1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015, 2016 ARM Ltd.
4 */
5
6 #include <linux/interrupt.h>
7 #include <linux/irq.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/list_sort.h>
11 #include <linux/nospec.h>
12
13 #include <asm/kvm_hyp.h>
14
15 #include "vgic.h"
16
17 #define CREATE_TRACE_POINTS
18 #include "trace.h"
19
20 struct vgic_global kvm_vgic_global_state __ro_after_init = {
21 .gicv3_cpuif = STATIC_KEY_FALSE_INIT,
22 };
23
24 /*
25 * Locking order is always:
26 * kvm->lock (mutex)
27 * vcpu->mutex (mutex)
28 * kvm->arch.config_lock (mutex)
29 * its->cmd_lock (mutex)
30 * its->its_lock (mutex)
31 * vgic_dist->lpi_xa.xa_lock
32 * vgic_cpu->ap_list_lock must be taken with IRQs disabled
33 * vgic_irq->irq_lock must be taken with IRQs disabled
34 *
35 * As the ap_list_lock might be taken from the timer interrupt handler,
36 * we have to disable IRQs before taking this lock and everything lower
37 * than it.
38 *
39 * The config_lock has additional ordering requirements:
40 * kvm->slots_lock
41 * kvm->srcu
42 * kvm->arch.config_lock
43 *
44 * If you need to take multiple locks, always take the upper lock first,
45 * then the lower ones, e.g. first take the its_lock, then the irq_lock.
46 * If you are already holding a lock and need to take a higher one, you
47 * have to drop the lower ranking lock first and re-acquire it after having
48 * taken the upper one.
49 *
50 * When taking more than one ap_list_lock at the same time, always take the
51 * lowest numbered VCPU's ap_list_lock first, so:
52 * vcpuX->vcpu_id < vcpuY->vcpu_id:
53 * raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
54 * raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
55 *
56 * Since the VGIC must support injecting virtual interrupts from ISRs, we have
57 * to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer
58 * spinlocks for any lock that may be taken while injecting an interrupt.
59 */
60
61 /*
62 * Index the VM's xarray of mapped LPIs and return a reference to the IRQ
63 * structure. The caller is expected to call vgic_put_irq() later once it's
64 * finished with the IRQ.
65 */
vgic_get_lpi(struct kvm * kvm,u32 intid)66 static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid)
67 {
68 struct vgic_dist *dist = &kvm->arch.vgic;
69 struct vgic_irq *irq = NULL;
70
71 rcu_read_lock();
72
73 irq = xa_load(&dist->lpi_xa, intid);
74 if (!vgic_try_get_irq_ref(irq))
75 irq = NULL;
76
77 rcu_read_unlock();
78
79 return irq;
80 }
81
82 /*
83 * This looks up the virtual interrupt ID to get the corresponding
84 * struct vgic_irq. It also increases the refcount, so any caller is expected
85 * to call vgic_put_irq() once it's finished with this IRQ.
86 */
vgic_get_irq(struct kvm * kvm,u32 intid)87 struct vgic_irq *vgic_get_irq(struct kvm *kvm, u32 intid)
88 {
89 /* SPIs */
90 if (intid >= VGIC_NR_PRIVATE_IRQS &&
91 intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) {
92 intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS);
93 return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];
94 }
95
96 /* LPIs */
97 if (intid >= VGIC_MIN_LPI)
98 return vgic_get_lpi(kvm, intid);
99
100 return NULL;
101 }
102
vgic_get_vcpu_irq(struct kvm_vcpu * vcpu,u32 intid)103 struct vgic_irq *vgic_get_vcpu_irq(struct kvm_vcpu *vcpu, u32 intid)
104 {
105 if (WARN_ON(!vcpu))
106 return NULL;
107
108 /* SGIs and PPIs */
109 if (intid < VGIC_NR_PRIVATE_IRQS) {
110 intid = array_index_nospec(intid, VGIC_NR_PRIVATE_IRQS);
111 return &vcpu->arch.vgic_cpu.private_irqs[intid];
112 }
113
114 return vgic_get_irq(vcpu->kvm, intid);
115 }
116
vgic_release_lpi_locked(struct vgic_dist * dist,struct vgic_irq * irq)117 static void vgic_release_lpi_locked(struct vgic_dist *dist, struct vgic_irq *irq)
118 {
119 lockdep_assert_held(&dist->lpi_xa.xa_lock);
120 __xa_erase(&dist->lpi_xa, irq->intid);
121 kfree_rcu(irq, rcu);
122 }
123
__vgic_put_irq(struct kvm * kvm,struct vgic_irq * irq)124 static __must_check bool __vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
125 {
126 if (irq->intid < VGIC_MIN_LPI)
127 return false;
128
129 return refcount_dec_and_test(&irq->refcount);
130 }
131
vgic_put_irq_norelease(struct kvm * kvm,struct vgic_irq * irq)132 static __must_check bool vgic_put_irq_norelease(struct kvm *kvm, struct vgic_irq *irq)
133 {
134 if (!__vgic_put_irq(kvm, irq))
135 return false;
136
137 irq->pending_release = true;
138 return true;
139 }
140
vgic_put_irq(struct kvm * kvm,struct vgic_irq * irq)141 void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
142 {
143 struct vgic_dist *dist = &kvm->arch.vgic;
144
145 if (irq->intid >= VGIC_MIN_LPI)
146 might_lock(&dist->lpi_xa.xa_lock);
147
148 if (!__vgic_put_irq(kvm, irq))
149 return;
150
151 xa_lock(&dist->lpi_xa);
152 vgic_release_lpi_locked(dist, irq);
153 xa_unlock(&dist->lpi_xa);
154 }
155
vgic_release_deleted_lpis(struct kvm * kvm)156 static void vgic_release_deleted_lpis(struct kvm *kvm)
157 {
158 struct vgic_dist *dist = &kvm->arch.vgic;
159 unsigned long intid;
160 struct vgic_irq *irq;
161
162 xa_lock(&dist->lpi_xa);
163
164 xa_for_each(&dist->lpi_xa, intid, irq) {
165 if (irq->pending_release)
166 vgic_release_lpi_locked(dist, irq);
167 }
168
169 xa_unlock(&dist->lpi_xa);
170 }
171
vgic_flush_pending_lpis(struct kvm_vcpu * vcpu)172 void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu)
173 {
174 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
175 struct vgic_irq *irq, *tmp;
176 bool deleted = false;
177 unsigned long flags;
178
179 raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
180
181 list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
182 if (irq->intid >= VGIC_MIN_LPI) {
183 raw_spin_lock(&irq->irq_lock);
184 list_del(&irq->ap_list);
185 irq->vcpu = NULL;
186 raw_spin_unlock(&irq->irq_lock);
187 deleted |= vgic_put_irq_norelease(vcpu->kvm, irq);
188 }
189 }
190
191 raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
192
193 if (deleted)
194 vgic_release_deleted_lpis(vcpu->kvm);
195 }
196
vgic_irq_set_phys_pending(struct vgic_irq * irq,bool pending)197 void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending)
198 {
199 WARN_ON(irq_set_irqchip_state(irq->host_irq,
200 IRQCHIP_STATE_PENDING,
201 pending));
202 }
203
vgic_get_phys_line_level(struct vgic_irq * irq)204 bool vgic_get_phys_line_level(struct vgic_irq *irq)
205 {
206 bool line_level;
207
208 BUG_ON(!irq->hw);
209
210 if (irq->ops && irq->ops->get_input_level)
211 return irq->ops->get_input_level(irq->intid);
212
213 WARN_ON(irq_get_irqchip_state(irq->host_irq,
214 IRQCHIP_STATE_PENDING,
215 &line_level));
216 return line_level;
217 }
218
219 /* Set/Clear the physical active state */
vgic_irq_set_phys_active(struct vgic_irq * irq,bool active)220 void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active)
221 {
222
223 BUG_ON(!irq->hw);
224 WARN_ON(irq_set_irqchip_state(irq->host_irq,
225 IRQCHIP_STATE_ACTIVE,
226 active));
227 }
228
229 /**
230 * vgic_target_oracle - compute the target vcpu for an irq
231 *
232 * @irq: The irq to route. Must be already locked.
233 *
234 * Based on the current state of the interrupt (enabled, pending,
235 * active, vcpu and target_vcpu), compute the next vcpu this should be
236 * given to. Return NULL if this shouldn't be injected at all.
237 *
238 * Requires the IRQ lock to be held.
239 */
vgic_target_oracle(struct vgic_irq * irq)240 static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq)
241 {
242 lockdep_assert_held(&irq->irq_lock);
243
244 /* If the interrupt is active, it must stay on the current vcpu */
245 if (irq->active)
246 return irq->vcpu ? : irq->target_vcpu;
247
248 /*
249 * If the IRQ is not active but enabled and pending, we should direct
250 * it to its configured target VCPU.
251 * If the distributor is disabled, pending interrupts shouldn't be
252 * forwarded.
253 */
254 if (irq->enabled && irq_is_pending(irq)) {
255 if (unlikely(irq->target_vcpu &&
256 !irq->target_vcpu->kvm->arch.vgic.enabled))
257 return NULL;
258
259 return irq->target_vcpu;
260 }
261
262 /* If neither active nor pending and enabled, then this IRQ should not
263 * be queued to any VCPU.
264 */
265 return NULL;
266 }
267
268 /*
269 * The order of items in the ap_lists defines how we'll pack things in LRs as
270 * well, the first items in the list being the first things populated in the
271 * LRs.
272 *
273 * A hard rule is that active interrupts can never be pushed out of the LRs
274 * (and therefore take priority) since we cannot reliably trap on deactivation
275 * of IRQs and therefore they have to be present in the LRs.
276 *
277 * Otherwise things should be sorted by the priority field and the GIC
278 * hardware support will take care of preemption of priority groups etc.
279 *
280 * Return negative if "a" sorts before "b", 0 to preserve order, and positive
281 * to sort "b" before "a".
282 */
vgic_irq_cmp(void * priv,const struct list_head * a,const struct list_head * b)283 static int vgic_irq_cmp(void *priv, const struct list_head *a,
284 const struct list_head *b)
285 {
286 struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list);
287 struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list);
288 bool penda, pendb;
289 int ret;
290
291 /*
292 * list_sort may call this function with the same element when
293 * the list is fairly long.
294 */
295 if (unlikely(irqa == irqb))
296 return 0;
297
298 raw_spin_lock(&irqa->irq_lock);
299 raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING);
300
301 if (irqa->active || irqb->active) {
302 ret = (int)irqb->active - (int)irqa->active;
303 goto out;
304 }
305
306 penda = irqa->enabled && irq_is_pending(irqa);
307 pendb = irqb->enabled && irq_is_pending(irqb);
308
309 if (!penda || !pendb) {
310 ret = (int)pendb - (int)penda;
311 goto out;
312 }
313
314 /* Both pending and enabled, sort by priority */
315 ret = irqa->priority - irqb->priority;
316 out:
317 raw_spin_unlock(&irqb->irq_lock);
318 raw_spin_unlock(&irqa->irq_lock);
319 return ret;
320 }
321
322 /* Must be called with the ap_list_lock held */
vgic_sort_ap_list(struct kvm_vcpu * vcpu)323 static void vgic_sort_ap_list(struct kvm_vcpu *vcpu)
324 {
325 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
326
327 lockdep_assert_held(&vgic_cpu->ap_list_lock);
328
329 list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp);
330 }
331
332 /*
333 * Only valid injection if changing level for level-triggered IRQs or for a
334 * rising edge, and in-kernel connected IRQ lines can only be controlled by
335 * their owner.
336 */
vgic_validate_injection(struct vgic_irq * irq,bool level,void * owner)337 static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner)
338 {
339 if (irq->owner != owner)
340 return false;
341
342 switch (irq->config) {
343 case VGIC_CONFIG_LEVEL:
344 return irq->line_level != level;
345 case VGIC_CONFIG_EDGE:
346 return level;
347 }
348
349 return false;
350 }
351
352 /*
353 * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list.
354 * Do the queuing if necessary, taking the right locks in the right order.
355 * Returns true when the IRQ was queued, false otherwise.
356 *
357 * Needs to be entered with the IRQ lock already held, but will return
358 * with all locks dropped.
359 */
vgic_queue_irq_unlock(struct kvm * kvm,struct vgic_irq * irq,unsigned long flags)360 bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
361 unsigned long flags) __releases(&irq->irq_lock)
362 {
363 struct kvm_vcpu *vcpu;
364
365 lockdep_assert_held(&irq->irq_lock);
366
367 retry:
368 vcpu = vgic_target_oracle(irq);
369 if (irq->vcpu || !vcpu) {
370 /*
371 * If this IRQ is already on a VCPU's ap_list, then it
372 * cannot be moved or modified and there is no more work for
373 * us to do.
374 *
375 * Otherwise, if the irq is not pending and enabled, it does
376 * not need to be inserted into an ap_list and there is also
377 * no more work for us to do.
378 */
379 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
380
381 /*
382 * We have to kick the VCPU here, because we could be
383 * queueing an edge-triggered interrupt for which we
384 * get no EOI maintenance interrupt. In that case,
385 * while the IRQ is already on the VCPU's AP list, the
386 * VCPU could have EOI'ed the original interrupt and
387 * won't see this one until it exits for some other
388 * reason.
389 */
390 if (vcpu) {
391 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
392 kvm_vcpu_kick(vcpu);
393 }
394 return false;
395 }
396
397 /*
398 * We must unlock the irq lock to take the ap_list_lock where
399 * we are going to insert this new pending interrupt.
400 */
401 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
402
403 /* someone can do stuff here, which we re-check below */
404
405 raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
406 raw_spin_lock(&irq->irq_lock);
407
408 /*
409 * Did something change behind our backs?
410 *
411 * There are two cases:
412 * 1) The irq lost its pending state or was disabled behind our
413 * backs and/or it was queued to another VCPU's ap_list.
414 * 2) Someone changed the affinity on this irq behind our
415 * backs and we are now holding the wrong ap_list_lock.
416 *
417 * In both cases, drop the locks and retry.
418 */
419
420 if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
421 raw_spin_unlock(&irq->irq_lock);
422 raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock,
423 flags);
424
425 raw_spin_lock_irqsave(&irq->irq_lock, flags);
426 goto retry;
427 }
428
429 /*
430 * Grab a reference to the irq to reflect the fact that it is
431 * now in the ap_list. This is safe as the caller must already hold a
432 * reference on the irq.
433 */
434 vgic_get_irq_ref(irq);
435 list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
436 irq->vcpu = vcpu;
437
438 raw_spin_unlock(&irq->irq_lock);
439 raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
440
441 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
442 kvm_vcpu_kick(vcpu);
443
444 return true;
445 }
446
447 /**
448 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
449 * @kvm: The VM structure pointer
450 * @vcpu: The CPU for PPIs or NULL for global interrupts
451 * @intid: The INTID to inject a new state to.
452 * @level: Edge-triggered: true: to trigger the interrupt
453 * false: to ignore the call
454 * Level-sensitive true: raise the input signal
455 * false: lower the input signal
456 * @owner: The opaque pointer to the owner of the IRQ being raised to verify
457 * that the caller is allowed to inject this IRQ. Userspace
458 * injections will have owner == NULL.
459 *
460 * The VGIC is not concerned with devices being active-LOW or active-HIGH for
461 * level-sensitive interrupts. You can think of the level parameter as 1
462 * being HIGH and 0 being LOW and all devices being active-HIGH.
463 */
kvm_vgic_inject_irq(struct kvm * kvm,struct kvm_vcpu * vcpu,unsigned int intid,bool level,void * owner)464 int kvm_vgic_inject_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
465 unsigned int intid, bool level, void *owner)
466 {
467 struct vgic_irq *irq;
468 unsigned long flags;
469 int ret;
470
471 ret = vgic_lazy_init(kvm);
472 if (ret)
473 return ret;
474
475 if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS)
476 return -EINVAL;
477
478 trace_vgic_update_irq_pending(vcpu ? vcpu->vcpu_idx : 0, intid, level);
479
480 if (intid < VGIC_NR_PRIVATE_IRQS)
481 irq = vgic_get_vcpu_irq(vcpu, intid);
482 else
483 irq = vgic_get_irq(kvm, intid);
484 if (!irq)
485 return -EINVAL;
486
487 raw_spin_lock_irqsave(&irq->irq_lock, flags);
488
489 if (!vgic_validate_injection(irq, level, owner)) {
490 /* Nothing to see here, move along... */
491 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
492 vgic_put_irq(kvm, irq);
493 return 0;
494 }
495
496 if (irq->config == VGIC_CONFIG_LEVEL)
497 irq->line_level = level;
498 else
499 irq->pending_latch = true;
500
501 vgic_queue_irq_unlock(kvm, irq, flags);
502 vgic_put_irq(kvm, irq);
503
504 return 0;
505 }
506
507 /* @irq->irq_lock must be held */
kvm_vgic_map_irq(struct kvm_vcpu * vcpu,struct vgic_irq * irq,unsigned int host_irq,struct irq_ops * ops)508 static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
509 unsigned int host_irq,
510 struct irq_ops *ops)
511 {
512 struct irq_desc *desc;
513 struct irq_data *data;
514
515 /*
516 * Find the physical IRQ number corresponding to @host_irq
517 */
518 desc = irq_to_desc(host_irq);
519 if (!desc) {
520 kvm_err("%s: no interrupt descriptor\n", __func__);
521 return -EINVAL;
522 }
523 data = irq_desc_get_irq_data(desc);
524 while (data->parent_data)
525 data = data->parent_data;
526
527 irq->hw = true;
528 irq->host_irq = host_irq;
529 irq->hwintid = data->hwirq;
530 irq->ops = ops;
531 return 0;
532 }
533
534 /* @irq->irq_lock must be held */
kvm_vgic_unmap_irq(struct vgic_irq * irq)535 static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq)
536 {
537 irq->hw = false;
538 irq->hwintid = 0;
539 irq->ops = NULL;
540 }
541
kvm_vgic_map_phys_irq(struct kvm_vcpu * vcpu,unsigned int host_irq,u32 vintid,struct irq_ops * ops)542 int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
543 u32 vintid, struct irq_ops *ops)
544 {
545 struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, vintid);
546 unsigned long flags;
547 int ret;
548
549 BUG_ON(!irq);
550
551 raw_spin_lock_irqsave(&irq->irq_lock, flags);
552 ret = kvm_vgic_map_irq(vcpu, irq, host_irq, ops);
553 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
554 vgic_put_irq(vcpu->kvm, irq);
555
556 return ret;
557 }
558
559 /**
560 * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ
561 * @vcpu: The VCPU pointer
562 * @vintid: The INTID of the interrupt
563 *
564 * Reset the active and pending states of a mapped interrupt. Kernel
565 * subsystems injecting mapped interrupts should reset their interrupt lines
566 * when we are doing a reset of the VM.
567 */
kvm_vgic_reset_mapped_irq(struct kvm_vcpu * vcpu,u32 vintid)568 void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid)
569 {
570 struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, vintid);
571 unsigned long flags;
572
573 if (!irq->hw)
574 goto out;
575
576 raw_spin_lock_irqsave(&irq->irq_lock, flags);
577 irq->active = false;
578 irq->pending_latch = false;
579 irq->line_level = false;
580 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
581 out:
582 vgic_put_irq(vcpu->kvm, irq);
583 }
584
kvm_vgic_unmap_phys_irq(struct kvm_vcpu * vcpu,unsigned int vintid)585 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid)
586 {
587 struct vgic_irq *irq;
588 unsigned long flags;
589
590 if (!vgic_initialized(vcpu->kvm))
591 return -EAGAIN;
592
593 irq = vgic_get_vcpu_irq(vcpu, vintid);
594 BUG_ON(!irq);
595
596 raw_spin_lock_irqsave(&irq->irq_lock, flags);
597 kvm_vgic_unmap_irq(irq);
598 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
599 vgic_put_irq(vcpu->kvm, irq);
600
601 return 0;
602 }
603
kvm_vgic_get_map(struct kvm_vcpu * vcpu,unsigned int vintid)604 int kvm_vgic_get_map(struct kvm_vcpu *vcpu, unsigned int vintid)
605 {
606 struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, vintid);
607 unsigned long flags;
608 int ret = -1;
609
610 raw_spin_lock_irqsave(&irq->irq_lock, flags);
611 if (irq->hw)
612 ret = irq->hwintid;
613 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
614
615 vgic_put_irq(vcpu->kvm, irq);
616 return ret;
617 }
618
619 /**
620 * kvm_vgic_set_owner - Set the owner of an interrupt for a VM
621 *
622 * @vcpu: Pointer to the VCPU (used for PPIs)
623 * @intid: The virtual INTID identifying the interrupt (PPI or SPI)
624 * @owner: Opaque pointer to the owner
625 *
626 * Returns 0 if intid is not already used by another in-kernel device and the
627 * owner is set, otherwise returns an error code.
628 */
kvm_vgic_set_owner(struct kvm_vcpu * vcpu,unsigned int intid,void * owner)629 int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner)
630 {
631 struct vgic_irq *irq;
632 unsigned long flags;
633 int ret = 0;
634
635 if (!vgic_initialized(vcpu->kvm))
636 return -EAGAIN;
637
638 /* SGIs and LPIs cannot be wired up to any device */
639 if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid))
640 return -EINVAL;
641
642 irq = vgic_get_vcpu_irq(vcpu, intid);
643 raw_spin_lock_irqsave(&irq->irq_lock, flags);
644 if (irq->owner && irq->owner != owner)
645 ret = -EEXIST;
646 else
647 irq->owner = owner;
648 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
649
650 return ret;
651 }
652
653 /**
654 * vgic_prune_ap_list - Remove non-relevant interrupts from the list
655 *
656 * @vcpu: The VCPU pointer
657 *
658 * Go over the list of "interesting" interrupts, and prune those that we
659 * won't have to consider in the near future.
660 */
vgic_prune_ap_list(struct kvm_vcpu * vcpu)661 static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
662 {
663 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
664 struct vgic_irq *irq, *tmp;
665 bool deleted_lpis = false;
666
667 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
668
669 retry:
670 raw_spin_lock(&vgic_cpu->ap_list_lock);
671
672 list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
673 struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
674 bool target_vcpu_needs_kick = false;
675
676 raw_spin_lock(&irq->irq_lock);
677
678 BUG_ON(vcpu != irq->vcpu);
679
680 target_vcpu = vgic_target_oracle(irq);
681
682 if (!target_vcpu) {
683 /*
684 * We don't need to process this interrupt any
685 * further, move it off the list.
686 */
687 list_del(&irq->ap_list);
688 irq->vcpu = NULL;
689 raw_spin_unlock(&irq->irq_lock);
690
691 /*
692 * This vgic_put_irq call matches the
693 * vgic_get_irq_ref in vgic_queue_irq_unlock,
694 * where we added the LPI to the ap_list. As
695 * we remove the irq from the list, we drop
696 * also drop the refcount.
697 */
698 deleted_lpis |= vgic_put_irq_norelease(vcpu->kvm, irq);
699 continue;
700 }
701
702 if (target_vcpu == vcpu) {
703 /* We're on the right CPU */
704 raw_spin_unlock(&irq->irq_lock);
705 continue;
706 }
707
708 /* This interrupt looks like it has to be migrated. */
709
710 raw_spin_unlock(&irq->irq_lock);
711 raw_spin_unlock(&vgic_cpu->ap_list_lock);
712
713 /*
714 * Ensure locking order by always locking the smallest
715 * ID first.
716 */
717 if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
718 vcpuA = vcpu;
719 vcpuB = target_vcpu;
720 } else {
721 vcpuA = target_vcpu;
722 vcpuB = vcpu;
723 }
724
725 raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock);
726 raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
727 SINGLE_DEPTH_NESTING);
728 raw_spin_lock(&irq->irq_lock);
729
730 /*
731 * If the affinity has been preserved, move the
732 * interrupt around. Otherwise, it means things have
733 * changed while the interrupt was unlocked, and we
734 * need to replay this.
735 *
736 * In all cases, we cannot trust the list not to have
737 * changed, so we restart from the beginning.
738 */
739 if (target_vcpu == vgic_target_oracle(irq)) {
740 struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;
741
742 list_del(&irq->ap_list);
743 irq->vcpu = target_vcpu;
744 list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
745 target_vcpu_needs_kick = true;
746 }
747
748 raw_spin_unlock(&irq->irq_lock);
749 raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
750 raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock);
751
752 if (target_vcpu_needs_kick) {
753 kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu);
754 kvm_vcpu_kick(target_vcpu);
755 }
756
757 goto retry;
758 }
759
760 raw_spin_unlock(&vgic_cpu->ap_list_lock);
761
762 if (unlikely(deleted_lpis))
763 vgic_release_deleted_lpis(vcpu->kvm);
764 }
765
vgic_fold_lr_state(struct kvm_vcpu * vcpu)766 static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
767 {
768 if (kvm_vgic_global_state.type == VGIC_V2)
769 vgic_v2_fold_lr_state(vcpu);
770 else
771 vgic_v3_fold_lr_state(vcpu);
772 }
773
774 /* Requires the irq_lock to be held. */
vgic_populate_lr(struct kvm_vcpu * vcpu,struct vgic_irq * irq,int lr)775 static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
776 struct vgic_irq *irq, int lr)
777 {
778 lockdep_assert_held(&irq->irq_lock);
779
780 if (kvm_vgic_global_state.type == VGIC_V2)
781 vgic_v2_populate_lr(vcpu, irq, lr);
782 else
783 vgic_v3_populate_lr(vcpu, irq, lr);
784 }
785
vgic_clear_lr(struct kvm_vcpu * vcpu,int lr)786 static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
787 {
788 if (kvm_vgic_global_state.type == VGIC_V2)
789 vgic_v2_clear_lr(vcpu, lr);
790 else
791 vgic_v3_clear_lr(vcpu, lr);
792 }
793
vgic_set_underflow(struct kvm_vcpu * vcpu)794 static inline void vgic_set_underflow(struct kvm_vcpu *vcpu)
795 {
796 if (kvm_vgic_global_state.type == VGIC_V2)
797 vgic_v2_set_underflow(vcpu);
798 else
799 vgic_v3_set_underflow(vcpu);
800 }
801
802 /* Requires the ap_list_lock to be held. */
compute_ap_list_depth(struct kvm_vcpu * vcpu,bool * multi_sgi)803 static int compute_ap_list_depth(struct kvm_vcpu *vcpu,
804 bool *multi_sgi)
805 {
806 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
807 struct vgic_irq *irq;
808 int count = 0;
809
810 *multi_sgi = false;
811
812 lockdep_assert_held(&vgic_cpu->ap_list_lock);
813
814 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
815 int w;
816
817 raw_spin_lock(&irq->irq_lock);
818 /* GICv2 SGIs can count for more than one... */
819 w = vgic_irq_get_lr_count(irq);
820 raw_spin_unlock(&irq->irq_lock);
821
822 count += w;
823 *multi_sgi |= (w > 1);
824 }
825 return count;
826 }
827
828 /* Requires the VCPU's ap_list_lock to be held. */
vgic_flush_lr_state(struct kvm_vcpu * vcpu)829 static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
830 {
831 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
832 struct vgic_irq *irq;
833 int count;
834 bool multi_sgi;
835 u8 prio = 0xff;
836 int i = 0;
837
838 lockdep_assert_held(&vgic_cpu->ap_list_lock);
839
840 count = compute_ap_list_depth(vcpu, &multi_sgi);
841 if (count > kvm_vgic_global_state.nr_lr || multi_sgi)
842 vgic_sort_ap_list(vcpu);
843
844 count = 0;
845
846 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
847 raw_spin_lock(&irq->irq_lock);
848
849 /*
850 * If we have multi-SGIs in the pipeline, we need to
851 * guarantee that they are all seen before any IRQ of
852 * lower priority. In that case, we need to filter out
853 * these interrupts by exiting early. This is easy as
854 * the AP list has been sorted already.
855 */
856 if (multi_sgi && irq->priority > prio) {
857 raw_spin_unlock(&irq->irq_lock);
858 break;
859 }
860
861 if (likely(vgic_target_oracle(irq) == vcpu)) {
862 vgic_populate_lr(vcpu, irq, count++);
863
864 if (irq->source)
865 prio = irq->priority;
866 }
867
868 raw_spin_unlock(&irq->irq_lock);
869
870 if (count == kvm_vgic_global_state.nr_lr) {
871 if (!list_is_last(&irq->ap_list,
872 &vgic_cpu->ap_list_head))
873 vgic_set_underflow(vcpu);
874 break;
875 }
876 }
877
878 /* Nuke remaining LRs */
879 for (i = count ; i < kvm_vgic_global_state.nr_lr; i++)
880 vgic_clear_lr(vcpu, i);
881
882 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
883 vcpu->arch.vgic_cpu.vgic_v2.used_lrs = count;
884 else
885 vcpu->arch.vgic_cpu.vgic_v3.used_lrs = count;
886 }
887
can_access_vgic_from_kernel(void)888 static inline bool can_access_vgic_from_kernel(void)
889 {
890 /*
891 * GICv2 can always be accessed from the kernel because it is
892 * memory-mapped, and VHE systems can access GICv3 EL2 system
893 * registers.
894 */
895 return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe();
896 }
897
vgic_save_state(struct kvm_vcpu * vcpu)898 static inline void vgic_save_state(struct kvm_vcpu *vcpu)
899 {
900 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
901 vgic_v2_save_state(vcpu);
902 else
903 __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
904 }
905
906 /* Sync back the hardware VGIC state into our emulation after a guest's run. */
kvm_vgic_sync_hwstate(struct kvm_vcpu * vcpu)907 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
908 {
909 int used_lrs;
910
911 /* If nesting, emulate the HW effect from L0 to L1 */
912 if (vgic_state_is_nested(vcpu)) {
913 vgic_v3_sync_nested(vcpu);
914 return;
915 }
916
917 if (vcpu_has_nv(vcpu))
918 vgic_v3_nested_update_mi(vcpu);
919
920 /* An empty ap_list_head implies used_lrs == 0 */
921 if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
922 return;
923
924 if (can_access_vgic_from_kernel())
925 vgic_save_state(vcpu);
926
927 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
928 used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs;
929 else
930 used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
931
932 if (used_lrs)
933 vgic_fold_lr_state(vcpu);
934 vgic_prune_ap_list(vcpu);
935 }
936
vgic_restore_state(struct kvm_vcpu * vcpu)937 static inline void vgic_restore_state(struct kvm_vcpu *vcpu)
938 {
939 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
940 vgic_v2_restore_state(vcpu);
941 else
942 __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
943 }
944
945 /* Flush our emulation state into the GIC hardware before entering the guest. */
kvm_vgic_flush_hwstate(struct kvm_vcpu * vcpu)946 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
947 {
948 /*
949 * If in a nested state, we must return early. Two possibilities:
950 *
951 * - If we have any pending IRQ for the guest and the guest
952 * expects IRQs to be handled in its virtual EL2 mode (the
953 * virtual IMO bit is set) and it is not already running in
954 * virtual EL2 mode, then we have to emulate an IRQ
955 * exception to virtual EL2.
956 *
957 * We do that by placing a request to ourselves which will
958 * abort the entry procedure and inject the exception at the
959 * beginning of the run loop.
960 *
961 * - Otherwise, do exactly *NOTHING*. The guest state is
962 * already loaded, and we can carry on with running it.
963 *
964 * If we have NV, but are not in a nested state, compute the
965 * maintenance interrupt state, as it may fire.
966 */
967 if (vgic_state_is_nested(vcpu)) {
968 if (kvm_vgic_vcpu_pending_irq(vcpu))
969 kvm_make_request(KVM_REQ_GUEST_HYP_IRQ_PENDING, vcpu);
970
971 return;
972 }
973
974 if (vcpu_has_nv(vcpu))
975 vgic_v3_nested_update_mi(vcpu);
976
977 /*
978 * If there are no virtual interrupts active or pending for this
979 * VCPU, then there is no work to do and we can bail out without
980 * taking any lock. There is a potential race with someone injecting
981 * interrupts to the VCPU, but it is a benign race as the VCPU will
982 * either observe the new interrupt before or after doing this check,
983 * and introducing additional synchronization mechanism doesn't change
984 * this.
985 *
986 * Note that we still need to go through the whole thing if anything
987 * can be directly injected (GICv4).
988 */
989 if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head) &&
990 !vgic_supports_direct_irqs(vcpu->kvm))
991 return;
992
993 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
994
995 if (!list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) {
996 raw_spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
997 vgic_flush_lr_state(vcpu);
998 raw_spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
999 }
1000
1001 if (can_access_vgic_from_kernel())
1002 vgic_restore_state(vcpu);
1003
1004 if (vgic_supports_direct_irqs(vcpu->kvm))
1005 vgic_v4_commit(vcpu);
1006 }
1007
kvm_vgic_load(struct kvm_vcpu * vcpu)1008 void kvm_vgic_load(struct kvm_vcpu *vcpu)
1009 {
1010 if (unlikely(!irqchip_in_kernel(vcpu->kvm) || !vgic_initialized(vcpu->kvm))) {
1011 if (has_vhe() && static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
1012 __vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
1013 return;
1014 }
1015
1016 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
1017 vgic_v2_load(vcpu);
1018 else
1019 vgic_v3_load(vcpu);
1020 }
1021
kvm_vgic_put(struct kvm_vcpu * vcpu)1022 void kvm_vgic_put(struct kvm_vcpu *vcpu)
1023 {
1024 if (unlikely(!irqchip_in_kernel(vcpu->kvm) || !vgic_initialized(vcpu->kvm))) {
1025 if (has_vhe() && static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
1026 __vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
1027 return;
1028 }
1029
1030 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
1031 vgic_v2_put(vcpu);
1032 else
1033 vgic_v3_put(vcpu);
1034 }
1035
kvm_vgic_vcpu_pending_irq(struct kvm_vcpu * vcpu)1036 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1037 {
1038 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1039 struct vgic_irq *irq;
1040 bool pending = false;
1041 unsigned long flags;
1042 struct vgic_vmcr vmcr;
1043
1044 if (!vcpu->kvm->arch.vgic.enabled)
1045 return false;
1046
1047 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last)
1048 return true;
1049
1050 vgic_get_vmcr(vcpu, &vmcr);
1051
1052 raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
1053
1054 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
1055 raw_spin_lock(&irq->irq_lock);
1056 pending = irq_is_pending(irq) && irq->enabled &&
1057 !irq->active &&
1058 irq->priority < vmcr.pmr;
1059 raw_spin_unlock(&irq->irq_lock);
1060
1061 if (pending)
1062 break;
1063 }
1064
1065 raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
1066
1067 return pending;
1068 }
1069
vgic_kick_vcpus(struct kvm * kvm)1070 void vgic_kick_vcpus(struct kvm *kvm)
1071 {
1072 struct kvm_vcpu *vcpu;
1073 unsigned long c;
1074
1075 /*
1076 * We've injected an interrupt, time to find out who deserves
1077 * a good kick...
1078 */
1079 kvm_for_each_vcpu(c, vcpu, kvm) {
1080 if (kvm_vgic_vcpu_pending_irq(vcpu)) {
1081 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1082 kvm_vcpu_kick(vcpu);
1083 }
1084 }
1085 }
1086
kvm_vgic_map_is_active(struct kvm_vcpu * vcpu,unsigned int vintid)1087 bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid)
1088 {
1089 struct vgic_irq *irq;
1090 bool map_is_active;
1091 unsigned long flags;
1092
1093 if (!vgic_initialized(vcpu->kvm))
1094 return false;
1095
1096 irq = vgic_get_vcpu_irq(vcpu, vintid);
1097 raw_spin_lock_irqsave(&irq->irq_lock, flags);
1098 map_is_active = irq->hw && irq->active;
1099 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1100 vgic_put_irq(vcpu->kvm, irq);
1101
1102 return map_is_active;
1103 }
1104
1105 /*
1106 * Level-triggered mapped IRQs are special because we only observe rising
1107 * edges as input to the VGIC.
1108 *
1109 * If the guest never acked the interrupt we have to sample the physical
1110 * line and set the line level, because the device state could have changed
1111 * or we simply need to process the still pending interrupt later.
1112 *
1113 * We could also have entered the guest with the interrupt active+pending.
1114 * On the next exit, we need to re-evaluate the pending state, as it could
1115 * otherwise result in a spurious interrupt by injecting a now potentially
1116 * stale pending state.
1117 *
1118 * If this causes us to lower the level, we have to also clear the physical
1119 * active state, since we will otherwise never be told when the interrupt
1120 * becomes asserted again.
1121 *
1122 * Another case is when the interrupt requires a helping hand on
1123 * deactivation (no HW deactivation, for example).
1124 */
vgic_irq_handle_resampling(struct vgic_irq * irq,bool lr_deactivated,bool lr_pending)1125 void vgic_irq_handle_resampling(struct vgic_irq *irq,
1126 bool lr_deactivated, bool lr_pending)
1127 {
1128 if (vgic_irq_is_mapped_level(irq)) {
1129 bool resample = false;
1130
1131 if (unlikely(vgic_irq_needs_resampling(irq))) {
1132 resample = !(irq->active || irq->pending_latch);
1133 } else if (lr_pending || (lr_deactivated && irq->line_level)) {
1134 irq->line_level = vgic_get_phys_line_level(irq);
1135 resample = !irq->line_level;
1136 }
1137
1138 if (resample)
1139 vgic_irq_set_phys_active(irq, false);
1140 }
1141 }
1142