1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2018, Google LLC.
4 */
5 #ifndef SELFTEST_KVM_UTIL_H
6 #define SELFTEST_KVM_UTIL_H
7
8 #include "test_util.h"
9
10 #include <linux/compiler.h>
11 #include "linux/hashtable.h"
12 #include "linux/list.h"
13 #include <linux/kernel.h>
14 #include <linux/kvm.h>
15 #include "linux/rbtree.h"
16 #include <linux/types.h>
17
18 #include <asm/atomic.h>
19 #include <asm/kvm.h>
20
21 #include <sys/ioctl.h>
22
23 #include "kvm_util_arch.h"
24 #include "kvm_util_types.h"
25 #include "sparsebit.h"
26
27 #define KVM_DEV_PATH "/dev/kvm"
28 #define KVM_MAX_VCPUS 512
29
30 #define NSEC_PER_SEC 1000000000L
31
32 struct userspace_mem_region {
33 struct kvm_userspace_memory_region2 region;
34 struct sparsebit *unused_phy_pages;
35 struct sparsebit *protected_phy_pages;
36 int fd;
37 off_t offset;
38 enum vm_mem_backing_src_type backing_src_type;
39 void *host_mem;
40 void *host_alias;
41 void *mmap_start;
42 void *mmap_alias;
43 size_t mmap_size;
44 struct rb_node gpa_node;
45 struct rb_node hva_node;
46 struct hlist_node slot_node;
47 };
48
49 struct kvm_vcpu {
50 struct list_head list;
51 uint32_t id;
52 int fd;
53 struct kvm_vm *vm;
54 struct kvm_run *run;
55 #ifdef __x86_64__
56 struct kvm_cpuid2 *cpuid;
57 #endif
58 struct kvm_dirty_gfn *dirty_gfns;
59 uint32_t fetch_index;
60 uint32_t dirty_gfns_count;
61 };
62
63 struct userspace_mem_regions {
64 struct rb_root gpa_tree;
65 struct rb_root hva_tree;
66 DECLARE_HASHTABLE(slot_hash, 9);
67 };
68
69 enum kvm_mem_region_type {
70 MEM_REGION_CODE,
71 MEM_REGION_DATA,
72 MEM_REGION_PT,
73 MEM_REGION_TEST_DATA,
74 NR_MEM_REGIONS,
75 };
76
77 struct kvm_vm {
78 int mode;
79 unsigned long type;
80 int kvm_fd;
81 int fd;
82 unsigned int pgtable_levels;
83 unsigned int page_size;
84 unsigned int page_shift;
85 unsigned int pa_bits;
86 unsigned int va_bits;
87 uint64_t max_gfn;
88 struct list_head vcpus;
89 struct userspace_mem_regions regions;
90 struct sparsebit *vpages_valid;
91 struct sparsebit *vpages_mapped;
92 bool has_irqchip;
93 bool pgd_created;
94 vm_paddr_t ucall_mmio_addr;
95 vm_paddr_t pgd;
96 vm_vaddr_t handlers;
97 uint32_t dirty_ring_size;
98 uint64_t gpa_tag_mask;
99
100 struct kvm_vm_arch arch;
101
102 /* Cache of information for binary stats interface */
103 int stats_fd;
104 struct kvm_stats_header stats_header;
105 struct kvm_stats_desc *stats_desc;
106
107 /*
108 * KVM region slots. These are the default memslots used by page
109 * allocators, e.g., lib/elf uses the memslots[MEM_REGION_CODE]
110 * memslot.
111 */
112 uint32_t memslots[NR_MEM_REGIONS];
113 };
114
115 struct vcpu_reg_sublist {
116 const char *name;
117 long capability;
118 int feature;
119 int feature_type;
120 bool finalize;
121 __u64 *regs;
122 __u64 regs_n;
123 __u64 *rejects_set;
124 __u64 rejects_set_n;
125 __u64 *skips_set;
126 __u64 skips_set_n;
127 };
128
129 struct vcpu_reg_list {
130 char *name;
131 struct vcpu_reg_sublist sublists[];
132 };
133
134 #define for_each_sublist(c, s) \
135 for ((s) = &(c)->sublists[0]; (s)->regs; ++(s))
136
137 #define kvm_for_each_vcpu(vm, i, vcpu) \
138 for ((i) = 0; (i) <= (vm)->last_vcpu_id; (i)++) \
139 if (!((vcpu) = vm->vcpus[i])) \
140 continue; \
141 else
142
143 struct userspace_mem_region *
144 memslot2region(struct kvm_vm *vm, uint32_t memslot);
145
vm_get_mem_region(struct kvm_vm * vm,enum kvm_mem_region_type type)146 static inline struct userspace_mem_region *vm_get_mem_region(struct kvm_vm *vm,
147 enum kvm_mem_region_type type)
148 {
149 assert(type < NR_MEM_REGIONS);
150 return memslot2region(vm, vm->memslots[type]);
151 }
152
153 /* Minimum allocated guest virtual and physical addresses */
154 #define KVM_UTIL_MIN_VADDR 0x2000
155 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
156
157 #define DEFAULT_GUEST_STACK_VADDR_MIN 0xab6000
158 #define DEFAULT_STACK_PGS 5
159
160 enum vm_guest_mode {
161 VM_MODE_P52V48_4K,
162 VM_MODE_P52V48_16K,
163 VM_MODE_P52V48_64K,
164 VM_MODE_P48V48_4K,
165 VM_MODE_P48V48_16K,
166 VM_MODE_P48V48_64K,
167 VM_MODE_P40V48_4K,
168 VM_MODE_P40V48_16K,
169 VM_MODE_P40V48_64K,
170 VM_MODE_PXXV48_4K, /* For 48bits VA but ANY bits PA */
171 VM_MODE_P47V64_4K,
172 VM_MODE_P44V64_4K,
173 VM_MODE_P36V48_4K,
174 VM_MODE_P36V48_16K,
175 VM_MODE_P36V48_64K,
176 VM_MODE_P36V47_16K,
177 NUM_VM_MODES,
178 };
179
180 struct vm_shape {
181 uint32_t type;
182 uint8_t mode;
183 uint8_t pad0;
184 uint16_t pad1;
185 };
186
187 kvm_static_assert(sizeof(struct vm_shape) == sizeof(uint64_t));
188
189 #define VM_TYPE_DEFAULT 0
190
191 #define VM_SHAPE(__mode) \
192 ({ \
193 struct vm_shape shape = { \
194 .mode = (__mode), \
195 .type = VM_TYPE_DEFAULT \
196 }; \
197 \
198 shape; \
199 })
200
201 #if defined(__aarch64__)
202
203 extern enum vm_guest_mode vm_mode_default;
204
205 #define VM_MODE_DEFAULT vm_mode_default
206 #define MIN_PAGE_SHIFT 12U
207 #define ptes_per_page(page_size) ((page_size) / 8)
208
209 #elif defined(__x86_64__)
210
211 #define VM_MODE_DEFAULT VM_MODE_PXXV48_4K
212 #define MIN_PAGE_SHIFT 12U
213 #define ptes_per_page(page_size) ((page_size) / 8)
214
215 #elif defined(__s390x__)
216
217 #define VM_MODE_DEFAULT VM_MODE_P44V64_4K
218 #define MIN_PAGE_SHIFT 12U
219 #define ptes_per_page(page_size) ((page_size) / 16)
220
221 #elif defined(__riscv)
222
223 #if __riscv_xlen == 32
224 #error "RISC-V 32-bit kvm selftests not supported"
225 #endif
226
227 #define VM_MODE_DEFAULT VM_MODE_P40V48_4K
228 #define MIN_PAGE_SHIFT 12U
229 #define ptes_per_page(page_size) ((page_size) / 8)
230
231 #endif
232
233 #define VM_SHAPE_DEFAULT VM_SHAPE(VM_MODE_DEFAULT)
234
235 #define MIN_PAGE_SIZE (1U << MIN_PAGE_SHIFT)
236 #define PTES_PER_MIN_PAGE ptes_per_page(MIN_PAGE_SIZE)
237
238 struct vm_guest_mode_params {
239 unsigned int pa_bits;
240 unsigned int va_bits;
241 unsigned int page_size;
242 unsigned int page_shift;
243 };
244 extern const struct vm_guest_mode_params vm_guest_mode_params[];
245
246 int open_path_or_exit(const char *path, int flags);
247 int open_kvm_dev_path_or_exit(void);
248
249 bool get_kvm_param_bool(const char *param);
250 bool get_kvm_intel_param_bool(const char *param);
251 bool get_kvm_amd_param_bool(const char *param);
252
253 int get_kvm_param_integer(const char *param);
254 int get_kvm_intel_param_integer(const char *param);
255 int get_kvm_amd_param_integer(const char *param);
256
257 unsigned int kvm_check_cap(long cap);
258
kvm_has_cap(long cap)259 static inline bool kvm_has_cap(long cap)
260 {
261 return kvm_check_cap(cap);
262 }
263
264 #define __KVM_SYSCALL_ERROR(_name, _ret) \
265 "%s failed, rc: %i errno: %i (%s)", (_name), (_ret), errno, strerror(errno)
266
267 /*
268 * Use the "inner", double-underscore macro when reporting errors from within
269 * other macros so that the name of ioctl() and not its literal numeric value
270 * is printed on error. The "outer" macro is strongly preferred when reporting
271 * errors "directly", i.e. without an additional layer of macros, as it reduces
272 * the probability of passing in the wrong string.
273 */
274 #define __KVM_IOCTL_ERROR(_name, _ret) __KVM_SYSCALL_ERROR(_name, _ret)
275 #define KVM_IOCTL_ERROR(_ioctl, _ret) __KVM_IOCTL_ERROR(#_ioctl, _ret)
276
277 #define kvm_do_ioctl(fd, cmd, arg) \
278 ({ \
279 kvm_static_assert(!_IOC_SIZE(cmd) || sizeof(*arg) == _IOC_SIZE(cmd)); \
280 ioctl(fd, cmd, arg); \
281 })
282
283 #define __kvm_ioctl(kvm_fd, cmd, arg) \
284 kvm_do_ioctl(kvm_fd, cmd, arg)
285
286 #define kvm_ioctl(kvm_fd, cmd, arg) \
287 ({ \
288 int ret = __kvm_ioctl(kvm_fd, cmd, arg); \
289 \
290 TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(#cmd, ret)); \
291 })
292
static_assert_is_vm(struct kvm_vm * vm)293 static __always_inline void static_assert_is_vm(struct kvm_vm *vm) { }
294
295 #define __vm_ioctl(vm, cmd, arg) \
296 ({ \
297 static_assert_is_vm(vm); \
298 kvm_do_ioctl((vm)->fd, cmd, arg); \
299 })
300
301 /*
302 * Assert that a VM or vCPU ioctl() succeeded, with extra magic to detect if
303 * the ioctl() failed because KVM killed/bugged the VM. To detect a dead VM,
304 * probe KVM_CAP_USER_MEMORY, which (a) has been supported by KVM since before
305 * selftests existed and (b) should never outright fail, i.e. is supposed to
306 * return 0 or 1. If KVM kills a VM, KVM returns -EIO for all ioctl()s for the
307 * VM and its vCPUs, including KVM_CHECK_EXTENSION.
308 */
309 #define __TEST_ASSERT_VM_VCPU_IOCTL(cond, name, ret, vm) \
310 do { \
311 int __errno = errno; \
312 \
313 static_assert_is_vm(vm); \
314 \
315 if (cond) \
316 break; \
317 \
318 if (errno == EIO && \
319 __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)KVM_CAP_USER_MEMORY) < 0) { \
320 TEST_ASSERT(errno == EIO, "KVM killed the VM, should return -EIO"); \
321 TEST_FAIL("KVM killed/bugged the VM, check the kernel log for clues"); \
322 } \
323 errno = __errno; \
324 TEST_ASSERT(cond, __KVM_IOCTL_ERROR(name, ret)); \
325 } while (0)
326
327 #define TEST_ASSERT_VM_VCPU_IOCTL(cond, cmd, ret, vm) \
328 __TEST_ASSERT_VM_VCPU_IOCTL(cond, #cmd, ret, vm)
329
330 #define vm_ioctl(vm, cmd, arg) \
331 ({ \
332 int ret = __vm_ioctl(vm, cmd, arg); \
333 \
334 __TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, vm); \
335 })
336
static_assert_is_vcpu(struct kvm_vcpu * vcpu)337 static __always_inline void static_assert_is_vcpu(struct kvm_vcpu *vcpu) { }
338
339 #define __vcpu_ioctl(vcpu, cmd, arg) \
340 ({ \
341 static_assert_is_vcpu(vcpu); \
342 kvm_do_ioctl((vcpu)->fd, cmd, arg); \
343 })
344
345 #define vcpu_ioctl(vcpu, cmd, arg) \
346 ({ \
347 int ret = __vcpu_ioctl(vcpu, cmd, arg); \
348 \
349 __TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, (vcpu)->vm); \
350 })
351
352 /*
353 * Looks up and returns the value corresponding to the capability
354 * (KVM_CAP_*) given by cap.
355 */
vm_check_cap(struct kvm_vm * vm,long cap)356 static inline int vm_check_cap(struct kvm_vm *vm, long cap)
357 {
358 int ret = __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)cap);
359
360 TEST_ASSERT_VM_VCPU_IOCTL(ret >= 0, KVM_CHECK_EXTENSION, ret, vm);
361 return ret;
362 }
363
__vm_enable_cap(struct kvm_vm * vm,uint32_t cap,uint64_t arg0)364 static inline int __vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
365 {
366 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
367
368 return __vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
369 }
vm_enable_cap(struct kvm_vm * vm,uint32_t cap,uint64_t arg0)370 static inline void vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
371 {
372 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
373
374 vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
375 }
376
vm_set_memory_attributes(struct kvm_vm * vm,uint64_t gpa,uint64_t size,uint64_t attributes)377 static inline void vm_set_memory_attributes(struct kvm_vm *vm, uint64_t gpa,
378 uint64_t size, uint64_t attributes)
379 {
380 struct kvm_memory_attributes attr = {
381 .attributes = attributes,
382 .address = gpa,
383 .size = size,
384 .flags = 0,
385 };
386
387 /*
388 * KVM_SET_MEMORY_ATTRIBUTES overwrites _all_ attributes. These flows
389 * need significant enhancements to support multiple attributes.
390 */
391 TEST_ASSERT(!attributes || attributes == KVM_MEMORY_ATTRIBUTE_PRIVATE,
392 "Update me to support multiple attributes!");
393
394 vm_ioctl(vm, KVM_SET_MEMORY_ATTRIBUTES, &attr);
395 }
396
397
vm_mem_set_private(struct kvm_vm * vm,uint64_t gpa,uint64_t size)398 static inline void vm_mem_set_private(struct kvm_vm *vm, uint64_t gpa,
399 uint64_t size)
400 {
401 vm_set_memory_attributes(vm, gpa, size, KVM_MEMORY_ATTRIBUTE_PRIVATE);
402 }
403
vm_mem_set_shared(struct kvm_vm * vm,uint64_t gpa,uint64_t size)404 static inline void vm_mem_set_shared(struct kvm_vm *vm, uint64_t gpa,
405 uint64_t size)
406 {
407 vm_set_memory_attributes(vm, gpa, size, 0);
408 }
409
410 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t gpa, uint64_t size,
411 bool punch_hole);
412
vm_guest_mem_punch_hole(struct kvm_vm * vm,uint64_t gpa,uint64_t size)413 static inline void vm_guest_mem_punch_hole(struct kvm_vm *vm, uint64_t gpa,
414 uint64_t size)
415 {
416 vm_guest_mem_fallocate(vm, gpa, size, true);
417 }
418
vm_guest_mem_allocate(struct kvm_vm * vm,uint64_t gpa,uint64_t size)419 static inline void vm_guest_mem_allocate(struct kvm_vm *vm, uint64_t gpa,
420 uint64_t size)
421 {
422 vm_guest_mem_fallocate(vm, gpa, size, false);
423 }
424
425 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size);
426 const char *vm_guest_mode_string(uint32_t i);
427
428 void kvm_vm_free(struct kvm_vm *vmp);
429 void kvm_vm_restart(struct kvm_vm *vmp);
430 void kvm_vm_release(struct kvm_vm *vmp);
431 void kvm_vm_elf_load(struct kvm_vm *vm, const char *filename);
432 int kvm_memfd_alloc(size_t size, bool hugepages);
433
434 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
435
kvm_vm_get_dirty_log(struct kvm_vm * vm,int slot,void * log)436 static inline void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
437 {
438 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
439
440 vm_ioctl(vm, KVM_GET_DIRTY_LOG, &args);
441 }
442
kvm_vm_clear_dirty_log(struct kvm_vm * vm,int slot,void * log,uint64_t first_page,uint32_t num_pages)443 static inline void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
444 uint64_t first_page, uint32_t num_pages)
445 {
446 struct kvm_clear_dirty_log args = {
447 .dirty_bitmap = log,
448 .slot = slot,
449 .first_page = first_page,
450 .num_pages = num_pages
451 };
452
453 vm_ioctl(vm, KVM_CLEAR_DIRTY_LOG, &args);
454 }
455
kvm_vm_reset_dirty_ring(struct kvm_vm * vm)456 static inline uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
457 {
458 return __vm_ioctl(vm, KVM_RESET_DIRTY_RINGS, NULL);
459 }
460
kvm_vm_register_coalesced_io(struct kvm_vm * vm,uint64_t address,uint64_t size,bool pio)461 static inline void kvm_vm_register_coalesced_io(struct kvm_vm *vm,
462 uint64_t address,
463 uint64_t size, bool pio)
464 {
465 struct kvm_coalesced_mmio_zone zone = {
466 .addr = address,
467 .size = size,
468 .pio = pio,
469 };
470
471 vm_ioctl(vm, KVM_REGISTER_COALESCED_MMIO, &zone);
472 }
473
kvm_vm_unregister_coalesced_io(struct kvm_vm * vm,uint64_t address,uint64_t size,bool pio)474 static inline void kvm_vm_unregister_coalesced_io(struct kvm_vm *vm,
475 uint64_t address,
476 uint64_t size, bool pio)
477 {
478 struct kvm_coalesced_mmio_zone zone = {
479 .addr = address,
480 .size = size,
481 .pio = pio,
482 };
483
484 vm_ioctl(vm, KVM_UNREGISTER_COALESCED_MMIO, &zone);
485 }
486
vm_get_stats_fd(struct kvm_vm * vm)487 static inline int vm_get_stats_fd(struct kvm_vm *vm)
488 {
489 int fd = __vm_ioctl(vm, KVM_GET_STATS_FD, NULL);
490
491 TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_GET_STATS_FD, fd, vm);
492 return fd;
493 }
494
read_stats_header(int stats_fd,struct kvm_stats_header * header)495 static inline void read_stats_header(int stats_fd, struct kvm_stats_header *header)
496 {
497 ssize_t ret;
498
499 ret = pread(stats_fd, header, sizeof(*header), 0);
500 TEST_ASSERT(ret == sizeof(*header),
501 "Failed to read '%lu' header bytes, ret = '%ld'",
502 sizeof(*header), ret);
503 }
504
505 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
506 struct kvm_stats_header *header);
507
get_stats_descriptor_size(struct kvm_stats_header * header)508 static inline ssize_t get_stats_descriptor_size(struct kvm_stats_header *header)
509 {
510 /*
511 * The base size of the descriptor is defined by KVM's ABI, but the
512 * size of the name field is variable, as far as KVM's ABI is
513 * concerned. For a given instance of KVM, the name field is the same
514 * size for all stats and is provided in the overall stats header.
515 */
516 return sizeof(struct kvm_stats_desc) + header->name_size;
517 }
518
get_stats_descriptor(struct kvm_stats_desc * stats,int index,struct kvm_stats_header * header)519 static inline struct kvm_stats_desc *get_stats_descriptor(struct kvm_stats_desc *stats,
520 int index,
521 struct kvm_stats_header *header)
522 {
523 /*
524 * Note, size_desc includes the size of the name field, which is
525 * variable. i.e. this is NOT equivalent to &stats_desc[i].
526 */
527 return (void *)stats + index * get_stats_descriptor_size(header);
528 }
529
530 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
531 struct kvm_stats_desc *desc, uint64_t *data,
532 size_t max_elements);
533
534 void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
535 size_t max_elements);
536
vm_get_stat(struct kvm_vm * vm,const char * stat_name)537 static inline uint64_t vm_get_stat(struct kvm_vm *vm, const char *stat_name)
538 {
539 uint64_t data;
540
541 __vm_get_stat(vm, stat_name, &data, 1);
542 return data;
543 }
544
545 void vm_create_irqchip(struct kvm_vm *vm);
546
__vm_create_guest_memfd(struct kvm_vm * vm,uint64_t size,uint64_t flags)547 static inline int __vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size,
548 uint64_t flags)
549 {
550 struct kvm_create_guest_memfd guest_memfd = {
551 .size = size,
552 .flags = flags,
553 };
554
555 return __vm_ioctl(vm, KVM_CREATE_GUEST_MEMFD, &guest_memfd);
556 }
557
vm_create_guest_memfd(struct kvm_vm * vm,uint64_t size,uint64_t flags)558 static inline int vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size,
559 uint64_t flags)
560 {
561 int fd = __vm_create_guest_memfd(vm, size, flags);
562
563 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_GUEST_MEMFD, fd));
564 return fd;
565 }
566
567 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
568 uint64_t gpa, uint64_t size, void *hva);
569 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
570 uint64_t gpa, uint64_t size, void *hva);
571 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
572 uint64_t gpa, uint64_t size, void *hva,
573 uint32_t guest_memfd, uint64_t guest_memfd_offset);
574 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
575 uint64_t gpa, uint64_t size, void *hva,
576 uint32_t guest_memfd, uint64_t guest_memfd_offset);
577
578 void vm_userspace_mem_region_add(struct kvm_vm *vm,
579 enum vm_mem_backing_src_type src_type,
580 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
581 uint32_t flags);
582 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
583 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
584 uint32_t flags, int guest_memfd_fd, uint64_t guest_memfd_offset);
585
586 #ifndef vm_arch_has_protected_memory
vm_arch_has_protected_memory(struct kvm_vm * vm)587 static inline bool vm_arch_has_protected_memory(struct kvm_vm *vm)
588 {
589 return false;
590 }
591 #endif
592
593 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags);
594 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa);
595 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot);
596 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id);
597 void vm_populate_vaddr_bitmap(struct kvm_vm *vm);
598 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
599 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
600 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
601 enum kvm_mem_region_type type);
602 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
603 vm_vaddr_t vaddr_min,
604 enum kvm_mem_region_type type);
605 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages);
606 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm,
607 enum kvm_mem_region_type type);
608 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm);
609
610 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
611 unsigned int npages);
612 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa);
613 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva);
614 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva);
615 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa);
616
617 #ifndef vcpu_arch_put_guest
618 #define vcpu_arch_put_guest(mem, val) do { (mem) = (val); } while (0)
619 #endif
620
vm_untag_gpa(struct kvm_vm * vm,vm_paddr_t gpa)621 static inline vm_paddr_t vm_untag_gpa(struct kvm_vm *vm, vm_paddr_t gpa)
622 {
623 return gpa & ~vm->gpa_tag_mask;
624 }
625
626 void vcpu_run(struct kvm_vcpu *vcpu);
627 int _vcpu_run(struct kvm_vcpu *vcpu);
628
__vcpu_run(struct kvm_vcpu * vcpu)629 static inline int __vcpu_run(struct kvm_vcpu *vcpu)
630 {
631 return __vcpu_ioctl(vcpu, KVM_RUN, NULL);
632 }
633
634 void vcpu_run_complete_io(struct kvm_vcpu *vcpu);
635 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu);
636
vcpu_enable_cap(struct kvm_vcpu * vcpu,uint32_t cap,uint64_t arg0)637 static inline void vcpu_enable_cap(struct kvm_vcpu *vcpu, uint32_t cap,
638 uint64_t arg0)
639 {
640 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
641
642 vcpu_ioctl(vcpu, KVM_ENABLE_CAP, &enable_cap);
643 }
644
vcpu_guest_debug_set(struct kvm_vcpu * vcpu,struct kvm_guest_debug * debug)645 static inline void vcpu_guest_debug_set(struct kvm_vcpu *vcpu,
646 struct kvm_guest_debug *debug)
647 {
648 vcpu_ioctl(vcpu, KVM_SET_GUEST_DEBUG, debug);
649 }
650
vcpu_mp_state_get(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)651 static inline void vcpu_mp_state_get(struct kvm_vcpu *vcpu,
652 struct kvm_mp_state *mp_state)
653 {
654 vcpu_ioctl(vcpu, KVM_GET_MP_STATE, mp_state);
655 }
vcpu_mp_state_set(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)656 static inline void vcpu_mp_state_set(struct kvm_vcpu *vcpu,
657 struct kvm_mp_state *mp_state)
658 {
659 vcpu_ioctl(vcpu, KVM_SET_MP_STATE, mp_state);
660 }
661
vcpu_regs_get(struct kvm_vcpu * vcpu,struct kvm_regs * regs)662 static inline void vcpu_regs_get(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
663 {
664 vcpu_ioctl(vcpu, KVM_GET_REGS, regs);
665 }
666
vcpu_regs_set(struct kvm_vcpu * vcpu,struct kvm_regs * regs)667 static inline void vcpu_regs_set(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
668 {
669 vcpu_ioctl(vcpu, KVM_SET_REGS, regs);
670 }
vcpu_sregs_get(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)671 static inline void vcpu_sregs_get(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
672 {
673 vcpu_ioctl(vcpu, KVM_GET_SREGS, sregs);
674
675 }
vcpu_sregs_set(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)676 static inline void vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
677 {
678 vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
679 }
_vcpu_sregs_set(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)680 static inline int _vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
681 {
682 return __vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
683 }
vcpu_fpu_get(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)684 static inline void vcpu_fpu_get(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
685 {
686 vcpu_ioctl(vcpu, KVM_GET_FPU, fpu);
687 }
vcpu_fpu_set(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)688 static inline void vcpu_fpu_set(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
689 {
690 vcpu_ioctl(vcpu, KVM_SET_FPU, fpu);
691 }
692
__vcpu_get_reg(struct kvm_vcpu * vcpu,uint64_t id,void * addr)693 static inline int __vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr)
694 {
695 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr };
696
697 return __vcpu_ioctl(vcpu, KVM_GET_ONE_REG, ®);
698 }
__vcpu_set_reg(struct kvm_vcpu * vcpu,uint64_t id,uint64_t val)699 static inline int __vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
700 {
701 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
702
703 return __vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®);
704 }
vcpu_get_reg(struct kvm_vcpu * vcpu,uint64_t id,void * addr)705 static inline void vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr)
706 {
707 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr };
708
709 vcpu_ioctl(vcpu, KVM_GET_ONE_REG, ®);
710 }
vcpu_set_reg(struct kvm_vcpu * vcpu,uint64_t id,uint64_t val)711 static inline void vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
712 {
713 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
714
715 vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®);
716 }
717
718 #ifdef __KVM_HAVE_VCPU_EVENTS
vcpu_events_get(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)719 static inline void vcpu_events_get(struct kvm_vcpu *vcpu,
720 struct kvm_vcpu_events *events)
721 {
722 vcpu_ioctl(vcpu, KVM_GET_VCPU_EVENTS, events);
723 }
vcpu_events_set(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)724 static inline void vcpu_events_set(struct kvm_vcpu *vcpu,
725 struct kvm_vcpu_events *events)
726 {
727 vcpu_ioctl(vcpu, KVM_SET_VCPU_EVENTS, events);
728 }
729 #endif
730 #ifdef __x86_64__
vcpu_nested_state_get(struct kvm_vcpu * vcpu,struct kvm_nested_state * state)731 static inline void vcpu_nested_state_get(struct kvm_vcpu *vcpu,
732 struct kvm_nested_state *state)
733 {
734 vcpu_ioctl(vcpu, KVM_GET_NESTED_STATE, state);
735 }
__vcpu_nested_state_set(struct kvm_vcpu * vcpu,struct kvm_nested_state * state)736 static inline int __vcpu_nested_state_set(struct kvm_vcpu *vcpu,
737 struct kvm_nested_state *state)
738 {
739 return __vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
740 }
741
vcpu_nested_state_set(struct kvm_vcpu * vcpu,struct kvm_nested_state * state)742 static inline void vcpu_nested_state_set(struct kvm_vcpu *vcpu,
743 struct kvm_nested_state *state)
744 {
745 vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
746 }
747 #endif
vcpu_get_stats_fd(struct kvm_vcpu * vcpu)748 static inline int vcpu_get_stats_fd(struct kvm_vcpu *vcpu)
749 {
750 int fd = __vcpu_ioctl(vcpu, KVM_GET_STATS_FD, NULL);
751
752 TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_CHECK_EXTENSION, fd, vcpu->vm);
753 return fd;
754 }
755
756 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr);
757
kvm_has_device_attr(int dev_fd,uint32_t group,uint64_t attr)758 static inline void kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
759 {
760 int ret = __kvm_has_device_attr(dev_fd, group, attr);
761
762 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno);
763 }
764
765 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val);
766
kvm_device_attr_get(int dev_fd,uint32_t group,uint64_t attr,void * val)767 static inline void kvm_device_attr_get(int dev_fd, uint32_t group,
768 uint64_t attr, void *val)
769 {
770 int ret = __kvm_device_attr_get(dev_fd, group, attr, val);
771
772 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_GET_DEVICE_ATTR, ret));
773 }
774
775 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val);
776
kvm_device_attr_set(int dev_fd,uint32_t group,uint64_t attr,void * val)777 static inline void kvm_device_attr_set(int dev_fd, uint32_t group,
778 uint64_t attr, void *val)
779 {
780 int ret = __kvm_device_attr_set(dev_fd, group, attr, val);
781
782 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_DEVICE_ATTR, ret));
783 }
784
__vcpu_has_device_attr(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr)785 static inline int __vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
786 uint64_t attr)
787 {
788 return __kvm_has_device_attr(vcpu->fd, group, attr);
789 }
790
vcpu_has_device_attr(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr)791 static inline void vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
792 uint64_t attr)
793 {
794 kvm_has_device_attr(vcpu->fd, group, attr);
795 }
796
__vcpu_device_attr_get(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr,void * val)797 static inline int __vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
798 uint64_t attr, void *val)
799 {
800 return __kvm_device_attr_get(vcpu->fd, group, attr, val);
801 }
802
vcpu_device_attr_get(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr,void * val)803 static inline void vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
804 uint64_t attr, void *val)
805 {
806 kvm_device_attr_get(vcpu->fd, group, attr, val);
807 }
808
__vcpu_device_attr_set(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr,void * val)809 static inline int __vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
810 uint64_t attr, void *val)
811 {
812 return __kvm_device_attr_set(vcpu->fd, group, attr, val);
813 }
814
vcpu_device_attr_set(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr,void * val)815 static inline void vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
816 uint64_t attr, void *val)
817 {
818 kvm_device_attr_set(vcpu->fd, group, attr, val);
819 }
820
821 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type);
822 int __kvm_create_device(struct kvm_vm *vm, uint64_t type);
823
kvm_create_device(struct kvm_vm * vm,uint64_t type)824 static inline int kvm_create_device(struct kvm_vm *vm, uint64_t type)
825 {
826 int fd = __kvm_create_device(vm, type);
827
828 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_DEVICE, fd));
829 return fd;
830 }
831
832 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu);
833
834 /*
835 * VM VCPU Args Set
836 *
837 * Input Args:
838 * vm - Virtual Machine
839 * num - number of arguments
840 * ... - arguments, each of type uint64_t
841 *
842 * Output Args: None
843 *
844 * Return: None
845 *
846 * Sets the first @num input parameters for the function at @vcpu's entry point,
847 * per the C calling convention of the architecture, to the values given as
848 * variable args. Each of the variable args is expected to be of type uint64_t.
849 * The maximum @num can be is specific to the architecture.
850 */
851 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...);
852
853 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
854 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
855
856 #define KVM_MAX_IRQ_ROUTES 4096
857
858 struct kvm_irq_routing *kvm_gsi_routing_create(void);
859 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
860 uint32_t gsi, uint32_t pin);
861 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
862 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
863
864 const char *exit_reason_str(unsigned int exit_reason);
865
866 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
867 uint32_t memslot);
868 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
869 vm_paddr_t paddr_min, uint32_t memslot,
870 bool protected);
871 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm);
872
vm_phy_pages_alloc(struct kvm_vm * vm,size_t num,vm_paddr_t paddr_min,uint32_t memslot)873 static inline vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
874 vm_paddr_t paddr_min, uint32_t memslot)
875 {
876 /*
877 * By default, allocate memory as protected for VMs that support
878 * protected memory, as the majority of memory for such VMs is
879 * protected, i.e. using shared memory is effectively opt-in.
880 */
881 return __vm_phy_pages_alloc(vm, num, paddr_min, memslot,
882 vm_arch_has_protected_memory(vm));
883 }
884
885 /*
886 * ____vm_create() does KVM_CREATE_VM and little else. __vm_create() also
887 * loads the test binary into guest memory and creates an IRQ chip (x86 only).
888 * __vm_create() does NOT create vCPUs, @nr_runnable_vcpus is used purely to
889 * calculate the amount of memory needed for per-vCPU data, e.g. stacks.
890 */
891 struct kvm_vm *____vm_create(struct vm_shape shape);
892 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
893 uint64_t nr_extra_pages);
894
vm_create_barebones(void)895 static inline struct kvm_vm *vm_create_barebones(void)
896 {
897 return ____vm_create(VM_SHAPE_DEFAULT);
898 }
899
vm_create_barebones_type(unsigned long type)900 static inline struct kvm_vm *vm_create_barebones_type(unsigned long type)
901 {
902 const struct vm_shape shape = {
903 .mode = VM_MODE_DEFAULT,
904 .type = type,
905 };
906
907 return ____vm_create(shape);
908 }
909
vm_create(uint32_t nr_runnable_vcpus)910 static inline struct kvm_vm *vm_create(uint32_t nr_runnable_vcpus)
911 {
912 return __vm_create(VM_SHAPE_DEFAULT, nr_runnable_vcpus, 0);
913 }
914
915 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
916 uint64_t extra_mem_pages,
917 void *guest_code, struct kvm_vcpu *vcpus[]);
918
vm_create_with_vcpus(uint32_t nr_vcpus,void * guest_code,struct kvm_vcpu * vcpus[])919 static inline struct kvm_vm *vm_create_with_vcpus(uint32_t nr_vcpus,
920 void *guest_code,
921 struct kvm_vcpu *vcpus[])
922 {
923 return __vm_create_with_vcpus(VM_SHAPE_DEFAULT, nr_vcpus, 0,
924 guest_code, vcpus);
925 }
926
927
928 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
929 struct kvm_vcpu **vcpu,
930 uint64_t extra_mem_pages,
931 void *guest_code);
932
933 /*
934 * Create a VM with a single vCPU with reasonable defaults and @extra_mem_pages
935 * additional pages of guest memory. Returns the VM and vCPU (via out param).
936 */
__vm_create_with_one_vcpu(struct kvm_vcpu ** vcpu,uint64_t extra_mem_pages,void * guest_code)937 static inline struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
938 uint64_t extra_mem_pages,
939 void *guest_code)
940 {
941 return __vm_create_shape_with_one_vcpu(VM_SHAPE_DEFAULT, vcpu,
942 extra_mem_pages, guest_code);
943 }
944
vm_create_with_one_vcpu(struct kvm_vcpu ** vcpu,void * guest_code)945 static inline struct kvm_vm *vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
946 void *guest_code)
947 {
948 return __vm_create_with_one_vcpu(vcpu, 0, guest_code);
949 }
950
vm_create_shape_with_one_vcpu(struct vm_shape shape,struct kvm_vcpu ** vcpu,void * guest_code)951 static inline struct kvm_vm *vm_create_shape_with_one_vcpu(struct vm_shape shape,
952 struct kvm_vcpu **vcpu,
953 void *guest_code)
954 {
955 return __vm_create_shape_with_one_vcpu(shape, vcpu, 0, guest_code);
956 }
957
958 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm);
959
960 void kvm_pin_this_task_to_pcpu(uint32_t pcpu);
961 void kvm_print_vcpu_pinning_help(void);
962 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
963 int nr_vcpus);
964
965 unsigned long vm_compute_max_gfn(struct kvm_vm *vm);
966 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size);
967 unsigned int vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages);
968 unsigned int vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages);
969 static inline unsigned int
vm_adjust_num_guest_pages(enum vm_guest_mode mode,unsigned int num_guest_pages)970 vm_adjust_num_guest_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
971 {
972 unsigned int n;
973 n = vm_num_guest_pages(mode, vm_num_host_pages(mode, num_guest_pages));
974 #ifdef __s390x__
975 /* s390 requires 1M aligned guest sizes */
976 n = (n + 255) & ~255;
977 #endif
978 return n;
979 }
980
981 #define sync_global_to_guest(vm, g) ({ \
982 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
983 memcpy(_p, &(g), sizeof(g)); \
984 })
985
986 #define sync_global_from_guest(vm, g) ({ \
987 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
988 memcpy(&(g), _p, sizeof(g)); \
989 })
990
991 /*
992 * Write a global value, but only in the VM's (guest's) domain. Primarily used
993 * for "globals" that hold per-VM values (VMs always duplicate code and global
994 * data into their own region of physical memory), but can be used anytime it's
995 * undesirable to change the host's copy of the global.
996 */
997 #define write_guest_global(vm, g, val) ({ \
998 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
999 typeof(g) _val = val; \
1000 \
1001 memcpy(_p, &(_val), sizeof(g)); \
1002 })
1003
1004 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu);
1005
1006 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu,
1007 uint8_t indent);
1008
vcpu_dump(FILE * stream,struct kvm_vcpu * vcpu,uint8_t indent)1009 static inline void vcpu_dump(FILE *stream, struct kvm_vcpu *vcpu,
1010 uint8_t indent)
1011 {
1012 vcpu_arch_dump(stream, vcpu, indent);
1013 }
1014
1015 /*
1016 * Adds a vCPU with reasonable defaults (e.g. a stack)
1017 *
1018 * Input Args:
1019 * vm - Virtual Machine
1020 * vcpu_id - The id of the VCPU to add to the VM.
1021 */
1022 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id);
1023 void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code);
1024
vm_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id,void * guest_code)1025 static inline struct kvm_vcpu *vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
1026 void *guest_code)
1027 {
1028 struct kvm_vcpu *vcpu = vm_arch_vcpu_add(vm, vcpu_id);
1029
1030 vcpu_arch_set_entry_point(vcpu, guest_code);
1031
1032 return vcpu;
1033 }
1034
1035 /* Re-create a vCPU after restarting a VM, e.g. for state save/restore tests. */
1036 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id);
1037
vm_vcpu_recreate(struct kvm_vm * vm,uint32_t vcpu_id)1038 static inline struct kvm_vcpu *vm_vcpu_recreate(struct kvm_vm *vm,
1039 uint32_t vcpu_id)
1040 {
1041 return vm_arch_vcpu_recreate(vm, vcpu_id);
1042 }
1043
1044 void vcpu_arch_free(struct kvm_vcpu *vcpu);
1045
1046 void virt_arch_pgd_alloc(struct kvm_vm *vm);
1047
virt_pgd_alloc(struct kvm_vm * vm)1048 static inline void virt_pgd_alloc(struct kvm_vm *vm)
1049 {
1050 virt_arch_pgd_alloc(vm);
1051 }
1052
1053 /*
1054 * VM Virtual Page Map
1055 *
1056 * Input Args:
1057 * vm - Virtual Machine
1058 * vaddr - VM Virtual Address
1059 * paddr - VM Physical Address
1060 * memslot - Memory region slot for new virtual translation tables
1061 *
1062 * Output Args: None
1063 *
1064 * Return: None
1065 *
1066 * Within @vm, creates a virtual translation for the page starting
1067 * at @vaddr to the page starting at @paddr.
1068 */
1069 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr);
1070
virt_pg_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr)1071 static inline void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
1072 {
1073 virt_arch_pg_map(vm, vaddr, paddr);
1074 }
1075
1076
1077 /*
1078 * Address Guest Virtual to Guest Physical
1079 *
1080 * Input Args:
1081 * vm - Virtual Machine
1082 * gva - VM virtual address
1083 *
1084 * Output Args: None
1085 *
1086 * Return:
1087 * Equivalent VM physical address
1088 *
1089 * Returns the VM physical address of the translated VM virtual
1090 * address given by @gva.
1091 */
1092 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva);
1093
addr_gva2gpa(struct kvm_vm * vm,vm_vaddr_t gva)1094 static inline vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
1095 {
1096 return addr_arch_gva2gpa(vm, gva);
1097 }
1098
1099 /*
1100 * Virtual Translation Tables Dump
1101 *
1102 * Input Args:
1103 * stream - Output FILE stream
1104 * vm - Virtual Machine
1105 * indent - Left margin indent amount
1106 *
1107 * Output Args: None
1108 *
1109 * Return: None
1110 *
1111 * Dumps to the FILE stream given by @stream, the contents of all the
1112 * virtual translation tables for the VM given by @vm.
1113 */
1114 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
1115
virt_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)1116 static inline void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1117 {
1118 virt_arch_dump(stream, vm, indent);
1119 }
1120
1121
__vm_disable_nx_huge_pages(struct kvm_vm * vm)1122 static inline int __vm_disable_nx_huge_pages(struct kvm_vm *vm)
1123 {
1124 return __vm_enable_cap(vm, KVM_CAP_VM_DISABLE_NX_HUGE_PAGES, 0);
1125 }
1126
1127 /*
1128 * Arch hook that is invoked via a constructor, i.e. before exeucting main(),
1129 * to allow for arch-specific setup that is common to all tests, e.g. computing
1130 * the default guest "mode".
1131 */
1132 void kvm_selftest_arch_init(void);
1133
1134 void kvm_arch_vm_post_create(struct kvm_vm *vm);
1135
1136 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr);
1137
1138 uint32_t guest_get_vcpuid(void);
1139
1140 #endif /* SELFTEST_KVM_UTIL_H */
1141