1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2023 Red Hat
4 */
5
6 #include <linux/delay.h>
7 #include <linux/mm.h>
8 #include <linux/sched/mm.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11
12 #include "logger.h"
13 #include "memory-alloc.h"
14 #include "permassert.h"
15
16 /*
17 * UDS and VDO keep track of which threads are allowed to allocate memory freely, and which threads
18 * must be careful to not do a memory allocation that does an I/O request. The 'allocating_threads'
19 * thread_registry and its associated methods implement this tracking.
20 */
21 static struct thread_registry allocating_threads;
22
allocations_allowed(void)23 static inline bool allocations_allowed(void)
24 {
25 return vdo_lookup_thread(&allocating_threads) != NULL;
26 }
27
28 /*
29 * Register the current thread as an allocating thread.
30 *
31 * An optional flag location can be supplied indicating whether, at any given point in time, the
32 * threads associated with that flag should be allocating storage. If the flag is false, a message
33 * will be logged.
34 *
35 * If no flag is supplied, the thread is always allowed to allocate storage without complaint.
36 *
37 * @new_thread: registered_thread structure to use for the current thread
38 * @flag_ptr: Location of the allocation-allowed flag
39 */
vdo_register_allocating_thread(struct registered_thread * new_thread,const bool * flag_ptr)40 void vdo_register_allocating_thread(struct registered_thread *new_thread,
41 const bool *flag_ptr)
42 {
43 if (flag_ptr == NULL) {
44 static const bool allocation_always_allowed = true;
45
46 flag_ptr = &allocation_always_allowed;
47 }
48
49 vdo_register_thread(&allocating_threads, new_thread, flag_ptr);
50 }
51
52 /* Unregister the current thread as an allocating thread. */
vdo_unregister_allocating_thread(void)53 void vdo_unregister_allocating_thread(void)
54 {
55 vdo_unregister_thread(&allocating_threads);
56 }
57
58 /*
59 * We track how much memory has been allocated and freed. When we unload the module, we log an
60 * error if we have not freed all the memory that we allocated. Nearly all memory allocation and
61 * freeing is done using this module.
62 *
63 * We do not use kernel functions like the kvasprintf() method, which allocate memory indirectly
64 * using kmalloc.
65 *
66 * These data structures and methods are used to track the amount of memory used.
67 */
68
69 /*
70 * We allocate very few large objects, and allocation/deallocation isn't done in a
71 * performance-critical stage for us, so a linked list should be fine.
72 */
73 struct vmalloc_block_info {
74 void *ptr;
75 size_t size;
76 struct vmalloc_block_info *next;
77 };
78
79 static struct {
80 spinlock_t lock;
81 size_t kmalloc_blocks;
82 size_t kmalloc_bytes;
83 size_t vmalloc_blocks;
84 size_t vmalloc_bytes;
85 size_t peak_bytes;
86 struct vmalloc_block_info *vmalloc_list;
87 } memory_stats __cacheline_aligned;
88
update_peak_usage(void)89 static void update_peak_usage(void)
90 {
91 size_t total_bytes = memory_stats.kmalloc_bytes + memory_stats.vmalloc_bytes;
92
93 if (total_bytes > memory_stats.peak_bytes)
94 memory_stats.peak_bytes = total_bytes;
95 }
96
add_kmalloc_block(size_t size)97 static void add_kmalloc_block(size_t size)
98 {
99 unsigned long flags;
100
101 spin_lock_irqsave(&memory_stats.lock, flags);
102 memory_stats.kmalloc_blocks++;
103 memory_stats.kmalloc_bytes += size;
104 update_peak_usage();
105 spin_unlock_irqrestore(&memory_stats.lock, flags);
106 }
107
remove_kmalloc_block(size_t size)108 static void remove_kmalloc_block(size_t size)
109 {
110 unsigned long flags;
111
112 spin_lock_irqsave(&memory_stats.lock, flags);
113 memory_stats.kmalloc_blocks--;
114 memory_stats.kmalloc_bytes -= size;
115 spin_unlock_irqrestore(&memory_stats.lock, flags);
116 }
117
add_vmalloc_block(struct vmalloc_block_info * block)118 static void add_vmalloc_block(struct vmalloc_block_info *block)
119 {
120 unsigned long flags;
121
122 spin_lock_irqsave(&memory_stats.lock, flags);
123 block->next = memory_stats.vmalloc_list;
124 memory_stats.vmalloc_list = block;
125 memory_stats.vmalloc_blocks++;
126 memory_stats.vmalloc_bytes += block->size;
127 update_peak_usage();
128 spin_unlock_irqrestore(&memory_stats.lock, flags);
129 }
130
remove_vmalloc_block(void * ptr)131 static void remove_vmalloc_block(void *ptr)
132 {
133 struct vmalloc_block_info *block;
134 struct vmalloc_block_info **block_ptr;
135 unsigned long flags;
136
137 spin_lock_irqsave(&memory_stats.lock, flags);
138 for (block_ptr = &memory_stats.vmalloc_list;
139 (block = *block_ptr) != NULL;
140 block_ptr = &block->next) {
141 if (block->ptr == ptr) {
142 *block_ptr = block->next;
143 memory_stats.vmalloc_blocks--;
144 memory_stats.vmalloc_bytes -= block->size;
145 break;
146 }
147 }
148
149 spin_unlock_irqrestore(&memory_stats.lock, flags);
150 if (block != NULL)
151 vdo_free(block);
152 else
153 vdo_log_info("attempting to remove ptr %px not found in vmalloc list", ptr);
154 }
155
156 /*
157 * Determine whether allocating a memory block should use kmalloc or __vmalloc.
158 *
159 * vmalloc can allocate any integral number of pages.
160 *
161 * kmalloc can allocate any number of bytes up to a configured limit, which defaults to 8 megabytes
162 * on some systems. kmalloc is especially good when memory is being both allocated and freed, and
163 * it does this efficiently in a multi CPU environment.
164 *
165 * kmalloc usually rounds the size of the block up to the next power of two, so when the requested
166 * block is bigger than PAGE_SIZE / 2 bytes, kmalloc will never give you less space than the
167 * corresponding vmalloc allocation. Sometimes vmalloc will use less overhead than kmalloc.
168 *
169 * The advantages of kmalloc do not help out UDS or VDO, because we allocate all our memory up
170 * front and do not free and reallocate it. Sometimes we have problems using kmalloc, because the
171 * Linux memory page map can become so fragmented that kmalloc will not give us a 32KB chunk. We
172 * have used vmalloc as a backup to kmalloc in the past, and a follow-up vmalloc of 32KB will work.
173 * But there is no strong case to be made for using kmalloc over vmalloc for these size chunks.
174 *
175 * The kmalloc/vmalloc boundary is set at 4KB, and kmalloc gets the 4KB requests. There is no
176 * strong reason for favoring either kmalloc or vmalloc for 4KB requests, except that tracking
177 * vmalloc statistics uses a linked list implementation. Using a simple test, this choice of
178 * boundary results in 132 vmalloc calls. Using vmalloc for requests of exactly 4KB results in an
179 * additional 6374 vmalloc calls, which is much less efficient for tracking.
180 *
181 * @size: How many bytes to allocate
182 */
use_kmalloc(size_t size)183 static inline bool use_kmalloc(size_t size)
184 {
185 return size <= PAGE_SIZE;
186 }
187
188 /*
189 * Allocate storage based on memory size and alignment, logging an error if the allocation fails.
190 * The memory will be zeroed.
191 *
192 * @size: The size of an object
193 * @align: The required alignment
194 * @what: What is being allocated (for error logging)
195 * @ptr: A pointer to hold the allocated memory
196 *
197 * Return: VDO_SUCCESS or an error code
198 */
vdo_allocate_memory(size_t size,size_t align,const char * what,void * ptr)199 int vdo_allocate_memory(size_t size, size_t align, const char *what, void *ptr)
200 {
201 /*
202 * The __GFP_RETRY_MAYFAIL flag means the VM implementation will retry memory reclaim
203 * procedures that have previously failed if there is some indication that progress has
204 * been made elsewhere. It can wait for other tasks to attempt high level approaches to
205 * freeing memory such as compaction (which removes fragmentation) and page-out. There is
206 * still a definite limit to the number of retries, but it is a larger limit than with
207 * __GFP_NORETRY. Allocations with this flag may fail, but only when there is genuinely
208 * little unused memory. While these allocations do not directly trigger the OOM killer,
209 * their failure indicates that the system is likely to need to use the OOM killer soon.
210 * The caller must handle failure, but can reasonably do so by failing a higher-level
211 * request, or completing it only in a much less efficient manner.
212 */
213 const gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_RETRY_MAYFAIL;
214 unsigned int noio_flags;
215 bool allocations_restricted = !allocations_allowed();
216 unsigned long start_time;
217 void *p = NULL;
218
219 if (unlikely(ptr == NULL))
220 return -EINVAL;
221
222 if (size == 0) {
223 *((void **) ptr) = NULL;
224 return VDO_SUCCESS;
225 }
226
227 if (allocations_restricted)
228 noio_flags = memalloc_noio_save();
229
230 start_time = jiffies;
231 if (use_kmalloc(size) && (align < PAGE_SIZE)) {
232 p = kmalloc(size, gfp_flags | __GFP_NOWARN);
233 if (p == NULL) {
234 /*
235 * It is possible for kmalloc to fail to allocate memory because there is
236 * no page available. A short sleep may allow the page reclaimer to
237 * free a page.
238 */
239 fsleep(1000);
240 p = kmalloc(size, gfp_flags);
241 }
242
243 if (p != NULL)
244 add_kmalloc_block(ksize(p));
245 } else {
246 struct vmalloc_block_info *block;
247
248 if (vdo_allocate(1, struct vmalloc_block_info, __func__, &block) == VDO_SUCCESS) {
249 /*
250 * It is possible for __vmalloc to fail to allocate memory because there
251 * are no pages available. A short sleep may allow the page reclaimer
252 * to free enough pages for a small allocation.
253 *
254 * For larger allocations, the page_alloc code is racing against the page
255 * reclaimer. If the page reclaimer can stay ahead of page_alloc, the
256 * __vmalloc will succeed. But if page_alloc overtakes the page reclaimer,
257 * the allocation fails. It is possible that more retries will succeed.
258 */
259 for (;;) {
260 p = __vmalloc(size, gfp_flags | __GFP_NOWARN);
261 if (p != NULL)
262 break;
263
264 if (jiffies_to_msecs(jiffies - start_time) > 1000) {
265 /* Try one more time, logging a failure for this call. */
266 p = __vmalloc(size, gfp_flags);
267 break;
268 }
269
270 fsleep(1000);
271 }
272
273 if (p == NULL) {
274 vdo_free(block);
275 } else {
276 block->ptr = p;
277 block->size = PAGE_ALIGN(size);
278 add_vmalloc_block(block);
279 }
280 }
281 }
282
283 if (allocations_restricted)
284 memalloc_noio_restore(noio_flags);
285
286 if (unlikely(p == NULL)) {
287 vdo_log_error("Could not allocate %zu bytes for %s in %u msecs",
288 size, what, jiffies_to_msecs(jiffies - start_time));
289 return -ENOMEM;
290 }
291
292 *((void **) ptr) = p;
293 return VDO_SUCCESS;
294 }
295
296 /*
297 * Allocate storage based on memory size, failing immediately if the required memory is not
298 * available. The memory will be zeroed.
299 *
300 * @size: The size of an object.
301 * @what: What is being allocated (for error logging)
302 *
303 * Return: pointer to the allocated memory, or NULL if the required space is not available.
304 */
vdo_allocate_memory_nowait(size_t size,const char * what __maybe_unused)305 void *vdo_allocate_memory_nowait(size_t size, const char *what __maybe_unused)
306 {
307 void *p = kmalloc(size, GFP_NOWAIT | __GFP_ZERO);
308
309 if (p != NULL)
310 add_kmalloc_block(ksize(p));
311
312 return p;
313 }
314
vdo_free(void * ptr)315 void vdo_free(void *ptr)
316 {
317 if (ptr != NULL) {
318 if (is_vmalloc_addr(ptr)) {
319 remove_vmalloc_block(ptr);
320 vfree(ptr);
321 } else {
322 remove_kmalloc_block(ksize(ptr));
323 kfree(ptr);
324 }
325 }
326 }
327
328 /*
329 * Reallocate dynamically allocated memory. There are no alignment guarantees for the reallocated
330 * memory. If the new memory is larger than the old memory, the new space will be zeroed.
331 *
332 * @ptr: The memory to reallocate.
333 * @old_size: The old size of the memory
334 * @size: The new size to allocate
335 * @what: What is being allocated (for error logging)
336 * @new_ptr: A pointer to hold the reallocated pointer
337 *
338 * Return: VDO_SUCCESS or an error code
339 */
vdo_reallocate_memory(void * ptr,size_t old_size,size_t size,const char * what,void * new_ptr)340 int vdo_reallocate_memory(void *ptr, size_t old_size, size_t size, const char *what,
341 void *new_ptr)
342 {
343 int result;
344
345 if (size == 0) {
346 vdo_free(ptr);
347 *(void **) new_ptr = NULL;
348 return VDO_SUCCESS;
349 }
350
351 result = vdo_allocate(size, char, what, new_ptr);
352 if (result != VDO_SUCCESS)
353 return result;
354
355 if (ptr != NULL) {
356 if (old_size < size)
357 size = old_size;
358
359 memcpy(*((void **) new_ptr), ptr, size);
360 vdo_free(ptr);
361 }
362
363 return VDO_SUCCESS;
364 }
365
vdo_duplicate_string(const char * string,const char * what,char ** new_string)366 int vdo_duplicate_string(const char *string, const char *what, char **new_string)
367 {
368 int result;
369 u8 *dup;
370
371 result = vdo_allocate(strlen(string) + 1, u8, what, &dup);
372 if (result != VDO_SUCCESS)
373 return result;
374
375 memcpy(dup, string, strlen(string) + 1);
376 *new_string = dup;
377 return VDO_SUCCESS;
378 }
379
vdo_memory_init(void)380 void vdo_memory_init(void)
381 {
382 spin_lock_init(&memory_stats.lock);
383 vdo_initialize_thread_registry(&allocating_threads);
384 }
385
vdo_memory_exit(void)386 void vdo_memory_exit(void)
387 {
388 VDO_ASSERT_LOG_ONLY(memory_stats.kmalloc_bytes == 0,
389 "kmalloc memory used (%zd bytes in %zd blocks) is returned to the kernel",
390 memory_stats.kmalloc_bytes, memory_stats.kmalloc_blocks);
391 VDO_ASSERT_LOG_ONLY(memory_stats.vmalloc_bytes == 0,
392 "vmalloc memory used (%zd bytes in %zd blocks) is returned to the kernel",
393 memory_stats.vmalloc_bytes, memory_stats.vmalloc_blocks);
394 vdo_log_debug("peak usage %zd bytes", memory_stats.peak_bytes);
395 }
396
vdo_get_memory_stats(u64 * bytes_used,u64 * peak_bytes_used)397 void vdo_get_memory_stats(u64 *bytes_used, u64 *peak_bytes_used)
398 {
399 unsigned long flags;
400
401 spin_lock_irqsave(&memory_stats.lock, flags);
402 *bytes_used = memory_stats.kmalloc_bytes + memory_stats.vmalloc_bytes;
403 *peak_bytes_used = memory_stats.peak_bytes;
404 spin_unlock_irqrestore(&memory_stats.lock, flags);
405 }
406
407 /*
408 * Report stats on any allocated memory that we're tracking. Not all allocation types are
409 * guaranteed to be tracked in bytes (e.g., bios).
410 */
vdo_report_memory_usage(void)411 void vdo_report_memory_usage(void)
412 {
413 unsigned long flags;
414 u64 kmalloc_blocks;
415 u64 kmalloc_bytes;
416 u64 vmalloc_blocks;
417 u64 vmalloc_bytes;
418 u64 peak_usage;
419 u64 total_bytes;
420
421 spin_lock_irqsave(&memory_stats.lock, flags);
422 kmalloc_blocks = memory_stats.kmalloc_blocks;
423 kmalloc_bytes = memory_stats.kmalloc_bytes;
424 vmalloc_blocks = memory_stats.vmalloc_blocks;
425 vmalloc_bytes = memory_stats.vmalloc_bytes;
426 peak_usage = memory_stats.peak_bytes;
427 spin_unlock_irqrestore(&memory_stats.lock, flags);
428 total_bytes = kmalloc_bytes + vmalloc_bytes;
429 vdo_log_info("current module memory tracking (actual allocation sizes, not requested):");
430 vdo_log_info(" %llu bytes in %llu kmalloc blocks",
431 (unsigned long long) kmalloc_bytes,
432 (unsigned long long) kmalloc_blocks);
433 vdo_log_info(" %llu bytes in %llu vmalloc blocks",
434 (unsigned long long) vmalloc_bytes,
435 (unsigned long long) vmalloc_blocks);
436 vdo_log_info(" total %llu bytes, peak usage %llu bytes",
437 (unsigned long long) total_bytes, (unsigned long long) peak_usage);
438 }
439