1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2023 Intel Corporation */
3
4 #include "idpf.h"
5 #include "idpf_virtchnl.h"
6 #include "idpf_ptp.h"
7 #include "xdp.h"
8 #include "xsk.h"
9
10 static const struct net_device_ops idpf_netdev_ops;
11
12 /**
13 * idpf_init_vector_stack - Fill the MSIX vector stack with vector index
14 * @adapter: private data struct
15 *
16 * Return 0 on success, error on failure
17 */
idpf_init_vector_stack(struct idpf_adapter * adapter)18 static int idpf_init_vector_stack(struct idpf_adapter *adapter)
19 {
20 struct idpf_vector_lifo *stack;
21 u16 min_vec;
22 u32 i;
23
24 mutex_lock(&adapter->vector_lock);
25 min_vec = adapter->num_msix_entries - adapter->num_avail_msix;
26 stack = &adapter->vector_stack;
27 stack->size = adapter->num_msix_entries;
28 /* set the base and top to point at start of the 'free pool' to
29 * distribute the unused vectors on-demand basis
30 */
31 stack->base = min_vec;
32 stack->top = min_vec;
33
34 stack->vec_idx = kcalloc(stack->size, sizeof(u16), GFP_KERNEL);
35 if (!stack->vec_idx) {
36 mutex_unlock(&adapter->vector_lock);
37
38 return -ENOMEM;
39 }
40
41 for (i = 0; i < stack->size; i++)
42 stack->vec_idx[i] = i;
43
44 mutex_unlock(&adapter->vector_lock);
45
46 return 0;
47 }
48
49 /**
50 * idpf_deinit_vector_stack - zero out the MSIX vector stack
51 * @adapter: private data struct
52 */
idpf_deinit_vector_stack(struct idpf_adapter * adapter)53 static void idpf_deinit_vector_stack(struct idpf_adapter *adapter)
54 {
55 struct idpf_vector_lifo *stack;
56
57 mutex_lock(&adapter->vector_lock);
58 stack = &adapter->vector_stack;
59 kfree(stack->vec_idx);
60 stack->vec_idx = NULL;
61 mutex_unlock(&adapter->vector_lock);
62 }
63
64 /**
65 * idpf_mb_intr_rel_irq - Free the IRQ association with the OS
66 * @adapter: adapter structure
67 *
68 * This will also disable interrupt mode and queue up mailbox task. Mailbox
69 * task will reschedule itself if not in interrupt mode.
70 */
idpf_mb_intr_rel_irq(struct idpf_adapter * adapter)71 static void idpf_mb_intr_rel_irq(struct idpf_adapter *adapter)
72 {
73 clear_bit(IDPF_MB_INTR_MODE, adapter->flags);
74 kfree(free_irq(adapter->msix_entries[0].vector, adapter));
75 queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0);
76 }
77
78 /**
79 * idpf_intr_rel - Release interrupt capabilities and free memory
80 * @adapter: adapter to disable interrupts on
81 */
idpf_intr_rel(struct idpf_adapter * adapter)82 void idpf_intr_rel(struct idpf_adapter *adapter)
83 {
84 if (!adapter->msix_entries)
85 return;
86
87 idpf_mb_intr_rel_irq(adapter);
88 pci_free_irq_vectors(adapter->pdev);
89 idpf_send_dealloc_vectors_msg(adapter);
90 idpf_deinit_vector_stack(adapter);
91 kfree(adapter->msix_entries);
92 adapter->msix_entries = NULL;
93 kfree(adapter->rdma_msix_entries);
94 adapter->rdma_msix_entries = NULL;
95 }
96
97 /**
98 * idpf_mb_intr_clean - Interrupt handler for the mailbox
99 * @irq: interrupt number
100 * @data: pointer to the adapter structure
101 */
idpf_mb_intr_clean(int __always_unused irq,void * data)102 static irqreturn_t idpf_mb_intr_clean(int __always_unused irq, void *data)
103 {
104 struct idpf_adapter *adapter = (struct idpf_adapter *)data;
105
106 queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0);
107
108 return IRQ_HANDLED;
109 }
110
111 /**
112 * idpf_mb_irq_enable - Enable MSIX interrupt for the mailbox
113 * @adapter: adapter to get the hardware address for register write
114 */
idpf_mb_irq_enable(struct idpf_adapter * adapter)115 static void idpf_mb_irq_enable(struct idpf_adapter *adapter)
116 {
117 struct idpf_intr_reg *intr = &adapter->mb_vector.intr_reg;
118 u32 val;
119
120 val = intr->dyn_ctl_intena_m | intr->dyn_ctl_itridx_m;
121 writel(val, intr->dyn_ctl);
122 writel(intr->icr_ena_ctlq_m, intr->icr_ena);
123 }
124
125 /**
126 * idpf_mb_intr_req_irq - Request irq for the mailbox interrupt
127 * @adapter: adapter structure to pass to the mailbox irq handler
128 */
idpf_mb_intr_req_irq(struct idpf_adapter * adapter)129 static int idpf_mb_intr_req_irq(struct idpf_adapter *adapter)
130 {
131 int irq_num, mb_vidx = 0, err;
132 char *name;
133
134 irq_num = adapter->msix_entries[mb_vidx].vector;
135 name = kasprintf(GFP_KERNEL, "%s-%s-%d",
136 dev_driver_string(&adapter->pdev->dev),
137 "Mailbox", mb_vidx);
138 err = request_irq(irq_num, adapter->irq_mb_handler, 0, name, adapter);
139 if (err) {
140 dev_err(&adapter->pdev->dev,
141 "IRQ request for mailbox failed, error: %d\n", err);
142
143 return err;
144 }
145
146 set_bit(IDPF_MB_INTR_MODE, adapter->flags);
147
148 return 0;
149 }
150
151 /**
152 * idpf_mb_intr_init - Initialize the mailbox interrupt
153 * @adapter: adapter structure to store the mailbox vector
154 */
idpf_mb_intr_init(struct idpf_adapter * adapter)155 static int idpf_mb_intr_init(struct idpf_adapter *adapter)
156 {
157 adapter->dev_ops.reg_ops.mb_intr_reg_init(adapter);
158 adapter->irq_mb_handler = idpf_mb_intr_clean;
159
160 return idpf_mb_intr_req_irq(adapter);
161 }
162
163 /**
164 * idpf_vector_lifo_push - push MSIX vector index onto stack
165 * @adapter: private data struct
166 * @vec_idx: vector index to store
167 */
idpf_vector_lifo_push(struct idpf_adapter * adapter,u16 vec_idx)168 static int idpf_vector_lifo_push(struct idpf_adapter *adapter, u16 vec_idx)
169 {
170 struct idpf_vector_lifo *stack = &adapter->vector_stack;
171
172 lockdep_assert_held(&adapter->vector_lock);
173
174 if (stack->top == stack->base) {
175 dev_err(&adapter->pdev->dev, "Exceeded the vector stack limit: %d\n",
176 stack->top);
177 return -EINVAL;
178 }
179
180 stack->vec_idx[--stack->top] = vec_idx;
181
182 return 0;
183 }
184
185 /**
186 * idpf_vector_lifo_pop - pop MSIX vector index from stack
187 * @adapter: private data struct
188 */
idpf_vector_lifo_pop(struct idpf_adapter * adapter)189 static int idpf_vector_lifo_pop(struct idpf_adapter *adapter)
190 {
191 struct idpf_vector_lifo *stack = &adapter->vector_stack;
192
193 lockdep_assert_held(&adapter->vector_lock);
194
195 if (stack->top == stack->size) {
196 dev_err(&adapter->pdev->dev, "No interrupt vectors are available to distribute!\n");
197
198 return -EINVAL;
199 }
200
201 return stack->vec_idx[stack->top++];
202 }
203
204 /**
205 * idpf_vector_stash - Store the vector indexes onto the stack
206 * @adapter: private data struct
207 * @q_vector_idxs: vector index array
208 * @vec_info: info related to the number of vectors
209 *
210 * This function is a no-op if there are no vectors indexes to be stashed
211 */
idpf_vector_stash(struct idpf_adapter * adapter,u16 * q_vector_idxs,struct idpf_vector_info * vec_info)212 static void idpf_vector_stash(struct idpf_adapter *adapter, u16 *q_vector_idxs,
213 struct idpf_vector_info *vec_info)
214 {
215 int i, base = 0;
216 u16 vec_idx;
217
218 lockdep_assert_held(&adapter->vector_lock);
219
220 if (!vec_info->num_curr_vecs)
221 return;
222
223 /* For default vports, no need to stash vector allocated from the
224 * default pool onto the stack
225 */
226 if (vec_info->default_vport)
227 base = IDPF_MIN_Q_VEC;
228
229 for (i = vec_info->num_curr_vecs - 1; i >= base ; i--) {
230 vec_idx = q_vector_idxs[i];
231 idpf_vector_lifo_push(adapter, vec_idx);
232 adapter->num_avail_msix++;
233 }
234 }
235
236 /**
237 * idpf_req_rel_vector_indexes - Request or release MSIX vector indexes
238 * @adapter: driver specific private structure
239 * @q_vector_idxs: vector index array
240 * @vec_info: info related to the number of vectors
241 *
242 * This is the core function to distribute the MSIX vectors acquired from the
243 * OS. It expects the caller to pass the number of vectors required and
244 * also previously allocated. First, it stashes previously allocated vector
245 * indexes on to the stack and then figures out if it can allocate requested
246 * vectors. It can wait on acquiring the mutex lock. If the caller passes 0 as
247 * requested vectors, then this function just stashes the already allocated
248 * vectors and returns 0.
249 *
250 * Returns actual number of vectors allocated on success, error value on failure
251 * If 0 is returned, implies the stack has no vectors to allocate which is also
252 * a failure case for the caller
253 */
idpf_req_rel_vector_indexes(struct idpf_adapter * adapter,u16 * q_vector_idxs,struct idpf_vector_info * vec_info)254 int idpf_req_rel_vector_indexes(struct idpf_adapter *adapter,
255 u16 *q_vector_idxs,
256 struct idpf_vector_info *vec_info)
257 {
258 u16 num_req_vecs, num_alloc_vecs = 0, max_vecs;
259 struct idpf_vector_lifo *stack;
260 int i, j, vecid;
261
262 mutex_lock(&adapter->vector_lock);
263 stack = &adapter->vector_stack;
264 num_req_vecs = vec_info->num_req_vecs;
265
266 /* Stash interrupt vector indexes onto the stack if required */
267 idpf_vector_stash(adapter, q_vector_idxs, vec_info);
268
269 if (!num_req_vecs)
270 goto rel_lock;
271
272 if (vec_info->default_vport) {
273 /* As IDPF_MIN_Q_VEC per default vport is put aside in the
274 * default pool of the stack, use them for default vports
275 */
276 j = vec_info->index * IDPF_MIN_Q_VEC + IDPF_MBX_Q_VEC;
277 for (i = 0; i < IDPF_MIN_Q_VEC; i++) {
278 q_vector_idxs[num_alloc_vecs++] = stack->vec_idx[j++];
279 num_req_vecs--;
280 }
281 }
282
283 /* Find if stack has enough vector to allocate */
284 max_vecs = min(adapter->num_avail_msix, num_req_vecs);
285
286 for (j = 0; j < max_vecs; j++) {
287 vecid = idpf_vector_lifo_pop(adapter);
288 q_vector_idxs[num_alloc_vecs++] = vecid;
289 }
290 adapter->num_avail_msix -= max_vecs;
291
292 rel_lock:
293 mutex_unlock(&adapter->vector_lock);
294
295 return num_alloc_vecs;
296 }
297
298 /**
299 * idpf_intr_req - Request interrupt capabilities
300 * @adapter: adapter to enable interrupts on
301 *
302 * Returns 0 on success, negative on failure
303 */
idpf_intr_req(struct idpf_adapter * adapter)304 int idpf_intr_req(struct idpf_adapter *adapter)
305 {
306 u16 num_lan_vecs, min_lan_vecs, num_rdma_vecs = 0, min_rdma_vecs = 0;
307 u16 default_vports = idpf_get_default_vports(adapter);
308 int num_q_vecs, total_vecs, num_vec_ids;
309 int min_vectors, actual_vecs, err;
310 unsigned int vector;
311 u16 *vecids;
312 int i;
313
314 total_vecs = idpf_get_reserved_vecs(adapter);
315 num_lan_vecs = total_vecs;
316 if (idpf_is_rdma_cap_ena(adapter)) {
317 num_rdma_vecs = idpf_get_reserved_rdma_vecs(adapter);
318 min_rdma_vecs = IDPF_MIN_RDMA_VEC;
319
320 if (!num_rdma_vecs) {
321 /* If idpf_get_reserved_rdma_vecs is 0, vectors are
322 * pulled from the LAN pool.
323 */
324 num_rdma_vecs = min_rdma_vecs;
325 } else if (num_rdma_vecs < min_rdma_vecs) {
326 dev_err(&adapter->pdev->dev,
327 "Not enough vectors reserved for RDMA (min: %u, current: %u)\n",
328 min_rdma_vecs, num_rdma_vecs);
329 return -EINVAL;
330 }
331 }
332
333 num_q_vecs = total_vecs - IDPF_MBX_Q_VEC;
334
335 err = idpf_send_alloc_vectors_msg(adapter, num_q_vecs);
336 if (err) {
337 dev_err(&adapter->pdev->dev,
338 "Failed to allocate %d vectors: %d\n", num_q_vecs, err);
339
340 return -EAGAIN;
341 }
342
343 min_lan_vecs = IDPF_MBX_Q_VEC + IDPF_MIN_Q_VEC * default_vports;
344 min_vectors = min_lan_vecs + min_rdma_vecs;
345 actual_vecs = pci_alloc_irq_vectors(adapter->pdev, min_vectors,
346 total_vecs, PCI_IRQ_MSIX);
347 if (actual_vecs < 0) {
348 dev_err(&adapter->pdev->dev, "Failed to allocate minimum MSIX vectors required: %d\n",
349 min_vectors);
350 err = actual_vecs;
351 goto send_dealloc_vecs;
352 }
353
354 if (idpf_is_rdma_cap_ena(adapter)) {
355 if (actual_vecs < total_vecs) {
356 dev_warn(&adapter->pdev->dev,
357 "Warning: %d vectors requested, only %d available. Defaulting to minimum (%d) for RDMA and remaining for LAN.\n",
358 total_vecs, actual_vecs, IDPF_MIN_RDMA_VEC);
359 num_rdma_vecs = IDPF_MIN_RDMA_VEC;
360 }
361
362 adapter->rdma_msix_entries = kcalloc(num_rdma_vecs,
363 sizeof(struct msix_entry),
364 GFP_KERNEL);
365 if (!adapter->rdma_msix_entries) {
366 err = -ENOMEM;
367 goto free_irq;
368 }
369 }
370
371 num_lan_vecs = actual_vecs - num_rdma_vecs;
372 adapter->msix_entries = kcalloc(num_lan_vecs, sizeof(struct msix_entry),
373 GFP_KERNEL);
374 if (!adapter->msix_entries) {
375 err = -ENOMEM;
376 goto free_rdma_msix;
377 }
378
379 adapter->mb_vector.v_idx = le16_to_cpu(adapter->caps.mailbox_vector_id);
380
381 vecids = kcalloc(actual_vecs, sizeof(u16), GFP_KERNEL);
382 if (!vecids) {
383 err = -ENOMEM;
384 goto free_msix;
385 }
386
387 num_vec_ids = idpf_get_vec_ids(adapter, vecids, actual_vecs,
388 &adapter->req_vec_chunks->vchunks);
389 if (num_vec_ids < actual_vecs) {
390 err = -EINVAL;
391 goto free_vecids;
392 }
393
394 for (vector = 0; vector < num_lan_vecs; vector++) {
395 adapter->msix_entries[vector].entry = vecids[vector];
396 adapter->msix_entries[vector].vector =
397 pci_irq_vector(adapter->pdev, vector);
398 }
399 for (i = 0; i < num_rdma_vecs; vector++, i++) {
400 adapter->rdma_msix_entries[i].entry = vecids[vector];
401 adapter->rdma_msix_entries[i].vector =
402 pci_irq_vector(adapter->pdev, vector);
403 }
404
405 /* 'num_avail_msix' is used to distribute excess vectors to the vports
406 * after considering the minimum vectors required per each default
407 * vport
408 */
409 adapter->num_avail_msix = num_lan_vecs - min_lan_vecs;
410 adapter->num_msix_entries = num_lan_vecs;
411 if (idpf_is_rdma_cap_ena(adapter))
412 adapter->num_rdma_msix_entries = num_rdma_vecs;
413
414 /* Fill MSIX vector lifo stack with vector indexes */
415 err = idpf_init_vector_stack(adapter);
416 if (err)
417 goto free_vecids;
418
419 err = idpf_mb_intr_init(adapter);
420 if (err)
421 goto deinit_vec_stack;
422 idpf_mb_irq_enable(adapter);
423 kfree(vecids);
424
425 return 0;
426
427 deinit_vec_stack:
428 idpf_deinit_vector_stack(adapter);
429 free_vecids:
430 kfree(vecids);
431 free_msix:
432 kfree(adapter->msix_entries);
433 adapter->msix_entries = NULL;
434 free_rdma_msix:
435 kfree(adapter->rdma_msix_entries);
436 adapter->rdma_msix_entries = NULL;
437 free_irq:
438 pci_free_irq_vectors(adapter->pdev);
439 send_dealloc_vecs:
440 idpf_send_dealloc_vectors_msg(adapter);
441
442 return err;
443 }
444
445 /**
446 * idpf_del_all_flow_steer_filters - Delete all flow steer filters in list
447 * @vport: main vport struct
448 *
449 * Takes flow_steer_list_lock spinlock. Deletes all filters
450 */
idpf_del_all_flow_steer_filters(struct idpf_vport * vport)451 static void idpf_del_all_flow_steer_filters(struct idpf_vport *vport)
452 {
453 struct idpf_vport_config *vport_config;
454 struct idpf_fsteer_fltr *f, *ftmp;
455
456 vport_config = vport->adapter->vport_config[vport->idx];
457
458 spin_lock_bh(&vport_config->flow_steer_list_lock);
459 list_for_each_entry_safe(f, ftmp, &vport_config->user_config.flow_steer_list,
460 list) {
461 list_del(&f->list);
462 kfree(f);
463 }
464 vport_config->user_config.num_fsteer_fltrs = 0;
465 spin_unlock_bh(&vport_config->flow_steer_list_lock);
466 }
467
468 /**
469 * idpf_find_mac_filter - Search filter list for specific mac filter
470 * @vconfig: Vport config structure
471 * @macaddr: The MAC address
472 *
473 * Returns ptr to the filter object or NULL. Must be called while holding the
474 * mac_filter_list_lock.
475 **/
idpf_find_mac_filter(struct idpf_vport_config * vconfig,const u8 * macaddr)476 static struct idpf_mac_filter *idpf_find_mac_filter(struct idpf_vport_config *vconfig,
477 const u8 *macaddr)
478 {
479 struct idpf_mac_filter *f;
480
481 if (!macaddr)
482 return NULL;
483
484 list_for_each_entry(f, &vconfig->user_config.mac_filter_list, list) {
485 if (ether_addr_equal(macaddr, f->macaddr))
486 return f;
487 }
488
489 return NULL;
490 }
491
492 /**
493 * __idpf_del_mac_filter - Delete a MAC filter from the filter list
494 * @vport_config: Vport config structure
495 * @macaddr: The MAC address
496 *
497 * Returns 0 on success, error value on failure
498 **/
__idpf_del_mac_filter(struct idpf_vport_config * vport_config,const u8 * macaddr)499 static int __idpf_del_mac_filter(struct idpf_vport_config *vport_config,
500 const u8 *macaddr)
501 {
502 struct idpf_mac_filter *f;
503
504 spin_lock_bh(&vport_config->mac_filter_list_lock);
505 f = idpf_find_mac_filter(vport_config, macaddr);
506 if (f) {
507 list_del(&f->list);
508 kfree(f);
509 }
510 spin_unlock_bh(&vport_config->mac_filter_list_lock);
511
512 return 0;
513 }
514
515 /**
516 * idpf_del_mac_filter - Delete a MAC filter from the filter list
517 * @vport: Main vport structure
518 * @np: Netdev private structure
519 * @macaddr: The MAC address
520 * @async: Don't wait for return message
521 *
522 * Removes filter from list and if interface is up, tells hardware about the
523 * removed filter.
524 **/
idpf_del_mac_filter(struct idpf_vport * vport,struct idpf_netdev_priv * np,const u8 * macaddr,bool async)525 static int idpf_del_mac_filter(struct idpf_vport *vport,
526 struct idpf_netdev_priv *np,
527 const u8 *macaddr, bool async)
528 {
529 struct idpf_vport_config *vport_config;
530 struct idpf_mac_filter *f;
531
532 vport_config = np->adapter->vport_config[np->vport_idx];
533
534 spin_lock_bh(&vport_config->mac_filter_list_lock);
535 f = idpf_find_mac_filter(vport_config, macaddr);
536 if (f) {
537 f->remove = true;
538 } else {
539 spin_unlock_bh(&vport_config->mac_filter_list_lock);
540
541 return -EINVAL;
542 }
543 spin_unlock_bh(&vport_config->mac_filter_list_lock);
544
545 if (test_bit(IDPF_VPORT_UP, np->state)) {
546 int err;
547
548 err = idpf_add_del_mac_filters(vport, np, false, async);
549 if (err)
550 return err;
551 }
552
553 return __idpf_del_mac_filter(vport_config, macaddr);
554 }
555
556 /**
557 * __idpf_add_mac_filter - Add mac filter helper function
558 * @vport_config: Vport config structure
559 * @macaddr: Address to add
560 *
561 * Takes mac_filter_list_lock spinlock to add new filter to list.
562 */
__idpf_add_mac_filter(struct idpf_vport_config * vport_config,const u8 * macaddr)563 static int __idpf_add_mac_filter(struct idpf_vport_config *vport_config,
564 const u8 *macaddr)
565 {
566 struct idpf_mac_filter *f;
567
568 spin_lock_bh(&vport_config->mac_filter_list_lock);
569
570 f = idpf_find_mac_filter(vport_config, macaddr);
571 if (f) {
572 f->remove = false;
573 spin_unlock_bh(&vport_config->mac_filter_list_lock);
574
575 return 0;
576 }
577
578 f = kzalloc(sizeof(*f), GFP_ATOMIC);
579 if (!f) {
580 spin_unlock_bh(&vport_config->mac_filter_list_lock);
581
582 return -ENOMEM;
583 }
584
585 ether_addr_copy(f->macaddr, macaddr);
586 list_add_tail(&f->list, &vport_config->user_config.mac_filter_list);
587 f->add = true;
588
589 spin_unlock_bh(&vport_config->mac_filter_list_lock);
590
591 return 0;
592 }
593
594 /**
595 * idpf_add_mac_filter - Add a mac filter to the filter list
596 * @vport: Main vport structure
597 * @np: Netdev private structure
598 * @macaddr: The MAC address
599 * @async: Don't wait for return message
600 *
601 * Returns 0 on success or error on failure. If interface is up, we'll also
602 * send the virtchnl message to tell hardware about the filter.
603 **/
idpf_add_mac_filter(struct idpf_vport * vport,struct idpf_netdev_priv * np,const u8 * macaddr,bool async)604 static int idpf_add_mac_filter(struct idpf_vport *vport,
605 struct idpf_netdev_priv *np,
606 const u8 *macaddr, bool async)
607 {
608 struct idpf_vport_config *vport_config;
609 int err;
610
611 vport_config = np->adapter->vport_config[np->vport_idx];
612 err = __idpf_add_mac_filter(vport_config, macaddr);
613 if (err)
614 return err;
615
616 if (test_bit(IDPF_VPORT_UP, np->state))
617 err = idpf_add_del_mac_filters(vport, np, true, async);
618
619 return err;
620 }
621
622 /**
623 * idpf_del_all_mac_filters - Delete all MAC filters in list
624 * @vport: main vport struct
625 *
626 * Takes mac_filter_list_lock spinlock. Deletes all filters
627 */
idpf_del_all_mac_filters(struct idpf_vport * vport)628 static void idpf_del_all_mac_filters(struct idpf_vport *vport)
629 {
630 struct idpf_vport_config *vport_config;
631 struct idpf_mac_filter *f, *ftmp;
632
633 vport_config = vport->adapter->vport_config[vport->idx];
634 spin_lock_bh(&vport_config->mac_filter_list_lock);
635
636 list_for_each_entry_safe(f, ftmp, &vport_config->user_config.mac_filter_list,
637 list) {
638 list_del(&f->list);
639 kfree(f);
640 }
641
642 spin_unlock_bh(&vport_config->mac_filter_list_lock);
643 }
644
645 /**
646 * idpf_restore_mac_filters - Re-add all MAC filters in list
647 * @vport: main vport struct
648 *
649 * Takes mac_filter_list_lock spinlock. Sets add field to true for filters to
650 * resync filters back to HW.
651 */
idpf_restore_mac_filters(struct idpf_vport * vport)652 static void idpf_restore_mac_filters(struct idpf_vport *vport)
653 {
654 struct idpf_vport_config *vport_config;
655 struct idpf_mac_filter *f;
656
657 vport_config = vport->adapter->vport_config[vport->idx];
658 spin_lock_bh(&vport_config->mac_filter_list_lock);
659
660 list_for_each_entry(f, &vport_config->user_config.mac_filter_list, list)
661 f->add = true;
662
663 spin_unlock_bh(&vport_config->mac_filter_list_lock);
664
665 idpf_add_del_mac_filters(vport, netdev_priv(vport->netdev),
666 true, false);
667 }
668
669 /**
670 * idpf_remove_mac_filters - Remove all MAC filters in list
671 * @vport: main vport struct
672 *
673 * Takes mac_filter_list_lock spinlock. Sets remove field to true for filters
674 * to remove filters in HW.
675 */
idpf_remove_mac_filters(struct idpf_vport * vport)676 static void idpf_remove_mac_filters(struct idpf_vport *vport)
677 {
678 struct idpf_vport_config *vport_config;
679 struct idpf_mac_filter *f;
680
681 vport_config = vport->adapter->vport_config[vport->idx];
682 spin_lock_bh(&vport_config->mac_filter_list_lock);
683
684 list_for_each_entry(f, &vport_config->user_config.mac_filter_list, list)
685 f->remove = true;
686
687 spin_unlock_bh(&vport_config->mac_filter_list_lock);
688
689 idpf_add_del_mac_filters(vport, netdev_priv(vport->netdev),
690 false, false);
691 }
692
693 /**
694 * idpf_deinit_mac_addr - deinitialize mac address for vport
695 * @vport: main vport structure
696 */
idpf_deinit_mac_addr(struct idpf_vport * vport)697 static void idpf_deinit_mac_addr(struct idpf_vport *vport)
698 {
699 struct idpf_vport_config *vport_config;
700 struct idpf_mac_filter *f;
701
702 vport_config = vport->adapter->vport_config[vport->idx];
703
704 spin_lock_bh(&vport_config->mac_filter_list_lock);
705
706 f = idpf_find_mac_filter(vport_config, vport->default_mac_addr);
707 if (f) {
708 list_del(&f->list);
709 kfree(f);
710 }
711
712 spin_unlock_bh(&vport_config->mac_filter_list_lock);
713 }
714
715 /**
716 * idpf_init_mac_addr - initialize mac address for vport
717 * @vport: main vport structure
718 * @netdev: pointer to netdev struct associated with this vport
719 */
idpf_init_mac_addr(struct idpf_vport * vport,struct net_device * netdev)720 static int idpf_init_mac_addr(struct idpf_vport *vport,
721 struct net_device *netdev)
722 {
723 struct idpf_netdev_priv *np = netdev_priv(netdev);
724 struct idpf_adapter *adapter = vport->adapter;
725 int err;
726
727 if (is_valid_ether_addr(vport->default_mac_addr)) {
728 eth_hw_addr_set(netdev, vport->default_mac_addr);
729 ether_addr_copy(netdev->perm_addr, vport->default_mac_addr);
730
731 return idpf_add_mac_filter(vport, np, vport->default_mac_addr,
732 false);
733 }
734
735 if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS,
736 VIRTCHNL2_CAP_MACFILTER)) {
737 dev_err(&adapter->pdev->dev,
738 "MAC address is not provided and capability is not set\n");
739
740 return -EINVAL;
741 }
742
743 eth_hw_addr_random(netdev);
744 err = idpf_add_mac_filter(vport, np, netdev->dev_addr, false);
745 if (err)
746 return err;
747
748 dev_info(&adapter->pdev->dev, "Invalid MAC address %pM, using random %pM\n",
749 vport->default_mac_addr, netdev->dev_addr);
750 ether_addr_copy(vport->default_mac_addr, netdev->dev_addr);
751
752 return 0;
753 }
754
idpf_detach_and_close(struct idpf_adapter * adapter)755 static void idpf_detach_and_close(struct idpf_adapter *adapter)
756 {
757 int max_vports = adapter->max_vports;
758
759 for (int i = 0; i < max_vports; i++) {
760 struct net_device *netdev = adapter->netdevs[i];
761
762 /* If the interface is in detached state, that means the
763 * previous reset was not handled successfully for this
764 * vport.
765 */
766 if (!netif_device_present(netdev))
767 continue;
768
769 /* Hold RTNL to protect racing with callbacks */
770 rtnl_lock();
771 netif_device_detach(netdev);
772 if (netif_running(netdev)) {
773 set_bit(IDPF_VPORT_UP_REQUESTED,
774 adapter->vport_config[i]->flags);
775 dev_close(netdev);
776 }
777 rtnl_unlock();
778 }
779 }
780
idpf_attach_and_open(struct idpf_adapter * adapter)781 static void idpf_attach_and_open(struct idpf_adapter *adapter)
782 {
783 int max_vports = adapter->max_vports;
784
785 for (int i = 0; i < max_vports; i++) {
786 struct idpf_vport *vport = adapter->vports[i];
787 struct idpf_vport_config *vport_config;
788 struct net_device *netdev;
789
790 /* In case of a critical error in the init task, the vport
791 * will be freed. Only continue to restore the netdevs
792 * if the vport is allocated.
793 */
794 if (!vport)
795 continue;
796
797 /* No need for RTNL on attach as this function is called
798 * following detach and dev_close(). We do take RTNL for
799 * dev_open() below as it can race with external callbacks
800 * following the call to netif_device_attach().
801 */
802 netdev = adapter->netdevs[i];
803 netif_device_attach(netdev);
804 vport_config = adapter->vport_config[vport->idx];
805 if (test_and_clear_bit(IDPF_VPORT_UP_REQUESTED,
806 vport_config->flags)) {
807 rtnl_lock();
808 dev_open(netdev, NULL);
809 rtnl_unlock();
810 }
811 }
812 }
813
814 /**
815 * idpf_cfg_netdev - Allocate, configure and register a netdev
816 * @vport: main vport structure
817 *
818 * Returns 0 on success, negative value on failure.
819 */
idpf_cfg_netdev(struct idpf_vport * vport)820 static int idpf_cfg_netdev(struct idpf_vport *vport)
821 {
822 struct idpf_adapter *adapter = vport->adapter;
823 struct idpf_vport_config *vport_config;
824 netdev_features_t other_offloads = 0;
825 netdev_features_t csum_offloads = 0;
826 netdev_features_t tso_offloads = 0;
827 netdev_features_t dflt_features;
828 struct idpf_netdev_priv *np;
829 struct net_device *netdev;
830 u16 idx = vport->idx;
831 int err;
832
833 vport_config = adapter->vport_config[idx];
834
835 /* It's possible we already have a netdev allocated and registered for
836 * this vport
837 */
838 if (test_bit(IDPF_VPORT_REG_NETDEV, vport_config->flags)) {
839 netdev = adapter->netdevs[idx];
840 np = netdev_priv(netdev);
841 np->vport = vport;
842 np->vport_idx = vport->idx;
843 np->vport_id = vport->vport_id;
844 np->max_tx_hdr_size = idpf_get_max_tx_hdr_size(adapter);
845 vport->netdev = netdev;
846
847 return idpf_init_mac_addr(vport, netdev);
848 }
849
850 netdev = alloc_etherdev_mqs(sizeof(struct idpf_netdev_priv),
851 vport_config->max_q.max_txq,
852 vport_config->max_q.max_rxq);
853 if (!netdev)
854 return -ENOMEM;
855
856 vport->netdev = netdev;
857 np = netdev_priv(netdev);
858 np->vport = vport;
859 np->adapter = adapter;
860 np->vport_idx = vport->idx;
861 np->vport_id = vport->vport_id;
862 np->max_tx_hdr_size = idpf_get_max_tx_hdr_size(adapter);
863 np->tx_max_bufs = idpf_get_max_tx_bufs(adapter);
864
865 spin_lock_init(&np->stats_lock);
866
867 err = idpf_init_mac_addr(vport, netdev);
868 if (err) {
869 free_netdev(vport->netdev);
870 vport->netdev = NULL;
871
872 return err;
873 }
874
875 /* assign netdev_ops */
876 netdev->netdev_ops = &idpf_netdev_ops;
877
878 /* setup watchdog timeout value to be 5 second */
879 netdev->watchdog_timeo = 5 * HZ;
880
881 netdev->dev_port = idx;
882
883 /* configure default MTU size */
884 netdev->min_mtu = ETH_MIN_MTU;
885 netdev->max_mtu = vport->max_mtu;
886
887 dflt_features = NETIF_F_SG |
888 NETIF_F_HIGHDMA;
889
890 if (idpf_is_cap_ena_all(adapter, IDPF_RSS_CAPS, IDPF_CAP_RSS))
891 dflt_features |= NETIF_F_RXHASH;
892 if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS,
893 VIRTCHNL2_CAP_FLOW_STEER) &&
894 idpf_vport_is_cap_ena(vport, VIRTCHNL2_VPORT_SIDEBAND_FLOW_STEER))
895 dflt_features |= NETIF_F_NTUPLE;
896 if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_TX_CSUM_L4V4))
897 csum_offloads |= NETIF_F_IP_CSUM;
898 if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_TX_CSUM_L4V6))
899 csum_offloads |= NETIF_F_IPV6_CSUM;
900 if (idpf_is_cap_ena(adapter, IDPF_CSUM_CAPS, IDPF_CAP_RX_CSUM))
901 csum_offloads |= NETIF_F_RXCSUM;
902 if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_TX_SCTP_CSUM))
903 csum_offloads |= NETIF_F_SCTP_CRC;
904
905 if (idpf_is_cap_ena(adapter, IDPF_SEG_CAPS, VIRTCHNL2_CAP_SEG_IPV4_TCP))
906 tso_offloads |= NETIF_F_TSO;
907 if (idpf_is_cap_ena(adapter, IDPF_SEG_CAPS, VIRTCHNL2_CAP_SEG_IPV6_TCP))
908 tso_offloads |= NETIF_F_TSO6;
909 if (idpf_is_cap_ena_all(adapter, IDPF_SEG_CAPS,
910 VIRTCHNL2_CAP_SEG_IPV4_UDP |
911 VIRTCHNL2_CAP_SEG_IPV6_UDP))
912 tso_offloads |= NETIF_F_GSO_UDP_L4;
913 if (idpf_is_cap_ena_all(adapter, IDPF_RSC_CAPS, IDPF_CAP_RSC))
914 other_offloads |= NETIF_F_GRO_HW;
915 if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_LOOPBACK))
916 other_offloads |= NETIF_F_LOOPBACK;
917
918 netdev->features |= dflt_features | csum_offloads | tso_offloads;
919 netdev->hw_features |= netdev->features | other_offloads;
920 netdev->vlan_features |= netdev->features | other_offloads;
921 netdev->hw_enc_features |= dflt_features | other_offloads;
922 idpf_xdp_set_features(vport);
923
924 idpf_set_ethtool_ops(netdev);
925 netif_set_affinity_auto(netdev);
926 SET_NETDEV_DEV(netdev, &adapter->pdev->dev);
927
928 /* carrier off on init to avoid Tx hangs */
929 netif_carrier_off(netdev);
930
931 /* make sure transmit queues start off as stopped */
932 netif_tx_stop_all_queues(netdev);
933
934 /* The vport can be arbitrarily released so we need to also track
935 * netdevs in the adapter struct
936 */
937 adapter->netdevs[idx] = netdev;
938
939 return 0;
940 }
941
942 /**
943 * idpf_get_free_slot - get the next non-NULL location index in array
944 * @adapter: adapter in which to look for a free vport slot
945 */
idpf_get_free_slot(struct idpf_adapter * adapter)946 static int idpf_get_free_slot(struct idpf_adapter *adapter)
947 {
948 unsigned int i;
949
950 for (i = 0; i < adapter->max_vports; i++) {
951 if (!adapter->vports[i])
952 return i;
953 }
954
955 return IDPF_NO_FREE_SLOT;
956 }
957
958 /**
959 * idpf_remove_features - Turn off feature configs
960 * @vport: virtual port structure
961 */
idpf_remove_features(struct idpf_vport * vport)962 static void idpf_remove_features(struct idpf_vport *vport)
963 {
964 struct idpf_adapter *adapter = vport->adapter;
965
966 if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER))
967 idpf_remove_mac_filters(vport);
968 }
969
970 /**
971 * idpf_vport_stop - Disable a vport
972 * @vport: vport to disable
973 * @rtnl: whether to take RTNL lock
974 */
idpf_vport_stop(struct idpf_vport * vport,bool rtnl)975 static void idpf_vport_stop(struct idpf_vport *vport, bool rtnl)
976 {
977 struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
978
979 if (!test_bit(IDPF_VPORT_UP, np->state))
980 return;
981
982 if (rtnl)
983 rtnl_lock();
984
985 netif_carrier_off(vport->netdev);
986 netif_tx_disable(vport->netdev);
987
988 idpf_send_disable_vport_msg(vport);
989 idpf_send_disable_queues_msg(vport);
990 idpf_send_map_unmap_queue_vector_msg(vport, false);
991 /* Normally we ask for queues in create_vport, but if the number of
992 * initially requested queues have changed, for example via ethtool
993 * set channels, we do delete queues and then add the queues back
994 * instead of deleting and reallocating the vport.
995 */
996 if (test_and_clear_bit(IDPF_VPORT_DEL_QUEUES, vport->flags))
997 idpf_send_delete_queues_msg(vport);
998
999 idpf_remove_features(vport);
1000
1001 vport->link_up = false;
1002 idpf_vport_intr_deinit(vport);
1003 idpf_xdp_rxq_info_deinit_all(vport);
1004 idpf_vport_queues_rel(vport);
1005 idpf_vport_intr_rel(vport);
1006 clear_bit(IDPF_VPORT_UP, np->state);
1007
1008 if (rtnl)
1009 rtnl_unlock();
1010 }
1011
1012 /**
1013 * idpf_stop - Disables a network interface
1014 * @netdev: network interface device structure
1015 *
1016 * The stop entry point is called when an interface is de-activated by the OS,
1017 * and the netdevice enters the DOWN state. The hardware is still under the
1018 * driver's control, but the netdev interface is disabled.
1019 *
1020 * Returns success only - not allowed to fail
1021 */
idpf_stop(struct net_device * netdev)1022 static int idpf_stop(struct net_device *netdev)
1023 {
1024 struct idpf_netdev_priv *np = netdev_priv(netdev);
1025 struct idpf_vport *vport;
1026
1027 if (test_bit(IDPF_REMOVE_IN_PROG, np->adapter->flags))
1028 return 0;
1029
1030 idpf_vport_ctrl_lock(netdev);
1031 vport = idpf_netdev_to_vport(netdev);
1032
1033 idpf_vport_stop(vport, false);
1034
1035 idpf_vport_ctrl_unlock(netdev);
1036
1037 return 0;
1038 }
1039
1040 /**
1041 * idpf_decfg_netdev - Unregister the netdev
1042 * @vport: vport for which netdev to be unregistered
1043 */
idpf_decfg_netdev(struct idpf_vport * vport)1044 static void idpf_decfg_netdev(struct idpf_vport *vport)
1045 {
1046 struct idpf_adapter *adapter = vport->adapter;
1047 u16 idx = vport->idx;
1048
1049 kfree(vport->rx_ptype_lkup);
1050 vport->rx_ptype_lkup = NULL;
1051
1052 if (test_and_clear_bit(IDPF_VPORT_REG_NETDEV,
1053 adapter->vport_config[idx]->flags)) {
1054 unregister_netdev(vport->netdev);
1055 free_netdev(vport->netdev);
1056 }
1057 vport->netdev = NULL;
1058
1059 adapter->netdevs[idx] = NULL;
1060 }
1061
1062 /**
1063 * idpf_vport_rel - Delete a vport and free its resources
1064 * @vport: the vport being removed
1065 */
idpf_vport_rel(struct idpf_vport * vport)1066 static void idpf_vport_rel(struct idpf_vport *vport)
1067 {
1068 struct idpf_adapter *adapter = vport->adapter;
1069 struct idpf_vport_config *vport_config;
1070 struct idpf_vector_info vec_info;
1071 struct idpf_rss_data *rss_data;
1072 struct idpf_vport_max_q max_q;
1073 u16 idx = vport->idx;
1074
1075 vport_config = adapter->vport_config[vport->idx];
1076 idpf_deinit_rss_lut(vport);
1077 rss_data = &vport_config->user_config.rss_data;
1078 kfree(rss_data->rss_key);
1079 rss_data->rss_key = NULL;
1080
1081 idpf_send_destroy_vport_msg(vport);
1082
1083 /* Release all max queues allocated to the adapter's pool */
1084 max_q.max_rxq = vport_config->max_q.max_rxq;
1085 max_q.max_txq = vport_config->max_q.max_txq;
1086 max_q.max_bufq = vport_config->max_q.max_bufq;
1087 max_q.max_complq = vport_config->max_q.max_complq;
1088 idpf_vport_dealloc_max_qs(adapter, &max_q);
1089
1090 /* Release all the allocated vectors on the stack */
1091 vec_info.num_req_vecs = 0;
1092 vec_info.num_curr_vecs = vport->num_q_vectors;
1093 vec_info.default_vport = vport->default_vport;
1094
1095 idpf_req_rel_vector_indexes(adapter, vport->q_vector_idxs, &vec_info);
1096
1097 kfree(vport->q_vector_idxs);
1098 vport->q_vector_idxs = NULL;
1099
1100 kfree(adapter->vport_params_recvd[idx]);
1101 adapter->vport_params_recvd[idx] = NULL;
1102 kfree(adapter->vport_params_reqd[idx]);
1103 adapter->vport_params_reqd[idx] = NULL;
1104 if (adapter->vport_config[idx]) {
1105 kfree(adapter->vport_config[idx]->req_qs_chunks);
1106 adapter->vport_config[idx]->req_qs_chunks = NULL;
1107 }
1108 kfree(vport->rx_ptype_lkup);
1109 vport->rx_ptype_lkup = NULL;
1110 kfree(vport);
1111 adapter->num_alloc_vports--;
1112 }
1113
1114 /**
1115 * idpf_vport_dealloc - cleanup and release a given vport
1116 * @vport: pointer to idpf vport structure
1117 *
1118 * returns nothing
1119 */
idpf_vport_dealloc(struct idpf_vport * vport)1120 static void idpf_vport_dealloc(struct idpf_vport *vport)
1121 {
1122 struct idpf_adapter *adapter = vport->adapter;
1123 unsigned int i = vport->idx;
1124
1125 idpf_idc_deinit_vport_aux_device(vport->vdev_info);
1126
1127 idpf_deinit_mac_addr(vport);
1128
1129 if (!test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags)) {
1130 idpf_vport_stop(vport, true);
1131 idpf_decfg_netdev(vport);
1132 }
1133 if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags)) {
1134 idpf_del_all_mac_filters(vport);
1135 idpf_del_all_flow_steer_filters(vport);
1136 }
1137
1138 if (adapter->netdevs[i]) {
1139 struct idpf_netdev_priv *np = netdev_priv(adapter->netdevs[i]);
1140
1141 np->vport = NULL;
1142 }
1143
1144 idpf_vport_rel(vport);
1145
1146 adapter->vports[i] = NULL;
1147 adapter->next_vport = idpf_get_free_slot(adapter);
1148 }
1149
1150 /**
1151 * idpf_is_hsplit_supported - check whether the header split is supported
1152 * @vport: virtual port to check the capability for
1153 *
1154 * Return: true if it's supported by the HW/FW, false if not.
1155 */
idpf_is_hsplit_supported(const struct idpf_vport * vport)1156 static bool idpf_is_hsplit_supported(const struct idpf_vport *vport)
1157 {
1158 return idpf_is_queue_model_split(vport->rxq_model) &&
1159 idpf_is_cap_ena_all(vport->adapter, IDPF_HSPLIT_CAPS,
1160 IDPF_CAP_HSPLIT);
1161 }
1162
1163 /**
1164 * idpf_vport_get_hsplit - get the current header split feature state
1165 * @vport: virtual port to query the state for
1166 *
1167 * Return: ``ETHTOOL_TCP_DATA_SPLIT_UNKNOWN`` if not supported,
1168 * ``ETHTOOL_TCP_DATA_SPLIT_DISABLED`` if disabled,
1169 * ``ETHTOOL_TCP_DATA_SPLIT_ENABLED`` if active.
1170 */
idpf_vport_get_hsplit(const struct idpf_vport * vport)1171 u8 idpf_vport_get_hsplit(const struct idpf_vport *vport)
1172 {
1173 const struct idpf_vport_user_config_data *config;
1174
1175 if (!idpf_is_hsplit_supported(vport))
1176 return ETHTOOL_TCP_DATA_SPLIT_UNKNOWN;
1177
1178 config = &vport->adapter->vport_config[vport->idx]->user_config;
1179
1180 return test_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags) ?
1181 ETHTOOL_TCP_DATA_SPLIT_ENABLED :
1182 ETHTOOL_TCP_DATA_SPLIT_DISABLED;
1183 }
1184
1185 /**
1186 * idpf_vport_set_hsplit - enable or disable header split on a given vport
1187 * @vport: virtual port to configure
1188 * @val: Ethtool flag controlling the header split state
1189 *
1190 * Return: true on success, false if not supported by the HW.
1191 */
idpf_vport_set_hsplit(const struct idpf_vport * vport,u8 val)1192 bool idpf_vport_set_hsplit(const struct idpf_vport *vport, u8 val)
1193 {
1194 struct idpf_vport_user_config_data *config;
1195
1196 if (!idpf_is_hsplit_supported(vport))
1197 return val == ETHTOOL_TCP_DATA_SPLIT_UNKNOWN;
1198
1199 config = &vport->adapter->vport_config[vport->idx]->user_config;
1200
1201 switch (val) {
1202 case ETHTOOL_TCP_DATA_SPLIT_UNKNOWN:
1203 /* Default is to enable */
1204 case ETHTOOL_TCP_DATA_SPLIT_ENABLED:
1205 __set_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags);
1206 return true;
1207 case ETHTOOL_TCP_DATA_SPLIT_DISABLED:
1208 __clear_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags);
1209 return true;
1210 default:
1211 return false;
1212 }
1213 }
1214
1215 /**
1216 * idpf_vport_alloc - Allocates the next available struct vport in the adapter
1217 * @adapter: board private structure
1218 * @max_q: vport max queue info
1219 *
1220 * returns a pointer to a vport on success, NULL on failure.
1221 */
idpf_vport_alloc(struct idpf_adapter * adapter,struct idpf_vport_max_q * max_q)1222 static struct idpf_vport *idpf_vport_alloc(struct idpf_adapter *adapter,
1223 struct idpf_vport_max_q *max_q)
1224 {
1225 struct idpf_rss_data *rss_data;
1226 u16 idx = adapter->next_vport;
1227 struct idpf_vport *vport;
1228 u16 num_max_q;
1229 int err;
1230
1231 if (idx == IDPF_NO_FREE_SLOT)
1232 return NULL;
1233
1234 vport = kzalloc(sizeof(*vport), GFP_KERNEL);
1235 if (!vport)
1236 return vport;
1237
1238 num_max_q = max(max_q->max_txq, max_q->max_rxq) + IDPF_RESERVED_VECS;
1239 if (!adapter->vport_config[idx]) {
1240 struct idpf_vport_config *vport_config;
1241 struct idpf_q_coalesce *q_coal;
1242
1243 vport_config = kzalloc(sizeof(*vport_config), GFP_KERNEL);
1244 if (!vport_config) {
1245 kfree(vport);
1246
1247 return NULL;
1248 }
1249
1250 q_coal = kcalloc(num_max_q, sizeof(*q_coal), GFP_KERNEL);
1251 if (!q_coal) {
1252 kfree(vport_config);
1253 kfree(vport);
1254
1255 return NULL;
1256 }
1257 for (int i = 0; i < num_max_q; i++) {
1258 q_coal[i].tx_intr_mode = IDPF_ITR_DYNAMIC;
1259 q_coal[i].tx_coalesce_usecs = IDPF_ITR_TX_DEF;
1260 q_coal[i].rx_intr_mode = IDPF_ITR_DYNAMIC;
1261 q_coal[i].rx_coalesce_usecs = IDPF_ITR_RX_DEF;
1262 }
1263 vport_config->user_config.q_coalesce = q_coal;
1264
1265 adapter->vport_config[idx] = vport_config;
1266 }
1267
1268 vport->idx = idx;
1269 vport->adapter = adapter;
1270 vport->compln_clean_budget = IDPF_TX_COMPLQ_CLEAN_BUDGET;
1271 vport->default_vport = adapter->num_alloc_vports <
1272 idpf_get_default_vports(adapter);
1273
1274 vport->q_vector_idxs = kcalloc(num_max_q, sizeof(u16), GFP_KERNEL);
1275 if (!vport->q_vector_idxs)
1276 goto free_vport;
1277
1278 idpf_vport_init(vport, max_q);
1279
1280 /* LUT and key are both initialized here. Key is not strictly dependent
1281 * on how many queues we have. If we change number of queues and soft
1282 * reset is initiated, LUT will be freed and a new LUT will be allocated
1283 * as per the updated number of queues during vport bringup. However,
1284 * the key remains the same for as long as the vport exists.
1285 */
1286 rss_data = &adapter->vport_config[idx]->user_config.rss_data;
1287 rss_data->rss_key = kzalloc(rss_data->rss_key_size, GFP_KERNEL);
1288 if (!rss_data->rss_key)
1289 goto free_vector_idxs;
1290
1291 /* Initialize default rss key */
1292 netdev_rss_key_fill((void *)rss_data->rss_key, rss_data->rss_key_size);
1293
1294 /* Initialize default rss LUT */
1295 err = idpf_init_rss_lut(vport);
1296 if (err)
1297 goto free_rss_key;
1298
1299 /* fill vport slot in the adapter struct */
1300 adapter->vports[idx] = vport;
1301 adapter->vport_ids[idx] = idpf_get_vport_id(vport);
1302
1303 adapter->num_alloc_vports++;
1304 /* prepare adapter->next_vport for next use */
1305 adapter->next_vport = idpf_get_free_slot(adapter);
1306
1307 return vport;
1308
1309 free_rss_key:
1310 kfree(rss_data->rss_key);
1311 free_vector_idxs:
1312 kfree(vport->q_vector_idxs);
1313 free_vport:
1314 kfree(vport);
1315
1316 return NULL;
1317 }
1318
1319 /**
1320 * idpf_get_stats64 - get statistics for network device structure
1321 * @netdev: network interface device structure
1322 * @stats: main device statistics structure
1323 */
idpf_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)1324 static void idpf_get_stats64(struct net_device *netdev,
1325 struct rtnl_link_stats64 *stats)
1326 {
1327 struct idpf_netdev_priv *np = netdev_priv(netdev);
1328
1329 spin_lock_bh(&np->stats_lock);
1330 *stats = np->netstats;
1331 spin_unlock_bh(&np->stats_lock);
1332 }
1333
1334 /**
1335 * idpf_statistics_task - Delayed task to get statistics over mailbox
1336 * @work: work_struct handle to our data
1337 */
idpf_statistics_task(struct work_struct * work)1338 void idpf_statistics_task(struct work_struct *work)
1339 {
1340 struct idpf_adapter *adapter;
1341 int i;
1342
1343 adapter = container_of(work, struct idpf_adapter, stats_task.work);
1344
1345 for (i = 0; i < adapter->max_vports; i++) {
1346 struct idpf_vport *vport = adapter->vports[i];
1347
1348 if (vport && !test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags))
1349 idpf_send_get_stats_msg(vport);
1350 }
1351
1352 queue_delayed_work(adapter->stats_wq, &adapter->stats_task,
1353 msecs_to_jiffies(10000));
1354 }
1355
1356 /**
1357 * idpf_mbx_task - Delayed task to handle mailbox responses
1358 * @work: work_struct handle
1359 */
idpf_mbx_task(struct work_struct * work)1360 void idpf_mbx_task(struct work_struct *work)
1361 {
1362 struct idpf_adapter *adapter;
1363
1364 adapter = container_of(work, struct idpf_adapter, mbx_task.work);
1365
1366 if (test_bit(IDPF_MB_INTR_MODE, adapter->flags))
1367 idpf_mb_irq_enable(adapter);
1368 else
1369 queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task,
1370 usecs_to_jiffies(300));
1371
1372 idpf_recv_mb_msg(adapter);
1373 }
1374
1375 /**
1376 * idpf_service_task - Delayed task for handling mailbox responses
1377 * @work: work_struct handle to our data
1378 *
1379 */
idpf_service_task(struct work_struct * work)1380 void idpf_service_task(struct work_struct *work)
1381 {
1382 struct idpf_adapter *adapter;
1383
1384 adapter = container_of(work, struct idpf_adapter, serv_task.work);
1385
1386 if (idpf_is_reset_detected(adapter) &&
1387 !idpf_is_reset_in_prog(adapter) &&
1388 !test_bit(IDPF_REMOVE_IN_PROG, adapter->flags)) {
1389 dev_info(&adapter->pdev->dev, "HW reset detected\n");
1390 set_bit(IDPF_HR_FUNC_RESET, adapter->flags);
1391 queue_delayed_work(adapter->vc_event_wq,
1392 &adapter->vc_event_task,
1393 msecs_to_jiffies(10));
1394 }
1395
1396 queue_delayed_work(adapter->serv_wq, &adapter->serv_task,
1397 msecs_to_jiffies(300));
1398 }
1399
1400 /**
1401 * idpf_restore_features - Restore feature configs
1402 * @vport: virtual port structure
1403 */
idpf_restore_features(struct idpf_vport * vport)1404 static void idpf_restore_features(struct idpf_vport *vport)
1405 {
1406 struct idpf_adapter *adapter = vport->adapter;
1407
1408 if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER))
1409 idpf_restore_mac_filters(vport);
1410 }
1411
1412 /**
1413 * idpf_set_real_num_queues - set number of queues for netdev
1414 * @vport: virtual port structure
1415 *
1416 * Returns 0 on success, negative on failure.
1417 */
idpf_set_real_num_queues(struct idpf_vport * vport)1418 static int idpf_set_real_num_queues(struct idpf_vport *vport)
1419 {
1420 int err, txq = vport->num_txq - vport->num_xdp_txq;
1421
1422 err = netif_set_real_num_rx_queues(vport->netdev, vport->num_rxq);
1423 if (err)
1424 return err;
1425
1426 return netif_set_real_num_tx_queues(vport->netdev, txq);
1427 }
1428
1429 /**
1430 * idpf_up_complete - Complete interface up sequence
1431 * @vport: virtual port structure
1432 *
1433 * Returns 0 on success, negative on failure.
1434 */
idpf_up_complete(struct idpf_vport * vport)1435 static int idpf_up_complete(struct idpf_vport *vport)
1436 {
1437 struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
1438
1439 if (vport->link_up && !netif_carrier_ok(vport->netdev)) {
1440 netif_carrier_on(vport->netdev);
1441 netif_tx_start_all_queues(vport->netdev);
1442 }
1443
1444 set_bit(IDPF_VPORT_UP, np->state);
1445
1446 return 0;
1447 }
1448
1449 /**
1450 * idpf_rx_init_buf_tail - Write initial buffer ring tail value
1451 * @vport: virtual port struct
1452 */
idpf_rx_init_buf_tail(struct idpf_vport * vport)1453 static void idpf_rx_init_buf_tail(struct idpf_vport *vport)
1454 {
1455 int i, j;
1456
1457 for (i = 0; i < vport->num_rxq_grp; i++) {
1458 struct idpf_rxq_group *grp = &vport->rxq_grps[i];
1459
1460 if (idpf_is_queue_model_split(vport->rxq_model)) {
1461 for (j = 0; j < vport->num_bufqs_per_qgrp; j++) {
1462 const struct idpf_buf_queue *q =
1463 &grp->splitq.bufq_sets[j].bufq;
1464
1465 writel(q->next_to_alloc, q->tail);
1466 }
1467 } else {
1468 for (j = 0; j < grp->singleq.num_rxq; j++) {
1469 const struct idpf_rx_queue *q =
1470 grp->singleq.rxqs[j];
1471
1472 writel(q->next_to_alloc, q->tail);
1473 }
1474 }
1475 }
1476 }
1477
1478 /**
1479 * idpf_vport_open - Bring up a vport
1480 * @vport: vport to bring up
1481 * @rtnl: whether to take RTNL lock
1482 */
idpf_vport_open(struct idpf_vport * vport,bool rtnl)1483 static int idpf_vport_open(struct idpf_vport *vport, bool rtnl)
1484 {
1485 struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
1486 struct idpf_adapter *adapter = vport->adapter;
1487 int err;
1488
1489 if (test_bit(IDPF_VPORT_UP, np->state))
1490 return -EBUSY;
1491
1492 if (rtnl)
1493 rtnl_lock();
1494
1495 /* we do not allow interface up just yet */
1496 netif_carrier_off(vport->netdev);
1497
1498 err = idpf_vport_intr_alloc(vport);
1499 if (err) {
1500 dev_err(&adapter->pdev->dev, "Failed to allocate interrupts for vport %u: %d\n",
1501 vport->vport_id, err);
1502 goto err_rtnl_unlock;
1503 }
1504
1505 err = idpf_vport_queues_alloc(vport);
1506 if (err)
1507 goto intr_rel;
1508
1509 err = idpf_vport_queue_ids_init(vport);
1510 if (err) {
1511 dev_err(&adapter->pdev->dev, "Failed to initialize queue ids for vport %u: %d\n",
1512 vport->vport_id, err);
1513 goto queues_rel;
1514 }
1515
1516 err = idpf_vport_intr_init(vport);
1517 if (err) {
1518 dev_err(&adapter->pdev->dev, "Failed to initialize interrupts for vport %u: %d\n",
1519 vport->vport_id, err);
1520 goto queues_rel;
1521 }
1522
1523 err = idpf_queue_reg_init(vport);
1524 if (err) {
1525 dev_err(&adapter->pdev->dev, "Failed to initialize queue registers for vport %u: %d\n",
1526 vport->vport_id, err);
1527 goto intr_deinit;
1528 }
1529
1530 err = idpf_rx_bufs_init_all(vport);
1531 if (err) {
1532 dev_err(&adapter->pdev->dev, "Failed to initialize RX buffers for vport %u: %d\n",
1533 vport->vport_id, err);
1534 goto intr_deinit;
1535 }
1536
1537 idpf_rx_init_buf_tail(vport);
1538
1539 err = idpf_xdp_rxq_info_init_all(vport);
1540 if (err) {
1541 netdev_err(vport->netdev,
1542 "Failed to initialize XDP RxQ info for vport %u: %pe\n",
1543 vport->vport_id, ERR_PTR(err));
1544 goto intr_deinit;
1545 }
1546
1547 idpf_vport_intr_ena(vport);
1548
1549 err = idpf_send_config_queues_msg(vport);
1550 if (err) {
1551 dev_err(&adapter->pdev->dev, "Failed to configure queues for vport %u, %d\n",
1552 vport->vport_id, err);
1553 goto rxq_deinit;
1554 }
1555
1556 err = idpf_send_map_unmap_queue_vector_msg(vport, true);
1557 if (err) {
1558 dev_err(&adapter->pdev->dev, "Failed to map queue vectors for vport %u: %d\n",
1559 vport->vport_id, err);
1560 goto rxq_deinit;
1561 }
1562
1563 err = idpf_send_enable_queues_msg(vport);
1564 if (err) {
1565 dev_err(&adapter->pdev->dev, "Failed to enable queues for vport %u: %d\n",
1566 vport->vport_id, err);
1567 goto unmap_queue_vectors;
1568 }
1569
1570 err = idpf_send_enable_vport_msg(vport);
1571 if (err) {
1572 dev_err(&adapter->pdev->dev, "Failed to enable vport %u: %d\n",
1573 vport->vport_id, err);
1574 err = -EAGAIN;
1575 goto disable_queues;
1576 }
1577
1578 idpf_restore_features(vport);
1579
1580 err = idpf_config_rss(vport);
1581 if (err) {
1582 dev_err(&adapter->pdev->dev, "Failed to configure RSS for vport %u: %d\n",
1583 vport->vport_id, err);
1584 goto disable_vport;
1585 }
1586
1587 err = idpf_up_complete(vport);
1588 if (err) {
1589 dev_err(&adapter->pdev->dev, "Failed to complete interface up for vport %u: %d\n",
1590 vport->vport_id, err);
1591 goto disable_vport;
1592 }
1593
1594 if (rtnl)
1595 rtnl_unlock();
1596
1597 return 0;
1598
1599 disable_vport:
1600 idpf_send_disable_vport_msg(vport);
1601 disable_queues:
1602 idpf_send_disable_queues_msg(vport);
1603 unmap_queue_vectors:
1604 idpf_send_map_unmap_queue_vector_msg(vport, false);
1605 rxq_deinit:
1606 idpf_xdp_rxq_info_deinit_all(vport);
1607 intr_deinit:
1608 idpf_vport_intr_deinit(vport);
1609 queues_rel:
1610 idpf_vport_queues_rel(vport);
1611 intr_rel:
1612 idpf_vport_intr_rel(vport);
1613
1614 err_rtnl_unlock:
1615 if (rtnl)
1616 rtnl_unlock();
1617
1618 return err;
1619 }
1620
1621 /**
1622 * idpf_init_task - Delayed initialization task
1623 * @work: work_struct handle to our data
1624 *
1625 * Init task finishes up pending work started in probe. Due to the asynchronous
1626 * nature in which the device communicates with hardware, we may have to wait
1627 * several milliseconds to get a response. Instead of busy polling in probe,
1628 * pulling it out into a delayed work task prevents us from bogging down the
1629 * whole system waiting for a response from hardware.
1630 */
idpf_init_task(struct work_struct * work)1631 void idpf_init_task(struct work_struct *work)
1632 {
1633 struct idpf_vport_config *vport_config;
1634 struct idpf_vport_max_q max_q;
1635 struct idpf_adapter *adapter;
1636 struct idpf_vport *vport;
1637 u16 num_default_vports;
1638 struct pci_dev *pdev;
1639 bool default_vport;
1640 int index, err;
1641
1642 adapter = container_of(work, struct idpf_adapter, init_task.work);
1643
1644 num_default_vports = idpf_get_default_vports(adapter);
1645 if (adapter->num_alloc_vports < num_default_vports)
1646 default_vport = true;
1647 else
1648 default_vport = false;
1649
1650 err = idpf_vport_alloc_max_qs(adapter, &max_q);
1651 if (err)
1652 goto unwind_vports;
1653
1654 err = idpf_send_create_vport_msg(adapter, &max_q);
1655 if (err) {
1656 idpf_vport_dealloc_max_qs(adapter, &max_q);
1657 goto unwind_vports;
1658 }
1659
1660 pdev = adapter->pdev;
1661 vport = idpf_vport_alloc(adapter, &max_q);
1662 if (!vport) {
1663 err = -EFAULT;
1664 dev_err(&pdev->dev, "failed to allocate vport: %d\n",
1665 err);
1666 idpf_vport_dealloc_max_qs(adapter, &max_q);
1667 goto unwind_vports;
1668 }
1669
1670 err = idpf_send_get_rx_ptype_msg(vport);
1671 if (err)
1672 goto unwind_vports;
1673
1674 index = vport->idx;
1675 vport_config = adapter->vport_config[index];
1676
1677 spin_lock_init(&vport_config->mac_filter_list_lock);
1678 spin_lock_init(&vport_config->flow_steer_list_lock);
1679
1680 INIT_LIST_HEAD(&vport_config->user_config.mac_filter_list);
1681 INIT_LIST_HEAD(&vport_config->user_config.flow_steer_list);
1682
1683 err = idpf_check_supported_desc_ids(vport);
1684 if (err) {
1685 dev_err(&pdev->dev, "failed to get required descriptor ids\n");
1686 goto unwind_vports;
1687 }
1688
1689 if (idpf_cfg_netdev(vport))
1690 goto unwind_vports;
1691
1692 /* Spawn and return 'idpf_init_task' work queue until all the
1693 * default vports are created
1694 */
1695 if (adapter->num_alloc_vports < num_default_vports) {
1696 queue_delayed_work(adapter->init_wq, &adapter->init_task,
1697 msecs_to_jiffies(5 * (adapter->pdev->devfn & 0x07)));
1698
1699 return;
1700 }
1701
1702 for (index = 0; index < adapter->max_vports; index++) {
1703 struct net_device *netdev = adapter->netdevs[index];
1704 struct idpf_vport_config *vport_config;
1705
1706 vport_config = adapter->vport_config[index];
1707
1708 if (!netdev ||
1709 test_bit(IDPF_VPORT_REG_NETDEV, vport_config->flags))
1710 continue;
1711
1712 err = register_netdev(netdev);
1713 if (err) {
1714 dev_err(&pdev->dev, "failed to register netdev for vport %d: %pe\n",
1715 index, ERR_PTR(err));
1716 continue;
1717 }
1718 set_bit(IDPF_VPORT_REG_NETDEV, vport_config->flags);
1719 }
1720
1721 /* Clear the reset and load bits as all vports are created */
1722 clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags);
1723 clear_bit(IDPF_HR_DRV_LOAD, adapter->flags);
1724 /* Start the statistics task now */
1725 queue_delayed_work(adapter->stats_wq, &adapter->stats_task,
1726 msecs_to_jiffies(10 * (pdev->devfn & 0x07)));
1727
1728 return;
1729
1730 unwind_vports:
1731 if (default_vport) {
1732 for (index = 0; index < adapter->max_vports; index++) {
1733 if (adapter->vports[index])
1734 idpf_vport_dealloc(adapter->vports[index]);
1735 }
1736 }
1737 /* Cleanup after vc_core_init, which has no way of knowing the
1738 * init task failed on driver load.
1739 */
1740 if (test_and_clear_bit(IDPF_HR_DRV_LOAD, adapter->flags)) {
1741 cancel_delayed_work_sync(&adapter->serv_task);
1742 cancel_delayed_work_sync(&adapter->mbx_task);
1743 }
1744 idpf_ptp_release(adapter);
1745
1746 clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags);
1747 }
1748
1749 /**
1750 * idpf_sriov_ena - Enable or change number of VFs
1751 * @adapter: private data struct
1752 * @num_vfs: number of VFs to allocate
1753 */
idpf_sriov_ena(struct idpf_adapter * adapter,int num_vfs)1754 static int idpf_sriov_ena(struct idpf_adapter *adapter, int num_vfs)
1755 {
1756 struct device *dev = &adapter->pdev->dev;
1757 int err;
1758
1759 err = idpf_send_set_sriov_vfs_msg(adapter, num_vfs);
1760 if (err) {
1761 dev_err(dev, "Failed to allocate VFs: %d\n", err);
1762
1763 return err;
1764 }
1765
1766 err = pci_enable_sriov(adapter->pdev, num_vfs);
1767 if (err) {
1768 idpf_send_set_sriov_vfs_msg(adapter, 0);
1769 dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
1770
1771 return err;
1772 }
1773
1774 adapter->num_vfs = num_vfs;
1775
1776 return num_vfs;
1777 }
1778
1779 /**
1780 * idpf_sriov_configure - Configure the requested VFs
1781 * @pdev: pointer to a pci_dev structure
1782 * @num_vfs: number of vfs to allocate
1783 *
1784 * Enable or change the number of VFs. Called when the user updates the number
1785 * of VFs in sysfs.
1786 **/
idpf_sriov_configure(struct pci_dev * pdev,int num_vfs)1787 int idpf_sriov_configure(struct pci_dev *pdev, int num_vfs)
1788 {
1789 struct idpf_adapter *adapter = pci_get_drvdata(pdev);
1790
1791 if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_SRIOV)) {
1792 dev_info(&pdev->dev, "SR-IOV is not supported on this device\n");
1793
1794 return -EOPNOTSUPP;
1795 }
1796
1797 if (num_vfs)
1798 return idpf_sriov_ena(adapter, num_vfs);
1799
1800 if (pci_vfs_assigned(pdev)) {
1801 dev_warn(&pdev->dev, "Unable to free VFs because some are assigned to VMs\n");
1802
1803 return -EBUSY;
1804 }
1805
1806 pci_disable_sriov(adapter->pdev);
1807 idpf_send_set_sriov_vfs_msg(adapter, 0);
1808 adapter->num_vfs = 0;
1809
1810 return 0;
1811 }
1812
1813 /**
1814 * idpf_deinit_task - Device deinit routine
1815 * @adapter: Driver specific private structure
1816 *
1817 * Extended remove logic which will be used for
1818 * hard reset as well
1819 */
idpf_deinit_task(struct idpf_adapter * adapter)1820 void idpf_deinit_task(struct idpf_adapter *adapter)
1821 {
1822 unsigned int i;
1823
1824 /* Wait until the init_task is done else this thread might release
1825 * the resources first and the other thread might end up in a bad state
1826 */
1827 cancel_delayed_work_sync(&adapter->init_task);
1828
1829 if (!adapter->vports)
1830 return;
1831
1832 cancel_delayed_work_sync(&adapter->stats_task);
1833
1834 for (i = 0; i < adapter->max_vports; i++) {
1835 if (adapter->vports[i])
1836 idpf_vport_dealloc(adapter->vports[i]);
1837 }
1838 }
1839
1840 /**
1841 * idpf_check_reset_complete - check that reset is complete
1842 * @hw: pointer to hw struct
1843 * @reset_reg: struct with reset registers
1844 *
1845 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
1846 **/
idpf_check_reset_complete(struct idpf_hw * hw,struct idpf_reset_reg * reset_reg)1847 static int idpf_check_reset_complete(struct idpf_hw *hw,
1848 struct idpf_reset_reg *reset_reg)
1849 {
1850 struct idpf_adapter *adapter = hw->back;
1851 int i;
1852
1853 for (i = 0; i < 2000; i++) {
1854 u32 reg_val = readl(reset_reg->rstat);
1855
1856 /* 0xFFFFFFFF might be read if other side hasn't cleared the
1857 * register for us yet and 0xFFFFFFFF is not a valid value for
1858 * the register, so treat that as invalid.
1859 */
1860 if (reg_val != 0xFFFFFFFF && (reg_val & reset_reg->rstat_m))
1861 return 0;
1862
1863 usleep_range(5000, 10000);
1864 }
1865
1866 dev_warn(&adapter->pdev->dev, "Device reset timeout!\n");
1867 /* Clear the reset flag unconditionally here since the reset
1868 * technically isn't in progress anymore from the driver's perspective
1869 */
1870 clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags);
1871
1872 return -EBUSY;
1873 }
1874
1875 /**
1876 * idpf_init_hard_reset - Initiate a hardware reset
1877 * @adapter: Driver specific private structure
1878 *
1879 * Deallocate the vports and all the resources associated with them and
1880 * reallocate. Also reinitialize the mailbox. Return 0 on success,
1881 * negative on failure.
1882 */
idpf_init_hard_reset(struct idpf_adapter * adapter)1883 static void idpf_init_hard_reset(struct idpf_adapter *adapter)
1884 {
1885 struct idpf_reg_ops *reg_ops = &adapter->dev_ops.reg_ops;
1886 struct device *dev = &adapter->pdev->dev;
1887 int err;
1888
1889 idpf_detach_and_close(adapter);
1890 mutex_lock(&adapter->vport_ctrl_lock);
1891
1892 dev_info(dev, "Device HW Reset initiated\n");
1893
1894 /* Prepare for reset */
1895 if (test_bit(IDPF_HR_DRV_LOAD, adapter->flags)) {
1896 reg_ops->trigger_reset(adapter, IDPF_HR_DRV_LOAD);
1897 } else if (test_and_clear_bit(IDPF_HR_FUNC_RESET, adapter->flags)) {
1898 bool is_reset = idpf_is_reset_detected(adapter);
1899
1900 idpf_idc_issue_reset_event(adapter->cdev_info);
1901
1902 idpf_vc_core_deinit(adapter);
1903 if (!is_reset)
1904 reg_ops->trigger_reset(adapter, IDPF_HR_FUNC_RESET);
1905 idpf_deinit_dflt_mbx(adapter);
1906 } else {
1907 dev_err(dev, "Unhandled hard reset cause\n");
1908 err = -EBADRQC;
1909 goto unlock_mutex;
1910 }
1911
1912 /* Wait for reset to complete */
1913 err = idpf_check_reset_complete(&adapter->hw, &adapter->reset_reg);
1914 if (err) {
1915 dev_err(dev, "The driver was unable to contact the device's firmware. Check that the FW is running. Driver state= 0x%x\n",
1916 adapter->state);
1917 goto unlock_mutex;
1918 }
1919
1920 /* Reset is complete and so start building the driver resources again */
1921 err = idpf_init_dflt_mbx(adapter);
1922 if (err) {
1923 dev_err(dev, "Failed to initialize default mailbox: %d\n", err);
1924 goto unlock_mutex;
1925 }
1926
1927 queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0);
1928
1929 /* Initialize the state machine, also allocate memory and request
1930 * resources
1931 */
1932 err = idpf_vc_core_init(adapter);
1933 if (err) {
1934 cancel_delayed_work_sync(&adapter->mbx_task);
1935 idpf_deinit_dflt_mbx(adapter);
1936 goto unlock_mutex;
1937 }
1938
1939 /* Wait till all the vports are initialized to release the reset lock,
1940 * else user space callbacks may access uninitialized vports
1941 */
1942 while (test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags))
1943 msleep(100);
1944
1945 unlock_mutex:
1946 mutex_unlock(&adapter->vport_ctrl_lock);
1947
1948 /* Attempt to restore netdevs and initialize RDMA CORE AUX device,
1949 * provided vc_core_init succeeded. It is still possible that
1950 * vports are not allocated at this point if the init task failed.
1951 */
1952 if (!err) {
1953 idpf_attach_and_open(adapter);
1954 idpf_idc_init(adapter);
1955 }
1956 }
1957
1958 /**
1959 * idpf_vc_event_task - Handle virtchannel event logic
1960 * @work: work queue struct
1961 */
idpf_vc_event_task(struct work_struct * work)1962 void idpf_vc_event_task(struct work_struct *work)
1963 {
1964 struct idpf_adapter *adapter;
1965
1966 adapter = container_of(work, struct idpf_adapter, vc_event_task.work);
1967
1968 if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags))
1969 return;
1970
1971 if (test_bit(IDPF_HR_FUNC_RESET, adapter->flags))
1972 goto func_reset;
1973
1974 if (test_bit(IDPF_HR_DRV_LOAD, adapter->flags))
1975 goto drv_load;
1976
1977 return;
1978
1979 func_reset:
1980 idpf_vc_xn_shutdown(adapter->vcxn_mngr);
1981 drv_load:
1982 set_bit(IDPF_HR_RESET_IN_PROG, adapter->flags);
1983 idpf_init_hard_reset(adapter);
1984 }
1985
1986 /**
1987 * idpf_initiate_soft_reset - Initiate a software reset
1988 * @vport: virtual port data struct
1989 * @reset_cause: reason for the soft reset
1990 *
1991 * Soft reset only reallocs vport queue resources. Returns 0 on success,
1992 * negative on failure.
1993 */
idpf_initiate_soft_reset(struct idpf_vport * vport,enum idpf_vport_reset_cause reset_cause)1994 int idpf_initiate_soft_reset(struct idpf_vport *vport,
1995 enum idpf_vport_reset_cause reset_cause)
1996 {
1997 struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
1998 bool vport_is_up = test_bit(IDPF_VPORT_UP, np->state);
1999 struct idpf_adapter *adapter = vport->adapter;
2000 struct idpf_vport *new_vport;
2001 int err;
2002
2003 /* If the system is low on memory, we can end up in bad state if we
2004 * free all the memory for queue resources and try to allocate them
2005 * again. Instead, we can pre-allocate the new resources before doing
2006 * anything and bailing if the alloc fails.
2007 *
2008 * Make a clone of the existing vport to mimic its current
2009 * configuration, then modify the new structure with any requested
2010 * changes. Once the allocation of the new resources is done, stop the
2011 * existing vport and copy the configuration to the main vport. If an
2012 * error occurred, the existing vport will be untouched.
2013 *
2014 */
2015 new_vport = kzalloc(sizeof(*vport), GFP_KERNEL);
2016 if (!new_vport)
2017 return -ENOMEM;
2018
2019 /* This purposely avoids copying the end of the struct because it
2020 * contains wait_queues and mutexes and other stuff we don't want to
2021 * mess with. Nothing below should use those variables from new_vport
2022 * and should instead always refer to them in vport if they need to.
2023 */
2024 memcpy(new_vport, vport, offsetof(struct idpf_vport, link_up));
2025
2026 /* Adjust resource parameters prior to reallocating resources */
2027 switch (reset_cause) {
2028 case IDPF_SR_Q_CHANGE:
2029 err = idpf_vport_adjust_qs(new_vport);
2030 if (err)
2031 goto free_vport;
2032 break;
2033 case IDPF_SR_Q_DESC_CHANGE:
2034 /* Update queue parameters before allocating resources */
2035 idpf_vport_calc_num_q_desc(new_vport);
2036 break;
2037 case IDPF_SR_MTU_CHANGE:
2038 idpf_idc_vdev_mtu_event(vport->vdev_info,
2039 IIDC_RDMA_EVENT_BEFORE_MTU_CHANGE);
2040 break;
2041 case IDPF_SR_RSC_CHANGE:
2042 break;
2043 default:
2044 dev_err(&adapter->pdev->dev, "Unhandled soft reset cause\n");
2045 err = -EINVAL;
2046 goto free_vport;
2047 }
2048
2049 if (!vport_is_up) {
2050 idpf_send_delete_queues_msg(vport);
2051 } else {
2052 set_bit(IDPF_VPORT_DEL_QUEUES, vport->flags);
2053 idpf_vport_stop(vport, false);
2054 }
2055
2056 /* We're passing in vport here because we need its wait_queue
2057 * to send a message and it should be getting all the vport
2058 * config data out of the adapter but we need to be careful not
2059 * to add code to add_queues to change the vport config within
2060 * vport itself as it will be wiped with a memcpy later.
2061 */
2062 err = idpf_send_add_queues_msg(vport, new_vport->num_txq,
2063 new_vport->num_complq,
2064 new_vport->num_rxq,
2065 new_vport->num_bufq);
2066 if (err)
2067 goto err_reset;
2068
2069 /* Same comment as above regarding avoiding copying the wait_queues and
2070 * mutexes applies here. We do not want to mess with those if possible.
2071 */
2072 memcpy(vport, new_vport, offsetof(struct idpf_vport, link_up));
2073
2074 if (reset_cause == IDPF_SR_Q_CHANGE)
2075 idpf_vport_alloc_vec_indexes(vport);
2076
2077 err = idpf_set_real_num_queues(vport);
2078 if (err)
2079 goto err_open;
2080
2081 if (reset_cause == IDPF_SR_Q_CHANGE &&
2082 !netif_is_rxfh_configured(vport->netdev))
2083 idpf_fill_dflt_rss_lut(vport);
2084
2085 if (vport_is_up)
2086 err = idpf_vport_open(vport, false);
2087
2088 goto free_vport;
2089
2090 err_reset:
2091 idpf_send_add_queues_msg(vport, vport->num_txq, vport->num_complq,
2092 vport->num_rxq, vport->num_bufq);
2093
2094 err_open:
2095 if (vport_is_up)
2096 idpf_vport_open(vport, false);
2097
2098 free_vport:
2099 kfree(new_vport);
2100
2101 if (reset_cause == IDPF_SR_MTU_CHANGE)
2102 idpf_idc_vdev_mtu_event(vport->vdev_info,
2103 IIDC_RDMA_EVENT_AFTER_MTU_CHANGE);
2104
2105 return err;
2106 }
2107
2108 /**
2109 * idpf_addr_sync - Callback for dev_(mc|uc)_sync to add address
2110 * @netdev: the netdevice
2111 * @addr: address to add
2112 *
2113 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
2114 * __dev_(uc|mc)_sync from .set_rx_mode. Kernel takes addr_list_lock spinlock
2115 * meaning we cannot sleep in this context. Due to this, we have to add the
2116 * filter and send the virtchnl message asynchronously without waiting for the
2117 * response from the other side. We won't know whether or not the operation
2118 * actually succeeded until we get the message back. Returns 0 on success,
2119 * negative on failure.
2120 */
idpf_addr_sync(struct net_device * netdev,const u8 * addr)2121 static int idpf_addr_sync(struct net_device *netdev, const u8 *addr)
2122 {
2123 struct idpf_netdev_priv *np = netdev_priv(netdev);
2124
2125 return idpf_add_mac_filter(np->vport, np, addr, true);
2126 }
2127
2128 /**
2129 * idpf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
2130 * @netdev: the netdevice
2131 * @addr: address to add
2132 *
2133 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
2134 * __dev_(uc|mc)_sync from .set_rx_mode. Kernel takes addr_list_lock spinlock
2135 * meaning we cannot sleep in this context. Due to this we have to delete the
2136 * filter and send the virtchnl message asynchronously without waiting for the
2137 * return from the other side. We won't know whether or not the operation
2138 * actually succeeded until we get the message back. Returns 0 on success,
2139 * negative on failure.
2140 */
idpf_addr_unsync(struct net_device * netdev,const u8 * addr)2141 static int idpf_addr_unsync(struct net_device *netdev, const u8 *addr)
2142 {
2143 struct idpf_netdev_priv *np = netdev_priv(netdev);
2144
2145 /* Under some circumstances, we might receive a request to delete
2146 * our own device address from our uc list. Because we store the
2147 * device address in the VSI's MAC filter list, we need to ignore
2148 * such requests and not delete our device address from this list.
2149 */
2150 if (ether_addr_equal(addr, netdev->dev_addr))
2151 return 0;
2152
2153 idpf_del_mac_filter(np->vport, np, addr, true);
2154
2155 return 0;
2156 }
2157
2158 /**
2159 * idpf_set_rx_mode - NDO callback to set the netdev filters
2160 * @netdev: network interface device structure
2161 *
2162 * Stack takes addr_list_lock spinlock before calling our .set_rx_mode. We
2163 * cannot sleep in this context.
2164 */
idpf_set_rx_mode(struct net_device * netdev)2165 static void idpf_set_rx_mode(struct net_device *netdev)
2166 {
2167 struct idpf_netdev_priv *np = netdev_priv(netdev);
2168 struct idpf_vport_user_config_data *config_data;
2169 struct idpf_adapter *adapter;
2170 bool changed = false;
2171 struct device *dev;
2172 int err;
2173
2174 adapter = np->adapter;
2175 dev = &adapter->pdev->dev;
2176
2177 if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER)) {
2178 __dev_uc_sync(netdev, idpf_addr_sync, idpf_addr_unsync);
2179 __dev_mc_sync(netdev, idpf_addr_sync, idpf_addr_unsync);
2180 }
2181
2182 if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_PROMISC))
2183 return;
2184
2185 config_data = &adapter->vport_config[np->vport_idx]->user_config;
2186 /* IFF_PROMISC enables both unicast and multicast promiscuous,
2187 * while IFF_ALLMULTI only enables multicast such that:
2188 *
2189 * promisc + allmulti = unicast | multicast
2190 * promisc + !allmulti = unicast | multicast
2191 * !promisc + allmulti = multicast
2192 */
2193 if ((netdev->flags & IFF_PROMISC) &&
2194 !test_and_set_bit(__IDPF_PROMISC_UC, config_data->user_flags)) {
2195 changed = true;
2196 dev_info(&adapter->pdev->dev, "Entering promiscuous mode\n");
2197 if (!test_and_set_bit(__IDPF_PROMISC_MC, adapter->flags))
2198 dev_info(dev, "Entering multicast promiscuous mode\n");
2199 }
2200
2201 if (!(netdev->flags & IFF_PROMISC) &&
2202 test_and_clear_bit(__IDPF_PROMISC_UC, config_data->user_flags)) {
2203 changed = true;
2204 dev_info(dev, "Leaving promiscuous mode\n");
2205 }
2206
2207 if (netdev->flags & IFF_ALLMULTI &&
2208 !test_and_set_bit(__IDPF_PROMISC_MC, config_data->user_flags)) {
2209 changed = true;
2210 dev_info(dev, "Entering multicast promiscuous mode\n");
2211 }
2212
2213 if (!(netdev->flags & (IFF_ALLMULTI | IFF_PROMISC)) &&
2214 test_and_clear_bit(__IDPF_PROMISC_MC, config_data->user_flags)) {
2215 changed = true;
2216 dev_info(dev, "Leaving multicast promiscuous mode\n");
2217 }
2218
2219 if (!changed)
2220 return;
2221
2222 err = idpf_set_promiscuous(adapter, config_data, np->vport_id);
2223 if (err)
2224 dev_err(dev, "Failed to set promiscuous mode: %d\n", err);
2225 }
2226
2227 /**
2228 * idpf_set_features - set the netdev feature flags
2229 * @netdev: ptr to the netdev being adjusted
2230 * @features: the feature set that the stack is suggesting
2231 */
idpf_set_features(struct net_device * netdev,netdev_features_t features)2232 static int idpf_set_features(struct net_device *netdev,
2233 netdev_features_t features)
2234 {
2235 netdev_features_t changed = netdev->features ^ features;
2236 struct idpf_adapter *adapter;
2237 struct idpf_vport *vport;
2238 int err = 0;
2239
2240 idpf_vport_ctrl_lock(netdev);
2241 vport = idpf_netdev_to_vport(netdev);
2242
2243 adapter = vport->adapter;
2244
2245 if (idpf_is_reset_in_prog(adapter)) {
2246 dev_err(&adapter->pdev->dev, "Device is resetting, changing netdev features temporarily unavailable.\n");
2247 err = -EBUSY;
2248 goto unlock_mutex;
2249 }
2250
2251 if (changed & NETIF_F_RXHASH) {
2252 struct idpf_netdev_priv *np = netdev_priv(netdev);
2253
2254 netdev->features ^= NETIF_F_RXHASH;
2255
2256 /* If the interface is not up when changing the rxhash, update
2257 * to the HW is skipped. The updated LUT will be committed to
2258 * the HW when the interface is brought up.
2259 */
2260 if (test_bit(IDPF_VPORT_UP, np->state)) {
2261 err = idpf_config_rss(vport);
2262 if (err)
2263 goto unlock_mutex;
2264 }
2265 }
2266
2267 if (changed & NETIF_F_GRO_HW) {
2268 netdev->features ^= NETIF_F_GRO_HW;
2269 err = idpf_initiate_soft_reset(vport, IDPF_SR_RSC_CHANGE);
2270 if (err)
2271 goto unlock_mutex;
2272 }
2273
2274 if (changed & NETIF_F_LOOPBACK) {
2275 netdev->features ^= NETIF_F_LOOPBACK;
2276 err = idpf_send_ena_dis_loopback_msg(vport);
2277 }
2278
2279 unlock_mutex:
2280 idpf_vport_ctrl_unlock(netdev);
2281
2282 return err;
2283 }
2284
2285 /**
2286 * idpf_open - Called when a network interface becomes active
2287 * @netdev: network interface device structure
2288 *
2289 * The open entry point is called when a network interface is made
2290 * active by the system (IFF_UP). At this point all resources needed
2291 * for transmit and receive operations are allocated, the interrupt
2292 * handler is registered with the OS, the netdev watchdog is enabled,
2293 * and the stack is notified that the interface is ready.
2294 *
2295 * Returns 0 on success, negative value on failure
2296 */
idpf_open(struct net_device * netdev)2297 static int idpf_open(struct net_device *netdev)
2298 {
2299 struct idpf_vport *vport;
2300 int err;
2301
2302 idpf_vport_ctrl_lock(netdev);
2303 vport = idpf_netdev_to_vport(netdev);
2304
2305 err = idpf_set_real_num_queues(vport);
2306 if (err)
2307 goto unlock;
2308
2309 err = idpf_vport_open(vport, false);
2310
2311 unlock:
2312 idpf_vport_ctrl_unlock(netdev);
2313
2314 return err;
2315 }
2316
2317 /**
2318 * idpf_change_mtu - NDO callback to change the MTU
2319 * @netdev: network interface device structure
2320 * @new_mtu: new value for maximum frame size
2321 *
2322 * Returns 0 on success, negative on failure
2323 */
idpf_change_mtu(struct net_device * netdev,int new_mtu)2324 static int idpf_change_mtu(struct net_device *netdev, int new_mtu)
2325 {
2326 struct idpf_vport *vport;
2327 int err;
2328
2329 idpf_vport_ctrl_lock(netdev);
2330 vport = idpf_netdev_to_vport(netdev);
2331
2332 WRITE_ONCE(netdev->mtu, new_mtu);
2333
2334 err = idpf_initiate_soft_reset(vport, IDPF_SR_MTU_CHANGE);
2335
2336 idpf_vport_ctrl_unlock(netdev);
2337
2338 return err;
2339 }
2340
2341 /**
2342 * idpf_chk_tso_segment - Check skb is not using too many buffers
2343 * @skb: send buffer
2344 * @max_bufs: maximum number of buffers
2345 *
2346 * For TSO we need to count the TSO header and segment payload separately. As
2347 * such we need to check cases where we have max_bufs-1 fragments or more as we
2348 * can potentially require max_bufs+1 DMA transactions, 1 for the TSO header, 1
2349 * for the segment payload in the first descriptor, and another max_buf-1 for
2350 * the fragments.
2351 *
2352 * Returns true if the packet needs to be software segmented by core stack.
2353 */
idpf_chk_tso_segment(const struct sk_buff * skb,unsigned int max_bufs)2354 static bool idpf_chk_tso_segment(const struct sk_buff *skb,
2355 unsigned int max_bufs)
2356 {
2357 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2358 const skb_frag_t *frag, *stale;
2359 int nr_frags, sum;
2360
2361 /* no need to check if number of frags is less than max_bufs - 1 */
2362 nr_frags = shinfo->nr_frags;
2363 if (nr_frags < (max_bufs - 1))
2364 return false;
2365
2366 /* We need to walk through the list and validate that each group
2367 * of max_bufs-2 fragments totals at least gso_size.
2368 */
2369 nr_frags -= max_bufs - 2;
2370 frag = &shinfo->frags[0];
2371
2372 /* Initialize size to the negative value of gso_size minus 1. We use
2373 * this as the worst case scenario in which the frag ahead of us only
2374 * provides one byte which is why we are limited to max_bufs-2
2375 * descriptors for a single transmit as the header and previous
2376 * fragment are already consuming 2 descriptors.
2377 */
2378 sum = 1 - shinfo->gso_size;
2379
2380 /* Add size of frags 0 through 4 to create our initial sum */
2381 sum += skb_frag_size(frag++);
2382 sum += skb_frag_size(frag++);
2383 sum += skb_frag_size(frag++);
2384 sum += skb_frag_size(frag++);
2385 sum += skb_frag_size(frag++);
2386
2387 /* Walk through fragments adding latest fragment, testing it, and
2388 * then removing stale fragments from the sum.
2389 */
2390 for (stale = &shinfo->frags[0];; stale++) {
2391 int stale_size = skb_frag_size(stale);
2392
2393 sum += skb_frag_size(frag++);
2394
2395 /* The stale fragment may present us with a smaller
2396 * descriptor than the actual fragment size. To account
2397 * for that we need to remove all the data on the front and
2398 * figure out what the remainder would be in the last
2399 * descriptor associated with the fragment.
2400 */
2401 if (stale_size > IDPF_TX_MAX_DESC_DATA) {
2402 int align_pad = -(skb_frag_off(stale)) &
2403 (IDPF_TX_MAX_READ_REQ_SIZE - 1);
2404
2405 sum -= align_pad;
2406 stale_size -= align_pad;
2407
2408 do {
2409 sum -= IDPF_TX_MAX_DESC_DATA_ALIGNED;
2410 stale_size -= IDPF_TX_MAX_DESC_DATA_ALIGNED;
2411 } while (stale_size > IDPF_TX_MAX_DESC_DATA);
2412 }
2413
2414 /* if sum is negative we failed to make sufficient progress */
2415 if (sum < 0)
2416 return true;
2417
2418 if (!nr_frags--)
2419 break;
2420
2421 sum -= stale_size;
2422 }
2423
2424 return false;
2425 }
2426
2427 /**
2428 * idpf_features_check - Validate packet conforms to limits
2429 * @skb: skb buffer
2430 * @netdev: This port's netdev
2431 * @features: Offload features that the stack believes apply
2432 */
idpf_features_check(struct sk_buff * skb,struct net_device * netdev,netdev_features_t features)2433 static netdev_features_t idpf_features_check(struct sk_buff *skb,
2434 struct net_device *netdev,
2435 netdev_features_t features)
2436 {
2437 struct idpf_netdev_priv *np = netdev_priv(netdev);
2438 u16 max_tx_hdr_size = np->max_tx_hdr_size;
2439 size_t len;
2440
2441 /* No point in doing any of this if neither checksum nor GSO are
2442 * being requested for this frame. We can rule out both by just
2443 * checking for CHECKSUM_PARTIAL
2444 */
2445 if (skb->ip_summed != CHECKSUM_PARTIAL)
2446 return features;
2447
2448 if (skb_is_gso(skb)) {
2449 /* We cannot support GSO if the MSS is going to be less than
2450 * 88 bytes. If it is then we need to drop support for GSO.
2451 */
2452 if (skb_shinfo(skb)->gso_size < IDPF_TX_TSO_MIN_MSS)
2453 features &= ~NETIF_F_GSO_MASK;
2454 else if (idpf_chk_tso_segment(skb, np->tx_max_bufs))
2455 features &= ~NETIF_F_GSO_MASK;
2456 }
2457
2458 /* Ensure MACLEN is <= 126 bytes (63 words) and not an odd size */
2459 len = skb_network_offset(skb);
2460 if (unlikely(len & ~(126)))
2461 goto unsupported;
2462
2463 len = skb_network_header_len(skb);
2464 if (unlikely(len > max_tx_hdr_size))
2465 goto unsupported;
2466
2467 if (!skb->encapsulation)
2468 return features;
2469
2470 /* L4TUNLEN can support 127 words */
2471 len = skb_inner_network_header(skb) - skb_transport_header(skb);
2472 if (unlikely(len & ~(127 * 2)))
2473 goto unsupported;
2474
2475 /* IPLEN can support at most 127 dwords */
2476 len = skb_inner_network_header_len(skb);
2477 if (unlikely(len > max_tx_hdr_size))
2478 goto unsupported;
2479
2480 /* No need to validate L4LEN as TCP is the only protocol with a
2481 * a flexible value and we support all possible values supported
2482 * by TCP, which is at most 15 dwords
2483 */
2484
2485 return features;
2486
2487 unsupported:
2488 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2489 }
2490
2491 /**
2492 * idpf_set_mac - NDO callback to set port mac address
2493 * @netdev: network interface device structure
2494 * @p: pointer to an address structure
2495 *
2496 * Returns 0 on success, negative on failure
2497 **/
idpf_set_mac(struct net_device * netdev,void * p)2498 static int idpf_set_mac(struct net_device *netdev, void *p)
2499 {
2500 struct idpf_netdev_priv *np = netdev_priv(netdev);
2501 struct idpf_vport_config *vport_config;
2502 struct sockaddr *addr = p;
2503 u8 old_mac_addr[ETH_ALEN];
2504 struct idpf_vport *vport;
2505 int err = 0;
2506
2507 idpf_vport_ctrl_lock(netdev);
2508 vport = idpf_netdev_to_vport(netdev);
2509
2510 if (!idpf_is_cap_ena(vport->adapter, IDPF_OTHER_CAPS,
2511 VIRTCHNL2_CAP_MACFILTER)) {
2512 dev_info(&vport->adapter->pdev->dev, "Setting MAC address is not supported\n");
2513 err = -EOPNOTSUPP;
2514 goto unlock_mutex;
2515 }
2516
2517 if (!is_valid_ether_addr(addr->sa_data)) {
2518 dev_info(&vport->adapter->pdev->dev, "Invalid MAC address: %pM\n",
2519 addr->sa_data);
2520 err = -EADDRNOTAVAIL;
2521 goto unlock_mutex;
2522 }
2523
2524 if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
2525 goto unlock_mutex;
2526
2527 ether_addr_copy(old_mac_addr, vport->default_mac_addr);
2528 ether_addr_copy(vport->default_mac_addr, addr->sa_data);
2529 vport_config = vport->adapter->vport_config[vport->idx];
2530 err = idpf_add_mac_filter(vport, np, addr->sa_data, false);
2531 if (err) {
2532 __idpf_del_mac_filter(vport_config, addr->sa_data);
2533 ether_addr_copy(vport->default_mac_addr, netdev->dev_addr);
2534 goto unlock_mutex;
2535 }
2536
2537 if (is_valid_ether_addr(old_mac_addr))
2538 __idpf_del_mac_filter(vport_config, old_mac_addr);
2539
2540 eth_hw_addr_set(netdev, addr->sa_data);
2541
2542 unlock_mutex:
2543 idpf_vport_ctrl_unlock(netdev);
2544
2545 return err;
2546 }
2547
2548 /**
2549 * idpf_alloc_dma_mem - Allocate dma memory
2550 * @hw: pointer to hw struct
2551 * @mem: pointer to dma_mem struct
2552 * @size: size of the memory to allocate
2553 */
idpf_alloc_dma_mem(struct idpf_hw * hw,struct idpf_dma_mem * mem,u64 size)2554 void *idpf_alloc_dma_mem(struct idpf_hw *hw, struct idpf_dma_mem *mem, u64 size)
2555 {
2556 struct idpf_adapter *adapter = hw->back;
2557 size_t sz = ALIGN(size, 4096);
2558
2559 /* The control queue resources are freed under a spinlock, contiguous
2560 * pages will avoid IOMMU remapping and the use vmap (and vunmap in
2561 * dma_free_*() path.
2562 */
2563 mem->va = dma_alloc_attrs(&adapter->pdev->dev, sz, &mem->pa,
2564 GFP_KERNEL, DMA_ATTR_FORCE_CONTIGUOUS);
2565 mem->size = sz;
2566
2567 return mem->va;
2568 }
2569
2570 /**
2571 * idpf_free_dma_mem - Free the allocated dma memory
2572 * @hw: pointer to hw struct
2573 * @mem: pointer to dma_mem struct
2574 */
idpf_free_dma_mem(struct idpf_hw * hw,struct idpf_dma_mem * mem)2575 void idpf_free_dma_mem(struct idpf_hw *hw, struct idpf_dma_mem *mem)
2576 {
2577 struct idpf_adapter *adapter = hw->back;
2578
2579 dma_free_attrs(&adapter->pdev->dev, mem->size,
2580 mem->va, mem->pa, DMA_ATTR_FORCE_CONTIGUOUS);
2581 mem->size = 0;
2582 mem->va = NULL;
2583 mem->pa = 0;
2584 }
2585
idpf_hwtstamp_set(struct net_device * netdev,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)2586 static int idpf_hwtstamp_set(struct net_device *netdev,
2587 struct kernel_hwtstamp_config *config,
2588 struct netlink_ext_ack *extack)
2589 {
2590 struct idpf_vport *vport;
2591 int err;
2592
2593 idpf_vport_ctrl_lock(netdev);
2594 vport = idpf_netdev_to_vport(netdev);
2595
2596 if (!vport->link_up) {
2597 idpf_vport_ctrl_unlock(netdev);
2598 return -EPERM;
2599 }
2600
2601 if (!idpf_ptp_is_vport_tx_tstamp_ena(vport) &&
2602 !idpf_ptp_is_vport_rx_tstamp_ena(vport)) {
2603 idpf_vport_ctrl_unlock(netdev);
2604 return -EOPNOTSUPP;
2605 }
2606
2607 err = idpf_ptp_set_timestamp_mode(vport, config);
2608
2609 idpf_vport_ctrl_unlock(netdev);
2610
2611 return err;
2612 }
2613
idpf_hwtstamp_get(struct net_device * netdev,struct kernel_hwtstamp_config * config)2614 static int idpf_hwtstamp_get(struct net_device *netdev,
2615 struct kernel_hwtstamp_config *config)
2616 {
2617 struct idpf_vport *vport;
2618
2619 idpf_vport_ctrl_lock(netdev);
2620 vport = idpf_netdev_to_vport(netdev);
2621
2622 if (!vport->link_up) {
2623 idpf_vport_ctrl_unlock(netdev);
2624 return -EPERM;
2625 }
2626
2627 if (!idpf_ptp_is_vport_tx_tstamp_ena(vport) &&
2628 !idpf_ptp_is_vport_rx_tstamp_ena(vport)) {
2629 idpf_vport_ctrl_unlock(netdev);
2630 return 0;
2631 }
2632
2633 *config = vport->tstamp_config;
2634
2635 idpf_vport_ctrl_unlock(netdev);
2636
2637 return 0;
2638 }
2639
2640 static const struct net_device_ops idpf_netdev_ops = {
2641 .ndo_open = idpf_open,
2642 .ndo_stop = idpf_stop,
2643 .ndo_start_xmit = idpf_tx_start,
2644 .ndo_features_check = idpf_features_check,
2645 .ndo_set_rx_mode = idpf_set_rx_mode,
2646 .ndo_validate_addr = eth_validate_addr,
2647 .ndo_set_mac_address = idpf_set_mac,
2648 .ndo_change_mtu = idpf_change_mtu,
2649 .ndo_get_stats64 = idpf_get_stats64,
2650 .ndo_set_features = idpf_set_features,
2651 .ndo_tx_timeout = idpf_tx_timeout,
2652 .ndo_hwtstamp_get = idpf_hwtstamp_get,
2653 .ndo_hwtstamp_set = idpf_hwtstamp_set,
2654 .ndo_bpf = idpf_xdp,
2655 .ndo_xdp_xmit = idpf_xdp_xmit,
2656 .ndo_xsk_wakeup = idpf_xsk_wakeup,
2657 };
2658