xref: /linux/arch/arm64/kvm/vgic/vgic-mmio-v3.c (revision 11e7861d680c3757eab18ec0a474ff680e007dc4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VGICv3 MMIO handling functions
4  */
5 
6 #include <linux/bitfield.h>
7 #include <linux/irqchip/arm-gic-v3.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <kvm/iodev.h>
12 #include <kvm/arm_vgic.h>
13 
14 #include <asm/kvm_emulate.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 
18 #include "vgic.h"
19 #include "vgic-mmio.h"
20 
21 /* extract @num bytes at @offset bytes offset in data */
extract_bytes(u64 data,unsigned int offset,unsigned int num)22 unsigned long extract_bytes(u64 data, unsigned int offset,
23 			    unsigned int num)
24 {
25 	return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
26 }
27 
28 /* allows updates of any half of a 64-bit register (or the whole thing) */
update_64bit_reg(u64 reg,unsigned int offset,unsigned int len,unsigned long val)29 u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
30 		     unsigned long val)
31 {
32 	int lower = (offset & 4) * 8;
33 	int upper = lower + 8 * len - 1;
34 
35 	reg &= ~GENMASK_ULL(upper, lower);
36 	val &= GENMASK_ULL(len * 8 - 1, 0);
37 
38 	return reg | ((u64)val << lower);
39 }
40 
vgic_has_its(struct kvm * kvm)41 bool vgic_has_its(struct kvm *kvm)
42 {
43 	struct vgic_dist *dist = &kvm->arch.vgic;
44 
45 	if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
46 		return false;
47 
48 	return dist->has_its;
49 }
50 
vgic_supports_direct_msis(struct kvm * kvm)51 bool vgic_supports_direct_msis(struct kvm *kvm)
52 {
53 	/*
54 	 * Deliberately conflate vLPI and vSGI support on GICv4.1 hardware,
55 	 * indirectly allowing userspace to control whether or not vPEs are
56 	 * allocated for the VM.
57 	 */
58 	if (system_supports_direct_sgis() && !vgic_supports_direct_sgis(kvm))
59 		return false;
60 
61 	return kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm);
62 }
63 
system_supports_direct_sgis(void)64 bool system_supports_direct_sgis(void)
65 {
66 	return kvm_vgic_global_state.has_gicv4_1 && gic_cpuif_has_vsgi();
67 }
68 
vgic_supports_direct_sgis(struct kvm * kvm)69 bool vgic_supports_direct_sgis(struct kvm *kvm)
70 {
71 	return kvm->arch.vgic.nassgicap;
72 }
73 
74 /*
75  * The Revision field in the IIDR have the following meanings:
76  *
77  * Revision 2: Interrupt groups are guest-configurable and signaled using
78  * 	       their configured groups.
79  */
80 
vgic_mmio_read_v3_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)81 static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
82 					    gpa_t addr, unsigned int len)
83 {
84 	struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
85 	u32 value = 0;
86 
87 	switch (addr & 0x0c) {
88 	case GICD_CTLR:
89 		if (vgic->enabled)
90 			value |= GICD_CTLR_ENABLE_SS_G1;
91 		value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
92 		if (vgic->nassgireq)
93 			value |= GICD_CTLR_nASSGIreq;
94 		break;
95 	case GICD_TYPER:
96 		value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
97 		value = (value >> 5) - 1;
98 		if (vgic_has_its(vcpu->kvm)) {
99 			value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
100 			value |= GICD_TYPER_LPIS;
101 		} else {
102 			value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
103 		}
104 		break;
105 	case GICD_TYPER2:
106 		if (vgic_supports_direct_sgis(vcpu->kvm))
107 			value = GICD_TYPER2_nASSGIcap;
108 		break;
109 	case GICD_IIDR:
110 		value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
111 			(vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
112 			(IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
113 		break;
114 	default:
115 		return 0;
116 	}
117 
118 	return value;
119 }
120 
vgic_mmio_write_v3_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)121 static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
122 				    gpa_t addr, unsigned int len,
123 				    unsigned long val)
124 {
125 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
126 
127 	switch (addr & 0x0c) {
128 	case GICD_CTLR: {
129 		bool was_enabled, is_hwsgi;
130 
131 		mutex_lock(&vcpu->kvm->arch.config_lock);
132 
133 		was_enabled = dist->enabled;
134 		is_hwsgi = dist->nassgireq;
135 
136 		dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
137 
138 		/* Not a GICv4.1? No HW SGIs */
139 		if (!vgic_supports_direct_sgis(vcpu->kvm))
140 			val &= ~GICD_CTLR_nASSGIreq;
141 
142 		/* Dist stays enabled? nASSGIreq is RO */
143 		if (was_enabled && dist->enabled) {
144 			val &= ~GICD_CTLR_nASSGIreq;
145 			val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi);
146 		}
147 
148 		/* Switching HW SGIs? */
149 		dist->nassgireq = val & GICD_CTLR_nASSGIreq;
150 		if (is_hwsgi != dist->nassgireq)
151 			vgic_v4_configure_vsgis(vcpu->kvm);
152 
153 		if (vgic_supports_direct_sgis(vcpu->kvm) &&
154 		    was_enabled != dist->enabled)
155 			kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4);
156 		else if (!was_enabled && dist->enabled)
157 			vgic_kick_vcpus(vcpu->kvm);
158 
159 		mutex_unlock(&vcpu->kvm->arch.config_lock);
160 		break;
161 	}
162 	case GICD_TYPER:
163 	case GICD_TYPER2:
164 	case GICD_IIDR:
165 		/* This is at best for documentation purposes... */
166 		return;
167 	}
168 }
169 
vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)170 static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
171 					   gpa_t addr, unsigned int len,
172 					   unsigned long val)
173 {
174 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
175 	u32 reg;
176 
177 	switch (addr & 0x0c) {
178 	case GICD_TYPER2:
179 		reg = vgic_mmio_read_v3_misc(vcpu, addr, len);
180 
181 		if (reg == val)
182 			return 0;
183 		if (vgic_initialized(vcpu->kvm))
184 			return -EBUSY;
185 		if ((reg ^ val) & ~GICD_TYPER2_nASSGIcap)
186 			return -EINVAL;
187 		if (!system_supports_direct_sgis() && val)
188 			return -EINVAL;
189 
190 		dist->nassgicap = val & GICD_TYPER2_nASSGIcap;
191 		return 0;
192 	case GICD_IIDR:
193 		reg = vgic_mmio_read_v3_misc(vcpu, addr, len);
194 		if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK)
195 			return -EINVAL;
196 
197 		reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg);
198 		switch (reg) {
199 		case KVM_VGIC_IMP_REV_2:
200 		case KVM_VGIC_IMP_REV_3:
201 			dist->implementation_rev = reg;
202 			return 0;
203 		default:
204 			return -EINVAL;
205 		}
206 	case GICD_CTLR:
207 		/* Not a GICv4.1? No HW SGIs */
208 		if (!vgic_supports_direct_sgis(vcpu->kvm))
209 			val &= ~GICD_CTLR_nASSGIreq;
210 
211 		dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
212 		dist->nassgireq = val & GICD_CTLR_nASSGIreq;
213 		return 0;
214 	}
215 
216 	vgic_mmio_write_v3_misc(vcpu, addr, len, val);
217 	return 0;
218 }
219 
vgic_mmio_read_irouter(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)220 static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
221 					    gpa_t addr, unsigned int len)
222 {
223 	int intid = VGIC_ADDR_TO_INTID(addr, 64);
224 	struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, intid);
225 	unsigned long ret = 0;
226 
227 	if (!irq)
228 		return 0;
229 
230 	/* The upper word is RAZ for us. */
231 	if (!(addr & 4))
232 		ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
233 
234 	vgic_put_irq(vcpu->kvm, irq);
235 	return ret;
236 }
237 
vgic_mmio_write_irouter(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)238 static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
239 				    gpa_t addr, unsigned int len,
240 				    unsigned long val)
241 {
242 	int intid = VGIC_ADDR_TO_INTID(addr, 64);
243 	struct vgic_irq *irq;
244 	unsigned long flags;
245 
246 	/* The upper word is WI for us since we don't implement Aff3. */
247 	if (addr & 4)
248 		return;
249 
250 	irq = vgic_get_irq(vcpu->kvm, intid);
251 
252 	if (!irq)
253 		return;
254 
255 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
256 
257 	/* We only care about and preserve Aff0, Aff1 and Aff2. */
258 	irq->mpidr = val & GENMASK(23, 0);
259 	irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
260 
261 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
262 	vgic_put_irq(vcpu->kvm, irq);
263 }
264 
vgic_lpis_enabled(struct kvm_vcpu * vcpu)265 bool vgic_lpis_enabled(struct kvm_vcpu *vcpu)
266 {
267 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
268 
269 	return atomic_read(&vgic_cpu->ctlr) == GICR_CTLR_ENABLE_LPIS;
270 }
271 
vgic_mmio_read_v3r_ctlr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)272 static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
273 					     gpa_t addr, unsigned int len)
274 {
275 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
276 	unsigned long val;
277 
278 	val = atomic_read(&vgic_cpu->ctlr);
279 	if (vgic_get_implementation_rev(vcpu) >= KVM_VGIC_IMP_REV_3)
280 		val |= GICR_CTLR_IR | GICR_CTLR_CES;
281 
282 	return val;
283 }
284 
vgic_mmio_write_v3r_ctlr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)285 static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
286 				     gpa_t addr, unsigned int len,
287 				     unsigned long val)
288 {
289 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
290 	u32 ctlr;
291 
292 	if (!vgic_has_its(vcpu->kvm))
293 		return;
294 
295 	if (!(val & GICR_CTLR_ENABLE_LPIS)) {
296 		/*
297 		 * Don't disable if RWP is set, as there already an
298 		 * ongoing disable. Funky guest...
299 		 */
300 		ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr,
301 					      GICR_CTLR_ENABLE_LPIS,
302 					      GICR_CTLR_RWP);
303 		if (ctlr != GICR_CTLR_ENABLE_LPIS)
304 			return;
305 
306 		vgic_flush_pending_lpis(vcpu);
307 		vgic_its_invalidate_all_caches(vcpu->kvm);
308 		atomic_set_release(&vgic_cpu->ctlr, 0);
309 	} else {
310 		ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr, 0,
311 					      GICR_CTLR_ENABLE_LPIS);
312 		if (ctlr != 0)
313 			return;
314 
315 		vgic_enable_lpis(vcpu);
316 	}
317 }
318 
vgic_mmio_vcpu_rdist_is_last(struct kvm_vcpu * vcpu)319 static bool vgic_mmio_vcpu_rdist_is_last(struct kvm_vcpu *vcpu)
320 {
321 	struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
322 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
323 	struct vgic_redist_region *iter, *rdreg = vgic_cpu->rdreg;
324 
325 	if (!rdreg)
326 		return false;
327 
328 	if (vgic_cpu->rdreg_index < rdreg->free_index - 1) {
329 		return false;
330 	} else if (rdreg->count && vgic_cpu->rdreg_index == (rdreg->count - 1)) {
331 		struct list_head *rd_regions = &vgic->rd_regions;
332 		gpa_t end = rdreg->base + rdreg->count * KVM_VGIC_V3_REDIST_SIZE;
333 
334 		/*
335 		 * the rdist is the last one of the redist region,
336 		 * check whether there is no other contiguous rdist region
337 		 */
338 		list_for_each_entry(iter, rd_regions, list) {
339 			if (iter->base == end && iter->free_index > 0)
340 				return false;
341 		}
342 	}
343 	return true;
344 }
345 
vgic_mmio_read_v3r_typer(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)346 static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
347 					      gpa_t addr, unsigned int len)
348 {
349 	unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
350 	int target_vcpu_id = vcpu->vcpu_id;
351 	u64 value;
352 
353 	value = (u64)(mpidr & GENMASK(23, 0)) << 32;
354 	value |= ((target_vcpu_id & 0xffff) << 8);
355 
356 	if (vgic_has_its(vcpu->kvm))
357 		value |= GICR_TYPER_PLPIS;
358 
359 	if (vgic_mmio_vcpu_rdist_is_last(vcpu))
360 		value |= GICR_TYPER_LAST;
361 
362 	return extract_bytes(value, addr & 7, len);
363 }
364 
vgic_mmio_read_v3r_iidr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)365 static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
366 					     gpa_t addr, unsigned int len)
367 {
368 	return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
369 }
370 
vgic_mmio_read_v3_idregs(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)371 static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
372 					      gpa_t addr, unsigned int len)
373 {
374 	switch (addr & 0xffff) {
375 	case GICD_PIDR2:
376 		/* report a GICv3 compliant implementation */
377 		return 0x3b;
378 	}
379 
380 	return 0;
381 }
382 
vgic_v3_uaccess_write_pending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)383 static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
384 					 gpa_t addr, unsigned int len,
385 					 unsigned long val)
386 {
387 	int ret;
388 
389 	ret = vgic_uaccess_write_spending(vcpu, addr, len, val);
390 	if (ret)
391 		return ret;
392 
393 	return vgic_uaccess_write_cpending(vcpu, addr, len, ~val);
394 }
395 
396 /* We want to avoid outer shareable. */
vgic_sanitise_shareability(u64 field)397 u64 vgic_sanitise_shareability(u64 field)
398 {
399 	switch (field) {
400 	case GIC_BASER_OuterShareable:
401 		return GIC_BASER_InnerShareable;
402 	default:
403 		return field;
404 	}
405 }
406 
407 /* Avoid any inner non-cacheable mapping. */
vgic_sanitise_inner_cacheability(u64 field)408 u64 vgic_sanitise_inner_cacheability(u64 field)
409 {
410 	switch (field) {
411 	case GIC_BASER_CACHE_nCnB:
412 	case GIC_BASER_CACHE_nC:
413 		return GIC_BASER_CACHE_RaWb;
414 	default:
415 		return field;
416 	}
417 }
418 
419 /* Non-cacheable or same-as-inner are OK. */
vgic_sanitise_outer_cacheability(u64 field)420 u64 vgic_sanitise_outer_cacheability(u64 field)
421 {
422 	switch (field) {
423 	case GIC_BASER_CACHE_SameAsInner:
424 	case GIC_BASER_CACHE_nC:
425 		return field;
426 	default:
427 		return GIC_BASER_CACHE_SameAsInner;
428 	}
429 }
430 
vgic_sanitise_field(u64 reg,u64 field_mask,int field_shift,u64 (* sanitise_fn)(u64))431 u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
432 			u64 (*sanitise_fn)(u64))
433 {
434 	u64 field = (reg & field_mask) >> field_shift;
435 
436 	field = sanitise_fn(field) << field_shift;
437 	return (reg & ~field_mask) | field;
438 }
439 
440 #define PROPBASER_RES0_MASK						\
441 	(GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
442 #define PENDBASER_RES0_MASK						\
443 	(BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) |	\
444 	 GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
445 
vgic_sanitise_pendbaser(u64 reg)446 static u64 vgic_sanitise_pendbaser(u64 reg)
447 {
448 	reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
449 				  GICR_PENDBASER_SHAREABILITY_SHIFT,
450 				  vgic_sanitise_shareability);
451 	reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
452 				  GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
453 				  vgic_sanitise_inner_cacheability);
454 	reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
455 				  GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
456 				  vgic_sanitise_outer_cacheability);
457 
458 	reg &= ~PENDBASER_RES0_MASK;
459 
460 	return reg;
461 }
462 
vgic_sanitise_propbaser(u64 reg)463 static u64 vgic_sanitise_propbaser(u64 reg)
464 {
465 	reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
466 				  GICR_PROPBASER_SHAREABILITY_SHIFT,
467 				  vgic_sanitise_shareability);
468 	reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
469 				  GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
470 				  vgic_sanitise_inner_cacheability);
471 	reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
472 				  GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
473 				  vgic_sanitise_outer_cacheability);
474 
475 	reg &= ~PROPBASER_RES0_MASK;
476 	return reg;
477 }
478 
vgic_mmio_read_propbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)479 static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
480 					     gpa_t addr, unsigned int len)
481 {
482 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
483 
484 	return extract_bytes(dist->propbaser, addr & 7, len);
485 }
486 
vgic_mmio_write_propbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)487 static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
488 				     gpa_t addr, unsigned int len,
489 				     unsigned long val)
490 {
491 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
492 	u64 old_propbaser, propbaser;
493 
494 	/* Storing a value with LPIs already enabled is undefined */
495 	if (vgic_lpis_enabled(vcpu))
496 		return;
497 
498 	do {
499 		old_propbaser = READ_ONCE(dist->propbaser);
500 		propbaser = old_propbaser;
501 		propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
502 		propbaser = vgic_sanitise_propbaser(propbaser);
503 	} while (cmpxchg64(&dist->propbaser, old_propbaser,
504 			   propbaser) != old_propbaser);
505 }
506 
vgic_mmio_read_pendbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)507 static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
508 					     gpa_t addr, unsigned int len)
509 {
510 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
511 	u64 value = vgic_cpu->pendbaser;
512 
513 	value &= ~GICR_PENDBASER_PTZ;
514 
515 	return extract_bytes(value, addr & 7, len);
516 }
517 
vgic_mmio_write_pendbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)518 static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
519 				     gpa_t addr, unsigned int len,
520 				     unsigned long val)
521 {
522 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
523 	u64 old_pendbaser, pendbaser;
524 
525 	/* Storing a value with LPIs already enabled is undefined */
526 	if (vgic_lpis_enabled(vcpu))
527 		return;
528 
529 	do {
530 		old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
531 		pendbaser = old_pendbaser;
532 		pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
533 		pendbaser = vgic_sanitise_pendbaser(pendbaser);
534 	} while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
535 			   pendbaser) != old_pendbaser);
536 }
537 
vgic_mmio_read_sync(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)538 static unsigned long vgic_mmio_read_sync(struct kvm_vcpu *vcpu,
539 					 gpa_t addr, unsigned int len)
540 {
541 	return !!atomic_read(&vcpu->arch.vgic_cpu.syncr_busy);
542 }
543 
vgic_set_rdist_busy(struct kvm_vcpu * vcpu,bool busy)544 static void vgic_set_rdist_busy(struct kvm_vcpu *vcpu, bool busy)
545 {
546 	if (busy) {
547 		atomic_inc(&vcpu->arch.vgic_cpu.syncr_busy);
548 		smp_mb__after_atomic();
549 	} else {
550 		smp_mb__before_atomic();
551 		atomic_dec(&vcpu->arch.vgic_cpu.syncr_busy);
552 	}
553 }
554 
vgic_mmio_write_invlpi(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)555 static void vgic_mmio_write_invlpi(struct kvm_vcpu *vcpu,
556 				   gpa_t addr, unsigned int len,
557 				   unsigned long val)
558 {
559 	struct vgic_irq *irq;
560 	u32 intid;
561 
562 	/*
563 	 * If the guest wrote only to the upper 32bit part of the
564 	 * register, drop the write on the floor, as it is only for
565 	 * vPEs (which we don't support for obvious reasons).
566 	 *
567 	 * Also discard the access if LPIs are not enabled.
568 	 */
569 	if ((addr & 4) || !vgic_lpis_enabled(vcpu))
570 		return;
571 
572 	intid = lower_32_bits(val);
573 	if (intid < VGIC_MIN_LPI)
574 		return;
575 
576 	vgic_set_rdist_busy(vcpu, true);
577 
578 	irq = vgic_get_irq(vcpu->kvm, intid);
579 	if (irq) {
580 		vgic_its_inv_lpi(vcpu->kvm, irq);
581 		vgic_put_irq(vcpu->kvm, irq);
582 	}
583 
584 	vgic_set_rdist_busy(vcpu, false);
585 }
586 
vgic_mmio_write_invall(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)587 static void vgic_mmio_write_invall(struct kvm_vcpu *vcpu,
588 				   gpa_t addr, unsigned int len,
589 				   unsigned long val)
590 {
591 	/* See vgic_mmio_write_invlpi() for the early return rationale */
592 	if ((addr & 4) || !vgic_lpis_enabled(vcpu))
593 		return;
594 
595 	vgic_set_rdist_busy(vcpu, true);
596 	vgic_its_invall(vcpu);
597 	vgic_set_rdist_busy(vcpu, false);
598 }
599 
600 /*
601  * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
602  * redistributors, while SPIs are covered by registers in the distributor
603  * block. Trying to set private IRQs in this block gets ignored.
604  * We take some special care here to fix the calculation of the register
605  * offset.
606  */
607 #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
608 	{								\
609 		.reg_offset = off,					\
610 		.bits_per_irq = bpi,					\
611 		.len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,		\
612 		.access_flags = acc,					\
613 		.read = vgic_mmio_read_raz,				\
614 		.write = vgic_mmio_write_wi,				\
615 	}, {								\
616 		.reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,	\
617 		.bits_per_irq = bpi,					\
618 		.len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,	\
619 		.access_flags = acc,					\
620 		.read = rd,						\
621 		.write = wr,						\
622 		.uaccess_read = ur,					\
623 		.uaccess_write = uw,					\
624 	}
625 
626 static const struct vgic_register_region vgic_v3_dist_registers[] = {
627 	REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
628 		vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
629 		NULL, vgic_mmio_uaccess_write_v3_misc,
630 		16, VGIC_ACCESS_32bit),
631 	REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
632 		vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
633 		VGIC_ACCESS_32bit),
634 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
635 		vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
636 		VGIC_ACCESS_32bit),
637 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
638 		vgic_mmio_read_enable, vgic_mmio_write_senable,
639 		NULL, vgic_uaccess_write_senable, 1,
640 		VGIC_ACCESS_32bit),
641 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
642 		vgic_mmio_read_enable, vgic_mmio_write_cenable,
643 	       NULL, vgic_uaccess_write_cenable, 1,
644 		VGIC_ACCESS_32bit),
645 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
646 		vgic_mmio_read_pending, vgic_mmio_write_spending,
647 		vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
648 		VGIC_ACCESS_32bit),
649 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
650 		vgic_mmio_read_pending, vgic_mmio_write_cpending,
651 		vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
652 		VGIC_ACCESS_32bit),
653 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
654 		vgic_mmio_read_active, vgic_mmio_write_sactive,
655 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
656 		VGIC_ACCESS_32bit),
657 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
658 		vgic_mmio_read_active, vgic_mmio_write_cactive,
659 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive,
660 		1, VGIC_ACCESS_32bit),
661 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
662 		vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
663 		8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
664 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
665 		vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
666 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
667 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
668 		vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
669 		VGIC_ACCESS_32bit),
670 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
671 		vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
672 		VGIC_ACCESS_32bit),
673 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
674 		vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
675 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
676 	REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
677 		vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
678 		VGIC_ACCESS_32bit),
679 };
680 
681 static const struct vgic_register_region vgic_v3_rd_registers[] = {
682 	/* RD_base registers */
683 	REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
684 		vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
685 		VGIC_ACCESS_32bit),
686 	REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
687 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
688 		VGIC_ACCESS_32bit),
689 	REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
690 		vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
691 		VGIC_ACCESS_32bit),
692 	REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER,
693 		vgic_mmio_read_v3r_typer, vgic_mmio_write_wi,
694 		NULL, vgic_mmio_uaccess_write_wi, 8,
695 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
696 	REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
697 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
698 		VGIC_ACCESS_32bit),
699 	REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
700 		vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
701 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
702 	REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
703 		vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
704 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
705 	REGISTER_DESC_WITH_LENGTH(GICR_INVLPIR,
706 		vgic_mmio_read_raz, vgic_mmio_write_invlpi, 8,
707 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
708 	REGISTER_DESC_WITH_LENGTH(GICR_INVALLR,
709 		vgic_mmio_read_raz, vgic_mmio_write_invall, 8,
710 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
711 	REGISTER_DESC_WITH_LENGTH(GICR_SYNCR,
712 		vgic_mmio_read_sync, vgic_mmio_write_wi, 4,
713 		VGIC_ACCESS_32bit),
714 	REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
715 		vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
716 		VGIC_ACCESS_32bit),
717 	/* SGI_base registers */
718 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
719 		vgic_mmio_read_group, vgic_mmio_write_group, 4,
720 		VGIC_ACCESS_32bit),
721 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0,
722 		vgic_mmio_read_enable, vgic_mmio_write_senable,
723 		NULL, vgic_uaccess_write_senable, 4,
724 		VGIC_ACCESS_32bit),
725 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0,
726 		vgic_mmio_read_enable, vgic_mmio_write_cenable,
727 		NULL, vgic_uaccess_write_cenable, 4,
728 		VGIC_ACCESS_32bit),
729 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
730 		vgic_mmio_read_pending, vgic_mmio_write_spending,
731 		vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
732 		VGIC_ACCESS_32bit),
733 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
734 		vgic_mmio_read_pending, vgic_mmio_write_cpending,
735 		vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
736 		VGIC_ACCESS_32bit),
737 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
738 		vgic_mmio_read_active, vgic_mmio_write_sactive,
739 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4,
740 		VGIC_ACCESS_32bit),
741 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
742 		vgic_mmio_read_active, vgic_mmio_write_cactive,
743 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4,
744 		VGIC_ACCESS_32bit),
745 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
746 		vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
747 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
748 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
749 		vgic_mmio_read_config, vgic_mmio_write_config, 8,
750 		VGIC_ACCESS_32bit),
751 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
752 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
753 		VGIC_ACCESS_32bit),
754 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
755 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
756 		VGIC_ACCESS_32bit),
757 };
758 
vgic_v3_init_dist_iodev(struct vgic_io_device * dev)759 unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
760 {
761 	dev->regions = vgic_v3_dist_registers;
762 	dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
763 
764 	kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
765 
766 	return SZ_64K;
767 }
768 
769 /**
770  * vgic_register_redist_iodev - register a single redist iodev
771  * @vcpu:    The VCPU to which the redistributor belongs
772  *
773  * Register a KVM iodev for this VCPU's redistributor using the address
774  * provided.
775  *
776  * Return 0 on success, -ERRNO otherwise.
777  */
vgic_register_redist_iodev(struct kvm_vcpu * vcpu)778 int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
779 {
780 	struct kvm *kvm = vcpu->kvm;
781 	struct vgic_dist *vgic = &kvm->arch.vgic;
782 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
783 	struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
784 	struct vgic_redist_region *rdreg;
785 	gpa_t rd_base;
786 	int ret = 0;
787 
788 	lockdep_assert_held(&kvm->slots_lock);
789 	mutex_lock(&kvm->arch.config_lock);
790 
791 	if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
792 		goto out_unlock;
793 
794 	/*
795 	 * We may be creating VCPUs before having set the base address for the
796 	 * redistributor region, in which case we will come back to this
797 	 * function for all VCPUs when the base address is set.  Just return
798 	 * without doing any work for now.
799 	 */
800 	rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
801 	if (!rdreg)
802 		goto out_unlock;
803 
804 	if (!vgic_v3_check_base(kvm)) {
805 		ret = -EINVAL;
806 		goto out_unlock;
807 	}
808 
809 	vgic_cpu->rdreg = rdreg;
810 	vgic_cpu->rdreg_index = rdreg->free_index;
811 
812 	rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
813 
814 	kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
815 	rd_dev->base_addr = rd_base;
816 	rd_dev->iodev_type = IODEV_REDIST;
817 	rd_dev->regions = vgic_v3_rd_registers;
818 	rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
819 	rd_dev->redist_vcpu = vcpu;
820 
821 	mutex_unlock(&kvm->arch.config_lock);
822 
823 	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
824 				      2 * SZ_64K, &rd_dev->dev);
825 	if (ret)
826 		return ret;
827 
828 	/* Protected by slots_lock */
829 	rdreg->free_index++;
830 	return 0;
831 
832 out_unlock:
833 	mutex_unlock(&kvm->arch.config_lock);
834 	return ret;
835 }
836 
vgic_unregister_redist_iodev(struct kvm_vcpu * vcpu)837 void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
838 {
839 	struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
840 
841 	kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
842 }
843 
vgic_register_all_redist_iodevs(struct kvm * kvm)844 static int vgic_register_all_redist_iodevs(struct kvm *kvm)
845 {
846 	struct kvm_vcpu *vcpu;
847 	unsigned long c;
848 	int ret = 0;
849 
850 	lockdep_assert_held(&kvm->slots_lock);
851 
852 	kvm_for_each_vcpu(c, vcpu, kvm) {
853 		ret = vgic_register_redist_iodev(vcpu);
854 		if (ret)
855 			break;
856 	}
857 
858 	if (ret) {
859 		/* The current c failed, so iterate over the previous ones. */
860 		int i;
861 
862 		for (i = 0; i < c; i++) {
863 			vcpu = kvm_get_vcpu(kvm, i);
864 			vgic_unregister_redist_iodev(vcpu);
865 		}
866 	}
867 
868 	return ret;
869 }
870 
871 /**
872  * vgic_v3_alloc_redist_region - Allocate a new redistributor region
873  *
874  * Performs various checks before inserting the rdist region in the list.
875  * Those tests depend on whether the size of the rdist region is known
876  * (ie. count != 0). The list is sorted by rdist region index.
877  *
878  * @kvm: kvm handle
879  * @index: redist region index
880  * @base: base of the new rdist region
881  * @count: number of redistributors the region is made of (0 in the old style
882  * single region, whose size is induced from the number of vcpus)
883  *
884  * Return 0 on success, < 0 otherwise
885  */
vgic_v3_alloc_redist_region(struct kvm * kvm,uint32_t index,gpa_t base,uint32_t count)886 static int vgic_v3_alloc_redist_region(struct kvm *kvm, uint32_t index,
887 				       gpa_t base, uint32_t count)
888 {
889 	struct vgic_dist *d = &kvm->arch.vgic;
890 	struct vgic_redist_region *rdreg;
891 	struct list_head *rd_regions = &d->rd_regions;
892 	int nr_vcpus = atomic_read(&kvm->online_vcpus);
893 	size_t size = count ? count * KVM_VGIC_V3_REDIST_SIZE
894 			    : nr_vcpus * KVM_VGIC_V3_REDIST_SIZE;
895 	int ret;
896 
897 	/* cross the end of memory ? */
898 	if (base + size < base)
899 		return -EINVAL;
900 
901 	if (list_empty(rd_regions)) {
902 		if (index != 0)
903 			return -EINVAL;
904 	} else {
905 		rdreg = list_last_entry(rd_regions,
906 					struct vgic_redist_region, list);
907 
908 		/* Don't mix single region and discrete redist regions */
909 		if (!count && rdreg->count)
910 			return -EINVAL;
911 
912 		if (!count)
913 			return -EEXIST;
914 
915 		if (index != rdreg->index + 1)
916 			return -EINVAL;
917 	}
918 
919 	/*
920 	 * For legacy single-region redistributor regions (!count),
921 	 * check that the redistributor region does not overlap with the
922 	 * distributor's address space.
923 	 */
924 	if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
925 		vgic_dist_overlap(kvm, base, size))
926 		return -EINVAL;
927 
928 	/* collision with any other rdist region? */
929 	if (vgic_v3_rdist_overlap(kvm, base, size))
930 		return -EINVAL;
931 
932 	rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL_ACCOUNT);
933 	if (!rdreg)
934 		return -ENOMEM;
935 
936 	rdreg->base = VGIC_ADDR_UNDEF;
937 
938 	ret = vgic_check_iorange(kvm, rdreg->base, base, SZ_64K, size);
939 	if (ret)
940 		goto free;
941 
942 	rdreg->base = base;
943 	rdreg->count = count;
944 	rdreg->free_index = 0;
945 	rdreg->index = index;
946 
947 	list_add_tail(&rdreg->list, rd_regions);
948 	return 0;
949 free:
950 	kfree(rdreg);
951 	return ret;
952 }
953 
vgic_v3_free_redist_region(struct kvm * kvm,struct vgic_redist_region * rdreg)954 void vgic_v3_free_redist_region(struct kvm *kvm, struct vgic_redist_region *rdreg)
955 {
956 	struct kvm_vcpu *vcpu;
957 	unsigned long c;
958 
959 	lockdep_assert_held(&kvm->arch.config_lock);
960 
961 	/* Garbage collect the region */
962 	kvm_for_each_vcpu(c, vcpu, kvm) {
963 		if (vcpu->arch.vgic_cpu.rdreg == rdreg)
964 			vcpu->arch.vgic_cpu.rdreg = NULL;
965 	}
966 
967 	list_del(&rdreg->list);
968 	kfree(rdreg);
969 }
970 
vgic_v3_set_redist_base(struct kvm * kvm,u32 index,u64 addr,u32 count)971 int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
972 {
973 	int ret;
974 
975 	mutex_lock(&kvm->arch.config_lock);
976 	ret = vgic_v3_alloc_redist_region(kvm, index, addr, count);
977 	mutex_unlock(&kvm->arch.config_lock);
978 	if (ret)
979 		return ret;
980 
981 	/*
982 	 * Register iodevs for each existing VCPU.  Adding more VCPUs
983 	 * afterwards will register the iodevs when needed.
984 	 */
985 	ret = vgic_register_all_redist_iodevs(kvm);
986 	if (ret) {
987 		struct vgic_redist_region *rdreg;
988 
989 		mutex_lock(&kvm->arch.config_lock);
990 		rdreg = vgic_v3_rdist_region_from_index(kvm, index);
991 		vgic_v3_free_redist_region(kvm, rdreg);
992 		mutex_unlock(&kvm->arch.config_lock);
993 		return ret;
994 	}
995 
996 	return 0;
997 }
998 
vgic_v3_has_attr_regs(struct kvm_device * dev,struct kvm_device_attr * attr)999 int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
1000 {
1001 	const struct vgic_register_region *region;
1002 	struct vgic_io_device iodev;
1003 	struct vgic_reg_attr reg_attr;
1004 	struct kvm_vcpu *vcpu;
1005 	gpa_t addr;
1006 	int ret;
1007 
1008 	ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
1009 	if (ret)
1010 		return ret;
1011 
1012 	vcpu = reg_attr.vcpu;
1013 	addr = reg_attr.addr;
1014 
1015 	switch (attr->group) {
1016 	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1017 		iodev.regions = vgic_v3_dist_registers;
1018 		iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
1019 		iodev.base_addr = 0;
1020 		break;
1021 	case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
1022 		iodev.regions = vgic_v3_rd_registers;
1023 		iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
1024 		iodev.base_addr = 0;
1025 		break;
1026 	}
1027 	case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
1028 		return vgic_v3_has_cpu_sysregs_attr(vcpu, attr);
1029 	default:
1030 		return -ENXIO;
1031 	}
1032 
1033 	/* We only support aligned 32-bit accesses. */
1034 	if (addr & 3)
1035 		return -ENXIO;
1036 
1037 	region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
1038 	if (!region)
1039 		return -ENXIO;
1040 
1041 	return 0;
1042 }
1043 
1044 /*
1045  * The ICC_SGI* registers encode the affinity differently from the MPIDR,
1046  * so provide a wrapper to use the existing defines to isolate a certain
1047  * affinity level.
1048  */
1049 #define SGI_AFFINITY_LEVEL(reg, level) \
1050 	((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
1051 	>> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
1052 
vgic_v3_queue_sgi(struct kvm_vcpu * vcpu,u32 sgi,bool allow_group1)1053 static void vgic_v3_queue_sgi(struct kvm_vcpu *vcpu, u32 sgi, bool allow_group1)
1054 {
1055 	struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, sgi);
1056 	unsigned long flags;
1057 
1058 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
1059 
1060 	/*
1061 	 * An access targeting Group0 SGIs can only generate
1062 	 * those, while an access targeting Group1 SGIs can
1063 	 * generate interrupts of either group.
1064 	 */
1065 	if (!irq->group || allow_group1) {
1066 		if (!irq->hw) {
1067 			irq->pending_latch = true;
1068 			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
1069 		} else {
1070 			/* HW SGI? Ask the GIC to inject it */
1071 			int err;
1072 			err = irq_set_irqchip_state(irq->host_irq,
1073 						    IRQCHIP_STATE_PENDING,
1074 						    true);
1075 			WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
1076 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1077 		}
1078 	} else {
1079 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1080 	}
1081 
1082 	vgic_put_irq(vcpu->kvm, irq);
1083 }
1084 
1085 /**
1086  * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
1087  * @vcpu: The VCPU requesting a SGI
1088  * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
1089  * @allow_group1: Does the sysreg access allow generation of G1 SGIs
1090  *
1091  * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
1092  * This will trap in sys_regs.c and call this function.
1093  * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
1094  * target processors as well as a bitmask of 16 Aff0 CPUs.
1095  *
1096  * If the interrupt routing mode bit is not set, we iterate over the Aff0
1097  * bits and signal the VCPUs matching the provided Aff{3,2,1}.
1098  *
1099  * If this bit is set, we signal all, but not the calling VCPU.
1100  */
vgic_v3_dispatch_sgi(struct kvm_vcpu * vcpu,u64 reg,bool allow_group1)1101 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
1102 {
1103 	struct kvm *kvm = vcpu->kvm;
1104 	struct kvm_vcpu *c_vcpu;
1105 	unsigned long target_cpus;
1106 	u64 mpidr;
1107 	u32 sgi, aff0;
1108 	unsigned long c;
1109 
1110 	sgi = FIELD_GET(ICC_SGI1R_SGI_ID_MASK, reg);
1111 
1112 	/* Broadcast */
1113 	if (unlikely(reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT))) {
1114 		kvm_for_each_vcpu(c, c_vcpu, kvm) {
1115 			/* Don't signal the calling VCPU */
1116 			if (c_vcpu == vcpu)
1117 				continue;
1118 
1119 			vgic_v3_queue_sgi(c_vcpu, sgi, allow_group1);
1120 		}
1121 
1122 		return;
1123 	}
1124 
1125 	/* We iterate over affinities to find the corresponding vcpus */
1126 	mpidr = SGI_AFFINITY_LEVEL(reg, 3);
1127 	mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
1128 	mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
1129 	target_cpus = FIELD_GET(ICC_SGI1R_TARGET_LIST_MASK, reg);
1130 
1131 	for_each_set_bit(aff0, &target_cpus, hweight_long(ICC_SGI1R_TARGET_LIST_MASK)) {
1132 		c_vcpu = kvm_mpidr_to_vcpu(kvm, mpidr | aff0);
1133 		if (c_vcpu)
1134 			vgic_v3_queue_sgi(c_vcpu, sgi, allow_group1);
1135 	}
1136 }
1137 
vgic_v3_dist_uaccess(struct kvm_vcpu * vcpu,bool is_write,int offset,u32 * val)1138 int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1139 			 int offset, u32 *val)
1140 {
1141 	struct vgic_io_device dev = {
1142 		.regions = vgic_v3_dist_registers,
1143 		.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
1144 	};
1145 
1146 	return vgic_uaccess(vcpu, &dev, is_write, offset, val);
1147 }
1148 
vgic_v3_redist_uaccess(struct kvm_vcpu * vcpu,bool is_write,int offset,u32 * val)1149 int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1150 			   int offset, u32 *val)
1151 {
1152 	struct vgic_io_device rd_dev = {
1153 		.regions = vgic_v3_rd_registers,
1154 		.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
1155 	};
1156 
1157 	return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
1158 }
1159 
vgic_v3_line_level_info_uaccess(struct kvm_vcpu * vcpu,bool is_write,u32 intid,u32 * val)1160 int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1161 				    u32 intid, u32 *val)
1162 {
1163 	if (intid % 32)
1164 		return -EINVAL;
1165 
1166 	if (is_write)
1167 		vgic_write_irq_line_level_info(vcpu, intid, *val);
1168 	else
1169 		*val = vgic_read_irq_line_level_info(vcpu, intid);
1170 
1171 	return 0;
1172 }
1173