1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2023 Red Hat
4 */
5
6 #include "encodings.h"
7
8 #include <linux/log2.h>
9
10 #include "logger.h"
11 #include "memory-alloc.h"
12 #include "permassert.h"
13
14 #include "constants.h"
15 #include "status-codes.h"
16 #include "types.h"
17
18 /** The maximum logical space is 4 petabytes, which is 1 terablock. */
19 static const block_count_t MAXIMUM_VDO_LOGICAL_BLOCKS = 1024ULL * 1024 * 1024 * 1024;
20
21 /** The maximum physical space is 256 terabytes, which is 64 gigablocks. */
22 static const block_count_t MAXIMUM_VDO_PHYSICAL_BLOCKS = 1024ULL * 1024 * 1024 * 64;
23
24 struct geometry_block {
25 char magic_number[VDO_GEOMETRY_MAGIC_NUMBER_SIZE];
26 struct packed_header header;
27 u32 checksum;
28 } __packed;
29
30 static const struct header GEOMETRY_BLOCK_HEADER_5_0 = {
31 .id = VDO_GEOMETRY_BLOCK,
32 .version = {
33 .major_version = 5,
34 .minor_version = 0,
35 },
36 /*
37 * Note: this size isn't just the payload size following the header, like it is everywhere
38 * else in VDO.
39 */
40 .size = sizeof(struct geometry_block) + sizeof(struct volume_geometry),
41 };
42
43 static const struct header GEOMETRY_BLOCK_HEADER_4_0 = {
44 .id = VDO_GEOMETRY_BLOCK,
45 .version = {
46 .major_version = 4,
47 .minor_version = 0,
48 },
49 /*
50 * Note: this size isn't just the payload size following the header, like it is everywhere
51 * else in VDO.
52 */
53 .size = sizeof(struct geometry_block) + sizeof(struct volume_geometry_4_0),
54 };
55
56 const u8 VDO_GEOMETRY_MAGIC_NUMBER[VDO_GEOMETRY_MAGIC_NUMBER_SIZE + 1] = "dmvdo001";
57
58 #define PAGE_HEADER_4_1_SIZE (8 + 8 + 8 + 1 + 1 + 1 + 1)
59
60 static const struct version_number BLOCK_MAP_4_1 = {
61 .major_version = 4,
62 .minor_version = 1,
63 };
64
65 const struct header VDO_BLOCK_MAP_HEADER_2_0 = {
66 .id = VDO_BLOCK_MAP,
67 .version = {
68 .major_version = 2,
69 .minor_version = 0,
70 },
71 .size = sizeof(struct block_map_state_2_0),
72 };
73
74 const struct header VDO_RECOVERY_JOURNAL_HEADER_7_0 = {
75 .id = VDO_RECOVERY_JOURNAL,
76 .version = {
77 .major_version = 7,
78 .minor_version = 0,
79 },
80 .size = sizeof(struct recovery_journal_state_7_0),
81 };
82
83 const struct header VDO_SLAB_DEPOT_HEADER_2_0 = {
84 .id = VDO_SLAB_DEPOT,
85 .version = {
86 .major_version = 2,
87 .minor_version = 0,
88 },
89 .size = sizeof(struct slab_depot_state_2_0),
90 };
91
92 static const struct header VDO_LAYOUT_HEADER_3_0 = {
93 .id = VDO_LAYOUT,
94 .version = {
95 .major_version = 3,
96 .minor_version = 0,
97 },
98 .size = sizeof(struct layout_3_0) + (sizeof(struct partition_3_0) * VDO_PARTITION_COUNT),
99 };
100
101 static const enum partition_id REQUIRED_PARTITIONS[] = {
102 VDO_BLOCK_MAP_PARTITION,
103 VDO_SLAB_DEPOT_PARTITION,
104 VDO_RECOVERY_JOURNAL_PARTITION,
105 VDO_SLAB_SUMMARY_PARTITION,
106 };
107
108 /*
109 * The current version for the data encoded in the super block. This must be changed any time there
110 * is a change to encoding of the component data of any VDO component.
111 */
112 static const struct version_number VDO_COMPONENT_DATA_41_0 = {
113 .major_version = 41,
114 .minor_version = 0,
115 };
116
117 const struct version_number VDO_VOLUME_VERSION_67_0 = {
118 .major_version = 67,
119 .minor_version = 0,
120 };
121
122 static const struct header SUPER_BLOCK_HEADER_12_0 = {
123 .id = VDO_SUPER_BLOCK,
124 .version = {
125 .major_version = 12,
126 .minor_version = 0,
127 },
128
129 /* This is the minimum size, if the super block contains no components. */
130 .size = VDO_SUPER_BLOCK_FIXED_SIZE - VDO_ENCODED_HEADER_SIZE,
131 };
132
133 /**
134 * validate_version() - Check whether a version matches an expected version.
135 * @expected_version: The expected version.
136 * @actual_version: The version being validated.
137 * @component_name: The name of the component or the calling function (for error logging).
138 *
139 * Logs an error describing a mismatch.
140 *
141 * Return: VDO_SUCCESS if the versions are the same,
142 * VDO_UNSUPPORTED_VERSION if the versions don't match.
143 */
validate_version(struct version_number expected_version,struct version_number actual_version,const char * component_name)144 static int __must_check validate_version(struct version_number expected_version,
145 struct version_number actual_version,
146 const char *component_name)
147 {
148 if (!vdo_are_same_version(expected_version, actual_version)) {
149 return vdo_log_error_strerror(VDO_UNSUPPORTED_VERSION,
150 "%s version mismatch, expected %d.%d, got %d.%d",
151 component_name,
152 expected_version.major_version,
153 expected_version.minor_version,
154 actual_version.major_version,
155 actual_version.minor_version);
156 }
157
158 return VDO_SUCCESS;
159 }
160
161 /**
162 * vdo_validate_header() - Check whether a header matches expectations.
163 * @expected_header: The expected header.
164 * @actual_header: The header being validated.
165 * @exact_size: If true, the size fields of the two headers must be the same, otherwise it is
166 * required that actual_header.size >= expected_header.size.
167 * @name: The name of the component or the calling function (for error logging).
168 *
169 * Logs an error describing the first mismatch found.
170 *
171 * Return: VDO_SUCCESS if the header meets expectations,
172 * VDO_INCORRECT_COMPONENT if the component ids don't match,
173 * VDO_UNSUPPORTED_VERSION if the versions or sizes don't match.
174 */
vdo_validate_header(const struct header * expected_header,const struct header * actual_header,bool exact_size,const char * name)175 int vdo_validate_header(const struct header *expected_header,
176 const struct header *actual_header, bool exact_size,
177 const char *name)
178 {
179 int result;
180
181 if (expected_header->id != actual_header->id) {
182 return vdo_log_error_strerror(VDO_INCORRECT_COMPONENT,
183 "%s ID mismatch, expected %d, got %d",
184 name, expected_header->id,
185 actual_header->id);
186 }
187
188 result = validate_version(expected_header->version, actual_header->version,
189 name);
190 if (result != VDO_SUCCESS)
191 return result;
192
193 if ((expected_header->size > actual_header->size) ||
194 (exact_size && (expected_header->size < actual_header->size))) {
195 return vdo_log_error_strerror(VDO_UNSUPPORTED_VERSION,
196 "%s size mismatch, expected %zu, got %zu",
197 name, expected_header->size,
198 actual_header->size);
199 }
200
201 return VDO_SUCCESS;
202 }
203
encode_version_number(u8 * buffer,size_t * offset,struct version_number version)204 static void encode_version_number(u8 *buffer, size_t *offset,
205 struct version_number version)
206 {
207 struct packed_version_number packed = vdo_pack_version_number(version);
208
209 memcpy(buffer + *offset, &packed, sizeof(packed));
210 *offset += sizeof(packed);
211 }
212
vdo_encode_header(u8 * buffer,size_t * offset,const struct header * header)213 void vdo_encode_header(u8 *buffer, size_t *offset, const struct header *header)
214 {
215 struct packed_header packed = vdo_pack_header(header);
216
217 memcpy(buffer + *offset, &packed, sizeof(packed));
218 *offset += sizeof(packed);
219 }
220
decode_version_number(u8 * buffer,size_t * offset,struct version_number * version)221 static void decode_version_number(u8 *buffer, size_t *offset,
222 struct version_number *version)
223 {
224 struct packed_version_number packed;
225
226 memcpy(&packed, buffer + *offset, sizeof(packed));
227 *offset += sizeof(packed);
228 *version = vdo_unpack_version_number(packed);
229 }
230
vdo_decode_header(u8 * buffer,size_t * offset,struct header * header)231 void vdo_decode_header(u8 *buffer, size_t *offset, struct header *header)
232 {
233 struct packed_header packed;
234
235 memcpy(&packed, buffer + *offset, sizeof(packed));
236 *offset += sizeof(packed);
237
238 *header = vdo_unpack_header(&packed);
239 }
240
241 /**
242 * decode_volume_geometry() - Decode the on-disk representation of a volume geometry from a buffer.
243 * @buffer: A buffer to decode from.
244 * @offset: The offset in the buffer at which to decode.
245 * @geometry: The structure to receive the decoded fields.
246 * @version: The geometry block version to decode.
247 */
decode_volume_geometry(u8 * buffer,size_t * offset,struct volume_geometry * geometry,u32 version)248 static void decode_volume_geometry(u8 *buffer, size_t *offset,
249 struct volume_geometry *geometry, u32 version)
250 {
251 u32 unused, mem;
252 enum volume_region_id id;
253 nonce_t nonce;
254 block_count_t bio_offset = 0;
255 bool sparse;
256
257 /* This is for backwards compatibility. */
258 decode_u32_le(buffer, offset, &unused);
259 geometry->unused = unused;
260
261 decode_u64_le(buffer, offset, &nonce);
262 geometry->nonce = nonce;
263
264 memcpy((unsigned char *) &geometry->uuid, buffer + *offset, sizeof(uuid_t));
265 *offset += sizeof(uuid_t);
266
267 if (version > 4)
268 decode_u64_le(buffer, offset, &bio_offset);
269 geometry->bio_offset = bio_offset;
270
271 for (id = 0; id < VDO_VOLUME_REGION_COUNT; id++) {
272 physical_block_number_t start_block;
273 enum volume_region_id saved_id;
274
275 decode_u32_le(buffer, offset, &saved_id);
276 decode_u64_le(buffer, offset, &start_block);
277
278 geometry->regions[id] = (struct volume_region) {
279 .id = saved_id,
280 .start_block = start_block,
281 };
282 }
283
284 decode_u32_le(buffer, offset, &mem);
285 *offset += sizeof(u32);
286 sparse = buffer[(*offset)++];
287
288 geometry->index_config = (struct index_config) {
289 .mem = mem,
290 .sparse = sparse,
291 };
292 }
293
294 /**
295 * vdo_parse_geometry_block() - Decode and validate an encoded geometry block.
296 * @block: The encoded geometry block.
297 * @geometry: The structure to receive the decoded fields.
298 */
vdo_parse_geometry_block(u8 * block,struct volume_geometry * geometry)299 int __must_check vdo_parse_geometry_block(u8 *block, struct volume_geometry *geometry)
300 {
301 u32 checksum, saved_checksum;
302 struct header header;
303 size_t offset = 0;
304 int result;
305
306 if (memcmp(block, VDO_GEOMETRY_MAGIC_NUMBER, VDO_GEOMETRY_MAGIC_NUMBER_SIZE) != 0)
307 return VDO_BAD_MAGIC;
308 offset += VDO_GEOMETRY_MAGIC_NUMBER_SIZE;
309
310 vdo_decode_header(block, &offset, &header);
311 if (header.version.major_version <= 4) {
312 result = vdo_validate_header(&GEOMETRY_BLOCK_HEADER_4_0, &header,
313 true, __func__);
314 } else {
315 result = vdo_validate_header(&GEOMETRY_BLOCK_HEADER_5_0, &header,
316 true, __func__);
317 }
318 if (result != VDO_SUCCESS)
319 return result;
320
321 decode_volume_geometry(block, &offset, geometry, header.version.major_version);
322
323 result = VDO_ASSERT(header.size == offset + sizeof(u32),
324 "should have decoded up to the geometry checksum");
325 if (result != VDO_SUCCESS)
326 return result;
327
328 /* Decode and verify the checksum. */
329 checksum = vdo_crc32(block, offset);
330 decode_u32_le(block, &offset, &saved_checksum);
331
332 return ((checksum == saved_checksum) ? VDO_SUCCESS : VDO_CHECKSUM_MISMATCH);
333 }
334
vdo_format_block_map_page(void * buffer,nonce_t nonce,physical_block_number_t pbn,bool initialized)335 struct block_map_page *vdo_format_block_map_page(void *buffer, nonce_t nonce,
336 physical_block_number_t pbn,
337 bool initialized)
338 {
339 struct block_map_page *page = buffer;
340
341 memset(buffer, 0, VDO_BLOCK_SIZE);
342 page->version = vdo_pack_version_number(BLOCK_MAP_4_1);
343 page->header.nonce = __cpu_to_le64(nonce);
344 page->header.pbn = __cpu_to_le64(pbn);
345 page->header.initialized = initialized;
346 return page;
347 }
348
vdo_validate_block_map_page(struct block_map_page * page,nonce_t nonce,physical_block_number_t pbn)349 enum block_map_page_validity vdo_validate_block_map_page(struct block_map_page *page,
350 nonce_t nonce,
351 physical_block_number_t pbn)
352 {
353 BUILD_BUG_ON(sizeof(struct block_map_page_header) != PAGE_HEADER_4_1_SIZE);
354
355 if (!vdo_are_same_version(BLOCK_MAP_4_1,
356 vdo_unpack_version_number(page->version)) ||
357 !page->header.initialized || (nonce != __le64_to_cpu(page->header.nonce)))
358 return VDO_BLOCK_MAP_PAGE_INVALID;
359
360 if (pbn != vdo_get_block_map_page_pbn(page))
361 return VDO_BLOCK_MAP_PAGE_BAD;
362
363 return VDO_BLOCK_MAP_PAGE_VALID;
364 }
365
decode_block_map_state_2_0(u8 * buffer,size_t * offset,struct block_map_state_2_0 * state)366 static int decode_block_map_state_2_0(u8 *buffer, size_t *offset,
367 struct block_map_state_2_0 *state)
368 {
369 size_t initial_offset;
370 block_count_t flat_page_count, root_count;
371 physical_block_number_t flat_page_origin, root_origin;
372 struct header header;
373 int result;
374
375 vdo_decode_header(buffer, offset, &header);
376 result = vdo_validate_header(&VDO_BLOCK_MAP_HEADER_2_0, &header, true, __func__);
377 if (result != VDO_SUCCESS)
378 return result;
379
380 initial_offset = *offset;
381
382 decode_u64_le(buffer, offset, &flat_page_origin);
383 result = VDO_ASSERT(flat_page_origin == VDO_BLOCK_MAP_FLAT_PAGE_ORIGIN,
384 "Flat page origin must be %u (recorded as %llu)",
385 VDO_BLOCK_MAP_FLAT_PAGE_ORIGIN,
386 (unsigned long long) state->flat_page_origin);
387 if (result != VDO_SUCCESS)
388 return result;
389
390 decode_u64_le(buffer, offset, &flat_page_count);
391 result = VDO_ASSERT(flat_page_count == 0,
392 "Flat page count must be 0 (recorded as %llu)",
393 (unsigned long long) state->flat_page_count);
394 if (result != VDO_SUCCESS)
395 return result;
396
397 decode_u64_le(buffer, offset, &root_origin);
398 decode_u64_le(buffer, offset, &root_count);
399
400 result = VDO_ASSERT(VDO_BLOCK_MAP_HEADER_2_0.size == *offset - initial_offset,
401 "decoded block map component size must match header size");
402 if (result != VDO_SUCCESS)
403 return result;
404
405 *state = (struct block_map_state_2_0) {
406 .flat_page_origin = flat_page_origin,
407 .flat_page_count = flat_page_count,
408 .root_origin = root_origin,
409 .root_count = root_count,
410 };
411
412 return VDO_SUCCESS;
413 }
414
encode_block_map_state_2_0(u8 * buffer,size_t * offset,struct block_map_state_2_0 state)415 static void encode_block_map_state_2_0(u8 *buffer, size_t *offset,
416 struct block_map_state_2_0 state)
417 {
418 size_t initial_offset;
419
420 vdo_encode_header(buffer, offset, &VDO_BLOCK_MAP_HEADER_2_0);
421
422 initial_offset = *offset;
423 encode_u64_le(buffer, offset, state.flat_page_origin);
424 encode_u64_le(buffer, offset, state.flat_page_count);
425 encode_u64_le(buffer, offset, state.root_origin);
426 encode_u64_le(buffer, offset, state.root_count);
427
428 VDO_ASSERT_LOG_ONLY(VDO_BLOCK_MAP_HEADER_2_0.size == *offset - initial_offset,
429 "encoded block map component size must match header size");
430 }
431
432 /**
433 * vdo_compute_new_forest_pages() - Compute the number of pages which must be allocated at each
434 * level in order to grow the forest to a new number of entries.
435 * @entries: The new number of entries the block map must address.
436 *
437 * Return: The total number of non-leaf pages required.
438 */
vdo_compute_new_forest_pages(root_count_t root_count,struct boundary * old_sizes,block_count_t entries,struct boundary * new_sizes)439 block_count_t vdo_compute_new_forest_pages(root_count_t root_count,
440 struct boundary *old_sizes,
441 block_count_t entries,
442 struct boundary *new_sizes)
443 {
444 page_count_t leaf_pages = max(vdo_compute_block_map_page_count(entries), 1U);
445 page_count_t level_size = DIV_ROUND_UP(leaf_pages, root_count);
446 block_count_t total_pages = 0;
447 height_t height;
448
449 for (height = 0; height < VDO_BLOCK_MAP_TREE_HEIGHT; height++) {
450 block_count_t new_pages;
451
452 level_size = DIV_ROUND_UP(level_size, VDO_BLOCK_MAP_ENTRIES_PER_PAGE);
453 new_sizes->levels[height] = level_size;
454 new_pages = level_size;
455 if (old_sizes != NULL)
456 new_pages -= old_sizes->levels[height];
457 total_pages += (new_pages * root_count);
458 }
459
460 return total_pages;
461 }
462
463 /**
464 * encode_recovery_journal_state_7_0() - Encode the state of a recovery journal.
465 *
466 * Return: VDO_SUCCESS or an error code.
467 */
encode_recovery_journal_state_7_0(u8 * buffer,size_t * offset,struct recovery_journal_state_7_0 state)468 static void encode_recovery_journal_state_7_0(u8 *buffer, size_t *offset,
469 struct recovery_journal_state_7_0 state)
470 {
471 size_t initial_offset;
472
473 vdo_encode_header(buffer, offset, &VDO_RECOVERY_JOURNAL_HEADER_7_0);
474
475 initial_offset = *offset;
476 encode_u64_le(buffer, offset, state.journal_start);
477 encode_u64_le(buffer, offset, state.logical_blocks_used);
478 encode_u64_le(buffer, offset, state.block_map_data_blocks);
479
480 VDO_ASSERT_LOG_ONLY(VDO_RECOVERY_JOURNAL_HEADER_7_0.size == *offset - initial_offset,
481 "encoded recovery journal component size must match header size");
482 }
483
484 /**
485 * decode_recovery_journal_state_7_0() - Decode the state of a recovery journal saved in a buffer.
486 * @buffer: The buffer containing the saved state.
487 * @state: A pointer to a recovery journal state to hold the result of a successful decode.
488 *
489 * Return: VDO_SUCCESS or an error code.
490 */
decode_recovery_journal_state_7_0(u8 * buffer,size_t * offset,struct recovery_journal_state_7_0 * state)491 static int __must_check decode_recovery_journal_state_7_0(u8 *buffer, size_t *offset,
492 struct recovery_journal_state_7_0 *state)
493 {
494 struct header header;
495 int result;
496 size_t initial_offset;
497 sequence_number_t journal_start;
498 block_count_t logical_blocks_used, block_map_data_blocks;
499
500 vdo_decode_header(buffer, offset, &header);
501 result = vdo_validate_header(&VDO_RECOVERY_JOURNAL_HEADER_7_0, &header, true,
502 __func__);
503 if (result != VDO_SUCCESS)
504 return result;
505
506 initial_offset = *offset;
507 decode_u64_le(buffer, offset, &journal_start);
508 decode_u64_le(buffer, offset, &logical_blocks_used);
509 decode_u64_le(buffer, offset, &block_map_data_blocks);
510
511 result = VDO_ASSERT(VDO_RECOVERY_JOURNAL_HEADER_7_0.size == *offset - initial_offset,
512 "decoded recovery journal component size must match header size");
513 if (result != VDO_SUCCESS)
514 return result;
515
516 *state = (struct recovery_journal_state_7_0) {
517 .journal_start = journal_start,
518 .logical_blocks_used = logical_blocks_used,
519 .block_map_data_blocks = block_map_data_blocks,
520 };
521
522 return VDO_SUCCESS;
523 }
524
525 /**
526 * vdo_get_journal_operation_name() - Get the name of a journal operation.
527 * @operation: The operation to name.
528 *
529 * Return: The name of the operation.
530 */
vdo_get_journal_operation_name(enum journal_operation operation)531 const char *vdo_get_journal_operation_name(enum journal_operation operation)
532 {
533 switch (operation) {
534 case VDO_JOURNAL_DATA_REMAPPING:
535 return "data remapping";
536
537 case VDO_JOURNAL_BLOCK_MAP_REMAPPING:
538 return "block map remapping";
539
540 default:
541 return "unknown journal operation";
542 }
543 }
544
545 /**
546 * encode_slab_depot_state_2_0() - Encode the state of a slab depot into a buffer.
547 */
encode_slab_depot_state_2_0(u8 * buffer,size_t * offset,struct slab_depot_state_2_0 state)548 static void encode_slab_depot_state_2_0(u8 *buffer, size_t *offset,
549 struct slab_depot_state_2_0 state)
550 {
551 size_t initial_offset;
552
553 vdo_encode_header(buffer, offset, &VDO_SLAB_DEPOT_HEADER_2_0);
554
555 initial_offset = *offset;
556 encode_u64_le(buffer, offset, state.slab_config.slab_blocks);
557 encode_u64_le(buffer, offset, state.slab_config.data_blocks);
558 encode_u64_le(buffer, offset, state.slab_config.reference_count_blocks);
559 encode_u64_le(buffer, offset, state.slab_config.slab_journal_blocks);
560 encode_u64_le(buffer, offset, state.slab_config.slab_journal_flushing_threshold);
561 encode_u64_le(buffer, offset, state.slab_config.slab_journal_blocking_threshold);
562 encode_u64_le(buffer, offset, state.slab_config.slab_journal_scrubbing_threshold);
563 encode_u64_le(buffer, offset, state.first_block);
564 encode_u64_le(buffer, offset, state.last_block);
565 buffer[(*offset)++] = state.zone_count;
566
567 VDO_ASSERT_LOG_ONLY(VDO_SLAB_DEPOT_HEADER_2_0.size == *offset - initial_offset,
568 "encoded block map component size must match header size");
569 }
570
571 /**
572 * decode_slab_depot_state_2_0() - Decode slab depot component state version 2.0 from a buffer.
573 *
574 * Return: VDO_SUCCESS or an error code.
575 */
decode_slab_depot_state_2_0(u8 * buffer,size_t * offset,struct slab_depot_state_2_0 * state)576 static int decode_slab_depot_state_2_0(u8 *buffer, size_t *offset,
577 struct slab_depot_state_2_0 *state)
578 {
579 struct header header;
580 int result;
581 size_t initial_offset;
582 struct slab_config slab_config;
583 block_count_t count;
584 physical_block_number_t first_block, last_block;
585 zone_count_t zone_count;
586
587 vdo_decode_header(buffer, offset, &header);
588 result = vdo_validate_header(&VDO_SLAB_DEPOT_HEADER_2_0, &header, true,
589 __func__);
590 if (result != VDO_SUCCESS)
591 return result;
592
593 initial_offset = *offset;
594 decode_u64_le(buffer, offset, &count);
595 slab_config.slab_blocks = count;
596
597 decode_u64_le(buffer, offset, &count);
598 slab_config.data_blocks = count;
599
600 decode_u64_le(buffer, offset, &count);
601 slab_config.reference_count_blocks = count;
602
603 decode_u64_le(buffer, offset, &count);
604 slab_config.slab_journal_blocks = count;
605
606 decode_u64_le(buffer, offset, &count);
607 slab_config.slab_journal_flushing_threshold = count;
608
609 decode_u64_le(buffer, offset, &count);
610 slab_config.slab_journal_blocking_threshold = count;
611
612 decode_u64_le(buffer, offset, &count);
613 slab_config.slab_journal_scrubbing_threshold = count;
614
615 decode_u64_le(buffer, offset, &first_block);
616 decode_u64_le(buffer, offset, &last_block);
617 zone_count = buffer[(*offset)++];
618
619 result = VDO_ASSERT(VDO_SLAB_DEPOT_HEADER_2_0.size == *offset - initial_offset,
620 "decoded slab depot component size must match header size");
621 if (result != VDO_SUCCESS)
622 return result;
623
624 *state = (struct slab_depot_state_2_0) {
625 .slab_config = slab_config,
626 .first_block = first_block,
627 .last_block = last_block,
628 .zone_count = zone_count,
629 };
630
631 return VDO_SUCCESS;
632 }
633
634 /**
635 * vdo_configure_slab_depot() - Configure the slab depot.
636 * @partition: The slab depot partition
637 * @slab_config: The configuration of a single slab.
638 * @zone_count: The number of zones the depot will use.
639 * @state: The state structure to be configured.
640 *
641 * Configures the slab_depot for the specified storage capacity, finding the number of data blocks
642 * that will fit and still leave room for the depot metadata, then return the saved state for that
643 * configuration.
644 *
645 * Return: VDO_SUCCESS or an error code.
646 */
vdo_configure_slab_depot(const struct partition * partition,struct slab_config slab_config,zone_count_t zone_count,struct slab_depot_state_2_0 * state)647 int vdo_configure_slab_depot(const struct partition *partition,
648 struct slab_config slab_config, zone_count_t zone_count,
649 struct slab_depot_state_2_0 *state)
650 {
651 block_count_t total_slab_blocks, total_data_blocks;
652 size_t slab_count;
653 physical_block_number_t last_block;
654 block_count_t slab_size = slab_config.slab_blocks;
655
656 vdo_log_debug("slabDepot %s(block_count=%llu, first_block=%llu, slab_size=%llu, zone_count=%u)",
657 __func__, (unsigned long long) partition->count,
658 (unsigned long long) partition->offset,
659 (unsigned long long) slab_size, zone_count);
660
661 /* We do not allow runt slabs, so we waste up to a slab's worth. */
662 slab_count = (partition->count / slab_size);
663 if (slab_count == 0)
664 return VDO_NO_SPACE;
665
666 if (slab_count > MAX_VDO_SLABS)
667 return VDO_TOO_MANY_SLABS;
668
669 total_slab_blocks = slab_count * slab_config.slab_blocks;
670 total_data_blocks = slab_count * slab_config.data_blocks;
671 last_block = partition->offset + total_slab_blocks;
672
673 *state = (struct slab_depot_state_2_0) {
674 .slab_config = slab_config,
675 .first_block = partition->offset,
676 .last_block = last_block,
677 .zone_count = zone_count,
678 };
679
680 vdo_log_debug("slab_depot last_block=%llu, total_data_blocks=%llu, slab_count=%zu, left_over=%llu",
681 (unsigned long long) last_block,
682 (unsigned long long) total_data_blocks, slab_count,
683 (unsigned long long) (partition->count - (last_block - partition->offset)));
684
685 return VDO_SUCCESS;
686 }
687
688 /**
689 * vdo_configure_slab() - Measure and initialize the configuration to use for each slab.
690 * @slab_size: The number of blocks per slab.
691 * @slab_journal_blocks: The number of blocks for the slab journal.
692 * @slab_config: The slab configuration to initialize.
693 *
694 * Return: VDO_SUCCESS or an error code.
695 */
vdo_configure_slab(block_count_t slab_size,block_count_t slab_journal_blocks,struct slab_config * slab_config)696 int vdo_configure_slab(block_count_t slab_size, block_count_t slab_journal_blocks,
697 struct slab_config *slab_config)
698 {
699 block_count_t ref_blocks, meta_blocks, data_blocks;
700 block_count_t flushing_threshold, remaining, blocking_threshold;
701 block_count_t minimal_extra_space, scrubbing_threshold;
702
703 if (slab_journal_blocks >= slab_size)
704 return VDO_BAD_CONFIGURATION;
705
706 /*
707 * This calculation should technically be a recurrence, but the total number of metadata
708 * blocks is currently less than a single block of ref_counts, so we'd gain at most one
709 * data block in each slab with more iteration.
710 */
711 ref_blocks = vdo_get_saved_reference_count_size(slab_size - slab_journal_blocks);
712 meta_blocks = (ref_blocks + slab_journal_blocks);
713
714 /* Make sure test code hasn't configured slabs to be too small. */
715 if (meta_blocks >= slab_size)
716 return VDO_BAD_CONFIGURATION;
717
718 /*
719 * If the slab size is very small, assume this must be a unit test and override the number
720 * of data blocks to be a power of two (wasting blocks in the slab). Many tests need their
721 * data_blocks fields to be the exact capacity of the configured volume, and that used to
722 * fall out since they use a power of two for the number of data blocks, the slab size was
723 * a power of two, and every block in a slab was a data block.
724 *
725 * TODO: Try to figure out some way of structuring testParameters and unit tests so this
726 * hack isn't needed without having to edit several unit tests every time the metadata size
727 * changes by one block.
728 */
729 data_blocks = slab_size - meta_blocks;
730 if ((slab_size < 1024) && !is_power_of_2(data_blocks))
731 data_blocks = ((block_count_t) 1 << ilog2(data_blocks));
732
733 /*
734 * Configure the slab journal thresholds. The flush threshold is 168 of 224 blocks in
735 * production, or 3/4ths, so we use this ratio for all sizes.
736 */
737 flushing_threshold = ((slab_journal_blocks * 3) + 3) / 4;
738 /*
739 * The blocking threshold should be far enough from the flushing threshold to not produce
740 * delays, but far enough from the end of the journal to allow multiple successive recovery
741 * failures.
742 */
743 remaining = slab_journal_blocks - flushing_threshold;
744 blocking_threshold = flushing_threshold + ((remaining * 5) / 7);
745 /* The scrubbing threshold should be at least 2048 entries before the end of the journal. */
746 minimal_extra_space = 1 + (MAXIMUM_VDO_USER_VIOS / VDO_SLAB_JOURNAL_FULL_ENTRIES_PER_BLOCK);
747 scrubbing_threshold = blocking_threshold;
748 if (slab_journal_blocks > minimal_extra_space)
749 scrubbing_threshold = slab_journal_blocks - minimal_extra_space;
750 if (blocking_threshold > scrubbing_threshold)
751 blocking_threshold = scrubbing_threshold;
752
753 *slab_config = (struct slab_config) {
754 .slab_blocks = slab_size,
755 .data_blocks = data_blocks,
756 .reference_count_blocks = ref_blocks,
757 .slab_journal_blocks = slab_journal_blocks,
758 .slab_journal_flushing_threshold = flushing_threshold,
759 .slab_journal_blocking_threshold = blocking_threshold,
760 .slab_journal_scrubbing_threshold = scrubbing_threshold};
761 return VDO_SUCCESS;
762 }
763
764 /**
765 * vdo_decode_slab_journal_entry() - Decode a slab journal entry.
766 * @block: The journal block holding the entry.
767 * @entry_count: The number of the entry.
768 *
769 * Return: The decoded entry.
770 */
vdo_decode_slab_journal_entry(struct packed_slab_journal_block * block,journal_entry_count_t entry_count)771 struct slab_journal_entry vdo_decode_slab_journal_entry(struct packed_slab_journal_block *block,
772 journal_entry_count_t entry_count)
773 {
774 struct slab_journal_entry entry =
775 vdo_unpack_slab_journal_entry(&block->payload.entries[entry_count]);
776
777 if (block->header.has_block_map_increments &&
778 ((block->payload.full_entries.entry_types[entry_count / 8] &
779 ((u8) 1 << (entry_count % 8))) != 0))
780 entry.operation = VDO_JOURNAL_BLOCK_MAP_REMAPPING;
781
782 return entry;
783 }
784
785 /**
786 * allocate_partition() - Allocate a partition and add it to a layout.
787 * @layout: The layout containing the partition.
788 * @id: The id of the partition.
789 * @offset: The offset into the layout at which the partition begins.
790 * @size: The size of the partition in blocks.
791 *
792 * Return: VDO_SUCCESS or an error.
793 */
allocate_partition(struct layout * layout,u8 id,physical_block_number_t offset,block_count_t size)794 static int allocate_partition(struct layout *layout, u8 id,
795 physical_block_number_t offset, block_count_t size)
796 {
797 struct partition *partition;
798 int result;
799
800 result = vdo_allocate(1, struct partition, __func__, &partition);
801 if (result != VDO_SUCCESS)
802 return result;
803
804 partition->id = id;
805 partition->offset = offset;
806 partition->count = size;
807 partition->next = layout->head;
808 layout->head = partition;
809
810 return VDO_SUCCESS;
811 }
812
813 /**
814 * make_partition() - Create a new partition from the beginning or end of the unused space in a
815 * layout.
816 * @layout: The layout.
817 * @id: The id of the partition to make.
818 * @size: The number of blocks to carve out; if 0, all remaining space will be used.
819 * @beginning: True if the partition should start at the beginning of the unused space.
820 *
821 * Return: A success or error code, particularly VDO_NO_SPACE if there are fewer than size blocks
822 * remaining.
823 */
make_partition(struct layout * layout,enum partition_id id,block_count_t size,bool beginning)824 static int __must_check make_partition(struct layout *layout, enum partition_id id,
825 block_count_t size, bool beginning)
826 {
827 int result;
828 physical_block_number_t offset;
829 block_count_t free_blocks = layout->last_free - layout->first_free;
830
831 if (size == 0) {
832 if (free_blocks == 0)
833 return VDO_NO_SPACE;
834 size = free_blocks;
835 } else if (size > free_blocks) {
836 return VDO_NO_SPACE;
837 }
838
839 result = vdo_get_partition(layout, id, NULL);
840 if (result != VDO_UNKNOWN_PARTITION)
841 return VDO_PARTITION_EXISTS;
842
843 offset = beginning ? layout->first_free : (layout->last_free - size);
844
845 result = allocate_partition(layout, id, offset, size);
846 if (result != VDO_SUCCESS)
847 return result;
848
849 layout->num_partitions++;
850 if (beginning)
851 layout->first_free += size;
852 else
853 layout->last_free = layout->last_free - size;
854
855 return VDO_SUCCESS;
856 }
857
858 /**
859 * vdo_initialize_layout() - Lay out the partitions of a vdo.
860 * @size: The entire size of the vdo.
861 * @origin: The start of the layout on the underlying storage in blocks.
862 * @block_map_blocks: The size of the block map partition.
863 * @journal_blocks: The size of the journal partition.
864 * @summary_blocks: The size of the slab summary partition.
865 * @layout: The layout to initialize.
866 *
867 * Return: VDO_SUCCESS or an error.
868 */
vdo_initialize_layout(block_count_t size,physical_block_number_t offset,block_count_t block_map_blocks,block_count_t journal_blocks,block_count_t summary_blocks,struct layout * layout)869 int vdo_initialize_layout(block_count_t size, physical_block_number_t offset,
870 block_count_t block_map_blocks, block_count_t journal_blocks,
871 block_count_t summary_blocks, struct layout *layout)
872 {
873 int result;
874 block_count_t necessary_size =
875 (offset + block_map_blocks + journal_blocks + summary_blocks);
876
877 if (necessary_size > size)
878 return vdo_log_error_strerror(VDO_NO_SPACE,
879 "Not enough space to make a VDO");
880
881 *layout = (struct layout) {
882 .start = offset,
883 .size = size,
884 .first_free = offset,
885 .last_free = size,
886 .num_partitions = 0,
887 .head = NULL,
888 };
889
890 result = make_partition(layout, VDO_BLOCK_MAP_PARTITION, block_map_blocks, true);
891 if (result != VDO_SUCCESS) {
892 vdo_uninitialize_layout(layout);
893 return result;
894 }
895
896 result = make_partition(layout, VDO_SLAB_SUMMARY_PARTITION, summary_blocks,
897 false);
898 if (result != VDO_SUCCESS) {
899 vdo_uninitialize_layout(layout);
900 return result;
901 }
902
903 result = make_partition(layout, VDO_RECOVERY_JOURNAL_PARTITION, journal_blocks,
904 false);
905 if (result != VDO_SUCCESS) {
906 vdo_uninitialize_layout(layout);
907 return result;
908 }
909
910 result = make_partition(layout, VDO_SLAB_DEPOT_PARTITION, 0, true);
911 if (result != VDO_SUCCESS)
912 vdo_uninitialize_layout(layout);
913
914 return result;
915 }
916
917 /**
918 * vdo_uninitialize_layout() - Clean up a layout.
919 * @layout: The layout to clean up.
920 *
921 * All partitions created by this layout become invalid pointers.
922 */
vdo_uninitialize_layout(struct layout * layout)923 void vdo_uninitialize_layout(struct layout *layout)
924 {
925 while (layout->head != NULL) {
926 struct partition *part = layout->head;
927
928 layout->head = part->next;
929 vdo_free(part);
930 }
931
932 memset(layout, 0, sizeof(struct layout));
933 }
934
935 /**
936 * vdo_get_partition() - Get a partition by id.
937 * @layout: The layout from which to get a partition.
938 * @id: The id of the partition.
939 * @partition_ptr: A pointer to hold the partition.
940 *
941 * Return: VDO_SUCCESS or an error.
942 */
vdo_get_partition(struct layout * layout,enum partition_id id,struct partition ** partition_ptr)943 int vdo_get_partition(struct layout *layout, enum partition_id id,
944 struct partition **partition_ptr)
945 {
946 struct partition *partition;
947
948 for (partition = layout->head; partition != NULL; partition = partition->next) {
949 if (partition->id == id) {
950 if (partition_ptr != NULL)
951 *partition_ptr = partition;
952 return VDO_SUCCESS;
953 }
954 }
955
956 return VDO_UNKNOWN_PARTITION;
957 }
958
959 /**
960 * vdo_get_known_partition() - Get a partition by id from a validated layout.
961 * @layout: The layout from which to get a partition.
962 * @id: The id of the partition.
963 *
964 * Return: the partition
965 */
vdo_get_known_partition(struct layout * layout,enum partition_id id)966 struct partition *vdo_get_known_partition(struct layout *layout, enum partition_id id)
967 {
968 struct partition *partition;
969 int result = vdo_get_partition(layout, id, &partition);
970
971 VDO_ASSERT_LOG_ONLY(result == VDO_SUCCESS, "layout has expected partition: %u", id);
972
973 return partition;
974 }
975
encode_layout(u8 * buffer,size_t * offset,const struct layout * layout)976 static void encode_layout(u8 *buffer, size_t *offset, const struct layout *layout)
977 {
978 const struct partition *partition;
979 size_t initial_offset;
980 struct header header = VDO_LAYOUT_HEADER_3_0;
981
982 BUILD_BUG_ON(sizeof(enum partition_id) != sizeof(u8));
983 VDO_ASSERT_LOG_ONLY(layout->num_partitions <= U8_MAX,
984 "layout partition count must fit in a byte");
985
986 vdo_encode_header(buffer, offset, &header);
987
988 initial_offset = *offset;
989 encode_u64_le(buffer, offset, layout->first_free);
990 encode_u64_le(buffer, offset, layout->last_free);
991 buffer[(*offset)++] = layout->num_partitions;
992
993 VDO_ASSERT_LOG_ONLY(sizeof(struct layout_3_0) == *offset - initial_offset,
994 "encoded size of a layout header must match structure");
995
996 for (partition = layout->head; partition != NULL; partition = partition->next) {
997 buffer[(*offset)++] = partition->id;
998 encode_u64_le(buffer, offset, partition->offset);
999 /* This field only exists for backwards compatibility */
1000 encode_u64_le(buffer, offset, 0);
1001 encode_u64_le(buffer, offset, partition->count);
1002 }
1003
1004 VDO_ASSERT_LOG_ONLY(header.size == *offset - initial_offset,
1005 "encoded size of a layout must match header size");
1006 }
1007
decode_layout(u8 * buffer,size_t * offset,physical_block_number_t start,block_count_t size,struct layout * layout)1008 static int decode_layout(u8 *buffer, size_t *offset, physical_block_number_t start,
1009 block_count_t size, struct layout *layout)
1010 {
1011 struct header header;
1012 struct layout_3_0 layout_header;
1013 struct partition *partition;
1014 size_t initial_offset;
1015 physical_block_number_t first_free, last_free;
1016 u8 partition_count;
1017 u8 i;
1018 int result;
1019
1020 vdo_decode_header(buffer, offset, &header);
1021 /* Layout is variable size, so only do a minimum size check here. */
1022 result = vdo_validate_header(&VDO_LAYOUT_HEADER_3_0, &header, false, __func__);
1023 if (result != VDO_SUCCESS)
1024 return result;
1025
1026 initial_offset = *offset;
1027 decode_u64_le(buffer, offset, &first_free);
1028 decode_u64_le(buffer, offset, &last_free);
1029 partition_count = buffer[(*offset)++];
1030 layout_header = (struct layout_3_0) {
1031 .first_free = first_free,
1032 .last_free = last_free,
1033 .partition_count = partition_count,
1034 };
1035
1036 result = VDO_ASSERT(sizeof(struct layout_3_0) == *offset - initial_offset,
1037 "decoded size of a layout header must match structure");
1038 if (result != VDO_SUCCESS)
1039 return result;
1040
1041 layout->start = start;
1042 layout->size = size;
1043 layout->first_free = layout_header.first_free;
1044 layout->last_free = layout_header.last_free;
1045 layout->num_partitions = layout_header.partition_count;
1046
1047 if (layout->num_partitions > VDO_PARTITION_COUNT) {
1048 return vdo_log_error_strerror(VDO_UNKNOWN_PARTITION,
1049 "layout has extra partitions");
1050 }
1051
1052 for (i = 0; i < layout->num_partitions; i++) {
1053 u8 id;
1054 u64 partition_offset, count;
1055
1056 id = buffer[(*offset)++];
1057 decode_u64_le(buffer, offset, &partition_offset);
1058 *offset += sizeof(u64);
1059 decode_u64_le(buffer, offset, &count);
1060
1061 result = allocate_partition(layout, id, partition_offset, count);
1062 if (result != VDO_SUCCESS) {
1063 vdo_uninitialize_layout(layout);
1064 return result;
1065 }
1066 }
1067
1068 /* Validate that the layout has all (and only) the required partitions */
1069 for (i = 0; i < VDO_PARTITION_COUNT; i++) {
1070 result = vdo_get_partition(layout, REQUIRED_PARTITIONS[i], &partition);
1071 if (result != VDO_SUCCESS) {
1072 vdo_uninitialize_layout(layout);
1073 return vdo_log_error_strerror(result,
1074 "layout is missing required partition %u",
1075 REQUIRED_PARTITIONS[i]);
1076 }
1077
1078 start += partition->count;
1079 }
1080
1081 if (start != size) {
1082 vdo_uninitialize_layout(layout);
1083 return vdo_log_error_strerror(UDS_BAD_STATE,
1084 "partitions do not cover the layout");
1085 }
1086
1087 return VDO_SUCCESS;
1088 }
1089
1090 /**
1091 * pack_vdo_config() - Convert a vdo_config to its packed on-disk representation.
1092 * @config: The vdo config to convert.
1093 *
1094 * Return: The platform-independent representation of the config.
1095 */
pack_vdo_config(struct vdo_config config)1096 static struct packed_vdo_config pack_vdo_config(struct vdo_config config)
1097 {
1098 return (struct packed_vdo_config) {
1099 .logical_blocks = __cpu_to_le64(config.logical_blocks),
1100 .physical_blocks = __cpu_to_le64(config.physical_blocks),
1101 .slab_size = __cpu_to_le64(config.slab_size),
1102 .recovery_journal_size = __cpu_to_le64(config.recovery_journal_size),
1103 .slab_journal_blocks = __cpu_to_le64(config.slab_journal_blocks),
1104 };
1105 }
1106
1107 /**
1108 * pack_vdo_component() - Convert a vdo_component to its packed on-disk representation.
1109 * @component: The VDO component data to convert.
1110 *
1111 * Return: The platform-independent representation of the component.
1112 */
pack_vdo_component(const struct vdo_component component)1113 static struct packed_vdo_component_41_0 pack_vdo_component(const struct vdo_component component)
1114 {
1115 return (struct packed_vdo_component_41_0) {
1116 .state = __cpu_to_le32(component.state),
1117 .complete_recoveries = __cpu_to_le64(component.complete_recoveries),
1118 .read_only_recoveries = __cpu_to_le64(component.read_only_recoveries),
1119 .config = pack_vdo_config(component.config),
1120 .nonce = __cpu_to_le64(component.nonce),
1121 };
1122 }
1123
encode_vdo_component(u8 * buffer,size_t * offset,struct vdo_component component)1124 static void encode_vdo_component(u8 *buffer, size_t *offset,
1125 struct vdo_component component)
1126 {
1127 struct packed_vdo_component_41_0 packed;
1128
1129 encode_version_number(buffer, offset, VDO_COMPONENT_DATA_41_0);
1130 packed = pack_vdo_component(component);
1131 memcpy(buffer + *offset, &packed, sizeof(packed));
1132 *offset += sizeof(packed);
1133 }
1134
1135 /**
1136 * unpack_vdo_config() - Convert a packed_vdo_config to its native in-memory representation.
1137 * @config: The packed vdo config to convert.
1138 *
1139 * Return: The native in-memory representation of the vdo config.
1140 */
unpack_vdo_config(struct packed_vdo_config config)1141 static struct vdo_config unpack_vdo_config(struct packed_vdo_config config)
1142 {
1143 return (struct vdo_config) {
1144 .logical_blocks = __le64_to_cpu(config.logical_blocks),
1145 .physical_blocks = __le64_to_cpu(config.physical_blocks),
1146 .slab_size = __le64_to_cpu(config.slab_size),
1147 .recovery_journal_size = __le64_to_cpu(config.recovery_journal_size),
1148 .slab_journal_blocks = __le64_to_cpu(config.slab_journal_blocks),
1149 };
1150 }
1151
1152 /**
1153 * unpack_vdo_component_41_0() - Convert a packed_vdo_component_41_0 to its native in-memory
1154 * representation.
1155 * @component: The packed vdo component data to convert.
1156 *
1157 * Return: The native in-memory representation of the component.
1158 */
unpack_vdo_component_41_0(struct packed_vdo_component_41_0 component)1159 static struct vdo_component unpack_vdo_component_41_0(struct packed_vdo_component_41_0 component)
1160 {
1161 return (struct vdo_component) {
1162 .state = __le32_to_cpu(component.state),
1163 .complete_recoveries = __le64_to_cpu(component.complete_recoveries),
1164 .read_only_recoveries = __le64_to_cpu(component.read_only_recoveries),
1165 .config = unpack_vdo_config(component.config),
1166 .nonce = __le64_to_cpu(component.nonce),
1167 };
1168 }
1169
1170 /**
1171 * decode_vdo_component() - Decode the component data for the vdo itself out of the super block.
1172 *
1173 * Return: VDO_SUCCESS or an error.
1174 */
decode_vdo_component(u8 * buffer,size_t * offset,struct vdo_component * component)1175 static int decode_vdo_component(u8 *buffer, size_t *offset, struct vdo_component *component)
1176 {
1177 struct version_number version;
1178 struct packed_vdo_component_41_0 packed;
1179 int result;
1180
1181 decode_version_number(buffer, offset, &version);
1182 result = validate_version(version, VDO_COMPONENT_DATA_41_0,
1183 "VDO component data");
1184 if (result != VDO_SUCCESS)
1185 return result;
1186
1187 memcpy(&packed, buffer + *offset, sizeof(packed));
1188 *offset += sizeof(packed);
1189 *component = unpack_vdo_component_41_0(packed);
1190 return VDO_SUCCESS;
1191 }
1192
1193 /**
1194 * vdo_validate_config() - Validate constraints on a VDO config.
1195 * @config: The VDO config.
1196 * @physical_block_count: The minimum block count of the underlying storage.
1197 * @logical_block_count: The expected logical size of the VDO, or 0 if the logical size may be
1198 * unspecified.
1199 *
1200 * Return: A success or error code.
1201 */
vdo_validate_config(const struct vdo_config * config,block_count_t physical_block_count,block_count_t logical_block_count)1202 int vdo_validate_config(const struct vdo_config *config,
1203 block_count_t physical_block_count,
1204 block_count_t logical_block_count)
1205 {
1206 struct slab_config slab_config;
1207 int result;
1208
1209 result = VDO_ASSERT(config->slab_size > 0, "slab size unspecified");
1210 if (result != VDO_SUCCESS)
1211 return result;
1212
1213 result = VDO_ASSERT(is_power_of_2(config->slab_size),
1214 "slab size must be a power of two");
1215 if (result != VDO_SUCCESS)
1216 return result;
1217
1218 result = VDO_ASSERT(config->slab_size <= (1 << MAX_VDO_SLAB_BITS),
1219 "slab size must be less than or equal to 2^%d",
1220 MAX_VDO_SLAB_BITS);
1221 if (result != VDO_SUCCESS)
1222 return result;
1223
1224 result = VDO_ASSERT(config->slab_journal_blocks >= MINIMUM_VDO_SLAB_JOURNAL_BLOCKS,
1225 "slab journal size meets minimum size");
1226 if (result != VDO_SUCCESS)
1227 return result;
1228
1229 result = VDO_ASSERT(config->slab_journal_blocks <= config->slab_size,
1230 "slab journal size is within expected bound");
1231 if (result != VDO_SUCCESS)
1232 return result;
1233
1234 result = vdo_configure_slab(config->slab_size, config->slab_journal_blocks,
1235 &slab_config);
1236 if (result != VDO_SUCCESS)
1237 return result;
1238
1239 result = VDO_ASSERT((slab_config.data_blocks >= 1),
1240 "slab must be able to hold at least one block");
1241 if (result != VDO_SUCCESS)
1242 return result;
1243
1244 result = VDO_ASSERT(config->physical_blocks > 0, "physical blocks unspecified");
1245 if (result != VDO_SUCCESS)
1246 return result;
1247
1248 result = VDO_ASSERT(config->physical_blocks <= MAXIMUM_VDO_PHYSICAL_BLOCKS,
1249 "physical block count %llu exceeds maximum %llu",
1250 (unsigned long long) config->physical_blocks,
1251 (unsigned long long) MAXIMUM_VDO_PHYSICAL_BLOCKS);
1252 if (result != VDO_SUCCESS)
1253 return VDO_OUT_OF_RANGE;
1254
1255 if (physical_block_count != config->physical_blocks) {
1256 vdo_log_error("A physical size of %llu blocks was specified, not the %llu blocks configured in the vdo super block",
1257 (unsigned long long) physical_block_count,
1258 (unsigned long long) config->physical_blocks);
1259 return VDO_PARAMETER_MISMATCH;
1260 }
1261
1262 if (logical_block_count > 0) {
1263 result = VDO_ASSERT((config->logical_blocks > 0),
1264 "logical blocks unspecified");
1265 if (result != VDO_SUCCESS)
1266 return result;
1267
1268 if (logical_block_count != config->logical_blocks) {
1269 vdo_log_error("A logical size of %llu blocks was specified, but that differs from the %llu blocks configured in the vdo super block",
1270 (unsigned long long) logical_block_count,
1271 (unsigned long long) config->logical_blocks);
1272 return VDO_PARAMETER_MISMATCH;
1273 }
1274 }
1275
1276 result = VDO_ASSERT(config->logical_blocks <= MAXIMUM_VDO_LOGICAL_BLOCKS,
1277 "logical blocks too large");
1278 if (result != VDO_SUCCESS)
1279 return result;
1280
1281 result = VDO_ASSERT(config->recovery_journal_size > 0,
1282 "recovery journal size unspecified");
1283 if (result != VDO_SUCCESS)
1284 return result;
1285
1286 result = VDO_ASSERT(is_power_of_2(config->recovery_journal_size),
1287 "recovery journal size must be a power of two");
1288 if (result != VDO_SUCCESS)
1289 return result;
1290
1291 return result;
1292 }
1293
1294 /**
1295 * vdo_destroy_component_states() - Clean up any allocations in a vdo_component_states.
1296 * @states: The component states to destroy.
1297 */
vdo_destroy_component_states(struct vdo_component_states * states)1298 void vdo_destroy_component_states(struct vdo_component_states *states)
1299 {
1300 if (states == NULL)
1301 return;
1302
1303 vdo_uninitialize_layout(&states->layout);
1304 }
1305
1306 /**
1307 * decode_components() - Decode the components now that we know the component data is a version we
1308 * understand.
1309 * @buffer: The buffer being decoded.
1310 * @offset: The offset to start decoding from.
1311 * @geometry: The vdo geometry
1312 * @states: An object to hold the successfully decoded state.
1313 *
1314 * Return: VDO_SUCCESS or an error.
1315 */
decode_components(u8 * buffer,size_t * offset,struct volume_geometry * geometry,struct vdo_component_states * states)1316 static int __must_check decode_components(u8 *buffer, size_t *offset,
1317 struct volume_geometry *geometry,
1318 struct vdo_component_states *states)
1319 {
1320 int result;
1321
1322 decode_vdo_component(buffer, offset, &states->vdo);
1323
1324 result = decode_layout(buffer, offset, vdo_get_data_region_start(*geometry) + 1,
1325 states->vdo.config.physical_blocks, &states->layout);
1326 if (result != VDO_SUCCESS)
1327 return result;
1328
1329 result = decode_recovery_journal_state_7_0(buffer, offset,
1330 &states->recovery_journal);
1331 if (result != VDO_SUCCESS)
1332 return result;
1333
1334 result = decode_slab_depot_state_2_0(buffer, offset, &states->slab_depot);
1335 if (result != VDO_SUCCESS)
1336 return result;
1337
1338 result = decode_block_map_state_2_0(buffer, offset, &states->block_map);
1339 if (result != VDO_SUCCESS)
1340 return result;
1341
1342 VDO_ASSERT_LOG_ONLY(*offset == VDO_COMPONENT_DATA_OFFSET + VDO_COMPONENT_DATA_SIZE,
1343 "All decoded component data was used");
1344 return VDO_SUCCESS;
1345 }
1346
1347 /**
1348 * vdo_decode_component_states() - Decode the payload of a super block.
1349 * @buffer: The buffer containing the encoded super block contents.
1350 * @geometry: The vdo geometry
1351 * @states: A pointer to hold the decoded states.
1352 *
1353 * Return: VDO_SUCCESS or an error.
1354 */
vdo_decode_component_states(u8 * buffer,struct volume_geometry * geometry,struct vdo_component_states * states)1355 int vdo_decode_component_states(u8 *buffer, struct volume_geometry *geometry,
1356 struct vdo_component_states *states)
1357 {
1358 int result;
1359 size_t offset = VDO_COMPONENT_DATA_OFFSET;
1360
1361 /* This is for backwards compatibility. */
1362 decode_u32_le(buffer, &offset, &states->unused);
1363
1364 /* Check the VDO volume version */
1365 decode_version_number(buffer, &offset, &states->volume_version);
1366 result = validate_version(VDO_VOLUME_VERSION_67_0, states->volume_version,
1367 "volume");
1368 if (result != VDO_SUCCESS)
1369 return result;
1370
1371 result = decode_components(buffer, &offset, geometry, states);
1372 if (result != VDO_SUCCESS)
1373 vdo_uninitialize_layout(&states->layout);
1374
1375 return result;
1376 }
1377
1378 /**
1379 * vdo_validate_component_states() - Validate the decoded super block configuration.
1380 * @states: The state decoded from the super block.
1381 * @geometry_nonce: The nonce from the geometry block.
1382 * @physical_size: The minimum block count of the underlying storage.
1383 * @logical_size: The expected logical size of the VDO, or 0 if the logical size may be
1384 * unspecified.
1385 *
1386 * Return: VDO_SUCCESS or an error if the configuration is invalid.
1387 */
vdo_validate_component_states(struct vdo_component_states * states,nonce_t geometry_nonce,block_count_t physical_size,block_count_t logical_size)1388 int vdo_validate_component_states(struct vdo_component_states *states,
1389 nonce_t geometry_nonce, block_count_t physical_size,
1390 block_count_t logical_size)
1391 {
1392 if (geometry_nonce != states->vdo.nonce) {
1393 return vdo_log_error_strerror(VDO_BAD_NONCE,
1394 "Geometry nonce %llu does not match superblock nonce %llu",
1395 (unsigned long long) geometry_nonce,
1396 (unsigned long long) states->vdo.nonce);
1397 }
1398
1399 return vdo_validate_config(&states->vdo.config, physical_size, logical_size);
1400 }
1401
1402 /**
1403 * vdo_encode_component_states() - Encode the state of all vdo components in the super block.
1404 */
vdo_encode_component_states(u8 * buffer,size_t * offset,const struct vdo_component_states * states)1405 static void vdo_encode_component_states(u8 *buffer, size_t *offset,
1406 const struct vdo_component_states *states)
1407 {
1408 /* This is for backwards compatibility. */
1409 encode_u32_le(buffer, offset, states->unused);
1410 encode_version_number(buffer, offset, states->volume_version);
1411 encode_vdo_component(buffer, offset, states->vdo);
1412 encode_layout(buffer, offset, &states->layout);
1413 encode_recovery_journal_state_7_0(buffer, offset, states->recovery_journal);
1414 encode_slab_depot_state_2_0(buffer, offset, states->slab_depot);
1415 encode_block_map_state_2_0(buffer, offset, states->block_map);
1416
1417 VDO_ASSERT_LOG_ONLY(*offset == VDO_COMPONENT_DATA_OFFSET + VDO_COMPONENT_DATA_SIZE,
1418 "All super block component data was encoded");
1419 }
1420
1421 /**
1422 * vdo_encode_super_block() - Encode a super block into its on-disk representation.
1423 */
vdo_encode_super_block(u8 * buffer,struct vdo_component_states * states)1424 void vdo_encode_super_block(u8 *buffer, struct vdo_component_states *states)
1425 {
1426 u32 checksum;
1427 struct header header = SUPER_BLOCK_HEADER_12_0;
1428 size_t offset = 0;
1429
1430 header.size += VDO_COMPONENT_DATA_SIZE;
1431 vdo_encode_header(buffer, &offset, &header);
1432 vdo_encode_component_states(buffer, &offset, states);
1433
1434 checksum = vdo_crc32(buffer, offset);
1435 encode_u32_le(buffer, &offset, checksum);
1436
1437 /*
1438 * Even though the buffer is a full block, to avoid the potential corruption from a torn
1439 * write, the entire encoding must fit in the first sector.
1440 */
1441 VDO_ASSERT_LOG_ONLY(offset <= VDO_SECTOR_SIZE,
1442 "entire superblock must fit in one sector");
1443 }
1444
1445 /**
1446 * vdo_decode_super_block() - Decode a super block from its on-disk representation.
1447 */
vdo_decode_super_block(u8 * buffer)1448 int vdo_decode_super_block(u8 *buffer)
1449 {
1450 struct header header;
1451 int result;
1452 u32 checksum, saved_checksum;
1453 size_t offset = 0;
1454
1455 /* Decode and validate the header. */
1456 vdo_decode_header(buffer, &offset, &header);
1457 result = vdo_validate_header(&SUPER_BLOCK_HEADER_12_0, &header, false, __func__);
1458 if (result != VDO_SUCCESS)
1459 return result;
1460
1461 if (header.size > VDO_COMPONENT_DATA_SIZE + sizeof(u32)) {
1462 /*
1463 * We can't check release version or checksum until we know the content size, so we
1464 * have to assume a version mismatch on unexpected values.
1465 */
1466 return vdo_log_error_strerror(VDO_UNSUPPORTED_VERSION,
1467 "super block contents too large: %zu",
1468 header.size);
1469 }
1470
1471 /* Skip past the component data for now, to verify the checksum. */
1472 offset += VDO_COMPONENT_DATA_SIZE;
1473
1474 checksum = vdo_crc32(buffer, offset);
1475 decode_u32_le(buffer, &offset, &saved_checksum);
1476
1477 result = VDO_ASSERT(offset == VDO_SUPER_BLOCK_FIXED_SIZE + VDO_COMPONENT_DATA_SIZE,
1478 "must have decoded entire superblock payload");
1479 if (result != VDO_SUCCESS)
1480 return result;
1481
1482 return ((checksum != saved_checksum) ? VDO_CHECKSUM_MISMATCH : VDO_SUCCESS);
1483 }
1484