1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * GICv3 ITS emulation
4 *
5 * Copyright (C) 2015,2016 ARM Ltd.
6 * Author: Andre Przywara <andre.przywara@arm.com>
7 */
8
9 #include <linux/cpu.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/uaccess.h>
15 #include <linux/list_sort.h>
16
17 #include <linux/irqchip/arm-gic-v3.h>
18
19 #include <asm/kvm_emulate.h>
20 #include <asm/kvm_arm.h>
21 #include <asm/kvm_mmu.h>
22
23 #include "vgic.h"
24 #include "vgic-mmio.h"
25
26 static struct kvm_device_ops kvm_arm_vgic_its_ops;
27
28 static int vgic_its_save_tables_v0(struct vgic_its *its);
29 static int vgic_its_restore_tables_v0(struct vgic_its *its);
30 static int vgic_its_commit_v0(struct vgic_its *its);
31 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
32 struct kvm_vcpu *filter_vcpu, bool needs_inv);
33
34 #define vgic_its_read_entry_lock(i, g, valp, t) \
35 ({ \
36 int __sz = vgic_its_get_abi(i)->t##_esz; \
37 struct kvm *__k = (i)->dev->kvm; \
38 int __ret; \
39 \
40 BUILD_BUG_ON(NR_ITS_ABIS == 1 && \
41 sizeof(*(valp)) != ABI_0_ESZ); \
42 if (NR_ITS_ABIS > 1 && \
43 KVM_BUG_ON(__sz != sizeof(*(valp)), __k)) \
44 __ret = -EINVAL; \
45 else \
46 __ret = kvm_read_guest_lock(__k, (g), \
47 valp, __sz); \
48 __ret; \
49 })
50
51 #define vgic_its_write_entry_lock(i, g, val, t) \
52 ({ \
53 int __sz = vgic_its_get_abi(i)->t##_esz; \
54 struct kvm *__k = (i)->dev->kvm; \
55 typeof(val) __v = (val); \
56 int __ret; \
57 \
58 BUILD_BUG_ON(NR_ITS_ABIS == 1 && \
59 sizeof(__v) != ABI_0_ESZ); \
60 if (NR_ITS_ABIS > 1 && \
61 KVM_BUG_ON(__sz != sizeof(__v), __k)) \
62 __ret = -EINVAL; \
63 else \
64 __ret = vgic_write_guest_lock(__k, (g), \
65 &__v, __sz); \
66 __ret; \
67 })
68
69 /*
70 * Creates a new (reference to a) struct vgic_irq for a given LPI.
71 * If this LPI is already mapped on another ITS, we increase its refcount
72 * and return a pointer to the existing structure.
73 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
74 * This function returns a pointer to the _unlocked_ structure.
75 */
vgic_add_lpi(struct kvm * kvm,u32 intid,struct kvm_vcpu * vcpu)76 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
77 struct kvm_vcpu *vcpu)
78 {
79 struct vgic_dist *dist = &kvm->arch.vgic;
80 struct vgic_irq *irq = vgic_get_irq(kvm, intid), *oldirq;
81 int ret;
82
83 /* In this case there is no put, since we keep the reference. */
84 if (irq)
85 return irq;
86
87 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT);
88 if (!irq)
89 return ERR_PTR(-ENOMEM);
90
91 ret = xa_reserve(&dist->lpi_xa, intid, GFP_KERNEL_ACCOUNT);
92 if (ret) {
93 kfree(irq);
94 return ERR_PTR(ret);
95 }
96
97 INIT_LIST_HEAD(&irq->ap_list);
98 raw_spin_lock_init(&irq->irq_lock);
99
100 irq->config = VGIC_CONFIG_EDGE;
101 refcount_set(&irq->refcount, 1);
102 irq->intid = intid;
103 irq->target_vcpu = vcpu;
104 irq->group = 1;
105
106 xa_lock(&dist->lpi_xa);
107
108 /*
109 * There could be a race with another vgic_add_lpi(), so we need to
110 * check that we don't add a second list entry with the same LPI.
111 */
112 oldirq = xa_load(&dist->lpi_xa, intid);
113 if (vgic_try_get_irq_ref(oldirq)) {
114 /* Someone was faster with adding this LPI, lets use that. */
115 kfree(irq);
116 irq = oldirq;
117
118 goto out_unlock;
119 }
120
121 ret = xa_err(__xa_store(&dist->lpi_xa, intid, irq, 0));
122 if (ret) {
123 xa_release(&dist->lpi_xa, intid);
124 kfree(irq);
125 }
126
127 out_unlock:
128 xa_unlock(&dist->lpi_xa);
129
130 if (ret)
131 return ERR_PTR(ret);
132
133 /*
134 * We "cache" the configuration table entries in our struct vgic_irq's.
135 * However we only have those structs for mapped IRQs, so we read in
136 * the respective config data from memory here upon mapping the LPI.
137 *
138 * Should any of these fail, behave as if we couldn't create the LPI
139 * by dropping the refcount and returning the error.
140 */
141 ret = update_lpi_config(kvm, irq, NULL, false);
142 if (ret) {
143 vgic_put_irq(kvm, irq);
144 return ERR_PTR(ret);
145 }
146
147 ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
148 if (ret) {
149 vgic_put_irq(kvm, irq);
150 return ERR_PTR(ret);
151 }
152
153 return irq;
154 }
155
156 /**
157 * struct vgic_its_abi - ITS abi ops and settings
158 * @cte_esz: collection table entry size
159 * @dte_esz: device table entry size
160 * @ite_esz: interrupt translation table entry size
161 * @save_tables: save the ITS tables into guest RAM
162 * @restore_tables: restore the ITS internal structs from tables
163 * stored in guest RAM
164 * @commit: initialize the registers which expose the ABI settings,
165 * especially the entry sizes
166 */
167 struct vgic_its_abi {
168 int cte_esz;
169 int dte_esz;
170 int ite_esz;
171 int (*save_tables)(struct vgic_its *its);
172 int (*restore_tables)(struct vgic_its *its);
173 int (*commit)(struct vgic_its *its);
174 };
175
176 #define ABI_0_ESZ 8
177 #define ESZ_MAX ABI_0_ESZ
178
179 static const struct vgic_its_abi its_table_abi_versions[] = {
180 [0] = {
181 .cte_esz = ABI_0_ESZ,
182 .dte_esz = ABI_0_ESZ,
183 .ite_esz = ABI_0_ESZ,
184 .save_tables = vgic_its_save_tables_v0,
185 .restore_tables = vgic_its_restore_tables_v0,
186 .commit = vgic_its_commit_v0,
187 },
188 };
189
190 #define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions)
191
vgic_its_get_abi(struct vgic_its * its)192 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
193 {
194 return &its_table_abi_versions[its->abi_rev];
195 }
196
vgic_its_set_abi(struct vgic_its * its,u32 rev)197 static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
198 {
199 const struct vgic_its_abi *abi;
200
201 its->abi_rev = rev;
202 abi = vgic_its_get_abi(its);
203 return abi->commit(its);
204 }
205
206 /*
207 * Find and returns a device in the device table for an ITS.
208 * Must be called with the its_lock mutex held.
209 */
find_its_device(struct vgic_its * its,u32 device_id)210 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
211 {
212 struct its_device *device;
213
214 list_for_each_entry(device, &its->device_list, dev_list)
215 if (device_id == device->device_id)
216 return device;
217
218 return NULL;
219 }
220
221 /*
222 * Find and returns an interrupt translation table entry (ITTE) for a given
223 * Device ID/Event ID pair on an ITS.
224 * Must be called with the its_lock mutex held.
225 */
find_ite(struct vgic_its * its,u32 device_id,u32 event_id)226 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
227 u32 event_id)
228 {
229 struct its_device *device;
230 struct its_ite *ite;
231
232 device = find_its_device(its, device_id);
233 if (device == NULL)
234 return NULL;
235
236 list_for_each_entry(ite, &device->itt_head, ite_list)
237 if (ite->event_id == event_id)
238 return ite;
239
240 return NULL;
241 }
242
243 /* To be used as an iterator this macro misses the enclosing parentheses */
244 #define for_each_lpi_its(dev, ite, its) \
245 list_for_each_entry(dev, &(its)->device_list, dev_list) \
246 list_for_each_entry(ite, &(dev)->itt_head, ite_list)
247
248 #define GIC_LPI_OFFSET 8192
249
250 #define VITS_TYPER_IDBITS 16
251 #define VITS_MAX_EVENTID (BIT(VITS_TYPER_IDBITS) - 1)
252 #define VITS_TYPER_DEVBITS 16
253 #define VITS_MAX_DEVID (BIT(VITS_TYPER_DEVBITS) - 1)
254 #define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1)
255 #define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1)
256
257 /*
258 * Finds and returns a collection in the ITS collection table.
259 * Must be called with the its_lock mutex held.
260 */
find_collection(struct vgic_its * its,int coll_id)261 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
262 {
263 struct its_collection *collection;
264
265 list_for_each_entry(collection, &its->collection_list, coll_list) {
266 if (coll_id == collection->collection_id)
267 return collection;
268 }
269
270 return NULL;
271 }
272
273 #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED)
274 #define LPI_PROP_PRIORITY(p) ((p) & 0xfc)
275
276 /*
277 * Reads the configuration data for a given LPI from guest memory and
278 * updates the fields in struct vgic_irq.
279 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
280 * VCPU. Unconditionally applies if filter_vcpu is NULL.
281 */
update_lpi_config(struct kvm * kvm,struct vgic_irq * irq,struct kvm_vcpu * filter_vcpu,bool needs_inv)282 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
283 struct kvm_vcpu *filter_vcpu, bool needs_inv)
284 {
285 u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
286 u8 prop;
287 int ret;
288 unsigned long flags;
289
290 ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
291 &prop, 1);
292
293 if (ret)
294 return ret;
295
296 raw_spin_lock_irqsave(&irq->irq_lock, flags);
297
298 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
299 irq->priority = LPI_PROP_PRIORITY(prop);
300 irq->enabled = LPI_PROP_ENABLE_BIT(prop);
301
302 if (!irq->hw) {
303 vgic_queue_irq_unlock(kvm, irq, flags);
304 return 0;
305 }
306 }
307
308 if (irq->hw)
309 ret = its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
310
311 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
312 return ret;
313 }
314
update_affinity(struct vgic_irq * irq,struct kvm_vcpu * vcpu)315 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
316 {
317 struct its_vlpi_map map;
318 int ret;
319
320 guard(raw_spinlock_irqsave)(&irq->irq_lock);
321 irq->target_vcpu = vcpu;
322
323 if (!irq->hw)
324 return 0;
325
326 ret = its_get_vlpi(irq->host_irq, &map);
327 if (ret)
328 return ret;
329
330 if (map.vpe)
331 atomic_dec(&map.vpe->vlpi_count);
332
333 map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
334 atomic_inc(&map.vpe->vlpi_count);
335 return its_map_vlpi(irq->host_irq, &map);
336 }
337
collection_to_vcpu(struct kvm * kvm,struct its_collection * col)338 static struct kvm_vcpu *collection_to_vcpu(struct kvm *kvm,
339 struct its_collection *col)
340 {
341 return kvm_get_vcpu_by_id(kvm, col->target_addr);
342 }
343
344 /*
345 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
346 * is targeting) to the VGIC's view, which deals with target VCPUs.
347 * Needs to be called whenever either the collection for a LPIs has
348 * changed or the collection itself got retargeted.
349 */
update_affinity_ite(struct kvm * kvm,struct its_ite * ite)350 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
351 {
352 struct kvm_vcpu *vcpu;
353
354 if (!its_is_collection_mapped(ite->collection))
355 return;
356
357 vcpu = collection_to_vcpu(kvm, ite->collection);
358 update_affinity(ite->irq, vcpu);
359 }
360
361 /*
362 * Updates the target VCPU for every LPI targeting this collection.
363 * Must be called with the its_lock mutex held.
364 */
update_affinity_collection(struct kvm * kvm,struct vgic_its * its,struct its_collection * coll)365 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
366 struct its_collection *coll)
367 {
368 struct its_device *device;
369 struct its_ite *ite;
370
371 for_each_lpi_its(device, ite, its) {
372 if (ite->collection != coll)
373 continue;
374
375 update_affinity_ite(kvm, ite);
376 }
377 }
378
max_lpis_propbaser(u64 propbaser)379 static u32 max_lpis_propbaser(u64 propbaser)
380 {
381 int nr_idbits = (propbaser & 0x1f) + 1;
382
383 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
384 }
385
386 /*
387 * Sync the pending table pending bit of LPIs targeting @vcpu
388 * with our own data structures. This relies on the LPI being
389 * mapped before.
390 */
its_sync_lpi_pending_table(struct kvm_vcpu * vcpu)391 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
392 {
393 gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
394 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
395 unsigned long intid, flags;
396 struct vgic_irq *irq;
397 int last_byte_offset = -1;
398 int ret = 0;
399 u8 pendmask;
400
401 xa_for_each(&dist->lpi_xa, intid, irq) {
402 int byte_offset, bit_nr;
403
404 byte_offset = intid / BITS_PER_BYTE;
405 bit_nr = intid % BITS_PER_BYTE;
406
407 /*
408 * For contiguously allocated LPIs chances are we just read
409 * this very same byte in the last iteration. Reuse that.
410 */
411 if (byte_offset != last_byte_offset) {
412 ret = kvm_read_guest_lock(vcpu->kvm,
413 pendbase + byte_offset,
414 &pendmask, 1);
415 if (ret)
416 return ret;
417
418 last_byte_offset = byte_offset;
419 }
420
421 irq = vgic_get_irq(vcpu->kvm, intid);
422 if (!irq)
423 continue;
424
425 raw_spin_lock_irqsave(&irq->irq_lock, flags);
426 if (irq->target_vcpu == vcpu)
427 irq->pending_latch = pendmask & (1U << bit_nr);
428 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
429 vgic_put_irq(vcpu->kvm, irq);
430 }
431
432 return ret;
433 }
434
vgic_mmio_read_its_typer(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)435 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
436 struct vgic_its *its,
437 gpa_t addr, unsigned int len)
438 {
439 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
440 u64 reg = GITS_TYPER_PLPIS;
441
442 /*
443 * We use linear CPU numbers for redistributor addressing,
444 * so GITS_TYPER.PTA is 0.
445 * Also we force all PROPBASER registers to be the same, so
446 * CommonLPIAff is 0 as well.
447 * To avoid memory waste in the guest, we keep the number of IDBits and
448 * DevBits low - as least for the time being.
449 */
450 reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
451 reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
452 reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
453
454 return extract_bytes(reg, addr & 7, len);
455 }
456
vgic_mmio_read_its_iidr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)457 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
458 struct vgic_its *its,
459 gpa_t addr, unsigned int len)
460 {
461 u32 val;
462
463 val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
464 val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
465 return val;
466 }
467
vgic_mmio_uaccess_write_its_iidr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)468 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
469 struct vgic_its *its,
470 gpa_t addr, unsigned int len,
471 unsigned long val)
472 {
473 u32 rev = GITS_IIDR_REV(val);
474
475 if (rev >= NR_ITS_ABIS)
476 return -EINVAL;
477 return vgic_its_set_abi(its, rev);
478 }
479
vgic_mmio_read_its_idregs(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)480 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
481 struct vgic_its *its,
482 gpa_t addr, unsigned int len)
483 {
484 switch (addr & 0xffff) {
485 case GITS_PIDR0:
486 return 0x92; /* part number, bits[7:0] */
487 case GITS_PIDR1:
488 return 0xb4; /* part number, bits[11:8] */
489 case GITS_PIDR2:
490 return GIC_PIDR2_ARCH_GICv3 | 0x0b;
491 case GITS_PIDR4:
492 return 0x40; /* This is a 64K software visible page */
493 /* The following are the ID registers for (any) GIC. */
494 case GITS_CIDR0:
495 return 0x0d;
496 case GITS_CIDR1:
497 return 0xf0;
498 case GITS_CIDR2:
499 return 0x05;
500 case GITS_CIDR3:
501 return 0xb1;
502 }
503
504 return 0;
505 }
506
__vgic_doorbell_to_its(struct kvm * kvm,gpa_t db)507 static struct vgic_its *__vgic_doorbell_to_its(struct kvm *kvm, gpa_t db)
508 {
509 struct kvm_io_device *kvm_io_dev;
510 struct vgic_io_device *iodev;
511
512 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, db);
513 if (!kvm_io_dev)
514 return ERR_PTR(-EINVAL);
515
516 if (kvm_io_dev->ops != &kvm_io_gic_ops)
517 return ERR_PTR(-EINVAL);
518
519 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
520 if (iodev->iodev_type != IODEV_ITS)
521 return ERR_PTR(-EINVAL);
522
523 return iodev->its;
524 }
525
vgic_its_cache_key(u32 devid,u32 eventid)526 static unsigned long vgic_its_cache_key(u32 devid, u32 eventid)
527 {
528 return (((unsigned long)devid) << VITS_TYPER_IDBITS) | eventid;
529
530 }
531
vgic_its_check_cache(struct kvm * kvm,phys_addr_t db,u32 devid,u32 eventid)532 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
533 u32 devid, u32 eventid)
534 {
535 unsigned long cache_key = vgic_its_cache_key(devid, eventid);
536 struct vgic_its *its;
537 struct vgic_irq *irq;
538
539 if (devid > VITS_MAX_DEVID || eventid > VITS_MAX_EVENTID)
540 return NULL;
541
542 its = __vgic_doorbell_to_its(kvm, db);
543 if (IS_ERR(its))
544 return NULL;
545
546 rcu_read_lock();
547
548 irq = xa_load(&its->translation_cache, cache_key);
549 if (!vgic_try_get_irq_ref(irq))
550 irq = NULL;
551
552 rcu_read_unlock();
553
554 return irq;
555 }
556
vgic_its_cache_translation(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid,struct vgic_irq * irq)557 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
558 u32 devid, u32 eventid,
559 struct vgic_irq *irq)
560 {
561 unsigned long cache_key = vgic_its_cache_key(devid, eventid);
562 struct vgic_irq *old;
563
564 /* Do not cache a directly injected interrupt */
565 if (irq->hw)
566 return;
567
568 /*
569 * The irq refcount is guaranteed to be nonzero while holding the
570 * its_lock, as the ITE (and the reference it holds) cannot be freed.
571 */
572 lockdep_assert_held(&its->its_lock);
573 vgic_get_irq_ref(irq);
574
575 old = xa_store(&its->translation_cache, cache_key, irq, GFP_KERNEL_ACCOUNT);
576
577 /*
578 * Put the reference taken on @irq if the store fails. Intentionally do
579 * not return the error as the translation cache is best effort.
580 */
581 if (xa_is_err(old)) {
582 vgic_put_irq(kvm, irq);
583 return;
584 }
585
586 /*
587 * We could have raced with another CPU caching the same
588 * translation behind our back, ensure we don't leak a
589 * reference if that is the case.
590 */
591 if (old)
592 vgic_put_irq(kvm, old);
593 }
594
vgic_its_invalidate_cache(struct vgic_its * its)595 static void vgic_its_invalidate_cache(struct vgic_its *its)
596 {
597 struct kvm *kvm = its->dev->kvm;
598 struct vgic_irq *irq;
599 unsigned long idx;
600
601 xa_for_each(&its->translation_cache, idx, irq) {
602 xa_erase(&its->translation_cache, idx);
603 vgic_put_irq(kvm, irq);
604 }
605 }
606
vgic_its_invalidate_all_caches(struct kvm * kvm)607 void vgic_its_invalidate_all_caches(struct kvm *kvm)
608 {
609 struct kvm_device *dev;
610 struct vgic_its *its;
611
612 rcu_read_lock();
613
614 list_for_each_entry_rcu(dev, &kvm->devices, vm_node) {
615 if (dev->ops != &kvm_arm_vgic_its_ops)
616 continue;
617
618 its = dev->private;
619 vgic_its_invalidate_cache(its);
620 }
621
622 rcu_read_unlock();
623 }
624
vgic_its_resolve_lpi(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid,struct vgic_irq ** irq)625 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
626 u32 devid, u32 eventid, struct vgic_irq **irq)
627 {
628 struct kvm_vcpu *vcpu;
629 struct its_ite *ite;
630
631 if (!its->enabled)
632 return -EBUSY;
633
634 ite = find_ite(its, devid, eventid);
635 if (!ite || !its_is_collection_mapped(ite->collection))
636 return E_ITS_INT_UNMAPPED_INTERRUPT;
637
638 vcpu = collection_to_vcpu(kvm, ite->collection);
639 if (!vcpu)
640 return E_ITS_INT_UNMAPPED_INTERRUPT;
641
642 if (!vgic_lpis_enabled(vcpu))
643 return -EBUSY;
644
645 vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
646
647 *irq = ite->irq;
648 return 0;
649 }
650
vgic_msi_to_its(struct kvm * kvm,struct kvm_msi * msi)651 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
652 {
653 u64 address;
654
655 if (!vgic_has_its(kvm))
656 return ERR_PTR(-ENODEV);
657
658 if (!(msi->flags & KVM_MSI_VALID_DEVID))
659 return ERR_PTR(-EINVAL);
660
661 address = (u64)msi->address_hi << 32 | msi->address_lo;
662
663 return __vgic_doorbell_to_its(kvm, address);
664 }
665
666 /*
667 * Find the target VCPU and the LPI number for a given devid/eventid pair
668 * and make this IRQ pending, possibly injecting it.
669 * Must be called with the its_lock mutex held.
670 * Returns 0 on success, a positive error value for any ITS mapping
671 * related errors and negative error values for generic errors.
672 */
vgic_its_trigger_msi(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid)673 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
674 u32 devid, u32 eventid)
675 {
676 struct vgic_irq *irq = NULL;
677 unsigned long flags;
678 int err;
679
680 err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
681 if (err)
682 return err;
683
684 if (irq->hw)
685 return irq_set_irqchip_state(irq->host_irq,
686 IRQCHIP_STATE_PENDING, true);
687
688 raw_spin_lock_irqsave(&irq->irq_lock, flags);
689 irq->pending_latch = true;
690 vgic_queue_irq_unlock(kvm, irq, flags);
691
692 return 0;
693 }
694
vgic_its_inject_cached_translation(struct kvm * kvm,struct kvm_msi * msi)695 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
696 {
697 struct vgic_irq *irq;
698 unsigned long flags;
699 phys_addr_t db;
700
701 db = (u64)msi->address_hi << 32 | msi->address_lo;
702 irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
703 if (!irq)
704 return -EWOULDBLOCK;
705
706 raw_spin_lock_irqsave(&irq->irq_lock, flags);
707 irq->pending_latch = true;
708 vgic_queue_irq_unlock(kvm, irq, flags);
709 vgic_put_irq(kvm, irq);
710
711 return 0;
712 }
713
714 /*
715 * Queries the KVM IO bus framework to get the ITS pointer from the given
716 * doorbell address.
717 * We then call vgic_its_trigger_msi() with the decoded data.
718 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
719 */
vgic_its_inject_msi(struct kvm * kvm,struct kvm_msi * msi)720 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
721 {
722 struct vgic_its *its;
723 int ret;
724
725 if (!vgic_its_inject_cached_translation(kvm, msi))
726 return 1;
727
728 its = vgic_msi_to_its(kvm, msi);
729 if (IS_ERR(its))
730 return PTR_ERR(its);
731
732 mutex_lock(&its->its_lock);
733 ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
734 mutex_unlock(&its->its_lock);
735
736 if (ret < 0)
737 return ret;
738
739 /*
740 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
741 * if the guest has blocked the MSI. So we map any LPI mapping
742 * related error to that.
743 */
744 if (ret)
745 return 0;
746 else
747 return 1;
748 }
749
750 /* Requires the its_lock to be held. */
its_free_ite(struct kvm * kvm,struct its_ite * ite)751 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
752 {
753 struct vgic_irq *irq = ite->irq;
754 list_del(&ite->ite_list);
755
756 /* This put matches the get in vgic_add_lpi. */
757 if (irq) {
758 scoped_guard(raw_spinlock_irqsave, &irq->irq_lock) {
759 if (irq->hw)
760 its_unmap_vlpi(ite->irq->host_irq);
761
762 irq->hw = false;
763 }
764
765 vgic_put_irq(kvm, ite->irq);
766 }
767
768 kfree(ite);
769 }
770
its_cmd_mask_field(u64 * its_cmd,int word,int shift,int size)771 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
772 {
773 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
774 }
775
776 #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8)
777 #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32)
778 #define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1)
779 #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32)
780 #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32)
781 #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16)
782 #define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8)
783 #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32)
784 #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1)
785
786 /*
787 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
788 * Must be called with the its_lock mutex held.
789 */
vgic_its_cmd_handle_discard(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)790 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
791 u64 *its_cmd)
792 {
793 u32 device_id = its_cmd_get_deviceid(its_cmd);
794 u32 event_id = its_cmd_get_id(its_cmd);
795 struct its_ite *ite;
796
797 ite = find_ite(its, device_id, event_id);
798 if (ite && its_is_collection_mapped(ite->collection)) {
799 struct its_device *device = find_its_device(its, device_id);
800 int ite_esz = vgic_its_get_abi(its)->ite_esz;
801 gpa_t gpa = device->itt_addr + ite->event_id * ite_esz;
802 /*
803 * Though the spec talks about removing the pending state, we
804 * don't bother here since we clear the ITTE anyway and the
805 * pending state is a property of the ITTE struct.
806 */
807 vgic_its_invalidate_cache(its);
808
809 its_free_ite(kvm, ite);
810
811 return vgic_its_write_entry_lock(its, gpa, 0ULL, ite);
812 }
813
814 return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
815 }
816
817 /*
818 * The MOVI command moves an ITTE to a different collection.
819 * Must be called with the its_lock mutex held.
820 */
vgic_its_cmd_handle_movi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)821 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
822 u64 *its_cmd)
823 {
824 u32 device_id = its_cmd_get_deviceid(its_cmd);
825 u32 event_id = its_cmd_get_id(its_cmd);
826 u32 coll_id = its_cmd_get_collection(its_cmd);
827 struct kvm_vcpu *vcpu;
828 struct its_ite *ite;
829 struct its_collection *collection;
830
831 ite = find_ite(its, device_id, event_id);
832 if (!ite)
833 return E_ITS_MOVI_UNMAPPED_INTERRUPT;
834
835 if (!its_is_collection_mapped(ite->collection))
836 return E_ITS_MOVI_UNMAPPED_COLLECTION;
837
838 collection = find_collection(its, coll_id);
839 if (!its_is_collection_mapped(collection))
840 return E_ITS_MOVI_UNMAPPED_COLLECTION;
841
842 ite->collection = collection;
843 vcpu = collection_to_vcpu(kvm, collection);
844
845 vgic_its_invalidate_cache(its);
846
847 return update_affinity(ite->irq, vcpu);
848 }
849
__is_visible_gfn_locked(struct vgic_its * its,gpa_t gpa)850 static bool __is_visible_gfn_locked(struct vgic_its *its, gpa_t gpa)
851 {
852 gfn_t gfn = gpa >> PAGE_SHIFT;
853 int idx;
854 bool ret;
855
856 idx = srcu_read_lock(&its->dev->kvm->srcu);
857 ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
858 srcu_read_unlock(&its->dev->kvm->srcu, idx);
859 return ret;
860 }
861
862 /*
863 * Check whether an ID can be stored into the corresponding guest table.
864 * For a direct table this is pretty easy, but gets a bit nasty for
865 * indirect tables. We check whether the resulting guest physical address
866 * is actually valid (covered by a memslot and guest accessible).
867 * For this we have to read the respective first level entry.
868 */
vgic_its_check_id(struct vgic_its * its,u64 baser,u32 id,gpa_t * eaddr)869 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
870 gpa_t *eaddr)
871 {
872 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
873 u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
874 phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
875 int esz = GITS_BASER_ENTRY_SIZE(baser);
876 int index;
877
878 switch (type) {
879 case GITS_BASER_TYPE_DEVICE:
880 if (id > VITS_MAX_DEVID)
881 return false;
882 break;
883 case GITS_BASER_TYPE_COLLECTION:
884 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
885 if (id >= BIT_ULL(16))
886 return false;
887 break;
888 default:
889 return false;
890 }
891
892 if (!(baser & GITS_BASER_INDIRECT)) {
893 phys_addr_t addr;
894
895 if (id >= (l1_tbl_size / esz))
896 return false;
897
898 addr = base + id * esz;
899
900 if (eaddr)
901 *eaddr = addr;
902
903 return __is_visible_gfn_locked(its, addr);
904 }
905
906 /* calculate and check the index into the 1st level */
907 index = id / (SZ_64K / esz);
908 if (index >= (l1_tbl_size / sizeof(u64)))
909 return false;
910
911 /* Each 1st level entry is represented by a 64-bit value. */
912 if (kvm_read_guest_lock(its->dev->kvm,
913 base + index * sizeof(indirect_ptr),
914 &indirect_ptr, sizeof(indirect_ptr)))
915 return false;
916
917 indirect_ptr = le64_to_cpu(indirect_ptr);
918
919 /* check the valid bit of the first level entry */
920 if (!(indirect_ptr & BIT_ULL(63)))
921 return false;
922
923 /* Mask the guest physical address and calculate the frame number. */
924 indirect_ptr &= GENMASK_ULL(51, 16);
925
926 /* Find the address of the actual entry */
927 index = id % (SZ_64K / esz);
928 indirect_ptr += index * esz;
929
930 if (eaddr)
931 *eaddr = indirect_ptr;
932
933 return __is_visible_gfn_locked(its, indirect_ptr);
934 }
935
936 /*
937 * Check whether an event ID can be stored in the corresponding Interrupt
938 * Translation Table, which starts at device->itt_addr.
939 */
vgic_its_check_event_id(struct vgic_its * its,struct its_device * device,u32 event_id)940 static bool vgic_its_check_event_id(struct vgic_its *its, struct its_device *device,
941 u32 event_id)
942 {
943 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
944 int ite_esz = abi->ite_esz;
945 gpa_t gpa;
946
947 /* max table size is: BIT_ULL(device->num_eventid_bits) * ite_esz */
948 if (event_id >= BIT_ULL(device->num_eventid_bits))
949 return false;
950
951 gpa = device->itt_addr + event_id * ite_esz;
952 return __is_visible_gfn_locked(its, gpa);
953 }
954
955 /*
956 * Add a new collection into the ITS collection table.
957 * Returns 0 on success, and a negative error value for generic errors.
958 */
vgic_its_alloc_collection(struct vgic_its * its,struct its_collection ** colp,u32 coll_id)959 static int vgic_its_alloc_collection(struct vgic_its *its,
960 struct its_collection **colp,
961 u32 coll_id)
962 {
963 struct its_collection *collection;
964
965 collection = kzalloc(sizeof(*collection), GFP_KERNEL_ACCOUNT);
966 if (!collection)
967 return -ENOMEM;
968
969 collection->collection_id = coll_id;
970 collection->target_addr = COLLECTION_NOT_MAPPED;
971
972 list_add_tail(&collection->coll_list, &its->collection_list);
973 *colp = collection;
974
975 return 0;
976 }
977
vgic_its_free_collection(struct vgic_its * its,u32 coll_id)978 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
979 {
980 struct its_collection *collection;
981 struct its_device *device;
982 struct its_ite *ite;
983
984 /*
985 * Clearing the mapping for that collection ID removes the
986 * entry from the list. If there wasn't any before, we can
987 * go home early.
988 */
989 collection = find_collection(its, coll_id);
990 if (!collection)
991 return;
992
993 for_each_lpi_its(device, ite, its)
994 if (ite->collection &&
995 ite->collection->collection_id == coll_id)
996 ite->collection = NULL;
997
998 list_del(&collection->coll_list);
999 kfree(collection);
1000 }
1001
1002 /* Must be called with its_lock mutex held */
vgic_its_alloc_ite(struct its_device * device,struct its_collection * collection,u32 event_id)1003 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
1004 struct its_collection *collection,
1005 u32 event_id)
1006 {
1007 struct its_ite *ite;
1008
1009 ite = kzalloc(sizeof(*ite), GFP_KERNEL_ACCOUNT);
1010 if (!ite)
1011 return ERR_PTR(-ENOMEM);
1012
1013 ite->event_id = event_id;
1014 ite->collection = collection;
1015
1016 list_add_tail(&ite->ite_list, &device->itt_head);
1017 return ite;
1018 }
1019
1020 /*
1021 * The MAPTI and MAPI commands map LPIs to ITTEs.
1022 * Must be called with its_lock mutex held.
1023 */
vgic_its_cmd_handle_mapi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1024 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1025 u64 *its_cmd)
1026 {
1027 u32 device_id = its_cmd_get_deviceid(its_cmd);
1028 u32 event_id = its_cmd_get_id(its_cmd);
1029 u32 coll_id = its_cmd_get_collection(its_cmd);
1030 struct its_ite *ite;
1031 struct kvm_vcpu *vcpu = NULL;
1032 struct its_device *device;
1033 struct its_collection *collection, *new_coll = NULL;
1034 struct vgic_irq *irq;
1035 int lpi_nr;
1036
1037 device = find_its_device(its, device_id);
1038 if (!device)
1039 return E_ITS_MAPTI_UNMAPPED_DEVICE;
1040
1041 if (!vgic_its_check_event_id(its, device, event_id))
1042 return E_ITS_MAPTI_ID_OOR;
1043
1044 if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1045 lpi_nr = its_cmd_get_physical_id(its_cmd);
1046 else
1047 lpi_nr = event_id;
1048 if (lpi_nr < GIC_LPI_OFFSET ||
1049 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1050 return E_ITS_MAPTI_PHYSICALID_OOR;
1051
1052 /* If there is an existing mapping, behavior is UNPREDICTABLE. */
1053 if (find_ite(its, device_id, event_id))
1054 return 0;
1055
1056 collection = find_collection(its, coll_id);
1057 if (!collection) {
1058 int ret;
1059
1060 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
1061 return E_ITS_MAPC_COLLECTION_OOR;
1062
1063 ret = vgic_its_alloc_collection(its, &collection, coll_id);
1064 if (ret)
1065 return ret;
1066 new_coll = collection;
1067 }
1068
1069 ite = vgic_its_alloc_ite(device, collection, event_id);
1070 if (IS_ERR(ite)) {
1071 if (new_coll)
1072 vgic_its_free_collection(its, coll_id);
1073 return PTR_ERR(ite);
1074 }
1075
1076 if (its_is_collection_mapped(collection))
1077 vcpu = collection_to_vcpu(kvm, collection);
1078
1079 irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1080 if (IS_ERR(irq)) {
1081 if (new_coll)
1082 vgic_its_free_collection(its, coll_id);
1083 its_free_ite(kvm, ite);
1084 return PTR_ERR(irq);
1085 }
1086 ite->irq = irq;
1087
1088 return 0;
1089 }
1090
1091 /* Requires the its_lock to be held. */
vgic_its_free_device(struct kvm * kvm,struct vgic_its * its,struct its_device * device)1092 static void vgic_its_free_device(struct kvm *kvm, struct vgic_its *its,
1093 struct its_device *device)
1094 {
1095 struct its_ite *ite, *temp;
1096
1097 /*
1098 * The spec says that unmapping a device with still valid
1099 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1100 * since we cannot leave the memory unreferenced.
1101 */
1102 list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1103 its_free_ite(kvm, ite);
1104
1105 vgic_its_invalidate_cache(its);
1106
1107 list_del(&device->dev_list);
1108 kfree(device);
1109 }
1110
1111 /* its lock must be held */
vgic_its_free_device_list(struct kvm * kvm,struct vgic_its * its)1112 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1113 {
1114 struct its_device *cur, *temp;
1115
1116 list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1117 vgic_its_free_device(kvm, its, cur);
1118 }
1119
1120 /* its lock must be held */
vgic_its_free_collection_list(struct kvm * kvm,struct vgic_its * its)1121 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1122 {
1123 struct its_collection *cur, *temp;
1124
1125 list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1126 vgic_its_free_collection(its, cur->collection_id);
1127 }
1128
1129 /* Must be called with its_lock mutex held */
vgic_its_alloc_device(struct vgic_its * its,u32 device_id,gpa_t itt_addr,u8 num_eventid_bits)1130 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1131 u32 device_id, gpa_t itt_addr,
1132 u8 num_eventid_bits)
1133 {
1134 struct its_device *device;
1135
1136 device = kzalloc(sizeof(*device), GFP_KERNEL_ACCOUNT);
1137 if (!device)
1138 return ERR_PTR(-ENOMEM);
1139
1140 device->device_id = device_id;
1141 device->itt_addr = itt_addr;
1142 device->num_eventid_bits = num_eventid_bits;
1143 INIT_LIST_HEAD(&device->itt_head);
1144
1145 list_add_tail(&device->dev_list, &its->device_list);
1146 return device;
1147 }
1148
1149 /*
1150 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1151 * Must be called with the its_lock mutex held.
1152 */
vgic_its_cmd_handle_mapd(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1153 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1154 u64 *its_cmd)
1155 {
1156 u32 device_id = its_cmd_get_deviceid(its_cmd);
1157 bool valid = its_cmd_get_validbit(its_cmd);
1158 u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1159 gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1160 struct its_device *device;
1161 gpa_t gpa;
1162
1163 if (!vgic_its_check_id(its, its->baser_device_table, device_id, &gpa))
1164 return E_ITS_MAPD_DEVICE_OOR;
1165
1166 if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1167 return E_ITS_MAPD_ITTSIZE_OOR;
1168
1169 device = find_its_device(its, device_id);
1170
1171 /*
1172 * The spec says that calling MAPD on an already mapped device
1173 * invalidates all cached data for this device. We implement this
1174 * by removing the mapping and re-establishing it.
1175 */
1176 if (device)
1177 vgic_its_free_device(kvm, its, device);
1178
1179 /*
1180 * The spec does not say whether unmapping a not-mapped device
1181 * is an error, so we are done in any case.
1182 */
1183 if (!valid)
1184 return vgic_its_write_entry_lock(its, gpa, 0ULL, dte);
1185
1186 device = vgic_its_alloc_device(its, device_id, itt_addr,
1187 num_eventid_bits);
1188
1189 return PTR_ERR_OR_ZERO(device);
1190 }
1191
1192 /*
1193 * The MAPC command maps collection IDs to redistributors.
1194 * Must be called with the its_lock mutex held.
1195 */
vgic_its_cmd_handle_mapc(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1196 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1197 u64 *its_cmd)
1198 {
1199 u16 coll_id;
1200 struct its_collection *collection;
1201 bool valid;
1202
1203 valid = its_cmd_get_validbit(its_cmd);
1204 coll_id = its_cmd_get_collection(its_cmd);
1205
1206 if (!valid) {
1207 vgic_its_free_collection(its, coll_id);
1208 vgic_its_invalidate_cache(its);
1209 } else {
1210 struct kvm_vcpu *vcpu;
1211
1212 vcpu = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd));
1213 if (!vcpu)
1214 return E_ITS_MAPC_PROCNUM_OOR;
1215
1216 collection = find_collection(its, coll_id);
1217
1218 if (!collection) {
1219 int ret;
1220
1221 if (!vgic_its_check_id(its, its->baser_coll_table,
1222 coll_id, NULL))
1223 return E_ITS_MAPC_COLLECTION_OOR;
1224
1225 ret = vgic_its_alloc_collection(its, &collection,
1226 coll_id);
1227 if (ret)
1228 return ret;
1229 collection->target_addr = vcpu->vcpu_id;
1230 } else {
1231 collection->target_addr = vcpu->vcpu_id;
1232 update_affinity_collection(kvm, its, collection);
1233 }
1234 }
1235
1236 return 0;
1237 }
1238
1239 /*
1240 * The CLEAR command removes the pending state for a particular LPI.
1241 * Must be called with the its_lock mutex held.
1242 */
vgic_its_cmd_handle_clear(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1243 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1244 u64 *its_cmd)
1245 {
1246 u32 device_id = its_cmd_get_deviceid(its_cmd);
1247 u32 event_id = its_cmd_get_id(its_cmd);
1248 struct its_ite *ite;
1249
1250
1251 ite = find_ite(its, device_id, event_id);
1252 if (!ite)
1253 return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1254
1255 ite->irq->pending_latch = false;
1256
1257 if (ite->irq->hw)
1258 return irq_set_irqchip_state(ite->irq->host_irq,
1259 IRQCHIP_STATE_PENDING, false);
1260
1261 return 0;
1262 }
1263
vgic_its_inv_lpi(struct kvm * kvm,struct vgic_irq * irq)1264 int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq)
1265 {
1266 return update_lpi_config(kvm, irq, NULL, true);
1267 }
1268
1269 /*
1270 * The INV command syncs the configuration bits from the memory table.
1271 * Must be called with the its_lock mutex held.
1272 */
vgic_its_cmd_handle_inv(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1273 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1274 u64 *its_cmd)
1275 {
1276 u32 device_id = its_cmd_get_deviceid(its_cmd);
1277 u32 event_id = its_cmd_get_id(its_cmd);
1278 struct its_ite *ite;
1279
1280
1281 ite = find_ite(its, device_id, event_id);
1282 if (!ite)
1283 return E_ITS_INV_UNMAPPED_INTERRUPT;
1284
1285 return vgic_its_inv_lpi(kvm, ite->irq);
1286 }
1287
1288 /**
1289 * vgic_its_invall - invalidate all LPIs targeting a given vcpu
1290 * @vcpu: the vcpu for which the RD is targeted by an invalidation
1291 *
1292 * Contrary to the INVALL command, this targets a RD instead of a
1293 * collection, and we don't need to hold the its_lock, since no ITS is
1294 * involved here.
1295 */
vgic_its_invall(struct kvm_vcpu * vcpu)1296 int vgic_its_invall(struct kvm_vcpu *vcpu)
1297 {
1298 struct kvm *kvm = vcpu->kvm;
1299 struct vgic_dist *dist = &kvm->arch.vgic;
1300 struct vgic_irq *irq;
1301 unsigned long intid;
1302
1303 xa_for_each(&dist->lpi_xa, intid, irq) {
1304 irq = vgic_get_irq(kvm, intid);
1305 if (!irq)
1306 continue;
1307
1308 update_lpi_config(kvm, irq, vcpu, false);
1309 vgic_put_irq(kvm, irq);
1310 }
1311
1312 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1313 its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1314
1315 return 0;
1316 }
1317
1318 /*
1319 * The INVALL command requests flushing of all IRQ data in this collection.
1320 * Find the VCPU mapped to that collection, then iterate over the VM's list
1321 * of mapped LPIs and update the configuration for each IRQ which targets
1322 * the specified vcpu. The configuration will be read from the in-memory
1323 * configuration table.
1324 * Must be called with the its_lock mutex held.
1325 */
vgic_its_cmd_handle_invall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1326 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1327 u64 *its_cmd)
1328 {
1329 u32 coll_id = its_cmd_get_collection(its_cmd);
1330 struct its_collection *collection;
1331 struct kvm_vcpu *vcpu;
1332
1333 collection = find_collection(its, coll_id);
1334 if (!its_is_collection_mapped(collection))
1335 return E_ITS_INVALL_UNMAPPED_COLLECTION;
1336
1337 vcpu = collection_to_vcpu(kvm, collection);
1338 vgic_its_invall(vcpu);
1339
1340 return 0;
1341 }
1342
1343 /*
1344 * The MOVALL command moves the pending state of all IRQs targeting one
1345 * redistributor to another. We don't hold the pending state in the VCPUs,
1346 * but in the IRQs instead, so there is really not much to do for us here.
1347 * However the spec says that no IRQ must target the old redistributor
1348 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1349 * This command affects all LPIs in the system that target that redistributor.
1350 */
vgic_its_cmd_handle_movall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1351 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1352 u64 *its_cmd)
1353 {
1354 struct vgic_dist *dist = &kvm->arch.vgic;
1355 struct kvm_vcpu *vcpu1, *vcpu2;
1356 struct vgic_irq *irq;
1357 unsigned long intid;
1358
1359 /* We advertise GITS_TYPER.PTA==0, making the address the vcpu ID */
1360 vcpu1 = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd));
1361 vcpu2 = kvm_get_vcpu_by_id(kvm, its_cmd_mask_field(its_cmd, 3, 16, 32));
1362
1363 if (!vcpu1 || !vcpu2)
1364 return E_ITS_MOVALL_PROCNUM_OOR;
1365
1366 if (vcpu1 == vcpu2)
1367 return 0;
1368
1369 xa_for_each(&dist->lpi_xa, intid, irq) {
1370 irq = vgic_get_irq(kvm, intid);
1371 if (!irq)
1372 continue;
1373
1374 update_affinity(irq, vcpu2);
1375
1376 vgic_put_irq(kvm, irq);
1377 }
1378
1379 vgic_its_invalidate_cache(its);
1380
1381 return 0;
1382 }
1383
1384 /*
1385 * The INT command injects the LPI associated with that DevID/EvID pair.
1386 * Must be called with the its_lock mutex held.
1387 */
vgic_its_cmd_handle_int(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1388 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1389 u64 *its_cmd)
1390 {
1391 u32 msi_data = its_cmd_get_id(its_cmd);
1392 u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1393
1394 return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1395 }
1396
1397 /*
1398 * This function is called with the its_cmd lock held, but the ITS data
1399 * structure lock dropped.
1400 */
vgic_its_handle_command(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1401 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1402 u64 *its_cmd)
1403 {
1404 int ret = -ENODEV;
1405
1406 mutex_lock(&its->its_lock);
1407 switch (its_cmd_get_command(its_cmd)) {
1408 case GITS_CMD_MAPD:
1409 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1410 break;
1411 case GITS_CMD_MAPC:
1412 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1413 break;
1414 case GITS_CMD_MAPI:
1415 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1416 break;
1417 case GITS_CMD_MAPTI:
1418 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1419 break;
1420 case GITS_CMD_MOVI:
1421 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1422 break;
1423 case GITS_CMD_DISCARD:
1424 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1425 break;
1426 case GITS_CMD_CLEAR:
1427 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1428 break;
1429 case GITS_CMD_MOVALL:
1430 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1431 break;
1432 case GITS_CMD_INT:
1433 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1434 break;
1435 case GITS_CMD_INV:
1436 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1437 break;
1438 case GITS_CMD_INVALL:
1439 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1440 break;
1441 case GITS_CMD_SYNC:
1442 /* we ignore this command: we are in sync all of the time */
1443 ret = 0;
1444 break;
1445 }
1446 mutex_unlock(&its->its_lock);
1447
1448 return ret;
1449 }
1450
vgic_sanitise_its_baser(u64 reg)1451 static u64 vgic_sanitise_its_baser(u64 reg)
1452 {
1453 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1454 GITS_BASER_SHAREABILITY_SHIFT,
1455 vgic_sanitise_shareability);
1456 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1457 GITS_BASER_INNER_CACHEABILITY_SHIFT,
1458 vgic_sanitise_inner_cacheability);
1459 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1460 GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1461 vgic_sanitise_outer_cacheability);
1462
1463 /* We support only one (ITS) page size: 64K */
1464 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1465
1466 return reg;
1467 }
1468
vgic_sanitise_its_cbaser(u64 reg)1469 static u64 vgic_sanitise_its_cbaser(u64 reg)
1470 {
1471 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1472 GITS_CBASER_SHAREABILITY_SHIFT,
1473 vgic_sanitise_shareability);
1474 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1475 GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1476 vgic_sanitise_inner_cacheability);
1477 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1478 GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1479 vgic_sanitise_outer_cacheability);
1480
1481 /* Sanitise the physical address to be 64k aligned. */
1482 reg &= ~GENMASK_ULL(15, 12);
1483
1484 return reg;
1485 }
1486
vgic_mmio_read_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1487 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1488 struct vgic_its *its,
1489 gpa_t addr, unsigned int len)
1490 {
1491 return extract_bytes(its->cbaser, addr & 7, len);
1492 }
1493
vgic_mmio_write_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1494 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1495 gpa_t addr, unsigned int len,
1496 unsigned long val)
1497 {
1498 /* When GITS_CTLR.Enable is 1, this register is RO. */
1499 if (its->enabled)
1500 return;
1501
1502 mutex_lock(&its->cmd_lock);
1503 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1504 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1505 its->creadr = 0;
1506 /*
1507 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1508 * it to CREADR to make sure we start with an empty command buffer.
1509 */
1510 its->cwriter = its->creadr;
1511 mutex_unlock(&its->cmd_lock);
1512 }
1513
1514 #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12)
1515 #define ITS_CMD_SIZE 32
1516 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5))
1517
1518 /* Must be called with the cmd_lock held. */
vgic_its_process_commands(struct kvm * kvm,struct vgic_its * its)1519 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1520 {
1521 gpa_t cbaser;
1522 u64 cmd_buf[4];
1523
1524 /* Commands are only processed when the ITS is enabled. */
1525 if (!its->enabled)
1526 return;
1527
1528 cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1529
1530 while (its->cwriter != its->creadr) {
1531 int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1532 cmd_buf, ITS_CMD_SIZE);
1533 /*
1534 * If kvm_read_guest() fails, this could be due to the guest
1535 * programming a bogus value in CBASER or something else going
1536 * wrong from which we cannot easily recover.
1537 * According to section 6.3.2 in the GICv3 spec we can just
1538 * ignore that command then.
1539 */
1540 if (!ret)
1541 vgic_its_handle_command(kvm, its, cmd_buf);
1542
1543 its->creadr += ITS_CMD_SIZE;
1544 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1545 its->creadr = 0;
1546 }
1547 }
1548
1549 /*
1550 * By writing to CWRITER the guest announces new commands to be processed.
1551 * To avoid any races in the first place, we take the its_cmd lock, which
1552 * protects our ring buffer variables, so that there is only one user
1553 * per ITS handling commands at a given time.
1554 */
vgic_mmio_write_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1555 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1556 gpa_t addr, unsigned int len,
1557 unsigned long val)
1558 {
1559 u64 reg;
1560
1561 if (!its)
1562 return;
1563
1564 mutex_lock(&its->cmd_lock);
1565
1566 reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1567 reg = ITS_CMD_OFFSET(reg);
1568 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1569 mutex_unlock(&its->cmd_lock);
1570 return;
1571 }
1572 its->cwriter = reg;
1573
1574 vgic_its_process_commands(kvm, its);
1575
1576 mutex_unlock(&its->cmd_lock);
1577 }
1578
vgic_mmio_read_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1579 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1580 struct vgic_its *its,
1581 gpa_t addr, unsigned int len)
1582 {
1583 return extract_bytes(its->cwriter, addr & 0x7, len);
1584 }
1585
vgic_mmio_read_its_creadr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1586 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1587 struct vgic_its *its,
1588 gpa_t addr, unsigned int len)
1589 {
1590 return extract_bytes(its->creadr, addr & 0x7, len);
1591 }
1592
vgic_mmio_uaccess_write_its_creadr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1593 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1594 struct vgic_its *its,
1595 gpa_t addr, unsigned int len,
1596 unsigned long val)
1597 {
1598 u32 cmd_offset;
1599 int ret = 0;
1600
1601 mutex_lock(&its->cmd_lock);
1602
1603 if (its->enabled) {
1604 ret = -EBUSY;
1605 goto out;
1606 }
1607
1608 cmd_offset = ITS_CMD_OFFSET(val);
1609 if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1610 ret = -EINVAL;
1611 goto out;
1612 }
1613
1614 its->creadr = cmd_offset;
1615 out:
1616 mutex_unlock(&its->cmd_lock);
1617 return ret;
1618 }
1619
1620 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
vgic_mmio_read_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1621 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1622 struct vgic_its *its,
1623 gpa_t addr, unsigned int len)
1624 {
1625 u64 reg;
1626
1627 switch (BASER_INDEX(addr)) {
1628 case 0:
1629 reg = its->baser_device_table;
1630 break;
1631 case 1:
1632 reg = its->baser_coll_table;
1633 break;
1634 default:
1635 reg = 0;
1636 break;
1637 }
1638
1639 return extract_bytes(reg, addr & 7, len);
1640 }
1641
1642 #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
vgic_mmio_write_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1643 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1644 struct vgic_its *its,
1645 gpa_t addr, unsigned int len,
1646 unsigned long val)
1647 {
1648 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1649 u64 entry_size, table_type;
1650 u64 reg, *regptr, clearbits = 0;
1651
1652 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1653 if (its->enabled)
1654 return;
1655
1656 switch (BASER_INDEX(addr)) {
1657 case 0:
1658 regptr = &its->baser_device_table;
1659 entry_size = abi->dte_esz;
1660 table_type = GITS_BASER_TYPE_DEVICE;
1661 break;
1662 case 1:
1663 regptr = &its->baser_coll_table;
1664 entry_size = abi->cte_esz;
1665 table_type = GITS_BASER_TYPE_COLLECTION;
1666 clearbits = GITS_BASER_INDIRECT;
1667 break;
1668 default:
1669 return;
1670 }
1671
1672 reg = update_64bit_reg(*regptr, addr & 7, len, val);
1673 reg &= ~GITS_BASER_RO_MASK;
1674 reg &= ~clearbits;
1675
1676 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1677 reg |= table_type << GITS_BASER_TYPE_SHIFT;
1678 reg = vgic_sanitise_its_baser(reg);
1679
1680 *regptr = reg;
1681
1682 if (!(reg & GITS_BASER_VALID)) {
1683 /* Take the its_lock to prevent a race with a save/restore */
1684 mutex_lock(&its->its_lock);
1685 switch (table_type) {
1686 case GITS_BASER_TYPE_DEVICE:
1687 vgic_its_free_device_list(kvm, its);
1688 break;
1689 case GITS_BASER_TYPE_COLLECTION:
1690 vgic_its_free_collection_list(kvm, its);
1691 break;
1692 }
1693 mutex_unlock(&its->its_lock);
1694 }
1695 }
1696
vgic_mmio_read_its_ctlr(struct kvm * vcpu,struct vgic_its * its,gpa_t addr,unsigned int len)1697 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1698 struct vgic_its *its,
1699 gpa_t addr, unsigned int len)
1700 {
1701 u32 reg = 0;
1702
1703 mutex_lock(&its->cmd_lock);
1704 if (its->creadr == its->cwriter)
1705 reg |= GITS_CTLR_QUIESCENT;
1706 if (its->enabled)
1707 reg |= GITS_CTLR_ENABLE;
1708 mutex_unlock(&its->cmd_lock);
1709
1710 return reg;
1711 }
1712
vgic_mmio_write_its_ctlr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1713 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1714 gpa_t addr, unsigned int len,
1715 unsigned long val)
1716 {
1717 mutex_lock(&its->cmd_lock);
1718
1719 /*
1720 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1721 * device/collection BASER are invalid
1722 */
1723 if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1724 (!(its->baser_device_table & GITS_BASER_VALID) ||
1725 !(its->baser_coll_table & GITS_BASER_VALID) ||
1726 !(its->cbaser & GITS_CBASER_VALID)))
1727 goto out;
1728
1729 its->enabled = !!(val & GITS_CTLR_ENABLE);
1730 if (!its->enabled)
1731 vgic_its_invalidate_cache(its);
1732
1733 /*
1734 * Try to process any pending commands. This function bails out early
1735 * if the ITS is disabled or no commands have been queued.
1736 */
1737 vgic_its_process_commands(kvm, its);
1738
1739 out:
1740 mutex_unlock(&its->cmd_lock);
1741 }
1742
1743 #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \
1744 { \
1745 .reg_offset = off, \
1746 .len = length, \
1747 .access_flags = acc, \
1748 .its_read = rd, \
1749 .its_write = wr, \
1750 }
1751
1752 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1753 { \
1754 .reg_offset = off, \
1755 .len = length, \
1756 .access_flags = acc, \
1757 .its_read = rd, \
1758 .its_write = wr, \
1759 .uaccess_its_write = uwr, \
1760 }
1761
its_mmio_write_wi(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1762 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1763 gpa_t addr, unsigned int len, unsigned long val)
1764 {
1765 /* Ignore */
1766 }
1767
1768 static struct vgic_register_region its_registers[] = {
1769 REGISTER_ITS_DESC(GITS_CTLR,
1770 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1771 VGIC_ACCESS_32bit),
1772 REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1773 vgic_mmio_read_its_iidr, its_mmio_write_wi,
1774 vgic_mmio_uaccess_write_its_iidr, 4,
1775 VGIC_ACCESS_32bit),
1776 REGISTER_ITS_DESC(GITS_TYPER,
1777 vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1778 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1779 REGISTER_ITS_DESC(GITS_CBASER,
1780 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1781 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1782 REGISTER_ITS_DESC(GITS_CWRITER,
1783 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1784 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1785 REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1786 vgic_mmio_read_its_creadr, its_mmio_write_wi,
1787 vgic_mmio_uaccess_write_its_creadr, 8,
1788 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1789 REGISTER_ITS_DESC(GITS_BASER,
1790 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1791 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1792 REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1793 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1794 VGIC_ACCESS_32bit),
1795 };
1796
1797 /* This is called on setting the LPI enable bit in the redistributor. */
vgic_enable_lpis(struct kvm_vcpu * vcpu)1798 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1799 {
1800 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1801 its_sync_lpi_pending_table(vcpu);
1802 }
1803
vgic_register_its_iodev(struct kvm * kvm,struct vgic_its * its,u64 addr)1804 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1805 u64 addr)
1806 {
1807 struct vgic_io_device *iodev = &its->iodev;
1808 int ret;
1809
1810 mutex_lock(&kvm->slots_lock);
1811 if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1812 ret = -EBUSY;
1813 goto out;
1814 }
1815
1816 its->vgic_its_base = addr;
1817 iodev->regions = its_registers;
1818 iodev->nr_regions = ARRAY_SIZE(its_registers);
1819 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1820
1821 iodev->base_addr = its->vgic_its_base;
1822 iodev->iodev_type = IODEV_ITS;
1823 iodev->its = its;
1824 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1825 KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1826 out:
1827 mutex_unlock(&kvm->slots_lock);
1828
1829 return ret;
1830 }
1831
1832 #define INITIAL_BASER_VALUE \
1833 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \
1834 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \
1835 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \
1836 GITS_BASER_PAGE_SIZE_64K)
1837
1838 #define INITIAL_PROPBASER_VALUE \
1839 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \
1840 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \
1841 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1842
vgic_its_create(struct kvm_device * dev,u32 type)1843 static int vgic_its_create(struct kvm_device *dev, u32 type)
1844 {
1845 int ret;
1846 struct vgic_its *its;
1847
1848 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1849 return -ENODEV;
1850
1851 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL_ACCOUNT);
1852 if (!its)
1853 return -ENOMEM;
1854
1855 mutex_lock(&dev->kvm->arch.config_lock);
1856
1857 if (vgic_initialized(dev->kvm)) {
1858 ret = vgic_v4_init(dev->kvm);
1859 if (ret < 0) {
1860 mutex_unlock(&dev->kvm->arch.config_lock);
1861 kfree(its);
1862 return ret;
1863 }
1864 }
1865
1866 mutex_init(&its->its_lock);
1867 mutex_init(&its->cmd_lock);
1868
1869 /* Yep, even more trickery for lock ordering... */
1870 #ifdef CONFIG_LOCKDEP
1871 mutex_lock(&its->cmd_lock);
1872 mutex_lock(&its->its_lock);
1873 mutex_unlock(&its->its_lock);
1874 mutex_unlock(&its->cmd_lock);
1875 #endif
1876
1877 its->vgic_its_base = VGIC_ADDR_UNDEF;
1878
1879 INIT_LIST_HEAD(&its->device_list);
1880 INIT_LIST_HEAD(&its->collection_list);
1881 xa_init(&its->translation_cache);
1882
1883 dev->kvm->arch.vgic.msis_require_devid = true;
1884 dev->kvm->arch.vgic.has_its = true;
1885 its->enabled = false;
1886 its->dev = dev;
1887
1888 its->baser_device_table = INITIAL_BASER_VALUE |
1889 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1890 its->baser_coll_table = INITIAL_BASER_VALUE |
1891 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1892 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1893
1894 dev->private = its;
1895
1896 ret = vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1897
1898 mutex_unlock(&dev->kvm->arch.config_lock);
1899
1900 return ret;
1901 }
1902
vgic_its_destroy(struct kvm_device * kvm_dev)1903 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1904 {
1905 struct kvm *kvm = kvm_dev->kvm;
1906 struct vgic_its *its = kvm_dev->private;
1907
1908 mutex_lock(&its->its_lock);
1909
1910 vgic_its_debug_destroy(kvm_dev);
1911
1912 vgic_its_free_device_list(kvm, its);
1913 vgic_its_free_collection_list(kvm, its);
1914 vgic_its_invalidate_cache(its);
1915 xa_destroy(&its->translation_cache);
1916
1917 mutex_unlock(&its->its_lock);
1918 kfree(its);
1919 kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
1920 }
1921
vgic_its_has_attr_regs(struct kvm_device * dev,struct kvm_device_attr * attr)1922 static int vgic_its_has_attr_regs(struct kvm_device *dev,
1923 struct kvm_device_attr *attr)
1924 {
1925 const struct vgic_register_region *region;
1926 gpa_t offset = attr->attr;
1927 int align;
1928
1929 align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1930
1931 if (offset & align)
1932 return -EINVAL;
1933
1934 region = vgic_find_mmio_region(its_registers,
1935 ARRAY_SIZE(its_registers),
1936 offset);
1937 if (!region)
1938 return -ENXIO;
1939
1940 return 0;
1941 }
1942
vgic_its_attr_regs_access(struct kvm_device * dev,struct kvm_device_attr * attr,u64 * reg,bool is_write)1943 static int vgic_its_attr_regs_access(struct kvm_device *dev,
1944 struct kvm_device_attr *attr,
1945 u64 *reg, bool is_write)
1946 {
1947 const struct vgic_register_region *region;
1948 struct vgic_its *its;
1949 gpa_t addr, offset;
1950 unsigned int len;
1951 int align, ret = 0;
1952
1953 its = dev->private;
1954 offset = attr->attr;
1955
1956 /*
1957 * Although the spec supports upper/lower 32-bit accesses to
1958 * 64-bit ITS registers, the userspace ABI requires 64-bit
1959 * accesses to all 64-bit wide registers. We therefore only
1960 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1961 * registers
1962 */
1963 if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1964 align = 0x3;
1965 else
1966 align = 0x7;
1967
1968 if (offset & align)
1969 return -EINVAL;
1970
1971 mutex_lock(&dev->kvm->lock);
1972
1973 if (kvm_trylock_all_vcpus(dev->kvm)) {
1974 mutex_unlock(&dev->kvm->lock);
1975 return -EBUSY;
1976 }
1977
1978 mutex_lock(&dev->kvm->arch.config_lock);
1979
1980 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1981 ret = -ENXIO;
1982 goto out;
1983 }
1984
1985 region = vgic_find_mmio_region(its_registers,
1986 ARRAY_SIZE(its_registers),
1987 offset);
1988 if (!region) {
1989 ret = -ENXIO;
1990 goto out;
1991 }
1992
1993 addr = its->vgic_its_base + offset;
1994
1995 len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
1996
1997 if (is_write) {
1998 if (region->uaccess_its_write)
1999 ret = region->uaccess_its_write(dev->kvm, its, addr,
2000 len, *reg);
2001 else
2002 region->its_write(dev->kvm, its, addr, len, *reg);
2003 } else {
2004 *reg = region->its_read(dev->kvm, its, addr, len);
2005 }
2006 out:
2007 mutex_unlock(&dev->kvm->arch.config_lock);
2008 kvm_unlock_all_vcpus(dev->kvm);
2009 mutex_unlock(&dev->kvm->lock);
2010 return ret;
2011 }
2012
compute_next_devid_offset(struct list_head * h,struct its_device * dev)2013 static u32 compute_next_devid_offset(struct list_head *h,
2014 struct its_device *dev)
2015 {
2016 struct its_device *next;
2017 u32 next_offset;
2018
2019 if (list_is_last(&dev->dev_list, h))
2020 return 0;
2021 next = list_next_entry(dev, dev_list);
2022 next_offset = next->device_id - dev->device_id;
2023
2024 return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2025 }
2026
compute_next_eventid_offset(struct list_head * h,struct its_ite * ite)2027 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2028 {
2029 struct its_ite *next;
2030 u32 next_offset;
2031
2032 if (list_is_last(&ite->ite_list, h))
2033 return 0;
2034 next = list_next_entry(ite, ite_list);
2035 next_offset = next->event_id - ite->event_id;
2036
2037 return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2038 }
2039
2040 /**
2041 * typedef entry_fn_t - Callback called on a table entry restore path
2042 * @its: its handle
2043 * @id: id of the entry
2044 * @entry: pointer to the entry
2045 * @opaque: pointer to an opaque data
2046 *
2047 * Return: < 0 on error, 0 if last element was identified, id offset to next
2048 * element otherwise
2049 */
2050 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2051 void *opaque);
2052
2053 /**
2054 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
2055 * to each entry
2056 *
2057 * @its: its handle
2058 * @base: base gpa of the table
2059 * @size: size of the table in bytes
2060 * @esz: entry size in bytes
2061 * @start_id: the ID of the first entry in the table
2062 * (non zero for 2d level tables)
2063 * @fn: function to apply on each entry
2064 * @opaque: pointer to opaque data
2065 *
2066 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
2067 * (the last element may not be found on second level tables)
2068 */
scan_its_table(struct vgic_its * its,gpa_t base,int size,u32 esz,int start_id,entry_fn_t fn,void * opaque)2069 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2070 int start_id, entry_fn_t fn, void *opaque)
2071 {
2072 struct kvm *kvm = its->dev->kvm;
2073 unsigned long len = size;
2074 int id = start_id;
2075 gpa_t gpa = base;
2076 char entry[ESZ_MAX];
2077 int ret;
2078
2079 memset(entry, 0, esz);
2080
2081 while (true) {
2082 int next_offset;
2083 size_t byte_offset;
2084
2085 ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2086 if (ret)
2087 return ret;
2088
2089 next_offset = fn(its, id, entry, opaque);
2090 if (next_offset <= 0)
2091 return next_offset;
2092
2093 byte_offset = next_offset * esz;
2094 if (byte_offset >= len)
2095 break;
2096
2097 id += next_offset;
2098 gpa += byte_offset;
2099 len -= byte_offset;
2100 }
2101 return 1;
2102 }
2103
2104 /*
2105 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
2106 */
vgic_its_save_ite(struct vgic_its * its,struct its_device * dev,struct its_ite * ite,gpa_t gpa)2107 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2108 struct its_ite *ite, gpa_t gpa)
2109 {
2110 u32 next_offset;
2111 u64 val;
2112
2113 next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2114 val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2115 ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2116 ite->collection->collection_id;
2117 val = cpu_to_le64(val);
2118
2119 return vgic_its_write_entry_lock(its, gpa, val, ite);
2120 }
2121
2122 /**
2123 * vgic_its_restore_ite - restore an interrupt translation entry
2124 *
2125 * @its: its handle
2126 * @event_id: id used for indexing
2127 * @ptr: pointer to the ITE entry
2128 * @opaque: pointer to the its_device
2129 */
vgic_its_restore_ite(struct vgic_its * its,u32 event_id,void * ptr,void * opaque)2130 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2131 void *ptr, void *opaque)
2132 {
2133 struct its_device *dev = opaque;
2134 struct its_collection *collection;
2135 struct kvm *kvm = its->dev->kvm;
2136 struct kvm_vcpu *vcpu = NULL;
2137 u64 val;
2138 u64 *p = (u64 *)ptr;
2139 struct vgic_irq *irq;
2140 u32 coll_id, lpi_id;
2141 struct its_ite *ite;
2142 u32 offset;
2143
2144 val = *p;
2145
2146 val = le64_to_cpu(val);
2147
2148 coll_id = val & KVM_ITS_ITE_ICID_MASK;
2149 lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2150
2151 if (!lpi_id)
2152 return 1; /* invalid entry, no choice but to scan next entry */
2153
2154 if (lpi_id < VGIC_MIN_LPI)
2155 return -EINVAL;
2156
2157 offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2158 if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2159 return -EINVAL;
2160
2161 collection = find_collection(its, coll_id);
2162 if (!collection)
2163 return -EINVAL;
2164
2165 if (!vgic_its_check_event_id(its, dev, event_id))
2166 return -EINVAL;
2167
2168 ite = vgic_its_alloc_ite(dev, collection, event_id);
2169 if (IS_ERR(ite))
2170 return PTR_ERR(ite);
2171
2172 if (its_is_collection_mapped(collection))
2173 vcpu = kvm_get_vcpu_by_id(kvm, collection->target_addr);
2174
2175 irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2176 if (IS_ERR(irq)) {
2177 its_free_ite(kvm, ite);
2178 return PTR_ERR(irq);
2179 }
2180 ite->irq = irq;
2181
2182 return offset;
2183 }
2184
vgic_its_ite_cmp(void * priv,const struct list_head * a,const struct list_head * b)2185 static int vgic_its_ite_cmp(void *priv, const struct list_head *a,
2186 const struct list_head *b)
2187 {
2188 struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2189 struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2190
2191 if (itea->event_id < iteb->event_id)
2192 return -1;
2193 else
2194 return 1;
2195 }
2196
vgic_its_save_itt(struct vgic_its * its,struct its_device * device)2197 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2198 {
2199 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2200 gpa_t base = device->itt_addr;
2201 struct its_ite *ite;
2202 int ret;
2203 int ite_esz = abi->ite_esz;
2204
2205 list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2206
2207 list_for_each_entry(ite, &device->itt_head, ite_list) {
2208 gpa_t gpa = base + ite->event_id * ite_esz;
2209
2210 /*
2211 * If an LPI carries the HW bit, this means that this
2212 * interrupt is controlled by GICv4, and we do not
2213 * have direct access to that state without GICv4.1.
2214 * Let's simply fail the save operation...
2215 */
2216 if (ite->irq->hw && !kvm_vgic_global_state.has_gicv4_1)
2217 return -EACCES;
2218
2219 ret = vgic_its_save_ite(its, device, ite, gpa);
2220 if (ret)
2221 return ret;
2222 }
2223 return 0;
2224 }
2225
2226 /**
2227 * vgic_its_restore_itt - restore the ITT of a device
2228 *
2229 * @its: its handle
2230 * @dev: device handle
2231 *
2232 * Return 0 on success, < 0 on error
2233 */
vgic_its_restore_itt(struct vgic_its * its,struct its_device * dev)2234 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2235 {
2236 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2237 gpa_t base = dev->itt_addr;
2238 int ret;
2239 int ite_esz = abi->ite_esz;
2240 size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2241
2242 ret = scan_its_table(its, base, max_size, ite_esz, 0,
2243 vgic_its_restore_ite, dev);
2244
2245 /* scan_its_table returns +1 if all ITEs are invalid */
2246 if (ret > 0)
2247 ret = 0;
2248
2249 return ret;
2250 }
2251
2252 /**
2253 * vgic_its_save_dte - Save a device table entry at a given GPA
2254 *
2255 * @its: ITS handle
2256 * @dev: ITS device
2257 * @ptr: GPA
2258 */
vgic_its_save_dte(struct vgic_its * its,struct its_device * dev,gpa_t ptr)2259 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2260 gpa_t ptr)
2261 {
2262 u64 val, itt_addr_field;
2263 u32 next_offset;
2264
2265 itt_addr_field = dev->itt_addr >> 8;
2266 next_offset = compute_next_devid_offset(&its->device_list, dev);
2267 val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2268 ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2269 (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2270 (dev->num_eventid_bits - 1));
2271 val = cpu_to_le64(val);
2272
2273 return vgic_its_write_entry_lock(its, ptr, val, dte);
2274 }
2275
2276 /**
2277 * vgic_its_restore_dte - restore a device table entry
2278 *
2279 * @its: its handle
2280 * @id: device id the DTE corresponds to
2281 * @ptr: kernel VA where the 8 byte DTE is located
2282 * @opaque: unused
2283 *
2284 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2285 * next dte otherwise
2286 */
vgic_its_restore_dte(struct vgic_its * its,u32 id,void * ptr,void * opaque)2287 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2288 void *ptr, void *opaque)
2289 {
2290 struct its_device *dev;
2291 u64 baser = its->baser_device_table;
2292 gpa_t itt_addr;
2293 u8 num_eventid_bits;
2294 u64 entry = *(u64 *)ptr;
2295 bool valid;
2296 u32 offset;
2297 int ret;
2298
2299 entry = le64_to_cpu(entry);
2300
2301 valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2302 num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2303 itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2304 >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2305
2306 if (!valid)
2307 return 1;
2308
2309 /* dte entry is valid */
2310 offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2311
2312 if (!vgic_its_check_id(its, baser, id, NULL))
2313 return -EINVAL;
2314
2315 dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2316 if (IS_ERR(dev))
2317 return PTR_ERR(dev);
2318
2319 ret = vgic_its_restore_itt(its, dev);
2320 if (ret) {
2321 vgic_its_free_device(its->dev->kvm, its, dev);
2322 return ret;
2323 }
2324
2325 return offset;
2326 }
2327
vgic_its_device_cmp(void * priv,const struct list_head * a,const struct list_head * b)2328 static int vgic_its_device_cmp(void *priv, const struct list_head *a,
2329 const struct list_head *b)
2330 {
2331 struct its_device *deva = container_of(a, struct its_device, dev_list);
2332 struct its_device *devb = container_of(b, struct its_device, dev_list);
2333
2334 if (deva->device_id < devb->device_id)
2335 return -1;
2336 else
2337 return 1;
2338 }
2339
2340 /*
2341 * vgic_its_save_device_tables - Save the device table and all ITT
2342 * into guest RAM
2343 *
2344 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2345 * returns the GPA of the device entry
2346 */
vgic_its_save_device_tables(struct vgic_its * its)2347 static int vgic_its_save_device_tables(struct vgic_its *its)
2348 {
2349 u64 baser = its->baser_device_table;
2350 struct its_device *dev;
2351
2352 if (!(baser & GITS_BASER_VALID))
2353 return 0;
2354
2355 list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2356
2357 list_for_each_entry(dev, &its->device_list, dev_list) {
2358 int ret;
2359 gpa_t eaddr;
2360
2361 if (!vgic_its_check_id(its, baser,
2362 dev->device_id, &eaddr))
2363 return -EINVAL;
2364
2365 ret = vgic_its_save_itt(its, dev);
2366 if (ret)
2367 return ret;
2368
2369 ret = vgic_its_save_dte(its, dev, eaddr);
2370 if (ret)
2371 return ret;
2372 }
2373 return 0;
2374 }
2375
2376 /**
2377 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2378 *
2379 * @its: its handle
2380 * @id: index of the entry in the L1 table
2381 * @addr: kernel VA
2382 * @opaque: unused
2383 *
2384 * L1 table entries are scanned by steps of 1 entry
2385 * Return < 0 if error, 0 if last dte was found when scanning the L2
2386 * table, +1 otherwise (meaning next L1 entry must be scanned)
2387 */
handle_l1_dte(struct vgic_its * its,u32 id,void * addr,void * opaque)2388 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2389 void *opaque)
2390 {
2391 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2392 int l2_start_id = id * (SZ_64K / abi->dte_esz);
2393 u64 entry = *(u64 *)addr;
2394 int dte_esz = abi->dte_esz;
2395 gpa_t gpa;
2396 int ret;
2397
2398 entry = le64_to_cpu(entry);
2399
2400 if (!(entry & KVM_ITS_L1E_VALID_MASK))
2401 return 1;
2402
2403 gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2404
2405 ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2406 l2_start_id, vgic_its_restore_dte, NULL);
2407
2408 return ret;
2409 }
2410
2411 /*
2412 * vgic_its_restore_device_tables - Restore the device table and all ITT
2413 * from guest RAM to internal data structs
2414 */
vgic_its_restore_device_tables(struct vgic_its * its)2415 static int vgic_its_restore_device_tables(struct vgic_its *its)
2416 {
2417 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2418 u64 baser = its->baser_device_table;
2419 int l1_esz, ret;
2420 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2421 gpa_t l1_gpa;
2422
2423 if (!(baser & GITS_BASER_VALID))
2424 return 0;
2425
2426 l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2427
2428 if (baser & GITS_BASER_INDIRECT) {
2429 l1_esz = GITS_LVL1_ENTRY_SIZE;
2430 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2431 handle_l1_dte, NULL);
2432 } else {
2433 l1_esz = abi->dte_esz;
2434 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2435 vgic_its_restore_dte, NULL);
2436 }
2437
2438 /* scan_its_table returns +1 if all entries are invalid */
2439 if (ret > 0)
2440 ret = 0;
2441
2442 if (ret < 0)
2443 vgic_its_free_device_list(its->dev->kvm, its);
2444
2445 return ret;
2446 }
2447
vgic_its_save_cte(struct vgic_its * its,struct its_collection * collection,gpa_t gpa)2448 static int vgic_its_save_cte(struct vgic_its *its,
2449 struct its_collection *collection,
2450 gpa_t gpa)
2451 {
2452 u64 val;
2453
2454 val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2455 ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2456 collection->collection_id);
2457 val = cpu_to_le64(val);
2458
2459 return vgic_its_write_entry_lock(its, gpa, val, cte);
2460 }
2461
2462 /*
2463 * Restore a collection entry into the ITS collection table.
2464 * Return +1 on success, 0 if the entry was invalid (which should be
2465 * interpreted as end-of-table), and a negative error value for generic errors.
2466 */
vgic_its_restore_cte(struct vgic_its * its,gpa_t gpa)2467 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa)
2468 {
2469 struct its_collection *collection;
2470 struct kvm *kvm = its->dev->kvm;
2471 u32 target_addr, coll_id;
2472 u64 val;
2473 int ret;
2474
2475 ret = vgic_its_read_entry_lock(its, gpa, &val, cte);
2476 if (ret)
2477 return ret;
2478 val = le64_to_cpu(val);
2479 if (!(val & KVM_ITS_CTE_VALID_MASK))
2480 return 0;
2481
2482 target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2483 coll_id = val & KVM_ITS_CTE_ICID_MASK;
2484
2485 if (target_addr != COLLECTION_NOT_MAPPED &&
2486 !kvm_get_vcpu_by_id(kvm, target_addr))
2487 return -EINVAL;
2488
2489 collection = find_collection(its, coll_id);
2490 if (collection)
2491 return -EEXIST;
2492
2493 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
2494 return -EINVAL;
2495
2496 ret = vgic_its_alloc_collection(its, &collection, coll_id);
2497 if (ret)
2498 return ret;
2499 collection->target_addr = target_addr;
2500 return 1;
2501 }
2502
2503 /*
2504 * vgic_its_save_collection_table - Save the collection table into
2505 * guest RAM
2506 */
vgic_its_save_collection_table(struct vgic_its * its)2507 static int vgic_its_save_collection_table(struct vgic_its *its)
2508 {
2509 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2510 u64 baser = its->baser_coll_table;
2511 gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2512 struct its_collection *collection;
2513 size_t max_size, filled = 0;
2514 int ret, cte_esz = abi->cte_esz;
2515
2516 if (!(baser & GITS_BASER_VALID))
2517 return 0;
2518
2519 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2520
2521 list_for_each_entry(collection, &its->collection_list, coll_list) {
2522 ret = vgic_its_save_cte(its, collection, gpa);
2523 if (ret)
2524 return ret;
2525 gpa += cte_esz;
2526 filled += cte_esz;
2527 }
2528
2529 if (filled == max_size)
2530 return 0;
2531
2532 /*
2533 * table is not fully filled, add a last dummy element
2534 * with valid bit unset
2535 */
2536 return vgic_its_write_entry_lock(its, gpa, 0ULL, cte);
2537 }
2538
2539 /*
2540 * vgic_its_restore_collection_table - reads the collection table
2541 * in guest memory and restores the ITS internal state. Requires the
2542 * BASER registers to be restored before.
2543 */
vgic_its_restore_collection_table(struct vgic_its * its)2544 static int vgic_its_restore_collection_table(struct vgic_its *its)
2545 {
2546 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2547 u64 baser = its->baser_coll_table;
2548 int cte_esz = abi->cte_esz;
2549 size_t max_size, read = 0;
2550 gpa_t gpa;
2551 int ret;
2552
2553 if (!(baser & GITS_BASER_VALID))
2554 return 0;
2555
2556 gpa = GITS_BASER_ADDR_48_to_52(baser);
2557
2558 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2559
2560 while (read < max_size) {
2561 ret = vgic_its_restore_cte(its, gpa);
2562 if (ret <= 0)
2563 break;
2564 gpa += cte_esz;
2565 read += cte_esz;
2566 }
2567
2568 if (ret > 0)
2569 return 0;
2570
2571 if (ret < 0)
2572 vgic_its_free_collection_list(its->dev->kvm, its);
2573
2574 return ret;
2575 }
2576
2577 /*
2578 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2579 * according to v0 ABI
2580 */
vgic_its_save_tables_v0(struct vgic_its * its)2581 static int vgic_its_save_tables_v0(struct vgic_its *its)
2582 {
2583 int ret;
2584
2585 ret = vgic_its_save_device_tables(its);
2586 if (ret)
2587 return ret;
2588
2589 return vgic_its_save_collection_table(its);
2590 }
2591
2592 /*
2593 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2594 * to internal data structs according to V0 ABI
2595 *
2596 */
vgic_its_restore_tables_v0(struct vgic_its * its)2597 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2598 {
2599 int ret;
2600
2601 ret = vgic_its_restore_collection_table(its);
2602 if (ret)
2603 return ret;
2604
2605 ret = vgic_its_restore_device_tables(its);
2606 if (ret)
2607 vgic_its_free_collection_list(its->dev->kvm, its);
2608 return ret;
2609 }
2610
vgic_its_commit_v0(struct vgic_its * its)2611 static int vgic_its_commit_v0(struct vgic_its *its)
2612 {
2613 const struct vgic_its_abi *abi;
2614
2615 abi = vgic_its_get_abi(its);
2616 its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2617 its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2618
2619 its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2620 << GITS_BASER_ENTRY_SIZE_SHIFT);
2621
2622 its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2623 << GITS_BASER_ENTRY_SIZE_SHIFT);
2624 return 0;
2625 }
2626
vgic_its_reset(struct kvm * kvm,struct vgic_its * its)2627 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2628 {
2629 /* We need to keep the ABI specific field values */
2630 its->baser_coll_table &= ~GITS_BASER_VALID;
2631 its->baser_device_table &= ~GITS_BASER_VALID;
2632 its->cbaser = 0;
2633 its->creadr = 0;
2634 its->cwriter = 0;
2635 its->enabled = 0;
2636 vgic_its_free_device_list(kvm, its);
2637 vgic_its_free_collection_list(kvm, its);
2638 }
2639
vgic_its_has_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2640 static int vgic_its_has_attr(struct kvm_device *dev,
2641 struct kvm_device_attr *attr)
2642 {
2643 switch (attr->group) {
2644 case KVM_DEV_ARM_VGIC_GRP_ADDR:
2645 switch (attr->attr) {
2646 case KVM_VGIC_ITS_ADDR_TYPE:
2647 return 0;
2648 }
2649 break;
2650 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2651 switch (attr->attr) {
2652 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2653 return 0;
2654 case KVM_DEV_ARM_ITS_CTRL_RESET:
2655 return 0;
2656 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2657 return 0;
2658 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2659 return 0;
2660 }
2661 break;
2662 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2663 return vgic_its_has_attr_regs(dev, attr);
2664 }
2665 return -ENXIO;
2666 }
2667
vgic_its_ctrl(struct kvm * kvm,struct vgic_its * its,u64 attr)2668 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2669 {
2670 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2671 int ret = 0;
2672
2673 if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2674 return 0;
2675
2676 mutex_lock(&kvm->lock);
2677
2678 if (kvm_trylock_all_vcpus(kvm)) {
2679 mutex_unlock(&kvm->lock);
2680 return -EBUSY;
2681 }
2682
2683 mutex_lock(&kvm->arch.config_lock);
2684 mutex_lock(&its->its_lock);
2685
2686 switch (attr) {
2687 case KVM_DEV_ARM_ITS_CTRL_RESET:
2688 vgic_its_reset(kvm, its);
2689 break;
2690 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2691 ret = abi->save_tables(its);
2692 break;
2693 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2694 ret = abi->restore_tables(its);
2695 break;
2696 default:
2697 ret = -ENXIO;
2698 break;
2699 }
2700
2701 mutex_unlock(&its->its_lock);
2702 mutex_unlock(&kvm->arch.config_lock);
2703 kvm_unlock_all_vcpus(kvm);
2704 mutex_unlock(&kvm->lock);
2705 return ret;
2706 }
2707
2708 /*
2709 * kvm_arch_allow_write_without_running_vcpu - allow writing guest memory
2710 * without the running VCPU when dirty ring is enabled.
2711 *
2712 * The running VCPU is required to track dirty guest pages when dirty ring
2713 * is enabled. Otherwise, the backup bitmap should be used to track the
2714 * dirty guest pages. When vgic/its tables are being saved, the backup
2715 * bitmap is used to track the dirty guest pages due to the missed running
2716 * VCPU in the period.
2717 */
kvm_arch_allow_write_without_running_vcpu(struct kvm * kvm)2718 bool kvm_arch_allow_write_without_running_vcpu(struct kvm *kvm)
2719 {
2720 struct vgic_dist *dist = &kvm->arch.vgic;
2721
2722 return dist->table_write_in_progress;
2723 }
2724
vgic_its_set_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2725 static int vgic_its_set_attr(struct kvm_device *dev,
2726 struct kvm_device_attr *attr)
2727 {
2728 struct vgic_its *its = dev->private;
2729 int ret;
2730
2731 switch (attr->group) {
2732 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2733 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2734 unsigned long type = (unsigned long)attr->attr;
2735 u64 addr;
2736
2737 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2738 return -ENODEV;
2739
2740 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2741 return -EFAULT;
2742
2743 ret = vgic_check_iorange(dev->kvm, its->vgic_its_base,
2744 addr, SZ_64K, KVM_VGIC_V3_ITS_SIZE);
2745 if (ret)
2746 return ret;
2747
2748 ret = vgic_register_its_iodev(dev->kvm, its, addr);
2749 if (ret)
2750 return ret;
2751
2752 return vgic_its_debug_init(dev);
2753
2754 }
2755 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2756 return vgic_its_ctrl(dev->kvm, its, attr->attr);
2757 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2758 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2759 u64 reg;
2760
2761 if (get_user(reg, uaddr))
2762 return -EFAULT;
2763
2764 return vgic_its_attr_regs_access(dev, attr, ®, true);
2765 }
2766 }
2767 return -ENXIO;
2768 }
2769
vgic_its_get_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2770 static int vgic_its_get_attr(struct kvm_device *dev,
2771 struct kvm_device_attr *attr)
2772 {
2773 switch (attr->group) {
2774 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2775 struct vgic_its *its = dev->private;
2776 u64 addr = its->vgic_its_base;
2777 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2778 unsigned long type = (unsigned long)attr->attr;
2779
2780 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2781 return -ENODEV;
2782
2783 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2784 return -EFAULT;
2785 break;
2786 }
2787 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2788 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2789 u64 reg;
2790 int ret;
2791
2792 ret = vgic_its_attr_regs_access(dev, attr, ®, false);
2793 if (ret)
2794 return ret;
2795 return put_user(reg, uaddr);
2796 }
2797 default:
2798 return -ENXIO;
2799 }
2800
2801 return 0;
2802 }
2803
2804 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2805 .name = "kvm-arm-vgic-its",
2806 .create = vgic_its_create,
2807 .destroy = vgic_its_destroy,
2808 .set_attr = vgic_its_set_attr,
2809 .get_attr = vgic_its_get_attr,
2810 .has_attr = vgic_its_has_attr,
2811 };
2812
kvm_vgic_register_its_device(void)2813 int kvm_vgic_register_its_device(void)
2814 {
2815 return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2816 KVM_DEV_TYPE_ARM_VGIC_ITS);
2817 }
2818