1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * FP/SIMD context switching and fault handling
4 *
5 * Copyright (C) 2012 ARM Ltd.
6 * Author: Catalin Marinas <catalin.marinas@arm.com>
7 */
8
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/compiler.h>
16 #include <linux/cpu.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/ctype.h>
19 #include <linux/kernel.h>
20 #include <linux/linkage.h>
21 #include <linux/irqflags.h>
22 #include <linux/init.h>
23 #include <linux/percpu.h>
24 #include <linux/prctl.h>
25 #include <linux/preempt.h>
26 #include <linux/ptrace.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sched/task_stack.h>
29 #include <linux/signal.h>
30 #include <linux/slab.h>
31 #include <linux/stddef.h>
32 #include <linux/sysctl.h>
33 #include <linux/swab.h>
34
35 #include <asm/esr.h>
36 #include <asm/exception.h>
37 #include <asm/fpsimd.h>
38 #include <asm/cpufeature.h>
39 #include <asm/cputype.h>
40 #include <asm/neon.h>
41 #include <asm/processor.h>
42 #include <asm/simd.h>
43 #include <asm/sigcontext.h>
44 #include <asm/sysreg.h>
45 #include <asm/traps.h>
46 #include <asm/virt.h>
47
48 #define FPEXC_IOF (1 << 0)
49 #define FPEXC_DZF (1 << 1)
50 #define FPEXC_OFF (1 << 2)
51 #define FPEXC_UFF (1 << 3)
52 #define FPEXC_IXF (1 << 4)
53 #define FPEXC_IDF (1 << 7)
54
55 /*
56 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
57 *
58 * In order to reduce the number of times the FPSIMD state is needlessly saved
59 * and restored, we need to keep track of two things:
60 * (a) for each task, we need to remember which CPU was the last one to have
61 * the task's FPSIMD state loaded into its FPSIMD registers;
62 * (b) for each CPU, we need to remember which task's userland FPSIMD state has
63 * been loaded into its FPSIMD registers most recently, or whether it has
64 * been used to perform kernel mode NEON in the meantime.
65 *
66 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
67 * the id of the current CPU every time the state is loaded onto a CPU. For (b),
68 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
69 * address of the userland FPSIMD state of the task that was loaded onto the CPU
70 * the most recently, or NULL if kernel mode NEON has been performed after that.
71 *
72 * With this in place, we no longer have to restore the next FPSIMD state right
73 * when switching between tasks. Instead, we can defer this check to userland
74 * resume, at which time we verify whether the CPU's fpsimd_last_state and the
75 * task's fpsimd_cpu are still mutually in sync. If this is the case, we
76 * can omit the FPSIMD restore.
77 *
78 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
79 * indicate whether or not the userland FPSIMD state of the current task is
80 * present in the registers. The flag is set unless the FPSIMD registers of this
81 * CPU currently contain the most recent userland FPSIMD state of the current
82 * task. If the task is behaving as a VMM, then this is will be managed by
83 * KVM which will clear it to indicate that the vcpu FPSIMD state is currently
84 * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware
85 * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and
86 * flag the register state as invalid.
87 *
88 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may be
89 * called from softirq context, which will save the task's FPSIMD context back
90 * to task_struct. To prevent this from racing with the manipulation of the
91 * task's FPSIMD state from task context and thereby corrupting the state, it
92 * is necessary to protect any manipulation of a task's fpsimd_state or
93 * TIF_FOREIGN_FPSTATE flag with get_cpu_fpsimd_context(), which will suspend
94 * softirq servicing entirely until put_cpu_fpsimd_context() is called.
95 *
96 * For a certain task, the sequence may look something like this:
97 * - the task gets scheduled in; if both the task's fpsimd_cpu field
98 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
99 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
100 * cleared, otherwise it is set;
101 *
102 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
103 * userland FPSIMD state is copied from memory to the registers, the task's
104 * fpsimd_cpu field is set to the id of the current CPU, the current
105 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
106 * TIF_FOREIGN_FPSTATE flag is cleared;
107 *
108 * - the task executes an ordinary syscall; upon return to userland, the
109 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
110 * restored;
111 *
112 * - the task executes a syscall which executes some NEON instructions; this is
113 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
114 * register contents to memory, clears the fpsimd_last_state per-cpu variable
115 * and sets the TIF_FOREIGN_FPSTATE flag;
116 *
117 * - the task gets preempted after kernel_neon_end() is called; as we have not
118 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
119 * whatever is in the FPSIMD registers is not saved to memory, but discarded.
120 */
121
122 DEFINE_PER_CPU(struct cpu_fp_state, fpsimd_last_state);
123
124 __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
125 #ifdef CONFIG_ARM64_SVE
126 [ARM64_VEC_SVE] = {
127 .type = ARM64_VEC_SVE,
128 .name = "SVE",
129 .min_vl = SVE_VL_MIN,
130 .max_vl = SVE_VL_MIN,
131 .max_virtualisable_vl = SVE_VL_MIN,
132 },
133 #endif
134 #ifdef CONFIG_ARM64_SME
135 [ARM64_VEC_SME] = {
136 .type = ARM64_VEC_SME,
137 .name = "SME",
138 },
139 #endif
140 };
141
vec_vl_inherit_flag(enum vec_type type)142 static unsigned int vec_vl_inherit_flag(enum vec_type type)
143 {
144 switch (type) {
145 case ARM64_VEC_SVE:
146 return TIF_SVE_VL_INHERIT;
147 case ARM64_VEC_SME:
148 return TIF_SME_VL_INHERIT;
149 default:
150 WARN_ON_ONCE(1);
151 return 0;
152 }
153 }
154
155 struct vl_config {
156 int __default_vl; /* Default VL for tasks */
157 };
158
159 static struct vl_config vl_config[ARM64_VEC_MAX];
160
get_default_vl(enum vec_type type)161 static inline int get_default_vl(enum vec_type type)
162 {
163 return READ_ONCE(vl_config[type].__default_vl);
164 }
165
166 #ifdef CONFIG_ARM64_SVE
167
get_sve_default_vl(void)168 static inline int get_sve_default_vl(void)
169 {
170 return get_default_vl(ARM64_VEC_SVE);
171 }
172
set_default_vl(enum vec_type type,int val)173 static inline void set_default_vl(enum vec_type type, int val)
174 {
175 WRITE_ONCE(vl_config[type].__default_vl, val);
176 }
177
set_sve_default_vl(int val)178 static inline void set_sve_default_vl(int val)
179 {
180 set_default_vl(ARM64_VEC_SVE, val);
181 }
182
183 #endif /* ! CONFIG_ARM64_SVE */
184
185 #ifdef CONFIG_ARM64_SME
186
get_sme_default_vl(void)187 static int get_sme_default_vl(void)
188 {
189 return get_default_vl(ARM64_VEC_SME);
190 }
191
set_sme_default_vl(int val)192 static void set_sme_default_vl(int val)
193 {
194 set_default_vl(ARM64_VEC_SME, val);
195 }
196
197 static void sme_free(struct task_struct *);
198
199 #else
200
sme_free(struct task_struct * t)201 static inline void sme_free(struct task_struct *t) { }
202
203 #endif
204
205 static void fpsimd_bind_task_to_cpu(void);
206
207 /*
208 * Claim ownership of the CPU FPSIMD context for use by the calling context.
209 *
210 * The caller may freely manipulate the FPSIMD context metadata until
211 * put_cpu_fpsimd_context() is called.
212 *
213 * On RT kernels local_bh_disable() is not sufficient because it only
214 * serializes soft interrupt related sections via a local lock, but stays
215 * preemptible. Disabling preemption is the right choice here as bottom
216 * half processing is always in thread context on RT kernels so it
217 * implicitly prevents bottom half processing as well.
218 */
get_cpu_fpsimd_context(void)219 static void get_cpu_fpsimd_context(void)
220 {
221 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
222 /*
223 * The softirq subsystem lacks a true unmask/mask API, and
224 * re-enabling softirq processing using local_bh_enable() will
225 * not only unmask softirqs, it will also result in immediate
226 * delivery of any pending softirqs.
227 * This is undesirable when running with IRQs disabled, but in
228 * that case, there is no need to mask softirqs in the first
229 * place, so only bother doing so when IRQs are enabled.
230 */
231 if (!irqs_disabled())
232 local_bh_disable();
233 } else {
234 preempt_disable();
235 }
236 }
237
238 /*
239 * Release the CPU FPSIMD context.
240 *
241 * Must be called from a context in which get_cpu_fpsimd_context() was
242 * previously called, with no call to put_cpu_fpsimd_context() in the
243 * meantime.
244 */
put_cpu_fpsimd_context(void)245 static void put_cpu_fpsimd_context(void)
246 {
247 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
248 if (!irqs_disabled())
249 local_bh_enable();
250 } else {
251 preempt_enable();
252 }
253 }
254
task_get_vl(const struct task_struct * task,enum vec_type type)255 unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
256 {
257 return task->thread.vl[type];
258 }
259
task_set_vl(struct task_struct * task,enum vec_type type,unsigned long vl)260 void task_set_vl(struct task_struct *task, enum vec_type type,
261 unsigned long vl)
262 {
263 task->thread.vl[type] = vl;
264 }
265
task_get_vl_onexec(const struct task_struct * task,enum vec_type type)266 unsigned int task_get_vl_onexec(const struct task_struct *task,
267 enum vec_type type)
268 {
269 return task->thread.vl_onexec[type];
270 }
271
task_set_vl_onexec(struct task_struct * task,enum vec_type type,unsigned long vl)272 void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
273 unsigned long vl)
274 {
275 task->thread.vl_onexec[type] = vl;
276 }
277
278 /*
279 * TIF_SME controls whether a task can use SME without trapping while
280 * in userspace, when TIF_SME is set then we must have storage
281 * allocated in sve_state and sme_state to store the contents of both ZA
282 * and the SVE registers for both streaming and non-streaming modes.
283 *
284 * If both SVCR.ZA and SVCR.SM are disabled then at any point we
285 * may disable TIF_SME and reenable traps.
286 */
287
288
289 /*
290 * TIF_SVE controls whether a task can use SVE without trapping while
291 * in userspace, and also (together with TIF_SME) the way a task's
292 * FPSIMD/SVE state is stored in thread_struct.
293 *
294 * The kernel uses this flag to track whether a user task is actively
295 * using SVE, and therefore whether full SVE register state needs to
296 * be tracked. If not, the cheaper FPSIMD context handling code can
297 * be used instead of the more costly SVE equivalents.
298 *
299 * * TIF_SVE or SVCR.SM set:
300 *
301 * The task can execute SVE instructions while in userspace without
302 * trapping to the kernel.
303 *
304 * During any syscall, the kernel may optionally clear TIF_SVE and
305 * discard the vector state except for the FPSIMD subset.
306 *
307 * * TIF_SVE clear:
308 *
309 * An attempt by the user task to execute an SVE instruction causes
310 * do_sve_acc() to be called, which does some preparation and then
311 * sets TIF_SVE.
312 *
313 * During any syscall, the kernel may optionally clear TIF_SVE and
314 * discard the vector state except for the FPSIMD subset.
315 *
316 * The data will be stored in one of two formats:
317 *
318 * * FPSIMD only - FP_STATE_FPSIMD:
319 *
320 * When the FPSIMD only state stored task->thread.fp_type is set to
321 * FP_STATE_FPSIMD, the FPSIMD registers V0-V31 are encoded in
322 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
323 * logically zero but not stored anywhere; P0-P15 and FFR are not
324 * stored and have unspecified values from userspace's point of
325 * view. For hygiene purposes, the kernel zeroes them on next use,
326 * but userspace is discouraged from relying on this.
327 *
328 * task->thread.sve_state does not need to be non-NULL, valid or any
329 * particular size: it must not be dereferenced and any data stored
330 * there should be considered stale and not referenced.
331 *
332 * * SVE state - FP_STATE_SVE:
333 *
334 * When the full SVE state is stored task->thread.fp_type is set to
335 * FP_STATE_SVE and Z0-Z31 (incorporating Vn in bits[127:0] or the
336 * corresponding Zn), P0-P15 and FFR are encoded in in
337 * task->thread.sve_state, formatted appropriately for vector
338 * length task->thread.sve_vl or, if SVCR.SM is set,
339 * task->thread.sme_vl. The storage for the vector registers in
340 * task->thread.uw.fpsimd_state should be ignored.
341 *
342 * task->thread.sve_state must point to a valid buffer at least
343 * sve_state_size(task) bytes in size. The data stored in
344 * task->thread.uw.fpsimd_state.vregs should be considered stale
345 * and not referenced.
346 *
347 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
348 * irrespective of whether TIF_SVE is clear or set, since these are
349 * not vector length dependent.
350 */
351
352 /*
353 * Update current's FPSIMD/SVE registers from thread_struct.
354 *
355 * This function should be called only when the FPSIMD/SVE state in
356 * thread_struct is known to be up to date, when preparing to enter
357 * userspace.
358 */
task_fpsimd_load(void)359 static void task_fpsimd_load(void)
360 {
361 bool restore_sve_regs = false;
362 bool restore_ffr;
363
364 WARN_ON(!system_supports_fpsimd());
365 WARN_ON(preemptible());
366 WARN_ON(test_thread_flag(TIF_KERNEL_FPSTATE));
367
368 if (system_supports_sve() || system_supports_sme()) {
369 switch (current->thread.fp_type) {
370 case FP_STATE_FPSIMD:
371 /* Stop tracking SVE for this task until next use. */
372 clear_thread_flag(TIF_SVE);
373 break;
374 case FP_STATE_SVE:
375 if (!thread_sm_enabled(¤t->thread))
376 WARN_ON_ONCE(!test_and_set_thread_flag(TIF_SVE));
377
378 if (test_thread_flag(TIF_SVE))
379 sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
380
381 restore_sve_regs = true;
382 restore_ffr = true;
383 break;
384 default:
385 /*
386 * This indicates either a bug in
387 * fpsimd_save_user_state() or memory corruption, we
388 * should always record an explicit format
389 * when we save. We always at least have the
390 * memory allocated for FPSIMD registers so
391 * try that and hope for the best.
392 */
393 WARN_ON_ONCE(1);
394 clear_thread_flag(TIF_SVE);
395 break;
396 }
397 }
398
399 /* Restore SME, override SVE register configuration if needed */
400 if (system_supports_sme()) {
401 unsigned long sme_vl = task_get_sme_vl(current);
402
403 /* Ensure VL is set up for restoring data */
404 if (test_thread_flag(TIF_SME))
405 sme_set_vq(sve_vq_from_vl(sme_vl) - 1);
406
407 write_sysreg_s(current->thread.svcr, SYS_SVCR);
408
409 if (thread_za_enabled(¤t->thread))
410 sme_load_state(current->thread.sme_state,
411 system_supports_sme2());
412
413 if (thread_sm_enabled(¤t->thread))
414 restore_ffr = system_supports_fa64();
415 }
416
417 if (system_supports_fpmr())
418 write_sysreg_s(current->thread.uw.fpmr, SYS_FPMR);
419
420 if (restore_sve_regs) {
421 WARN_ON_ONCE(current->thread.fp_type != FP_STATE_SVE);
422 sve_load_state(sve_pffr(¤t->thread),
423 ¤t->thread.uw.fpsimd_state.fpsr,
424 restore_ffr);
425 } else {
426 WARN_ON_ONCE(current->thread.fp_type != FP_STATE_FPSIMD);
427 fpsimd_load_state(¤t->thread.uw.fpsimd_state);
428 }
429 }
430
431 /*
432 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
433 * date with respect to the CPU registers. Note carefully that the
434 * current context is the context last bound to the CPU stored in
435 * last, if KVM is involved this may be the guest VM context rather
436 * than the host thread for the VM pointed to by current. This means
437 * that we must always reference the state storage via last rather
438 * than via current, if we are saving KVM state then it will have
439 * ensured that the type of registers to save is set in last->to_save.
440 */
fpsimd_save_user_state(void)441 static void fpsimd_save_user_state(void)
442 {
443 struct cpu_fp_state const *last =
444 this_cpu_ptr(&fpsimd_last_state);
445 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
446 bool save_sve_regs = false;
447 bool save_ffr;
448 unsigned int vl;
449
450 WARN_ON(!system_supports_fpsimd());
451 WARN_ON(preemptible());
452
453 if (test_thread_flag(TIF_FOREIGN_FPSTATE))
454 return;
455
456 if (system_supports_fpmr())
457 *(last->fpmr) = read_sysreg_s(SYS_FPMR);
458
459 /*
460 * Save SVE state if it is live.
461 *
462 * The syscall ABI discards live SVE state at syscall entry. When
463 * entering a syscall, fpsimd_syscall_enter() sets to_save to
464 * FP_STATE_FPSIMD to allow the SVE state to be lazily discarded until
465 * either new SVE state is loaded+bound or fpsimd_syscall_exit() is
466 * called prior to a return to userspace.
467 */
468 if ((last->to_save == FP_STATE_CURRENT && test_thread_flag(TIF_SVE)) ||
469 last->to_save == FP_STATE_SVE) {
470 save_sve_regs = true;
471 save_ffr = true;
472 vl = last->sve_vl;
473 }
474
475 if (system_supports_sme()) {
476 u64 *svcr = last->svcr;
477
478 *svcr = read_sysreg_s(SYS_SVCR);
479
480 if (*svcr & SVCR_ZA_MASK)
481 sme_save_state(last->sme_state,
482 system_supports_sme2());
483
484 /* If we are in streaming mode override regular SVE. */
485 if (*svcr & SVCR_SM_MASK) {
486 save_sve_regs = true;
487 save_ffr = system_supports_fa64();
488 vl = last->sme_vl;
489 }
490 }
491
492 if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) {
493 /* Get the configured VL from RDVL, will account for SM */
494 if (WARN_ON(sve_get_vl() != vl)) {
495 /*
496 * Can't save the user regs, so current would
497 * re-enter user with corrupt state.
498 * There's no way to recover, so kill it:
499 */
500 force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
501 return;
502 }
503
504 sve_save_state((char *)last->sve_state +
505 sve_ffr_offset(vl),
506 &last->st->fpsr, save_ffr);
507 *last->fp_type = FP_STATE_SVE;
508 } else {
509 fpsimd_save_state(last->st);
510 *last->fp_type = FP_STATE_FPSIMD;
511 }
512 }
513
514 /*
515 * All vector length selection from userspace comes through here.
516 * We're on a slow path, so some sanity-checks are included.
517 * If things go wrong there's a bug somewhere, but try to fall back to a
518 * safe choice.
519 */
find_supported_vector_length(enum vec_type type,unsigned int vl)520 static unsigned int find_supported_vector_length(enum vec_type type,
521 unsigned int vl)
522 {
523 struct vl_info *info = &vl_info[type];
524 int bit;
525 int max_vl = info->max_vl;
526
527 if (WARN_ON(!sve_vl_valid(vl)))
528 vl = info->min_vl;
529
530 if (WARN_ON(!sve_vl_valid(max_vl)))
531 max_vl = info->min_vl;
532
533 if (vl > max_vl)
534 vl = max_vl;
535 if (vl < info->min_vl)
536 vl = info->min_vl;
537
538 bit = find_next_bit(info->vq_map, SVE_VQ_MAX,
539 __vq_to_bit(sve_vq_from_vl(vl)));
540 return sve_vl_from_vq(__bit_to_vq(bit));
541 }
542
543 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
544
vec_proc_do_default_vl(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)545 static int vec_proc_do_default_vl(const struct ctl_table *table, int write,
546 void *buffer, size_t *lenp, loff_t *ppos)
547 {
548 struct vl_info *info = table->extra1;
549 enum vec_type type = info->type;
550 int ret;
551 int vl = get_default_vl(type);
552 struct ctl_table tmp_table = {
553 .data = &vl,
554 .maxlen = sizeof(vl),
555 };
556
557 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
558 if (ret || !write)
559 return ret;
560
561 /* Writing -1 has the special meaning "set to max": */
562 if (vl == -1)
563 vl = info->max_vl;
564
565 if (!sve_vl_valid(vl))
566 return -EINVAL;
567
568 set_default_vl(type, find_supported_vector_length(type, vl));
569 return 0;
570 }
571
572 static const struct ctl_table sve_default_vl_table[] = {
573 {
574 .procname = "sve_default_vector_length",
575 .mode = 0644,
576 .proc_handler = vec_proc_do_default_vl,
577 .extra1 = &vl_info[ARM64_VEC_SVE],
578 },
579 };
580
sve_sysctl_init(void)581 static int __init sve_sysctl_init(void)
582 {
583 if (system_supports_sve())
584 if (!register_sysctl("abi", sve_default_vl_table))
585 return -EINVAL;
586
587 return 0;
588 }
589
590 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
sve_sysctl_init(void)591 static int __init sve_sysctl_init(void) { return 0; }
592 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
593
594 #if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL)
595 static const struct ctl_table sme_default_vl_table[] = {
596 {
597 .procname = "sme_default_vector_length",
598 .mode = 0644,
599 .proc_handler = vec_proc_do_default_vl,
600 .extra1 = &vl_info[ARM64_VEC_SME],
601 },
602 };
603
sme_sysctl_init(void)604 static int __init sme_sysctl_init(void)
605 {
606 if (system_supports_sme())
607 if (!register_sysctl("abi", sme_default_vl_table))
608 return -EINVAL;
609
610 return 0;
611 }
612
613 #else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
sme_sysctl_init(void)614 static int __init sme_sysctl_init(void) { return 0; }
615 #endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
616
617 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
618 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
619
620 #ifdef CONFIG_CPU_BIG_ENDIAN
arm64_cpu_to_le128(__uint128_t x)621 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
622 {
623 u64 a = swab64(x);
624 u64 b = swab64(x >> 64);
625
626 return ((__uint128_t)a << 64) | b;
627 }
628 #else
arm64_cpu_to_le128(__uint128_t x)629 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
630 {
631 return x;
632 }
633 #endif
634
635 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
636
__fpsimd_to_sve(void * sst,struct user_fpsimd_state const * fst,unsigned int vq)637 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
638 unsigned int vq)
639 {
640 unsigned int i;
641 __uint128_t *p;
642
643 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
644 p = (__uint128_t *)ZREG(sst, vq, i);
645 *p = arm64_cpu_to_le128(fst->vregs[i]);
646 }
647 }
648
649 /*
650 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
651 * task->thread.sve_state.
652 *
653 * Task can be a non-runnable task, or current. In the latter case,
654 * the caller must have ownership of the cpu FPSIMD context before calling
655 * this function.
656 * task->thread.sve_state must point to at least sve_state_size(task)
657 * bytes of allocated kernel memory.
658 * task->thread.uw.fpsimd_state must be up to date before calling this
659 * function.
660 */
fpsimd_to_sve(struct task_struct * task)661 static inline void fpsimd_to_sve(struct task_struct *task)
662 {
663 unsigned int vq;
664 void *sst = task->thread.sve_state;
665 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
666
667 if (!system_supports_sve() && !system_supports_sme())
668 return;
669
670 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
671 __fpsimd_to_sve(sst, fst, vq);
672 }
673
674 /*
675 * Transfer the SVE state in task->thread.sve_state to
676 * task->thread.uw.fpsimd_state.
677 *
678 * Task can be a non-runnable task, or current. In the latter case,
679 * the caller must have ownership of the cpu FPSIMD context before calling
680 * this function.
681 * task->thread.sve_state must point to at least sve_state_size(task)
682 * bytes of allocated kernel memory.
683 * task->thread.sve_state must be up to date before calling this function.
684 */
sve_to_fpsimd(struct task_struct * task)685 static inline void sve_to_fpsimd(struct task_struct *task)
686 {
687 unsigned int vq, vl;
688 void const *sst = task->thread.sve_state;
689 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
690 unsigned int i;
691 __uint128_t const *p;
692
693 if (!system_supports_sve() && !system_supports_sme())
694 return;
695
696 vl = thread_get_cur_vl(&task->thread);
697 vq = sve_vq_from_vl(vl);
698 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
699 p = (__uint128_t const *)ZREG(sst, vq, i);
700 fst->vregs[i] = arm64_le128_to_cpu(*p);
701 }
702 }
703
__fpsimd_zero_vregs(struct user_fpsimd_state * fpsimd)704 static inline void __fpsimd_zero_vregs(struct user_fpsimd_state *fpsimd)
705 {
706 memset(&fpsimd->vregs, 0, sizeof(fpsimd->vregs));
707 }
708
709 /*
710 * Simulate the effects of an SMSTOP SM instruction.
711 */
task_smstop_sm(struct task_struct * task)712 void task_smstop_sm(struct task_struct *task)
713 {
714 if (!thread_sm_enabled(&task->thread))
715 return;
716
717 __fpsimd_zero_vregs(&task->thread.uw.fpsimd_state);
718 task->thread.uw.fpsimd_state.fpsr = 0x0800009f;
719 if (system_supports_fpmr())
720 task->thread.uw.fpmr = 0;
721
722 task->thread.svcr &= ~SVCR_SM_MASK;
723 task->thread.fp_type = FP_STATE_FPSIMD;
724 }
725
cpu_enable_fpmr(const struct arm64_cpu_capabilities * __always_unused p)726 void cpu_enable_fpmr(const struct arm64_cpu_capabilities *__always_unused p)
727 {
728 write_sysreg_s(read_sysreg_s(SYS_SCTLR_EL1) | SCTLR_EL1_EnFPM_MASK,
729 SYS_SCTLR_EL1);
730 }
731
732 #ifdef CONFIG_ARM64_SVE
sve_free(struct task_struct * task)733 static void sve_free(struct task_struct *task)
734 {
735 kfree(task->thread.sve_state);
736 task->thread.sve_state = NULL;
737 }
738
739 /*
740 * Ensure that task->thread.sve_state is allocated and sufficiently large.
741 *
742 * This function should be used only in preparation for replacing
743 * task->thread.sve_state with new data. The memory is always zeroed
744 * here to prevent stale data from showing through: this is done in
745 * the interest of testability and predictability: except in the
746 * do_sve_acc() case, there is no ABI requirement to hide stale data
747 * written previously be task.
748 */
sve_alloc(struct task_struct * task,bool flush)749 void sve_alloc(struct task_struct *task, bool flush)
750 {
751 if (task->thread.sve_state) {
752 if (flush)
753 memset(task->thread.sve_state, 0,
754 sve_state_size(task));
755 return;
756 }
757
758 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */
759 task->thread.sve_state =
760 kzalloc(sve_state_size(task), GFP_KERNEL);
761 }
762
763 /*
764 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to the
765 * task's currently effective FPSIMD/SVE state.
766 *
767 * The task's FPSIMD/SVE/SME state must not be subject to concurrent
768 * manipulation.
769 */
fpsimd_sync_from_effective_state(struct task_struct * task)770 void fpsimd_sync_from_effective_state(struct task_struct *task)
771 {
772 if (task->thread.fp_type == FP_STATE_SVE)
773 sve_to_fpsimd(task);
774 }
775
776 /*
777 * Ensure that the task's currently effective FPSIMD/SVE state is up to date
778 * with respect to task->thread.uw.fpsimd_state, zeroing any effective
779 * non-FPSIMD (S)SVE state.
780 *
781 * The task's FPSIMD/SVE/SME state must not be subject to concurrent
782 * manipulation.
783 */
fpsimd_sync_to_effective_state_zeropad(struct task_struct * task)784 void fpsimd_sync_to_effective_state_zeropad(struct task_struct *task)
785 {
786 unsigned int vq;
787 void *sst = task->thread.sve_state;
788 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
789
790 if (task->thread.fp_type != FP_STATE_SVE)
791 return;
792
793 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
794
795 memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
796 __fpsimd_to_sve(sst, fst, vq);
797 }
798
change_live_vector_length(struct task_struct * task,enum vec_type type,unsigned long vl)799 static int change_live_vector_length(struct task_struct *task,
800 enum vec_type type,
801 unsigned long vl)
802 {
803 unsigned int sve_vl = task_get_sve_vl(task);
804 unsigned int sme_vl = task_get_sme_vl(task);
805 void *sve_state = NULL, *sme_state = NULL;
806
807 if (type == ARM64_VEC_SME)
808 sme_vl = vl;
809 else
810 sve_vl = vl;
811
812 /*
813 * Allocate the new sve_state and sme_state before freeing the old
814 * copies so that allocation failure can be handled without needing to
815 * mutate the task's state in any way.
816 *
817 * Changes to the SVE vector length must not discard live ZA state or
818 * clear PSTATE.ZA, as userspace code which is unaware of the AAPCS64
819 * ZA lazy saving scheme may attempt to change the SVE vector length
820 * while unsaved/dormant ZA state exists.
821 */
822 sve_state = kzalloc(__sve_state_size(sve_vl, sme_vl), GFP_KERNEL);
823 if (!sve_state)
824 goto out_mem;
825
826 if (type == ARM64_VEC_SME) {
827 sme_state = kzalloc(__sme_state_size(sme_vl), GFP_KERNEL);
828 if (!sme_state)
829 goto out_mem;
830 }
831
832 if (task == current)
833 fpsimd_save_and_flush_current_state();
834 else
835 fpsimd_flush_task_state(task);
836
837 /*
838 * Always preserve PSTATE.SM and the effective FPSIMD state, zeroing
839 * other SVE state.
840 */
841 fpsimd_sync_from_effective_state(task);
842 task_set_vl(task, type, vl);
843 kfree(task->thread.sve_state);
844 task->thread.sve_state = sve_state;
845 fpsimd_sync_to_effective_state_zeropad(task);
846
847 if (type == ARM64_VEC_SME) {
848 task->thread.svcr &= ~SVCR_ZA_MASK;
849 kfree(task->thread.sme_state);
850 task->thread.sme_state = sme_state;
851 }
852
853 return 0;
854
855 out_mem:
856 kfree(sve_state);
857 kfree(sme_state);
858 return -ENOMEM;
859 }
860
vec_set_vector_length(struct task_struct * task,enum vec_type type,unsigned long vl,unsigned long flags)861 int vec_set_vector_length(struct task_struct *task, enum vec_type type,
862 unsigned long vl, unsigned long flags)
863 {
864 bool onexec = flags & PR_SVE_SET_VL_ONEXEC;
865 bool inherit = flags & PR_SVE_VL_INHERIT;
866
867 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
868 PR_SVE_SET_VL_ONEXEC))
869 return -EINVAL;
870
871 if (!sve_vl_valid(vl))
872 return -EINVAL;
873
874 /*
875 * Clamp to the maximum vector length that VL-agnostic code
876 * can work with. A flag may be assigned in the future to
877 * allow setting of larger vector lengths without confusing
878 * older software.
879 */
880 if (vl > VL_ARCH_MAX)
881 vl = VL_ARCH_MAX;
882
883 vl = find_supported_vector_length(type, vl);
884
885 if (!onexec && vl != task_get_vl(task, type)) {
886 if (change_live_vector_length(task, type, vl))
887 return -ENOMEM;
888 }
889
890 if (onexec || inherit)
891 task_set_vl_onexec(task, type, vl);
892 else
893 /* Reset VL to system default on next exec: */
894 task_set_vl_onexec(task, type, 0);
895
896 update_tsk_thread_flag(task, vec_vl_inherit_flag(type),
897 flags & PR_SVE_VL_INHERIT);
898
899 return 0;
900 }
901
902 /*
903 * Encode the current vector length and flags for return.
904 * This is only required for prctl(): ptrace has separate fields.
905 * SVE and SME use the same bits for _ONEXEC and _INHERIT.
906 *
907 * flags are as for vec_set_vector_length().
908 */
vec_prctl_status(enum vec_type type,unsigned long flags)909 static int vec_prctl_status(enum vec_type type, unsigned long flags)
910 {
911 int ret;
912
913 if (flags & PR_SVE_SET_VL_ONEXEC)
914 ret = task_get_vl_onexec(current, type);
915 else
916 ret = task_get_vl(current, type);
917
918 if (test_thread_flag(vec_vl_inherit_flag(type)))
919 ret |= PR_SVE_VL_INHERIT;
920
921 return ret;
922 }
923
924 /* PR_SVE_SET_VL */
sve_set_current_vl(unsigned long arg)925 int sve_set_current_vl(unsigned long arg)
926 {
927 unsigned long vl, flags;
928 int ret;
929
930 vl = arg & PR_SVE_VL_LEN_MASK;
931 flags = arg & ~vl;
932
933 if (!system_supports_sve() || is_compat_task())
934 return -EINVAL;
935
936 ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags);
937 if (ret)
938 return ret;
939
940 return vec_prctl_status(ARM64_VEC_SVE, flags);
941 }
942
943 /* PR_SVE_GET_VL */
sve_get_current_vl(void)944 int sve_get_current_vl(void)
945 {
946 if (!system_supports_sve() || is_compat_task())
947 return -EINVAL;
948
949 return vec_prctl_status(ARM64_VEC_SVE, 0);
950 }
951
952 #ifdef CONFIG_ARM64_SME
953 /* PR_SME_SET_VL */
sme_set_current_vl(unsigned long arg)954 int sme_set_current_vl(unsigned long arg)
955 {
956 unsigned long vl, flags;
957 int ret;
958
959 vl = arg & PR_SME_VL_LEN_MASK;
960 flags = arg & ~vl;
961
962 if (!system_supports_sme() || is_compat_task())
963 return -EINVAL;
964
965 ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags);
966 if (ret)
967 return ret;
968
969 return vec_prctl_status(ARM64_VEC_SME, flags);
970 }
971
972 /* PR_SME_GET_VL */
sme_get_current_vl(void)973 int sme_get_current_vl(void)
974 {
975 if (!system_supports_sme() || is_compat_task())
976 return -EINVAL;
977
978 return vec_prctl_status(ARM64_VEC_SME, 0);
979 }
980 #endif /* CONFIG_ARM64_SME */
981
vec_probe_vqs(struct vl_info * info,DECLARE_BITMAP (map,SVE_VQ_MAX))982 static void vec_probe_vqs(struct vl_info *info,
983 DECLARE_BITMAP(map, SVE_VQ_MAX))
984 {
985 unsigned int vq, vl;
986
987 bitmap_zero(map, SVE_VQ_MAX);
988
989 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
990 write_vl(info->type, vq - 1); /* self-syncing */
991
992 switch (info->type) {
993 case ARM64_VEC_SVE:
994 vl = sve_get_vl();
995 break;
996 case ARM64_VEC_SME:
997 vl = sme_get_vl();
998 break;
999 default:
1000 vl = 0;
1001 break;
1002 }
1003
1004 /* Minimum VL identified? */
1005 if (sve_vq_from_vl(vl) > vq)
1006 break;
1007
1008 vq = sve_vq_from_vl(vl); /* skip intervening lengths */
1009 set_bit(__vq_to_bit(vq), map);
1010 }
1011 }
1012
1013 /*
1014 * Initialise the set of known supported VQs for the boot CPU.
1015 * This is called during kernel boot, before secondary CPUs are brought up.
1016 */
vec_init_vq_map(enum vec_type type)1017 void __init vec_init_vq_map(enum vec_type type)
1018 {
1019 struct vl_info *info = &vl_info[type];
1020 vec_probe_vqs(info, info->vq_map);
1021 bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX);
1022 }
1023
1024 /*
1025 * If we haven't committed to the set of supported VQs yet, filter out
1026 * those not supported by the current CPU.
1027 * This function is called during the bring-up of early secondary CPUs only.
1028 */
vec_update_vq_map(enum vec_type type)1029 void vec_update_vq_map(enum vec_type type)
1030 {
1031 struct vl_info *info = &vl_info[type];
1032 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1033
1034 vec_probe_vqs(info, tmp_map);
1035 bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX);
1036 bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map,
1037 SVE_VQ_MAX);
1038 }
1039
1040 /*
1041 * Check whether the current CPU supports all VQs in the committed set.
1042 * This function is called during the bring-up of late secondary CPUs only.
1043 */
vec_verify_vq_map(enum vec_type type)1044 int vec_verify_vq_map(enum vec_type type)
1045 {
1046 struct vl_info *info = &vl_info[type];
1047 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1048 unsigned long b;
1049
1050 vec_probe_vqs(info, tmp_map);
1051
1052 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1053 if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) {
1054 pr_warn("%s: cpu%d: Required vector length(s) missing\n",
1055 info->name, smp_processor_id());
1056 return -EINVAL;
1057 }
1058
1059 if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
1060 return 0;
1061
1062 /*
1063 * For KVM, it is necessary to ensure that this CPU doesn't
1064 * support any vector length that guests may have probed as
1065 * unsupported.
1066 */
1067
1068 /* Recover the set of supported VQs: */
1069 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1070 /* Find VQs supported that are not globally supported: */
1071 bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX);
1072
1073 /* Find the lowest such VQ, if any: */
1074 b = find_last_bit(tmp_map, SVE_VQ_MAX);
1075 if (b >= SVE_VQ_MAX)
1076 return 0; /* no mismatches */
1077
1078 /*
1079 * Mismatches above sve_max_virtualisable_vl are fine, since
1080 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
1081 */
1082 if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) {
1083 pr_warn("%s: cpu%d: Unsupported vector length(s) present\n",
1084 info->name, smp_processor_id());
1085 return -EINVAL;
1086 }
1087
1088 return 0;
1089 }
1090
cpu_enable_sve(const struct arm64_cpu_capabilities * __always_unused p)1091 void cpu_enable_sve(const struct arm64_cpu_capabilities *__always_unused p)
1092 {
1093 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
1094 isb();
1095
1096 write_sysreg_s(0, SYS_ZCR_EL1);
1097 }
1098
sve_setup(void)1099 void __init sve_setup(void)
1100 {
1101 struct vl_info *info = &vl_info[ARM64_VEC_SVE];
1102 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1103 unsigned long b;
1104 int max_bit;
1105
1106 if (!system_supports_sve())
1107 return;
1108
1109 /*
1110 * The SVE architecture mandates support for 128-bit vectors,
1111 * so sve_vq_map must have at least SVE_VQ_MIN set.
1112 * If something went wrong, at least try to patch it up:
1113 */
1114 if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map)))
1115 set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map);
1116
1117 max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX);
1118 info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit));
1119
1120 /*
1121 * For the default VL, pick the maximum supported value <= 64.
1122 * VL == 64 is guaranteed not to grow the signal frame.
1123 */
1124 set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64));
1125
1126 bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map,
1127 SVE_VQ_MAX);
1128
1129 b = find_last_bit(tmp_map, SVE_VQ_MAX);
1130 if (b >= SVE_VQ_MAX)
1131 /* No non-virtualisable VLs found */
1132 info->max_virtualisable_vl = SVE_VQ_MAX;
1133 else if (WARN_ON(b == SVE_VQ_MAX - 1))
1134 /* No virtualisable VLs? This is architecturally forbidden. */
1135 info->max_virtualisable_vl = SVE_VQ_MIN;
1136 else /* b + 1 < SVE_VQ_MAX */
1137 info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
1138
1139 if (info->max_virtualisable_vl > info->max_vl)
1140 info->max_virtualisable_vl = info->max_vl;
1141
1142 pr_info("%s: maximum available vector length %u bytes per vector\n",
1143 info->name, info->max_vl);
1144 pr_info("%s: default vector length %u bytes per vector\n",
1145 info->name, get_sve_default_vl());
1146
1147 /* KVM decides whether to support mismatched systems. Just warn here: */
1148 if (sve_max_virtualisable_vl() < sve_max_vl())
1149 pr_warn("%s: unvirtualisable vector lengths present\n",
1150 info->name);
1151 }
1152
1153 /*
1154 * Called from the put_task_struct() path, which cannot get here
1155 * unless dead_task is really dead and not schedulable.
1156 */
fpsimd_release_task(struct task_struct * dead_task)1157 void fpsimd_release_task(struct task_struct *dead_task)
1158 {
1159 sve_free(dead_task);
1160 sme_free(dead_task);
1161 }
1162
1163 #endif /* CONFIG_ARM64_SVE */
1164
1165 #ifdef CONFIG_ARM64_SME
1166
1167 /*
1168 * Ensure that task->thread.sme_state is allocated and sufficiently large.
1169 *
1170 * This function should be used only in preparation for replacing
1171 * task->thread.sme_state with new data. The memory is always zeroed
1172 * here to prevent stale data from showing through: this is done in
1173 * the interest of testability and predictability, the architecture
1174 * guarantees that when ZA is enabled it will be zeroed.
1175 */
sme_alloc(struct task_struct * task,bool flush)1176 void sme_alloc(struct task_struct *task, bool flush)
1177 {
1178 if (task->thread.sme_state) {
1179 if (flush)
1180 memset(task->thread.sme_state, 0,
1181 sme_state_size(task));
1182 return;
1183 }
1184
1185 /* This could potentially be up to 64K. */
1186 task->thread.sme_state =
1187 kzalloc(sme_state_size(task), GFP_KERNEL);
1188 }
1189
sme_free(struct task_struct * task)1190 static void sme_free(struct task_struct *task)
1191 {
1192 kfree(task->thread.sme_state);
1193 task->thread.sme_state = NULL;
1194 }
1195
cpu_enable_sme(const struct arm64_cpu_capabilities * __always_unused p)1196 void cpu_enable_sme(const struct arm64_cpu_capabilities *__always_unused p)
1197 {
1198 /* Set priority for all PEs to architecturally defined minimum */
1199 write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK,
1200 SYS_SMPRI_EL1);
1201
1202 /* Allow SME in kernel */
1203 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1);
1204 isb();
1205
1206 /* Ensure all bits in SMCR are set to known values */
1207 write_sysreg_s(0, SYS_SMCR_EL1);
1208
1209 /* Allow EL0 to access TPIDR2 */
1210 write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1);
1211 isb();
1212 }
1213
cpu_enable_sme2(const struct arm64_cpu_capabilities * __always_unused p)1214 void cpu_enable_sme2(const struct arm64_cpu_capabilities *__always_unused p)
1215 {
1216 /* This must be enabled after SME */
1217 BUILD_BUG_ON(ARM64_SME2 <= ARM64_SME);
1218
1219 /* Allow use of ZT0 */
1220 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_EZT0_MASK,
1221 SYS_SMCR_EL1);
1222 }
1223
cpu_enable_fa64(const struct arm64_cpu_capabilities * __always_unused p)1224 void cpu_enable_fa64(const struct arm64_cpu_capabilities *__always_unused p)
1225 {
1226 /* This must be enabled after SME */
1227 BUILD_BUG_ON(ARM64_SME_FA64 <= ARM64_SME);
1228
1229 /* Allow use of FA64 */
1230 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK,
1231 SYS_SMCR_EL1);
1232 }
1233
sme_setup(void)1234 void __init sme_setup(void)
1235 {
1236 struct vl_info *info = &vl_info[ARM64_VEC_SME];
1237 int min_bit, max_bit;
1238
1239 if (!system_supports_sme())
1240 return;
1241
1242 min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX);
1243
1244 /*
1245 * SME doesn't require any particular vector length be
1246 * supported but it does require at least one. We should have
1247 * disabled the feature entirely while bringing up CPUs but
1248 * let's double check here. The bitmap is SVE_VQ_MAP sized for
1249 * sharing with SVE.
1250 */
1251 WARN_ON(min_bit >= SVE_VQ_MAX);
1252
1253 info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit));
1254
1255 max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX);
1256 info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit));
1257
1258 WARN_ON(info->min_vl > info->max_vl);
1259
1260 /*
1261 * For the default VL, pick the maximum supported value <= 32
1262 * (256 bits) if there is one since this is guaranteed not to
1263 * grow the signal frame when in streaming mode, otherwise the
1264 * minimum available VL will be used.
1265 */
1266 set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32));
1267
1268 pr_info("SME: minimum available vector length %u bytes per vector\n",
1269 info->min_vl);
1270 pr_info("SME: maximum available vector length %u bytes per vector\n",
1271 info->max_vl);
1272 pr_info("SME: default vector length %u bytes per vector\n",
1273 get_sme_default_vl());
1274 }
1275
sme_suspend_exit(void)1276 void sme_suspend_exit(void)
1277 {
1278 u64 smcr = 0;
1279
1280 if (!system_supports_sme())
1281 return;
1282
1283 if (system_supports_fa64())
1284 smcr |= SMCR_ELx_FA64;
1285 if (system_supports_sme2())
1286 smcr |= SMCR_ELx_EZT0;
1287
1288 write_sysreg_s(smcr, SYS_SMCR_EL1);
1289 write_sysreg_s(0, SYS_SMPRI_EL1);
1290 }
1291
1292 #endif /* CONFIG_ARM64_SME */
1293
sve_init_regs(void)1294 static void sve_init_regs(void)
1295 {
1296 /*
1297 * Convert the FPSIMD state to SVE, zeroing all the state that
1298 * is not shared with FPSIMD. If (as is likely) the current
1299 * state is live in the registers then do this there and
1300 * update our metadata for the current task including
1301 * disabling the trap, otherwise update our in-memory copy.
1302 * We are guaranteed to not be in streaming mode, we can only
1303 * take a SVE trap when not in streaming mode and we can't be
1304 * in streaming mode when taking a SME trap.
1305 */
1306 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1307 unsigned long vq_minus_one =
1308 sve_vq_from_vl(task_get_sve_vl(current)) - 1;
1309 sve_set_vq(vq_minus_one);
1310 sve_flush_live(true, vq_minus_one);
1311 fpsimd_bind_task_to_cpu();
1312 } else {
1313 fpsimd_to_sve(current);
1314 current->thread.fp_type = FP_STATE_SVE;
1315 fpsimd_flush_task_state(current);
1316 }
1317 }
1318
1319 /*
1320 * Trapped SVE access
1321 *
1322 * Storage is allocated for the full SVE state, the current FPSIMD
1323 * register contents are migrated across, and the access trap is
1324 * disabled.
1325 *
1326 * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
1327 * would have disabled the SVE access trap for userspace during
1328 * ret_to_user, making an SVE access trap impossible in that case.
1329 */
do_sve_acc(unsigned long esr,struct pt_regs * regs)1330 void do_sve_acc(unsigned long esr, struct pt_regs *regs)
1331 {
1332 /* Even if we chose not to use SVE, the hardware could still trap: */
1333 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
1334 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1335 return;
1336 }
1337
1338 sve_alloc(current, true);
1339 if (!current->thread.sve_state) {
1340 force_sig(SIGKILL);
1341 return;
1342 }
1343
1344 get_cpu_fpsimd_context();
1345
1346 if (test_and_set_thread_flag(TIF_SVE))
1347 WARN_ON(1); /* SVE access shouldn't have trapped */
1348
1349 /*
1350 * Even if the task can have used streaming mode we can only
1351 * generate SVE access traps in normal SVE mode and
1352 * transitioning out of streaming mode may discard any
1353 * streaming mode state. Always clear the high bits to avoid
1354 * any potential errors tracking what is properly initialised.
1355 */
1356 sve_init_regs();
1357
1358 put_cpu_fpsimd_context();
1359 }
1360
1361 /*
1362 * Trapped SME access
1363 *
1364 * Storage is allocated for the full SVE and SME state, the current
1365 * FPSIMD register contents are migrated to SVE if SVE is not already
1366 * active, and the access trap is disabled.
1367 *
1368 * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state()
1369 * would have disabled the SME access trap for userspace during
1370 * ret_to_user, making an SME access trap impossible in that case.
1371 */
do_sme_acc(unsigned long esr,struct pt_regs * regs)1372 void do_sme_acc(unsigned long esr, struct pt_regs *regs)
1373 {
1374 /* Even if we chose not to use SME, the hardware could still trap: */
1375 if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) {
1376 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1377 return;
1378 }
1379
1380 /*
1381 * If this not a trap due to SME being disabled then something
1382 * is being used in the wrong mode, report as SIGILL.
1383 */
1384 if (ESR_ELx_SME_ISS_SMTC(esr) != ESR_ELx_SME_ISS_SMTC_SME_DISABLED) {
1385 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1386 return;
1387 }
1388
1389 sve_alloc(current, false);
1390 sme_alloc(current, true);
1391 if (!current->thread.sve_state || !current->thread.sme_state) {
1392 force_sig(SIGKILL);
1393 return;
1394 }
1395
1396 get_cpu_fpsimd_context();
1397
1398 /* With TIF_SME userspace shouldn't generate any traps */
1399 if (test_and_set_thread_flag(TIF_SME))
1400 WARN_ON(1);
1401
1402 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1403 unsigned long vq_minus_one =
1404 sve_vq_from_vl(task_get_sme_vl(current)) - 1;
1405 sme_set_vq(vq_minus_one);
1406
1407 fpsimd_bind_task_to_cpu();
1408 } else {
1409 fpsimd_flush_task_state(current);
1410 }
1411
1412 put_cpu_fpsimd_context();
1413 }
1414
1415 /*
1416 * Trapped FP/ASIMD access.
1417 */
do_fpsimd_acc(unsigned long esr,struct pt_regs * regs)1418 void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs)
1419 {
1420 /* Even if we chose not to use FPSIMD, the hardware could still trap: */
1421 if (!system_supports_fpsimd()) {
1422 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1423 return;
1424 }
1425
1426 /*
1427 * When FPSIMD is enabled, we should never take a trap unless something
1428 * has gone very wrong.
1429 */
1430 BUG();
1431 }
1432
1433 /*
1434 * Raise a SIGFPE for the current process.
1435 */
do_fpsimd_exc(unsigned long esr,struct pt_regs * regs)1436 void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs)
1437 {
1438 unsigned int si_code = FPE_FLTUNK;
1439
1440 if (esr & ESR_ELx_FP_EXC_TFV) {
1441 if (esr & FPEXC_IOF)
1442 si_code = FPE_FLTINV;
1443 else if (esr & FPEXC_DZF)
1444 si_code = FPE_FLTDIV;
1445 else if (esr & FPEXC_OFF)
1446 si_code = FPE_FLTOVF;
1447 else if (esr & FPEXC_UFF)
1448 si_code = FPE_FLTUND;
1449 else if (esr & FPEXC_IXF)
1450 si_code = FPE_FLTRES;
1451 }
1452
1453 send_sig_fault(SIGFPE, si_code,
1454 (void __user *)instruction_pointer(regs),
1455 current);
1456 }
1457
fpsimd_load_kernel_state(struct task_struct * task)1458 static void fpsimd_load_kernel_state(struct task_struct *task)
1459 {
1460 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1461
1462 /*
1463 * Elide the load if this CPU holds the most recent kernel mode
1464 * FPSIMD context of the current task.
1465 */
1466 if (last->st == task->thread.kernel_fpsimd_state &&
1467 task->thread.kernel_fpsimd_cpu == smp_processor_id())
1468 return;
1469
1470 fpsimd_load_state(task->thread.kernel_fpsimd_state);
1471 }
1472
fpsimd_save_kernel_state(struct task_struct * task)1473 static void fpsimd_save_kernel_state(struct task_struct *task)
1474 {
1475 struct cpu_fp_state cpu_fp_state = {
1476 .st = task->thread.kernel_fpsimd_state,
1477 .to_save = FP_STATE_FPSIMD,
1478 };
1479
1480 BUG_ON(!cpu_fp_state.st);
1481
1482 fpsimd_save_state(task->thread.kernel_fpsimd_state);
1483 fpsimd_bind_state_to_cpu(&cpu_fp_state);
1484
1485 task->thread.kernel_fpsimd_cpu = smp_processor_id();
1486 }
1487
1488 /*
1489 * Invalidate any task's FPSIMD state that is present on this cpu.
1490 * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1491 * before calling this function.
1492 */
fpsimd_flush_cpu_state(void)1493 static void fpsimd_flush_cpu_state(void)
1494 {
1495 WARN_ON(!system_supports_fpsimd());
1496 __this_cpu_write(fpsimd_last_state.st, NULL);
1497
1498 /*
1499 * Leaving streaming mode enabled will cause issues for any kernel
1500 * NEON and leaving streaming mode or ZA enabled may increase power
1501 * consumption.
1502 */
1503 if (system_supports_sme())
1504 sme_smstop();
1505
1506 set_thread_flag(TIF_FOREIGN_FPSTATE);
1507 }
1508
fpsimd_thread_switch(struct task_struct * next)1509 void fpsimd_thread_switch(struct task_struct *next)
1510 {
1511 bool wrong_task, wrong_cpu;
1512
1513 if (!system_supports_fpsimd())
1514 return;
1515
1516 WARN_ON_ONCE(!irqs_disabled());
1517
1518 /* Save unsaved fpsimd state, if any: */
1519 if (test_thread_flag(TIF_KERNEL_FPSTATE))
1520 fpsimd_save_kernel_state(current);
1521 else
1522 fpsimd_save_user_state();
1523
1524 if (test_tsk_thread_flag(next, TIF_KERNEL_FPSTATE)) {
1525 fpsimd_flush_cpu_state();
1526 fpsimd_load_kernel_state(next);
1527 } else {
1528 /*
1529 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
1530 * state. For kernel threads, FPSIMD registers are never
1531 * loaded with user mode FPSIMD state and so wrong_task and
1532 * wrong_cpu will always be true.
1533 */
1534 wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
1535 &next->thread.uw.fpsimd_state;
1536 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1537
1538 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1539 wrong_task || wrong_cpu);
1540 }
1541 }
1542
fpsimd_flush_thread_vl(enum vec_type type)1543 static void fpsimd_flush_thread_vl(enum vec_type type)
1544 {
1545 int vl, supported_vl;
1546
1547 /*
1548 * Reset the task vector length as required. This is where we
1549 * ensure that all user tasks have a valid vector length
1550 * configured: no kernel task can become a user task without
1551 * an exec and hence a call to this function. By the time the
1552 * first call to this function is made, all early hardware
1553 * probing is complete, so __sve_default_vl should be valid.
1554 * If a bug causes this to go wrong, we make some noise and
1555 * try to fudge thread.sve_vl to a safe value here.
1556 */
1557 vl = task_get_vl_onexec(current, type);
1558 if (!vl)
1559 vl = get_default_vl(type);
1560
1561 if (WARN_ON(!sve_vl_valid(vl)))
1562 vl = vl_info[type].min_vl;
1563
1564 supported_vl = find_supported_vector_length(type, vl);
1565 if (WARN_ON(supported_vl != vl))
1566 vl = supported_vl;
1567
1568 task_set_vl(current, type, vl);
1569
1570 /*
1571 * If the task is not set to inherit, ensure that the vector
1572 * length will be reset by a subsequent exec:
1573 */
1574 if (!test_thread_flag(vec_vl_inherit_flag(type)))
1575 task_set_vl_onexec(current, type, 0);
1576 }
1577
fpsimd_flush_thread(void)1578 void fpsimd_flush_thread(void)
1579 {
1580 void *sve_state = NULL;
1581 void *sme_state = NULL;
1582
1583 if (!system_supports_fpsimd())
1584 return;
1585
1586 get_cpu_fpsimd_context();
1587
1588 fpsimd_flush_task_state(current);
1589 memset(¤t->thread.uw.fpsimd_state, 0,
1590 sizeof(current->thread.uw.fpsimd_state));
1591
1592 if (system_supports_sve()) {
1593 clear_thread_flag(TIF_SVE);
1594
1595 /* Defer kfree() while in atomic context */
1596 sve_state = current->thread.sve_state;
1597 current->thread.sve_state = NULL;
1598
1599 fpsimd_flush_thread_vl(ARM64_VEC_SVE);
1600 }
1601
1602 if (system_supports_sme()) {
1603 clear_thread_flag(TIF_SME);
1604
1605 /* Defer kfree() while in atomic context */
1606 sme_state = current->thread.sme_state;
1607 current->thread.sme_state = NULL;
1608
1609 fpsimd_flush_thread_vl(ARM64_VEC_SME);
1610 current->thread.svcr = 0;
1611 }
1612
1613 if (system_supports_fpmr())
1614 current->thread.uw.fpmr = 0;
1615
1616 current->thread.fp_type = FP_STATE_FPSIMD;
1617
1618 put_cpu_fpsimd_context();
1619 kfree(sve_state);
1620 kfree(sme_state);
1621 }
1622
1623 /*
1624 * Save the userland FPSIMD state of 'current' to memory, but only if the state
1625 * currently held in the registers does in fact belong to 'current'
1626 */
fpsimd_preserve_current_state(void)1627 void fpsimd_preserve_current_state(void)
1628 {
1629 if (!system_supports_fpsimd())
1630 return;
1631
1632 get_cpu_fpsimd_context();
1633 fpsimd_save_user_state();
1634 put_cpu_fpsimd_context();
1635 }
1636
1637 /*
1638 * Associate current's FPSIMD context with this cpu
1639 * The caller must have ownership of the cpu FPSIMD context before calling
1640 * this function.
1641 */
fpsimd_bind_task_to_cpu(void)1642 static void fpsimd_bind_task_to_cpu(void)
1643 {
1644 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1645
1646 WARN_ON(!system_supports_fpsimd());
1647 last->st = ¤t->thread.uw.fpsimd_state;
1648 last->sve_state = current->thread.sve_state;
1649 last->sme_state = current->thread.sme_state;
1650 last->sve_vl = task_get_sve_vl(current);
1651 last->sme_vl = task_get_sme_vl(current);
1652 last->svcr = ¤t->thread.svcr;
1653 last->fpmr = ¤t->thread.uw.fpmr;
1654 last->fp_type = ¤t->thread.fp_type;
1655 last->to_save = FP_STATE_CURRENT;
1656 current->thread.fpsimd_cpu = smp_processor_id();
1657
1658 /*
1659 * Toggle SVE and SME trapping for userspace if needed, these
1660 * are serialsied by ret_to_user().
1661 */
1662 if (system_supports_sme()) {
1663 if (test_thread_flag(TIF_SME))
1664 sme_user_enable();
1665 else
1666 sme_user_disable();
1667 }
1668
1669 if (system_supports_sve()) {
1670 if (test_thread_flag(TIF_SVE))
1671 sve_user_enable();
1672 else
1673 sve_user_disable();
1674 }
1675 }
1676
fpsimd_bind_state_to_cpu(struct cpu_fp_state * state)1677 void fpsimd_bind_state_to_cpu(struct cpu_fp_state *state)
1678 {
1679 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1680
1681 WARN_ON(!system_supports_fpsimd());
1682 WARN_ON(!in_softirq() && !irqs_disabled());
1683
1684 *last = *state;
1685 }
1686
1687 /*
1688 * Load the userland FPSIMD state of 'current' from memory, but only if the
1689 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1690 * state of 'current'. This is called when we are preparing to return to
1691 * userspace to ensure that userspace sees a good register state.
1692 */
fpsimd_restore_current_state(void)1693 void fpsimd_restore_current_state(void)
1694 {
1695 /*
1696 * TIF_FOREIGN_FPSTATE is set on the init task and copied by
1697 * arch_dup_task_struct() regardless of whether FP/SIMD is detected.
1698 * Thus user threads can have this set even when FP/SIMD hasn't been
1699 * detected.
1700 *
1701 * When FP/SIMD is detected, begin_new_exec() will set
1702 * TIF_FOREIGN_FPSTATE via flush_thread() -> fpsimd_flush_thread(),
1703 * and fpsimd_thread_switch() will set TIF_FOREIGN_FPSTATE when
1704 * switching tasks. We detect FP/SIMD before we exec the first user
1705 * process, ensuring this has TIF_FOREIGN_FPSTATE set and
1706 * do_notify_resume() will call fpsimd_restore_current_state() to
1707 * install the user FP/SIMD context.
1708 *
1709 * When FP/SIMD is not detected, nothing else will clear or set
1710 * TIF_FOREIGN_FPSTATE prior to the first return to userspace, and
1711 * we must clear TIF_FOREIGN_FPSTATE to avoid do_notify_resume()
1712 * looping forever calling fpsimd_restore_current_state().
1713 */
1714 if (!system_supports_fpsimd()) {
1715 clear_thread_flag(TIF_FOREIGN_FPSTATE);
1716 return;
1717 }
1718
1719 get_cpu_fpsimd_context();
1720
1721 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1722 task_fpsimd_load();
1723 fpsimd_bind_task_to_cpu();
1724 }
1725
1726 put_cpu_fpsimd_context();
1727 }
1728
fpsimd_update_current_state(struct user_fpsimd_state const * state)1729 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1730 {
1731 if (WARN_ON(!system_supports_fpsimd()))
1732 return;
1733
1734 current->thread.uw.fpsimd_state = *state;
1735 if (current->thread.fp_type == FP_STATE_SVE)
1736 fpsimd_to_sve(current);
1737 }
1738
1739 /*
1740 * Invalidate live CPU copies of task t's FPSIMD state
1741 *
1742 * This function may be called with preemption enabled. The barrier()
1743 * ensures that the assignment to fpsimd_cpu is visible to any
1744 * preemption/softirq that could race with set_tsk_thread_flag(), so
1745 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1746 *
1747 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1748 * subsequent code.
1749 */
fpsimd_flush_task_state(struct task_struct * t)1750 void fpsimd_flush_task_state(struct task_struct *t)
1751 {
1752 t->thread.fpsimd_cpu = NR_CPUS;
1753 t->thread.kernel_fpsimd_state = NULL;
1754 /*
1755 * If we don't support fpsimd, bail out after we have
1756 * reset the fpsimd_cpu for this task and clear the
1757 * FPSTATE.
1758 */
1759 if (!system_supports_fpsimd())
1760 return;
1761 barrier();
1762 set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1763
1764 barrier();
1765 }
1766
fpsimd_save_and_flush_current_state(void)1767 void fpsimd_save_and_flush_current_state(void)
1768 {
1769 if (!system_supports_fpsimd())
1770 return;
1771
1772 get_cpu_fpsimd_context();
1773 fpsimd_save_user_state();
1774 fpsimd_flush_task_state(current);
1775 put_cpu_fpsimd_context();
1776 }
1777
1778 /*
1779 * Save the FPSIMD state to memory and invalidate cpu view.
1780 * This function must be called with preemption disabled.
1781 */
fpsimd_save_and_flush_cpu_state(void)1782 void fpsimd_save_and_flush_cpu_state(void)
1783 {
1784 unsigned long flags;
1785
1786 if (!system_supports_fpsimd())
1787 return;
1788 WARN_ON(preemptible());
1789 local_irq_save(flags);
1790 fpsimd_save_user_state();
1791 fpsimd_flush_cpu_state();
1792 local_irq_restore(flags);
1793 }
1794
1795 #ifdef CONFIG_KERNEL_MODE_NEON
1796
1797 /*
1798 * Kernel-side NEON support functions
1799 */
1800
1801 /*
1802 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1803 * context
1804 *
1805 * Must not be called unless may_use_simd() returns true.
1806 * Task context in the FPSIMD registers is saved back to memory as necessary.
1807 *
1808 * A matching call to kernel_neon_end() must be made before returning from the
1809 * calling context.
1810 *
1811 * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1812 * called.
1813 *
1814 * Unless called from non-preemptible task context, @state must point to a
1815 * caller provided buffer that will be used to preserve the task's kernel mode
1816 * FPSIMD context when it is scheduled out, or if it is interrupted by kernel
1817 * mode FPSIMD occurring in softirq context. May be %NULL otherwise.
1818 */
kernel_neon_begin(struct user_fpsimd_state * state)1819 void kernel_neon_begin(struct user_fpsimd_state *state)
1820 {
1821 if (WARN_ON(!system_supports_fpsimd()))
1822 return;
1823
1824 WARN_ON((preemptible() || in_serving_softirq()) && !state);
1825
1826 BUG_ON(!may_use_simd());
1827
1828 get_cpu_fpsimd_context();
1829
1830 /* Save unsaved fpsimd state, if any: */
1831 if (test_thread_flag(TIF_KERNEL_FPSTATE)) {
1832 BUG_ON(IS_ENABLED(CONFIG_PREEMPT_RT) || !in_serving_softirq());
1833 fpsimd_save_state(state);
1834 } else {
1835 fpsimd_save_user_state();
1836
1837 /*
1838 * Set the thread flag so that the kernel mode FPSIMD state
1839 * will be context switched along with the rest of the task
1840 * state.
1841 *
1842 * On non-PREEMPT_RT, softirqs may interrupt task level kernel
1843 * mode FPSIMD, but the task will not be preemptible so setting
1844 * TIF_KERNEL_FPSTATE for those would be both wrong (as it
1845 * would mark the task context FPSIMD state as requiring a
1846 * context switch) and unnecessary.
1847 *
1848 * On PREEMPT_RT, softirqs are serviced from a separate thread,
1849 * which is scheduled as usual, and this guarantees that these
1850 * softirqs are not interrupting use of the FPSIMD in kernel
1851 * mode in task context. So in this case, setting the flag here
1852 * is always appropriate.
1853 */
1854 if (IS_ENABLED(CONFIG_PREEMPT_RT) || !in_serving_softirq()) {
1855 /*
1856 * Record the caller provided buffer as the kernel mode
1857 * FP/SIMD buffer for this task, so that the state can
1858 * be preserved and restored on a context switch.
1859 */
1860 WARN_ON(current->thread.kernel_fpsimd_state != NULL);
1861 current->thread.kernel_fpsimd_state = state;
1862 set_thread_flag(TIF_KERNEL_FPSTATE);
1863 }
1864 }
1865
1866 /* Invalidate any task state remaining in the fpsimd regs: */
1867 fpsimd_flush_cpu_state();
1868
1869 put_cpu_fpsimd_context();
1870 }
1871 EXPORT_SYMBOL_GPL(kernel_neon_begin);
1872
1873 /*
1874 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1875 *
1876 * Must be called from a context in which kernel_neon_begin() was previously
1877 * called, with no call to kernel_neon_end() in the meantime.
1878 *
1879 * The caller must not use the FPSIMD registers after this function is called,
1880 * unless kernel_neon_begin() is called again in the meantime.
1881 *
1882 * The value of @state must match the value passed to the preceding call to
1883 * kernel_neon_begin().
1884 */
kernel_neon_end(struct user_fpsimd_state * state)1885 void kernel_neon_end(struct user_fpsimd_state *state)
1886 {
1887 if (!system_supports_fpsimd())
1888 return;
1889
1890 if (!test_thread_flag(TIF_KERNEL_FPSTATE))
1891 return;
1892
1893 /*
1894 * If we are returning from a nested use of kernel mode FPSIMD, restore
1895 * the task context kernel mode FPSIMD state. This can only happen when
1896 * running in softirq context on non-PREEMPT_RT.
1897 */
1898 if (!IS_ENABLED(CONFIG_PREEMPT_RT) && in_serving_softirq()) {
1899 fpsimd_load_state(state);
1900 } else {
1901 clear_thread_flag(TIF_KERNEL_FPSTATE);
1902 WARN_ON(current->thread.kernel_fpsimd_state != state);
1903 current->thread.kernel_fpsimd_state = NULL;
1904 }
1905 }
1906 EXPORT_SYMBOL_GPL(kernel_neon_end);
1907
1908 #ifdef CONFIG_EFI
1909
1910 static struct user_fpsimd_state efi_fpsimd_state;
1911
1912 /*
1913 * EFI runtime services support functions
1914 *
1915 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1916 * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1917 * is always used rather than being an optional accelerator.
1918 *
1919 * These functions provide the necessary support for ensuring FPSIMD
1920 * save/restore in the contexts from which EFI is used.
1921 *
1922 * Do not use them for any other purpose -- if tempted to do so, you are
1923 * either doing something wrong or you need to propose some refactoring.
1924 */
1925
1926 /*
1927 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1928 */
__efi_fpsimd_begin(void)1929 void __efi_fpsimd_begin(void)
1930 {
1931 if (!system_supports_fpsimd())
1932 return;
1933
1934 if (may_use_simd()) {
1935 kernel_neon_begin(&efi_fpsimd_state);
1936 } else {
1937 /*
1938 * We are running in hardirq or NMI context, and the only
1939 * legitimate case where this might happen is when EFI pstore
1940 * is attempting to record the system's dying gasps into EFI
1941 * variables. This could be due to an oops, a panic or a call
1942 * to emergency_restart(), and in none of those cases, we can
1943 * expect the current task to ever return to user space again,
1944 * or for the kernel to resume any normal execution, for that
1945 * matter (an oops in hardirq context triggers a panic too).
1946 *
1947 * Therefore, there is no point in attempting to preserve any
1948 * SVE/SME state here. On the off chance that we might have
1949 * ended up here for a different reason inadvertently, kill the
1950 * task and preserve/restore the base FP/SIMD state, which
1951 * might belong to kernel mode FP/SIMD.
1952 */
1953 pr_warn_ratelimited("Calling EFI runtime from %s context\n",
1954 in_nmi() ? "NMI" : "hardirq");
1955 force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
1956 fpsimd_save_state(&efi_fpsimd_state);
1957 }
1958 }
1959
1960 /*
1961 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1962 */
__efi_fpsimd_end(void)1963 void __efi_fpsimd_end(void)
1964 {
1965 if (!system_supports_fpsimd())
1966 return;
1967
1968 if (may_use_simd()) {
1969 kernel_neon_end(&efi_fpsimd_state);
1970 } else {
1971 fpsimd_load_state(&efi_fpsimd_state);
1972 }
1973 }
1974
1975 #endif /* CONFIG_EFI */
1976
1977 #endif /* CONFIG_KERNEL_MODE_NEON */
1978
1979 #ifdef CONFIG_CPU_PM
fpsimd_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1980 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
1981 unsigned long cmd, void *v)
1982 {
1983 switch (cmd) {
1984 case CPU_PM_ENTER:
1985 fpsimd_save_and_flush_cpu_state();
1986 break;
1987 case CPU_PM_EXIT:
1988 break;
1989 case CPU_PM_ENTER_FAILED:
1990 default:
1991 return NOTIFY_DONE;
1992 }
1993 return NOTIFY_OK;
1994 }
1995
1996 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
1997 .notifier_call = fpsimd_cpu_pm_notifier,
1998 };
1999
fpsimd_pm_init(void)2000 static void __init fpsimd_pm_init(void)
2001 {
2002 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
2003 }
2004
2005 #else
fpsimd_pm_init(void)2006 static inline void fpsimd_pm_init(void) { }
2007 #endif /* CONFIG_CPU_PM */
2008
2009 #ifdef CONFIG_HOTPLUG_CPU
fpsimd_cpu_dead(unsigned int cpu)2010 static int fpsimd_cpu_dead(unsigned int cpu)
2011 {
2012 per_cpu(fpsimd_last_state.st, cpu) = NULL;
2013 return 0;
2014 }
2015
fpsimd_hotplug_init(void)2016 static inline void fpsimd_hotplug_init(void)
2017 {
2018 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
2019 NULL, fpsimd_cpu_dead);
2020 }
2021
2022 #else
fpsimd_hotplug_init(void)2023 static inline void fpsimd_hotplug_init(void) { }
2024 #endif
2025
cpu_enable_fpsimd(const struct arm64_cpu_capabilities * __always_unused p)2026 void cpu_enable_fpsimd(const struct arm64_cpu_capabilities *__always_unused p)
2027 {
2028 unsigned long enable = CPACR_EL1_FPEN_EL1EN | CPACR_EL1_FPEN_EL0EN;
2029 write_sysreg(read_sysreg(CPACR_EL1) | enable, CPACR_EL1);
2030 isb();
2031 }
2032
2033 /*
2034 * FP/SIMD support code initialisation.
2035 */
fpsimd_init(void)2036 static int __init fpsimd_init(void)
2037 {
2038 if (cpu_have_named_feature(FP)) {
2039 fpsimd_pm_init();
2040 fpsimd_hotplug_init();
2041 } else {
2042 pr_notice("Floating-point is not implemented\n");
2043 }
2044
2045 if (!cpu_have_named_feature(ASIMD))
2046 pr_notice("Advanced SIMD is not implemented\n");
2047
2048
2049 sve_sysctl_init();
2050 sme_sysctl_init();
2051
2052 return 0;
2053 }
2054 core_initcall(fpsimd_init);
2055