xref: /linux/tools/testing/selftests/kvm/include/x86_64/processor.h (revision a1ff5a7d78a036d6c2178ee5acd6ba4946243800)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * tools/testing/selftests/kvm/include/x86_64/processor.h
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #ifndef SELFTEST_KVM_PROCESSOR_H
9 #define SELFTEST_KVM_PROCESSOR_H
10 
11 #include <assert.h>
12 #include <stdint.h>
13 #include <syscall.h>
14 
15 #include <asm/msr-index.h>
16 #include <asm/prctl.h>
17 
18 #include <linux/kvm_para.h>
19 #include <linux/stringify.h>
20 
21 #include "kvm_util.h"
22 #include "ucall_common.h"
23 
24 extern bool host_cpu_is_intel;
25 extern bool host_cpu_is_amd;
26 extern uint64_t guest_tsc_khz;
27 
28 /* Forced emulation prefix, used to invoke the emulator unconditionally. */
29 #define KVM_FEP "ud2; .byte 'k', 'v', 'm';"
30 
31 #define NMI_VECTOR		0x02
32 
33 #define X86_EFLAGS_FIXED	 (1u << 1)
34 
35 #define X86_CR4_VME		(1ul << 0)
36 #define X86_CR4_PVI		(1ul << 1)
37 #define X86_CR4_TSD		(1ul << 2)
38 #define X86_CR4_DE		(1ul << 3)
39 #define X86_CR4_PSE		(1ul << 4)
40 #define X86_CR4_PAE		(1ul << 5)
41 #define X86_CR4_MCE		(1ul << 6)
42 #define X86_CR4_PGE		(1ul << 7)
43 #define X86_CR4_PCE		(1ul << 8)
44 #define X86_CR4_OSFXSR		(1ul << 9)
45 #define X86_CR4_OSXMMEXCPT	(1ul << 10)
46 #define X86_CR4_UMIP		(1ul << 11)
47 #define X86_CR4_LA57		(1ul << 12)
48 #define X86_CR4_VMXE		(1ul << 13)
49 #define X86_CR4_SMXE		(1ul << 14)
50 #define X86_CR4_FSGSBASE	(1ul << 16)
51 #define X86_CR4_PCIDE		(1ul << 17)
52 #define X86_CR4_OSXSAVE		(1ul << 18)
53 #define X86_CR4_SMEP		(1ul << 20)
54 #define X86_CR4_SMAP		(1ul << 21)
55 #define X86_CR4_PKE		(1ul << 22)
56 
57 struct xstate_header {
58 	u64				xstate_bv;
59 	u64				xcomp_bv;
60 	u64				reserved[6];
61 } __attribute__((packed));
62 
63 struct xstate {
64 	u8				i387[512];
65 	struct xstate_header		header;
66 	u8				extended_state_area[0];
67 } __attribute__ ((packed, aligned (64)));
68 
69 #define XFEATURE_MASK_FP		BIT_ULL(0)
70 #define XFEATURE_MASK_SSE		BIT_ULL(1)
71 #define XFEATURE_MASK_YMM		BIT_ULL(2)
72 #define XFEATURE_MASK_BNDREGS		BIT_ULL(3)
73 #define XFEATURE_MASK_BNDCSR		BIT_ULL(4)
74 #define XFEATURE_MASK_OPMASK		BIT_ULL(5)
75 #define XFEATURE_MASK_ZMM_Hi256		BIT_ULL(6)
76 #define XFEATURE_MASK_Hi16_ZMM		BIT_ULL(7)
77 #define XFEATURE_MASK_PT		BIT_ULL(8)
78 #define XFEATURE_MASK_PKRU		BIT_ULL(9)
79 #define XFEATURE_MASK_PASID		BIT_ULL(10)
80 #define XFEATURE_MASK_CET_USER		BIT_ULL(11)
81 #define XFEATURE_MASK_CET_KERNEL	BIT_ULL(12)
82 #define XFEATURE_MASK_LBR		BIT_ULL(15)
83 #define XFEATURE_MASK_XTILE_CFG		BIT_ULL(17)
84 #define XFEATURE_MASK_XTILE_DATA	BIT_ULL(18)
85 
86 #define XFEATURE_MASK_AVX512		(XFEATURE_MASK_OPMASK | \
87 					 XFEATURE_MASK_ZMM_Hi256 | \
88 					 XFEATURE_MASK_Hi16_ZMM)
89 #define XFEATURE_MASK_XTILE		(XFEATURE_MASK_XTILE_DATA | \
90 					 XFEATURE_MASK_XTILE_CFG)
91 
92 /* Note, these are ordered alphabetically to match kvm_cpuid_entry2.  Eww. */
93 enum cpuid_output_regs {
94 	KVM_CPUID_EAX,
95 	KVM_CPUID_EBX,
96 	KVM_CPUID_ECX,
97 	KVM_CPUID_EDX
98 };
99 
100 /*
101  * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be
102  * passed by value with no overhead.
103  */
104 struct kvm_x86_cpu_feature {
105 	u32	function;
106 	u16	index;
107 	u8	reg;
108 	u8	bit;
109 };
110 #define	KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit)				\
111 ({										\
112 	struct kvm_x86_cpu_feature feature = {					\
113 		.function = fn,							\
114 		.index = idx,							\
115 		.reg = KVM_CPUID_##gpr,						\
116 		.bit = __bit,							\
117 	};									\
118 										\
119 	kvm_static_assert((fn & 0xc0000000) == 0 ||				\
120 			  (fn & 0xc0000000) == 0x40000000 ||			\
121 			  (fn & 0xc0000000) == 0x80000000 ||			\
122 			  (fn & 0xc0000000) == 0xc0000000);			\
123 	kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE));	\
124 	feature;								\
125 })
126 
127 /*
128  * Basic Leafs, a.k.a. Intel defined
129  */
130 #define	X86_FEATURE_MWAIT		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3)
131 #define	X86_FEATURE_VMX			KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5)
132 #define	X86_FEATURE_SMX			KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6)
133 #define	X86_FEATURE_PDCM		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15)
134 #define	X86_FEATURE_PCID		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17)
135 #define X86_FEATURE_X2APIC		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21)
136 #define	X86_FEATURE_MOVBE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22)
137 #define	X86_FEATURE_TSC_DEADLINE_TIMER	KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24)
138 #define	X86_FEATURE_XSAVE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26)
139 #define	X86_FEATURE_OSXSAVE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27)
140 #define	X86_FEATURE_RDRAND		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30)
141 #define	X86_FEATURE_HYPERVISOR		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31)
142 #define X86_FEATURE_PAE			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6)
143 #define	X86_FEATURE_MCE			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7)
144 #define	X86_FEATURE_APIC		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9)
145 #define	X86_FEATURE_CLFLUSH		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19)
146 #define	X86_FEATURE_XMM			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25)
147 #define	X86_FEATURE_XMM2		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26)
148 #define	X86_FEATURE_FSGSBASE		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0)
149 #define	X86_FEATURE_TSC_ADJUST		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1)
150 #define	X86_FEATURE_SGX			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2)
151 #define	X86_FEATURE_HLE			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4)
152 #define	X86_FEATURE_SMEP	        KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7)
153 #define	X86_FEATURE_INVPCID		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10)
154 #define	X86_FEATURE_RTM			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11)
155 #define	X86_FEATURE_MPX			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14)
156 #define	X86_FEATURE_SMAP		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20)
157 #define	X86_FEATURE_PCOMMIT		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22)
158 #define	X86_FEATURE_CLFLUSHOPT		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23)
159 #define	X86_FEATURE_CLWB		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24)
160 #define	X86_FEATURE_UMIP		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2)
161 #define	X86_FEATURE_PKU			KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3)
162 #define	X86_FEATURE_OSPKE		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 4)
163 #define	X86_FEATURE_LA57		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16)
164 #define	X86_FEATURE_RDPID		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22)
165 #define	X86_FEATURE_SGX_LC		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30)
166 #define	X86_FEATURE_SHSTK		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7)
167 #define	X86_FEATURE_IBT			KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20)
168 #define	X86_FEATURE_AMX_TILE		KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24)
169 #define	X86_FEATURE_SPEC_CTRL		KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26)
170 #define	X86_FEATURE_ARCH_CAPABILITIES	KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29)
171 #define	X86_FEATURE_PKS			KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31)
172 #define	X86_FEATURE_XTILECFG		KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17)
173 #define	X86_FEATURE_XTILEDATA		KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18)
174 #define	X86_FEATURE_XSAVES		KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3)
175 #define	X86_FEATURE_XFD			KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4)
176 #define X86_FEATURE_XTILEDATA_XFD	KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2)
177 
178 /*
179  * Extended Leafs, a.k.a. AMD defined
180  */
181 #define	X86_FEATURE_SVM			KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2)
182 #define	X86_FEATURE_NX			KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20)
183 #define	X86_FEATURE_GBPAGES		KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26)
184 #define	X86_FEATURE_RDTSCP		KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27)
185 #define	X86_FEATURE_LM			KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29)
186 #define	X86_FEATURE_INVTSC		KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8)
187 #define	X86_FEATURE_RDPRU		KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4)
188 #define	X86_FEATURE_AMD_IBPB		KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12)
189 #define	X86_FEATURE_NPT			KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0)
190 #define	X86_FEATURE_LBRV		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1)
191 #define	X86_FEATURE_NRIPS		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3)
192 #define X86_FEATURE_TSCRATEMSR          KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4)
193 #define X86_FEATURE_PAUSEFILTER         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10)
194 #define X86_FEATURE_PFTHRESHOLD         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12)
195 #define	X86_FEATURE_VGIF		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16)
196 #define X86_FEATURE_SEV			KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1)
197 #define X86_FEATURE_SEV_ES		KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3)
198 
199 /*
200  * KVM defined paravirt features.
201  */
202 #define X86_FEATURE_KVM_CLOCKSOURCE	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0)
203 #define X86_FEATURE_KVM_NOP_IO_DELAY	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1)
204 #define X86_FEATURE_KVM_MMU_OP		KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2)
205 #define X86_FEATURE_KVM_CLOCKSOURCE2	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3)
206 #define X86_FEATURE_KVM_ASYNC_PF	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4)
207 #define X86_FEATURE_KVM_STEAL_TIME	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5)
208 #define X86_FEATURE_KVM_PV_EOI		KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6)
209 #define X86_FEATURE_KVM_PV_UNHALT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7)
210 /* Bit 8 apparently isn't used?!?! */
211 #define X86_FEATURE_KVM_PV_TLB_FLUSH	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9)
212 #define X86_FEATURE_KVM_ASYNC_PF_VMEXIT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10)
213 #define X86_FEATURE_KVM_PV_SEND_IPI	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11)
214 #define X86_FEATURE_KVM_POLL_CONTROL	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12)
215 #define X86_FEATURE_KVM_PV_SCHED_YIELD	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13)
216 #define X86_FEATURE_KVM_ASYNC_PF_INT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14)
217 #define X86_FEATURE_KVM_MSI_EXT_DEST_ID	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15)
218 #define X86_FEATURE_KVM_HC_MAP_GPA_RANGE	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16)
219 #define X86_FEATURE_KVM_MIGRATION_CONTROL	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17)
220 
221 /*
222  * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit
223  * value/property as opposed to a single-bit feature.  Again, pack the info
224  * into a 64-bit value to pass by value with no overhead.
225  */
226 struct kvm_x86_cpu_property {
227 	u32	function;
228 	u8	index;
229 	u8	reg;
230 	u8	lo_bit;
231 	u8	hi_bit;
232 };
233 #define	KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit)			\
234 ({										\
235 	struct kvm_x86_cpu_property property = {				\
236 		.function = fn,							\
237 		.index = idx,							\
238 		.reg = KVM_CPUID_##gpr,						\
239 		.lo_bit = low_bit,						\
240 		.hi_bit = high_bit,						\
241 	};									\
242 										\
243 	kvm_static_assert(low_bit < high_bit);					\
244 	kvm_static_assert((fn & 0xc0000000) == 0 ||				\
245 			  (fn & 0xc0000000) == 0x40000000 ||			\
246 			  (fn & 0xc0000000) == 0x80000000 ||			\
247 			  (fn & 0xc0000000) == 0xc0000000);			\
248 	kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE));	\
249 	property;								\
250 })
251 
252 #define X86_PROPERTY_MAX_BASIC_LEAF		KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31)
253 #define X86_PROPERTY_PMU_VERSION		KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7)
254 #define X86_PROPERTY_PMU_NR_GP_COUNTERS		KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15)
255 #define X86_PROPERTY_PMU_GP_COUNTERS_BIT_WIDTH	KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 16, 23)
256 #define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH	KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31)
257 #define X86_PROPERTY_PMU_EVENTS_MASK		KVM_X86_CPU_PROPERTY(0xa, 0, EBX, 0, 7)
258 #define X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK	KVM_X86_CPU_PROPERTY(0xa, 0, ECX, 0, 31)
259 #define X86_PROPERTY_PMU_NR_FIXED_COUNTERS	KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 0, 4)
260 #define X86_PROPERTY_PMU_FIXED_COUNTERS_BIT_WIDTH	KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 5, 12)
261 
262 #define X86_PROPERTY_SUPPORTED_XCR0_LO		KVM_X86_CPU_PROPERTY(0xd,  0, EAX,  0, 31)
263 #define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0	KVM_X86_CPU_PROPERTY(0xd,  0, EBX,  0, 31)
264 #define X86_PROPERTY_XSTATE_MAX_SIZE		KVM_X86_CPU_PROPERTY(0xd,  0, ECX,  0, 31)
265 #define X86_PROPERTY_SUPPORTED_XCR0_HI		KVM_X86_CPU_PROPERTY(0xd,  0, EDX,  0, 31)
266 
267 #define X86_PROPERTY_XSTATE_TILE_SIZE		KVM_X86_CPU_PROPERTY(0xd, 18, EAX,  0, 31)
268 #define X86_PROPERTY_XSTATE_TILE_OFFSET		KVM_X86_CPU_PROPERTY(0xd, 18, EBX,  0, 31)
269 #define X86_PROPERTY_AMX_MAX_PALETTE_TABLES	KVM_X86_CPU_PROPERTY(0x1d, 0, EAX,  0, 31)
270 #define X86_PROPERTY_AMX_TOTAL_TILE_BYTES	KVM_X86_CPU_PROPERTY(0x1d, 1, EAX,  0, 15)
271 #define X86_PROPERTY_AMX_BYTES_PER_TILE		KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31)
272 #define X86_PROPERTY_AMX_BYTES_PER_ROW		KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0,  15)
273 #define X86_PROPERTY_AMX_NR_TILE_REGS		KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31)
274 #define X86_PROPERTY_AMX_MAX_ROWS		KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0,  15)
275 
276 #define X86_PROPERTY_MAX_KVM_LEAF		KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31)
277 
278 #define X86_PROPERTY_MAX_EXT_LEAF		KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31)
279 #define X86_PROPERTY_MAX_PHY_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7)
280 #define X86_PROPERTY_MAX_VIRT_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15)
281 #define X86_PROPERTY_GUEST_MAX_PHY_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 16, 23)
282 #define X86_PROPERTY_SEV_C_BIT			KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 0, 5)
283 #define X86_PROPERTY_PHYS_ADDR_REDUCTION	KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11)
284 
285 #define X86_PROPERTY_MAX_CENTAUR_LEAF		KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31)
286 
287 /*
288  * Intel's architectural PMU events are bizarre.  They have a "feature" bit
289  * that indicates the feature is _not_ supported, and a property that states
290  * the length of the bit mask of unsupported features.  A feature is supported
291  * if the size of the bit mask is larger than the "unavailable" bit, and said
292  * bit is not set.  Fixed counters also bizarre enumeration, but inverted from
293  * arch events for general purpose counters.  Fixed counters are supported if a
294  * feature flag is set **OR** the total number of fixed counters is greater
295  * than index of the counter.
296  *
297  * Wrap the events for general purpose and fixed counters to simplify checking
298  * whether or not a given architectural event is supported.
299  */
300 struct kvm_x86_pmu_feature {
301 	struct kvm_x86_cpu_feature f;
302 };
303 #define	KVM_X86_PMU_FEATURE(__reg, __bit)				\
304 ({									\
305 	struct kvm_x86_pmu_feature feature = {				\
306 		.f = KVM_X86_CPU_FEATURE(0xa, 0, __reg, __bit),		\
307 	};								\
308 									\
309 	kvm_static_assert(KVM_CPUID_##__reg == KVM_CPUID_EBX ||		\
310 			  KVM_CPUID_##__reg == KVM_CPUID_ECX);		\
311 	feature;							\
312 })
313 
314 #define X86_PMU_FEATURE_CPU_CYCLES			KVM_X86_PMU_FEATURE(EBX, 0)
315 #define X86_PMU_FEATURE_INSNS_RETIRED			KVM_X86_PMU_FEATURE(EBX, 1)
316 #define X86_PMU_FEATURE_REFERENCE_CYCLES		KVM_X86_PMU_FEATURE(EBX, 2)
317 #define X86_PMU_FEATURE_LLC_REFERENCES			KVM_X86_PMU_FEATURE(EBX, 3)
318 #define X86_PMU_FEATURE_LLC_MISSES			KVM_X86_PMU_FEATURE(EBX, 4)
319 #define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED		KVM_X86_PMU_FEATURE(EBX, 5)
320 #define X86_PMU_FEATURE_BRANCHES_MISPREDICTED		KVM_X86_PMU_FEATURE(EBX, 6)
321 #define X86_PMU_FEATURE_TOPDOWN_SLOTS			KVM_X86_PMU_FEATURE(EBX, 7)
322 
323 #define X86_PMU_FEATURE_INSNS_RETIRED_FIXED		KVM_X86_PMU_FEATURE(ECX, 0)
324 #define X86_PMU_FEATURE_CPU_CYCLES_FIXED		KVM_X86_PMU_FEATURE(ECX, 1)
325 #define X86_PMU_FEATURE_REFERENCE_TSC_CYCLES_FIXED	KVM_X86_PMU_FEATURE(ECX, 2)
326 #define X86_PMU_FEATURE_TOPDOWN_SLOTS_FIXED		KVM_X86_PMU_FEATURE(ECX, 3)
327 
x86_family(unsigned int eax)328 static inline unsigned int x86_family(unsigned int eax)
329 {
330 	unsigned int x86;
331 
332 	x86 = (eax >> 8) & 0xf;
333 
334 	if (x86 == 0xf)
335 		x86 += (eax >> 20) & 0xff;
336 
337 	return x86;
338 }
339 
x86_model(unsigned int eax)340 static inline unsigned int x86_model(unsigned int eax)
341 {
342 	return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f);
343 }
344 
345 /* Page table bitfield declarations */
346 #define PTE_PRESENT_MASK        BIT_ULL(0)
347 #define PTE_WRITABLE_MASK       BIT_ULL(1)
348 #define PTE_USER_MASK           BIT_ULL(2)
349 #define PTE_ACCESSED_MASK       BIT_ULL(5)
350 #define PTE_DIRTY_MASK          BIT_ULL(6)
351 #define PTE_LARGE_MASK          BIT_ULL(7)
352 #define PTE_GLOBAL_MASK         BIT_ULL(8)
353 #define PTE_NX_MASK             BIT_ULL(63)
354 
355 #define PHYSICAL_PAGE_MASK      GENMASK_ULL(51, 12)
356 
357 #define PAGE_SHIFT		12
358 #define PAGE_SIZE		(1ULL << PAGE_SHIFT)
359 #define PAGE_MASK		(~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK)
360 
361 #define HUGEPAGE_SHIFT(x)	(PAGE_SHIFT + (((x) - 1) * 9))
362 #define HUGEPAGE_SIZE(x)	(1UL << HUGEPAGE_SHIFT(x))
363 #define HUGEPAGE_MASK(x)	(~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK)
364 
365 #define PTE_GET_PA(pte)		((pte) & PHYSICAL_PAGE_MASK)
366 #define PTE_GET_PFN(pte)        (PTE_GET_PA(pte) >> PAGE_SHIFT)
367 
368 /* General Registers in 64-Bit Mode */
369 struct gpr64_regs {
370 	u64 rax;
371 	u64 rcx;
372 	u64 rdx;
373 	u64 rbx;
374 	u64 rsp;
375 	u64 rbp;
376 	u64 rsi;
377 	u64 rdi;
378 	u64 r8;
379 	u64 r9;
380 	u64 r10;
381 	u64 r11;
382 	u64 r12;
383 	u64 r13;
384 	u64 r14;
385 	u64 r15;
386 };
387 
388 struct desc64 {
389 	uint16_t limit0;
390 	uint16_t base0;
391 	unsigned base1:8, type:4, s:1, dpl:2, p:1;
392 	unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8;
393 	uint32_t base3;
394 	uint32_t zero1;
395 } __attribute__((packed));
396 
397 struct desc_ptr {
398 	uint16_t size;
399 	uint64_t address;
400 } __attribute__((packed));
401 
402 struct kvm_x86_state {
403 	struct kvm_xsave *xsave;
404 	struct kvm_vcpu_events events;
405 	struct kvm_mp_state mp_state;
406 	struct kvm_regs regs;
407 	struct kvm_xcrs xcrs;
408 	struct kvm_sregs sregs;
409 	struct kvm_debugregs debugregs;
410 	union {
411 		struct kvm_nested_state nested;
412 		char nested_[16384];
413 	};
414 	struct kvm_msrs msrs;
415 };
416 
get_desc64_base(const struct desc64 * desc)417 static inline uint64_t get_desc64_base(const struct desc64 *desc)
418 {
419 	return ((uint64_t)desc->base3 << 32) |
420 		(desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24));
421 }
422 
rdtsc(void)423 static inline uint64_t rdtsc(void)
424 {
425 	uint32_t eax, edx;
426 	uint64_t tsc_val;
427 	/*
428 	 * The lfence is to wait (on Intel CPUs) until all previous
429 	 * instructions have been executed. If software requires RDTSC to be
430 	 * executed prior to execution of any subsequent instruction, it can
431 	 * execute LFENCE immediately after RDTSC
432 	 */
433 	__asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx));
434 	tsc_val = ((uint64_t)edx) << 32 | eax;
435 	return tsc_val;
436 }
437 
rdtscp(uint32_t * aux)438 static inline uint64_t rdtscp(uint32_t *aux)
439 {
440 	uint32_t eax, edx;
441 
442 	__asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux));
443 	return ((uint64_t)edx) << 32 | eax;
444 }
445 
rdmsr(uint32_t msr)446 static inline uint64_t rdmsr(uint32_t msr)
447 {
448 	uint32_t a, d;
449 
450 	__asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory");
451 
452 	return a | ((uint64_t) d << 32);
453 }
454 
wrmsr(uint32_t msr,uint64_t value)455 static inline void wrmsr(uint32_t msr, uint64_t value)
456 {
457 	uint32_t a = value;
458 	uint32_t d = value >> 32;
459 
460 	__asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory");
461 }
462 
463 
inw(uint16_t port)464 static inline uint16_t inw(uint16_t port)
465 {
466 	uint16_t tmp;
467 
468 	__asm__ __volatile__("in %%dx, %%ax"
469 		: /* output */ "=a" (tmp)
470 		: /* input */ "d" (port));
471 
472 	return tmp;
473 }
474 
get_es(void)475 static inline uint16_t get_es(void)
476 {
477 	uint16_t es;
478 
479 	__asm__ __volatile__("mov %%es, %[es]"
480 			     : /* output */ [es]"=rm"(es));
481 	return es;
482 }
483 
get_cs(void)484 static inline uint16_t get_cs(void)
485 {
486 	uint16_t cs;
487 
488 	__asm__ __volatile__("mov %%cs, %[cs]"
489 			     : /* output */ [cs]"=rm"(cs));
490 	return cs;
491 }
492 
get_ss(void)493 static inline uint16_t get_ss(void)
494 {
495 	uint16_t ss;
496 
497 	__asm__ __volatile__("mov %%ss, %[ss]"
498 			     : /* output */ [ss]"=rm"(ss));
499 	return ss;
500 }
501 
get_ds(void)502 static inline uint16_t get_ds(void)
503 {
504 	uint16_t ds;
505 
506 	__asm__ __volatile__("mov %%ds, %[ds]"
507 			     : /* output */ [ds]"=rm"(ds));
508 	return ds;
509 }
510 
get_fs(void)511 static inline uint16_t get_fs(void)
512 {
513 	uint16_t fs;
514 
515 	__asm__ __volatile__("mov %%fs, %[fs]"
516 			     : /* output */ [fs]"=rm"(fs));
517 	return fs;
518 }
519 
get_gs(void)520 static inline uint16_t get_gs(void)
521 {
522 	uint16_t gs;
523 
524 	__asm__ __volatile__("mov %%gs, %[gs]"
525 			     : /* output */ [gs]"=rm"(gs));
526 	return gs;
527 }
528 
get_tr(void)529 static inline uint16_t get_tr(void)
530 {
531 	uint16_t tr;
532 
533 	__asm__ __volatile__("str %[tr]"
534 			     : /* output */ [tr]"=rm"(tr));
535 	return tr;
536 }
537 
get_cr0(void)538 static inline uint64_t get_cr0(void)
539 {
540 	uint64_t cr0;
541 
542 	__asm__ __volatile__("mov %%cr0, %[cr0]"
543 			     : /* output */ [cr0]"=r"(cr0));
544 	return cr0;
545 }
546 
get_cr3(void)547 static inline uint64_t get_cr3(void)
548 {
549 	uint64_t cr3;
550 
551 	__asm__ __volatile__("mov %%cr3, %[cr3]"
552 			     : /* output */ [cr3]"=r"(cr3));
553 	return cr3;
554 }
555 
get_cr4(void)556 static inline uint64_t get_cr4(void)
557 {
558 	uint64_t cr4;
559 
560 	__asm__ __volatile__("mov %%cr4, %[cr4]"
561 			     : /* output */ [cr4]"=r"(cr4));
562 	return cr4;
563 }
564 
set_cr4(uint64_t val)565 static inline void set_cr4(uint64_t val)
566 {
567 	__asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory");
568 }
569 
xgetbv(u32 index)570 static inline u64 xgetbv(u32 index)
571 {
572 	u32 eax, edx;
573 
574 	__asm__ __volatile__("xgetbv;"
575 		     : "=a" (eax), "=d" (edx)
576 		     : "c" (index));
577 	return eax | ((u64)edx << 32);
578 }
579 
xsetbv(u32 index,u64 value)580 static inline void xsetbv(u32 index, u64 value)
581 {
582 	u32 eax = value;
583 	u32 edx = value >> 32;
584 
585 	__asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index));
586 }
587 
wrpkru(u32 pkru)588 static inline void wrpkru(u32 pkru)
589 {
590 	/* Note, ECX and EDX are architecturally required to be '0'. */
591 	asm volatile(".byte 0x0f,0x01,0xef\n\t"
592 		     : : "a" (pkru), "c"(0), "d"(0));
593 }
594 
get_gdt(void)595 static inline struct desc_ptr get_gdt(void)
596 {
597 	struct desc_ptr gdt;
598 	__asm__ __volatile__("sgdt %[gdt]"
599 			     : /* output */ [gdt]"=m"(gdt));
600 	return gdt;
601 }
602 
get_idt(void)603 static inline struct desc_ptr get_idt(void)
604 {
605 	struct desc_ptr idt;
606 	__asm__ __volatile__("sidt %[idt]"
607 			     : /* output */ [idt]"=m"(idt));
608 	return idt;
609 }
610 
outl(uint16_t port,uint32_t value)611 static inline void outl(uint16_t port, uint32_t value)
612 {
613 	__asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value));
614 }
615 
__cpuid(uint32_t function,uint32_t index,uint32_t * eax,uint32_t * ebx,uint32_t * ecx,uint32_t * edx)616 static inline void __cpuid(uint32_t function, uint32_t index,
617 			   uint32_t *eax, uint32_t *ebx,
618 			   uint32_t *ecx, uint32_t *edx)
619 {
620 	*eax = function;
621 	*ecx = index;
622 
623 	asm volatile("cpuid"
624 	    : "=a" (*eax),
625 	      "=b" (*ebx),
626 	      "=c" (*ecx),
627 	      "=d" (*edx)
628 	    : "0" (*eax), "2" (*ecx)
629 	    : "memory");
630 }
631 
cpuid(uint32_t function,uint32_t * eax,uint32_t * ebx,uint32_t * ecx,uint32_t * edx)632 static inline void cpuid(uint32_t function,
633 			 uint32_t *eax, uint32_t *ebx,
634 			 uint32_t *ecx, uint32_t *edx)
635 {
636 	return __cpuid(function, 0, eax, ebx, ecx, edx);
637 }
638 
this_cpu_fms(void)639 static inline uint32_t this_cpu_fms(void)
640 {
641 	uint32_t eax, ebx, ecx, edx;
642 
643 	cpuid(1, &eax, &ebx, &ecx, &edx);
644 	return eax;
645 }
646 
this_cpu_family(void)647 static inline uint32_t this_cpu_family(void)
648 {
649 	return x86_family(this_cpu_fms());
650 }
651 
this_cpu_model(void)652 static inline uint32_t this_cpu_model(void)
653 {
654 	return x86_model(this_cpu_fms());
655 }
656 
this_cpu_vendor_string_is(const char * vendor)657 static inline bool this_cpu_vendor_string_is(const char *vendor)
658 {
659 	const uint32_t *chunk = (const uint32_t *)vendor;
660 	uint32_t eax, ebx, ecx, edx;
661 
662 	cpuid(0, &eax, &ebx, &ecx, &edx);
663 	return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
664 }
665 
this_cpu_is_intel(void)666 static inline bool this_cpu_is_intel(void)
667 {
668 	return this_cpu_vendor_string_is("GenuineIntel");
669 }
670 
671 /*
672  * Exclude early K5 samples with a vendor string of "AMDisbetter!"
673  */
this_cpu_is_amd(void)674 static inline bool this_cpu_is_amd(void)
675 {
676 	return this_cpu_vendor_string_is("AuthenticAMD");
677 }
678 
__this_cpu_has(uint32_t function,uint32_t index,uint8_t reg,uint8_t lo,uint8_t hi)679 static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index,
680 				      uint8_t reg, uint8_t lo, uint8_t hi)
681 {
682 	uint32_t gprs[4];
683 
684 	__cpuid(function, index,
685 		&gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX],
686 		&gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]);
687 
688 	return (gprs[reg] & GENMASK(hi, lo)) >> lo;
689 }
690 
this_cpu_has(struct kvm_x86_cpu_feature feature)691 static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature)
692 {
693 	return __this_cpu_has(feature.function, feature.index,
694 			      feature.reg, feature.bit, feature.bit);
695 }
696 
this_cpu_property(struct kvm_x86_cpu_property property)697 static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property)
698 {
699 	return __this_cpu_has(property.function, property.index,
700 			      property.reg, property.lo_bit, property.hi_bit);
701 }
702 
this_cpu_has_p(struct kvm_x86_cpu_property property)703 static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property)
704 {
705 	uint32_t max_leaf;
706 
707 	switch (property.function & 0xc0000000) {
708 	case 0:
709 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
710 		break;
711 	case 0x40000000:
712 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
713 		break;
714 	case 0x80000000:
715 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
716 		break;
717 	case 0xc0000000:
718 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
719 	}
720 	return max_leaf >= property.function;
721 }
722 
this_pmu_has(struct kvm_x86_pmu_feature feature)723 static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature)
724 {
725 	uint32_t nr_bits;
726 
727 	if (feature.f.reg == KVM_CPUID_EBX) {
728 		nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
729 		return nr_bits > feature.f.bit && !this_cpu_has(feature.f);
730 	}
731 
732 	GUEST_ASSERT(feature.f.reg == KVM_CPUID_ECX);
733 	nr_bits = this_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
734 	return nr_bits > feature.f.bit || this_cpu_has(feature.f);
735 }
736 
this_cpu_supported_xcr0(void)737 static __always_inline uint64_t this_cpu_supported_xcr0(void)
738 {
739 	if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
740 		return 0;
741 
742 	return this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
743 	       ((uint64_t)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
744 }
745 
746 typedef u32		__attribute__((vector_size(16))) sse128_t;
747 #define __sse128_u	union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; }
748 #define sse128_lo(x)	({ __sse128_u t; t.vec = x; t.as_u64[0]; })
749 #define sse128_hi(x)	({ __sse128_u t; t.vec = x; t.as_u64[1]; })
750 
read_sse_reg(int reg,sse128_t * data)751 static inline void read_sse_reg(int reg, sse128_t *data)
752 {
753 	switch (reg) {
754 	case 0:
755 		asm("movdqa %%xmm0, %0" : "=m"(*data));
756 		break;
757 	case 1:
758 		asm("movdqa %%xmm1, %0" : "=m"(*data));
759 		break;
760 	case 2:
761 		asm("movdqa %%xmm2, %0" : "=m"(*data));
762 		break;
763 	case 3:
764 		asm("movdqa %%xmm3, %0" : "=m"(*data));
765 		break;
766 	case 4:
767 		asm("movdqa %%xmm4, %0" : "=m"(*data));
768 		break;
769 	case 5:
770 		asm("movdqa %%xmm5, %0" : "=m"(*data));
771 		break;
772 	case 6:
773 		asm("movdqa %%xmm6, %0" : "=m"(*data));
774 		break;
775 	case 7:
776 		asm("movdqa %%xmm7, %0" : "=m"(*data));
777 		break;
778 	default:
779 		BUG();
780 	}
781 }
782 
write_sse_reg(int reg,const sse128_t * data)783 static inline void write_sse_reg(int reg, const sse128_t *data)
784 {
785 	switch (reg) {
786 	case 0:
787 		asm("movdqa %0, %%xmm0" : : "m"(*data));
788 		break;
789 	case 1:
790 		asm("movdqa %0, %%xmm1" : : "m"(*data));
791 		break;
792 	case 2:
793 		asm("movdqa %0, %%xmm2" : : "m"(*data));
794 		break;
795 	case 3:
796 		asm("movdqa %0, %%xmm3" : : "m"(*data));
797 		break;
798 	case 4:
799 		asm("movdqa %0, %%xmm4" : : "m"(*data));
800 		break;
801 	case 5:
802 		asm("movdqa %0, %%xmm5" : : "m"(*data));
803 		break;
804 	case 6:
805 		asm("movdqa %0, %%xmm6" : : "m"(*data));
806 		break;
807 	case 7:
808 		asm("movdqa %0, %%xmm7" : : "m"(*data));
809 		break;
810 	default:
811 		BUG();
812 	}
813 }
814 
cpu_relax(void)815 static inline void cpu_relax(void)
816 {
817 	asm volatile("rep; nop" ::: "memory");
818 }
819 
udelay(unsigned long usec)820 static inline void udelay(unsigned long usec)
821 {
822 	uint64_t start, now, cycles;
823 
824 	GUEST_ASSERT(guest_tsc_khz);
825 	cycles = guest_tsc_khz / 1000 * usec;
826 
827 	/*
828 	 * Deliberately don't PAUSE, a.k.a. cpu_relax(), so that the delay is
829 	 * as accurate as possible, e.g. doesn't trigger PAUSE-Loop VM-Exits.
830 	 */
831 	start = rdtsc();
832 	do {
833 		now = rdtsc();
834 	} while (now - start < cycles);
835 }
836 
837 #define ud2()			\
838 	__asm__ __volatile__(	\
839 		"ud2\n"	\
840 		)
841 
842 #define hlt()			\
843 	__asm__ __volatile__(	\
844 		"hlt\n"	\
845 		)
846 
847 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu);
848 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state);
849 void kvm_x86_state_cleanup(struct kvm_x86_state *state);
850 
851 const struct kvm_msr_list *kvm_get_msr_index_list(void);
852 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void);
853 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index);
854 uint64_t kvm_get_feature_msr(uint64_t msr_index);
855 
vcpu_msrs_get(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs)856 static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu,
857 				 struct kvm_msrs *msrs)
858 {
859 	int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs);
860 
861 	TEST_ASSERT(r == msrs->nmsrs,
862 		    "KVM_GET_MSRS failed, r: %i (failed on MSR %x)",
863 		    r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
864 }
vcpu_msrs_set(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs)865 static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs)
866 {
867 	int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs);
868 
869 	TEST_ASSERT(r == msrs->nmsrs,
870 		    "KVM_SET_MSRS failed, r: %i (failed on MSR %x)",
871 		    r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
872 }
vcpu_debugregs_get(struct kvm_vcpu * vcpu,struct kvm_debugregs * debugregs)873 static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu,
874 				      struct kvm_debugregs *debugregs)
875 {
876 	vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs);
877 }
vcpu_debugregs_set(struct kvm_vcpu * vcpu,struct kvm_debugregs * debugregs)878 static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu,
879 				      struct kvm_debugregs *debugregs)
880 {
881 	vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs);
882 }
vcpu_xsave_get(struct kvm_vcpu * vcpu,struct kvm_xsave * xsave)883 static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu,
884 				  struct kvm_xsave *xsave)
885 {
886 	vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave);
887 }
vcpu_xsave2_get(struct kvm_vcpu * vcpu,struct kvm_xsave * xsave)888 static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu,
889 				   struct kvm_xsave *xsave)
890 {
891 	vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave);
892 }
vcpu_xsave_set(struct kvm_vcpu * vcpu,struct kvm_xsave * xsave)893 static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu,
894 				  struct kvm_xsave *xsave)
895 {
896 	vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave);
897 }
vcpu_xcrs_get(struct kvm_vcpu * vcpu,struct kvm_xcrs * xcrs)898 static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu,
899 				 struct kvm_xcrs *xcrs)
900 {
901 	vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs);
902 }
vcpu_xcrs_set(struct kvm_vcpu * vcpu,struct kvm_xcrs * xcrs)903 static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs)
904 {
905 	vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs);
906 }
907 
908 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
909 					       uint32_t function, uint32_t index);
910 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void);
911 const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void);
912 const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu);
913 
kvm_cpu_fms(void)914 static inline uint32_t kvm_cpu_fms(void)
915 {
916 	return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax;
917 }
918 
kvm_cpu_family(void)919 static inline uint32_t kvm_cpu_family(void)
920 {
921 	return x86_family(kvm_cpu_fms());
922 }
923 
kvm_cpu_model(void)924 static inline uint32_t kvm_cpu_model(void)
925 {
926 	return x86_model(kvm_cpu_fms());
927 }
928 
929 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
930 		   struct kvm_x86_cpu_feature feature);
931 
kvm_cpu_has(struct kvm_x86_cpu_feature feature)932 static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature)
933 {
934 	return kvm_cpuid_has(kvm_get_supported_cpuid(), feature);
935 }
936 
937 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
938 			    struct kvm_x86_cpu_property property);
939 
kvm_cpu_property(struct kvm_x86_cpu_property property)940 static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property)
941 {
942 	return kvm_cpuid_property(kvm_get_supported_cpuid(), property);
943 }
944 
kvm_cpu_has_p(struct kvm_x86_cpu_property property)945 static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property)
946 {
947 	uint32_t max_leaf;
948 
949 	switch (property.function & 0xc0000000) {
950 	case 0:
951 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
952 		break;
953 	case 0x40000000:
954 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
955 		break;
956 	case 0x80000000:
957 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
958 		break;
959 	case 0xc0000000:
960 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
961 	}
962 	return max_leaf >= property.function;
963 }
964 
kvm_pmu_has(struct kvm_x86_pmu_feature feature)965 static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature)
966 {
967 	uint32_t nr_bits;
968 
969 	if (feature.f.reg == KVM_CPUID_EBX) {
970 		nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
971 		return nr_bits > feature.f.bit && !kvm_cpu_has(feature.f);
972 	}
973 
974 	TEST_ASSERT_EQ(feature.f.reg, KVM_CPUID_ECX);
975 	nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
976 	return nr_bits > feature.f.bit || kvm_cpu_has(feature.f);
977 }
978 
kvm_cpu_supported_xcr0(void)979 static __always_inline uint64_t kvm_cpu_supported_xcr0(void)
980 {
981 	if (!kvm_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
982 		return 0;
983 
984 	return kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
985 	       ((uint64_t)kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
986 }
987 
kvm_cpuid2_size(int nr_entries)988 static inline size_t kvm_cpuid2_size(int nr_entries)
989 {
990 	return sizeof(struct kvm_cpuid2) +
991 	       sizeof(struct kvm_cpuid_entry2) * nr_entries;
992 }
993 
994 /*
995  * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of
996  * entries sized to hold @nr_entries.  The caller is responsible for freeing
997  * the struct.
998  */
allocate_kvm_cpuid2(int nr_entries)999 static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries)
1000 {
1001 	struct kvm_cpuid2 *cpuid;
1002 
1003 	cpuid = malloc(kvm_cpuid2_size(nr_entries));
1004 	TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2");
1005 
1006 	cpuid->nent = nr_entries;
1007 
1008 	return cpuid;
1009 }
1010 
1011 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid);
1012 void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu);
1013 
__vcpu_get_cpuid_entry(struct kvm_vcpu * vcpu,uint32_t function,uint32_t index)1014 static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
1015 							      uint32_t function,
1016 							      uint32_t index)
1017 {
1018 	return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid,
1019 							  function, index);
1020 }
1021 
vcpu_get_cpuid_entry(struct kvm_vcpu * vcpu,uint32_t function)1022 static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
1023 							    uint32_t function)
1024 {
1025 	return __vcpu_get_cpuid_entry(vcpu, function, 0);
1026 }
1027 
__vcpu_set_cpuid(struct kvm_vcpu * vcpu)1028 static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1029 {
1030 	int r;
1031 
1032 	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1033 	r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1034 	if (r)
1035 		return r;
1036 
1037 	/* On success, refresh the cache to pick up adjustments made by KVM. */
1038 	vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
1039 	return 0;
1040 }
1041 
vcpu_set_cpuid(struct kvm_vcpu * vcpu)1042 static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1043 {
1044 	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1045 	vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1046 
1047 	/* Refresh the cache to pick up adjustments made by KVM. */
1048 	vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
1049 }
1050 
1051 void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu,
1052 			     struct kvm_x86_cpu_property property,
1053 			     uint32_t value);
1054 void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr);
1055 
1056 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function);
1057 
vcpu_cpuid_has(struct kvm_vcpu * vcpu,struct kvm_x86_cpu_feature feature)1058 static inline bool vcpu_cpuid_has(struct kvm_vcpu *vcpu,
1059 				  struct kvm_x86_cpu_feature feature)
1060 {
1061 	struct kvm_cpuid_entry2 *entry;
1062 
1063 	entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
1064 	return *((&entry->eax) + feature.reg) & BIT(feature.bit);
1065 }
1066 
1067 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1068 				     struct kvm_x86_cpu_feature feature,
1069 				     bool set);
1070 
vcpu_set_cpuid_feature(struct kvm_vcpu * vcpu,struct kvm_x86_cpu_feature feature)1071 static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu,
1072 					  struct kvm_x86_cpu_feature feature)
1073 {
1074 	vcpu_set_or_clear_cpuid_feature(vcpu, feature, true);
1075 
1076 }
1077 
vcpu_clear_cpuid_feature(struct kvm_vcpu * vcpu,struct kvm_x86_cpu_feature feature)1078 static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1079 					    struct kvm_x86_cpu_feature feature)
1080 {
1081 	vcpu_set_or_clear_cpuid_feature(vcpu, feature, false);
1082 }
1083 
1084 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index);
1085 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value);
1086 
1087 /*
1088  * Assert on an MSR access(es) and pretty print the MSR name when possible.
1089  * Note, the caller provides the stringified name so that the name of macro is
1090  * printed, not the value the macro resolves to (due to macro expansion).
1091  */
1092 #define TEST_ASSERT_MSR(cond, fmt, msr, str, args...)				\
1093 do {										\
1094 	if (__builtin_constant_p(msr)) {					\
1095 		TEST_ASSERT(cond, fmt, str, args);				\
1096 	} else if (!(cond)) {							\
1097 		char buf[16];							\
1098 										\
1099 		snprintf(buf, sizeof(buf), "MSR 0x%x", msr);			\
1100 		TEST_ASSERT(cond, fmt, buf, args);				\
1101 	}									\
1102 } while (0)
1103 
1104 /*
1105  * Returns true if KVM should return the last written value when reading an MSR
1106  * from userspace, e.g. the MSR isn't a command MSR, doesn't emulate state that
1107  * is changing, etc.  This is NOT an exhaustive list!  The intent is to filter
1108  * out MSRs that are not durable _and_ that a selftest wants to write.
1109  */
is_durable_msr(uint32_t msr)1110 static inline bool is_durable_msr(uint32_t msr)
1111 {
1112 	return msr != MSR_IA32_TSC;
1113 }
1114 
1115 #define vcpu_set_msr(vcpu, msr, val)							\
1116 do {											\
1117 	uint64_t r, v = val;								\
1118 											\
1119 	TEST_ASSERT_MSR(_vcpu_set_msr(vcpu, msr, v) == 1,				\
1120 			"KVM_SET_MSRS failed on %s, value = 0x%lx", msr, #msr, v);	\
1121 	if (!is_durable_msr(msr))							\
1122 		break;									\
1123 	r = vcpu_get_msr(vcpu, msr);							\
1124 	TEST_ASSERT_MSR(r == v, "Set %s to '0x%lx', got back '0x%lx'", msr, #msr, v, r);\
1125 } while (0)
1126 
1127 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits);
1128 void kvm_init_vm_address_properties(struct kvm_vm *vm);
1129 bool vm_is_unrestricted_guest(struct kvm_vm *vm);
1130 
1131 struct ex_regs {
1132 	uint64_t rax, rcx, rdx, rbx;
1133 	uint64_t rbp, rsi, rdi;
1134 	uint64_t r8, r9, r10, r11;
1135 	uint64_t r12, r13, r14, r15;
1136 	uint64_t vector;
1137 	uint64_t error_code;
1138 	uint64_t rip;
1139 	uint64_t cs;
1140 	uint64_t rflags;
1141 };
1142 
1143 struct idt_entry {
1144 	uint16_t offset0;
1145 	uint16_t selector;
1146 	uint16_t ist : 3;
1147 	uint16_t : 5;
1148 	uint16_t type : 4;
1149 	uint16_t : 1;
1150 	uint16_t dpl : 2;
1151 	uint16_t p : 1;
1152 	uint16_t offset1;
1153 	uint32_t offset2; uint32_t reserved;
1154 };
1155 
1156 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1157 			void (*handler)(struct ex_regs *));
1158 
1159 /* If a toddler were to say "abracadabra". */
1160 #define KVM_EXCEPTION_MAGIC 0xabacadabaULL
1161 
1162 /*
1163  * KVM selftest exception fixup uses registers to coordinate with the exception
1164  * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory
1165  * per-CPU data.  Using only registers avoids having to map memory into the
1166  * guest, doesn't require a valid, stable GS.base, and reduces the risk of
1167  * for recursive faults when accessing memory in the handler.  The downside to
1168  * using registers is that it restricts what registers can be used by the actual
1169  * instruction.  But, selftests are 64-bit only, making register* pressure a
1170  * minor concern.  Use r9-r11 as they are volatile, i.e. don't need to be saved
1171  * by the callee, and except for r11 are not implicit parameters to any
1172  * instructions.  Ideally, fixup would use r8-r10 and thus avoid implicit
1173  * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V
1174  * is higher priority than testing non-faulting SYSCALL/SYSRET.
1175  *
1176  * Note, the fixup handler deliberately does not handle #DE, i.e. the vector
1177  * is guaranteed to be non-zero on fault.
1178  *
1179  * REGISTER INPUTS:
1180  * r9  = MAGIC
1181  * r10 = RIP
1182  * r11 = new RIP on fault
1183  *
1184  * REGISTER OUTPUTS:
1185  * r9  = exception vector (non-zero)
1186  * r10 = error code
1187  */
1188 #define __KVM_ASM_SAFE(insn, fep)				\
1189 	"mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t"	\
1190 	"lea 1f(%%rip), %%r10\n\t"				\
1191 	"lea 2f(%%rip), %%r11\n\t"				\
1192 	fep "1: " insn "\n\t"					\
1193 	"xor %%r9, %%r9\n\t"					\
1194 	"2:\n\t"						\
1195 	"mov  %%r9b, %[vector]\n\t"				\
1196 	"mov  %%r10, %[error_code]\n\t"
1197 
1198 #define KVM_ASM_SAFE(insn) __KVM_ASM_SAFE(insn, "")
1199 #define KVM_ASM_SAFE_FEP(insn) __KVM_ASM_SAFE(insn, KVM_FEP)
1200 
1201 #define KVM_ASM_SAFE_OUTPUTS(v, ec)	[vector] "=qm"(v), [error_code] "=rm"(ec)
1202 #define KVM_ASM_SAFE_CLOBBERS	"r9", "r10", "r11"
1203 
1204 #define kvm_asm_safe(insn, inputs...)					\
1205 ({									\
1206 	uint64_t ign_error_code;					\
1207 	uint8_t vector;							\
1208 									\
1209 	asm volatile(KVM_ASM_SAFE(insn)					\
1210 		     : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code)	\
1211 		     : inputs						\
1212 		     : KVM_ASM_SAFE_CLOBBERS);				\
1213 	vector;								\
1214 })
1215 
1216 #define kvm_asm_safe_ec(insn, error_code, inputs...)			\
1217 ({									\
1218 	uint8_t vector;							\
1219 									\
1220 	asm volatile(KVM_ASM_SAFE(insn)					\
1221 		     : KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1222 		     : inputs						\
1223 		     : KVM_ASM_SAFE_CLOBBERS);				\
1224 	vector;								\
1225 })
1226 
1227 #define kvm_asm_safe_fep(insn, inputs...)				\
1228 ({									\
1229 	uint64_t ign_error_code;					\
1230 	uint8_t vector;							\
1231 									\
1232 	asm volatile(KVM_ASM_SAFE(insn)					\
1233 		     : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code)	\
1234 		     : inputs						\
1235 		     : KVM_ASM_SAFE_CLOBBERS);				\
1236 	vector;								\
1237 })
1238 
1239 #define kvm_asm_safe_ec_fep(insn, error_code, inputs...)		\
1240 ({									\
1241 	uint8_t vector;							\
1242 									\
1243 	asm volatile(KVM_ASM_SAFE_FEP(insn)				\
1244 		     : KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1245 		     : inputs						\
1246 		     : KVM_ASM_SAFE_CLOBBERS);				\
1247 	vector;								\
1248 })
1249 
1250 #define BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP)			\
1251 static inline uint8_t insn##_safe ##_fep(uint32_t idx, uint64_t *val)	\
1252 {									\
1253 	uint64_t error_code;						\
1254 	uint8_t vector;							\
1255 	uint32_t a, d;							\
1256 									\
1257 	asm volatile(KVM_ASM_SAFE##_FEP(#insn)				\
1258 		     : "=a"(a), "=d"(d),				\
1259 		       KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1260 		     : "c"(idx)						\
1261 		     : KVM_ASM_SAFE_CLOBBERS);				\
1262 									\
1263 	*val = (uint64_t)a | ((uint64_t)d << 32);			\
1264 	return vector;							\
1265 }
1266 
1267 /*
1268  * Generate {insn}_safe() and {insn}_safe_fep() helpers for instructions that
1269  * use ECX as in input index, and EDX:EAX as a 64-bit output.
1270  */
1271 #define BUILD_READ_U64_SAFE_HELPERS(insn)				\
1272 	BUILD_READ_U64_SAFE_HELPER(insn, , )				\
1273 	BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP)			\
1274 
1275 BUILD_READ_U64_SAFE_HELPERS(rdmsr)
BUILD_READ_U64_SAFE_HELPERS(rdpmc)1276 BUILD_READ_U64_SAFE_HELPERS(rdpmc)
1277 BUILD_READ_U64_SAFE_HELPERS(xgetbv)
1278 
1279 static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val)
1280 {
1281 	return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr));
1282 }
1283 
xsetbv_safe(uint32_t index,uint64_t value)1284 static inline uint8_t xsetbv_safe(uint32_t index, uint64_t value)
1285 {
1286 	u32 eax = value;
1287 	u32 edx = value >> 32;
1288 
1289 	return kvm_asm_safe("xsetbv", "a" (eax), "d" (edx), "c" (index));
1290 }
1291 
1292 bool kvm_is_tdp_enabled(void);
1293 
kvm_is_pmu_enabled(void)1294 static inline bool kvm_is_pmu_enabled(void)
1295 {
1296 	return get_kvm_param_bool("enable_pmu");
1297 }
1298 
kvm_is_forced_emulation_enabled(void)1299 static inline bool kvm_is_forced_emulation_enabled(void)
1300 {
1301 	return !!get_kvm_param_integer("force_emulation_prefix");
1302 }
1303 
1304 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
1305 				    int *level);
1306 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr);
1307 
1308 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1309 		       uint64_t a3);
1310 uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1311 void xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1312 
__kvm_hypercall_map_gpa_range(uint64_t gpa,uint64_t size,uint64_t flags)1313 static inline uint64_t __kvm_hypercall_map_gpa_range(uint64_t gpa,
1314 						     uint64_t size, uint64_t flags)
1315 {
1316 	return kvm_hypercall(KVM_HC_MAP_GPA_RANGE, gpa, size >> PAGE_SHIFT, flags, 0);
1317 }
1318 
kvm_hypercall_map_gpa_range(uint64_t gpa,uint64_t size,uint64_t flags)1319 static inline void kvm_hypercall_map_gpa_range(uint64_t gpa, uint64_t size,
1320 					       uint64_t flags)
1321 {
1322 	uint64_t ret = __kvm_hypercall_map_gpa_range(gpa, size, flags);
1323 
1324 	GUEST_ASSERT(!ret);
1325 }
1326 
1327 void __vm_xsave_require_permission(uint64_t xfeature, const char *name);
1328 
1329 #define vm_xsave_require_permission(xfeature)	\
1330 	__vm_xsave_require_permission(xfeature, #xfeature)
1331 
1332 enum pg_level {
1333 	PG_LEVEL_NONE,
1334 	PG_LEVEL_4K,
1335 	PG_LEVEL_2M,
1336 	PG_LEVEL_1G,
1337 	PG_LEVEL_512G,
1338 	PG_LEVEL_NUM
1339 };
1340 
1341 #define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12)
1342 #define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level))
1343 
1344 #define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K)
1345 #define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M)
1346 #define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G)
1347 
1348 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level);
1349 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1350 		    uint64_t nr_bytes, int level);
1351 
1352 /*
1353  * Basic CPU control in CR0
1354  */
1355 #define X86_CR0_PE          (1UL<<0) /* Protection Enable */
1356 #define X86_CR0_MP          (1UL<<1) /* Monitor Coprocessor */
1357 #define X86_CR0_EM          (1UL<<2) /* Emulation */
1358 #define X86_CR0_TS          (1UL<<3) /* Task Switched */
1359 #define X86_CR0_ET          (1UL<<4) /* Extension Type */
1360 #define X86_CR0_NE          (1UL<<5) /* Numeric Error */
1361 #define X86_CR0_WP          (1UL<<16) /* Write Protect */
1362 #define X86_CR0_AM          (1UL<<18) /* Alignment Mask */
1363 #define X86_CR0_NW          (1UL<<29) /* Not Write-through */
1364 #define X86_CR0_CD          (1UL<<30) /* Cache Disable */
1365 #define X86_CR0_PG          (1UL<<31) /* Paging */
1366 
1367 #define PFERR_PRESENT_BIT 0
1368 #define PFERR_WRITE_BIT 1
1369 #define PFERR_USER_BIT 2
1370 #define PFERR_RSVD_BIT 3
1371 #define PFERR_FETCH_BIT 4
1372 #define PFERR_PK_BIT 5
1373 #define PFERR_SGX_BIT 15
1374 #define PFERR_GUEST_FINAL_BIT 32
1375 #define PFERR_GUEST_PAGE_BIT 33
1376 #define PFERR_IMPLICIT_ACCESS_BIT 48
1377 
1378 #define PFERR_PRESENT_MASK	BIT(PFERR_PRESENT_BIT)
1379 #define PFERR_WRITE_MASK	BIT(PFERR_WRITE_BIT)
1380 #define PFERR_USER_MASK		BIT(PFERR_USER_BIT)
1381 #define PFERR_RSVD_MASK		BIT(PFERR_RSVD_BIT)
1382 #define PFERR_FETCH_MASK	BIT(PFERR_FETCH_BIT)
1383 #define PFERR_PK_MASK		BIT(PFERR_PK_BIT)
1384 #define PFERR_SGX_MASK		BIT(PFERR_SGX_BIT)
1385 #define PFERR_GUEST_FINAL_MASK	BIT_ULL(PFERR_GUEST_FINAL_BIT)
1386 #define PFERR_GUEST_PAGE_MASK	BIT_ULL(PFERR_GUEST_PAGE_BIT)
1387 #define PFERR_IMPLICIT_ACCESS	BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
1388 
1389 bool sys_clocksource_is_based_on_tsc(void);
1390 
1391 #endif /* SELFTEST_KVM_PROCESSOR_H */
1392