xref: /linux/tools/testing/selftests/kvm/lib/x86/processor.c (revision a91cc48246605af9aeef1edd32232976d74d9502)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2018, Google LLC.
4  */
5 
6 #include "linux/bitmap.h"
7 #include "test_util.h"
8 #include "kvm_util.h"
9 #include "pmu.h"
10 #include "processor.h"
11 #include "svm_util.h"
12 #include "sev.h"
13 #include "vmx.h"
14 
15 #ifndef NUM_INTERRUPTS
16 #define NUM_INTERRUPTS 256
17 #endif
18 
19 #define KERNEL_CS	0x8
20 #define KERNEL_DS	0x10
21 #define KERNEL_TSS	0x18
22 
23 vm_vaddr_t exception_handlers;
24 bool host_cpu_is_amd;
25 bool host_cpu_is_intel;
26 bool is_forced_emulation_enabled;
27 uint64_t guest_tsc_khz;
28 
29 const char *ex_str(int vector)
30 {
31 	switch (vector) {
32 #define VEC_STR(v) case v##_VECTOR: return "#" #v
33 	case DE_VECTOR: return "no exception";
34 	case KVM_MAGIC_DE_VECTOR: return "#DE";
35 	VEC_STR(DB);
36 	VEC_STR(NMI);
37 	VEC_STR(BP);
38 	VEC_STR(OF);
39 	VEC_STR(BR);
40 	VEC_STR(UD);
41 	VEC_STR(NM);
42 	VEC_STR(DF);
43 	VEC_STR(TS);
44 	VEC_STR(NP);
45 	VEC_STR(SS);
46 	VEC_STR(GP);
47 	VEC_STR(PF);
48 	VEC_STR(MF);
49 	VEC_STR(AC);
50 	VEC_STR(MC);
51 	VEC_STR(XM);
52 	VEC_STR(VE);
53 	VEC_STR(CP);
54 	VEC_STR(HV);
55 	VEC_STR(VC);
56 	VEC_STR(SX);
57 	default: return "#??";
58 #undef VEC_STR
59 	}
60 }
61 
62 static void regs_dump(FILE *stream, struct kvm_regs *regs, uint8_t indent)
63 {
64 	fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
65 		"rcx: 0x%.16llx rdx: 0x%.16llx\n",
66 		indent, "",
67 		regs->rax, regs->rbx, regs->rcx, regs->rdx);
68 	fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
69 		"rsp: 0x%.16llx rbp: 0x%.16llx\n",
70 		indent, "",
71 		regs->rsi, regs->rdi, regs->rsp, regs->rbp);
72 	fprintf(stream, "%*sr8:  0x%.16llx r9:  0x%.16llx "
73 		"r10: 0x%.16llx r11: 0x%.16llx\n",
74 		indent, "",
75 		regs->r8, regs->r9, regs->r10, regs->r11);
76 	fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
77 		"r14: 0x%.16llx r15: 0x%.16llx\n",
78 		indent, "",
79 		regs->r12, regs->r13, regs->r14, regs->r15);
80 	fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
81 		indent, "",
82 		regs->rip, regs->rflags);
83 }
84 
85 static void segment_dump(FILE *stream, struct kvm_segment *segment,
86 			 uint8_t indent)
87 {
88 	fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
89 		"selector: 0x%.4x type: 0x%.2x\n",
90 		indent, "", segment->base, segment->limit,
91 		segment->selector, segment->type);
92 	fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
93 		"db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
94 		indent, "", segment->present, segment->dpl,
95 		segment->db, segment->s, segment->l);
96 	fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
97 		"unusable: 0x%.2x padding: 0x%.2x\n",
98 		indent, "", segment->g, segment->avl,
99 		segment->unusable, segment->padding);
100 }
101 
102 static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
103 			uint8_t indent)
104 {
105 	fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
106 		"padding: 0x%.4x 0x%.4x 0x%.4x\n",
107 		indent, "", dtable->base, dtable->limit,
108 		dtable->padding[0], dtable->padding[1], dtable->padding[2]);
109 }
110 
111 static void sregs_dump(FILE *stream, struct kvm_sregs *sregs, uint8_t indent)
112 {
113 	unsigned int i;
114 
115 	fprintf(stream, "%*scs:\n", indent, "");
116 	segment_dump(stream, &sregs->cs, indent + 2);
117 	fprintf(stream, "%*sds:\n", indent, "");
118 	segment_dump(stream, &sregs->ds, indent + 2);
119 	fprintf(stream, "%*ses:\n", indent, "");
120 	segment_dump(stream, &sregs->es, indent + 2);
121 	fprintf(stream, "%*sfs:\n", indent, "");
122 	segment_dump(stream, &sregs->fs, indent + 2);
123 	fprintf(stream, "%*sgs:\n", indent, "");
124 	segment_dump(stream, &sregs->gs, indent + 2);
125 	fprintf(stream, "%*sss:\n", indent, "");
126 	segment_dump(stream, &sregs->ss, indent + 2);
127 	fprintf(stream, "%*str:\n", indent, "");
128 	segment_dump(stream, &sregs->tr, indent + 2);
129 	fprintf(stream, "%*sldt:\n", indent, "");
130 	segment_dump(stream, &sregs->ldt, indent + 2);
131 
132 	fprintf(stream, "%*sgdt:\n", indent, "");
133 	dtable_dump(stream, &sregs->gdt, indent + 2);
134 	fprintf(stream, "%*sidt:\n", indent, "");
135 	dtable_dump(stream, &sregs->idt, indent + 2);
136 
137 	fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
138 		"cr3: 0x%.16llx cr4: 0x%.16llx\n",
139 		indent, "",
140 		sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
141 	fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
142 		"apic_base: 0x%.16llx\n",
143 		indent, "",
144 		sregs->cr8, sregs->efer, sregs->apic_base);
145 
146 	fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
147 	for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
148 		fprintf(stream, "%*s%.16llx\n", indent + 2, "",
149 			sregs->interrupt_bitmap[i]);
150 	}
151 }
152 
153 bool kvm_is_tdp_enabled(void)
154 {
155 	if (host_cpu_is_intel)
156 		return get_kvm_intel_param_bool("ept");
157 	else
158 		return get_kvm_amd_param_bool("npt");
159 }
160 
161 static void virt_mmu_init(struct kvm_vm *vm, struct kvm_mmu *mmu,
162 			  struct pte_masks *pte_masks)
163 {
164 	/* If needed, create the top-level page table. */
165 	if (!mmu->pgd_created) {
166 		mmu->pgd = vm_alloc_page_table(vm);
167 		mmu->pgd_created = true;
168 		mmu->arch.pte_masks = *pte_masks;
169 	}
170 
171 	TEST_ASSERT(mmu->pgtable_levels == 4 || mmu->pgtable_levels == 5,
172 		    "Selftests MMU only supports 4-level and 5-level paging, not %u-level paging",
173 		    mmu->pgtable_levels);
174 }
175 
176 void virt_arch_pgd_alloc(struct kvm_vm *vm)
177 {
178 	TEST_ASSERT(vm->mode == VM_MODE_PXXVYY_4K,
179 		    "Unknown or unsupported guest mode: 0x%x", vm->mode);
180 
181 	struct pte_masks pte_masks = (struct pte_masks){
182 		.present	=	BIT_ULL(0),
183 		.writable	=	BIT_ULL(1),
184 		.user		=	BIT_ULL(2),
185 		.accessed	=	BIT_ULL(5),
186 		.dirty		=	BIT_ULL(6),
187 		.huge		=	BIT_ULL(7),
188 		.nx		=	BIT_ULL(63),
189 		.executable	=	0,
190 		.c		=	vm->arch.c_bit,
191 		.s		=	vm->arch.s_bit,
192 	};
193 
194 	virt_mmu_init(vm, &vm->mmu, &pte_masks);
195 }
196 
197 void tdp_mmu_init(struct kvm_vm *vm, int pgtable_levels,
198 		  struct pte_masks *pte_masks)
199 {
200 	TEST_ASSERT(!vm->stage2_mmu.pgtable_levels, "TDP MMU already initialized");
201 
202 	vm->stage2_mmu.pgtable_levels = pgtable_levels;
203 	virt_mmu_init(vm, &vm->stage2_mmu, pte_masks);
204 }
205 
206 static void *virt_get_pte(struct kvm_vm *vm, struct kvm_mmu *mmu,
207 			  uint64_t *parent_pte, uint64_t vaddr, int level)
208 {
209 	uint64_t pt_gpa = PTE_GET_PA(*parent_pte);
210 	uint64_t *page_table = addr_gpa2hva(vm, pt_gpa);
211 	int index = (vaddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu;
212 
213 	TEST_ASSERT((*parent_pte == mmu->pgd) || is_present_pte(mmu, parent_pte),
214 		    "Parent PTE (level %d) not PRESENT for gva: 0x%08lx",
215 		    level + 1, vaddr);
216 
217 	return &page_table[index];
218 }
219 
220 static uint64_t *virt_create_upper_pte(struct kvm_vm *vm,
221 				       struct kvm_mmu *mmu,
222 				       uint64_t *parent_pte,
223 				       uint64_t vaddr,
224 				       uint64_t paddr,
225 				       int current_level,
226 				       int target_level)
227 {
228 	uint64_t *pte = virt_get_pte(vm, mmu, parent_pte, vaddr, current_level);
229 
230 	paddr = vm_untag_gpa(vm, paddr);
231 
232 	if (!is_present_pte(mmu, pte)) {
233 		*pte = PTE_PRESENT_MASK(mmu) | PTE_READABLE_MASK(mmu) |
234 		       PTE_WRITABLE_MASK(mmu) | PTE_EXECUTABLE_MASK(mmu) |
235 		       PTE_ALWAYS_SET_MASK(mmu);
236 		if (current_level == target_level)
237 			*pte |= PTE_HUGE_MASK(mmu) | (paddr & PHYSICAL_PAGE_MASK);
238 		else
239 			*pte |= vm_alloc_page_table(vm) & PHYSICAL_PAGE_MASK;
240 	} else {
241 		/*
242 		 * Entry already present.  Assert that the caller doesn't want
243 		 * a hugepage at this level, and that there isn't a hugepage at
244 		 * this level.
245 		 */
246 		TEST_ASSERT(current_level != target_level,
247 			    "Cannot create hugepage at level: %u, vaddr: 0x%lx",
248 			    current_level, vaddr);
249 		TEST_ASSERT(!is_huge_pte(mmu, pte),
250 			    "Cannot create page table at level: %u, vaddr: 0x%lx",
251 			    current_level, vaddr);
252 	}
253 	return pte;
254 }
255 
256 void __virt_pg_map(struct kvm_vm *vm, struct kvm_mmu *mmu, uint64_t vaddr,
257 		   uint64_t paddr, int level)
258 {
259 	const uint64_t pg_size = PG_LEVEL_SIZE(level);
260 	uint64_t *pte = &mmu->pgd;
261 	int current_level;
262 
263 	TEST_ASSERT(vm->mode == VM_MODE_PXXVYY_4K,
264 		    "Unknown or unsupported guest mode: 0x%x", vm->mode);
265 
266 	TEST_ASSERT((vaddr % pg_size) == 0,
267 		    "Virtual address not aligned,\n"
268 		    "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size);
269 	TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)),
270 		    "Invalid virtual address, vaddr: 0x%lx", vaddr);
271 	TEST_ASSERT((paddr % pg_size) == 0,
272 		    "Physical address not aligned,\n"
273 		    "  paddr: 0x%lx page size: 0x%lx", paddr, pg_size);
274 	TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
275 		    "Physical address beyond maximum supported,\n"
276 		    "  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
277 		    paddr, vm->max_gfn, vm->page_size);
278 	TEST_ASSERT(vm_untag_gpa(vm, paddr) == paddr,
279 		    "Unexpected bits in paddr: %lx", paddr);
280 
281 	TEST_ASSERT(!PTE_EXECUTABLE_MASK(mmu) || !PTE_NX_MASK(mmu),
282 		    "X and NX bit masks cannot be used simultaneously");
283 
284 	/*
285 	 * Allocate upper level page tables, if not already present.  Return
286 	 * early if a hugepage was created.
287 	 */
288 	for (current_level = mmu->pgtable_levels;
289 	     current_level > PG_LEVEL_4K;
290 	     current_level--) {
291 		pte = virt_create_upper_pte(vm, mmu, pte, vaddr, paddr,
292 					    current_level, level);
293 		if (is_huge_pte(mmu, pte))
294 			return;
295 	}
296 
297 	/* Fill in page table entry. */
298 	pte = virt_get_pte(vm, mmu, pte, vaddr, PG_LEVEL_4K);
299 	TEST_ASSERT(!is_present_pte(mmu, pte),
300 		    "PTE already present for 4k page at vaddr: 0x%lx", vaddr);
301 	*pte = PTE_PRESENT_MASK(mmu) | PTE_READABLE_MASK(mmu) |
302 	       PTE_WRITABLE_MASK(mmu) | PTE_EXECUTABLE_MASK(mmu) |
303 	       PTE_ALWAYS_SET_MASK(mmu) | (paddr & PHYSICAL_PAGE_MASK);
304 
305 	/*
306 	 * Neither SEV nor TDX supports shared page tables, so only the final
307 	 * leaf PTE needs manually set the C/S-bit.
308 	 */
309 	if (vm_is_gpa_protected(vm, paddr))
310 		*pte |= PTE_C_BIT_MASK(mmu);
311 	else
312 		*pte |= PTE_S_BIT_MASK(mmu);
313 }
314 
315 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
316 {
317 	__virt_pg_map(vm, &vm->mmu, vaddr, paddr, PG_LEVEL_4K);
318 }
319 
320 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
321 		    uint64_t nr_bytes, int level)
322 {
323 	uint64_t pg_size = PG_LEVEL_SIZE(level);
324 	uint64_t nr_pages = nr_bytes / pg_size;
325 	int i;
326 
327 	TEST_ASSERT(nr_bytes % pg_size == 0,
328 		    "Region size not aligned: nr_bytes: 0x%lx, page size: 0x%lx",
329 		    nr_bytes, pg_size);
330 
331 	for (i = 0; i < nr_pages; i++) {
332 		__virt_pg_map(vm, &vm->mmu, vaddr, paddr, level);
333 		sparsebit_set_num(vm->vpages_mapped, vaddr >> vm->page_shift,
334 				  nr_bytes / PAGE_SIZE);
335 
336 		vaddr += pg_size;
337 		paddr += pg_size;
338 	}
339 }
340 
341 static bool vm_is_target_pte(struct kvm_mmu *mmu, uint64_t *pte,
342 			     int *level, int current_level)
343 {
344 	if (is_huge_pte(mmu, pte)) {
345 		TEST_ASSERT(*level == PG_LEVEL_NONE ||
346 			    *level == current_level,
347 			    "Unexpected hugepage at level %d", current_level);
348 		*level = current_level;
349 	}
350 
351 	return *level == current_level;
352 }
353 
354 static uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm,
355 					   struct kvm_mmu *mmu,
356 					   uint64_t vaddr,
357 					   int *level)
358 {
359 	int va_width = 12 + (mmu->pgtable_levels) * 9;
360 	uint64_t *pte = &mmu->pgd;
361 	int current_level;
362 
363 	TEST_ASSERT(!vm->arch.is_pt_protected,
364 		    "Walking page tables of protected guests is impossible");
365 
366 	TEST_ASSERT(*level >= PG_LEVEL_NONE && *level <= mmu->pgtable_levels,
367 		    "Invalid PG_LEVEL_* '%d'", *level);
368 
369 	TEST_ASSERT(vm->mode == VM_MODE_PXXVYY_4K,
370 		    "Unknown or unsupported guest mode: 0x%x", vm->mode);
371 	TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
372 		(vaddr >> vm->page_shift)),
373 		"Invalid virtual address, vaddr: 0x%lx",
374 		vaddr);
375 	/*
376 	 * Check that the vaddr is a sign-extended va_width value.
377 	 */
378 	TEST_ASSERT(vaddr ==
379 		    (((int64_t)vaddr << (64 - va_width) >> (64 - va_width))),
380 		    "Canonical check failed.  The virtual address is invalid.");
381 
382 	for (current_level = mmu->pgtable_levels;
383 	     current_level > PG_LEVEL_4K;
384 	     current_level--) {
385 		pte = virt_get_pte(vm, mmu, pte, vaddr, current_level);
386 		if (vm_is_target_pte(mmu, pte, level, current_level))
387 			return pte;
388 	}
389 
390 	return virt_get_pte(vm, mmu, pte, vaddr, PG_LEVEL_4K);
391 }
392 
393 uint64_t *tdp_get_pte(struct kvm_vm *vm, uint64_t l2_gpa)
394 {
395 	int level = PG_LEVEL_4K;
396 
397 	return __vm_get_page_table_entry(vm, &vm->stage2_mmu, l2_gpa, &level);
398 }
399 
400 uint64_t *vm_get_pte(struct kvm_vm *vm, uint64_t vaddr)
401 {
402 	int level = PG_LEVEL_4K;
403 
404 	return __vm_get_page_table_entry(vm, &vm->mmu, vaddr, &level);
405 }
406 
407 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
408 {
409 	struct kvm_mmu *mmu = &vm->mmu;
410 	uint64_t *pml4e, *pml4e_start;
411 	uint64_t *pdpe, *pdpe_start;
412 	uint64_t *pde, *pde_start;
413 	uint64_t *pte, *pte_start;
414 
415 	if (!mmu->pgd_created)
416 		return;
417 
418 	fprintf(stream, "%*s                                          "
419 		"                no\n", indent, "");
420 	fprintf(stream, "%*s      index hvaddr         gpaddr         "
421 		"addr         w exec dirty\n",
422 		indent, "");
423 	pml4e_start = (uint64_t *) addr_gpa2hva(vm, mmu->pgd);
424 	for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
425 		pml4e = &pml4e_start[n1];
426 		if (!is_present_pte(mmu, pml4e))
427 			continue;
428 		fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10llx %u "
429 			" %u\n",
430 			indent, "",
431 			pml4e - pml4e_start, pml4e,
432 			addr_hva2gpa(vm, pml4e), PTE_GET_PFN(*pml4e),
433 			is_writable_pte(mmu, pml4e), is_nx_pte(mmu, pml4e));
434 
435 		pdpe_start = addr_gpa2hva(vm, *pml4e & PHYSICAL_PAGE_MASK);
436 		for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
437 			pdpe = &pdpe_start[n2];
438 			if (!is_present_pte(mmu, pdpe))
439 				continue;
440 			fprintf(stream, "%*spdpe  0x%-3zx %p 0x%-12lx 0x%-10llx "
441 				"%u  %u\n",
442 				indent, "",
443 				pdpe - pdpe_start, pdpe,
444 				addr_hva2gpa(vm, pdpe),
445 				PTE_GET_PFN(*pdpe), is_writable_pte(mmu, pdpe),
446 				is_nx_pte(mmu, pdpe));
447 
448 			pde_start = addr_gpa2hva(vm, *pdpe & PHYSICAL_PAGE_MASK);
449 			for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
450 				pde = &pde_start[n3];
451 				if (!is_present_pte(mmu, pde))
452 					continue;
453 				fprintf(stream, "%*spde   0x%-3zx %p "
454 					"0x%-12lx 0x%-10llx %u  %u\n",
455 					indent, "", pde - pde_start, pde,
456 					addr_hva2gpa(vm, pde),
457 					PTE_GET_PFN(*pde), is_writable_pte(mmu, pde),
458 					is_nx_pte(mmu, pde));
459 
460 				pte_start = addr_gpa2hva(vm, *pde & PHYSICAL_PAGE_MASK);
461 				for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
462 					pte = &pte_start[n4];
463 					if (!is_present_pte(mmu, pte))
464 						continue;
465 					fprintf(stream, "%*spte   0x%-3zx %p "
466 						"0x%-12lx 0x%-10llx %u  %u "
467 						"    %u    0x%-10lx\n",
468 						indent, "",
469 						pte - pte_start, pte,
470 						addr_hva2gpa(vm, pte),
471 						PTE_GET_PFN(*pte),
472 						is_writable_pte(mmu, pte),
473 						is_nx_pte(mmu, pte),
474 						is_dirty_pte(mmu, pte),
475 						((uint64_t) n1 << 27)
476 							| ((uint64_t) n2 << 18)
477 							| ((uint64_t) n3 << 9)
478 							| ((uint64_t) n4));
479 				}
480 			}
481 		}
482 	}
483 }
484 
485 void vm_enable_tdp(struct kvm_vm *vm)
486 {
487 	if (kvm_cpu_has(X86_FEATURE_VMX))
488 		vm_enable_ept(vm);
489 	else
490 		vm_enable_npt(vm);
491 }
492 
493 bool kvm_cpu_has_tdp(void)
494 {
495 	return kvm_cpu_has_ept() || kvm_cpu_has_npt();
496 }
497 
498 void __tdp_map(struct kvm_vm *vm, uint64_t nested_paddr, uint64_t paddr,
499 	       uint64_t size, int level)
500 {
501 	size_t page_size = PG_LEVEL_SIZE(level);
502 	size_t npages = size / page_size;
503 
504 	TEST_ASSERT(nested_paddr + size > nested_paddr, "Vaddr overflow");
505 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
506 
507 	while (npages--) {
508 		__virt_pg_map(vm, &vm->stage2_mmu, nested_paddr, paddr, level);
509 		nested_paddr += page_size;
510 		paddr += page_size;
511 	}
512 }
513 
514 void tdp_map(struct kvm_vm *vm, uint64_t nested_paddr, uint64_t paddr,
515 	     uint64_t size)
516 {
517 	__tdp_map(vm, nested_paddr, paddr, size, PG_LEVEL_4K);
518 }
519 
520 /* Prepare an identity extended page table that maps all the
521  * physical pages in VM.
522  */
523 void tdp_identity_map_default_memslots(struct kvm_vm *vm)
524 {
525 	uint32_t s, memslot = 0;
526 	sparsebit_idx_t i, last;
527 	struct userspace_mem_region *region = memslot2region(vm, memslot);
528 
529 	/* Only memslot 0 is mapped here, ensure it's the only one being used */
530 	for (s = 0; s < NR_MEM_REGIONS; s++)
531 		TEST_ASSERT_EQ(vm->memslots[s], 0);
532 
533 	i = (region->region.guest_phys_addr >> vm->page_shift) - 1;
534 	last = i + (region->region.memory_size >> vm->page_shift);
535 	for (;;) {
536 		i = sparsebit_next_clear(region->unused_phy_pages, i);
537 		if (i > last)
538 			break;
539 
540 		tdp_map(vm, (uint64_t)i << vm->page_shift,
541 			(uint64_t)i << vm->page_shift, 1 << vm->page_shift);
542 	}
543 }
544 
545 /* Identity map a region with 1GiB Pages. */
546 void tdp_identity_map_1g(struct kvm_vm *vm, uint64_t addr, uint64_t size)
547 {
548 	__tdp_map(vm, addr, addr, size, PG_LEVEL_1G);
549 }
550 
551 /*
552  * Set Unusable Segment
553  *
554  * Input Args: None
555  *
556  * Output Args:
557  *   segp - Pointer to segment register
558  *
559  * Return: None
560  *
561  * Sets the segment register pointed to by @segp to an unusable state.
562  */
563 static void kvm_seg_set_unusable(struct kvm_segment *segp)
564 {
565 	memset(segp, 0, sizeof(*segp));
566 	segp->unusable = true;
567 }
568 
569 static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
570 {
571 	void *gdt = addr_gva2hva(vm, vm->arch.gdt);
572 	struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
573 
574 	desc->limit0 = segp->limit & 0xFFFF;
575 	desc->base0 = segp->base & 0xFFFF;
576 	desc->base1 = segp->base >> 16;
577 	desc->type = segp->type;
578 	desc->s = segp->s;
579 	desc->dpl = segp->dpl;
580 	desc->p = segp->present;
581 	desc->limit1 = segp->limit >> 16;
582 	desc->avl = segp->avl;
583 	desc->l = segp->l;
584 	desc->db = segp->db;
585 	desc->g = segp->g;
586 	desc->base2 = segp->base >> 24;
587 	if (!segp->s)
588 		desc->base3 = segp->base >> 32;
589 }
590 
591 static void kvm_seg_set_kernel_code_64bit(struct kvm_segment *segp)
592 {
593 	memset(segp, 0, sizeof(*segp));
594 	segp->selector = KERNEL_CS;
595 	segp->limit = 0xFFFFFFFFu;
596 	segp->s = 0x1; /* kTypeCodeData */
597 	segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
598 					  * | kFlagCodeReadable
599 					  */
600 	segp->g = true;
601 	segp->l = true;
602 	segp->present = 1;
603 }
604 
605 static void kvm_seg_set_kernel_data_64bit(struct kvm_segment *segp)
606 {
607 	memset(segp, 0, sizeof(*segp));
608 	segp->selector = KERNEL_DS;
609 	segp->limit = 0xFFFFFFFFu;
610 	segp->s = 0x1; /* kTypeCodeData */
611 	segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
612 					  * | kFlagDataWritable
613 					  */
614 	segp->g = true;
615 	segp->present = true;
616 }
617 
618 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
619 {
620 	int level = PG_LEVEL_NONE;
621 	uint64_t *pte = __vm_get_page_table_entry(vm, &vm->mmu, gva, &level);
622 
623 	TEST_ASSERT(is_present_pte(&vm->mmu, pte),
624 		    "Leaf PTE not PRESENT for gva: 0x%08lx", gva);
625 
626 	/*
627 	 * No need for a hugepage mask on the PTE, x86-64 requires the "unused"
628 	 * address bits to be zero.
629 	 */
630 	return vm_untag_gpa(vm, PTE_GET_PA(*pte)) | (gva & ~HUGEPAGE_MASK(level));
631 }
632 
633 static void kvm_seg_set_tss_64bit(vm_vaddr_t base, struct kvm_segment *segp)
634 {
635 	memset(segp, 0, sizeof(*segp));
636 	segp->base = base;
637 	segp->limit = 0x67;
638 	segp->selector = KERNEL_TSS;
639 	segp->type = 0xb;
640 	segp->present = 1;
641 }
642 
643 static void vcpu_init_sregs(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
644 {
645 	struct kvm_sregs sregs;
646 
647 	TEST_ASSERT(vm->mode == VM_MODE_PXXVYY_4K,
648 		    "Unknown or unsupported guest mode: 0x%x", vm->mode);
649 
650 	/* Set mode specific system register values. */
651 	vcpu_sregs_get(vcpu, &sregs);
652 
653 	sregs.idt.base = vm->arch.idt;
654 	sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1;
655 	sregs.gdt.base = vm->arch.gdt;
656 	sregs.gdt.limit = getpagesize() - 1;
657 
658 	sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
659 	sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
660 	if (kvm_cpu_has(X86_FEATURE_XSAVE))
661 		sregs.cr4 |= X86_CR4_OSXSAVE;
662 	if (vm->mmu.pgtable_levels == 5)
663 		sregs.cr4 |= X86_CR4_LA57;
664 	sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
665 
666 	kvm_seg_set_unusable(&sregs.ldt);
667 	kvm_seg_set_kernel_code_64bit(&sregs.cs);
668 	kvm_seg_set_kernel_data_64bit(&sregs.ds);
669 	kvm_seg_set_kernel_data_64bit(&sregs.es);
670 	kvm_seg_set_kernel_data_64bit(&sregs.gs);
671 	kvm_seg_set_tss_64bit(vm->arch.tss, &sregs.tr);
672 
673 	sregs.cr3 = vm->mmu.pgd;
674 	vcpu_sregs_set(vcpu, &sregs);
675 }
676 
677 static void vcpu_init_xcrs(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
678 {
679 	struct kvm_xcrs xcrs = {
680 		.nr_xcrs = 1,
681 		.xcrs[0].xcr = 0,
682 		.xcrs[0].value = kvm_cpu_supported_xcr0(),
683 	};
684 
685 	if (!kvm_cpu_has(X86_FEATURE_XSAVE))
686 		return;
687 
688 	vcpu_xcrs_set(vcpu, &xcrs);
689 }
690 
691 static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr,
692 			  int dpl, unsigned short selector)
693 {
694 	struct idt_entry *base =
695 		(struct idt_entry *)addr_gva2hva(vm, vm->arch.idt);
696 	struct idt_entry *e = &base[vector];
697 
698 	memset(e, 0, sizeof(*e));
699 	e->offset0 = addr;
700 	e->selector = selector;
701 	e->ist = 0;
702 	e->type = 14;
703 	e->dpl = dpl;
704 	e->p = 1;
705 	e->offset1 = addr >> 16;
706 	e->offset2 = addr >> 32;
707 }
708 
709 static bool kvm_fixup_exception(struct ex_regs *regs)
710 {
711 	if (regs->r9 != KVM_EXCEPTION_MAGIC || regs->rip != regs->r10)
712 		return false;
713 
714 	if (regs->vector == DE_VECTOR)
715 		regs->vector = KVM_MAGIC_DE_VECTOR;
716 
717 	regs->rip = regs->r11;
718 	regs->r9 = regs->vector;
719 	regs->r10 = regs->error_code;
720 	return true;
721 }
722 
723 void route_exception(struct ex_regs *regs)
724 {
725 	typedef void(*handler)(struct ex_regs *);
726 	handler *handlers = (handler *)exception_handlers;
727 
728 	if (handlers && handlers[regs->vector]) {
729 		handlers[regs->vector](regs);
730 		return;
731 	}
732 
733 	if (kvm_fixup_exception(regs))
734 		return;
735 
736 	GUEST_FAIL("Unhandled exception '0x%lx' at guest RIP '0x%lx'",
737 		   regs->vector, regs->rip);
738 }
739 
740 static void vm_init_descriptor_tables(struct kvm_vm *vm)
741 {
742 	extern void *idt_handlers;
743 	struct kvm_segment seg;
744 	int i;
745 
746 	vm->arch.gdt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
747 	vm->arch.idt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
748 	vm->handlers = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
749 	vm->arch.tss = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
750 
751 	/* Handlers have the same address in both address spaces.*/
752 	for (i = 0; i < NUM_INTERRUPTS; i++)
753 		set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0, KERNEL_CS);
754 
755 	*(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
756 
757 	kvm_seg_set_kernel_code_64bit(&seg);
758 	kvm_seg_fill_gdt_64bit(vm, &seg);
759 
760 	kvm_seg_set_kernel_data_64bit(&seg);
761 	kvm_seg_fill_gdt_64bit(vm, &seg);
762 
763 	kvm_seg_set_tss_64bit(vm->arch.tss, &seg);
764 	kvm_seg_fill_gdt_64bit(vm, &seg);
765 }
766 
767 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
768 			       void (*handler)(struct ex_regs *))
769 {
770 	vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers);
771 
772 	handlers[vector] = (vm_vaddr_t)handler;
773 }
774 
775 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
776 {
777 	struct ucall uc;
778 
779 	if (get_ucall(vcpu, &uc) == UCALL_ABORT)
780 		REPORT_GUEST_ASSERT(uc);
781 }
782 
783 void kvm_arch_vm_post_create(struct kvm_vm *vm, unsigned int nr_vcpus)
784 {
785 	int r;
786 
787 	TEST_ASSERT(kvm_has_cap(KVM_CAP_GET_TSC_KHZ),
788 		    "Require KVM_GET_TSC_KHZ to provide udelay() to guest.");
789 
790 	vm_create_irqchip(vm);
791 	vm_init_descriptor_tables(vm);
792 
793 	sync_global_to_guest(vm, host_cpu_is_intel);
794 	sync_global_to_guest(vm, host_cpu_is_amd);
795 	sync_global_to_guest(vm, is_forced_emulation_enabled);
796 	sync_global_to_guest(vm, pmu_errata_mask);
797 
798 	if (is_sev_vm(vm)) {
799 		struct kvm_sev_init init = { 0 };
800 
801 		vm_sev_ioctl(vm, KVM_SEV_INIT2, &init);
802 	}
803 
804 	r = __vm_ioctl(vm, KVM_GET_TSC_KHZ, NULL);
805 	TEST_ASSERT(r > 0, "KVM_GET_TSC_KHZ did not provide a valid TSC frequency.");
806 	guest_tsc_khz = r;
807 	sync_global_to_guest(vm, guest_tsc_khz);
808 }
809 
810 void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code)
811 {
812 	struct kvm_regs regs;
813 
814 	vcpu_regs_get(vcpu, &regs);
815 	regs.rip = (unsigned long) guest_code;
816 	vcpu_regs_set(vcpu, &regs);
817 }
818 
819 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
820 {
821 	struct kvm_mp_state mp_state;
822 	struct kvm_regs regs;
823 	vm_vaddr_t stack_vaddr;
824 	struct kvm_vcpu *vcpu;
825 
826 	stack_vaddr = __vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
827 				       DEFAULT_GUEST_STACK_VADDR_MIN,
828 				       MEM_REGION_DATA);
829 
830 	stack_vaddr += DEFAULT_STACK_PGS * getpagesize();
831 
832 	/*
833 	 * Align stack to match calling sequence requirements in section "The
834 	 * Stack Frame" of the System V ABI AMD64 Architecture Processor
835 	 * Supplement, which requires the value (%rsp + 8) to be a multiple of
836 	 * 16 when control is transferred to the function entry point.
837 	 *
838 	 * If this code is ever used to launch a vCPU with 32-bit entry point it
839 	 * may need to subtract 4 bytes instead of 8 bytes.
840 	 */
841 	TEST_ASSERT(IS_ALIGNED(stack_vaddr, PAGE_SIZE),
842 		    "__vm_vaddr_alloc() did not provide a page-aligned address");
843 	stack_vaddr -= 8;
844 
845 	vcpu = __vm_vcpu_add(vm, vcpu_id);
846 	vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());
847 	vcpu_init_sregs(vm, vcpu);
848 	vcpu_init_xcrs(vm, vcpu);
849 
850 	/* Setup guest general purpose registers */
851 	vcpu_regs_get(vcpu, &regs);
852 	regs.rflags = regs.rflags | 0x2;
853 	regs.rsp = stack_vaddr;
854 	vcpu_regs_set(vcpu, &regs);
855 
856 	/* Setup the MP state */
857 	mp_state.mp_state = 0;
858 	vcpu_mp_state_set(vcpu, &mp_state);
859 
860 	/*
861 	 * Refresh CPUID after setting SREGS and XCR0, so that KVM's "runtime"
862 	 * updates to guest CPUID, e.g. for OSXSAVE and XSAVE state size, are
863 	 * reflected into selftests' vCPU CPUID cache, i.e. so that the cache
864 	 * is consistent with vCPU state.
865 	 */
866 	vcpu_get_cpuid(vcpu);
867 	return vcpu;
868 }
869 
870 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id)
871 {
872 	struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id);
873 
874 	vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());
875 
876 	return vcpu;
877 }
878 
879 void vcpu_arch_free(struct kvm_vcpu *vcpu)
880 {
881 	if (vcpu->cpuid)
882 		free(vcpu->cpuid);
883 }
884 
885 /* Do not use kvm_supported_cpuid directly except for validity checks. */
886 static void *kvm_supported_cpuid;
887 
888 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
889 {
890 	int kvm_fd;
891 
892 	if (kvm_supported_cpuid)
893 		return kvm_supported_cpuid;
894 
895 	kvm_supported_cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
896 	kvm_fd = open_kvm_dev_path_or_exit();
897 
898 	kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID,
899 		  (struct kvm_cpuid2 *)kvm_supported_cpuid);
900 
901 	close(kvm_fd);
902 	return kvm_supported_cpuid;
903 }
904 
905 static uint32_t __kvm_cpu_has(const struct kvm_cpuid2 *cpuid,
906 			      uint32_t function, uint32_t index,
907 			      uint8_t reg, uint8_t lo, uint8_t hi)
908 {
909 	const struct kvm_cpuid_entry2 *entry;
910 	int i;
911 
912 	for (i = 0; i < cpuid->nent; i++) {
913 		entry = &cpuid->entries[i];
914 
915 		/*
916 		 * The output registers in kvm_cpuid_entry2 are in alphabetical
917 		 * order, but kvm_x86_cpu_feature matches that mess, so yay
918 		 * pointer shenanigans!
919 		 */
920 		if (entry->function == function && entry->index == index)
921 			return ((&entry->eax)[reg] & GENMASK(hi, lo)) >> lo;
922 	}
923 
924 	return 0;
925 }
926 
927 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
928 		   struct kvm_x86_cpu_feature feature)
929 {
930 	return __kvm_cpu_has(cpuid, feature.function, feature.index,
931 			     feature.reg, feature.bit, feature.bit);
932 }
933 
934 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
935 			    struct kvm_x86_cpu_property property)
936 {
937 	return __kvm_cpu_has(cpuid, property.function, property.index,
938 			     property.reg, property.lo_bit, property.hi_bit);
939 }
940 
941 uint64_t kvm_get_feature_msr(uint64_t msr_index)
942 {
943 	struct {
944 		struct kvm_msrs header;
945 		struct kvm_msr_entry entry;
946 	} buffer = {};
947 	int r, kvm_fd;
948 
949 	buffer.header.nmsrs = 1;
950 	buffer.entry.index = msr_index;
951 	kvm_fd = open_kvm_dev_path_or_exit();
952 
953 	r = __kvm_ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header);
954 	TEST_ASSERT(r == 1, KVM_IOCTL_ERROR(KVM_GET_MSRS, r));
955 
956 	close(kvm_fd);
957 	return buffer.entry.data;
958 }
959 
960 void __vm_xsave_require_permission(uint64_t xfeature, const char *name)
961 {
962 	int kvm_fd;
963 	u64 bitmask;
964 	long rc;
965 	struct kvm_device_attr attr = {
966 		.group = 0,
967 		.attr = KVM_X86_XCOMP_GUEST_SUPP,
968 		.addr = (unsigned long) &bitmask,
969 	};
970 
971 	TEST_ASSERT(!kvm_supported_cpuid,
972 		    "kvm_get_supported_cpuid() cannot be used before ARCH_REQ_XCOMP_GUEST_PERM");
973 
974 	TEST_ASSERT(is_power_of_2(xfeature),
975 		    "Dynamic XFeatures must be enabled one at a time");
976 
977 	kvm_fd = open_kvm_dev_path_or_exit();
978 	rc = __kvm_ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr);
979 	close(kvm_fd);
980 
981 	if (rc == -1 && (errno == ENXIO || errno == EINVAL))
982 		__TEST_REQUIRE(0, "KVM_X86_XCOMP_GUEST_SUPP not supported");
983 
984 	TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc);
985 
986 	__TEST_REQUIRE(bitmask & xfeature,
987 		       "Required XSAVE feature '%s' not supported", name);
988 
989 	TEST_REQUIRE(!syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, ilog2(xfeature)));
990 
991 	rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask);
992 	TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc);
993 	TEST_ASSERT(bitmask & xfeature,
994 		    "'%s' (0x%lx) not permitted after prctl(ARCH_REQ_XCOMP_GUEST_PERM) permitted=0x%lx",
995 		    name, xfeature, bitmask);
996 }
997 
998 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid)
999 {
1000 	TEST_ASSERT(cpuid != vcpu->cpuid, "@cpuid can't be the vCPU's CPUID");
1001 
1002 	/* Allow overriding the default CPUID. */
1003 	if (vcpu->cpuid && vcpu->cpuid->nent < cpuid->nent) {
1004 		free(vcpu->cpuid);
1005 		vcpu->cpuid = NULL;
1006 	}
1007 
1008 	if (!vcpu->cpuid)
1009 		vcpu->cpuid = allocate_kvm_cpuid2(cpuid->nent);
1010 
1011 	memcpy(vcpu->cpuid, cpuid, kvm_cpuid2_size(cpuid->nent));
1012 	vcpu_set_cpuid(vcpu);
1013 }
1014 
1015 void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu,
1016 			     struct kvm_x86_cpu_property property,
1017 			     uint32_t value)
1018 {
1019 	struct kvm_cpuid_entry2 *entry;
1020 
1021 	entry = __vcpu_get_cpuid_entry(vcpu, property.function, property.index);
1022 
1023 	(&entry->eax)[property.reg] &= ~GENMASK(property.hi_bit, property.lo_bit);
1024 	(&entry->eax)[property.reg] |= value << property.lo_bit;
1025 
1026 	vcpu_set_cpuid(vcpu);
1027 
1028 	/* Sanity check that @value doesn't exceed the bounds in any way. */
1029 	TEST_ASSERT_EQ(kvm_cpuid_property(vcpu->cpuid, property), value);
1030 }
1031 
1032 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function)
1033 {
1034 	struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, function);
1035 
1036 	entry->eax = 0;
1037 	entry->ebx = 0;
1038 	entry->ecx = 0;
1039 	entry->edx = 0;
1040 	vcpu_set_cpuid(vcpu);
1041 }
1042 
1043 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1044 				     struct kvm_x86_cpu_feature feature,
1045 				     bool set)
1046 {
1047 	struct kvm_cpuid_entry2 *entry;
1048 	u32 *reg;
1049 
1050 	entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
1051 	reg = (&entry->eax) + feature.reg;
1052 
1053 	if (set)
1054 		*reg |= BIT(feature.bit);
1055 	else
1056 		*reg &= ~BIT(feature.bit);
1057 
1058 	vcpu_set_cpuid(vcpu);
1059 }
1060 
1061 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index)
1062 {
1063 	struct {
1064 		struct kvm_msrs header;
1065 		struct kvm_msr_entry entry;
1066 	} buffer = {};
1067 
1068 	buffer.header.nmsrs = 1;
1069 	buffer.entry.index = msr_index;
1070 
1071 	vcpu_msrs_get(vcpu, &buffer.header);
1072 
1073 	return buffer.entry.data;
1074 }
1075 
1076 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value)
1077 {
1078 	struct {
1079 		struct kvm_msrs header;
1080 		struct kvm_msr_entry entry;
1081 	} buffer = {};
1082 
1083 	memset(&buffer, 0, sizeof(buffer));
1084 	buffer.header.nmsrs = 1;
1085 	buffer.entry.index = msr_index;
1086 	buffer.entry.data = msr_value;
1087 
1088 	return __vcpu_ioctl(vcpu, KVM_SET_MSRS, &buffer.header);
1089 }
1090 
1091 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
1092 {
1093 	va_list ap;
1094 	struct kvm_regs regs;
1095 
1096 	TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
1097 		    "  num: %u",
1098 		    num);
1099 
1100 	va_start(ap, num);
1101 	vcpu_regs_get(vcpu, &regs);
1102 
1103 	if (num >= 1)
1104 		regs.rdi = va_arg(ap, uint64_t);
1105 
1106 	if (num >= 2)
1107 		regs.rsi = va_arg(ap, uint64_t);
1108 
1109 	if (num >= 3)
1110 		regs.rdx = va_arg(ap, uint64_t);
1111 
1112 	if (num >= 4)
1113 		regs.rcx = va_arg(ap, uint64_t);
1114 
1115 	if (num >= 5)
1116 		regs.r8 = va_arg(ap, uint64_t);
1117 
1118 	if (num >= 6)
1119 		regs.r9 = va_arg(ap, uint64_t);
1120 
1121 	vcpu_regs_set(vcpu, &regs);
1122 	va_end(ap);
1123 }
1124 
1125 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
1126 {
1127 	struct kvm_regs regs;
1128 	struct kvm_sregs sregs;
1129 
1130 	fprintf(stream, "%*svCPU ID: %u\n", indent, "", vcpu->id);
1131 
1132 	fprintf(stream, "%*sregs:\n", indent + 2, "");
1133 	vcpu_regs_get(vcpu, &regs);
1134 	regs_dump(stream, &regs, indent + 4);
1135 
1136 	fprintf(stream, "%*ssregs:\n", indent + 2, "");
1137 	vcpu_sregs_get(vcpu, &sregs);
1138 	sregs_dump(stream, &sregs, indent + 4);
1139 }
1140 
1141 static struct kvm_msr_list *__kvm_get_msr_index_list(bool feature_msrs)
1142 {
1143 	struct kvm_msr_list *list;
1144 	struct kvm_msr_list nmsrs;
1145 	int kvm_fd, r;
1146 
1147 	kvm_fd = open_kvm_dev_path_or_exit();
1148 
1149 	nmsrs.nmsrs = 0;
1150 	if (!feature_msrs)
1151 		r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
1152 	else
1153 		r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, &nmsrs);
1154 
1155 	TEST_ASSERT(r == -1 && errno == E2BIG,
1156 		    "Expected -E2BIG, got rc: %i errno: %i (%s)",
1157 		    r, errno, strerror(errno));
1158 
1159 	list = malloc(sizeof(*list) + nmsrs.nmsrs * sizeof(list->indices[0]));
1160 	TEST_ASSERT(list, "-ENOMEM when allocating MSR index list");
1161 	list->nmsrs = nmsrs.nmsrs;
1162 
1163 	if (!feature_msrs)
1164 		kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
1165 	else
1166 		kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, list);
1167 	close(kvm_fd);
1168 
1169 	TEST_ASSERT(list->nmsrs == nmsrs.nmsrs,
1170 		    "Number of MSRs in list changed, was %d, now %d",
1171 		    nmsrs.nmsrs, list->nmsrs);
1172 	return list;
1173 }
1174 
1175 const struct kvm_msr_list *kvm_get_msr_index_list(void)
1176 {
1177 	static const struct kvm_msr_list *list;
1178 
1179 	if (!list)
1180 		list = __kvm_get_msr_index_list(false);
1181 	return list;
1182 }
1183 
1184 
1185 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void)
1186 {
1187 	static const struct kvm_msr_list *list;
1188 
1189 	if (!list)
1190 		list = __kvm_get_msr_index_list(true);
1191 	return list;
1192 }
1193 
1194 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index)
1195 {
1196 	const struct kvm_msr_list *list = kvm_get_msr_index_list();
1197 	int i;
1198 
1199 	for (i = 0; i < list->nmsrs; ++i) {
1200 		if (list->indices[i] == msr_index)
1201 			return true;
1202 	}
1203 
1204 	return false;
1205 }
1206 
1207 static void vcpu_save_xsave_state(struct kvm_vcpu *vcpu,
1208 				  struct kvm_x86_state *state)
1209 {
1210 	int size = vm_check_cap(vcpu->vm, KVM_CAP_XSAVE2);
1211 
1212 	if (size) {
1213 		state->xsave = malloc(size);
1214 		vcpu_xsave2_get(vcpu, state->xsave);
1215 	} else {
1216 		state->xsave = malloc(sizeof(struct kvm_xsave));
1217 		vcpu_xsave_get(vcpu, state->xsave);
1218 	}
1219 }
1220 
1221 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu)
1222 {
1223 	const struct kvm_msr_list *msr_list = kvm_get_msr_index_list();
1224 	struct kvm_x86_state *state;
1225 	int i;
1226 
1227 	static int nested_size = -1;
1228 
1229 	if (nested_size == -1) {
1230 		nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
1231 		TEST_ASSERT(nested_size <= sizeof(state->nested_),
1232 			    "Nested state size too big, %i > %zi",
1233 			    nested_size, sizeof(state->nested_));
1234 	}
1235 
1236 	/*
1237 	 * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
1238 	 * guest state is consistent only after userspace re-enters the
1239 	 * kernel with KVM_RUN.  Complete IO prior to migrating state
1240 	 * to a new VM.
1241 	 */
1242 	vcpu_run_complete_io(vcpu);
1243 
1244 	state = malloc(sizeof(*state) + msr_list->nmsrs * sizeof(state->msrs.entries[0]));
1245 	TEST_ASSERT(state, "-ENOMEM when allocating kvm state");
1246 
1247 	vcpu_events_get(vcpu, &state->events);
1248 	vcpu_mp_state_get(vcpu, &state->mp_state);
1249 	vcpu_regs_get(vcpu, &state->regs);
1250 	vcpu_save_xsave_state(vcpu, state);
1251 
1252 	if (kvm_has_cap(KVM_CAP_XCRS))
1253 		vcpu_xcrs_get(vcpu, &state->xcrs);
1254 
1255 	vcpu_sregs_get(vcpu, &state->sregs);
1256 
1257 	if (nested_size) {
1258 		state->nested.size = sizeof(state->nested_);
1259 
1260 		vcpu_nested_state_get(vcpu, &state->nested);
1261 		TEST_ASSERT(state->nested.size <= nested_size,
1262 			    "Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
1263 			    state->nested.size, nested_size);
1264 	} else {
1265 		state->nested.size = 0;
1266 	}
1267 
1268 	state->msrs.nmsrs = msr_list->nmsrs;
1269 	for (i = 0; i < msr_list->nmsrs; i++)
1270 		state->msrs.entries[i].index = msr_list->indices[i];
1271 	vcpu_msrs_get(vcpu, &state->msrs);
1272 
1273 	vcpu_debugregs_get(vcpu, &state->debugregs);
1274 
1275 	return state;
1276 }
1277 
1278 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state)
1279 {
1280 	vcpu_sregs_set(vcpu, &state->sregs);
1281 	vcpu_msrs_set(vcpu, &state->msrs);
1282 
1283 	if (kvm_has_cap(KVM_CAP_XCRS))
1284 		vcpu_xcrs_set(vcpu, &state->xcrs);
1285 
1286 	vcpu_xsave_set(vcpu,  state->xsave);
1287 	vcpu_events_set(vcpu, &state->events);
1288 	vcpu_mp_state_set(vcpu, &state->mp_state);
1289 	vcpu_debugregs_set(vcpu, &state->debugregs);
1290 	vcpu_regs_set(vcpu, &state->regs);
1291 
1292 	if (state->nested.size)
1293 		vcpu_nested_state_set(vcpu, &state->nested);
1294 }
1295 
1296 void kvm_x86_state_cleanup(struct kvm_x86_state *state)
1297 {
1298 	free(state->xsave);
1299 	free(state);
1300 }
1301 
1302 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits)
1303 {
1304 	if (!kvm_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR)) {
1305 		*pa_bits = kvm_cpu_has(X86_FEATURE_PAE) ? 36 : 32;
1306 		*va_bits = 32;
1307 	} else {
1308 		*pa_bits = kvm_cpu_property(X86_PROPERTY_MAX_PHY_ADDR);
1309 		*va_bits = kvm_cpu_property(X86_PROPERTY_MAX_VIRT_ADDR);
1310 	}
1311 }
1312 
1313 void kvm_init_vm_address_properties(struct kvm_vm *vm)
1314 {
1315 	if (is_sev_vm(vm)) {
1316 		vm->arch.sev_fd = open_sev_dev_path_or_exit();
1317 		vm->arch.c_bit = BIT_ULL(this_cpu_property(X86_PROPERTY_SEV_C_BIT));
1318 		vm->gpa_tag_mask = vm->arch.c_bit;
1319 	} else {
1320 		vm->arch.sev_fd = -1;
1321 	}
1322 }
1323 
1324 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
1325 					       uint32_t function, uint32_t index)
1326 {
1327 	int i;
1328 
1329 	for (i = 0; i < cpuid->nent; i++) {
1330 		if (cpuid->entries[i].function == function &&
1331 		    cpuid->entries[i].index == index)
1332 			return &cpuid->entries[i];
1333 	}
1334 
1335 	TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index);
1336 
1337 	return NULL;
1338 }
1339 
1340 #define X86_HYPERCALL(inputs...)					\
1341 ({									\
1342 	uint64_t r;							\
1343 									\
1344 	asm volatile("test %[use_vmmcall], %[use_vmmcall]\n\t"		\
1345 		     "jnz 1f\n\t"					\
1346 		     "vmcall\n\t"					\
1347 		     "jmp 2f\n\t"					\
1348 		     "1: vmmcall\n\t"					\
1349 		     "2:"						\
1350 		     : "=a"(r)						\
1351 		     : [use_vmmcall] "r" (host_cpu_is_amd), inputs);	\
1352 									\
1353 	r;								\
1354 })
1355 
1356 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1357 		       uint64_t a3)
1358 {
1359 	return X86_HYPERCALL("a"(nr), "b"(a0), "c"(a1), "d"(a2), "S"(a3));
1360 }
1361 
1362 uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1)
1363 {
1364 	return X86_HYPERCALL("a"(nr), "D"(a0), "S"(a1));
1365 }
1366 
1367 void xen_hypercall(uint64_t nr, uint64_t a0, void *a1)
1368 {
1369 	GUEST_ASSERT(!__xen_hypercall(nr, a0, a1));
1370 }
1371 
1372 unsigned long vm_compute_max_gfn(struct kvm_vm *vm)
1373 {
1374 	const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */
1375 	unsigned long ht_gfn, max_gfn, max_pfn;
1376 	uint8_t maxphyaddr, guest_maxphyaddr;
1377 
1378 	/*
1379 	 * Use "guest MAXPHYADDR" from KVM if it's available.  Guest MAXPHYADDR
1380 	 * enumerates the max _mappable_ GPA, which can be less than the raw
1381 	 * MAXPHYADDR, e.g. if MAXPHYADDR=52, KVM is using TDP, and the CPU
1382 	 * doesn't support 5-level TDP.
1383 	 */
1384 	guest_maxphyaddr = kvm_cpu_property(X86_PROPERTY_GUEST_MAX_PHY_ADDR);
1385 	guest_maxphyaddr = guest_maxphyaddr ?: vm->pa_bits;
1386 	TEST_ASSERT(guest_maxphyaddr <= vm->pa_bits,
1387 		    "Guest MAXPHYADDR should never be greater than raw MAXPHYADDR");
1388 
1389 	max_gfn = (1ULL << (guest_maxphyaddr - vm->page_shift)) - 1;
1390 
1391 	/* Avoid reserved HyperTransport region on AMD processors.  */
1392 	if (!host_cpu_is_amd)
1393 		return max_gfn;
1394 
1395 	/* On parts with <40 physical address bits, the area is fully hidden */
1396 	if (vm->pa_bits < 40)
1397 		return max_gfn;
1398 
1399 	/* Before family 17h, the HyperTransport area is just below 1T.  */
1400 	ht_gfn = (1 << 28) - num_ht_pages;
1401 	if (this_cpu_family() < 0x17)
1402 		goto done;
1403 
1404 	/*
1405 	 * Otherwise it's at the top of the physical address space, possibly
1406 	 * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX.  Use
1407 	 * the old conservative value if MAXPHYADDR is not enumerated.
1408 	 */
1409 	if (!this_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR))
1410 		goto done;
1411 
1412 	maxphyaddr = this_cpu_property(X86_PROPERTY_MAX_PHY_ADDR);
1413 	max_pfn = (1ULL << (maxphyaddr - vm->page_shift)) - 1;
1414 
1415 	if (this_cpu_has_p(X86_PROPERTY_PHYS_ADDR_REDUCTION))
1416 		max_pfn >>= this_cpu_property(X86_PROPERTY_PHYS_ADDR_REDUCTION);
1417 
1418 	ht_gfn = max_pfn - num_ht_pages;
1419 done:
1420 	return min(max_gfn, ht_gfn - 1);
1421 }
1422 
1423 void kvm_selftest_arch_init(void)
1424 {
1425 	host_cpu_is_intel = this_cpu_is_intel();
1426 	host_cpu_is_amd = this_cpu_is_amd();
1427 	is_forced_emulation_enabled = kvm_is_forced_emulation_enabled();
1428 
1429 	kvm_init_pmu_errata();
1430 }
1431 
1432 bool sys_clocksource_is_based_on_tsc(void)
1433 {
1434 	char *clk_name = sys_get_cur_clocksource();
1435 	bool ret = !strcmp(clk_name, "tsc\n") ||
1436 		   !strcmp(clk_name, "hyperv_clocksource_tsc_page\n");
1437 
1438 	free(clk_name);
1439 
1440 	return ret;
1441 }
1442 
1443 bool kvm_arch_has_default_irqchip(void)
1444 {
1445 	return true;
1446 }
1447