1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VFIO PCI config space virtualization
4 *
5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
6 * Author: Alex Williamson <alex.williamson@redhat.com>
7 *
8 * Derived from original vfio:
9 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
10 * Author: Tom Lyon, pugs@cisco.com
11 */
12
13 /*
14 * This code handles reading and writing of PCI configuration registers.
15 * This is hairy because we want to allow a lot of flexibility to the
16 * user driver, but cannot trust it with all of the config fields.
17 * Tables determine which fields can be read and written, as well as
18 * which fields are 'virtualized' - special actions and translations to
19 * make it appear to the user that he has control, when in fact things
20 * must be negotiated with the underlying OS.
21 */
22
23 #include <linux/fs.h>
24 #include <linux/pci.h>
25 #include <linux/uaccess.h>
26 #include <linux/vfio.h>
27 #include <linux/slab.h>
28
29 #include "vfio_pci_priv.h"
30
31 /* Fake capability ID for standard config space */
32 #define PCI_CAP_ID_BASIC 0
33
34 #define is_bar(offset) \
35 ((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
36 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
37
38 /*
39 * Lengths of PCI Config Capabilities
40 * 0: Removed from the user visible capability list
41 * FF: Variable length
42 */
43 static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = {
44 [PCI_CAP_ID_BASIC] = PCI_STD_HEADER_SIZEOF, /* pci config header */
45 [PCI_CAP_ID_PM] = PCI_PM_SIZEOF,
46 [PCI_CAP_ID_AGP] = PCI_AGP_SIZEOF,
47 [PCI_CAP_ID_VPD] = PCI_CAP_VPD_SIZEOF,
48 [PCI_CAP_ID_SLOTID] = 0, /* bridge - don't care */
49 [PCI_CAP_ID_MSI] = 0xFF, /* 10, 14, 20, or 24 */
50 [PCI_CAP_ID_CHSWP] = 0, /* cpci - not yet */
51 [PCI_CAP_ID_PCIX] = 0xFF, /* 8 or 24 */
52 [PCI_CAP_ID_HT] = 0xFF, /* hypertransport */
53 [PCI_CAP_ID_VNDR] = 0xFF, /* variable */
54 [PCI_CAP_ID_DBG] = 0, /* debug - don't care */
55 [PCI_CAP_ID_CCRC] = 0, /* cpci - not yet */
56 [PCI_CAP_ID_SHPC] = 0, /* hotswap - not yet */
57 [PCI_CAP_ID_SSVID] = 0, /* bridge - don't care */
58 [PCI_CAP_ID_AGP3] = 0, /* AGP8x - not yet */
59 [PCI_CAP_ID_SECDEV] = 0, /* secure device not yet */
60 [PCI_CAP_ID_EXP] = 0xFF, /* 20 or 44 */
61 [PCI_CAP_ID_MSIX] = PCI_CAP_MSIX_SIZEOF,
62 [PCI_CAP_ID_SATA] = 0xFF,
63 [PCI_CAP_ID_AF] = PCI_CAP_AF_SIZEOF,
64 };
65
66 /*
67 * Lengths of PCIe/PCI-X Extended Config Capabilities
68 * 0: Removed or masked from the user visible capability list
69 * FF: Variable length
70 */
71 static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = {
72 [PCI_EXT_CAP_ID_ERR] = PCI_ERR_ROOT_COMMAND,
73 [PCI_EXT_CAP_ID_VC] = 0xFF,
74 [PCI_EXT_CAP_ID_DSN] = PCI_EXT_CAP_DSN_SIZEOF,
75 [PCI_EXT_CAP_ID_PWR] = PCI_EXT_CAP_PWR_SIZEOF,
76 [PCI_EXT_CAP_ID_RCLD] = 0, /* root only - don't care */
77 [PCI_EXT_CAP_ID_RCILC] = 0, /* root only - don't care */
78 [PCI_EXT_CAP_ID_RCEC] = 0, /* root only - don't care */
79 [PCI_EXT_CAP_ID_MFVC] = 0xFF,
80 [PCI_EXT_CAP_ID_VC9] = 0xFF, /* same as CAP_ID_VC */
81 [PCI_EXT_CAP_ID_RCRB] = 0, /* root only - don't care */
82 [PCI_EXT_CAP_ID_VNDR] = 0xFF,
83 [PCI_EXT_CAP_ID_CAC] = 0, /* obsolete */
84 [PCI_EXT_CAP_ID_ACS] = 0xFF,
85 [PCI_EXT_CAP_ID_ARI] = PCI_EXT_CAP_ARI_SIZEOF,
86 [PCI_EXT_CAP_ID_ATS] = PCI_EXT_CAP_ATS_SIZEOF,
87 [PCI_EXT_CAP_ID_SRIOV] = PCI_EXT_CAP_SRIOV_SIZEOF,
88 [PCI_EXT_CAP_ID_MRIOV] = 0, /* not yet */
89 [PCI_EXT_CAP_ID_MCAST] = PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
90 [PCI_EXT_CAP_ID_PRI] = PCI_EXT_CAP_PRI_SIZEOF,
91 [PCI_EXT_CAP_ID_AMD_XXX] = 0, /* not yet */
92 [PCI_EXT_CAP_ID_REBAR] = 0xFF,
93 [PCI_EXT_CAP_ID_DPA] = 0xFF,
94 [PCI_EXT_CAP_ID_TPH] = 0xFF,
95 [PCI_EXT_CAP_ID_LTR] = PCI_EXT_CAP_LTR_SIZEOF,
96 [PCI_EXT_CAP_ID_SECPCI] = 0, /* not yet */
97 [PCI_EXT_CAP_ID_PMUX] = 0, /* not yet */
98 [PCI_EXT_CAP_ID_PASID] = 0, /* not yet */
99 [PCI_EXT_CAP_ID_DVSEC] = 0xFF,
100 };
101
102 /*
103 * Read/Write Permission Bits - one bit for each bit in capability
104 * Any field can be read if it exists, but what is read depends on
105 * whether the field is 'virtualized', or just pass through to the
106 * hardware. Any virtualized field is also virtualized for writes.
107 * Writes are only permitted if they have a 1 bit here.
108 */
109 struct perm_bits {
110 u8 *virt; /* read/write virtual data, not hw */
111 u8 *write; /* writeable bits */
112 int (*readfn)(struct vfio_pci_core_device *vdev, int pos, int count,
113 struct perm_bits *perm, int offset, __le32 *val);
114 int (*writefn)(struct vfio_pci_core_device *vdev, int pos, int count,
115 struct perm_bits *perm, int offset, __le32 val);
116 };
117
118 #define NO_VIRT 0
119 #define ALL_VIRT 0xFFFFFFFFU
120 #define NO_WRITE 0
121 #define ALL_WRITE 0xFFFFFFFFU
122
vfio_user_config_read(struct pci_dev * pdev,int offset,__le32 * val,int count)123 static int vfio_user_config_read(struct pci_dev *pdev, int offset,
124 __le32 *val, int count)
125 {
126 int ret = -EINVAL;
127 u32 tmp_val = 0;
128
129 switch (count) {
130 case 1:
131 {
132 u8 tmp;
133 ret = pci_user_read_config_byte(pdev, offset, &tmp);
134 tmp_val = tmp;
135 break;
136 }
137 case 2:
138 {
139 u16 tmp;
140 ret = pci_user_read_config_word(pdev, offset, &tmp);
141 tmp_val = tmp;
142 break;
143 }
144 case 4:
145 ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
146 break;
147 }
148
149 *val = cpu_to_le32(tmp_val);
150
151 return ret;
152 }
153
vfio_user_config_write(struct pci_dev * pdev,int offset,__le32 val,int count)154 static int vfio_user_config_write(struct pci_dev *pdev, int offset,
155 __le32 val, int count)
156 {
157 int ret = -EINVAL;
158 u32 tmp_val = le32_to_cpu(val);
159
160 switch (count) {
161 case 1:
162 ret = pci_user_write_config_byte(pdev, offset, tmp_val);
163 break;
164 case 2:
165 ret = pci_user_write_config_word(pdev, offset, tmp_val);
166 break;
167 case 4:
168 ret = pci_user_write_config_dword(pdev, offset, tmp_val);
169 break;
170 }
171
172 return ret;
173 }
174
vfio_default_config_read(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)175 static int vfio_default_config_read(struct vfio_pci_core_device *vdev, int pos,
176 int count, struct perm_bits *perm,
177 int offset, __le32 *val)
178 {
179 __le32 virt = 0;
180
181 memcpy(val, vdev->vconfig + pos, count);
182
183 memcpy(&virt, perm->virt + offset, count);
184
185 /* Any non-virtualized bits? */
186 if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
187 struct pci_dev *pdev = vdev->pdev;
188 __le32 phys_val = 0;
189 int ret;
190
191 ret = vfio_user_config_read(pdev, pos, &phys_val, count);
192 if (ret)
193 return ret;
194
195 *val = (phys_val & ~virt) | (*val & virt);
196 }
197
198 return count;
199 }
200
vfio_default_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)201 static int vfio_default_config_write(struct vfio_pci_core_device *vdev, int pos,
202 int count, struct perm_bits *perm,
203 int offset, __le32 val)
204 {
205 __le32 virt = 0, write = 0;
206
207 memcpy(&write, perm->write + offset, count);
208
209 if (!write)
210 return count; /* drop, no writable bits */
211
212 memcpy(&virt, perm->virt + offset, count);
213
214 /* Virtualized and writable bits go to vconfig */
215 if (write & virt) {
216 __le32 virt_val = 0;
217
218 memcpy(&virt_val, vdev->vconfig + pos, count);
219
220 virt_val &= ~(write & virt);
221 virt_val |= (val & (write & virt));
222
223 memcpy(vdev->vconfig + pos, &virt_val, count);
224 }
225
226 /* Non-virtualized and writable bits go to hardware */
227 if (write & ~virt) {
228 struct pci_dev *pdev = vdev->pdev;
229 __le32 phys_val = 0;
230 int ret;
231
232 ret = vfio_user_config_read(pdev, pos, &phys_val, count);
233 if (ret)
234 return ret;
235
236 phys_val &= ~(write & ~virt);
237 phys_val |= (val & (write & ~virt));
238
239 ret = vfio_user_config_write(pdev, pos, phys_val, count);
240 if (ret)
241 return ret;
242 }
243
244 return count;
245 }
246
247 /* Allow direct read from hardware, except for capability next pointer */
vfio_direct_config_read(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)248 static int vfio_direct_config_read(struct vfio_pci_core_device *vdev, int pos,
249 int count, struct perm_bits *perm,
250 int offset, __le32 *val)
251 {
252 int ret;
253
254 ret = vfio_user_config_read(vdev->pdev, pos, val, count);
255 if (ret)
256 return ret;
257
258 if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
259 if (offset < 4)
260 memcpy(val, vdev->vconfig + pos, count);
261 } else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
262 if (offset == PCI_CAP_LIST_ID && count > 1)
263 memcpy(val, vdev->vconfig + pos,
264 min(PCI_CAP_FLAGS, count));
265 else if (offset == PCI_CAP_LIST_NEXT)
266 memcpy(val, vdev->vconfig + pos, 1);
267 }
268
269 return count;
270 }
271
272 /* Raw access skips any kind of virtualization */
vfio_raw_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)273 static int vfio_raw_config_write(struct vfio_pci_core_device *vdev, int pos,
274 int count, struct perm_bits *perm,
275 int offset, __le32 val)
276 {
277 int ret;
278
279 ret = vfio_user_config_write(vdev->pdev, pos, val, count);
280 if (ret)
281 return ret;
282
283 return count;
284 }
285
vfio_raw_config_read(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)286 static int vfio_raw_config_read(struct vfio_pci_core_device *vdev, int pos,
287 int count, struct perm_bits *perm,
288 int offset, __le32 *val)
289 {
290 int ret;
291
292 ret = vfio_user_config_read(vdev->pdev, pos, val, count);
293 if (ret)
294 return ret;
295
296 return count;
297 }
298
299 /* Virt access uses only virtualization */
vfio_virt_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)300 static int vfio_virt_config_write(struct vfio_pci_core_device *vdev, int pos,
301 int count, struct perm_bits *perm,
302 int offset, __le32 val)
303 {
304 memcpy(vdev->vconfig + pos, &val, count);
305 return count;
306 }
307
vfio_virt_config_read(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)308 static int vfio_virt_config_read(struct vfio_pci_core_device *vdev, int pos,
309 int count, struct perm_bits *perm,
310 int offset, __le32 *val)
311 {
312 memcpy(val, vdev->vconfig + pos, count);
313 return count;
314 }
315
316 static struct perm_bits direct_ro_perms = {
317 .readfn = vfio_direct_config_read,
318 };
319
320 /* Default capability regions to read-only, no-virtualization */
321 static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
322 [0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
323 };
324 static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
325 [0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
326 };
327 /*
328 * Default unassigned regions to raw read-write access. Some devices
329 * require this to function as they hide registers between the gaps in
330 * config space (be2net). Like MMIO and I/O port registers, we have
331 * to trust the hardware isolation.
332 */
333 static struct perm_bits unassigned_perms = {
334 .readfn = vfio_raw_config_read,
335 .writefn = vfio_raw_config_write
336 };
337
338 static struct perm_bits virt_perms = {
339 .readfn = vfio_virt_config_read,
340 .writefn = vfio_virt_config_write
341 };
342
free_perm_bits(struct perm_bits * perm)343 static void free_perm_bits(struct perm_bits *perm)
344 {
345 kfree(perm->virt);
346 kfree(perm->write);
347 perm->virt = NULL;
348 perm->write = NULL;
349 }
350
alloc_perm_bits(struct perm_bits * perm,int size)351 static int alloc_perm_bits(struct perm_bits *perm, int size)
352 {
353 /*
354 * Round up all permission bits to the next dword, this lets us
355 * ignore whether a read/write exceeds the defined capability
356 * structure. We can do this because:
357 * - Standard config space is already dword aligned
358 * - Capabilities are all dword aligned (bits 0:1 of next reserved)
359 * - Express capabilities defined as dword aligned
360 */
361 size = round_up(size, 4);
362
363 /*
364 * Zero state is
365 * - All Readable, None Writeable, None Virtualized
366 */
367 perm->virt = kzalloc(size, GFP_KERNEL);
368 perm->write = kzalloc(size, GFP_KERNEL);
369 if (!perm->virt || !perm->write) {
370 free_perm_bits(perm);
371 return -ENOMEM;
372 }
373
374 perm->readfn = vfio_default_config_read;
375 perm->writefn = vfio_default_config_write;
376
377 return 0;
378 }
379
380 /*
381 * Helper functions for filling in permission tables
382 */
p_setb(struct perm_bits * p,int off,u8 virt,u8 write)383 static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
384 {
385 p->virt[off] = virt;
386 p->write[off] = write;
387 }
388
389 /* Handle endian-ness - pci and tables are little-endian */
p_setw(struct perm_bits * p,int off,u16 virt,u16 write)390 static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
391 {
392 *(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
393 *(__le16 *)(&p->write[off]) = cpu_to_le16(write);
394 }
395
396 /* Handle endian-ness - pci and tables are little-endian */
p_setd(struct perm_bits * p,int off,u32 virt,u32 write)397 static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
398 {
399 *(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
400 *(__le32 *)(&p->write[off]) = cpu_to_le32(write);
401 }
402
403 /* Caller should hold memory_lock semaphore */
__vfio_pci_memory_enabled(struct vfio_pci_core_device * vdev)404 bool __vfio_pci_memory_enabled(struct vfio_pci_core_device *vdev)
405 {
406 struct pci_dev *pdev = vdev->pdev;
407 u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
408
409 /*
410 * Memory region cannot be accessed if device power state is D3.
411 *
412 * SR-IOV VF memory enable is handled by the MSE bit in the
413 * PF SR-IOV capability, there's therefore no need to trigger
414 * faults based on the virtual value.
415 */
416 return pdev->current_state < PCI_D3hot &&
417 (pdev->no_command_memory || (cmd & PCI_COMMAND_MEMORY));
418 }
419 EXPORT_SYMBOL_GPL(__vfio_pci_memory_enabled);
420
421 /*
422 * Restore the *real* BARs after we detect a FLR or backdoor reset.
423 * (backdoor = some device specific technique that we didn't catch)
424 */
vfio_bar_restore(struct vfio_pci_core_device * vdev)425 static void vfio_bar_restore(struct vfio_pci_core_device *vdev)
426 {
427 struct pci_dev *pdev = vdev->pdev;
428 u32 *rbar = vdev->rbar;
429 u16 cmd;
430 int i;
431
432 if (pdev->is_virtfn)
433 return;
434
435 pci_info(pdev, "%s: reset recovery - restoring BARs\n", __func__);
436
437 for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
438 pci_user_write_config_dword(pdev, i, *rbar);
439
440 pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
441
442 if (vdev->nointx) {
443 pci_user_read_config_word(pdev, PCI_COMMAND, &cmd);
444 cmd |= PCI_COMMAND_INTX_DISABLE;
445 pci_user_write_config_word(pdev, PCI_COMMAND, cmd);
446 }
447 }
448
vfio_generate_bar_flags(struct pci_dev * pdev,int bar)449 static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
450 {
451 unsigned long flags = pci_resource_flags(pdev, bar);
452 u32 val;
453
454 if (flags & IORESOURCE_IO)
455 return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
456
457 val = PCI_BASE_ADDRESS_SPACE_MEMORY;
458
459 if (flags & IORESOURCE_PREFETCH)
460 val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
461
462 if (flags & IORESOURCE_MEM_64)
463 val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
464
465 return cpu_to_le32(val);
466 }
467
468 /*
469 * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
470 * to reflect the hardware capabilities. This implements BAR sizing.
471 */
vfio_bar_fixup(struct vfio_pci_core_device * vdev)472 static void vfio_bar_fixup(struct vfio_pci_core_device *vdev)
473 {
474 struct pci_dev *pdev = vdev->pdev;
475 int i;
476 __le32 *vbar;
477 u64 mask;
478
479 if (!vdev->bardirty)
480 return;
481
482 vbar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
483
484 for (i = 0; i < PCI_STD_NUM_BARS; i++, vbar++) {
485 int bar = i + PCI_STD_RESOURCES;
486
487 if (!pci_resource_start(pdev, bar)) {
488 *vbar = 0; /* Unmapped by host = unimplemented to user */
489 continue;
490 }
491
492 mask = ~(pci_resource_len(pdev, bar) - 1);
493
494 *vbar &= cpu_to_le32((u32)mask);
495 *vbar |= vfio_generate_bar_flags(pdev, bar);
496
497 if (*vbar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
498 vbar++;
499 *vbar &= cpu_to_le32((u32)(mask >> 32));
500 i++;
501 }
502 }
503
504 vbar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
505
506 /*
507 * NB. REGION_INFO will have reported zero size if we weren't able
508 * to read the ROM, but we still return the actual BAR size here if
509 * it exists (or the shadow ROM space).
510 */
511 if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
512 mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
513 mask |= PCI_ROM_ADDRESS_ENABLE;
514 *vbar &= cpu_to_le32((u32)mask);
515 } else if (pdev->rom && pdev->romlen) {
516 mask = ~(roundup_pow_of_two(pdev->romlen) - 1);
517 mask |= PCI_ROM_ADDRESS_ENABLE;
518 *vbar &= cpu_to_le32((u32)mask);
519 } else {
520 *vbar = 0;
521 }
522
523 vdev->bardirty = false;
524 }
525
vfio_basic_config_read(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)526 static int vfio_basic_config_read(struct vfio_pci_core_device *vdev, int pos,
527 int count, struct perm_bits *perm,
528 int offset, __le32 *val)
529 {
530 if (is_bar(offset)) /* pos == offset for basic config */
531 vfio_bar_fixup(vdev);
532
533 count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
534
535 /* Mask in virtual memory enable */
536 if (offset == PCI_COMMAND && vdev->pdev->no_command_memory) {
537 u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
538 u32 tmp_val = le32_to_cpu(*val);
539
540 tmp_val |= cmd & PCI_COMMAND_MEMORY;
541 *val = cpu_to_le32(tmp_val);
542 }
543
544 return count;
545 }
546
547 /* Test whether BARs match the value we think they should contain */
vfio_need_bar_restore(struct vfio_pci_core_device * vdev)548 static bool vfio_need_bar_restore(struct vfio_pci_core_device *vdev)
549 {
550 int i = 0, pos = PCI_BASE_ADDRESS_0, ret;
551 u32 bar;
552
553 for (; pos <= PCI_BASE_ADDRESS_5; i++, pos += 4) {
554 if (vdev->rbar[i]) {
555 ret = pci_user_read_config_dword(vdev->pdev, pos, &bar);
556 if (ret || vdev->rbar[i] != bar)
557 return true;
558 }
559 }
560
561 return false;
562 }
563
vfio_basic_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)564 static int vfio_basic_config_write(struct vfio_pci_core_device *vdev, int pos,
565 int count, struct perm_bits *perm,
566 int offset, __le32 val)
567 {
568 struct pci_dev *pdev = vdev->pdev;
569 __le16 *virt_cmd;
570 u16 new_cmd = 0;
571 int ret;
572
573 virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
574
575 if (offset == PCI_COMMAND) {
576 bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
577 u16 phys_cmd;
578
579 ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
580 if (ret)
581 return ret;
582
583 new_cmd = le32_to_cpu(val);
584
585 phys_io = !!(phys_cmd & PCI_COMMAND_IO);
586 virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
587 new_io = !!(new_cmd & PCI_COMMAND_IO);
588
589 phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
590 virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
591 new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
592
593 if (!new_mem) {
594 vfio_pci_zap_and_down_write_memory_lock(vdev);
595 vfio_pci_dma_buf_move(vdev, true);
596 } else {
597 down_write(&vdev->memory_lock);
598 }
599
600 /*
601 * If the user is writing mem/io enable (new_mem/io) and we
602 * think it's already enabled (virt_mem/io), but the hardware
603 * shows it disabled (phys_mem/io, then the device has
604 * undergone some kind of backdoor reset and needs to be
605 * restored before we allow it to enable the bars.
606 * SR-IOV devices will trigger this - for mem enable let's
607 * catch this now and for io enable it will be caught later
608 */
609 if ((new_mem && virt_mem && !phys_mem &&
610 !pdev->no_command_memory) ||
611 (new_io && virt_io && !phys_io) ||
612 vfio_need_bar_restore(vdev))
613 vfio_bar_restore(vdev);
614 }
615
616 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
617 if (count < 0) {
618 if (offset == PCI_COMMAND)
619 up_write(&vdev->memory_lock);
620 return count;
621 }
622
623 /*
624 * Save current memory/io enable bits in vconfig to allow for
625 * the test above next time.
626 */
627 if (offset == PCI_COMMAND) {
628 u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
629
630 *virt_cmd &= cpu_to_le16(~mask);
631 *virt_cmd |= cpu_to_le16(new_cmd & mask);
632
633 if (__vfio_pci_memory_enabled(vdev))
634 vfio_pci_dma_buf_move(vdev, false);
635 up_write(&vdev->memory_lock);
636 }
637
638 /* Emulate INTx disable */
639 if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
640 bool virt_intx_disable;
641
642 virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
643 PCI_COMMAND_INTX_DISABLE);
644
645 if (virt_intx_disable && !vdev->virq_disabled) {
646 vdev->virq_disabled = true;
647 vfio_pci_intx_mask(vdev);
648 } else if (!virt_intx_disable && vdev->virq_disabled) {
649 vdev->virq_disabled = false;
650 vfio_pci_intx_unmask(vdev);
651 }
652 }
653
654 if (is_bar(offset))
655 vdev->bardirty = true;
656
657 return count;
658 }
659
660 /* Permissions for the Basic PCI Header */
init_pci_cap_basic_perm(struct perm_bits * perm)661 static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
662 {
663 if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
664 return -ENOMEM;
665
666 perm->readfn = vfio_basic_config_read;
667 perm->writefn = vfio_basic_config_write;
668
669 /* Virtualized for SR-IOV functions, which just have FFFF */
670 p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
671 p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
672
673 /*
674 * Virtualize INTx disable, we use it internally for interrupt
675 * control and can emulate it for non-PCI 2.3 devices.
676 */
677 p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
678
679 /* Virtualize capability list, we might want to skip/disable */
680 p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
681
682 /* No harm to write */
683 p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
684 p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
685 p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
686
687 /* Virtualize all bars, can't touch the real ones */
688 p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
689 p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
690 p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
691 p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
692 p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
693 p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
694 p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
695
696 /* Allow us to adjust capability chain */
697 p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
698
699 /* Sometimes used by sw, just virtualize */
700 p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
701
702 /* Virtualize interrupt pin to allow hiding INTx */
703 p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE);
704
705 return 0;
706 }
707
708 /*
709 * It takes all the required locks to protect the access of power related
710 * variables and then invokes vfio_pci_set_power_state().
711 */
vfio_lock_and_set_power_state(struct vfio_pci_core_device * vdev,pci_power_t state)712 static void vfio_lock_and_set_power_state(struct vfio_pci_core_device *vdev,
713 pci_power_t state)
714 {
715 if (state >= PCI_D3hot) {
716 vfio_pci_zap_and_down_write_memory_lock(vdev);
717 vfio_pci_dma_buf_move(vdev, true);
718 } else {
719 down_write(&vdev->memory_lock);
720 }
721
722 vfio_pci_set_power_state(vdev, state);
723 if (__vfio_pci_memory_enabled(vdev))
724 vfio_pci_dma_buf_move(vdev, false);
725 up_write(&vdev->memory_lock);
726 }
727
vfio_pm_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)728 static int vfio_pm_config_write(struct vfio_pci_core_device *vdev, int pos,
729 int count, struct perm_bits *perm,
730 int offset, __le32 val)
731 {
732 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
733 if (count < 0)
734 return count;
735
736 if (offset == PCI_PM_CTRL) {
737 pci_power_t state;
738
739 switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
740 case 0:
741 state = PCI_D0;
742 break;
743 case 1:
744 state = PCI_D1;
745 break;
746 case 2:
747 state = PCI_D2;
748 break;
749 case 3:
750 state = PCI_D3hot;
751 break;
752 }
753
754 vfio_lock_and_set_power_state(vdev, state);
755 }
756
757 return count;
758 }
759
760 /* Permissions for the Power Management capability */
init_pci_cap_pm_perm(struct perm_bits * perm)761 static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
762 {
763 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
764 return -ENOMEM;
765
766 perm->writefn = vfio_pm_config_write;
767
768 /*
769 * We always virtualize the next field so we can remove
770 * capabilities from the chain if we want to.
771 */
772 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
773
774 /*
775 * The guests can't process PME events. If any PME event will be
776 * generated, then it will be mostly handled in the host and the
777 * host will clear the PME_STATUS. So virtualize PME_Support bits.
778 * The vconfig bits will be cleared during device capability
779 * initialization.
780 */
781 p_setw(perm, PCI_PM_PMC, PCI_PM_CAP_PME_MASK, NO_WRITE);
782
783 /*
784 * Power management is defined *per function*, so we can let
785 * the user change power state, but we trap and initiate the
786 * change ourselves, so the state bits are read-only.
787 *
788 * The guest can't process PME from D3cold so virtualize PME_Status
789 * and PME_En bits. The vconfig bits will be cleared during device
790 * capability initialization.
791 */
792 p_setd(perm, PCI_PM_CTRL,
793 PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS,
794 ~(PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS |
795 PCI_PM_CTRL_STATE_MASK));
796
797 return 0;
798 }
799
vfio_vpd_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)800 static int vfio_vpd_config_write(struct vfio_pci_core_device *vdev, int pos,
801 int count, struct perm_bits *perm,
802 int offset, __le32 val)
803 {
804 struct pci_dev *pdev = vdev->pdev;
805 __le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR);
806 __le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA);
807 u16 addr;
808 u32 data;
809
810 /*
811 * Write through to emulation. If the write includes the upper byte
812 * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
813 * have work to do.
814 */
815 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
816 if (count < 0 || offset > PCI_VPD_ADDR + 1 ||
817 offset + count <= PCI_VPD_ADDR + 1)
818 return count;
819
820 addr = le16_to_cpu(*paddr);
821
822 if (addr & PCI_VPD_ADDR_F) {
823 data = le32_to_cpu(*pdata);
824 if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4)
825 return count;
826 } else {
827 data = 0;
828 if (pci_read_vpd(pdev, addr, 4, &data) < 0)
829 return count;
830 *pdata = cpu_to_le32(data);
831 }
832
833 /*
834 * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
835 * signal completion. If an error occurs above, we assume that not
836 * toggling this bit will induce a driver timeout.
837 */
838 addr ^= PCI_VPD_ADDR_F;
839 *paddr = cpu_to_le16(addr);
840
841 return count;
842 }
843
844 /* Permissions for Vital Product Data capability */
init_pci_cap_vpd_perm(struct perm_bits * perm)845 static int __init init_pci_cap_vpd_perm(struct perm_bits *perm)
846 {
847 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD]))
848 return -ENOMEM;
849
850 perm->writefn = vfio_vpd_config_write;
851
852 /*
853 * We always virtualize the next field so we can remove
854 * capabilities from the chain if we want to.
855 */
856 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
857
858 /*
859 * Both the address and data registers are virtualized to
860 * enable access through the pci_vpd_read/write functions
861 */
862 p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE);
863 p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE);
864
865 return 0;
866 }
867
868 /* Permissions for PCI-X capability */
init_pci_cap_pcix_perm(struct perm_bits * perm)869 static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
870 {
871 /* Alloc 24, but only 8 are used in v0 */
872 if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
873 return -ENOMEM;
874
875 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
876
877 p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
878 p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
879 return 0;
880 }
881
vfio_exp_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)882 static int vfio_exp_config_write(struct vfio_pci_core_device *vdev, int pos,
883 int count, struct perm_bits *perm,
884 int offset, __le32 val)
885 {
886 __le16 *ctrl = (__le16 *)(vdev->vconfig + pos -
887 offset + PCI_EXP_DEVCTL);
888 int readrq = le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ;
889
890 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
891 if (count < 0)
892 return count;
893
894 /*
895 * The FLR bit is virtualized, if set and the device supports PCIe
896 * FLR, issue a reset_function. Regardless, clear the bit, the spec
897 * requires it to be always read as zero. NB, reset_function might
898 * not use a PCIe FLR, we don't have that level of granularity.
899 */
900 if (*ctrl & cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR)) {
901 u32 cap;
902 int ret;
903
904 *ctrl &= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR);
905
906 ret = pci_user_read_config_dword(vdev->pdev,
907 pos - offset + PCI_EXP_DEVCAP,
908 &cap);
909
910 if (!ret && (cap & PCI_EXP_DEVCAP_FLR)) {
911 vfio_pci_zap_and_down_write_memory_lock(vdev);
912 vfio_pci_dma_buf_move(vdev, true);
913 pci_try_reset_function(vdev->pdev);
914 if (__vfio_pci_memory_enabled(vdev))
915 vfio_pci_dma_buf_move(vdev, false);
916 up_write(&vdev->memory_lock);
917 }
918 }
919
920 /*
921 * MPS is virtualized to the user, writes do not change the physical
922 * register since determining a proper MPS value requires a system wide
923 * device view. The MRRS is largely independent of MPS, but since the
924 * user does not have that system-wide view, they might set a safe, but
925 * inefficiently low value. Here we allow writes through to hardware,
926 * but we set the floor to the physical device MPS setting, so that
927 * we can at least use full TLPs, as defined by the MPS value.
928 *
929 * NB, if any devices actually depend on an artificially low MRRS
930 * setting, this will need to be revisited, perhaps with a quirk
931 * though pcie_set_readrq().
932 */
933 if (readrq != (le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ)) {
934 readrq = 128 <<
935 ((le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ) >> 12);
936 readrq = max(readrq, pcie_get_mps(vdev->pdev));
937
938 pcie_set_readrq(vdev->pdev, readrq);
939 }
940
941 return count;
942 }
943
944 /* Permissions for PCI Express capability */
init_pci_cap_exp_perm(struct perm_bits * perm)945 static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
946 {
947 /* Alloc largest of possible sizes */
948 if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
949 return -ENOMEM;
950
951 perm->writefn = vfio_exp_config_write;
952
953 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
954
955 /*
956 * Allow writes to device control fields, except devctl_phantom,
957 * which could confuse IOMMU, MPS, which can break communication
958 * with other physical devices, and the ARI bit in devctl2, which
959 * is set at probe time. FLR and MRRS get virtualized via our
960 * writefn.
961 */
962 p_setw(perm, PCI_EXP_DEVCTL,
963 PCI_EXP_DEVCTL_BCR_FLR | PCI_EXP_DEVCTL_PAYLOAD |
964 PCI_EXP_DEVCTL_READRQ, ~PCI_EXP_DEVCTL_PHANTOM);
965 p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
966 return 0;
967 }
968
vfio_af_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)969 static int vfio_af_config_write(struct vfio_pci_core_device *vdev, int pos,
970 int count, struct perm_bits *perm,
971 int offset, __le32 val)
972 {
973 u8 *ctrl = vdev->vconfig + pos - offset + PCI_AF_CTRL;
974
975 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
976 if (count < 0)
977 return count;
978
979 /*
980 * The FLR bit is virtualized, if set and the device supports AF
981 * FLR, issue a reset_function. Regardless, clear the bit, the spec
982 * requires it to be always read as zero. NB, reset_function might
983 * not use an AF FLR, we don't have that level of granularity.
984 */
985 if (*ctrl & PCI_AF_CTRL_FLR) {
986 u8 cap;
987 int ret;
988
989 *ctrl &= ~PCI_AF_CTRL_FLR;
990
991 ret = pci_user_read_config_byte(vdev->pdev,
992 pos - offset + PCI_AF_CAP,
993 &cap);
994
995 if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP)) {
996 vfio_pci_zap_and_down_write_memory_lock(vdev);
997 vfio_pci_dma_buf_move(vdev, true);
998 pci_try_reset_function(vdev->pdev);
999 if (__vfio_pci_memory_enabled(vdev))
1000 vfio_pci_dma_buf_move(vdev, false);
1001 up_write(&vdev->memory_lock);
1002 }
1003 }
1004
1005 return count;
1006 }
1007
1008 /* Permissions for Advanced Function capability */
init_pci_cap_af_perm(struct perm_bits * perm)1009 static int __init init_pci_cap_af_perm(struct perm_bits *perm)
1010 {
1011 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
1012 return -ENOMEM;
1013
1014 perm->writefn = vfio_af_config_write;
1015
1016 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
1017 p_setb(perm, PCI_AF_CTRL, PCI_AF_CTRL_FLR, PCI_AF_CTRL_FLR);
1018 return 0;
1019 }
1020
1021 /* Permissions for Advanced Error Reporting extended capability */
init_pci_ext_cap_err_perm(struct perm_bits * perm)1022 static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
1023 {
1024 u32 mask;
1025
1026 if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
1027 return -ENOMEM;
1028
1029 /*
1030 * Virtualize the first dword of all express capabilities
1031 * because it includes the next pointer. This lets us later
1032 * remove capabilities from the chain if we need to.
1033 */
1034 p_setd(perm, 0, ALL_VIRT, NO_WRITE);
1035
1036 /* Writable bits mask */
1037 mask = PCI_ERR_UNC_UND | /* Undefined */
1038 PCI_ERR_UNC_DLP | /* Data Link Protocol */
1039 PCI_ERR_UNC_SURPDN | /* Surprise Down */
1040 PCI_ERR_UNC_POISON_TLP | /* Poisoned TLP */
1041 PCI_ERR_UNC_FCP | /* Flow Control Protocol */
1042 PCI_ERR_UNC_COMP_TIME | /* Completion Timeout */
1043 PCI_ERR_UNC_COMP_ABORT | /* Completer Abort */
1044 PCI_ERR_UNC_UNX_COMP | /* Unexpected Completion */
1045 PCI_ERR_UNC_RX_OVER | /* Receiver Overflow */
1046 PCI_ERR_UNC_MALF_TLP | /* Malformed TLP */
1047 PCI_ERR_UNC_ECRC | /* ECRC Error Status */
1048 PCI_ERR_UNC_UNSUP | /* Unsupported Request */
1049 PCI_ERR_UNC_ACSV | /* ACS Violation */
1050 PCI_ERR_UNC_INTN | /* internal error */
1051 PCI_ERR_UNC_MCBTLP | /* MC blocked TLP */
1052 PCI_ERR_UNC_ATOMEG | /* Atomic egress blocked */
1053 PCI_ERR_UNC_TLPPRE; /* TLP prefix blocked */
1054 p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
1055 p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
1056 p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
1057
1058 mask = PCI_ERR_COR_RCVR | /* Receiver Error Status */
1059 PCI_ERR_COR_BAD_TLP | /* Bad TLP Status */
1060 PCI_ERR_COR_BAD_DLLP | /* Bad DLLP Status */
1061 PCI_ERR_COR_REP_ROLL | /* REPLAY_NUM Rollover */
1062 PCI_ERR_COR_REP_TIMER | /* Replay Timer Timeout */
1063 PCI_ERR_COR_ADV_NFAT | /* Advisory Non-Fatal */
1064 PCI_ERR_COR_INTERNAL | /* Corrected Internal */
1065 PCI_ERR_COR_LOG_OVER; /* Header Log Overflow */
1066 p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
1067 p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
1068
1069 mask = PCI_ERR_CAP_ECRC_GENE | /* ECRC Generation Enable */
1070 PCI_ERR_CAP_ECRC_CHKE; /* ECRC Check Enable */
1071 p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
1072 return 0;
1073 }
1074
1075 /* Permissions for Power Budgeting extended capability */
init_pci_ext_cap_pwr_perm(struct perm_bits * perm)1076 static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
1077 {
1078 if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
1079 return -ENOMEM;
1080
1081 p_setd(perm, 0, ALL_VIRT, NO_WRITE);
1082
1083 /* Writing the data selector is OK, the info is still read-only */
1084 p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
1085 return 0;
1086 }
1087
1088 /*
1089 * Initialize the shared permission tables
1090 */
vfio_pci_uninit_perm_bits(void)1091 void vfio_pci_uninit_perm_bits(void)
1092 {
1093 free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
1094
1095 free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
1096 free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]);
1097 free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
1098 free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
1099 free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
1100
1101 free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1102 free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1103 }
1104
vfio_pci_init_perm_bits(void)1105 int __init vfio_pci_init_perm_bits(void)
1106 {
1107 int ret;
1108
1109 /* Basic config space */
1110 ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
1111
1112 /* Capabilities */
1113 ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
1114 ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]);
1115 ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
1116 cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1117 ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
1118 ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
1119
1120 /* Extended capabilities */
1121 ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1122 ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1123 ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1124 ecap_perms[PCI_EXT_CAP_ID_DVSEC].writefn = vfio_raw_config_write;
1125
1126 if (ret)
1127 vfio_pci_uninit_perm_bits();
1128
1129 return ret;
1130 }
1131
vfio_find_cap_start(struct vfio_pci_core_device * vdev,int pos)1132 static int vfio_find_cap_start(struct vfio_pci_core_device *vdev, int pos)
1133 {
1134 u8 cap;
1135 int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
1136 PCI_STD_HEADER_SIZEOF;
1137 cap = vdev->pci_config_map[pos];
1138
1139 if (cap == PCI_CAP_ID_BASIC)
1140 return 0;
1141
1142 /* XXX Can we have to abutting capabilities of the same type? */
1143 while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
1144 pos--;
1145
1146 return pos;
1147 }
1148
vfio_msi_config_read(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)1149 static int vfio_msi_config_read(struct vfio_pci_core_device *vdev, int pos,
1150 int count, struct perm_bits *perm,
1151 int offset, __le32 *val)
1152 {
1153 /* Update max available queue size from msi_qmax */
1154 if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1155 __le16 *flags;
1156 int start;
1157
1158 start = vfio_find_cap_start(vdev, pos);
1159
1160 flags = (__le16 *)&vdev->vconfig[start];
1161
1162 *flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
1163 *flags |= cpu_to_le16(vdev->msi_qmax << 1);
1164 }
1165
1166 return vfio_default_config_read(vdev, pos, count, perm, offset, val);
1167 }
1168
vfio_msi_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)1169 static int vfio_msi_config_write(struct vfio_pci_core_device *vdev, int pos,
1170 int count, struct perm_bits *perm,
1171 int offset, __le32 val)
1172 {
1173 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
1174 if (count < 0)
1175 return count;
1176
1177 /* Fixup and write configured queue size and enable to hardware */
1178 if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1179 __le16 *pflags;
1180 u16 flags;
1181 int start, ret;
1182
1183 start = vfio_find_cap_start(vdev, pos);
1184
1185 pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
1186
1187 flags = le16_to_cpu(*pflags);
1188
1189 /* MSI is enabled via ioctl */
1190 if (vdev->irq_type != VFIO_PCI_MSI_IRQ_INDEX)
1191 flags &= ~PCI_MSI_FLAGS_ENABLE;
1192
1193 /* Check queue size */
1194 if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
1195 flags &= ~PCI_MSI_FLAGS_QSIZE;
1196 flags |= vdev->msi_qmax << 4;
1197 }
1198
1199 /* Write back to virt and to hardware */
1200 *pflags = cpu_to_le16(flags);
1201 ret = pci_user_write_config_word(vdev->pdev,
1202 start + PCI_MSI_FLAGS,
1203 flags);
1204 if (ret)
1205 return ret;
1206 }
1207
1208 return count;
1209 }
1210
1211 /*
1212 * MSI determination is per-device, so this routine gets used beyond
1213 * initialization time. Don't add __init
1214 */
init_pci_cap_msi_perm(struct perm_bits * perm,int len,u16 flags)1215 static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
1216 {
1217 if (alloc_perm_bits(perm, len))
1218 return -ENOMEM;
1219
1220 perm->readfn = vfio_msi_config_read;
1221 perm->writefn = vfio_msi_config_write;
1222
1223 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
1224
1225 /*
1226 * The upper byte of the control register is reserved,
1227 * just setup the lower byte.
1228 */
1229 p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
1230 p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
1231 if (flags & PCI_MSI_FLAGS_64BIT) {
1232 p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
1233 p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
1234 if (flags & PCI_MSI_FLAGS_MASKBIT) {
1235 p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
1236 p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
1237 }
1238 } else {
1239 p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
1240 if (flags & PCI_MSI_FLAGS_MASKBIT) {
1241 p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
1242 p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
1243 }
1244 }
1245 return 0;
1246 }
1247
1248 /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
vfio_msi_cap_len(struct vfio_pci_core_device * vdev,u8 pos)1249 static int vfio_msi_cap_len(struct vfio_pci_core_device *vdev, u8 pos)
1250 {
1251 struct pci_dev *pdev = vdev->pdev;
1252 int len, ret;
1253 u16 flags;
1254
1255 ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
1256 if (ret)
1257 return pcibios_err_to_errno(ret);
1258
1259 len = 10; /* Minimum size */
1260 if (flags & PCI_MSI_FLAGS_64BIT)
1261 len += 4;
1262 if (flags & PCI_MSI_FLAGS_MASKBIT)
1263 len += 10;
1264
1265 if (vdev->msi_perm)
1266 return len;
1267
1268 vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL_ACCOUNT);
1269 if (!vdev->msi_perm)
1270 return -ENOMEM;
1271
1272 ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
1273 if (ret) {
1274 kfree(vdev->msi_perm);
1275 return ret;
1276 }
1277
1278 return len;
1279 }
1280
1281 /* Determine extended capability length for VC (2 & 9) and MFVC */
vfio_vc_cap_len(struct vfio_pci_core_device * vdev,u16 pos)1282 static int vfio_vc_cap_len(struct vfio_pci_core_device *vdev, u16 pos)
1283 {
1284 struct pci_dev *pdev = vdev->pdev;
1285 u32 tmp;
1286 int ret, evcc, phases, vc_arb;
1287 int len = PCI_CAP_VC_BASE_SIZEOF;
1288
1289 ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp);
1290 if (ret)
1291 return pcibios_err_to_errno(ret);
1292
1293 evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */
1294 ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp);
1295 if (ret)
1296 return pcibios_err_to_errno(ret);
1297
1298 if (tmp & PCI_VC_CAP2_128_PHASE)
1299 phases = 128;
1300 else if (tmp & PCI_VC_CAP2_64_PHASE)
1301 phases = 64;
1302 else if (tmp & PCI_VC_CAP2_32_PHASE)
1303 phases = 32;
1304 else
1305 phases = 0;
1306
1307 vc_arb = phases * 4;
1308
1309 /*
1310 * Port arbitration tables are root & switch only;
1311 * function arbitration tables are function 0 only.
1312 * In either case, we'll never let user write them so
1313 * we don't care how big they are
1314 */
1315 len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
1316 if (vc_arb) {
1317 len = round_up(len, 16);
1318 len += vc_arb / 8;
1319 }
1320 return len;
1321 }
1322
vfio_cap_len(struct vfio_pci_core_device * vdev,u8 cap,u8 pos)1323 static int vfio_cap_len(struct vfio_pci_core_device *vdev, u8 cap, u8 pos)
1324 {
1325 struct pci_dev *pdev = vdev->pdev;
1326 u32 dword;
1327 u16 word;
1328 u8 byte;
1329 int ret;
1330
1331 switch (cap) {
1332 case PCI_CAP_ID_MSI:
1333 return vfio_msi_cap_len(vdev, pos);
1334 case PCI_CAP_ID_PCIX:
1335 ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
1336 if (ret)
1337 return pcibios_err_to_errno(ret);
1338
1339 if (PCI_X_CMD_VERSION(word)) {
1340 if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1341 /* Test for extended capabilities */
1342 pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE,
1343 &dword);
1344 vdev->extended_caps = (dword != 0);
1345 }
1346 return PCI_CAP_PCIX_SIZEOF_V2;
1347 } else
1348 return PCI_CAP_PCIX_SIZEOF_V0;
1349 case PCI_CAP_ID_VNDR:
1350 /* length follows next field */
1351 ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
1352 if (ret)
1353 return pcibios_err_to_errno(ret);
1354
1355 return byte;
1356 case PCI_CAP_ID_EXP:
1357 if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1358 /* Test for extended capabilities */
1359 pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
1360 vdev->extended_caps = (dword != 0);
1361 }
1362
1363 /* length based on version and type */
1364 if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1) {
1365 if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1366 return 0xc; /* "All Devices" only, no link */
1367 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
1368 } else {
1369 if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1370 return 0x2c; /* No link */
1371 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
1372 }
1373 case PCI_CAP_ID_HT:
1374 ret = pci_read_config_byte(pdev, pos + 3, &byte);
1375 if (ret)
1376 return pcibios_err_to_errno(ret);
1377
1378 return (byte & HT_3BIT_CAP_MASK) ?
1379 HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
1380 case PCI_CAP_ID_SATA:
1381 ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
1382 if (ret)
1383 return pcibios_err_to_errno(ret);
1384
1385 byte &= PCI_SATA_REGS_MASK;
1386 if (byte == PCI_SATA_REGS_INLINE)
1387 return PCI_SATA_SIZEOF_LONG;
1388 else
1389 return PCI_SATA_SIZEOF_SHORT;
1390 default:
1391 pci_warn(pdev, "%s: unknown length for PCI cap %#x@%#x\n",
1392 __func__, cap, pos);
1393 }
1394
1395 return 0;
1396 }
1397
vfio_ext_cap_len(struct vfio_pci_core_device * vdev,u16 ecap,u16 epos)1398 static int vfio_ext_cap_len(struct vfio_pci_core_device *vdev, u16 ecap, u16 epos)
1399 {
1400 struct pci_dev *pdev = vdev->pdev;
1401 u8 byte;
1402 u32 dword;
1403 int ret;
1404
1405 switch (ecap) {
1406 case PCI_EXT_CAP_ID_VNDR:
1407 ret = pci_read_config_dword(pdev, epos + PCI_VNDR_HEADER,
1408 &dword);
1409 if (ret)
1410 return pcibios_err_to_errno(ret);
1411
1412 return PCI_VNDR_HEADER_LEN(dword);
1413 case PCI_EXT_CAP_ID_VC:
1414 case PCI_EXT_CAP_ID_VC9:
1415 case PCI_EXT_CAP_ID_MFVC:
1416 return vfio_vc_cap_len(vdev, epos);
1417 case PCI_EXT_CAP_ID_ACS:
1418 ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
1419 if (ret)
1420 return pcibios_err_to_errno(ret);
1421
1422 if (byte & PCI_ACS_EC) {
1423 int bits;
1424
1425 ret = pci_read_config_byte(pdev,
1426 epos + PCI_ACS_EGRESS_BITS,
1427 &byte);
1428 if (ret)
1429 return pcibios_err_to_errno(ret);
1430
1431 bits = byte ? round_up(byte, 32) : 256;
1432 return 8 + (bits / 8);
1433 }
1434 return 8;
1435
1436 case PCI_EXT_CAP_ID_REBAR:
1437 ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
1438 if (ret)
1439 return pcibios_err_to_errno(ret);
1440
1441 byte &= PCI_REBAR_CTRL_NBAR_MASK;
1442 byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
1443
1444 return 4 + (byte * 8);
1445 case PCI_EXT_CAP_ID_DPA:
1446 ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
1447 if (ret)
1448 return pcibios_err_to_errno(ret);
1449
1450 byte &= PCI_DPA_CAP_SUBSTATE_MASK;
1451 return PCI_DPA_BASE_SIZEOF + byte + 1;
1452 case PCI_EXT_CAP_ID_TPH:
1453 ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
1454 if (ret)
1455 return pcibios_err_to_errno(ret);
1456
1457 if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
1458 int sts;
1459
1460 sts = dword & PCI_TPH_CAP_ST_MASK;
1461 sts >>= PCI_TPH_CAP_ST_SHIFT;
1462 return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2;
1463 }
1464 return PCI_TPH_BASE_SIZEOF;
1465 case PCI_EXT_CAP_ID_DVSEC:
1466 ret = pci_read_config_dword(pdev, epos + PCI_DVSEC_HEADER1, &dword);
1467 if (ret)
1468 return pcibios_err_to_errno(ret);
1469 return PCI_DVSEC_HEADER1_LEN(dword);
1470 default:
1471 pci_warn(pdev, "%s: unknown length for PCI ecap %#x@%#x\n",
1472 __func__, ecap, epos);
1473 }
1474
1475 return 0;
1476 }
1477
vfio_update_pm_vconfig_bytes(struct vfio_pci_core_device * vdev,int offset)1478 static void vfio_update_pm_vconfig_bytes(struct vfio_pci_core_device *vdev,
1479 int offset)
1480 {
1481 __le16 *pmc = (__le16 *)&vdev->vconfig[offset + PCI_PM_PMC];
1482 __le16 *ctrl = (__le16 *)&vdev->vconfig[offset + PCI_PM_CTRL];
1483
1484 /* Clear vconfig PME_Support, PME_Status, and PME_En bits */
1485 *pmc &= ~cpu_to_le16(PCI_PM_CAP_PME_MASK);
1486 *ctrl &= ~cpu_to_le16(PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS);
1487 }
1488
vfio_fill_vconfig_bytes(struct vfio_pci_core_device * vdev,int offset,int size)1489 static int vfio_fill_vconfig_bytes(struct vfio_pci_core_device *vdev,
1490 int offset, int size)
1491 {
1492 struct pci_dev *pdev = vdev->pdev;
1493 int ret = 0;
1494
1495 /*
1496 * We try to read physical config space in the largest chunks
1497 * we can, assuming that all of the fields support dword access.
1498 * pci_save_state() makes this same assumption and seems to do ok.
1499 */
1500 while (size) {
1501 int filled;
1502
1503 if (size >= 4 && !(offset % 4)) {
1504 __le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
1505 u32 dword;
1506
1507 ret = pci_read_config_dword(pdev, offset, &dword);
1508 if (ret)
1509 return ret;
1510 *dwordp = cpu_to_le32(dword);
1511 filled = 4;
1512 } else if (size >= 2 && !(offset % 2)) {
1513 __le16 *wordp = (__le16 *)&vdev->vconfig[offset];
1514 u16 word;
1515
1516 ret = pci_read_config_word(pdev, offset, &word);
1517 if (ret)
1518 return ret;
1519 *wordp = cpu_to_le16(word);
1520 filled = 2;
1521 } else {
1522 u8 *byte = &vdev->vconfig[offset];
1523 ret = pci_read_config_byte(pdev, offset, byte);
1524 if (ret)
1525 return ret;
1526 filled = 1;
1527 }
1528
1529 offset += filled;
1530 size -= filled;
1531 }
1532
1533 return ret;
1534 }
1535
vfio_cap_init(struct vfio_pci_core_device * vdev)1536 static int vfio_cap_init(struct vfio_pci_core_device *vdev)
1537 {
1538 struct pci_dev *pdev = vdev->pdev;
1539 u8 *map = vdev->pci_config_map;
1540 u16 status;
1541 u8 pos, *prev, cap;
1542 int loops, ret, caps = 0;
1543
1544 /* Any capabilities? */
1545 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
1546 if (ret)
1547 return ret;
1548
1549 if (!(status & PCI_STATUS_CAP_LIST))
1550 return 0; /* Done */
1551
1552 ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
1553 if (ret)
1554 return ret;
1555
1556 /* Mark the previous position in case we want to skip a capability */
1557 prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
1558
1559 /* We can bound our loop, capabilities are dword aligned */
1560 loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
1561 while (pos && loops--) {
1562 u8 next;
1563 int i, len = 0;
1564
1565 ret = pci_read_config_byte(pdev, pos, &cap);
1566 if (ret)
1567 return ret;
1568
1569 ret = pci_read_config_byte(pdev,
1570 pos + PCI_CAP_LIST_NEXT, &next);
1571 if (ret)
1572 return ret;
1573
1574 /*
1575 * ID 0 is a NULL capability, conflicting with our fake
1576 * PCI_CAP_ID_BASIC. As it has no content, consider it
1577 * hidden for now.
1578 */
1579 if (cap && cap <= PCI_CAP_ID_MAX) {
1580 len = pci_cap_length[cap];
1581 if (len == 0xFF) { /* Variable length */
1582 len = vfio_cap_len(vdev, cap, pos);
1583 if (len < 0)
1584 return len;
1585 }
1586 }
1587
1588 if (!len) {
1589 pci_dbg(pdev, "%s: hiding cap %#x@%#x\n", __func__,
1590 cap, pos);
1591 *prev = next;
1592 pos = next;
1593 continue;
1594 }
1595
1596 /* Sanity check, do we overlap other capabilities? */
1597 for (i = 0; i < len; i++) {
1598 if (likely(map[pos + i] == PCI_CAP_ID_INVALID))
1599 continue;
1600
1601 pci_warn(pdev, "%s: PCI config conflict @%#x, was cap %#x now cap %#x\n",
1602 __func__, pos + i, map[pos + i], cap);
1603 }
1604
1605 BUILD_BUG_ON(PCI_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1606
1607 memset(map + pos, cap, len);
1608 ret = vfio_fill_vconfig_bytes(vdev, pos, len);
1609 if (ret)
1610 return ret;
1611
1612 if (cap == PCI_CAP_ID_PM)
1613 vfio_update_pm_vconfig_bytes(vdev, pos);
1614
1615 prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
1616 pos = next;
1617 caps++;
1618 }
1619
1620 /* If we didn't fill any capabilities, clear the status flag */
1621 if (!caps) {
1622 __le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
1623 *vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
1624 }
1625
1626 return 0;
1627 }
1628
vfio_ecap_init(struct vfio_pci_core_device * vdev)1629 static int vfio_ecap_init(struct vfio_pci_core_device *vdev)
1630 {
1631 struct pci_dev *pdev = vdev->pdev;
1632 u8 *map = vdev->pci_config_map;
1633 u16 epos;
1634 __le32 *prev = NULL;
1635 int loops, ret, ecaps = 0;
1636
1637 if (!vdev->extended_caps)
1638 return 0;
1639
1640 epos = PCI_CFG_SPACE_SIZE;
1641
1642 loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
1643
1644 while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
1645 u32 header;
1646 u16 ecap;
1647 int i, len = 0;
1648 bool hidden = false;
1649
1650 ret = pci_read_config_dword(pdev, epos, &header);
1651 if (ret)
1652 return ret;
1653
1654 ecap = PCI_EXT_CAP_ID(header);
1655
1656 if (ecap <= PCI_EXT_CAP_ID_MAX) {
1657 len = pci_ext_cap_length[ecap];
1658 if (len == 0xFF) {
1659 len = vfio_ext_cap_len(vdev, ecap, epos);
1660 if (len < 0)
1661 return len;
1662 }
1663 }
1664
1665 if (!len) {
1666 pci_dbg(pdev, "%s: hiding ecap %#x@%#x\n",
1667 __func__, ecap, epos);
1668
1669 /* If not the first in the chain, we can skip over it */
1670 if (prev) {
1671 u32 val = epos = PCI_EXT_CAP_NEXT(header);
1672 *prev &= cpu_to_le32(~(0xffcU << 20));
1673 *prev |= cpu_to_le32(val << 20);
1674 continue;
1675 }
1676
1677 /*
1678 * Otherwise, fill in a placeholder, the direct
1679 * readfn will virtualize this automatically
1680 */
1681 len = PCI_CAP_SIZEOF;
1682 hidden = true;
1683 }
1684
1685 for (i = 0; i < len; i++) {
1686 if (likely(map[epos + i] == PCI_CAP_ID_INVALID))
1687 continue;
1688
1689 pci_warn(pdev, "%s: PCI config conflict @%#x, was ecap %#x now ecap %#x\n",
1690 __func__, epos + i, map[epos + i], ecap);
1691 }
1692
1693 /*
1694 * Even though ecap is 2 bytes, we're currently a long way
1695 * from exceeding 1 byte capabilities. If we ever make it
1696 * up to 0xFE we'll need to up this to a two-byte, byte map.
1697 */
1698 BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1699
1700 memset(map + epos, ecap, len);
1701 ret = vfio_fill_vconfig_bytes(vdev, epos, len);
1702 if (ret)
1703 return ret;
1704
1705 /*
1706 * If we're just using this capability to anchor the list,
1707 * hide the real ID. Only count real ecaps. XXX PCI spec
1708 * indicates to use cap id = 0, version = 0, next = 0 if
1709 * ecaps are absent, hope users check all the way to next.
1710 */
1711 if (hidden)
1712 *(__le32 *)&vdev->vconfig[epos] &=
1713 cpu_to_le32((0xffcU << 20));
1714 else
1715 ecaps++;
1716
1717 prev = (__le32 *)&vdev->vconfig[epos];
1718 epos = PCI_EXT_CAP_NEXT(header);
1719 }
1720
1721 if (!ecaps)
1722 *(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
1723
1724 return 0;
1725 }
1726
1727 /*
1728 * Nag about hardware bugs, hopefully to have vendors fix them, but at least
1729 * to collect a list of dependencies for the VF INTx pin quirk below.
1730 */
1731 static const struct pci_device_id known_bogus_vf_intx_pin[] = {
1732 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x270c) },
1733 {}
1734 };
1735
1736 /*
1737 * For each device we allocate a pci_config_map that indicates the
1738 * capability occupying each dword and thus the struct perm_bits we
1739 * use for read and write. We also allocate a virtualized config
1740 * space which tracks reads and writes to bits that we emulate for
1741 * the user. Initial values filled from device.
1742 *
1743 * Using shared struct perm_bits between all vfio-pci devices saves
1744 * us from allocating cfg_size buffers for virt and write for every
1745 * device. We could remove vconfig and allocate individual buffers
1746 * for each area requiring emulated bits, but the array of pointers
1747 * would be comparable in size (at least for standard config space).
1748 */
vfio_config_init(struct vfio_pci_core_device * vdev)1749 int vfio_config_init(struct vfio_pci_core_device *vdev)
1750 {
1751 struct pci_dev *pdev = vdev->pdev;
1752 u8 *map, *vconfig;
1753 int ret;
1754
1755 /*
1756 * Config space, caps and ecaps are all dword aligned, so we could
1757 * use one byte per dword to record the type. However, there are
1758 * no requirements on the length of a capability, so the gap between
1759 * capabilities needs byte granularity.
1760 */
1761 map = kmalloc(pdev->cfg_size, GFP_KERNEL_ACCOUNT);
1762 if (!map)
1763 return -ENOMEM;
1764
1765 vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL_ACCOUNT);
1766 if (!vconfig) {
1767 kfree(map);
1768 return -ENOMEM;
1769 }
1770
1771 vdev->pci_config_map = map;
1772 vdev->vconfig = vconfig;
1773
1774 memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF);
1775 memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID,
1776 pdev->cfg_size - PCI_STD_HEADER_SIZEOF);
1777
1778 ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
1779 if (ret)
1780 goto out;
1781
1782 vdev->bardirty = true;
1783
1784 /*
1785 * XXX can we just pci_load_saved_state/pci_restore_state?
1786 * may need to rebuild vconfig after that
1787 */
1788
1789 /* For restore after reset */
1790 vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
1791 vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
1792 vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
1793 vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
1794 vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
1795 vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
1796 vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
1797
1798 if (pdev->is_virtfn) {
1799 *(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
1800 *(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
1801
1802 /*
1803 * Per SR-IOV spec rev 1.1, 3.4.1.18 the interrupt pin register
1804 * does not apply to VFs and VFs must implement this register
1805 * as read-only with value zero. Userspace is not readily able
1806 * to identify whether a device is a VF and thus that the pin
1807 * definition on the device is bogus should it violate this
1808 * requirement. We already virtualize the pin register for
1809 * other purposes, so we simply need to replace the bogus value
1810 * and consider VFs when we determine INTx IRQ count.
1811 */
1812 if (vconfig[PCI_INTERRUPT_PIN] &&
1813 !pci_match_id(known_bogus_vf_intx_pin, pdev))
1814 pci_warn(pdev,
1815 "Hardware bug: VF reports bogus INTx pin %d\n",
1816 vconfig[PCI_INTERRUPT_PIN]);
1817
1818 vconfig[PCI_INTERRUPT_PIN] = 0; /* Gratuitous for good VFs */
1819 }
1820 if (pdev->no_command_memory) {
1821 /*
1822 * VFs and devices that set pdev->no_command_memory do not
1823 * implement the memory enable bit of the COMMAND register
1824 * therefore we'll not have it set in our initial copy of
1825 * config space after pci_enable_device(). For consistency
1826 * with PFs, set the virtual enable bit here.
1827 */
1828 *(__le16 *)&vconfig[PCI_COMMAND] |=
1829 cpu_to_le16(PCI_COMMAND_MEMORY);
1830 }
1831
1832 if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || vdev->nointx ||
1833 !vdev->pdev->irq || vdev->pdev->irq == IRQ_NOTCONNECTED)
1834 vconfig[PCI_INTERRUPT_PIN] = 0;
1835
1836 ret = vfio_cap_init(vdev);
1837 if (ret)
1838 goto out;
1839
1840 ret = vfio_ecap_init(vdev);
1841 if (ret)
1842 goto out;
1843
1844 return 0;
1845
1846 out:
1847 kfree(map);
1848 vdev->pci_config_map = NULL;
1849 kfree(vconfig);
1850 vdev->vconfig = NULL;
1851 return pcibios_err_to_errno(ret);
1852 }
1853
vfio_config_free(struct vfio_pci_core_device * vdev)1854 void vfio_config_free(struct vfio_pci_core_device *vdev)
1855 {
1856 kfree(vdev->vconfig);
1857 vdev->vconfig = NULL;
1858 kfree(vdev->pci_config_map);
1859 vdev->pci_config_map = NULL;
1860 if (vdev->msi_perm) {
1861 free_perm_bits(vdev->msi_perm);
1862 kfree(vdev->msi_perm);
1863 vdev->msi_perm = NULL;
1864 }
1865 }
1866
1867 /*
1868 * Find the remaining number of bytes in a dword that match the given
1869 * position. Stop at either the end of the capability or the dword boundary.
1870 */
vfio_pci_cap_remaining_dword(struct vfio_pci_core_device * vdev,loff_t pos)1871 static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_core_device *vdev,
1872 loff_t pos)
1873 {
1874 u8 cap = vdev->pci_config_map[pos];
1875 size_t i;
1876
1877 for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++)
1878 /* nop */;
1879
1880 return i;
1881 }
1882
vfio_config_do_rw(struct vfio_pci_core_device * vdev,char __user * buf,size_t count,loff_t * ppos,bool iswrite)1883 static ssize_t vfio_config_do_rw(struct vfio_pci_core_device *vdev, char __user *buf,
1884 size_t count, loff_t *ppos, bool iswrite)
1885 {
1886 struct pci_dev *pdev = vdev->pdev;
1887 struct perm_bits *perm;
1888 __le32 val = 0;
1889 int cap_start = 0, offset;
1890 u8 cap_id;
1891 ssize_t ret;
1892
1893 if (*ppos < 0 || *ppos >= pdev->cfg_size ||
1894 *ppos + count > pdev->cfg_size)
1895 return -EFAULT;
1896
1897 /*
1898 * Chop accesses into aligned chunks containing no more than a
1899 * single capability. Caller increments to the next chunk.
1900 */
1901 count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos));
1902 if (count >= 4 && !(*ppos % 4))
1903 count = 4;
1904 else if (count >= 2 && !(*ppos % 2))
1905 count = 2;
1906 else
1907 count = 1;
1908
1909 ret = count;
1910
1911 cap_id = vdev->pci_config_map[*ppos];
1912
1913 if (cap_id == PCI_CAP_ID_INVALID) {
1914 perm = &unassigned_perms;
1915 cap_start = *ppos;
1916 } else if (cap_id == PCI_CAP_ID_INVALID_VIRT) {
1917 perm = &virt_perms;
1918 cap_start = *ppos;
1919 } else {
1920 if (*ppos >= PCI_CFG_SPACE_SIZE) {
1921 /*
1922 * We can get a cap_id that exceeds PCI_EXT_CAP_ID_MAX
1923 * if we're hiding an unknown capability at the start
1924 * of the extended capability list. Use default, ro
1925 * access, which will virtualize the id and next values.
1926 */
1927 if (cap_id > PCI_EXT_CAP_ID_MAX)
1928 perm = &direct_ro_perms;
1929 else
1930 perm = &ecap_perms[cap_id];
1931
1932 cap_start = vfio_find_cap_start(vdev, *ppos);
1933 } else {
1934 WARN_ON(cap_id > PCI_CAP_ID_MAX);
1935
1936 perm = &cap_perms[cap_id];
1937
1938 if (cap_id == PCI_CAP_ID_MSI)
1939 perm = vdev->msi_perm;
1940
1941 if (cap_id > PCI_CAP_ID_BASIC)
1942 cap_start = vfio_find_cap_start(vdev, *ppos);
1943 }
1944 }
1945
1946 WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
1947 WARN_ON(cap_start > *ppos);
1948
1949 offset = *ppos - cap_start;
1950
1951 if (iswrite) {
1952 if (!perm->writefn)
1953 return ret;
1954
1955 if (copy_from_user(&val, buf, count))
1956 return -EFAULT;
1957
1958 ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
1959 } else {
1960 if (perm->readfn) {
1961 ret = perm->readfn(vdev, *ppos, count,
1962 perm, offset, &val);
1963 if (ret < 0)
1964 return ret;
1965 }
1966
1967 if (copy_to_user(buf, &val, count))
1968 return -EFAULT;
1969 }
1970
1971 return ret;
1972 }
1973
vfio_pci_config_rw(struct vfio_pci_core_device * vdev,char __user * buf,size_t count,loff_t * ppos,bool iswrite)1974 ssize_t vfio_pci_config_rw(struct vfio_pci_core_device *vdev, char __user *buf,
1975 size_t count, loff_t *ppos, bool iswrite)
1976 {
1977 size_t done = 0;
1978 int ret = 0;
1979 loff_t pos = *ppos;
1980
1981 pos &= VFIO_PCI_OFFSET_MASK;
1982
1983 while (count) {
1984 ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite);
1985 if (ret < 0)
1986 return ret;
1987
1988 count -= ret;
1989 done += ret;
1990 buf += ret;
1991 pos += ret;
1992 }
1993
1994 *ppos += done;
1995
1996 return done;
1997 }
1998
1999 /**
2000 * vfio_pci_core_range_intersect_range() - Determine overlap between a buffer
2001 * and register offset ranges.
2002 * @buf_start: start offset of the buffer
2003 * @buf_cnt: number of buffer bytes
2004 * @reg_start: start register offset
2005 * @reg_cnt: number of register bytes
2006 * @buf_offset: start offset of overlap in the buffer
2007 * @intersect_count: number of overlapping bytes
2008 * @register_offset: start offset of overlap in register
2009 *
2010 * Returns: true if there is overlap, false if not.
2011 * The overlap start and size is returned through function args.
2012 */
vfio_pci_core_range_intersect_range(loff_t buf_start,size_t buf_cnt,loff_t reg_start,size_t reg_cnt,loff_t * buf_offset,size_t * intersect_count,size_t * register_offset)2013 bool vfio_pci_core_range_intersect_range(loff_t buf_start, size_t buf_cnt,
2014 loff_t reg_start, size_t reg_cnt,
2015 loff_t *buf_offset,
2016 size_t *intersect_count,
2017 size_t *register_offset)
2018 {
2019 if (buf_start <= reg_start &&
2020 buf_start + buf_cnt > reg_start) {
2021 *buf_offset = reg_start - buf_start;
2022 *intersect_count = min_t(size_t, reg_cnt,
2023 buf_start + buf_cnt - reg_start);
2024 *register_offset = 0;
2025 return true;
2026 }
2027
2028 if (buf_start > reg_start &&
2029 buf_start < reg_start + reg_cnt) {
2030 *buf_offset = 0;
2031 *intersect_count = min_t(size_t, buf_cnt,
2032 reg_start + reg_cnt - buf_start);
2033 *register_offset = buf_start - reg_start;
2034 return true;
2035 }
2036
2037 return false;
2038 }
2039 EXPORT_SYMBOL_GPL(vfio_pci_core_range_intersect_range);
2040