(struct kvm * kvm)41 bool vgic_has_its(struct kvm *kvm)
42 {
43 	struct vgic_dist *dist = &kvm->arch.vgic;
44 
45 	if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
46 		return false;
47 
48 	return dist->has_its;
49 }
50 
vgic_supports_direct_msis(struct kvm * kvm)51 bool vgic_supports_direct_msis(struct kvm *kvm)
52 {
53 	return kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm);
54 }
55 
system_supports_direct_sgis(void)56 bool system_supports_direct_sgis(void)
57 {
58 	return kvm_vgic_global_state.has_gicv4_1 && gic_cpuif_has_vsgi();
59 }
60 
vgic_supports_direct_sgis(struct kvm * kvm)61 bool vgic_supports_direct_sgis(struct kvm *kvm)
62 {
63 	return kvm->arch.vgic.nassgicap;
64 }
65 
66 /*
67  * The Revision field in the IIDR have the following meanings:
68  *
69  * Revision 2: Interrupt groups are guest-configurable and signaled using
70  * 	       their configured groups.
71  */
72 
vgic_mmio_read_v3_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)73 static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
74 					    gpa_t addr, unsigned int len)
75 {
76 	struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
77 	u32 value = 0;
78 
79 	switch (addr & 0x0c) {
80 	case GICD_CTLR:
81 		if (vgic->enabled)
82 			value |= GICD_CTLR_ENABLE_SS_G1;
83 		value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
84 		if (vgic->nassgireq)
85 			value |= GICD_CTLR_nASSGIreq;
86 		break;
87 	case GICD_TYPER:
88 		value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
89 		value = (value >> 5) - 1;
90 		if (vgic_has_its(vcpu->kvm)) {
91 			value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
92 			value |= GICD_TYPER_LPIS;
93 		} else {
94 			value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
95 		}
96 		break;
97 	case GICD_TYPER2:
98 		if (vgic_supports_direct_sgis(vcpu->kvm))
99 			value = GICD_TYPER2_nASSGIcap;
100 		break;
101 	case GICD_IIDR:
102 		value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
103 			(vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
104 			(IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
105 		break;
106 	default:
107 		return 0;
108 	}
109 
110 	return value;
111 }
112 
vgic_mmio_write_v3_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)113 static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
114 				    gpa_t addr, unsigned int len,
115 				    unsigned long val)
116 {
117 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
118 
119 	switch (addr & 0x0c) {
120 	case GICD_CTLR: {
121 		bool was_enabled, is_hwsgi;
122 
123 		mutex_lock(&vcpu->kvm->arch.config_lock);
124 
125 		was_enabled = dist->enabled;
126 		is_hwsgi = dist->nassgireq;
127 
128 		dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
129 
130 		/* Not a GICv4.1? No HW SGIs */
131 		if (!vgic_supports_direct_sgis(vcpu->kvm))
132 			val &= ~GICD_CTLR_nASSGIreq;
133 
134 		/* Dist stays enabled? nASSGIreq is RO */
135 		if (was_enabled && dist->enabled) {
136 			val &= ~GICD_CTLR_nASSGIreq;
137 			val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi);
138 		}
139 
140 		/* Switching HW SGIs? */
141 		dist->nassgireq = val & GICD_CTLR_nASSGIreq;
142 		if (is_hwsgi != dist->nassgireq)
143 			vgic_v4_configure_vsgis(vcpu->kvm);
144 
145 		if (vgic_supports_direct_sgis(vcpu->kvm) &&
146 		    was_enabled != dist->enabled)
147 			kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4);
148 		else if (!was_enabled && dist->enabled)
149 			vgic_kick_vcpus(vcpu->kvm);
150 
151 		mutex_unlock(&vcpu->kvm->arch.config_lock);
152 		break;
153 	}
154 	case GICD_TYPER:
155 	case GICD_TYPER2:
156 	case GICD_IIDR:
157 		/* This is at best for documentation purposes... */
158 		return;
159 	}
160 }
161 
vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)162 static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
163 					   gpa_t addr, unsigned int len,
164 					   unsigned long val)
165 {
166 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
167 	u32 reg;
168 
169 	switch (addr & 0x0c) {
170 	case GICD_TYPER2:
171 		reg = vgic_mmio_read_v3_misc(vcpu, addr, len);
172 
173 		if (reg == val)
174 			return 0;
175 		if (vgic_initialized(vcpu->kvm))
176 			return -EBUSY;
177 		if ((reg ^ val) & ~GICD_TYPER2_nASSGIcap)
178 			return -EINVAL;
179 		if (!system_supports_direct_sgis() && val)
180 			return -EINVAL;
181 
182 		dist->nassgicap = val & GICD_TYPER2_nASSGIcap;
183 		return 0;
184 	case GICD_IIDR:
185 		reg = vgic_mmio_read_v3_misc(vcpu, addr, len);
186 		if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK)
187 			return -EINVAL;
188 
189 		reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg);
190 		switch (reg) {
191 		case KVM_VGIC_IMP_REV_2:
192 		case KVM_VGIC_IMP_REV_3:
193 			dist->implementation_rev = reg;
194 			return 0;
195 		default:
196 			return -EINVAL;
197 		}
198 	case GICD_CTLR:
199 		/* Not a GICv4.1? No HW SGIs */
200 		if (!vgic_supports_direct_sgis(vcpu->kvm))
201 			val &= ~GICD_CTLR_nASSGIreq;
202 
203 		dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
204 		dist->nassgireq = val & GICD_CTLR_nASSGIreq;
205 		return 0;
206 	}
207 
208 	vgic_mmio_write_v3_misc(vcpu, addr, len, val);
209 	return 0;
210 }
211 
vgic_mmio_read_irouter(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)212 static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
213 					    gpa_t addr, unsigned int len)
214 {
215 	int intid = VGIC_ADDR_TO_INTID(addr, 64);
216 	struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, intid);
217 	unsigned long ret = 0;
218 
219 	if (!irq)
220 		return 0;
221 
222 	/* The upper word is RAZ for us. */
223 	if (!(addr & 4))
224 		ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
225 
226 	vgic_put_irq(vcpu->kvm, irq);
227 	return ret;
228 }
229 
vgic_mmio_write_irouter(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)230 static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
231 				    gpa_t addr, unsigned int len,
232 				    unsigned long val)
233 {
234 	int intid = VGIC_ADDR_TO_INTID(addr, 64);
235 	struct vgic_irq *irq;
236 	unsigned long flags;
237 
238 	/* The upper word is WI for us since we don't implement Aff3. */
239 	if (addr & 4)
240 		return;
241 
242 	irq = vgic_get_irq(vcpu->kvm, intid);
243 
244 	if (!irq)
245 		return;
246 
247 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
248 
249 	/* We only care about and preserve Aff0, Aff1 and Aff2. */
250 	irq->mpidr = val & GENMASK(23, 0);
251 	irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
252 
253 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
254 	vgic_put_irq(vcpu->kvm, irq);
255 }
256 
vgic_lpis_enabled(struct kvm_vcpu * vcpu)257 bool vgic_lpis_enabled(struct kvm_vcpu *vcpu)
258 {
259 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
260 
261 	return atomic_read(&vgic_cpu->ctlr) == GICR_CTLR_ENABLE_LPIS;
262 }
263 
vgic_mmio_read_v3r_ctlr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)264 static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
265 					     gpa_t addr, unsigned int len)
266 {
267 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
268 	unsigned long val;
269 
270 	val = atomic_read(&vgic_cpu->ctlr);
271 	if (vgic_get_implementation_rev(vcpu) >= KVM_VGIC_IMP_REV_3)
272 		val |= GICR_CTLR_IR | GICR_CTLR_CES;
273 
274 	return val;
275 }
276 
vgic_mmio_write_v3r_ctlr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)277 static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
278 				     gpa_t addr, unsigned int len,
279 				     unsigned long val)
280 {
281 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
282 	u32 ctlr;
283 
284 	if (!vgic_has_its(vcpu->kvm))
285 		return;
286 
287 	if (!(val & GICR_CTLR_ENABLE_LPIS)) {
288 		/*
289 		 * Don't disable if RWP is set, as there already an
290 		 * ongoing disable. Funky guest...
291 		 */
292 		ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr,
293 					      GICR_CTLR_ENABLE_LPIS,
294 					      GICR_CTLR_RWP);
295 		if (ctlr != GICR_CTLR_ENABLE_LPIS)
296 			return;
297 
298 		vgic_flush_pending_lpis(vcpu);
299 		vgic_its_invalidate_all_caches(vcpu->kvm);
300 		atomic_set_release(&vgic_cpu->ctlr, 0);
301 	} else {
302 		ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr, 0,
303 					      GICR_CTLR_ENABLE_LPIS);
304 		if (ctlr != 0)
305 			return;
306 
307 		vgic_enable_lpis(vcpu);
308 	}
309 }
310 
vgic_mmio_vcpu_rdist_is_last(struct kvm_vcpu * vcpu)311 static bool vgic_mmio_vcpu_rdist_is_last(struct kvm_vcpu *vcpu)
312 {
313 	struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
314 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
315 	struct vgic_redist_region *iter, *rdreg = vgic_cpu->rdreg;
316 
317 	if (!rdreg)
318 		return false;
319 
320 	if (vgic_cpu->rdreg_index < rdreg->free_index - 1) {
321 		return false;
322 	} else if (rdreg->count && vgic_cpu->rdreg_index == (rdreg->count - 1)) {
323 		struct list_head *rd_regions = &vgic->rd_regions;
324 		gpa_t end = rdreg->base + rdreg->count * KVM_VGIC_V3_REDIST_SIZE;
325 
326 		/*
327 		 * the rdist is the last one of the redist region,
328 		 * check whether there is no other contiguous rdist region
329 		 */
330 		list_for_each_entry(iter, rd_regions, list) {
331 			if (iter->base == end && iter->free_index > 0)
332 				return false;
333 		}
334 	}
335 	return true;
336 }
337 
vgic_mmio_read_v3r_typer(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)338 static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
339 					      gpa_t addr, unsigned int len)
340 {
341 	unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
342 	int target_vcpu_id = vcpu->vcpu_id;
343 	u64 value;
344 
345 	value = (u64)(mpidr & GENMASK(23, 0)) << 32;
346 	value |= ((target_vcpu_id & 0xffff) << 8);
347 
348 	if (vgic_has_its(vcpu->kvm))
349 		value |= GICR_TYPER_PLPIS;
350 
351 	if (vgic_mmio_vcpu_rdist_is_last(vcpu))
352 		value |= GICR_TYPER_LAST;
353 
354 	return extract_bytes(value, addr & 7, len);
355 }
356 
vgic_mmio_read_v3r_iidr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)357 static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
358 					     gpa_t addr, unsigned int len)
359 {
360 	return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
361 }
362 
vgic_mmio_read_v3_idregs(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)363 static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
364 					      gpa_t addr, unsigned int len)
365 {
366 	switch (addr & 0xffff) {
367 	case GICD_PIDR2:
368 		/* report a GICv3 compliant implementation */
369 		return 0x3b;
370 	}
371 
372 	return 0;
373 }
374 
vgic_v3_uaccess_write_pending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)375 static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
376 					 gpa_t addr, unsigned int len,
377 					 unsigned long val)
378 {
379 	int ret;
380 
381 	ret = vgic_uaccess_write_spending(vcpu, addr, len, val);
382 	if (ret)
383 		return ret;
384 
385 	return vgic_uaccess_write_cpending(vcpu, addr, len, ~val);
386 }
387 
388 /* We want to avoid outer shareable. */
vgic_sanitise_shareability(u64 field)389 u64 vgic_sanitise_shareability(u64 field)
390 {
391 	switch (field) {
392 	case GIC_BASER_OuterShareable:
393 		return GIC_BASER_InnerShareable;
394 	default:
395 		return field;
396 	}
397 }
398 
399 /* Avoid any inner non-cacheable mapping. */
vgic_sanitise_inner_cacheability(u64 field)400 u64 vgic_sanitise_inner_cacheability(u64 field)
401 {
402 	switch (field) {
403 	case GIC_BASER_CACHE_nCnB:
404 	case GIC_BASER_CACHE_nC:
405 		return GIC_BASER_CACHE_RaWb;
406 	default:
407 		return field;
408 	}
409 }
410 
411 /* Non-cacheable or same-as-inner are OK. */
vgic_sanitise_outer_cacheability(u64 field)412 u64 vgic_sanitise_outer_cacheability(u64 field)
413 {
414 	switch (field) {
415 	case GIC_BASER_CACHE_SameAsInner:
416 	case GIC_BASER_CACHE_nC:
417 		return field;
418 	default:
419 		return GIC_BASER_CACHE_SameAsInner;
420 	}
421 }
422 
vgic_sanitise_field(u64 reg,u64 field_mask,int field_shift,u64 (* sanitise_fn)(u64))423 u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
424 			u64 (*sanitise_fn)(u64))
425 {
426 	u64 field = (reg & field_mask) >> field_shift;
427 
428 	field = sanitise_fn(field) << field_shift;
429 	return (reg & ~field_mask) | field;
430 }
431 
432 #define PROPBASER_RES0_MASK						\
433 	(GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
434 #define PENDBASER_RES0_MASK						\
435 	(BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) |	\
436 	 GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
437 
vgic_sanitise_pendbaser(u64 reg)438 static u64 vgic_sanitise_pendbaser(u64 reg)
439 {
440 	reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
441 				  GICR_PENDBASER_SHAREABILITY_SHIFT,
442 				  vgic_sanitise_shareability);
443 	reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
444 				  GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
445 				  vgic_sanitise_inner_cacheability);
446 	reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
447 				  GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
448 				  vgic_sanitise_outer_cacheability);
449 
450 	reg &= ~PENDBASER_RES0_MASK;
451 
452 	return reg;
453 }
454 
vgic_sanitise_propbaser(u64 reg)455 static u64 vgic_sanitise_propbaser(u64 reg)
456 {
457 	reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
458 				  GICR_PROPBASER_SHAREABILITY_SHIFT,
459 				  vgic_sanitise_shareability);
460 	reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
461 				  GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
462 				  vgic_sanitise_inner_cacheability);
463 	reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
464 				  GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
465 				  vgic_sanitise_outer_cacheability);
466 
467 	reg &= ~PROPBASER_RES0_MASK;
468 	return reg;
469 }
470 
vgic_mmio_read_propbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)471 static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
472 					     gpa_t addr, unsigned int len)
473 {
474 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
475 
476 	return extract_bytes(dist->propbaser, addr & 7, len);
477 }
478 
vgic_mmio_write_propbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)479 static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
480 				     gpa_t addr, unsigned int len,
481 				     unsigned long val)
482 {
483 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
484 	u64 old_propbaser, propbaser;
485 
486 	/* Storing a value with LPIs already enabled is undefined */
487 	if (vgic_lpis_enabled(vcpu))
488 		return;
489 
490 	do {
491 		old_propbaser = READ_ONCE(dist->propbaser);
492 		propbaser = old_propbaser;
493 		propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
494 		propbaser = vgic_sanitise_propbaser(propbaser);
495 	} while (cmpxchg64(&dist->propbaser, old_propbaser,
496 			   propbaser) != old_propbaser);
497 }
498 
vgic_mmio_read_pendbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)499 static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
500 					     gpa_t addr, unsigned int len)
501 {
502 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
503 	u64 value = vgic_cpu->pendbaser;
504 
505 	value &= ~GICR_PENDBASER_PTZ;
506 
507 	return extract_bytes(value, addr & 7, len);
508 }
509 
vgic_mmio_write_pendbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)510 static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
511 				     gpa_t addr, unsigned int len,
512 				     unsigned long val)
513 {
514 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
515 	u64 old_pendbaser, pendbaser;
516 
517 	/* Storing a value with LPIs already enabled is undefined */
518 	if (vgic_lpis_enabled(vcpu))
519 		return;
520 
521 	do {
522 		old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
523 		pendbaser = old_pendbaser;
524 		pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
525 		pendbaser = vgic_sanitise_pendbaser(pendbaser);
526 	} while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
527 			   pendbaser) != old_pendbaser);
528 }
529 
vgic_mmio_read_sync(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)530 static unsigned long vgic_mmio_read_sync(struct kvm_vcpu *vcpu,
531 					 gpa_t addr, unsigned int len)
532 {
533 	return !!atomic_read(&vcpu->arch.vgic_cpu.syncr_busy);
534 }
535 
vgic_set_rdist_busy(struct kvm_vcpu * vcpu,bool busy)536 static void vgic_set_rdist_busy(struct kvm_vcpu *vcpu, bool busy)
537 {
538 	if (busy) {
539 		atomic_inc(&vcpu->arch.vgic_cpu.syncr_busy);
540 		smp_mb__after_atomic();
541 	} else {
542 		smp_mb__before_atomic();
543 		atomic_dec(&vcpu->arch.vgic_cpu.syncr_busy);
544 	}
545 }
546 
vgic_mmio_write_invlpi(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)547 static void vgic_mmio_write_invlpi(struct kvm_vcpu *vcpu,
548 				   gpa_t addr, unsigned int len,
549 				   unsigned long val)
550 {
551 	struct vgic_irq *irq;
552 	u32 intid;
553 
554 	/*
555 	 * If the guest wrote only to the upper 32bit part of the
556 	 * register, drop the write on the floor, as it is only for
557 	 * vPEs (which we don't support for obvious reasons).
558 	 *
559 	 * Also discard the access if LPIs are not enabled.
560 	 */
561 	if ((addr & 4) || !vgic_lpis_enabled(vcpu))
562 		return;
563 
564 	intid = lower_32_bits(val);
565 	if (intid < VGIC_MIN_LPI)
566 		return;
567 
568 	vgic_set_rdist_busy(vcpu, true);
569 
570 	irq = vgic_get_irq(vcpu->kvm, intid);
571 	if (irq) {
572 		vgic_its_inv_lpi(vcpu->kvm, irq);
573 		vgic_put_irq(vcpu->kvm, irq);
574 	}
575 
576 	vgic_set_rdist_busy(vcpu, false);
577 }
578 
vgic_mmio_write_invall(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)579 static void vgic_mmio_write_invall(struct kvm_vcpu *vcpu,
580 				   gpa_t addr, unsigned int len,
581 				   unsigned long val)
582 {
583 	/* See vgic_mmio_write_invlpi() for the early return rationale */
584 	if ((addr & 4) || !vgic_lpis_enabled(vcpu))
585 		return;
586 
587 	vgic_set_rdist_busy(vcpu, true);
588 	vgic_its_invall(vcpu);
589 	vgic_set_rdist_busy(vcpu, false);
590 }
591 
592 /*
593  * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
594  * redistributors, while SPIs are covered by registers in the distributor
595  * block. Trying to set private IRQs in this block gets ignored.
596  * We take some special care here to fix the calculation of the register
597  * offset.
598  */
599 #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
600 	{								\
601 		.reg_offset = off,					\
602 		.bits_per_irq = bpi,					\
603 		.len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,		\
604 		.access_flags = acc,					\
605 		.read = vgic_mmio_read_raz,				\
606 		.write = vgic_mmio_write_wi,				\
607 	}, {								\
608 		.reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,	\
609 		.bits_per_irq = bpi,					\
610 		.len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,	\
611 		.access_flags = acc,					\
612 		.read = rd,						\
613 		.write = wr,						\
614 		.uaccess_read = ur,					\
615 		.uaccess_write = uw,					\
616 	}
617 
618 static const struct vgic_register_region vgic_v3_dist_registers[] = {
619 	REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
620 		vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
621 		NULL, vgic_mmio_uaccess_write_v3_misc,
622 		16, VGIC_ACCESS_32bit),
623 	REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
624 		vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
625 		VGIC_ACCESS_32bit),
626 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
627 		vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
628 		VGIC_ACCESS_32bit),
629 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
630 		vgic_mmio_read_enable, vgic_mmio_write_senable,
631 		NULL, vgic_uaccess_write_senable, 1,
632 		VGIC_ACCESS_32bit),
633 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
634 		vgic_mmio_read_enable, vgic_mmio_write_cenable,
635 	       NULL, vgic_uaccess_write_cenable, 1,
636 		VGIC_ACCESS_32bit),
637 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
638 		vgic_mmio_read_pending, vgic_mmio_write_spending,
639 		vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
640 		VGIC_ACCESS_32bit),
641 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
642 		vgic_mmio_read_pending, vgic_mmio_write_cpending,
643 		vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
644 		VGIC_ACCESS_32bit),
645 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
646 		vgic_mmio_read_active, vgic_mmio_write_sactive,
647 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
648 		VGIC_ACCESS_32bit),
649 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
650 		vgic_mmio_read_active, vgic_mmio_write_cactive,
651 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive,
652 		1, VGIC_ACCESS_32bit),
653 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
654 		vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
655 		8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
656 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
657 		vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
658 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
659 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
660 		vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
661 		VGIC_ACCESS_32bit),
662 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
663 		vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
664 		VGIC_ACCESS_32bit),
665 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
666 		vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
667 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
668 	REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
669 		vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
670 		VGIC_ACCESS_32bit),
671 };
672 
673 static const struct vgic_register_region vgic_v3_rd_registers[] = {
674 	/* RD_base registers */
675 	REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
676 		vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
677 		VGIC_ACCESS_32bit),
678 	REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
679 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
680 		VGIC_ACCESS_32bit),
681 	REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
682 		vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
683 		VGIC_ACCESS_32bit),
684 	REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER,
685 		vgic_mmio_read_v3r_typer, vgic_mmio_write_wi,
686 		NULL, vgic_mmio_uaccess_write_wi, 8,
687 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
688 	REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
689 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
690 		VGIC_ACCESS_32bit),
691 	REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
692 		vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
693 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
694 	REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
695 		vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
696 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
697 	REGISTER_DESC_WITH_LENGTH(GICR_INVLPIR,
698 		vgic_mmio_read_raz, vgic_mmio_write_invlpi, 8,
699 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
700 	REGISTER_DESC_WITH_LENGTH(GICR_INVALLR,
701 		vgic_mmio_read_raz, vgic_mmio_write_invall, 8,
702 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
703 	REGISTER_DESC_WITH_LENGTH(GICR_SYNCR,
704 		vgic_mmio_read_sync, vgic_mmio_write_wi, 4,
705 		VGIC_ACCESS_32bit),
706 	REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
707 		vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
708 		VGIC_ACCESS_32bit),
709 	/* SGI_base registers */
710 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
711 		vgic_mmio_read_group, vgic_mmio_write_group, 4,
712 		VGIC_ACCESS_32bit),
713 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0,
714 		vgic_mmio_read_enable, vgic_mmio_write_senable,
715 		NULL, vgic_uaccess_write_senable, 4,
716 		VGIC_ACCESS_32bit),
717 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0,
718 		vgic_mmio_read_enable, vgic_mmio_write_cenable,
719 		NULL, vgic_uaccess_write_cenable, 4,
720 		VGIC_ACCESS_32bit),
721 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
722 		vgic_mmio_read_pending, vgic_mmio_write_spending,
723 		vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
724 		VGIC_ACCESS_32bit),
725 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
726 		vgic_mmio_read_pending, vgic_mmio_write_cpending,
727 		vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
728 		VGIC_ACCESS_32bit),
729 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
730 		vgic_mmio_read_active, vgic_mmio_write_sactive,
731 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4,
732 		VGIC_ACCESS_32bit),
733 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
734 		vgic_mmio_read_active, vgic_mmio_write_cactive,
735 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4,
736 		VGIC_ACCESS_32bit),
737 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
738 		vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
739 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
740 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
741 		vgic_mmio_read_config, vgic_mmio_write_config, 8,
742 		VGIC_ACCESS_32bit),
743 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
744 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
745 		VGIC_ACCESS_32bit),
746 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
747 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
748 		VGIC_ACCESS_32bit),
749 };
750 
vgic_v3_init_dist_iodev(struct vgic_io_device * dev)751 unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
752 {
753 	dev->regions = vgic_v3_dist_registers;
754 	dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
755 
756 	kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
757 
758 	return SZ_64K;
759 }
760 
761 /**
762  * vgic_register_redist_iodev - register a single redist iodev
763  * @vcpu:    The VCPU to which the redistributor belongs
764  *
765  * Register a KVM iodev for this VCPU's redistributor using the address
766  * provided.
767  *
768  * Return 0 on success, -ERRNO otherwise.
769  */
vgic_register_redist_iodev(struct kvm_vcpu * vcpu)770 int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
771 {
772 	struct kvm *kvm = vcpu->kvm;
773 	struct vgic_dist *vgic = &kvm->arch.vgic;
774 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
775 	struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
776 	struct vgic_redist_region *rdreg;
777 	gpa_t rd_base;
778 	int ret = 0;
779 
780 	lockdep_assert_held(&kvm->slots_lock);
781 	mutex_lock(&kvm->arch.config_lock);
782 
783 	if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
784 		goto out_unlock;
785 
786 	/*
787 	 * We may be creating VCPUs before having set the base address for the
788 	 * redistributor region, in which case we will come back to this
789 	 * function for all VCPUs when the base address is set.  Just return
790 	 * without doing any work for now.
791 	 */
792 	rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
793 	if (!rdreg)
794 		goto out_unlock;
795 
796 	if (!vgic_v3_check_base(kvm)) {
797 		ret = -EINVAL;
798 		goto out_unlock;
799 	}
800 
801 	vgic_cpu->rdreg = rdreg;
802 	vgic_cpu->rdreg_index = rdreg->free_index;
803 
804 	rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
805 
806 	kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
807 	rd_dev->base_addr = rd_base;
808 	rd_dev->iodev_type = IODEV_REDIST;
809 	rd_dev->regions = vgic_v3_rd_registers;
810 	rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
811 	rd_dev->redist_vcpu = vcpu;
812 
813 	mutex_unlock(&kvm->arch.config_lock);
814 
815 	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
816 				      2 * SZ_64K, &rd_dev->dev);
817 	if (ret)
818 		return ret;
819 
820 	/* Protected by slots_lock */
821 	rdreg->free_index++;
822 	return 0;
823 
824 out_unlock:
825 	mutex_unlock(&kvm->arch.config_lock);
826 	return ret;
827 }
828 
vgic_unregister_redist_iodev(struct kvm_vcpu * vcpu)829 void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
830 {
831 	struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
832 
833 	kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
834 }
835 
vgic_register_all_redist_iodevs(struct kvm * kvm)836 static int vgic_register_all_redist_iodevs(struct kvm *kvm)
837 {
838 	struct kvm_vcpu *vcpu;
839 	unsigned long c;
840 	int ret = 0;
841 
842 	lockdep_assert_held(&kvm->slots_lock);
843 
844 	kvm_for_each_vcpu(c, vcpu, kvm) {
845 		ret = vgic_register_redist_iodev(vcpu);
846 		if (ret)
847 			break;
848 	}
849 
850 	if (ret) {
851 		/* The current c failed, so iterate over the previous ones. */
852 		int i;
853 
854 		for (i = 0; i < c; i++) {
855 			vcpu = kvm_get_vcpu(kvm, i);
856 			vgic_unregister_redist_iodev(vcpu);
857 		}
858 	}
859 
860 	return ret;
861 }
862 
863 /**
864  * vgic_v3_alloc_redist_region - Allocate a new redistributor region
865  *
866  * Performs various checks before inserting the rdist region in the list.
867  * Those tests depend on whether the size of the rdist region is known
868  * (ie. count != 0). The list is sorted by rdist region index.
869  *
870  * @kvm: kvm handle
871  * @index: redist region index
872  * @base: base of the new rdist region
873  * @count: number of redistributors the region is made of (0 in the old style
874  * single region, whose size is induced from the number of vcpus)
875  *
876  * Return 0 on success, < 0 otherwise
877  */
vgic_v3_alloc_redist_region(struct kvm * kvm,uint32_t index,gpa_t base,uint32_t count)878 static int vgic_v3_alloc_redist_region(struct kvm *kvm, uint32_t index,
879 				       gpa_t base, uint32_t count)
880 {
881 	struct vgic_dist *d = &kvm->arch.vgic;
882 	struct vgic_redist_region *rdreg;
883 	struct list_head *rd_regions = &d->rd_regions;
884 	int nr_vcpus = atomic_read(&kvm->online_vcpus);
885 	size_t size = count ? count * KVM_VGIC_V3_REDIST_SIZE
886 			    : nr_vcpus * KVM_VGIC_V3_REDIST_SIZE;
887 	int ret;
888 
889 	/* cross the end of memory ? */
890 	if (base + size < base)
891 		return -EINVAL;
892 
893 	if (list_empty(rd_regions)) {
894 		if (index != 0)
895 			return -EINVAL;
896 	} else {
897 		rdreg = list_last_entry(rd_regions,
898 					struct vgic_redist_region, list);
899 
900 		/* Don't mix single region and discrete redist regions */
901 		if (!count && rdreg->count)
902 			return -EINVAL;
903 
904 		if (!count)
905 			return -EEXIST;
906 
907 		if (index != rdreg->index + 1)
908 			return -EINVAL;
909 	}
910 
911 	/*
912 	 * For legacy single-region redistributor regions (!count),
913 	 * check that the redistributor region does not overlap with the
914 	 * distributor's address space.
915 	 */
916 	if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
917 		vgic_dist_overlap(kvm, base, size))
918 		return -EINVAL;
919 
920 	/* collision with any other rdist region? */
921 	if (vgic_v3_rdist_overlap(kvm, base, size))
922 		return -EINVAL;
923 
924 	rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL_ACCOUNT);
925 	if (!rdreg)
926 		return -ENOMEM;
927 
928 	rdreg->base = VGIC_ADDR_UNDEF;
929 
930 	ret = vgic_check_iorange(kvm, rdreg->base, base, SZ_64K, size);
931 	if (ret)
932 		goto free;
933 
934 	rdreg->base = base;
935 	rdreg->count = count;
936 	rdreg->free_index = 0;
937 	rdreg->index = index;
938 
939 	list_add_tail(&rdreg->list, rd_regions);
940 	return 0;
941 free:
942 	kfree(rdreg);
943 	return ret;
944 }
945 
vgic_v3_free_redist_region(struct kvm * kvm,struct vgic_redist_region * rdreg)946 void vgic_v3_free_redist_region(struct kvm *kvm, struct vgic_redist_region *rdreg)
947 {
948 	struct kvm_vcpu *vcpu;
949 	unsigned long c;
950 
951 	lockdep_assert_held(&kvm->arch.config_lock);
952 
953 	/* Garbage collect the region */
954 	kvm_for_each_vcpu(c, vcpu, kvm) {
955 		if (vcpu->arch.vgic_cpu.rdreg == rdreg)
956 			vcpu->arch.vgic_cpu.rdreg = NULL;
957 	}
958 
959 	list_del(&rdreg->list);
960 	kfree(rdreg);
961 }
962 
vgic_v3_set_redist_base(struct kvm * kvm,u32 index,u64 addr,u32 count)963 int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
964 {
965 	int ret;
966 
967 	mutex_lock(&kvm->arch.config_lock);
968 	ret = vgic_v3_alloc_redist_region(kvm, index, addr, count);
969 	mutex_unlock(&kvm->arch.config_lock);
970 	if (ret)
971 		return ret;
972 
973 	/*
974 	 * Register iodevs for each existing VCPU.  Adding more VCPUs
975 	 * afterwards will register the iodevs when needed.
976 	 */
977 	ret = vgic_register_all_redist_iodevs(kvm);
978 	if (ret) {
979 		struct vgic_redist_region *rdreg;
980 
981 		mutex_lock(&kvm->arch.config_lock);
982 		rdreg = vgic_v3_rdist_region_from_index(kvm, index);
983 		vgic_v3_free_redist_region(kvm, rdreg);
984 		mutex_unlock(&kvm->arch.config_lock);
985 		return ret;
986 	}
987 
988 	return 0;
989 }
990 
vgic_v3_has_attr_regs(struct kvm_device * dev,struct kvm_device_attr * attr)991 int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
992 {
993 	const struct vgic_register_region *region;
994 	struct vgic_io_device iodev;
995 	struct vgic_reg_attr reg_attr;
996 	struct kvm_vcpu *vcpu;
997 	gpa_t addr;
998 	int ret;
999 
1000 	ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
1001 	if (ret)
1002 		return ret;
1003 
1004 	vcpu = reg_attr.vcpu;
1005 	addr = reg_attr.addr;
1006 
1007 	switch (attr->group) {
1008 	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1009 		iodev.regions = vgic_v3_dist_registers;
1010 		iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
1011 		iodev.base_addr = 0;
1012 		break;
1013 	case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
1014 		iodev.regions = vgic_v3_rd_registers;
1015 		iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
1016 		iodev.base_addr = 0;
1017 		break;
1018 	}
1019 	case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
1020 		return vgic_v3_has_cpu_sysregs_attr(vcpu, attr);
1021 	default:
1022 		return -ENXIO;
1023 	}
1024 
1025 	/* We only support aligned 32-bit accesses. */
1026 	if (addr & 3)
1027 		return -ENXIO;
1028 
1029 	region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
1030 	if (!region)
1031 		return -ENXIO;
1032 
1033 	return 0;
1034 }
1035 
1036 /*
1037  * The ICC_SGI* registers encode the affinity differently from the MPIDR,
1038  * so provide a wrapper to use the existing defines to isolate a certain
1039  * affinity level.
1040  */
1041 #define SGI_AFFINITY_LEVEL(reg, level) \
1042 	((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
1043 	>> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
1044 
vgic_v3_queue_sgi(struct kvm_vcpu * vcpu,u32 sgi,bool allow_group1)1045 static void vgic_v3_queue_sgi(struct kvm_vcpu *vcpu, u32 sgi, bool allow_group1)
1046 {
1047 	struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, sgi);
1048 	unsigned long flags;
1049 
1050 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
1051 
1052 	/*
1053 	 * An access targeting Group0 SGIs can only generate
1054 	 * those, while an access targeting Group1 SGIs can
1055 	 * generate interrupts of either group.
1056 	 */
1057 	if (!irq->group || allow_group1) {
1058 		if (!irq->hw) {
1059 			irq->pending_latch = true;
1060 			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
1061 		} else {
1062 			/* HW SGI? Ask the GIC to inject it */
1063 			int err;
1064 			err = irq_set_irqchip_state(irq->host_irq,
1065 						    IRQCHIP_STATE_PENDING,
1066 						    true);
1067 			WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
1068 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1069 		}
1070 	} else {
1071 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1072 	}
1073 
1074 	vgic_put_irq(vcpu->kvm, irq);
1075 }
1076 
1077 /**
1078  * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
1079  * @vcpu: The VCPU requesting a SGI
1080  * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
1081  * @allow_group1: Does the sysreg access allow generation of G1 SGIs
1082  *
1083  * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
1084  * This will trap in sys_regs.c and call this function.
1085  * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
1086  * target processors as well as a bitmask of 16 Aff0 CPUs.
1087  *
1088  * If the interrupt routing mode bit is not set, we iterate over the Aff0
1089  * bits and signal the VCPUs matching the provided Aff{3,2,1}.
1090  *
1091  * If this bit is set, we signal all, but not the calling VCPU.
1092  */
vgic_v3_dispatch_sgi(struct kvm_vcpu * vcpu,u64 reg,bool allow_group1)1093 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
1094 {
1095 	struct kvm *kvm = vcpu->kvm;
1096 	struct kvm_vcpu *c_vcpu;
1097 	unsigned long target_cpus;
1098 	u64 mpidr;
1099 	u32 sgi, aff0;
1100 	unsigned long c;
1101 
1102 	sgi = FIELD_GET(ICC_SGI1R_SGI_ID_MASK, reg);
1103 
1104 	/* Broadcast */
1105 	if (unlikely(reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT))) {
1106 		kvm_for_each_vcpu(c, c_vcpu, kvm) {
1107 			/* Don't signal the calling VCPU */
1108 			if (c_vcpu == vcpu)
1109 				continue;
1110 
1111 			vgic_v3_queue_sgi(c_vcpu, sgi, allow_group1);
1112 		}
1113 
1114 		return;
1115 	}
1116 
1117 	/* We iterate over affinities to find the corresponding vcpus */
1118 	mpidr = SGI_AFFINITY_LEVEL(reg, 3);
1119 	mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
1120 	mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
1121 	target_cpus = FIELD_GET(ICC_SGI1R_TARGET_LIST_MASK, reg);
1122 
1123 	for_each_set_bit(aff0, &target_cpus, hweight_long(ICC_SGI1R_TARGET_LIST_MASK)) {
1124 		c_vcpu = kvm_mpidr_to_vcpu(kvm, mpidr | aff0);
1125 		if (c_vcpu)
1126 			vgic_v3_queue_sgi(c_vcpu, sgi, allow_group1);
1127 	}
1128 }
1129 
vgic_v3_dist_uaccess(struct kvm_vcpu * vcpu,bool is_write,int offset,u32 * val)1130 int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1131 			 int offset, u32 *val)
1132 {
1133 	struct vgic_io_device dev = {
1134 		.regions = vgic_v3_dist_registers,
1135 		.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
1136 	};
1137 
1138 	return vgic_uaccess(vcpu, &dev, is_write, offset, val);
1139 }
1140 
vgic_v3_redist_uaccess(struct kvm_vcpu * vcpu,bool is_write,int offset,u32 * val)1141 int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1142 			   int offset, u32 *val)
1143 {
1144 	struct vgic_io_device rd_dev = {
1145 		.regions = vgic_v3_rd_registers,
1146 		.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
1147 	};
1148 
1149 	return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
1150 }
1151 
vgic_v3_line_level_info_uaccess(struct kvm_vcpu * vcpu,bool is_write,u32 intid,u32 * val)1152 int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1153 				    u32 intid, u32 *val)
1154 {
1155 	if (intid % 32)
1156 		return -EINVAL;
1157 
1158 	if (is_write)
1159 		vgic_write_irq_line_level_info(vcpu, intid, *val);
1160 	else
1161 		*val = vgic_read_irq_line_level_info(vcpu, intid);
1162 
1163 	return 0;
1164 }
1165