xref: /linux/drivers/vfio/pci/vfio_pci_config.c (revision a3ebb59eee2e558e8f8f27fc3f75cd367f17cd8e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VFIO PCI config space virtualization
4  *
5  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
6  *     Author: Alex Williamson <alex.williamson@redhat.com>
7  *
8  * Derived from original vfio:
9  * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
10  * Author: Tom Lyon, pugs@cisco.com
11  */
12 
13 /*
14  * This code handles reading and writing of PCI configuration registers.
15  * This is hairy because we want to allow a lot of flexibility to the
16  * user driver, but cannot trust it with all of the config fields.
17  * Tables determine which fields can be read and written, as well as
18  * which fields are 'virtualized' - special actions and translations to
19  * make it appear to the user that he has control, when in fact things
20  * must be negotiated with the underlying OS.
21  */
22 
23 #include <linux/fs.h>
24 #include <linux/pci.h>
25 #include <linux/uaccess.h>
26 #include <linux/vfio.h>
27 #include <linux/slab.h>
28 
29 #include "vfio_pci_priv.h"
30 
31 /* Fake capability ID for standard config space */
32 #define PCI_CAP_ID_BASIC	0
33 
34 #define is_bar(offset)	\
35 	((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
36 	 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
37 
38 /*
39  * Lengths of PCI Config Capabilities
40  *   0: Removed from the user visible capability list
41  *   FF: Variable length
42  */
43 static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = {
44 	[PCI_CAP_ID_BASIC]	= PCI_STD_HEADER_SIZEOF, /* pci config header */
45 	[PCI_CAP_ID_PM]		= PCI_PM_SIZEOF,
46 	[PCI_CAP_ID_AGP]	= PCI_AGP_SIZEOF,
47 	[PCI_CAP_ID_VPD]	= PCI_CAP_VPD_SIZEOF,
48 	[PCI_CAP_ID_SLOTID]	= 0,		/* bridge - don't care */
49 	[PCI_CAP_ID_MSI]	= 0xFF,		/* 10, 14, 20, or 24 */
50 	[PCI_CAP_ID_CHSWP]	= 0,		/* cpci - not yet */
51 	[PCI_CAP_ID_PCIX]	= 0xFF,		/* 8 or 24 */
52 	[PCI_CAP_ID_HT]		= 0xFF,		/* hypertransport */
53 	[PCI_CAP_ID_VNDR]	= 0xFF,		/* variable */
54 	[PCI_CAP_ID_DBG]	= 0,		/* debug - don't care */
55 	[PCI_CAP_ID_CCRC]	= 0,		/* cpci - not yet */
56 	[PCI_CAP_ID_SHPC]	= 0,		/* hotswap - not yet */
57 	[PCI_CAP_ID_SSVID]	= 0,		/* bridge - don't care */
58 	[PCI_CAP_ID_AGP3]	= 0,		/* AGP8x - not yet */
59 	[PCI_CAP_ID_SECDEV]	= 0,		/* secure device not yet */
60 	[PCI_CAP_ID_EXP]	= 0xFF,		/* 20 or 44 */
61 	[PCI_CAP_ID_MSIX]	= PCI_CAP_MSIX_SIZEOF,
62 	[PCI_CAP_ID_SATA]	= 0xFF,
63 	[PCI_CAP_ID_AF]		= PCI_CAP_AF_SIZEOF,
64 };
65 
66 /*
67  * Lengths of PCIe/PCI-X Extended Config Capabilities
68  *   0: Removed or masked from the user visible capability list
69  *   FF: Variable length
70  */
71 static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = {
72 	[PCI_EXT_CAP_ID_ERR]	=	PCI_ERR_ROOT_COMMAND,
73 	[PCI_EXT_CAP_ID_VC]	=	0xFF,
74 	[PCI_EXT_CAP_ID_DSN]	=	PCI_EXT_CAP_DSN_SIZEOF,
75 	[PCI_EXT_CAP_ID_PWR]	=	PCI_EXT_CAP_PWR_SIZEOF,
76 	[PCI_EXT_CAP_ID_RCLD]	=	0,	/* root only - don't care */
77 	[PCI_EXT_CAP_ID_RCILC]	=	0,	/* root only - don't care */
78 	[PCI_EXT_CAP_ID_RCEC]	=	0,	/* root only - don't care */
79 	[PCI_EXT_CAP_ID_MFVC]	=	0xFF,
80 	[PCI_EXT_CAP_ID_VC9]	=	0xFF,	/* same as CAP_ID_VC */
81 	[PCI_EXT_CAP_ID_RCRB]	=	0,	/* root only - don't care */
82 	[PCI_EXT_CAP_ID_VNDR]	=	0xFF,
83 	[PCI_EXT_CAP_ID_CAC]	=	0,	/* obsolete */
84 	[PCI_EXT_CAP_ID_ACS]	=	0xFF,
85 	[PCI_EXT_CAP_ID_ARI]	=	PCI_EXT_CAP_ARI_SIZEOF,
86 	[PCI_EXT_CAP_ID_ATS]	=	PCI_EXT_CAP_ATS_SIZEOF,
87 	[PCI_EXT_CAP_ID_SRIOV]	=	PCI_EXT_CAP_SRIOV_SIZEOF,
88 	[PCI_EXT_CAP_ID_MRIOV]	=	0,	/* not yet */
89 	[PCI_EXT_CAP_ID_MCAST]	=	PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
90 	[PCI_EXT_CAP_ID_PRI]	=	PCI_EXT_CAP_PRI_SIZEOF,
91 	[PCI_EXT_CAP_ID_AMD_XXX] =	0,	/* not yet */
92 	[PCI_EXT_CAP_ID_REBAR]	=	0xFF,
93 	[PCI_EXT_CAP_ID_DPA]	=	0xFF,
94 	[PCI_EXT_CAP_ID_TPH]	=	0xFF,
95 	[PCI_EXT_CAP_ID_LTR]	=	PCI_EXT_CAP_LTR_SIZEOF,
96 	[PCI_EXT_CAP_ID_SECPCI]	=	0,	/* not yet */
97 	[PCI_EXT_CAP_ID_PMUX]	=	0,	/* not yet */
98 	[PCI_EXT_CAP_ID_PASID]	=	0,	/* not yet */
99 	[PCI_EXT_CAP_ID_DVSEC]	=	0xFF,
100 };
101 
102 /*
103  * Read/Write Permission Bits - one bit for each bit in capability
104  * Any field can be read if it exists, but what is read depends on
105  * whether the field is 'virtualized', or just pass through to the
106  * hardware.  Any virtualized field is also virtualized for writes.
107  * Writes are only permitted if they have a 1 bit here.
108  */
109 struct perm_bits {
110 	u8	*virt;		/* read/write virtual data, not hw */
111 	u8	*write;		/* writeable bits */
112 	int	(*readfn)(struct vfio_pci_core_device *vdev, int pos, int count,
113 			  struct perm_bits *perm, int offset, __le32 *val);
114 	int	(*writefn)(struct vfio_pci_core_device *vdev, int pos, int count,
115 			   struct perm_bits *perm, int offset, __le32 val);
116 };
117 
118 #define	NO_VIRT		0
119 #define	ALL_VIRT	0xFFFFFFFFU
120 #define	NO_WRITE	0
121 #define	ALL_WRITE	0xFFFFFFFFU
122 
vfio_user_config_read(struct pci_dev * pdev,int offset,__le32 * val,int count)123 static int vfio_user_config_read(struct pci_dev *pdev, int offset,
124 				 __le32 *val, int count)
125 {
126 	int ret = -EINVAL;
127 	u32 tmp_val = 0;
128 
129 	switch (count) {
130 	case 1:
131 	{
132 		u8 tmp;
133 		ret = pci_user_read_config_byte(pdev, offset, &tmp);
134 		tmp_val = tmp;
135 		break;
136 	}
137 	case 2:
138 	{
139 		u16 tmp;
140 		ret = pci_user_read_config_word(pdev, offset, &tmp);
141 		tmp_val = tmp;
142 		break;
143 	}
144 	case 4:
145 		ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
146 		break;
147 	}
148 
149 	*val = cpu_to_le32(tmp_val);
150 
151 	return ret;
152 }
153 
vfio_user_config_write(struct pci_dev * pdev,int offset,__le32 val,int count)154 static int vfio_user_config_write(struct pci_dev *pdev, int offset,
155 				  __le32 val, int count)
156 {
157 	int ret = -EINVAL;
158 	u32 tmp_val = le32_to_cpu(val);
159 
160 	switch (count) {
161 	case 1:
162 		ret = pci_user_write_config_byte(pdev, offset, tmp_val);
163 		break;
164 	case 2:
165 		ret = pci_user_write_config_word(pdev, offset, tmp_val);
166 		break;
167 	case 4:
168 		ret = pci_user_write_config_dword(pdev, offset, tmp_val);
169 		break;
170 	}
171 
172 	return ret;
173 }
174 
vfio_default_config_read(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)175 static int vfio_default_config_read(struct vfio_pci_core_device *vdev, int pos,
176 				    int count, struct perm_bits *perm,
177 				    int offset, __le32 *val)
178 {
179 	__le32 virt = 0;
180 
181 	memcpy(val, vdev->vconfig + pos, count);
182 
183 	memcpy(&virt, perm->virt + offset, count);
184 
185 	/* Any non-virtualized bits? */
186 	if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
187 		struct pci_dev *pdev = vdev->pdev;
188 		__le32 phys_val = 0;
189 		int ret;
190 
191 		ret = vfio_user_config_read(pdev, pos, &phys_val, count);
192 		if (ret)
193 			return ret;
194 
195 		*val = (phys_val & ~virt) | (*val & virt);
196 	}
197 
198 	return count;
199 }
200 
vfio_default_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)201 static int vfio_default_config_write(struct vfio_pci_core_device *vdev, int pos,
202 				     int count, struct perm_bits *perm,
203 				     int offset, __le32 val)
204 {
205 	__le32 virt = 0, write = 0;
206 
207 	memcpy(&write, perm->write + offset, count);
208 
209 	if (!write)
210 		return count; /* drop, no writable bits */
211 
212 	memcpy(&virt, perm->virt + offset, count);
213 
214 	/* Virtualized and writable bits go to vconfig */
215 	if (write & virt) {
216 		__le32 virt_val = 0;
217 
218 		memcpy(&virt_val, vdev->vconfig + pos, count);
219 
220 		virt_val &= ~(write & virt);
221 		virt_val |= (val & (write & virt));
222 
223 		memcpy(vdev->vconfig + pos, &virt_val, count);
224 	}
225 
226 	/* Non-virtualized and writable bits go to hardware */
227 	if (write & ~virt) {
228 		struct pci_dev *pdev = vdev->pdev;
229 		__le32 phys_val = 0;
230 		int ret;
231 
232 		ret = vfio_user_config_read(pdev, pos, &phys_val, count);
233 		if (ret)
234 			return ret;
235 
236 		phys_val &= ~(write & ~virt);
237 		phys_val |= (val & (write & ~virt));
238 
239 		ret = vfio_user_config_write(pdev, pos, phys_val, count);
240 		if (ret)
241 			return ret;
242 	}
243 
244 	return count;
245 }
246 
247 /* Allow direct read from hardware, except for capability next pointer */
vfio_direct_config_read(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)248 static int vfio_direct_config_read(struct vfio_pci_core_device *vdev, int pos,
249 				   int count, struct perm_bits *perm,
250 				   int offset, __le32 *val)
251 {
252 	int ret;
253 
254 	ret = vfio_user_config_read(vdev->pdev, pos, val, count);
255 	if (ret)
256 		return ret;
257 
258 	if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
259 		if (offset < 4)
260 			memcpy(val, vdev->vconfig + pos, count);
261 	} else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
262 		if (offset == PCI_CAP_LIST_ID && count > 1)
263 			memcpy(val, vdev->vconfig + pos,
264 			       min(PCI_CAP_FLAGS, count));
265 		else if (offset == PCI_CAP_LIST_NEXT)
266 			memcpy(val, vdev->vconfig + pos, 1);
267 	}
268 
269 	return count;
270 }
271 
272 /* Raw access skips any kind of virtualization */
vfio_raw_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)273 static int vfio_raw_config_write(struct vfio_pci_core_device *vdev, int pos,
274 				 int count, struct perm_bits *perm,
275 				 int offset, __le32 val)
276 {
277 	int ret;
278 
279 	ret = vfio_user_config_write(vdev->pdev, pos, val, count);
280 	if (ret)
281 		return ret;
282 
283 	return count;
284 }
285 
vfio_raw_config_read(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)286 static int vfio_raw_config_read(struct vfio_pci_core_device *vdev, int pos,
287 				int count, struct perm_bits *perm,
288 				int offset, __le32 *val)
289 {
290 	int ret;
291 
292 	ret = vfio_user_config_read(vdev->pdev, pos, val, count);
293 	if (ret)
294 		return ret;
295 
296 	return count;
297 }
298 
299 /* Virt access uses only virtualization */
vfio_virt_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)300 static int vfio_virt_config_write(struct vfio_pci_core_device *vdev, int pos,
301 				  int count, struct perm_bits *perm,
302 				  int offset, __le32 val)
303 {
304 	memcpy(vdev->vconfig + pos, &val, count);
305 	return count;
306 }
307 
vfio_virt_config_read(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)308 static int vfio_virt_config_read(struct vfio_pci_core_device *vdev, int pos,
309 				 int count, struct perm_bits *perm,
310 				 int offset, __le32 *val)
311 {
312 	memcpy(val, vdev->vconfig + pos, count);
313 	return count;
314 }
315 
316 static struct perm_bits direct_ro_perms = {
317 	.readfn = vfio_direct_config_read,
318 };
319 
320 /* Default capability regions to read-only, no-virtualization */
321 static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
322 	[0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
323 };
324 static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
325 	[0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
326 };
327 /*
328  * Default unassigned regions to raw read-write access.  Some devices
329  * require this to function as they hide registers between the gaps in
330  * config space (be2net).  Like MMIO and I/O port registers, we have
331  * to trust the hardware isolation.
332  */
333 static struct perm_bits unassigned_perms = {
334 	.readfn = vfio_raw_config_read,
335 	.writefn = vfio_raw_config_write
336 };
337 
338 static struct perm_bits virt_perms = {
339 	.readfn = vfio_virt_config_read,
340 	.writefn = vfio_virt_config_write
341 };
342 
free_perm_bits(struct perm_bits * perm)343 static void free_perm_bits(struct perm_bits *perm)
344 {
345 	kfree(perm->virt);
346 	kfree(perm->write);
347 	perm->virt = NULL;
348 	perm->write = NULL;
349 }
350 
alloc_perm_bits(struct perm_bits * perm,int size)351 static int alloc_perm_bits(struct perm_bits *perm, int size)
352 {
353 	/*
354 	 * Round up all permission bits to the next dword, this lets us
355 	 * ignore whether a read/write exceeds the defined capability
356 	 * structure.  We can do this because:
357 	 *  - Standard config space is already dword aligned
358 	 *  - Capabilities are all dword aligned (bits 0:1 of next reserved)
359 	 *  - Express capabilities defined as dword aligned
360 	 */
361 	size = round_up(size, 4);
362 
363 	/*
364 	 * Zero state is
365 	 * - All Readable, None Writeable, None Virtualized
366 	 */
367 	perm->virt = kzalloc(size, GFP_KERNEL);
368 	perm->write = kzalloc(size, GFP_KERNEL);
369 	if (!perm->virt || !perm->write) {
370 		free_perm_bits(perm);
371 		return -ENOMEM;
372 	}
373 
374 	perm->readfn = vfio_default_config_read;
375 	perm->writefn = vfio_default_config_write;
376 
377 	return 0;
378 }
379 
380 /*
381  * Helper functions for filling in permission tables
382  */
p_setb(struct perm_bits * p,int off,u8 virt,u8 write)383 static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
384 {
385 	p->virt[off] = virt;
386 	p->write[off] = write;
387 }
388 
389 /* Handle endian-ness - pci and tables are little-endian */
p_setw(struct perm_bits * p,int off,u16 virt,u16 write)390 static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
391 {
392 	*(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
393 	*(__le16 *)(&p->write[off]) = cpu_to_le16(write);
394 }
395 
396 /* Handle endian-ness - pci and tables are little-endian */
p_setd(struct perm_bits * p,int off,u32 virt,u32 write)397 static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
398 {
399 	*(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
400 	*(__le32 *)(&p->write[off]) = cpu_to_le32(write);
401 }
402 
403 /* Caller should hold memory_lock semaphore */
__vfio_pci_memory_enabled(struct vfio_pci_core_device * vdev)404 bool __vfio_pci_memory_enabled(struct vfio_pci_core_device *vdev)
405 {
406 	struct pci_dev *pdev = vdev->pdev;
407 	u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
408 
409 	/*
410 	 * Memory region cannot be accessed if device power state is D3.
411 	 *
412 	 * SR-IOV VF memory enable is handled by the MSE bit in the
413 	 * PF SR-IOV capability, there's therefore no need to trigger
414 	 * faults based on the virtual value.
415 	 */
416 	return pdev->current_state < PCI_D3hot &&
417 	       (pdev->no_command_memory || (cmd & PCI_COMMAND_MEMORY));
418 }
419 EXPORT_SYMBOL_GPL(__vfio_pci_memory_enabled);
420 
421 /*
422  * Restore the *real* BARs after we detect a FLR or backdoor reset.
423  * (backdoor = some device specific technique that we didn't catch)
424  */
vfio_bar_restore(struct vfio_pci_core_device * vdev)425 static void vfio_bar_restore(struct vfio_pci_core_device *vdev)
426 {
427 	struct pci_dev *pdev = vdev->pdev;
428 	u32 *rbar = vdev->rbar;
429 	u16 cmd;
430 	int i;
431 
432 	if (pdev->is_virtfn)
433 		return;
434 
435 	pci_info(pdev, "%s: reset recovery - restoring BARs\n", __func__);
436 
437 	for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
438 		pci_user_write_config_dword(pdev, i, *rbar);
439 
440 	pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
441 
442 	if (vdev->nointx) {
443 		pci_user_read_config_word(pdev, PCI_COMMAND, &cmd);
444 		cmd |= PCI_COMMAND_INTX_DISABLE;
445 		pci_user_write_config_word(pdev, PCI_COMMAND, cmd);
446 	}
447 }
448 
vfio_generate_bar_flags(struct pci_dev * pdev,int bar)449 static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
450 {
451 	unsigned long flags = pci_resource_flags(pdev, bar);
452 	u32 val;
453 
454 	if (flags & IORESOURCE_IO)
455 		return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
456 
457 	val = PCI_BASE_ADDRESS_SPACE_MEMORY;
458 
459 	if (flags & IORESOURCE_PREFETCH)
460 		val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
461 
462 	if (flags & IORESOURCE_MEM_64)
463 		val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
464 
465 	return cpu_to_le32(val);
466 }
467 
468 /*
469  * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
470  * to reflect the hardware capabilities.  This implements BAR sizing.
471  */
vfio_bar_fixup(struct vfio_pci_core_device * vdev)472 static void vfio_bar_fixup(struct vfio_pci_core_device *vdev)
473 {
474 	struct pci_dev *pdev = vdev->pdev;
475 	int i;
476 	__le32 *vbar;
477 	u64 mask;
478 
479 	if (!vdev->bardirty)
480 		return;
481 
482 	vbar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
483 
484 	for (i = 0; i < PCI_STD_NUM_BARS; i++, vbar++) {
485 		int bar = i + PCI_STD_RESOURCES;
486 
487 		if (!pci_resource_start(pdev, bar)) {
488 			*vbar = 0; /* Unmapped by host = unimplemented to user */
489 			continue;
490 		}
491 
492 		mask = ~(pci_resource_len(pdev, bar) - 1);
493 
494 		*vbar &= cpu_to_le32((u32)mask);
495 		*vbar |= vfio_generate_bar_flags(pdev, bar);
496 
497 		if (*vbar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
498 			vbar++;
499 			*vbar &= cpu_to_le32((u32)(mask >> 32));
500 			i++;
501 		}
502 	}
503 
504 	vbar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
505 
506 	/*
507 	 * NB. REGION_INFO will have reported zero size if we weren't able
508 	 * to read the ROM, but we still return the actual BAR size here if
509 	 * it exists (or the shadow ROM space).
510 	 */
511 	if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
512 		mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
513 		mask |= PCI_ROM_ADDRESS_ENABLE;
514 		*vbar &= cpu_to_le32((u32)mask);
515 	} else if (pdev->rom && pdev->romlen) {
516 		mask = ~(roundup_pow_of_two(pdev->romlen) - 1);
517 		mask |= PCI_ROM_ADDRESS_ENABLE;
518 		*vbar &= cpu_to_le32((u32)mask);
519 	} else {
520 		*vbar = 0;
521 	}
522 
523 	vdev->bardirty = false;
524 }
525 
vfio_basic_config_read(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)526 static int vfio_basic_config_read(struct vfio_pci_core_device *vdev, int pos,
527 				  int count, struct perm_bits *perm,
528 				  int offset, __le32 *val)
529 {
530 	if (is_bar(offset)) /* pos == offset for basic config */
531 		vfio_bar_fixup(vdev);
532 
533 	count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
534 
535 	/* Mask in virtual memory enable */
536 	if (offset == PCI_COMMAND && vdev->pdev->no_command_memory) {
537 		u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
538 		u32 tmp_val = le32_to_cpu(*val);
539 
540 		tmp_val |= cmd & PCI_COMMAND_MEMORY;
541 		*val = cpu_to_le32(tmp_val);
542 	}
543 
544 	return count;
545 }
546 
547 /* Test whether BARs match the value we think they should contain */
vfio_need_bar_restore(struct vfio_pci_core_device * vdev)548 static bool vfio_need_bar_restore(struct vfio_pci_core_device *vdev)
549 {
550 	int i = 0, pos = PCI_BASE_ADDRESS_0, ret;
551 	u32 bar;
552 
553 	for (; pos <= PCI_BASE_ADDRESS_5; i++, pos += 4) {
554 		if (vdev->rbar[i]) {
555 			ret = pci_user_read_config_dword(vdev->pdev, pos, &bar);
556 			if (ret || vdev->rbar[i] != bar)
557 				return true;
558 		}
559 	}
560 
561 	return false;
562 }
563 
vfio_basic_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)564 static int vfio_basic_config_write(struct vfio_pci_core_device *vdev, int pos,
565 				   int count, struct perm_bits *perm,
566 				   int offset, __le32 val)
567 {
568 	struct pci_dev *pdev = vdev->pdev;
569 	__le16 *virt_cmd;
570 	u16 new_cmd = 0;
571 	int ret;
572 
573 	virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
574 
575 	if (offset == PCI_COMMAND) {
576 		bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
577 		u16 phys_cmd;
578 
579 		ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
580 		if (ret)
581 			return ret;
582 
583 		new_cmd = le32_to_cpu(val);
584 
585 		phys_io = !!(phys_cmd & PCI_COMMAND_IO);
586 		virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
587 		new_io = !!(new_cmd & PCI_COMMAND_IO);
588 
589 		phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
590 		virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
591 		new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
592 
593 		if (!new_mem) {
594 			vfio_pci_zap_and_down_write_memory_lock(vdev);
595 			vfio_pci_dma_buf_move(vdev, true);
596 		} else {
597 			down_write(&vdev->memory_lock);
598 		}
599 
600 		/*
601 		 * If the user is writing mem/io enable (new_mem/io) and we
602 		 * think it's already enabled (virt_mem/io), but the hardware
603 		 * shows it disabled (phys_mem/io, then the device has
604 		 * undergone some kind of backdoor reset and needs to be
605 		 * restored before we allow it to enable the bars.
606 		 * SR-IOV devices will trigger this - for mem enable let's
607 		 * catch this now and for io enable it will be caught later
608 		 */
609 		if ((new_mem && virt_mem && !phys_mem &&
610 		     !pdev->no_command_memory) ||
611 		    (new_io && virt_io && !phys_io) ||
612 		    vfio_need_bar_restore(vdev))
613 			vfio_bar_restore(vdev);
614 	}
615 
616 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
617 	if (count < 0) {
618 		if (offset == PCI_COMMAND)
619 			up_write(&vdev->memory_lock);
620 		return count;
621 	}
622 
623 	/*
624 	 * Save current memory/io enable bits in vconfig to allow for
625 	 * the test above next time.
626 	 */
627 	if (offset == PCI_COMMAND) {
628 		u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
629 
630 		*virt_cmd &= cpu_to_le16(~mask);
631 		*virt_cmd |= cpu_to_le16(new_cmd & mask);
632 
633 		if (__vfio_pci_memory_enabled(vdev))
634 			vfio_pci_dma_buf_move(vdev, false);
635 		up_write(&vdev->memory_lock);
636 	}
637 
638 	/* Emulate INTx disable */
639 	if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
640 		bool virt_intx_disable;
641 
642 		virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
643 				       PCI_COMMAND_INTX_DISABLE);
644 
645 		if (virt_intx_disable && !vdev->virq_disabled) {
646 			vdev->virq_disabled = true;
647 			vfio_pci_intx_mask(vdev);
648 		} else if (!virt_intx_disable && vdev->virq_disabled) {
649 			vdev->virq_disabled = false;
650 			vfio_pci_intx_unmask(vdev);
651 		}
652 	}
653 
654 	if (is_bar(offset))
655 		vdev->bardirty = true;
656 
657 	return count;
658 }
659 
660 /* Permissions for the Basic PCI Header */
init_pci_cap_basic_perm(struct perm_bits * perm)661 static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
662 {
663 	if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
664 		return -ENOMEM;
665 
666 	perm->readfn = vfio_basic_config_read;
667 	perm->writefn = vfio_basic_config_write;
668 
669 	/* Virtualized for SR-IOV functions, which just have FFFF */
670 	p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
671 	p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
672 
673 	/*
674 	 * Virtualize INTx disable, we use it internally for interrupt
675 	 * control and can emulate it for non-PCI 2.3 devices.
676 	 */
677 	p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
678 
679 	/* Virtualize capability list, we might want to skip/disable */
680 	p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
681 
682 	/* No harm to write */
683 	p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
684 	p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
685 	p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
686 
687 	/* Virtualize all bars, can't touch the real ones */
688 	p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
689 	p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
690 	p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
691 	p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
692 	p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
693 	p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
694 	p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
695 
696 	/* Allow us to adjust capability chain */
697 	p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
698 
699 	/* Sometimes used by sw, just virtualize */
700 	p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
701 
702 	/* Virtualize interrupt pin to allow hiding INTx */
703 	p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE);
704 
705 	return 0;
706 }
707 
708 /*
709  * It takes all the required locks to protect the access of power related
710  * variables and then invokes vfio_pci_set_power_state().
711  */
vfio_lock_and_set_power_state(struct vfio_pci_core_device * vdev,pci_power_t state)712 static void vfio_lock_and_set_power_state(struct vfio_pci_core_device *vdev,
713 					  pci_power_t state)
714 {
715 	if (state >= PCI_D3hot) {
716 		vfio_pci_zap_and_down_write_memory_lock(vdev);
717 		vfio_pci_dma_buf_move(vdev, true);
718 	} else {
719 		down_write(&vdev->memory_lock);
720 	}
721 
722 	vfio_pci_set_power_state(vdev, state);
723 	if (__vfio_pci_memory_enabled(vdev))
724 		vfio_pci_dma_buf_move(vdev, false);
725 	up_write(&vdev->memory_lock);
726 }
727 
vfio_pm_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)728 static int vfio_pm_config_write(struct vfio_pci_core_device *vdev, int pos,
729 				int count, struct perm_bits *perm,
730 				int offset, __le32 val)
731 {
732 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
733 	if (count < 0)
734 		return count;
735 
736 	if (offset == PCI_PM_CTRL) {
737 		pci_power_t state;
738 
739 		switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
740 		case 0:
741 			state = PCI_D0;
742 			break;
743 		case 1:
744 			state = PCI_D1;
745 			break;
746 		case 2:
747 			state = PCI_D2;
748 			break;
749 		case 3:
750 			state = PCI_D3hot;
751 			break;
752 		}
753 
754 		vfio_lock_and_set_power_state(vdev, state);
755 	}
756 
757 	return count;
758 }
759 
760 /* Permissions for the Power Management capability */
init_pci_cap_pm_perm(struct perm_bits * perm)761 static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
762 {
763 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
764 		return -ENOMEM;
765 
766 	perm->writefn = vfio_pm_config_write;
767 
768 	/*
769 	 * We always virtualize the next field so we can remove
770 	 * capabilities from the chain if we want to.
771 	 */
772 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
773 
774 	/*
775 	 * The guests can't process PME events. If any PME event will be
776 	 * generated, then it will be mostly handled in the host and the
777 	 * host will clear the PME_STATUS. So virtualize PME_Support bits.
778 	 * The vconfig bits will be cleared during device capability
779 	 * initialization.
780 	 */
781 	p_setw(perm, PCI_PM_PMC, PCI_PM_CAP_PME_MASK, NO_WRITE);
782 
783 	/*
784 	 * Power management is defined *per function*, so we can let
785 	 * the user change power state, but we trap and initiate the
786 	 * change ourselves, so the state bits are read-only.
787 	 *
788 	 * The guest can't process PME from D3cold so virtualize PME_Status
789 	 * and PME_En bits. The vconfig bits will be cleared during device
790 	 * capability initialization.
791 	 */
792 	p_setd(perm, PCI_PM_CTRL,
793 	       PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS,
794 	       ~(PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS |
795 		 PCI_PM_CTRL_STATE_MASK));
796 
797 	return 0;
798 }
799 
vfio_vpd_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)800 static int vfio_vpd_config_write(struct vfio_pci_core_device *vdev, int pos,
801 				 int count, struct perm_bits *perm,
802 				 int offset, __le32 val)
803 {
804 	struct pci_dev *pdev = vdev->pdev;
805 	__le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR);
806 	__le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA);
807 	u16 addr;
808 	u32 data;
809 
810 	/*
811 	 * Write through to emulation.  If the write includes the upper byte
812 	 * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
813 	 * have work to do.
814 	 */
815 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
816 	if (count < 0 || offset > PCI_VPD_ADDR + 1 ||
817 	    offset + count <= PCI_VPD_ADDR + 1)
818 		return count;
819 
820 	addr = le16_to_cpu(*paddr);
821 
822 	if (addr & PCI_VPD_ADDR_F) {
823 		data = le32_to_cpu(*pdata);
824 		if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4)
825 			return count;
826 	} else {
827 		data = 0;
828 		if (pci_read_vpd(pdev, addr, 4, &data) < 0)
829 			return count;
830 		*pdata = cpu_to_le32(data);
831 	}
832 
833 	/*
834 	 * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
835 	 * signal completion.  If an error occurs above, we assume that not
836 	 * toggling this bit will induce a driver timeout.
837 	 */
838 	addr ^= PCI_VPD_ADDR_F;
839 	*paddr = cpu_to_le16(addr);
840 
841 	return count;
842 }
843 
844 /* Permissions for Vital Product Data capability */
init_pci_cap_vpd_perm(struct perm_bits * perm)845 static int __init init_pci_cap_vpd_perm(struct perm_bits *perm)
846 {
847 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD]))
848 		return -ENOMEM;
849 
850 	perm->writefn = vfio_vpd_config_write;
851 
852 	/*
853 	 * We always virtualize the next field so we can remove
854 	 * capabilities from the chain if we want to.
855 	 */
856 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
857 
858 	/*
859 	 * Both the address and data registers are virtualized to
860 	 * enable access through the pci_vpd_read/write functions
861 	 */
862 	p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE);
863 	p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE);
864 
865 	return 0;
866 }
867 
868 /* Permissions for PCI-X capability */
init_pci_cap_pcix_perm(struct perm_bits * perm)869 static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
870 {
871 	/* Alloc 24, but only 8 are used in v0 */
872 	if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
873 		return -ENOMEM;
874 
875 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
876 
877 	p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
878 	p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
879 	return 0;
880 }
881 
vfio_exp_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)882 static int vfio_exp_config_write(struct vfio_pci_core_device *vdev, int pos,
883 				 int count, struct perm_bits *perm,
884 				 int offset, __le32 val)
885 {
886 	__le16 *ctrl = (__le16 *)(vdev->vconfig + pos -
887 				  offset + PCI_EXP_DEVCTL);
888 	int readrq = le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ;
889 
890 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
891 	if (count < 0)
892 		return count;
893 
894 	/*
895 	 * The FLR bit is virtualized, if set and the device supports PCIe
896 	 * FLR, issue a reset_function.  Regardless, clear the bit, the spec
897 	 * requires it to be always read as zero.  NB, reset_function might
898 	 * not use a PCIe FLR, we don't have that level of granularity.
899 	 */
900 	if (*ctrl & cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR)) {
901 		u32 cap;
902 		int ret;
903 
904 		*ctrl &= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR);
905 
906 		ret = pci_user_read_config_dword(vdev->pdev,
907 						 pos - offset + PCI_EXP_DEVCAP,
908 						 &cap);
909 
910 		if (!ret && (cap & PCI_EXP_DEVCAP_FLR)) {
911 			vfio_pci_zap_and_down_write_memory_lock(vdev);
912 			vfio_pci_dma_buf_move(vdev, true);
913 			pci_try_reset_function(vdev->pdev);
914 			if (__vfio_pci_memory_enabled(vdev))
915 				vfio_pci_dma_buf_move(vdev, false);
916 			up_write(&vdev->memory_lock);
917 		}
918 	}
919 
920 	/*
921 	 * MPS is virtualized to the user, writes do not change the physical
922 	 * register since determining a proper MPS value requires a system wide
923 	 * device view.  The MRRS is largely independent of MPS, but since the
924 	 * user does not have that system-wide view, they might set a safe, but
925 	 * inefficiently low value.  Here we allow writes through to hardware,
926 	 * but we set the floor to the physical device MPS setting, so that
927 	 * we can at least use full TLPs, as defined by the MPS value.
928 	 *
929 	 * NB, if any devices actually depend on an artificially low MRRS
930 	 * setting, this will need to be revisited, perhaps with a quirk
931 	 * though pcie_set_readrq().
932 	 */
933 	if (readrq != (le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ)) {
934 		readrq = 128 <<
935 			((le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ) >> 12);
936 		readrq = max(readrq, pcie_get_mps(vdev->pdev));
937 
938 		pcie_set_readrq(vdev->pdev, readrq);
939 	}
940 
941 	return count;
942 }
943 
944 /* Permissions for PCI Express capability */
init_pci_cap_exp_perm(struct perm_bits * perm)945 static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
946 {
947 	/* Alloc largest of possible sizes */
948 	if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
949 		return -ENOMEM;
950 
951 	perm->writefn = vfio_exp_config_write;
952 
953 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
954 
955 	/*
956 	 * Allow writes to device control fields, except devctl_phantom,
957 	 * which could confuse IOMMU, MPS, which can break communication
958 	 * with other physical devices, and the ARI bit in devctl2, which
959 	 * is set at probe time.  FLR and MRRS get virtualized via our
960 	 * writefn.
961 	 */
962 	p_setw(perm, PCI_EXP_DEVCTL,
963 	       PCI_EXP_DEVCTL_BCR_FLR | PCI_EXP_DEVCTL_PAYLOAD |
964 	       PCI_EXP_DEVCTL_READRQ, ~PCI_EXP_DEVCTL_PHANTOM);
965 	p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
966 	return 0;
967 }
968 
vfio_af_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)969 static int vfio_af_config_write(struct vfio_pci_core_device *vdev, int pos,
970 				int count, struct perm_bits *perm,
971 				int offset, __le32 val)
972 {
973 	u8 *ctrl = vdev->vconfig + pos - offset + PCI_AF_CTRL;
974 
975 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
976 	if (count < 0)
977 		return count;
978 
979 	/*
980 	 * The FLR bit is virtualized, if set and the device supports AF
981 	 * FLR, issue a reset_function.  Regardless, clear the bit, the spec
982 	 * requires it to be always read as zero.  NB, reset_function might
983 	 * not use an AF FLR, we don't have that level of granularity.
984 	 */
985 	if (*ctrl & PCI_AF_CTRL_FLR) {
986 		u8 cap;
987 		int ret;
988 
989 		*ctrl &= ~PCI_AF_CTRL_FLR;
990 
991 		ret = pci_user_read_config_byte(vdev->pdev,
992 						pos - offset + PCI_AF_CAP,
993 						&cap);
994 
995 		if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP)) {
996 			vfio_pci_zap_and_down_write_memory_lock(vdev);
997 			vfio_pci_dma_buf_move(vdev, true);
998 			pci_try_reset_function(vdev->pdev);
999 			if (__vfio_pci_memory_enabled(vdev))
1000 				vfio_pci_dma_buf_move(vdev, false);
1001 			up_write(&vdev->memory_lock);
1002 		}
1003 	}
1004 
1005 	return count;
1006 }
1007 
1008 /* Permissions for Advanced Function capability */
init_pci_cap_af_perm(struct perm_bits * perm)1009 static int __init init_pci_cap_af_perm(struct perm_bits *perm)
1010 {
1011 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
1012 		return -ENOMEM;
1013 
1014 	perm->writefn = vfio_af_config_write;
1015 
1016 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
1017 	p_setb(perm, PCI_AF_CTRL, PCI_AF_CTRL_FLR, PCI_AF_CTRL_FLR);
1018 	return 0;
1019 }
1020 
1021 /* Permissions for Advanced Error Reporting extended capability */
init_pci_ext_cap_err_perm(struct perm_bits * perm)1022 static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
1023 {
1024 	u32 mask;
1025 
1026 	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
1027 		return -ENOMEM;
1028 
1029 	/*
1030 	 * Virtualize the first dword of all express capabilities
1031 	 * because it includes the next pointer.  This lets us later
1032 	 * remove capabilities from the chain if we need to.
1033 	 */
1034 	p_setd(perm, 0, ALL_VIRT, NO_WRITE);
1035 
1036 	/* Writable bits mask */
1037 	mask =	PCI_ERR_UNC_UND |		/* Undefined */
1038 		PCI_ERR_UNC_DLP |		/* Data Link Protocol */
1039 		PCI_ERR_UNC_SURPDN |		/* Surprise Down */
1040 		PCI_ERR_UNC_POISON_TLP |	/* Poisoned TLP */
1041 		PCI_ERR_UNC_FCP |		/* Flow Control Protocol */
1042 		PCI_ERR_UNC_COMP_TIME |		/* Completion Timeout */
1043 		PCI_ERR_UNC_COMP_ABORT |	/* Completer Abort */
1044 		PCI_ERR_UNC_UNX_COMP |		/* Unexpected Completion */
1045 		PCI_ERR_UNC_RX_OVER |		/* Receiver Overflow */
1046 		PCI_ERR_UNC_MALF_TLP |		/* Malformed TLP */
1047 		PCI_ERR_UNC_ECRC |		/* ECRC Error Status */
1048 		PCI_ERR_UNC_UNSUP |		/* Unsupported Request */
1049 		PCI_ERR_UNC_ACSV |		/* ACS Violation */
1050 		PCI_ERR_UNC_INTN |		/* internal error */
1051 		PCI_ERR_UNC_MCBTLP |		/* MC blocked TLP */
1052 		PCI_ERR_UNC_ATOMEG |		/* Atomic egress blocked */
1053 		PCI_ERR_UNC_TLPPRE;		/* TLP prefix blocked */
1054 	p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
1055 	p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
1056 	p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
1057 
1058 	mask =	PCI_ERR_COR_RCVR |		/* Receiver Error Status */
1059 		PCI_ERR_COR_BAD_TLP |		/* Bad TLP Status */
1060 		PCI_ERR_COR_BAD_DLLP |		/* Bad DLLP Status */
1061 		PCI_ERR_COR_REP_ROLL |		/* REPLAY_NUM Rollover */
1062 		PCI_ERR_COR_REP_TIMER |		/* Replay Timer Timeout */
1063 		PCI_ERR_COR_ADV_NFAT |		/* Advisory Non-Fatal */
1064 		PCI_ERR_COR_INTERNAL |		/* Corrected Internal */
1065 		PCI_ERR_COR_LOG_OVER;		/* Header Log Overflow */
1066 	p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
1067 	p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
1068 
1069 	mask =	PCI_ERR_CAP_ECRC_GENE |		/* ECRC Generation Enable */
1070 		PCI_ERR_CAP_ECRC_CHKE;		/* ECRC Check Enable */
1071 	p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
1072 	return 0;
1073 }
1074 
1075 /* Permissions for Power Budgeting extended capability */
init_pci_ext_cap_pwr_perm(struct perm_bits * perm)1076 static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
1077 {
1078 	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
1079 		return -ENOMEM;
1080 
1081 	p_setd(perm, 0, ALL_VIRT, NO_WRITE);
1082 
1083 	/* Writing the data selector is OK, the info is still read-only */
1084 	p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
1085 	return 0;
1086 }
1087 
1088 /*
1089  * Initialize the shared permission tables
1090  */
vfio_pci_uninit_perm_bits(void)1091 void vfio_pci_uninit_perm_bits(void)
1092 {
1093 	free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
1094 
1095 	free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
1096 	free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]);
1097 	free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
1098 	free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
1099 	free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
1100 
1101 	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1102 	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1103 }
1104 
vfio_pci_init_perm_bits(void)1105 int __init vfio_pci_init_perm_bits(void)
1106 {
1107 	int ret;
1108 
1109 	/* Basic config space */
1110 	ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
1111 
1112 	/* Capabilities */
1113 	ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
1114 	ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]);
1115 	ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
1116 	cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1117 	ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
1118 	ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
1119 
1120 	/* Extended capabilities */
1121 	ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1122 	ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1123 	ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1124 	ecap_perms[PCI_EXT_CAP_ID_DVSEC].writefn = vfio_raw_config_write;
1125 
1126 	if (ret)
1127 		vfio_pci_uninit_perm_bits();
1128 
1129 	return ret;
1130 }
1131 
vfio_find_cap_start(struct vfio_pci_core_device * vdev,int pos)1132 static int vfio_find_cap_start(struct vfio_pci_core_device *vdev, int pos)
1133 {
1134 	u8 cap;
1135 	int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
1136 						 PCI_STD_HEADER_SIZEOF;
1137 	cap = vdev->pci_config_map[pos];
1138 
1139 	if (cap == PCI_CAP_ID_BASIC)
1140 		return 0;
1141 
1142 	/* XXX Can we have to abutting capabilities of the same type? */
1143 	while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
1144 		pos--;
1145 
1146 	return pos;
1147 }
1148 
vfio_msi_config_read(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)1149 static int vfio_msi_config_read(struct vfio_pci_core_device *vdev, int pos,
1150 				int count, struct perm_bits *perm,
1151 				int offset, __le32 *val)
1152 {
1153 	/* Update max available queue size from msi_qmax */
1154 	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1155 		__le16 *flags;
1156 		int start;
1157 
1158 		start = vfio_find_cap_start(vdev, pos);
1159 
1160 		flags = (__le16 *)&vdev->vconfig[start];
1161 
1162 		*flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
1163 		*flags |= cpu_to_le16(vdev->msi_qmax << 1);
1164 	}
1165 
1166 	return vfio_default_config_read(vdev, pos, count, perm, offset, val);
1167 }
1168 
vfio_msi_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)1169 static int vfio_msi_config_write(struct vfio_pci_core_device *vdev, int pos,
1170 				 int count, struct perm_bits *perm,
1171 				 int offset, __le32 val)
1172 {
1173 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
1174 	if (count < 0)
1175 		return count;
1176 
1177 	/* Fixup and write configured queue size and enable to hardware */
1178 	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1179 		__le16 *pflags;
1180 		u16 flags;
1181 		int start, ret;
1182 
1183 		start = vfio_find_cap_start(vdev, pos);
1184 
1185 		pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
1186 
1187 		flags = le16_to_cpu(*pflags);
1188 
1189 		/* MSI is enabled via ioctl */
1190 		if  (vdev->irq_type != VFIO_PCI_MSI_IRQ_INDEX)
1191 			flags &= ~PCI_MSI_FLAGS_ENABLE;
1192 
1193 		/* Check queue size */
1194 		if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
1195 			flags &= ~PCI_MSI_FLAGS_QSIZE;
1196 			flags |= vdev->msi_qmax << 4;
1197 		}
1198 
1199 		/* Write back to virt and to hardware */
1200 		*pflags = cpu_to_le16(flags);
1201 		ret = pci_user_write_config_word(vdev->pdev,
1202 						 start + PCI_MSI_FLAGS,
1203 						 flags);
1204 		if (ret)
1205 			return ret;
1206 	}
1207 
1208 	return count;
1209 }
1210 
1211 /*
1212  * MSI determination is per-device, so this routine gets used beyond
1213  * initialization time. Don't add __init
1214  */
init_pci_cap_msi_perm(struct perm_bits * perm,int len,u16 flags)1215 static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
1216 {
1217 	if (alloc_perm_bits(perm, len))
1218 		return -ENOMEM;
1219 
1220 	perm->readfn = vfio_msi_config_read;
1221 	perm->writefn = vfio_msi_config_write;
1222 
1223 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
1224 
1225 	/*
1226 	 * The upper byte of the control register is reserved,
1227 	 * just setup the lower byte.
1228 	 */
1229 	p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
1230 	p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
1231 	if (flags & PCI_MSI_FLAGS_64BIT) {
1232 		p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
1233 		p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
1234 		if (flags & PCI_MSI_FLAGS_MASKBIT) {
1235 			p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
1236 			p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
1237 		}
1238 	} else {
1239 		p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
1240 		if (flags & PCI_MSI_FLAGS_MASKBIT) {
1241 			p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
1242 			p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
1243 		}
1244 	}
1245 	return 0;
1246 }
1247 
1248 /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
vfio_msi_cap_len(struct vfio_pci_core_device * vdev,u8 pos)1249 static int vfio_msi_cap_len(struct vfio_pci_core_device *vdev, u8 pos)
1250 {
1251 	struct pci_dev *pdev = vdev->pdev;
1252 	int len, ret;
1253 	u16 flags;
1254 
1255 	ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
1256 	if (ret)
1257 		return pcibios_err_to_errno(ret);
1258 
1259 	len = 10; /* Minimum size */
1260 	if (flags & PCI_MSI_FLAGS_64BIT)
1261 		len += 4;
1262 	if (flags & PCI_MSI_FLAGS_MASKBIT)
1263 		len += 10;
1264 
1265 	if (vdev->msi_perm)
1266 		return len;
1267 
1268 	vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL_ACCOUNT);
1269 	if (!vdev->msi_perm)
1270 		return -ENOMEM;
1271 
1272 	ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
1273 	if (ret) {
1274 		kfree(vdev->msi_perm);
1275 		return ret;
1276 	}
1277 
1278 	return len;
1279 }
1280 
1281 /* Determine extended capability length for VC (2 & 9) and MFVC */
vfio_vc_cap_len(struct vfio_pci_core_device * vdev,u16 pos)1282 static int vfio_vc_cap_len(struct vfio_pci_core_device *vdev, u16 pos)
1283 {
1284 	struct pci_dev *pdev = vdev->pdev;
1285 	u32 tmp;
1286 	int ret, evcc, phases, vc_arb;
1287 	int len = PCI_CAP_VC_BASE_SIZEOF;
1288 
1289 	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp);
1290 	if (ret)
1291 		return pcibios_err_to_errno(ret);
1292 
1293 	evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */
1294 	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp);
1295 	if (ret)
1296 		return pcibios_err_to_errno(ret);
1297 
1298 	if (tmp & PCI_VC_CAP2_128_PHASE)
1299 		phases = 128;
1300 	else if (tmp & PCI_VC_CAP2_64_PHASE)
1301 		phases = 64;
1302 	else if (tmp & PCI_VC_CAP2_32_PHASE)
1303 		phases = 32;
1304 	else
1305 		phases = 0;
1306 
1307 	vc_arb = phases * 4;
1308 
1309 	/*
1310 	 * Port arbitration tables are root & switch only;
1311 	 * function arbitration tables are function 0 only.
1312 	 * In either case, we'll never let user write them so
1313 	 * we don't care how big they are
1314 	 */
1315 	len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
1316 	if (vc_arb) {
1317 		len = round_up(len, 16);
1318 		len += vc_arb / 8;
1319 	}
1320 	return len;
1321 }
1322 
vfio_cap_len(struct vfio_pci_core_device * vdev,u8 cap,u8 pos)1323 static int vfio_cap_len(struct vfio_pci_core_device *vdev, u8 cap, u8 pos)
1324 {
1325 	struct pci_dev *pdev = vdev->pdev;
1326 	u32 dword;
1327 	u16 word;
1328 	u8 byte;
1329 	int ret;
1330 
1331 	switch (cap) {
1332 	case PCI_CAP_ID_MSI:
1333 		return vfio_msi_cap_len(vdev, pos);
1334 	case PCI_CAP_ID_PCIX:
1335 		ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
1336 		if (ret)
1337 			return pcibios_err_to_errno(ret);
1338 
1339 		if (PCI_X_CMD_VERSION(word)) {
1340 			if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1341 				/* Test for extended capabilities */
1342 				pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE,
1343 						      &dword);
1344 				vdev->extended_caps = (dword != 0);
1345 			}
1346 			return PCI_CAP_PCIX_SIZEOF_V2;
1347 		} else
1348 			return PCI_CAP_PCIX_SIZEOF_V0;
1349 	case PCI_CAP_ID_VNDR:
1350 		/* length follows next field */
1351 		ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
1352 		if (ret)
1353 			return pcibios_err_to_errno(ret);
1354 
1355 		return byte;
1356 	case PCI_CAP_ID_EXP:
1357 		if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1358 			/* Test for extended capabilities */
1359 			pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
1360 			vdev->extended_caps = (dword != 0);
1361 		}
1362 
1363 		/* length based on version and type */
1364 		if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1) {
1365 			if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1366 				return 0xc; /* "All Devices" only, no link */
1367 			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
1368 		} else {
1369 			if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1370 				return 0x2c; /* No link */
1371 			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
1372 		}
1373 	case PCI_CAP_ID_HT:
1374 		ret = pci_read_config_byte(pdev, pos + 3, &byte);
1375 		if (ret)
1376 			return pcibios_err_to_errno(ret);
1377 
1378 		return (byte & HT_3BIT_CAP_MASK) ?
1379 			HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
1380 	case PCI_CAP_ID_SATA:
1381 		ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
1382 		if (ret)
1383 			return pcibios_err_to_errno(ret);
1384 
1385 		byte &= PCI_SATA_REGS_MASK;
1386 		if (byte == PCI_SATA_REGS_INLINE)
1387 			return PCI_SATA_SIZEOF_LONG;
1388 		else
1389 			return PCI_SATA_SIZEOF_SHORT;
1390 	default:
1391 		pci_warn(pdev, "%s: unknown length for PCI cap %#x@%#x\n",
1392 			 __func__, cap, pos);
1393 	}
1394 
1395 	return 0;
1396 }
1397 
vfio_ext_cap_len(struct vfio_pci_core_device * vdev,u16 ecap,u16 epos)1398 static int vfio_ext_cap_len(struct vfio_pci_core_device *vdev, u16 ecap, u16 epos)
1399 {
1400 	struct pci_dev *pdev = vdev->pdev;
1401 	u8 byte;
1402 	u32 dword;
1403 	int ret;
1404 
1405 	switch (ecap) {
1406 	case PCI_EXT_CAP_ID_VNDR:
1407 		ret = pci_read_config_dword(pdev, epos + PCI_VNDR_HEADER,
1408 					    &dword);
1409 		if (ret)
1410 			return pcibios_err_to_errno(ret);
1411 
1412 		return PCI_VNDR_HEADER_LEN(dword);
1413 	case PCI_EXT_CAP_ID_VC:
1414 	case PCI_EXT_CAP_ID_VC9:
1415 	case PCI_EXT_CAP_ID_MFVC:
1416 		return vfio_vc_cap_len(vdev, epos);
1417 	case PCI_EXT_CAP_ID_ACS:
1418 		ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
1419 		if (ret)
1420 			return pcibios_err_to_errno(ret);
1421 
1422 		if (byte & PCI_ACS_EC) {
1423 			int bits;
1424 
1425 			ret = pci_read_config_byte(pdev,
1426 						   epos + PCI_ACS_EGRESS_BITS,
1427 						   &byte);
1428 			if (ret)
1429 				return pcibios_err_to_errno(ret);
1430 
1431 			bits = byte ? round_up(byte, 32) : 256;
1432 			return 8 + (bits / 8);
1433 		}
1434 		return 8;
1435 
1436 	case PCI_EXT_CAP_ID_REBAR:
1437 		ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
1438 		if (ret)
1439 			return pcibios_err_to_errno(ret);
1440 
1441 		byte &= PCI_REBAR_CTRL_NBAR_MASK;
1442 		byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
1443 
1444 		return 4 + (byte * 8);
1445 	case PCI_EXT_CAP_ID_DPA:
1446 		ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
1447 		if (ret)
1448 			return pcibios_err_to_errno(ret);
1449 
1450 		byte &= PCI_DPA_CAP_SUBSTATE_MASK;
1451 		return PCI_DPA_BASE_SIZEOF + byte + 1;
1452 	case PCI_EXT_CAP_ID_TPH:
1453 		ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
1454 		if (ret)
1455 			return pcibios_err_to_errno(ret);
1456 
1457 		if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
1458 			int sts;
1459 
1460 			sts = dword & PCI_TPH_CAP_ST_MASK;
1461 			sts >>= PCI_TPH_CAP_ST_SHIFT;
1462 			return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2;
1463 		}
1464 		return PCI_TPH_BASE_SIZEOF;
1465 	case PCI_EXT_CAP_ID_DVSEC:
1466 		ret = pci_read_config_dword(pdev, epos + PCI_DVSEC_HEADER1, &dword);
1467 		if (ret)
1468 			return pcibios_err_to_errno(ret);
1469 		return PCI_DVSEC_HEADER1_LEN(dword);
1470 	default:
1471 		pci_warn(pdev, "%s: unknown length for PCI ecap %#x@%#x\n",
1472 			 __func__, ecap, epos);
1473 	}
1474 
1475 	return 0;
1476 }
1477 
vfio_update_pm_vconfig_bytes(struct vfio_pci_core_device * vdev,int offset)1478 static void vfio_update_pm_vconfig_bytes(struct vfio_pci_core_device *vdev,
1479 					 int offset)
1480 {
1481 	__le16 *pmc = (__le16 *)&vdev->vconfig[offset + PCI_PM_PMC];
1482 	__le16 *ctrl = (__le16 *)&vdev->vconfig[offset + PCI_PM_CTRL];
1483 
1484 	/* Clear vconfig PME_Support, PME_Status, and PME_En bits */
1485 	*pmc &= ~cpu_to_le16(PCI_PM_CAP_PME_MASK);
1486 	*ctrl &= ~cpu_to_le16(PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS);
1487 }
1488 
vfio_fill_vconfig_bytes(struct vfio_pci_core_device * vdev,int offset,int size)1489 static int vfio_fill_vconfig_bytes(struct vfio_pci_core_device *vdev,
1490 				   int offset, int size)
1491 {
1492 	struct pci_dev *pdev = vdev->pdev;
1493 	int ret = 0;
1494 
1495 	/*
1496 	 * We try to read physical config space in the largest chunks
1497 	 * we can, assuming that all of the fields support dword access.
1498 	 * pci_save_state() makes this same assumption and seems to do ok.
1499 	 */
1500 	while (size) {
1501 		int filled;
1502 
1503 		if (size >= 4 && !(offset % 4)) {
1504 			__le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
1505 			u32 dword;
1506 
1507 			ret = pci_read_config_dword(pdev, offset, &dword);
1508 			if (ret)
1509 				return ret;
1510 			*dwordp = cpu_to_le32(dword);
1511 			filled = 4;
1512 		} else if (size >= 2 && !(offset % 2)) {
1513 			__le16 *wordp = (__le16 *)&vdev->vconfig[offset];
1514 			u16 word;
1515 
1516 			ret = pci_read_config_word(pdev, offset, &word);
1517 			if (ret)
1518 				return ret;
1519 			*wordp = cpu_to_le16(word);
1520 			filled = 2;
1521 		} else {
1522 			u8 *byte = &vdev->vconfig[offset];
1523 			ret = pci_read_config_byte(pdev, offset, byte);
1524 			if (ret)
1525 				return ret;
1526 			filled = 1;
1527 		}
1528 
1529 		offset += filled;
1530 		size -= filled;
1531 	}
1532 
1533 	return ret;
1534 }
1535 
vfio_cap_init(struct vfio_pci_core_device * vdev)1536 static int vfio_cap_init(struct vfio_pci_core_device *vdev)
1537 {
1538 	struct pci_dev *pdev = vdev->pdev;
1539 	u8 *map = vdev->pci_config_map;
1540 	u16 status;
1541 	u8 pos, *prev, cap;
1542 	int loops, ret, caps = 0;
1543 
1544 	/* Any capabilities? */
1545 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
1546 	if (ret)
1547 		return ret;
1548 
1549 	if (!(status & PCI_STATUS_CAP_LIST))
1550 		return 0; /* Done */
1551 
1552 	ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
1553 	if (ret)
1554 		return ret;
1555 
1556 	/* Mark the previous position in case we want to skip a capability */
1557 	prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
1558 
1559 	/* We can bound our loop, capabilities are dword aligned */
1560 	loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
1561 	while (pos && loops--) {
1562 		u8 next;
1563 		int i, len = 0;
1564 
1565 		ret = pci_read_config_byte(pdev, pos, &cap);
1566 		if (ret)
1567 			return ret;
1568 
1569 		ret = pci_read_config_byte(pdev,
1570 					   pos + PCI_CAP_LIST_NEXT, &next);
1571 		if (ret)
1572 			return ret;
1573 
1574 		/*
1575 		 * ID 0 is a NULL capability, conflicting with our fake
1576 		 * PCI_CAP_ID_BASIC.  As it has no content, consider it
1577 		 * hidden for now.
1578 		 */
1579 		if (cap && cap <= PCI_CAP_ID_MAX) {
1580 			len = pci_cap_length[cap];
1581 			if (len == 0xFF) { /* Variable length */
1582 				len = vfio_cap_len(vdev, cap, pos);
1583 				if (len < 0)
1584 					return len;
1585 			}
1586 		}
1587 
1588 		if (!len) {
1589 			pci_dbg(pdev, "%s: hiding cap %#x@%#x\n", __func__,
1590 				cap, pos);
1591 			*prev = next;
1592 			pos = next;
1593 			continue;
1594 		}
1595 
1596 		/* Sanity check, do we overlap other capabilities? */
1597 		for (i = 0; i < len; i++) {
1598 			if (likely(map[pos + i] == PCI_CAP_ID_INVALID))
1599 				continue;
1600 
1601 			pci_warn(pdev, "%s: PCI config conflict @%#x, was cap %#x now cap %#x\n",
1602 				 __func__, pos + i, map[pos + i], cap);
1603 		}
1604 
1605 		BUILD_BUG_ON(PCI_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1606 
1607 		memset(map + pos, cap, len);
1608 		ret = vfio_fill_vconfig_bytes(vdev, pos, len);
1609 		if (ret)
1610 			return ret;
1611 
1612 		if (cap == PCI_CAP_ID_PM)
1613 			vfio_update_pm_vconfig_bytes(vdev, pos);
1614 
1615 		prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
1616 		pos = next;
1617 		caps++;
1618 	}
1619 
1620 	/* If we didn't fill any capabilities, clear the status flag */
1621 	if (!caps) {
1622 		__le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
1623 		*vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
1624 	}
1625 
1626 	return 0;
1627 }
1628 
vfio_ecap_init(struct vfio_pci_core_device * vdev)1629 static int vfio_ecap_init(struct vfio_pci_core_device *vdev)
1630 {
1631 	struct pci_dev *pdev = vdev->pdev;
1632 	u8 *map = vdev->pci_config_map;
1633 	u16 epos;
1634 	__le32 *prev = NULL;
1635 	int loops, ret, ecaps = 0;
1636 
1637 	if (!vdev->extended_caps)
1638 		return 0;
1639 
1640 	epos = PCI_CFG_SPACE_SIZE;
1641 
1642 	loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
1643 
1644 	while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
1645 		u32 header;
1646 		u16 ecap;
1647 		int i, len = 0;
1648 		bool hidden = false;
1649 
1650 		ret = pci_read_config_dword(pdev, epos, &header);
1651 		if (ret)
1652 			return ret;
1653 
1654 		ecap = PCI_EXT_CAP_ID(header);
1655 
1656 		if (ecap <= PCI_EXT_CAP_ID_MAX) {
1657 			len = pci_ext_cap_length[ecap];
1658 			if (len == 0xFF) {
1659 				len = vfio_ext_cap_len(vdev, ecap, epos);
1660 				if (len < 0)
1661 					return len;
1662 			}
1663 		}
1664 
1665 		if (!len) {
1666 			pci_dbg(pdev, "%s: hiding ecap %#x@%#x\n",
1667 				__func__, ecap, epos);
1668 
1669 			/* If not the first in the chain, we can skip over it */
1670 			if (prev) {
1671 				u32 val = epos = PCI_EXT_CAP_NEXT(header);
1672 				*prev &= cpu_to_le32(~(0xffcU << 20));
1673 				*prev |= cpu_to_le32(val << 20);
1674 				continue;
1675 			}
1676 
1677 			/*
1678 			 * Otherwise, fill in a placeholder, the direct
1679 			 * readfn will virtualize this automatically
1680 			 */
1681 			len = PCI_CAP_SIZEOF;
1682 			hidden = true;
1683 		}
1684 
1685 		for (i = 0; i < len; i++) {
1686 			if (likely(map[epos + i] == PCI_CAP_ID_INVALID))
1687 				continue;
1688 
1689 			pci_warn(pdev, "%s: PCI config conflict @%#x, was ecap %#x now ecap %#x\n",
1690 				 __func__, epos + i, map[epos + i], ecap);
1691 		}
1692 
1693 		/*
1694 		 * Even though ecap is 2 bytes, we're currently a long way
1695 		 * from exceeding 1 byte capabilities.  If we ever make it
1696 		 * up to 0xFE we'll need to up this to a two-byte, byte map.
1697 		 */
1698 		BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1699 
1700 		memset(map + epos, ecap, len);
1701 		ret = vfio_fill_vconfig_bytes(vdev, epos, len);
1702 		if (ret)
1703 			return ret;
1704 
1705 		/*
1706 		 * If we're just using this capability to anchor the list,
1707 		 * hide the real ID.  Only count real ecaps.  XXX PCI spec
1708 		 * indicates to use cap id = 0, version = 0, next = 0 if
1709 		 * ecaps are absent, hope users check all the way to next.
1710 		 */
1711 		if (hidden)
1712 			*(__le32 *)&vdev->vconfig[epos] &=
1713 				cpu_to_le32((0xffcU << 20));
1714 		else
1715 			ecaps++;
1716 
1717 		prev = (__le32 *)&vdev->vconfig[epos];
1718 		epos = PCI_EXT_CAP_NEXT(header);
1719 	}
1720 
1721 	if (!ecaps)
1722 		*(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
1723 
1724 	return 0;
1725 }
1726 
1727 /*
1728  * Nag about hardware bugs, hopefully to have vendors fix them, but at least
1729  * to collect a list of dependencies for the VF INTx pin quirk below.
1730  */
1731 static const struct pci_device_id known_bogus_vf_intx_pin[] = {
1732 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x270c) },
1733 	{}
1734 };
1735 
1736 /*
1737  * For each device we allocate a pci_config_map that indicates the
1738  * capability occupying each dword and thus the struct perm_bits we
1739  * use for read and write.  We also allocate a virtualized config
1740  * space which tracks reads and writes to bits that we emulate for
1741  * the user.  Initial values filled from device.
1742  *
1743  * Using shared struct perm_bits between all vfio-pci devices saves
1744  * us from allocating cfg_size buffers for virt and write for every
1745  * device.  We could remove vconfig and allocate individual buffers
1746  * for each area requiring emulated bits, but the array of pointers
1747  * would be comparable in size (at least for standard config space).
1748  */
vfio_config_init(struct vfio_pci_core_device * vdev)1749 int vfio_config_init(struct vfio_pci_core_device *vdev)
1750 {
1751 	struct pci_dev *pdev = vdev->pdev;
1752 	u8 *map, *vconfig;
1753 	int ret;
1754 
1755 	/*
1756 	 * Config space, caps and ecaps are all dword aligned, so we could
1757 	 * use one byte per dword to record the type.  However, there are
1758 	 * no requirements on the length of a capability, so the gap between
1759 	 * capabilities needs byte granularity.
1760 	 */
1761 	map = kmalloc(pdev->cfg_size, GFP_KERNEL_ACCOUNT);
1762 	if (!map)
1763 		return -ENOMEM;
1764 
1765 	vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL_ACCOUNT);
1766 	if (!vconfig) {
1767 		kfree(map);
1768 		return -ENOMEM;
1769 	}
1770 
1771 	vdev->pci_config_map = map;
1772 	vdev->vconfig = vconfig;
1773 
1774 	memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF);
1775 	memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID,
1776 	       pdev->cfg_size - PCI_STD_HEADER_SIZEOF);
1777 
1778 	ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
1779 	if (ret)
1780 		goto out;
1781 
1782 	vdev->bardirty = true;
1783 
1784 	/*
1785 	 * XXX can we just pci_load_saved_state/pci_restore_state?
1786 	 * may need to rebuild vconfig after that
1787 	 */
1788 
1789 	/* For restore after reset */
1790 	vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
1791 	vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
1792 	vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
1793 	vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
1794 	vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
1795 	vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
1796 	vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
1797 
1798 	if (pdev->is_virtfn) {
1799 		*(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
1800 		*(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
1801 
1802 		/*
1803 		 * Per SR-IOV spec rev 1.1, 3.4.1.18 the interrupt pin register
1804 		 * does not apply to VFs and VFs must implement this register
1805 		 * as read-only with value zero.  Userspace is not readily able
1806 		 * to identify whether a device is a VF and thus that the pin
1807 		 * definition on the device is bogus should it violate this
1808 		 * requirement.  We already virtualize the pin register for
1809 		 * other purposes, so we simply need to replace the bogus value
1810 		 * and consider VFs when we determine INTx IRQ count.
1811 		 */
1812 		if (vconfig[PCI_INTERRUPT_PIN] &&
1813 		    !pci_match_id(known_bogus_vf_intx_pin, pdev))
1814 			pci_warn(pdev,
1815 				 "Hardware bug: VF reports bogus INTx pin %d\n",
1816 				 vconfig[PCI_INTERRUPT_PIN]);
1817 
1818 		vconfig[PCI_INTERRUPT_PIN] = 0; /* Gratuitous for good VFs */
1819 	}
1820 	if (pdev->no_command_memory) {
1821 		/*
1822 		 * VFs and devices that set pdev->no_command_memory do not
1823 		 * implement the memory enable bit of the COMMAND register
1824 		 * therefore we'll not have it set in our initial copy of
1825 		 * config space after pci_enable_device().  For consistency
1826 		 * with PFs, set the virtual enable bit here.
1827 		 */
1828 		*(__le16 *)&vconfig[PCI_COMMAND] |=
1829 					cpu_to_le16(PCI_COMMAND_MEMORY);
1830 	}
1831 
1832 	if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || vdev->nointx ||
1833 	    !vdev->pdev->irq || vdev->pdev->irq == IRQ_NOTCONNECTED)
1834 		vconfig[PCI_INTERRUPT_PIN] = 0;
1835 
1836 	ret = vfio_cap_init(vdev);
1837 	if (ret)
1838 		goto out;
1839 
1840 	ret = vfio_ecap_init(vdev);
1841 	if (ret)
1842 		goto out;
1843 
1844 	return 0;
1845 
1846 out:
1847 	kfree(map);
1848 	vdev->pci_config_map = NULL;
1849 	kfree(vconfig);
1850 	vdev->vconfig = NULL;
1851 	return pcibios_err_to_errno(ret);
1852 }
1853 
vfio_config_free(struct vfio_pci_core_device * vdev)1854 void vfio_config_free(struct vfio_pci_core_device *vdev)
1855 {
1856 	kfree(vdev->vconfig);
1857 	vdev->vconfig = NULL;
1858 	kfree(vdev->pci_config_map);
1859 	vdev->pci_config_map = NULL;
1860 	if (vdev->msi_perm) {
1861 		free_perm_bits(vdev->msi_perm);
1862 		kfree(vdev->msi_perm);
1863 		vdev->msi_perm = NULL;
1864 	}
1865 }
1866 
1867 /*
1868  * Find the remaining number of bytes in a dword that match the given
1869  * position.  Stop at either the end of the capability or the dword boundary.
1870  */
vfio_pci_cap_remaining_dword(struct vfio_pci_core_device * vdev,loff_t pos)1871 static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_core_device *vdev,
1872 					   loff_t pos)
1873 {
1874 	u8 cap = vdev->pci_config_map[pos];
1875 	size_t i;
1876 
1877 	for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++)
1878 		/* nop */;
1879 
1880 	return i;
1881 }
1882 
vfio_config_do_rw(struct vfio_pci_core_device * vdev,char __user * buf,size_t count,loff_t * ppos,bool iswrite)1883 static ssize_t vfio_config_do_rw(struct vfio_pci_core_device *vdev, char __user *buf,
1884 				 size_t count, loff_t *ppos, bool iswrite)
1885 {
1886 	struct pci_dev *pdev = vdev->pdev;
1887 	struct perm_bits *perm;
1888 	__le32 val = 0;
1889 	int cap_start = 0, offset;
1890 	u8 cap_id;
1891 	ssize_t ret;
1892 
1893 	if (*ppos < 0 || *ppos >= pdev->cfg_size ||
1894 	    *ppos + count > pdev->cfg_size)
1895 		return -EFAULT;
1896 
1897 	/*
1898 	 * Chop accesses into aligned chunks containing no more than a
1899 	 * single capability.  Caller increments to the next chunk.
1900 	 */
1901 	count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos));
1902 	if (count >= 4 && !(*ppos % 4))
1903 		count = 4;
1904 	else if (count >= 2 && !(*ppos % 2))
1905 		count = 2;
1906 	else
1907 		count = 1;
1908 
1909 	ret = count;
1910 
1911 	cap_id = vdev->pci_config_map[*ppos];
1912 
1913 	if (cap_id == PCI_CAP_ID_INVALID) {
1914 		perm = &unassigned_perms;
1915 		cap_start = *ppos;
1916 	} else if (cap_id == PCI_CAP_ID_INVALID_VIRT) {
1917 		perm = &virt_perms;
1918 		cap_start = *ppos;
1919 	} else {
1920 		if (*ppos >= PCI_CFG_SPACE_SIZE) {
1921 			/*
1922 			 * We can get a cap_id that exceeds PCI_EXT_CAP_ID_MAX
1923 			 * if we're hiding an unknown capability at the start
1924 			 * of the extended capability list.  Use default, ro
1925 			 * access, which will virtualize the id and next values.
1926 			 */
1927 			if (cap_id > PCI_EXT_CAP_ID_MAX)
1928 				perm = &direct_ro_perms;
1929 			else
1930 				perm = &ecap_perms[cap_id];
1931 
1932 			cap_start = vfio_find_cap_start(vdev, *ppos);
1933 		} else {
1934 			WARN_ON(cap_id > PCI_CAP_ID_MAX);
1935 
1936 			perm = &cap_perms[cap_id];
1937 
1938 			if (cap_id == PCI_CAP_ID_MSI)
1939 				perm = vdev->msi_perm;
1940 
1941 			if (cap_id > PCI_CAP_ID_BASIC)
1942 				cap_start = vfio_find_cap_start(vdev, *ppos);
1943 		}
1944 	}
1945 
1946 	WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
1947 	WARN_ON(cap_start > *ppos);
1948 
1949 	offset = *ppos - cap_start;
1950 
1951 	if (iswrite) {
1952 		if (!perm->writefn)
1953 			return ret;
1954 
1955 		if (copy_from_user(&val, buf, count))
1956 			return -EFAULT;
1957 
1958 		ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
1959 	} else {
1960 		if (perm->readfn) {
1961 			ret = perm->readfn(vdev, *ppos, count,
1962 					   perm, offset, &val);
1963 			if (ret < 0)
1964 				return ret;
1965 		}
1966 
1967 		if (copy_to_user(buf, &val, count))
1968 			return -EFAULT;
1969 	}
1970 
1971 	return ret;
1972 }
1973 
vfio_pci_config_rw(struct vfio_pci_core_device * vdev,char __user * buf,size_t count,loff_t * ppos,bool iswrite)1974 ssize_t vfio_pci_config_rw(struct vfio_pci_core_device *vdev, char __user *buf,
1975 			   size_t count, loff_t *ppos, bool iswrite)
1976 {
1977 	size_t done = 0;
1978 	int ret = 0;
1979 	loff_t pos = *ppos;
1980 
1981 	pos &= VFIO_PCI_OFFSET_MASK;
1982 
1983 	while (count) {
1984 		ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite);
1985 		if (ret < 0)
1986 			return ret;
1987 
1988 		count -= ret;
1989 		done += ret;
1990 		buf += ret;
1991 		pos += ret;
1992 	}
1993 
1994 	*ppos += done;
1995 
1996 	return done;
1997 }
1998 
1999 /**
2000  * vfio_pci_core_range_intersect_range() - Determine overlap between a buffer
2001  *					   and register offset ranges.
2002  * @buf_start:		start offset of the buffer
2003  * @buf_cnt:		number of buffer bytes
2004  * @reg_start:		start register offset
2005  * @reg_cnt:		number of register bytes
2006  * @buf_offset:	start offset of overlap in the buffer
2007  * @intersect_count:	number of overlapping bytes
2008  * @register_offset:	start offset of overlap in register
2009  *
2010  * Returns: true if there is overlap, false if not.
2011  * The overlap start and size is returned through function args.
2012  */
vfio_pci_core_range_intersect_range(loff_t buf_start,size_t buf_cnt,loff_t reg_start,size_t reg_cnt,loff_t * buf_offset,size_t * intersect_count,size_t * register_offset)2013 bool vfio_pci_core_range_intersect_range(loff_t buf_start, size_t buf_cnt,
2014 					 loff_t reg_start, size_t reg_cnt,
2015 					 loff_t *buf_offset,
2016 					 size_t *intersect_count,
2017 					 size_t *register_offset)
2018 {
2019 	if (buf_start <= reg_start &&
2020 	    buf_start + buf_cnt > reg_start) {
2021 		*buf_offset = reg_start - buf_start;
2022 		*intersect_count = min_t(size_t, reg_cnt,
2023 					 buf_start + buf_cnt - reg_start);
2024 		*register_offset = 0;
2025 		return true;
2026 	}
2027 
2028 	if (buf_start > reg_start &&
2029 	    buf_start < reg_start + reg_cnt) {
2030 		*buf_offset = 0;
2031 		*intersect_count = min_t(size_t, buf_cnt,
2032 					 reg_start + reg_cnt - buf_start);
2033 		*register_offset = buf_start - reg_start;
2034 		return true;
2035 	}
2036 
2037 	return false;
2038 }
2039 EXPORT_SYMBOL_GPL(vfio_pci_core_range_intersect_range);
2040