xref: /linux/arch/arm64/include/asm/kvm_host.h (revision 51d90a15fedf8366cb96ef68d0ea2d0bf15417d2)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13 
14 #include <linux/arm-smccc.h>
15 #include <linux/bitmap.h>
16 #include <linux/types.h>
17 #include <linux/jump_label.h>
18 #include <linux/kvm_types.h>
19 #include <linux/maple_tree.h>
20 #include <linux/percpu.h>
21 #include <linux/psci.h>
22 #include <asm/arch_gicv3.h>
23 #include <asm/barrier.h>
24 #include <asm/cpufeature.h>
25 #include <asm/cputype.h>
26 #include <asm/daifflags.h>
27 #include <asm/fpsimd.h>
28 #include <asm/kvm.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/vncr_mapping.h>
31 
32 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
33 
34 #define KVM_HALT_POLL_NS_DEFAULT 500000
35 
36 #include <kvm/arm_vgic.h>
37 #include <kvm/arm_arch_timer.h>
38 #include <kvm/arm_pmu.h>
39 
40 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
41 
42 #define KVM_VCPU_MAX_FEATURES 9
43 #define KVM_VCPU_VALID_FEATURES	(BIT(KVM_VCPU_MAX_FEATURES) - 1)
44 
45 #define KVM_REQ_SLEEP \
46 	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
47 #define KVM_REQ_IRQ_PENDING		KVM_ARCH_REQ(1)
48 #define KVM_REQ_VCPU_RESET		KVM_ARCH_REQ(2)
49 #define KVM_REQ_RECORD_STEAL		KVM_ARCH_REQ(3)
50 #define KVM_REQ_RELOAD_GICv4		KVM_ARCH_REQ(4)
51 #define KVM_REQ_RELOAD_PMU		KVM_ARCH_REQ(5)
52 #define KVM_REQ_SUSPEND			KVM_ARCH_REQ(6)
53 #define KVM_REQ_RESYNC_PMU_EL0		KVM_ARCH_REQ(7)
54 #define KVM_REQ_NESTED_S2_UNMAP		KVM_ARCH_REQ(8)
55 #define KVM_REQ_GUEST_HYP_IRQ_PENDING	KVM_ARCH_REQ(9)
56 #define KVM_REQ_MAP_L1_VNCR_EL2		KVM_ARCH_REQ(10)
57 #define KVM_REQ_VGIC_PROCESS_UPDATE	KVM_ARCH_REQ(11)
58 
59 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
60 				     KVM_DIRTY_LOG_INITIALLY_SET)
61 
62 #define KVM_HAVE_MMU_RWLOCK
63 
64 /*
65  * Mode of operation configurable with kvm-arm.mode early param.
66  * See Documentation/admin-guide/kernel-parameters.txt for more information.
67  */
68 enum kvm_mode {
69 	KVM_MODE_DEFAULT,
70 	KVM_MODE_PROTECTED,
71 	KVM_MODE_NV,
72 	KVM_MODE_NONE,
73 };
74 #ifdef CONFIG_KVM
75 enum kvm_mode kvm_get_mode(void);
76 #else
kvm_get_mode(void)77 static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; };
78 #endif
79 
80 extern unsigned int __ro_after_init kvm_sve_max_vl;
81 extern unsigned int __ro_after_init kvm_host_sve_max_vl;
82 int __init kvm_arm_init_sve(void);
83 
84 u32 __attribute_const__ kvm_target_cpu(void);
85 void kvm_reset_vcpu(struct kvm_vcpu *vcpu);
86 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
87 
88 struct kvm_hyp_memcache {
89 	phys_addr_t head;
90 	unsigned long nr_pages;
91 	struct pkvm_mapping *mapping; /* only used from EL1 */
92 
93 #define	HYP_MEMCACHE_ACCOUNT_STAGE2	BIT(1)
94 	unsigned long flags;
95 };
96 
push_hyp_memcache(struct kvm_hyp_memcache * mc,phys_addr_t * p,phys_addr_t (* to_pa)(void * virt))97 static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
98 				     phys_addr_t *p,
99 				     phys_addr_t (*to_pa)(void *virt))
100 {
101 	*p = mc->head;
102 	mc->head = to_pa(p);
103 	mc->nr_pages++;
104 }
105 
pop_hyp_memcache(struct kvm_hyp_memcache * mc,void * (* to_va)(phys_addr_t phys))106 static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
107 				     void *(*to_va)(phys_addr_t phys))
108 {
109 	phys_addr_t *p = to_va(mc->head & PAGE_MASK);
110 
111 	if (!mc->nr_pages)
112 		return NULL;
113 
114 	mc->head = *p;
115 	mc->nr_pages--;
116 
117 	return p;
118 }
119 
__topup_hyp_memcache(struct kvm_hyp_memcache * mc,unsigned long min_pages,void * (* alloc_fn)(void * arg),phys_addr_t (* to_pa)(void * virt),void * arg)120 static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
121 				       unsigned long min_pages,
122 				       void *(*alloc_fn)(void *arg),
123 				       phys_addr_t (*to_pa)(void *virt),
124 				       void *arg)
125 {
126 	while (mc->nr_pages < min_pages) {
127 		phys_addr_t *p = alloc_fn(arg);
128 
129 		if (!p)
130 			return -ENOMEM;
131 		push_hyp_memcache(mc, p, to_pa);
132 	}
133 
134 	return 0;
135 }
136 
__free_hyp_memcache(struct kvm_hyp_memcache * mc,void (* free_fn)(void * virt,void * arg),void * (* to_va)(phys_addr_t phys),void * arg)137 static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
138 				       void (*free_fn)(void *virt, void *arg),
139 				       void *(*to_va)(phys_addr_t phys),
140 				       void *arg)
141 {
142 	while (mc->nr_pages)
143 		free_fn(pop_hyp_memcache(mc, to_va), arg);
144 }
145 
146 void free_hyp_memcache(struct kvm_hyp_memcache *mc);
147 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages);
148 
149 struct kvm_vmid {
150 	atomic64_t id;
151 };
152 
153 struct kvm_s2_mmu {
154 	struct kvm_vmid vmid;
155 
156 	/*
157 	 * stage2 entry level table
158 	 *
159 	 * Two kvm_s2_mmu structures in the same VM can point to the same
160 	 * pgd here.  This happens when running a guest using a
161 	 * translation regime that isn't affected by its own stage-2
162 	 * translation, such as a non-VHE hypervisor running at vEL2, or
163 	 * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
164 	 * canonical stage-2 page tables.
165 	 */
166 	phys_addr_t	pgd_phys;
167 	struct kvm_pgtable *pgt;
168 
169 	/*
170 	 * VTCR value used on the host. For a non-NV guest (or a NV
171 	 * guest that runs in a context where its own S2 doesn't
172 	 * apply), its T0SZ value reflects that of the IPA size.
173 	 *
174 	 * For a shadow S2 MMU, T0SZ reflects the PARange exposed to
175 	 * the guest.
176 	 */
177 	u64	vtcr;
178 
179 	/* The last vcpu id that ran on each physical CPU */
180 	int __percpu *last_vcpu_ran;
181 
182 #define KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT 0
183 	/*
184 	 * Memory cache used to split
185 	 * KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE worth of huge pages. It
186 	 * is used to allocate stage2 page tables while splitting huge
187 	 * pages. The choice of KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
188 	 * influences both the capacity of the split page cache, and
189 	 * how often KVM reschedules. Be wary of raising CHUNK_SIZE
190 	 * too high.
191 	 *
192 	 * Protected by kvm->slots_lock.
193 	 */
194 	struct kvm_mmu_memory_cache split_page_cache;
195 	uint64_t split_page_chunk_size;
196 
197 	struct kvm_arch *arch;
198 
199 	/*
200 	 * For a shadow stage-2 MMU, the virtual vttbr used by the
201 	 * host to parse the guest S2.
202 	 * This either contains:
203 	 * - the virtual VTTBR programmed by the guest hypervisor with
204          *   CnP cleared
205 	 * - The value 1 (VMID=0, BADDR=0, CnP=1) if invalid
206 	 *
207 	 * We also cache the full VTCR which gets used for TLB invalidation,
208 	 * taking the ARM ARM's "Any of the bits in VTCR_EL2 are permitted
209 	 * to be cached in a TLB" to the letter.
210 	 */
211 	u64	tlb_vttbr;
212 	u64	tlb_vtcr;
213 
214 	/*
215 	 * true when this represents a nested context where virtual
216 	 * HCR_EL2.VM == 1
217 	 */
218 	bool	nested_stage2_enabled;
219 
220 	/*
221 	 * true when this MMU needs to be unmapped before being used for a new
222 	 * purpose.
223 	 */
224 	bool	pending_unmap;
225 
226 	/*
227 	 *  0: Nobody is currently using this, check vttbr for validity
228 	 * >0: Somebody is actively using this.
229 	 */
230 	atomic_t refcnt;
231 };
232 
233 struct kvm_arch_memory_slot {
234 };
235 
236 /**
237  * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
238  *
239  * @std_bmap: Bitmap of standard secure service calls
240  * @std_hyp_bmap: Bitmap of standard hypervisor service calls
241  * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
242  */
243 struct kvm_smccc_features {
244 	unsigned long std_bmap;
245 	unsigned long std_hyp_bmap;
246 	unsigned long vendor_hyp_bmap; /* Function numbers 0-63 */
247 	unsigned long vendor_hyp_bmap_2; /* Function numbers 64-127 */
248 };
249 
250 typedef unsigned int pkvm_handle_t;
251 
252 struct kvm_protected_vm {
253 	pkvm_handle_t handle;
254 	struct kvm_hyp_memcache teardown_mc;
255 	struct kvm_hyp_memcache stage2_teardown_mc;
256 	bool is_protected;
257 	bool is_created;
258 };
259 
260 struct kvm_mpidr_data {
261 	u64			mpidr_mask;
262 	DECLARE_FLEX_ARRAY(u16, cmpidr_to_idx);
263 };
264 
kvm_mpidr_index(struct kvm_mpidr_data * data,u64 mpidr)265 static inline u16 kvm_mpidr_index(struct kvm_mpidr_data *data, u64 mpidr)
266 {
267 	unsigned long index = 0, mask = data->mpidr_mask;
268 	unsigned long aff = mpidr & MPIDR_HWID_BITMASK;
269 
270 	bitmap_gather(&index, &aff, &mask, fls(mask));
271 
272 	return index;
273 }
274 
275 struct kvm_sysreg_masks;
276 
277 enum fgt_group_id {
278 	__NO_FGT_GROUP__,
279 	HFGRTR_GROUP,
280 	HFGWTR_GROUP = HFGRTR_GROUP,
281 	HDFGRTR_GROUP,
282 	HDFGWTR_GROUP = HDFGRTR_GROUP,
283 	HFGITR_GROUP,
284 	HAFGRTR_GROUP,
285 	HFGRTR2_GROUP,
286 	HFGWTR2_GROUP = HFGRTR2_GROUP,
287 	HDFGRTR2_GROUP,
288 	HDFGWTR2_GROUP = HDFGRTR2_GROUP,
289 	HFGITR2_GROUP,
290 
291 	/* Must be last */
292 	__NR_FGT_GROUP_IDS__
293 };
294 
295 struct kvm_arch {
296 	struct kvm_s2_mmu mmu;
297 
298 	/*
299 	 * Fine-Grained UNDEF, mimicking the FGT layout defined by the
300 	 * architecture. We track them globally, as we present the
301 	 * same feature-set to all vcpus.
302 	 *
303 	 * Index 0 is currently spare.
304 	 */
305 	u64 fgu[__NR_FGT_GROUP_IDS__];
306 
307 	/*
308 	 * Stage 2 paging state for VMs with nested S2 using a virtual
309 	 * VMID.
310 	 */
311 	struct kvm_s2_mmu *nested_mmus;
312 	size_t nested_mmus_size;
313 	int nested_mmus_next;
314 
315 	/* Interrupt controller */
316 	struct vgic_dist	vgic;
317 
318 	/* Timers */
319 	struct arch_timer_vm_data timer_data;
320 
321 	/* Mandated version of PSCI */
322 	u32 psci_version;
323 
324 	/* Protects VM-scoped configuration data */
325 	struct mutex config_lock;
326 
327 	/*
328 	 * If we encounter a data abort without valid instruction syndrome
329 	 * information, report this to user space.  User space can (and
330 	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
331 	 * supported.
332 	 */
333 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER	0
334 	/* Memory Tagging Extension enabled for the guest */
335 #define KVM_ARCH_FLAG_MTE_ENABLED			1
336 	/* At least one vCPU has ran in the VM */
337 #define KVM_ARCH_FLAG_HAS_RAN_ONCE			2
338 	/* The vCPU feature set for the VM is configured */
339 #define KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED		3
340 	/* PSCI SYSTEM_SUSPEND enabled for the guest */
341 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED		4
342 	/* VM counter offset */
343 #define KVM_ARCH_FLAG_VM_COUNTER_OFFSET			5
344 	/* Timer PPIs made immutable */
345 #define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE		6
346 	/* Initial ID reg values loaded */
347 #define KVM_ARCH_FLAG_ID_REGS_INITIALIZED		7
348 	/* Fine-Grained UNDEF initialised */
349 #define KVM_ARCH_FLAG_FGU_INITIALIZED			8
350 	/* SVE exposed to guest */
351 #define KVM_ARCH_FLAG_GUEST_HAS_SVE			9
352 	/* MIDR_EL1, REVIDR_EL1, and AIDR_EL1 are writable from userspace */
353 #define KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS		10
354 	/* Unhandled SEAs are taken to userspace */
355 #define KVM_ARCH_FLAG_EXIT_SEA				11
356 	unsigned long flags;
357 
358 	/* VM-wide vCPU feature set */
359 	DECLARE_BITMAP(vcpu_features, KVM_VCPU_MAX_FEATURES);
360 
361 	/* MPIDR to vcpu index mapping, optional */
362 	struct kvm_mpidr_data *mpidr_data;
363 
364 	/*
365 	 * VM-wide PMU filter, implemented as a bitmap and big enough for
366 	 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
367 	 */
368 	unsigned long *pmu_filter;
369 	struct arm_pmu *arm_pmu;
370 
371 	cpumask_var_t supported_cpus;
372 
373 	/* Maximum number of counters for the guest */
374 	u8 nr_pmu_counters;
375 
376 	/* Iterator for idreg debugfs */
377 	u8	idreg_debugfs_iter;
378 
379 	/* Hypercall features firmware registers' descriptor */
380 	struct kvm_smccc_features smccc_feat;
381 	struct maple_tree smccc_filter;
382 
383 	/*
384 	 * Emulated CPU ID registers per VM
385 	 * (Op0, Op1, CRn, CRm, Op2) of the ID registers to be saved in it
386 	 * is (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
387 	 *
388 	 * These emulated idregs are VM-wide, but accessed from the context of a vCPU.
389 	 * Atomic access to multiple idregs are guarded by kvm_arch.config_lock.
390 	 */
391 #define IDREG_IDX(id)		(((sys_reg_CRm(id) - 1) << 3) | sys_reg_Op2(id))
392 #define KVM_ARM_ID_REG_NUM	(IDREG_IDX(sys_reg(3, 0, 0, 7, 7)) + 1)
393 	u64 id_regs[KVM_ARM_ID_REG_NUM];
394 
395 	u64 midr_el1;
396 	u64 revidr_el1;
397 	u64 aidr_el1;
398 	u64 ctr_el0;
399 
400 	/* Masks for VNCR-backed and general EL2 sysregs */
401 	struct kvm_sysreg_masks	*sysreg_masks;
402 
403 	/* Count the number of VNCR_EL2 currently mapped */
404 	atomic_t vncr_map_count;
405 
406 	/*
407 	 * For an untrusted host VM, 'pkvm.handle' is used to lookup
408 	 * the associated pKVM instance in the hypervisor.
409 	 */
410 	struct kvm_protected_vm pkvm;
411 };
412 
413 struct kvm_vcpu_fault_info {
414 	u64 esr_el2;		/* Hyp Syndrom Register */
415 	u64 far_el2;		/* Hyp Fault Address Register */
416 	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
417 	u64 disr_el1;		/* Deferred [SError] Status Register */
418 };
419 
420 /*
421  * VNCR() just places the VNCR_capable registers in the enum after
422  * __VNCR_START__, and the value (after correction) to be an 8-byte offset
423  * from the VNCR base. As we don't require the enum to be otherwise ordered,
424  * we need the terrible hack below to ensure that we correctly size the
425  * sys_regs array, no matter what.
426  *
427  * The __MAX__ macro has been lifted from Sean Eron Anderson's wonderful
428  * treasure trove of bit hacks:
429  * https://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax
430  */
431 #define __MAX__(x,y)	((x) ^ (((x) ^ (y)) & -((x) < (y))))
432 #define VNCR(r)						\
433 	__before_##r,					\
434 	r = __VNCR_START__ + ((VNCR_ ## r) / 8),	\
435 	__after_##r = __MAX__(__before_##r - 1, r)
436 
437 #define MARKER(m)				\
438 	m, __after_##m = m - 1
439 
440 enum vcpu_sysreg {
441 	__INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
442 	MPIDR_EL1,	/* MultiProcessor Affinity Register */
443 	CLIDR_EL1,	/* Cache Level ID Register */
444 	CSSELR_EL1,	/* Cache Size Selection Register */
445 	TPIDR_EL0,	/* Thread ID, User R/W */
446 	TPIDRRO_EL0,	/* Thread ID, User R/O */
447 	TPIDR_EL1,	/* Thread ID, Privileged */
448 	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
449 	PAR_EL1,	/* Physical Address Register */
450 	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
451 	OSLSR_EL1,	/* OS Lock Status Register */
452 	DISR_EL1,	/* Deferred Interrupt Status Register */
453 
454 	/* Performance Monitors Registers */
455 	PMCR_EL0,	/* Control Register */
456 	PMSELR_EL0,	/* Event Counter Selection Register */
457 	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
458 	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
459 	PMCCNTR_EL0,	/* Cycle Counter Register */
460 	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
461 	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
462 	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
463 	PMCNTENSET_EL0,	/* Count Enable Set Register */
464 	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
465 	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
466 	PMUSERENR_EL0,	/* User Enable Register */
467 
468 	/* Pointer Authentication Registers in a strict increasing order. */
469 	APIAKEYLO_EL1,
470 	APIAKEYHI_EL1,
471 	APIBKEYLO_EL1,
472 	APIBKEYHI_EL1,
473 	APDAKEYLO_EL1,
474 	APDAKEYHI_EL1,
475 	APDBKEYLO_EL1,
476 	APDBKEYHI_EL1,
477 	APGAKEYLO_EL1,
478 	APGAKEYHI_EL1,
479 
480 	/* Memory Tagging Extension registers */
481 	RGSR_EL1,	/* Random Allocation Tag Seed Register */
482 	GCR_EL1,	/* Tag Control Register */
483 	TFSRE0_EL1,	/* Tag Fault Status Register (EL0) */
484 
485 	POR_EL0,	/* Permission Overlay Register 0 (EL0) */
486 
487 	/* FP/SIMD/SVE */
488 	SVCR,
489 	FPMR,
490 
491 	/* 32bit specific registers. */
492 	DACR32_EL2,	/* Domain Access Control Register */
493 	IFSR32_EL2,	/* Instruction Fault Status Register */
494 	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
495 	DBGVCR32_EL2,	/* Debug Vector Catch Register */
496 
497 	/* EL2 registers */
498 	SCTLR_EL2,	/* System Control Register (EL2) */
499 	ACTLR_EL2,	/* Auxiliary Control Register (EL2) */
500 	CPTR_EL2,	/* Architectural Feature Trap Register (EL2) */
501 	HACR_EL2,	/* Hypervisor Auxiliary Control Register */
502 	ZCR_EL2,	/* SVE Control Register (EL2) */
503 	TTBR0_EL2,	/* Translation Table Base Register 0 (EL2) */
504 	TTBR1_EL2,	/* Translation Table Base Register 1 (EL2) */
505 	TCR_EL2,	/* Translation Control Register (EL2) */
506 	PIRE0_EL2,	/* Permission Indirection Register 0 (EL2) */
507 	PIR_EL2,	/* Permission Indirection Register 1 (EL2) */
508 	POR_EL2,	/* Permission Overlay Register 2 (EL2) */
509 	SPSR_EL2,	/* EL2 saved program status register */
510 	ELR_EL2,	/* EL2 exception link register */
511 	AFSR0_EL2,	/* Auxiliary Fault Status Register 0 (EL2) */
512 	AFSR1_EL2,	/* Auxiliary Fault Status Register 1 (EL2) */
513 	ESR_EL2,	/* Exception Syndrome Register (EL2) */
514 	FAR_EL2,	/* Fault Address Register (EL2) */
515 	HPFAR_EL2,	/* Hypervisor IPA Fault Address Register */
516 	MAIR_EL2,	/* Memory Attribute Indirection Register (EL2) */
517 	AMAIR_EL2,	/* Auxiliary Memory Attribute Indirection Register (EL2) */
518 	VBAR_EL2,	/* Vector Base Address Register (EL2) */
519 	RVBAR_EL2,	/* Reset Vector Base Address Register */
520 	CONTEXTIDR_EL2,	/* Context ID Register (EL2) */
521 	SP_EL2,		/* EL2 Stack Pointer */
522 	CNTHP_CTL_EL2,
523 	CNTHP_CVAL_EL2,
524 	CNTHV_CTL_EL2,
525 	CNTHV_CVAL_EL2,
526 
527 	/* Anything from this can be RES0/RES1 sanitised */
528 	MARKER(__SANITISED_REG_START__),
529 	TCR2_EL2,	/* Extended Translation Control Register (EL2) */
530 	SCTLR2_EL2,	/* System Control Register 2 (EL2) */
531 	MDCR_EL2,	/* Monitor Debug Configuration Register (EL2) */
532 	CNTHCTL_EL2,	/* Counter-timer Hypervisor Control register */
533 
534 	/* Any VNCR-capable reg goes after this point */
535 	MARKER(__VNCR_START__),
536 
537 	VNCR(SCTLR_EL1),/* System Control Register */
538 	VNCR(ACTLR_EL1),/* Auxiliary Control Register */
539 	VNCR(CPACR_EL1),/* Coprocessor Access Control */
540 	VNCR(ZCR_EL1),	/* SVE Control */
541 	VNCR(TTBR0_EL1),/* Translation Table Base Register 0 */
542 	VNCR(TTBR1_EL1),/* Translation Table Base Register 1 */
543 	VNCR(TCR_EL1),	/* Translation Control Register */
544 	VNCR(TCR2_EL1),	/* Extended Translation Control Register */
545 	VNCR(SCTLR2_EL1), /* System Control Register 2 */
546 	VNCR(ESR_EL1),	/* Exception Syndrome Register */
547 	VNCR(AFSR0_EL1),/* Auxiliary Fault Status Register 0 */
548 	VNCR(AFSR1_EL1),/* Auxiliary Fault Status Register 1 */
549 	VNCR(FAR_EL1),	/* Fault Address Register */
550 	VNCR(MAIR_EL1),	/* Memory Attribute Indirection Register */
551 	VNCR(VBAR_EL1),	/* Vector Base Address Register */
552 	VNCR(CONTEXTIDR_EL1),	/* Context ID Register */
553 	VNCR(AMAIR_EL1),/* Aux Memory Attribute Indirection Register */
554 	VNCR(MDSCR_EL1),/* Monitor Debug System Control Register */
555 	VNCR(ELR_EL1),
556 	VNCR(SP_EL1),
557 	VNCR(SPSR_EL1),
558 	VNCR(TFSR_EL1),	/* Tag Fault Status Register (EL1) */
559 	VNCR(VPIDR_EL2),/* Virtualization Processor ID Register */
560 	VNCR(VMPIDR_EL2),/* Virtualization Multiprocessor ID Register */
561 	VNCR(HCR_EL2),	/* Hypervisor Configuration Register */
562 	VNCR(HSTR_EL2),	/* Hypervisor System Trap Register */
563 	VNCR(VTTBR_EL2),/* Virtualization Translation Table Base Register */
564 	VNCR(VTCR_EL2),	/* Virtualization Translation Control Register */
565 	VNCR(TPIDR_EL2),/* EL2 Software Thread ID Register */
566 	VNCR(HCRX_EL2),	/* Extended Hypervisor Configuration Register */
567 
568 	/* Permission Indirection Extension registers */
569 	VNCR(PIR_EL1),	 /* Permission Indirection Register 1 (EL1) */
570 	VNCR(PIRE0_EL1), /*  Permission Indirection Register 0 (EL1) */
571 
572 	VNCR(POR_EL1),	/* Permission Overlay Register 1 (EL1) */
573 
574 	/* FEAT_RAS registers */
575 	VNCR(VDISR_EL2),
576 	VNCR(VSESR_EL2),
577 
578 	VNCR(HFGRTR_EL2),
579 	VNCR(HFGWTR_EL2),
580 	VNCR(HFGITR_EL2),
581 	VNCR(HDFGRTR_EL2),
582 	VNCR(HDFGWTR_EL2),
583 	VNCR(HAFGRTR_EL2),
584 	VNCR(HFGRTR2_EL2),
585 	VNCR(HFGWTR2_EL2),
586 	VNCR(HFGITR2_EL2),
587 	VNCR(HDFGRTR2_EL2),
588 	VNCR(HDFGWTR2_EL2),
589 
590 	VNCR(VNCR_EL2),
591 
592 	VNCR(CNTVOFF_EL2),
593 	VNCR(CNTV_CVAL_EL0),
594 	VNCR(CNTV_CTL_EL0),
595 	VNCR(CNTP_CVAL_EL0),
596 	VNCR(CNTP_CTL_EL0),
597 
598 	VNCR(ICH_LR0_EL2),
599 	VNCR(ICH_LR1_EL2),
600 	VNCR(ICH_LR2_EL2),
601 	VNCR(ICH_LR3_EL2),
602 	VNCR(ICH_LR4_EL2),
603 	VNCR(ICH_LR5_EL2),
604 	VNCR(ICH_LR6_EL2),
605 	VNCR(ICH_LR7_EL2),
606 	VNCR(ICH_LR8_EL2),
607 	VNCR(ICH_LR9_EL2),
608 	VNCR(ICH_LR10_EL2),
609 	VNCR(ICH_LR11_EL2),
610 	VNCR(ICH_LR12_EL2),
611 	VNCR(ICH_LR13_EL2),
612 	VNCR(ICH_LR14_EL2),
613 	VNCR(ICH_LR15_EL2),
614 
615 	VNCR(ICH_AP0R0_EL2),
616 	VNCR(ICH_AP0R1_EL2),
617 	VNCR(ICH_AP0R2_EL2),
618 	VNCR(ICH_AP0R3_EL2),
619 	VNCR(ICH_AP1R0_EL2),
620 	VNCR(ICH_AP1R1_EL2),
621 	VNCR(ICH_AP1R2_EL2),
622 	VNCR(ICH_AP1R3_EL2),
623 	VNCR(ICH_HCR_EL2),
624 	VNCR(ICH_VMCR_EL2),
625 
626 	NR_SYS_REGS	/* Nothing after this line! */
627 };
628 
629 struct kvm_sysreg_masks {
630 	struct {
631 		u64	res0;
632 		u64	res1;
633 	} mask[NR_SYS_REGS - __SANITISED_REG_START__];
634 };
635 
636 struct fgt_masks {
637 	const char	*str;
638 	u64		mask;
639 	u64		nmask;
640 	u64		res0;
641 };
642 
643 extern struct fgt_masks hfgrtr_masks;
644 extern struct fgt_masks hfgwtr_masks;
645 extern struct fgt_masks hfgitr_masks;
646 extern struct fgt_masks hdfgrtr_masks;
647 extern struct fgt_masks hdfgwtr_masks;
648 extern struct fgt_masks hafgrtr_masks;
649 extern struct fgt_masks hfgrtr2_masks;
650 extern struct fgt_masks hfgwtr2_masks;
651 extern struct fgt_masks hfgitr2_masks;
652 extern struct fgt_masks hdfgrtr2_masks;
653 extern struct fgt_masks hdfgwtr2_masks;
654 
655 extern struct fgt_masks kvm_nvhe_sym(hfgrtr_masks);
656 extern struct fgt_masks kvm_nvhe_sym(hfgwtr_masks);
657 extern struct fgt_masks kvm_nvhe_sym(hfgitr_masks);
658 extern struct fgt_masks kvm_nvhe_sym(hdfgrtr_masks);
659 extern struct fgt_masks kvm_nvhe_sym(hdfgwtr_masks);
660 extern struct fgt_masks kvm_nvhe_sym(hafgrtr_masks);
661 extern struct fgt_masks kvm_nvhe_sym(hfgrtr2_masks);
662 extern struct fgt_masks kvm_nvhe_sym(hfgwtr2_masks);
663 extern struct fgt_masks kvm_nvhe_sym(hfgitr2_masks);
664 extern struct fgt_masks kvm_nvhe_sym(hdfgrtr2_masks);
665 extern struct fgt_masks kvm_nvhe_sym(hdfgwtr2_masks);
666 
667 struct kvm_cpu_context {
668 	struct user_pt_regs regs;	/* sp = sp_el0 */
669 
670 	u64	spsr_abt;
671 	u64	spsr_und;
672 	u64	spsr_irq;
673 	u64	spsr_fiq;
674 
675 	struct user_fpsimd_state fp_regs;
676 
677 	u64 sys_regs[NR_SYS_REGS];
678 
679 	struct kvm_vcpu *__hyp_running_vcpu;
680 
681 	/* This pointer has to be 4kB aligned. */
682 	u64 *vncr_array;
683 };
684 
685 struct cpu_sve_state {
686 	__u64 zcr_el1;
687 
688 	/*
689 	 * Ordering is important since __sve_save_state/__sve_restore_state
690 	 * relies on it.
691 	 */
692 	__u32 fpsr;
693 	__u32 fpcr;
694 
695 	/* Must be SVE_VQ_BYTES (128 bit) aligned. */
696 	__u8 sve_regs[];
697 };
698 
699 /*
700  * This structure is instantiated on a per-CPU basis, and contains
701  * data that is:
702  *
703  * - tied to a single physical CPU, and
704  * - either have a lifetime that does not extend past vcpu_put()
705  * - or is an invariant for the lifetime of the system
706  *
707  * Use host_data_ptr(field) as a way to access a pointer to such a
708  * field.
709  */
710 struct kvm_host_data {
711 #define KVM_HOST_DATA_FLAG_HAS_SPE			0
712 #define KVM_HOST_DATA_FLAG_HAS_TRBE			1
713 #define KVM_HOST_DATA_FLAG_TRBE_ENABLED			4
714 #define KVM_HOST_DATA_FLAG_EL1_TRACING_CONFIGURED	5
715 #define KVM_HOST_DATA_FLAG_VCPU_IN_HYP_CONTEXT		6
716 #define KVM_HOST_DATA_FLAG_L1_VNCR_MAPPED		7
717 #define KVM_HOST_DATA_FLAG_HAS_BRBE			8
718 	unsigned long flags;
719 
720 	struct kvm_cpu_context host_ctxt;
721 
722 	/*
723 	 * Hyp VA.
724 	 * sve_state is only used in pKVM and if system_supports_sve().
725 	 */
726 	struct cpu_sve_state *sve_state;
727 
728 	/* Used by pKVM only. */
729 	u64	fpmr;
730 
731 	/* Ownership of the FP regs */
732 	enum {
733 		FP_STATE_FREE,
734 		FP_STATE_HOST_OWNED,
735 		FP_STATE_GUEST_OWNED,
736 	} fp_owner;
737 
738 	/*
739 	 * host_debug_state contains the host registers which are
740 	 * saved and restored during world switches.
741 	 */
742 	struct {
743 		/* {Break,watch}point registers */
744 		struct kvm_guest_debug_arch regs;
745 		/* Statistical profiling extension */
746 		u64 pmscr_el1;
747 		/* Self-hosted trace */
748 		u64 trfcr_el1;
749 		/* Values of trap registers for the host before guest entry. */
750 		u64 mdcr_el2;
751 		u64 brbcr_el1;
752 	} host_debug_state;
753 
754 	/* Guest trace filter value */
755 	u64 trfcr_while_in_guest;
756 
757 	/* Number of programmable event counters (PMCR_EL0.N) for this CPU */
758 	unsigned int nr_event_counters;
759 
760 	/* Number of debug breakpoints/watchpoints for this CPU (minus 1) */
761 	unsigned int debug_brps;
762 	unsigned int debug_wrps;
763 };
764 
765 struct kvm_host_psci_config {
766 	/* PSCI version used by host. */
767 	u32 version;
768 	u32 smccc_version;
769 
770 	/* Function IDs used by host if version is v0.1. */
771 	struct psci_0_1_function_ids function_ids_0_1;
772 
773 	bool psci_0_1_cpu_suspend_implemented;
774 	bool psci_0_1_cpu_on_implemented;
775 	bool psci_0_1_cpu_off_implemented;
776 	bool psci_0_1_migrate_implemented;
777 };
778 
779 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
780 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
781 
782 extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
783 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
784 
785 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
786 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
787 
788 struct vcpu_reset_state {
789 	unsigned long	pc;
790 	unsigned long	r0;
791 	bool		be;
792 	bool		reset;
793 };
794 
795 struct vncr_tlb;
796 
797 struct kvm_vcpu_arch {
798 	struct kvm_cpu_context ctxt;
799 
800 	/*
801 	 * Guest floating point state
802 	 *
803 	 * The architecture has two main floating point extensions,
804 	 * the original FPSIMD and SVE.  These have overlapping
805 	 * register views, with the FPSIMD V registers occupying the
806 	 * low 128 bits of the SVE Z registers.  When the core
807 	 * floating point code saves the register state of a task it
808 	 * records which view it saved in fp_type.
809 	 */
810 	void *sve_state;
811 	enum fp_type fp_type;
812 	unsigned int sve_max_vl;
813 
814 	/* Stage 2 paging state used by the hardware on next switch */
815 	struct kvm_s2_mmu *hw_mmu;
816 
817 	/* Values of trap registers for the guest. */
818 	u64 hcr_el2;
819 	u64 hcrx_el2;
820 	u64 mdcr_el2;
821 
822 	struct {
823 		u64 r;
824 		u64 w;
825 	} fgt[__NR_FGT_GROUP_IDS__];
826 
827 	/* Exception Information */
828 	struct kvm_vcpu_fault_info fault;
829 
830 	/* Configuration flags, set once and for all before the vcpu can run */
831 	u8 cflags;
832 
833 	/* Input flags to the hypervisor code, potentially cleared after use */
834 	u8 iflags;
835 
836 	/* State flags for kernel bookkeeping, unused by the hypervisor code */
837 	u16 sflags;
838 
839 	/*
840 	 * Don't run the guest (internal implementation need).
841 	 *
842 	 * Contrary to the flags above, this is set/cleared outside of
843 	 * a vcpu context, and thus cannot be mixed with the flags
844 	 * themselves (or the flag accesses need to be made atomic).
845 	 */
846 	bool pause;
847 
848 	/*
849 	 * We maintain more than a single set of debug registers to support
850 	 * debugging the guest from the host and to maintain separate host and
851 	 * guest state during world switches. vcpu_debug_state are the debug
852 	 * registers of the vcpu as the guest sees them.
853 	 *
854 	 * external_debug_state contains the debug values we want to debug the
855 	 * guest. This is set via the KVM_SET_GUEST_DEBUG ioctl.
856 	 */
857 	struct kvm_guest_debug_arch vcpu_debug_state;
858 	struct kvm_guest_debug_arch external_debug_state;
859 	u64 external_mdscr_el1;
860 
861 	enum {
862 		VCPU_DEBUG_FREE,
863 		VCPU_DEBUG_HOST_OWNED,
864 		VCPU_DEBUG_GUEST_OWNED,
865 	} debug_owner;
866 
867 	/* VGIC state */
868 	struct vgic_cpu vgic_cpu;
869 	struct arch_timer_cpu timer_cpu;
870 	struct kvm_pmu pmu;
871 
872 	/* vcpu power state */
873 	struct kvm_mp_state mp_state;
874 	spinlock_t mp_state_lock;
875 
876 	/* Cache some mmu pages needed inside spinlock regions */
877 	struct kvm_mmu_memory_cache mmu_page_cache;
878 
879 	/* Pages to top-up the pKVM/EL2 guest pool */
880 	struct kvm_hyp_memcache pkvm_memcache;
881 
882 	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
883 	u64 vsesr_el2;
884 
885 	/* Additional reset state */
886 	struct vcpu_reset_state	reset_state;
887 
888 	/* Guest PV state */
889 	struct {
890 		u64 last_steal;
891 		gpa_t base;
892 	} steal;
893 
894 	/* Per-vcpu CCSIDR override or NULL */
895 	u32 *ccsidr;
896 
897 	/* Per-vcpu TLB for VNCR_EL2 -- NULL when !NV */
898 	struct vncr_tlb	*vncr_tlb;
899 };
900 
901 /*
902  * Each 'flag' is composed of a comma-separated triplet:
903  *
904  * - the flag-set it belongs to in the vcpu->arch structure
905  * - the value for that flag
906  * - the mask for that flag
907  *
908  *  __vcpu_single_flag() builds such a triplet for a single-bit flag.
909  * unpack_vcpu_flag() extract the flag value from the triplet for
910  * direct use outside of the flag accessors.
911  */
912 #define __vcpu_single_flag(_set, _f)	_set, (_f), (_f)
913 
914 #define __unpack_flag(_set, _f, _m)	_f
915 #define unpack_vcpu_flag(...)		__unpack_flag(__VA_ARGS__)
916 
917 #define __build_check_flag(v, flagset, f, m)			\
918 	do {							\
919 		typeof(v->arch.flagset) *_fset;			\
920 								\
921 		/* Check that the flags fit in the mask */	\
922 		BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m)));	\
923 		/* Check that the flags fit in the type */	\
924 		BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m));	\
925 	} while (0)
926 
927 #define __vcpu_get_flag(v, flagset, f, m)			\
928 	({							\
929 		__build_check_flag(v, flagset, f, m);		\
930 								\
931 		READ_ONCE(v->arch.flagset) & (m);		\
932 	})
933 
934 /*
935  * Note that the set/clear accessors must be preempt-safe in order to
936  * avoid nesting them with load/put which also manipulate flags...
937  */
938 #ifdef __KVM_NVHE_HYPERVISOR__
939 /* the nVHE hypervisor is always non-preemptible */
940 #define __vcpu_flags_preempt_disable()
941 #define __vcpu_flags_preempt_enable()
942 #else
943 #define __vcpu_flags_preempt_disable()	preempt_disable()
944 #define __vcpu_flags_preempt_enable()	preempt_enable()
945 #endif
946 
947 #define __vcpu_set_flag(v, flagset, f, m)			\
948 	do {							\
949 		typeof(v->arch.flagset) *fset;			\
950 								\
951 		__build_check_flag(v, flagset, f, m);		\
952 								\
953 		fset = &v->arch.flagset;			\
954 		__vcpu_flags_preempt_disable();			\
955 		if (HWEIGHT(m) > 1)				\
956 			*fset &= ~(m);				\
957 		*fset |= (f);					\
958 		__vcpu_flags_preempt_enable();			\
959 	} while (0)
960 
961 #define __vcpu_clear_flag(v, flagset, f, m)			\
962 	do {							\
963 		typeof(v->arch.flagset) *fset;			\
964 								\
965 		__build_check_flag(v, flagset, f, m);		\
966 								\
967 		fset = &v->arch.flagset;			\
968 		__vcpu_flags_preempt_disable();			\
969 		*fset &= ~(m);					\
970 		__vcpu_flags_preempt_enable();			\
971 	} while (0)
972 
973 #define __vcpu_test_and_clear_flag(v, flagset, f, m)		\
974 	({							\
975 		typeof(v->arch.flagset) set;			\
976 								\
977 		set = __vcpu_get_flag(v, flagset, f, m);	\
978 		__vcpu_clear_flag(v, flagset, f, m);		\
979 								\
980 		set;						\
981 	})
982 
983 #define vcpu_get_flag(v, ...)	__vcpu_get_flag((v), __VA_ARGS__)
984 #define vcpu_set_flag(v, ...)	__vcpu_set_flag((v), __VA_ARGS__)
985 #define vcpu_clear_flag(v, ...)	__vcpu_clear_flag((v), __VA_ARGS__)
986 #define vcpu_test_and_clear_flag(v, ...)			\
987 	__vcpu_test_and_clear_flag((v), __VA_ARGS__)
988 
989 /* KVM_ARM_VCPU_INIT completed */
990 #define VCPU_INITIALIZED	__vcpu_single_flag(cflags, BIT(0))
991 /* SVE config completed */
992 #define VCPU_SVE_FINALIZED	__vcpu_single_flag(cflags, BIT(1))
993 /* pKVM VCPU setup completed */
994 #define VCPU_PKVM_FINALIZED	__vcpu_single_flag(cflags, BIT(2))
995 
996 /* Exception pending */
997 #define PENDING_EXCEPTION	__vcpu_single_flag(iflags, BIT(0))
998 /*
999  * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
1000  * be set together with an exception...
1001  */
1002 #define INCREMENT_PC		__vcpu_single_flag(iflags, BIT(1))
1003 /* Target EL/MODE (not a single flag, but let's abuse the macro) */
1004 #define EXCEPT_MASK		__vcpu_single_flag(iflags, GENMASK(3, 1))
1005 
1006 /* Helpers to encode exceptions with minimum fuss */
1007 #define __EXCEPT_MASK_VAL	unpack_vcpu_flag(EXCEPT_MASK)
1008 #define __EXCEPT_SHIFT		__builtin_ctzl(__EXCEPT_MASK_VAL)
1009 #define __vcpu_except_flags(_f)	iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
1010 
1011 /*
1012  * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
1013  * values:
1014  *
1015  * For AArch32 EL1:
1016  */
1017 #define EXCEPT_AA32_UND		__vcpu_except_flags(0)
1018 #define EXCEPT_AA32_IABT	__vcpu_except_flags(1)
1019 #define EXCEPT_AA32_DABT	__vcpu_except_flags(2)
1020 /* For AArch64: */
1021 #define EXCEPT_AA64_EL1_SYNC	__vcpu_except_flags(0)
1022 #define EXCEPT_AA64_EL1_IRQ	__vcpu_except_flags(1)
1023 #define EXCEPT_AA64_EL1_FIQ	__vcpu_except_flags(2)
1024 #define EXCEPT_AA64_EL1_SERR	__vcpu_except_flags(3)
1025 /* For AArch64 with NV: */
1026 #define EXCEPT_AA64_EL2_SYNC	__vcpu_except_flags(4)
1027 #define EXCEPT_AA64_EL2_IRQ	__vcpu_except_flags(5)
1028 #define EXCEPT_AA64_EL2_FIQ	__vcpu_except_flags(6)
1029 #define EXCEPT_AA64_EL2_SERR	__vcpu_except_flags(7)
1030 
1031 /* Physical CPU not in supported_cpus */
1032 #define ON_UNSUPPORTED_CPU	__vcpu_single_flag(sflags, BIT(0))
1033 /* WFIT instruction trapped */
1034 #define IN_WFIT			__vcpu_single_flag(sflags, BIT(1))
1035 /* vcpu system registers loaded on physical CPU */
1036 #define SYSREGS_ON_CPU		__vcpu_single_flag(sflags, BIT(2))
1037 /* Software step state is Active-pending for external debug */
1038 #define HOST_SS_ACTIVE_PENDING	__vcpu_single_flag(sflags, BIT(3))
1039 /* Software step state is Active pending for guest debug */
1040 #define GUEST_SS_ACTIVE_PENDING __vcpu_single_flag(sflags, BIT(4))
1041 /* PMUSERENR for the guest EL0 is on physical CPU */
1042 #define PMUSERENR_ON_CPU	__vcpu_single_flag(sflags, BIT(5))
1043 /* WFI instruction trapped */
1044 #define IN_WFI			__vcpu_single_flag(sflags, BIT(6))
1045 /* KVM is currently emulating a nested ERET */
1046 #define IN_NESTED_ERET		__vcpu_single_flag(sflags, BIT(7))
1047 /* SError pending for nested guest */
1048 #define NESTED_SERROR_PENDING	__vcpu_single_flag(sflags, BIT(8))
1049 
1050 
1051 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
1052 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +	\
1053 			     sve_ffr_offset((vcpu)->arch.sve_max_vl))
1054 
1055 #define vcpu_sve_max_vq(vcpu)	sve_vq_from_vl((vcpu)->arch.sve_max_vl)
1056 
1057 #define vcpu_sve_zcr_elx(vcpu)						\
1058 	(unlikely(is_hyp_ctxt(vcpu)) ? ZCR_EL2 : ZCR_EL1)
1059 
1060 #define sve_state_size_from_vl(sve_max_vl) ({				\
1061 	size_t __size_ret;						\
1062 	unsigned int __vq;						\
1063 									\
1064 	if (WARN_ON(!sve_vl_valid(sve_max_vl))) {			\
1065 		__size_ret = 0;						\
1066 	} else {							\
1067 		__vq = sve_vq_from_vl(sve_max_vl);			\
1068 		__size_ret = SVE_SIG_REGS_SIZE(__vq);			\
1069 	}								\
1070 									\
1071 	__size_ret;							\
1072 })
1073 
1074 #define vcpu_sve_state_size(vcpu) sve_state_size_from_vl((vcpu)->arch.sve_max_vl)
1075 
1076 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
1077 				 KVM_GUESTDBG_USE_SW_BP | \
1078 				 KVM_GUESTDBG_USE_HW | \
1079 				 KVM_GUESTDBG_SINGLESTEP)
1080 
1081 #define kvm_has_sve(kvm)	(system_supports_sve() &&		\
1082 				 test_bit(KVM_ARCH_FLAG_GUEST_HAS_SVE, &(kvm)->arch.flags))
1083 
1084 #ifdef __KVM_NVHE_HYPERVISOR__
1085 #define vcpu_has_sve(vcpu)	kvm_has_sve(kern_hyp_va((vcpu)->kvm))
1086 #else
1087 #define vcpu_has_sve(vcpu)	kvm_has_sve((vcpu)->kvm)
1088 #endif
1089 
1090 #ifdef CONFIG_ARM64_PTR_AUTH
1091 #define vcpu_has_ptrauth(vcpu)						\
1092 	((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||		\
1093 	  cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&		\
1094 	 (vcpu_has_feature(vcpu, KVM_ARM_VCPU_PTRAUTH_ADDRESS) ||       \
1095 	  vcpu_has_feature(vcpu, KVM_ARM_VCPU_PTRAUTH_GENERIC)))
1096 #else
1097 #define vcpu_has_ptrauth(vcpu)		false
1098 #endif
1099 
1100 #define vcpu_on_unsupported_cpu(vcpu)					\
1101 	vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
1102 
1103 #define vcpu_set_on_unsupported_cpu(vcpu)				\
1104 	vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
1105 
1106 #define vcpu_clear_on_unsupported_cpu(vcpu)				\
1107 	vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
1108 
1109 #define vcpu_gp_regs(v)		(&(v)->arch.ctxt.regs)
1110 
1111 /*
1112  * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
1113  * memory backed version of a register, and not the one most recently
1114  * accessed by a running VCPU.  For example, for userspace access or
1115  * for system registers that are never context switched, but only
1116  * emulated.
1117  *
1118  * Don't bother with VNCR-based accesses in the nVHE code, it has no
1119  * business dealing with NV.
1120  */
___ctxt_sys_reg(const struct kvm_cpu_context * ctxt,int r)1121 static inline u64 *___ctxt_sys_reg(const struct kvm_cpu_context *ctxt, int r)
1122 {
1123 #if !defined (__KVM_NVHE_HYPERVISOR__)
1124 	if (unlikely(cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) &&
1125 		     r >= __VNCR_START__ && ctxt->vncr_array))
1126 		return &ctxt->vncr_array[r - __VNCR_START__];
1127 #endif
1128 	return (u64 *)&ctxt->sys_regs[r];
1129 }
1130 
1131 #define __ctxt_sys_reg(c,r)						\
1132 	({								\
1133 		BUILD_BUG_ON(__builtin_constant_p(r) &&			\
1134 			     (r) >= NR_SYS_REGS);			\
1135 		___ctxt_sys_reg(c, r);					\
1136 	})
1137 
1138 #define ctxt_sys_reg(c,r)	(*__ctxt_sys_reg(c,r))
1139 
1140 u64 kvm_vcpu_apply_reg_masks(const struct kvm_vcpu *, enum vcpu_sysreg, u64);
1141 
1142 #define __vcpu_assign_sys_reg(v, r, val)				\
1143 	do {								\
1144 		const struct kvm_cpu_context *ctxt = &(v)->arch.ctxt;	\
1145 		u64 __v = (val);					\
1146 		if (vcpu_has_nv((v)) && (r) >= __SANITISED_REG_START__)	\
1147 			__v = kvm_vcpu_apply_reg_masks((v), (r), __v);	\
1148 									\
1149 		ctxt_sys_reg(ctxt, (r)) = __v;				\
1150 	} while (0)
1151 
1152 #define __vcpu_rmw_sys_reg(v, r, op, val)				\
1153 	do {								\
1154 		const struct kvm_cpu_context *ctxt = &(v)->arch.ctxt;	\
1155 		u64 __v = ctxt_sys_reg(ctxt, (r));			\
1156 		__v op (val);						\
1157 		if (vcpu_has_nv((v)) && (r) >= __SANITISED_REG_START__)	\
1158 			__v = kvm_vcpu_apply_reg_masks((v), (r), __v);	\
1159 									\
1160 		ctxt_sys_reg(ctxt, (r)) = __v;				\
1161 	} while (0)
1162 
1163 #define __vcpu_sys_reg(v,r)						\
1164 	({								\
1165 		const struct kvm_cpu_context *ctxt = &(v)->arch.ctxt;	\
1166 		u64 __v = ctxt_sys_reg(ctxt, (r));			\
1167 		if (vcpu_has_nv((v)) && (r) >= __SANITISED_REG_START__)	\
1168 			__v = kvm_vcpu_apply_reg_masks((v), (r), __v);	\
1169 		__v;							\
1170 	})
1171 
1172 u64 vcpu_read_sys_reg(const struct kvm_vcpu *, enum vcpu_sysreg);
1173 void vcpu_write_sys_reg(struct kvm_vcpu *, u64, enum vcpu_sysreg);
1174 
1175 struct kvm_vm_stat {
1176 	struct kvm_vm_stat_generic generic;
1177 };
1178 
1179 struct kvm_vcpu_stat {
1180 	struct kvm_vcpu_stat_generic generic;
1181 	u64 hvc_exit_stat;
1182 	u64 wfe_exit_stat;
1183 	u64 wfi_exit_stat;
1184 	u64 mmio_exit_user;
1185 	u64 mmio_exit_kernel;
1186 	u64 signal_exits;
1187 	u64 exits;
1188 };
1189 
1190 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
1191 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
1192 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
1193 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
1194 
1195 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
1196 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
1197 
1198 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1199 			      struct kvm_vcpu_events *events);
1200 
1201 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1202 			      struct kvm_vcpu_events *events);
1203 
1204 void kvm_arm_halt_guest(struct kvm *kvm);
1205 void kvm_arm_resume_guest(struct kvm *kvm);
1206 
1207 #define vcpu_has_run_once(vcpu)	(!!READ_ONCE((vcpu)->pid))
1208 
1209 #ifndef __KVM_NVHE_HYPERVISOR__
1210 #define kvm_call_hyp_nvhe(f, ...)						\
1211 	({								\
1212 		struct arm_smccc_res res;				\
1213 									\
1214 		arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),		\
1215 				  ##__VA_ARGS__, &res);			\
1216 		WARN_ON(res.a0 != SMCCC_RET_SUCCESS);			\
1217 									\
1218 		res.a1;							\
1219 	})
1220 
1221 /*
1222  * The isb() below is there to guarantee the same behaviour on VHE as on !VHE,
1223  * where the eret to EL1 acts as a context synchronization event.
1224  */
1225 #define kvm_call_hyp(f, ...)						\
1226 	do {								\
1227 		if (has_vhe()) {					\
1228 			f(__VA_ARGS__);					\
1229 			isb();						\
1230 		} else {						\
1231 			kvm_call_hyp_nvhe(f, ##__VA_ARGS__);		\
1232 		}							\
1233 	} while(0)
1234 
1235 #define kvm_call_hyp_ret(f, ...)					\
1236 	({								\
1237 		typeof(f(__VA_ARGS__)) ret;				\
1238 									\
1239 		if (has_vhe()) {					\
1240 			ret = f(__VA_ARGS__);				\
1241 		} else {						\
1242 			ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);	\
1243 		}							\
1244 									\
1245 		ret;							\
1246 	})
1247 #else /* __KVM_NVHE_HYPERVISOR__ */
1248 #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
1249 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
1250 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
1251 #endif /* __KVM_NVHE_HYPERVISOR__ */
1252 
1253 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
1254 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
1255 
1256 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
1257 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
1258 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
1259 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
1260 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
1261 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
1262 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
1263 
1264 void kvm_sys_regs_create_debugfs(struct kvm *kvm);
1265 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
1266 
1267 int __init kvm_sys_reg_table_init(void);
1268 struct sys_reg_desc;
1269 int __init populate_sysreg_config(const struct sys_reg_desc *sr,
1270 				  unsigned int idx);
1271 int __init populate_nv_trap_config(void);
1272 
1273 void kvm_calculate_traps(struct kvm_vcpu *vcpu);
1274 
1275 /* MMIO helpers */
1276 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
1277 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
1278 
1279 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
1280 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
1281 
1282 /*
1283  * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
1284  * arrived in guest context.  For arm64, any event that arrives while a vCPU is
1285  * loaded is considered to be "in guest".
1286  */
kvm_arch_pmi_in_guest(struct kvm_vcpu * vcpu)1287 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
1288 {
1289 	return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
1290 }
1291 
1292 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
1293 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
1294 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
1295 
1296 bool kvm_arm_pvtime_supported(void);
1297 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
1298 			    struct kvm_device_attr *attr);
1299 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
1300 			    struct kvm_device_attr *attr);
1301 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
1302 			    struct kvm_device_attr *attr);
1303 
1304 extern unsigned int __ro_after_init kvm_arm_vmid_bits;
1305 int __init kvm_arm_vmid_alloc_init(void);
1306 void __init kvm_arm_vmid_alloc_free(void);
1307 void kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
1308 void kvm_arm_vmid_clear_active(void);
1309 
kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch * vcpu_arch)1310 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
1311 {
1312 	vcpu_arch->steal.base = INVALID_GPA;
1313 }
1314 
kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch * vcpu_arch)1315 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
1316 {
1317 	return (vcpu_arch->steal.base != INVALID_GPA);
1318 }
1319 
1320 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
1321 
1322 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
1323 
1324 /*
1325  * How we access per-CPU host data depends on the where we access it from,
1326  * and the mode we're in:
1327  *
1328  * - VHE and nVHE hypervisor bits use their locally defined instance
1329  *
1330  * - the rest of the kernel use either the VHE or nVHE one, depending on
1331  *   the mode we're running in.
1332  *
1333  *   Unless we're in protected mode, fully deprivileged, and the nVHE
1334  *   per-CPU stuff is exclusively accessible to the protected EL2 code.
1335  *   In this case, the EL1 code uses the *VHE* data as its private state
1336  *   (which makes sense in a way as there shouldn't be any shared state
1337  *   between the host and the hypervisor).
1338  *
1339  * Yes, this is all totally trivial. Shoot me now.
1340  */
1341 #if defined(__KVM_NVHE_HYPERVISOR__) || defined(__KVM_VHE_HYPERVISOR__)
1342 #define host_data_ptr(f)	(&this_cpu_ptr(&kvm_host_data)->f)
1343 #else
1344 #define host_data_ptr(f)						\
1345 	(static_branch_unlikely(&kvm_protected_mode_initialized) ?	\
1346 	 &this_cpu_ptr(&kvm_host_data)->f :				\
1347 	 &this_cpu_ptr_hyp_sym(kvm_host_data)->f)
1348 #endif
1349 
1350 #define host_data_test_flag(flag)					\
1351 	(test_bit(KVM_HOST_DATA_FLAG_##flag, host_data_ptr(flags)))
1352 #define host_data_set_flag(flag)					\
1353 	set_bit(KVM_HOST_DATA_FLAG_##flag, host_data_ptr(flags))
1354 #define host_data_clear_flag(flag)					\
1355 	clear_bit(KVM_HOST_DATA_FLAG_##flag, host_data_ptr(flags))
1356 
1357 /* Check whether the FP regs are owned by the guest */
guest_owns_fp_regs(void)1358 static inline bool guest_owns_fp_regs(void)
1359 {
1360 	return *host_data_ptr(fp_owner) == FP_STATE_GUEST_OWNED;
1361 }
1362 
1363 /* Check whether the FP regs are owned by the host */
host_owns_fp_regs(void)1364 static inline bool host_owns_fp_regs(void)
1365 {
1366 	return *host_data_ptr(fp_owner) == FP_STATE_HOST_OWNED;
1367 }
1368 
kvm_init_host_cpu_context(struct kvm_cpu_context * cpu_ctxt)1369 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
1370 {
1371 	/* The host's MPIDR is immutable, so let's set it up at boot time */
1372 	ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
1373 }
1374 
kvm_system_needs_idmapped_vectors(void)1375 static inline bool kvm_system_needs_idmapped_vectors(void)
1376 {
1377 	return cpus_have_final_cap(ARM64_SPECTRE_V3A);
1378 }
1379 
1380 void kvm_init_host_debug_data(void);
1381 void kvm_debug_init_vhe(void);
1382 void kvm_vcpu_load_debug(struct kvm_vcpu *vcpu);
1383 void kvm_vcpu_put_debug(struct kvm_vcpu *vcpu);
1384 void kvm_debug_set_guest_ownership(struct kvm_vcpu *vcpu);
1385 void kvm_debug_handle_oslar(struct kvm_vcpu *vcpu, u64 val);
1386 
1387 #define kvm_vcpu_os_lock_enabled(vcpu)		\
1388 	(!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & OSLSR_EL1_OSLK))
1389 
1390 #define kvm_debug_regs_in_use(vcpu)		\
1391 	((vcpu)->arch.debug_owner != VCPU_DEBUG_FREE)
1392 #define kvm_host_owns_debug_regs(vcpu)		\
1393 	((vcpu)->arch.debug_owner == VCPU_DEBUG_HOST_OWNED)
1394 #define kvm_guest_owns_debug_regs(vcpu)		\
1395 	((vcpu)->arch.debug_owner == VCPU_DEBUG_GUEST_OWNED)
1396 
1397 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
1398 			       struct kvm_device_attr *attr);
1399 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
1400 			       struct kvm_device_attr *attr);
1401 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
1402 			       struct kvm_device_attr *attr);
1403 
1404 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1405 			       struct kvm_arm_copy_mte_tags *copy_tags);
1406 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1407 				    struct kvm_arm_counter_offset *offset);
1408 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm,
1409 					struct reg_mask_range *range);
1410 
1411 /* Guest/host FPSIMD coordination helpers */
1412 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
1413 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
1414 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
1415 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
1416 
kvm_pmu_counter_deferred(struct perf_event_attr * attr)1417 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
1418 {
1419 	return (!has_vhe() && attr->exclude_host);
1420 }
1421 
1422 #ifdef CONFIG_KVM
1423 void kvm_set_pmu_events(u64 set, struct perf_event_attr *attr);
1424 void kvm_clr_pmu_events(u64 clr);
1425 bool kvm_set_pmuserenr(u64 val);
1426 void kvm_enable_trbe(void);
1427 void kvm_disable_trbe(void);
1428 void kvm_tracing_set_el1_configuration(u64 trfcr_while_in_guest);
1429 #else
kvm_set_pmu_events(u64 set,struct perf_event_attr * attr)1430 static inline void kvm_set_pmu_events(u64 set, struct perf_event_attr *attr) {}
kvm_clr_pmu_events(u64 clr)1431 static inline void kvm_clr_pmu_events(u64 clr) {}
kvm_set_pmuserenr(u64 val)1432 static inline bool kvm_set_pmuserenr(u64 val)
1433 {
1434 	return false;
1435 }
kvm_enable_trbe(void)1436 static inline void kvm_enable_trbe(void) {}
kvm_disable_trbe(void)1437 static inline void kvm_disable_trbe(void) {}
kvm_tracing_set_el1_configuration(u64 trfcr_while_in_guest)1438 static inline void kvm_tracing_set_el1_configuration(u64 trfcr_while_in_guest) {}
1439 #endif
1440 
1441 void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu);
1442 void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu);
1443 
1444 int __init kvm_set_ipa_limit(void);
1445 u32 kvm_get_pa_bits(struct kvm *kvm);
1446 
1447 #define __KVM_HAVE_ARCH_VM_ALLOC
1448 struct kvm *kvm_arch_alloc_vm(void);
1449 
1450 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1451 
1452 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1453 
1454 #define kvm_vm_is_protected(kvm)	(is_protected_kvm_enabled() && (kvm)->arch.pkvm.is_protected)
1455 
1456 #define vcpu_is_protected(vcpu)		kvm_vm_is_protected((vcpu)->kvm)
1457 
1458 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
1459 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
1460 
1461 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
1462 
1463 #define kvm_has_mte(kvm)					\
1464 	(system_supports_mte() &&				\
1465 	 test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
1466 
1467 #define kvm_supports_32bit_el0()				\
1468 	(system_supports_32bit_el0() &&				\
1469 	 !static_branch_unlikely(&arm64_mismatched_32bit_el0))
1470 
1471 #define kvm_vm_has_ran_once(kvm)					\
1472 	(test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags))
1473 
__vcpu_has_feature(const struct kvm_arch * ka,int feature)1474 static inline bool __vcpu_has_feature(const struct kvm_arch *ka, int feature)
1475 {
1476 	return test_bit(feature, ka->vcpu_features);
1477 }
1478 
1479 #define kvm_vcpu_has_feature(k, f)	__vcpu_has_feature(&(k)->arch, (f))
1480 #define vcpu_has_feature(v, f)	__vcpu_has_feature(&(v)->kvm->arch, (f))
1481 
1482 #define kvm_vcpu_initialized(v) vcpu_get_flag(vcpu, VCPU_INITIALIZED)
1483 
1484 int kvm_trng_call(struct kvm_vcpu *vcpu);
1485 #ifdef CONFIG_KVM
1486 extern phys_addr_t hyp_mem_base;
1487 extern phys_addr_t hyp_mem_size;
1488 void __init kvm_hyp_reserve(void);
1489 #else
kvm_hyp_reserve(void)1490 static inline void kvm_hyp_reserve(void) { }
1491 #endif
1492 
1493 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
1494 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
1495 
__vm_id_reg(struct kvm_arch * ka,u32 reg)1496 static inline u64 *__vm_id_reg(struct kvm_arch *ka, u32 reg)
1497 {
1498 	switch (reg) {
1499 	case sys_reg(3, 0, 0, 1, 0) ... sys_reg(3, 0, 0, 7, 7):
1500 		return &ka->id_regs[IDREG_IDX(reg)];
1501 	case SYS_CTR_EL0:
1502 		return &ka->ctr_el0;
1503 	case SYS_MIDR_EL1:
1504 		return &ka->midr_el1;
1505 	case SYS_REVIDR_EL1:
1506 		return &ka->revidr_el1;
1507 	case SYS_AIDR_EL1:
1508 		return &ka->aidr_el1;
1509 	default:
1510 		WARN_ON_ONCE(1);
1511 		return NULL;
1512 	}
1513 }
1514 
1515 #define kvm_read_vm_id_reg(kvm, reg)					\
1516 	({ u64 __val = *__vm_id_reg(&(kvm)->arch, reg); __val; })
1517 
1518 void kvm_set_vm_id_reg(struct kvm *kvm, u32 reg, u64 val);
1519 
1520 #define __expand_field_sign_unsigned(id, fld, val)			\
1521 	((u64)SYS_FIELD_VALUE(id, fld, val))
1522 
1523 #define __expand_field_sign_signed(id, fld, val)			\
1524 	({								\
1525 		u64 __val = SYS_FIELD_VALUE(id, fld, val);		\
1526 		sign_extend64(__val, id##_##fld##_WIDTH - 1);		\
1527 	})
1528 
1529 #define get_idreg_field_unsigned(kvm, id, fld)				\
1530 	({								\
1531 		u64 __val = kvm_read_vm_id_reg((kvm), SYS_##id);	\
1532 		FIELD_GET(id##_##fld##_MASK, __val);			\
1533 	})
1534 
1535 #define get_idreg_field_signed(kvm, id, fld)				\
1536 	({								\
1537 		u64 __val = get_idreg_field_unsigned(kvm, id, fld);	\
1538 		sign_extend64(__val, id##_##fld##_WIDTH - 1);		\
1539 	})
1540 
1541 #define get_idreg_field_enum(kvm, id, fld)				\
1542 	get_idreg_field_unsigned(kvm, id, fld)
1543 
1544 #define kvm_cmp_feat_signed(kvm, id, fld, op, limit)			\
1545 	(get_idreg_field_signed((kvm), id, fld) op __expand_field_sign_signed(id, fld, limit))
1546 
1547 #define kvm_cmp_feat_unsigned(kvm, id, fld, op, limit)			\
1548 	(get_idreg_field_unsigned((kvm), id, fld) op __expand_field_sign_unsigned(id, fld, limit))
1549 
1550 #define kvm_cmp_feat(kvm, id, fld, op, limit)				\
1551 	(id##_##fld##_SIGNED ?						\
1552 	 kvm_cmp_feat_signed(kvm, id, fld, op, limit) :			\
1553 	 kvm_cmp_feat_unsigned(kvm, id, fld, op, limit))
1554 
1555 #define __kvm_has_feat(kvm, id, fld, limit)				\
1556 	kvm_cmp_feat(kvm, id, fld, >=, limit)
1557 
1558 #define kvm_has_feat(kvm, ...) __kvm_has_feat(kvm, __VA_ARGS__)
1559 
1560 #define __kvm_has_feat_enum(kvm, id, fld, val)				\
1561 	kvm_cmp_feat_unsigned(kvm, id, fld, ==, val)
1562 
1563 #define kvm_has_feat_enum(kvm, ...) __kvm_has_feat_enum(kvm, __VA_ARGS__)
1564 
1565 #define kvm_has_feat_range(kvm, id, fld, min, max)			\
1566 	(kvm_cmp_feat(kvm, id, fld, >=, min) &&				\
1567 	kvm_cmp_feat(kvm, id, fld, <=, max))
1568 
1569 /* Check for a given level of PAuth support */
1570 #define kvm_has_pauth(k, l)						\
1571 	({								\
1572 		bool pa, pi, pa3;					\
1573 									\
1574 		pa  = kvm_has_feat((k), ID_AA64ISAR1_EL1, APA, l);	\
1575 		pa &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPA, IMP);	\
1576 		pi  = kvm_has_feat((k), ID_AA64ISAR1_EL1, API, l);	\
1577 		pi &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPI, IMP);	\
1578 		pa3  = kvm_has_feat((k), ID_AA64ISAR2_EL1, APA3, l);	\
1579 		pa3 &= kvm_has_feat((k), ID_AA64ISAR2_EL1, GPA3, IMP);	\
1580 									\
1581 		(pa + pi + pa3) == 1;					\
1582 	})
1583 
1584 #define kvm_has_fpmr(k)					\
1585 	(system_supports_fpmr() &&			\
1586 	 kvm_has_feat((k), ID_AA64PFR2_EL1, FPMR, IMP))
1587 
1588 #define kvm_has_tcr2(k)				\
1589 	(kvm_has_feat((k), ID_AA64MMFR3_EL1, TCRX, IMP))
1590 
1591 #define kvm_has_s1pie(k)				\
1592 	(kvm_has_feat((k), ID_AA64MMFR3_EL1, S1PIE, IMP))
1593 
1594 #define kvm_has_s1poe(k)				\
1595 	(kvm_has_feat((k), ID_AA64MMFR3_EL1, S1POE, IMP))
1596 
1597 #define kvm_has_ras(k)					\
1598 	(kvm_has_feat((k), ID_AA64PFR0_EL1, RAS, IMP))
1599 
1600 #define kvm_has_sctlr2(k)				\
1601 	(kvm_has_feat((k), ID_AA64MMFR3_EL1, SCTLRX, IMP))
1602 
kvm_arch_has_irq_bypass(void)1603 static inline bool kvm_arch_has_irq_bypass(void)
1604 {
1605 	return true;
1606 }
1607 
1608 void compute_fgu(struct kvm *kvm, enum fgt_group_id fgt);
1609 void get_reg_fixed_bits(struct kvm *kvm, enum vcpu_sysreg reg, u64 *res0, u64 *res1);
1610 void check_feature_map(void);
1611 void kvm_vcpu_load_fgt(struct kvm_vcpu *vcpu);
1612 
__fgt_reg_to_group_id(enum vcpu_sysreg reg)1613 static __always_inline enum fgt_group_id __fgt_reg_to_group_id(enum vcpu_sysreg reg)
1614 {
1615 	switch (reg) {
1616 	case HFGRTR_EL2:
1617 	case HFGWTR_EL2:
1618 		return HFGRTR_GROUP;
1619 	case HFGITR_EL2:
1620 		return HFGITR_GROUP;
1621 	case HDFGRTR_EL2:
1622 	case HDFGWTR_EL2:
1623 		return HDFGRTR_GROUP;
1624 	case HAFGRTR_EL2:
1625 		return HAFGRTR_GROUP;
1626 	case HFGRTR2_EL2:
1627 	case HFGWTR2_EL2:
1628 		return HFGRTR2_GROUP;
1629 	case HFGITR2_EL2:
1630 		return HFGITR2_GROUP;
1631 	case HDFGRTR2_EL2:
1632 	case HDFGWTR2_EL2:
1633 		return HDFGRTR2_GROUP;
1634 	default:
1635 		BUILD_BUG_ON(1);
1636 	}
1637 }
1638 
1639 #define vcpu_fgt(vcpu, reg)						\
1640 	({								\
1641 		enum fgt_group_id id = __fgt_reg_to_group_id(reg);	\
1642 		u64 *p;							\
1643 		switch (reg) {						\
1644 		case HFGWTR_EL2:					\
1645 		case HDFGWTR_EL2:					\
1646 		case HFGWTR2_EL2:					\
1647 		case HDFGWTR2_EL2:					\
1648 			p = &(vcpu)->arch.fgt[id].w;			\
1649 			break;						\
1650 		default:						\
1651 			p = &(vcpu)->arch.fgt[id].r;			\
1652 			break;						\
1653 		}							\
1654 									\
1655 		p;							\
1656 	})
1657 
1658 #endif /* __ARM64_KVM_HOST_H__ */
1659