xref: /linux/arch/x86/coco/sev/vc-handle.c (revision 22bdd6e68bbe270a916233ec5f34a13ae5e80ed9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2019 SUSE
6  *
7  * Author: Joerg Roedel <jroedel@suse.de>
8  */
9 
10 #define pr_fmt(fmt)	"SEV: " fmt
11 
12 #include <linux/sched/debug.h>	/* For show_regs() */
13 #include <linux/cc_platform.h>
14 #include <linux/printk.h>
15 #include <linux/mm_types.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/io.h>
19 #include <linux/psp-sev.h>
20 #include <linux/efi.h>
21 #include <uapi/linux/sev-guest.h>
22 
23 #include <asm/init.h>
24 #include <asm/stacktrace.h>
25 #include <asm/sev.h>
26 #include <asm/sev-internal.h>
27 #include <asm/insn-eval.h>
28 #include <asm/fpu/xcr.h>
29 #include <asm/processor.h>
30 #include <asm/setup.h>
31 #include <asm/traps.h>
32 #include <asm/svm.h>
33 #include <asm/smp.h>
34 #include <asm/cpu.h>
35 #include <asm/apic.h>
36 #include <asm/cpuid/api.h>
37 
vc_slow_virt_to_phys(struct ghcb * ghcb,struct es_em_ctxt * ctxt,unsigned long vaddr,phys_addr_t * paddr)38 static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
39 					   unsigned long vaddr, phys_addr_t *paddr)
40 {
41 	unsigned long va = (unsigned long)vaddr;
42 	unsigned int level;
43 	phys_addr_t pa;
44 	pgd_t *pgd;
45 	pte_t *pte;
46 
47 	pgd = __va(read_cr3_pa());
48 	pgd = &pgd[pgd_index(va)];
49 	pte = lookup_address_in_pgd(pgd, va, &level);
50 	if (!pte) {
51 		ctxt->fi.vector     = X86_TRAP_PF;
52 		ctxt->fi.cr2        = vaddr;
53 		ctxt->fi.error_code = 0;
54 
55 		if (user_mode(ctxt->regs))
56 			ctxt->fi.error_code |= X86_PF_USER;
57 
58 		return ES_EXCEPTION;
59 	}
60 
61 	if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
62 		/* Emulated MMIO to/from encrypted memory not supported */
63 		return ES_UNSUPPORTED;
64 
65 	pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
66 	pa |= va & ~page_level_mask(level);
67 
68 	*paddr = pa;
69 
70 	return ES_OK;
71 }
72 
vc_ioio_check(struct es_em_ctxt * ctxt,u16 port,size_t size)73 static enum es_result vc_ioio_check(struct es_em_ctxt *ctxt, u16 port, size_t size)
74 {
75 	BUG_ON(size > 4);
76 
77 	if (user_mode(ctxt->regs)) {
78 		struct thread_struct *t = &current->thread;
79 		struct io_bitmap *iobm = t->io_bitmap;
80 		size_t idx;
81 
82 		if (!iobm)
83 			goto fault;
84 
85 		for (idx = port; idx < port + size; ++idx) {
86 			if (test_bit(idx, iobm->bitmap))
87 				goto fault;
88 		}
89 	}
90 
91 	return ES_OK;
92 
93 fault:
94 	ctxt->fi.vector = X86_TRAP_GP;
95 	ctxt->fi.error_code = 0;
96 
97 	return ES_EXCEPTION;
98 }
99 
vc_forward_exception(struct es_em_ctxt * ctxt)100 void vc_forward_exception(struct es_em_ctxt *ctxt)
101 {
102 	long error_code = ctxt->fi.error_code;
103 	int trapnr = ctxt->fi.vector;
104 
105 	ctxt->regs->orig_ax = ctxt->fi.error_code;
106 
107 	switch (trapnr) {
108 	case X86_TRAP_GP:
109 		exc_general_protection(ctxt->regs, error_code);
110 		break;
111 	case X86_TRAP_UD:
112 		exc_invalid_op(ctxt->regs);
113 		break;
114 	case X86_TRAP_PF:
115 		write_cr2(ctxt->fi.cr2);
116 		exc_page_fault(ctxt->regs, error_code);
117 		break;
118 	case X86_TRAP_AC:
119 		exc_alignment_check(ctxt->regs, error_code);
120 		break;
121 	default:
122 		pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
123 		BUG();
124 	}
125 }
126 
vc_fetch_insn_kernel(struct es_em_ctxt * ctxt,unsigned char * buffer)127 static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
128 				unsigned char *buffer)
129 {
130 	return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
131 }
132 
__vc_decode_user_insn(struct es_em_ctxt * ctxt)133 static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt)
134 {
135 	char buffer[MAX_INSN_SIZE];
136 	int insn_bytes;
137 
138 	insn_bytes = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
139 	if (insn_bytes == 0) {
140 		/* Nothing could be copied */
141 		ctxt->fi.vector     = X86_TRAP_PF;
142 		ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
143 		ctxt->fi.cr2        = ctxt->regs->ip;
144 		return ES_EXCEPTION;
145 	} else if (insn_bytes == -EINVAL) {
146 		/* Effective RIP could not be calculated */
147 		ctxt->fi.vector     = X86_TRAP_GP;
148 		ctxt->fi.error_code = 0;
149 		ctxt->fi.cr2        = 0;
150 		return ES_EXCEPTION;
151 	}
152 
153 	if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, insn_bytes))
154 		return ES_DECODE_FAILED;
155 
156 	if (ctxt->insn.immediate.got)
157 		return ES_OK;
158 	else
159 		return ES_DECODE_FAILED;
160 }
161 
__vc_decode_kern_insn(struct es_em_ctxt * ctxt)162 static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt)
163 {
164 	char buffer[MAX_INSN_SIZE];
165 	int res, ret;
166 
167 	res = vc_fetch_insn_kernel(ctxt, buffer);
168 	if (res) {
169 		ctxt->fi.vector     = X86_TRAP_PF;
170 		ctxt->fi.error_code = X86_PF_INSTR;
171 		ctxt->fi.cr2        = ctxt->regs->ip;
172 		return ES_EXCEPTION;
173 	}
174 
175 	ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
176 	if (ret < 0)
177 		return ES_DECODE_FAILED;
178 	else
179 		return ES_OK;
180 }
181 
182 /*
183  * User instruction decoding is also required for the EFI runtime. Even though
184  * the EFI runtime is running in kernel mode, it uses special EFI virtual
185  * address mappings that require the use of efi_mm to properly address and
186  * decode.
187  */
vc_decode_insn(struct es_em_ctxt * ctxt)188 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
189 {
190 	if (user_mode(ctxt->regs) || mm_is_efi(current->active_mm))
191 		return __vc_decode_user_insn(ctxt);
192 	else
193 		return __vc_decode_kern_insn(ctxt);
194 }
195 
vc_write_mem(struct es_em_ctxt * ctxt,char * dst,char * buf,size_t size)196 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
197 				   char *dst, char *buf, size_t size)
198 {
199 	unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
200 
201 	/*
202 	 * This function uses __put_user() independent of whether kernel or user
203 	 * memory is accessed. This works fine because __put_user() does no
204 	 * sanity checks of the pointer being accessed. All that it does is
205 	 * to report when the access failed.
206 	 *
207 	 * Also, this function runs in atomic context, so __put_user() is not
208 	 * allowed to sleep. The page-fault handler detects that it is running
209 	 * in atomic context and will not try to take mmap_sem and handle the
210 	 * fault, so additional pagefault_enable()/disable() calls are not
211 	 * needed.
212 	 *
213 	 * The access can't be done via copy_to_user() here because
214 	 * vc_write_mem() must not use string instructions to access unsafe
215 	 * memory. The reason is that MOVS is emulated by the #VC handler by
216 	 * splitting the move up into a read and a write and taking a nested #VC
217 	 * exception on whatever of them is the MMIO access. Using string
218 	 * instructions here would cause infinite nesting.
219 	 */
220 	switch (size) {
221 	case 1: {
222 		u8 d1;
223 		u8 __user *target = (u8 __user *)dst;
224 
225 		memcpy(&d1, buf, 1);
226 		if (__put_user(d1, target))
227 			goto fault;
228 		break;
229 	}
230 	case 2: {
231 		u16 d2;
232 		u16 __user *target = (u16 __user *)dst;
233 
234 		memcpy(&d2, buf, 2);
235 		if (__put_user(d2, target))
236 			goto fault;
237 		break;
238 	}
239 	case 4: {
240 		u32 d4;
241 		u32 __user *target = (u32 __user *)dst;
242 
243 		memcpy(&d4, buf, 4);
244 		if (__put_user(d4, target))
245 			goto fault;
246 		break;
247 	}
248 	case 8: {
249 		u64 d8;
250 		u64 __user *target = (u64 __user *)dst;
251 
252 		memcpy(&d8, buf, 8);
253 		if (__put_user(d8, target))
254 			goto fault;
255 		break;
256 	}
257 	default:
258 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
259 		return ES_UNSUPPORTED;
260 	}
261 
262 	return ES_OK;
263 
264 fault:
265 	if (user_mode(ctxt->regs))
266 		error_code |= X86_PF_USER;
267 
268 	ctxt->fi.vector = X86_TRAP_PF;
269 	ctxt->fi.error_code = error_code;
270 	ctxt->fi.cr2 = (unsigned long)dst;
271 
272 	return ES_EXCEPTION;
273 }
274 
vc_read_mem(struct es_em_ctxt * ctxt,char * src,char * buf,size_t size)275 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
276 				  char *src, char *buf, size_t size)
277 {
278 	unsigned long error_code = X86_PF_PROT;
279 
280 	/*
281 	 * This function uses __get_user() independent of whether kernel or user
282 	 * memory is accessed. This works fine because __get_user() does no
283 	 * sanity checks of the pointer being accessed. All that it does is
284 	 * to report when the access failed.
285 	 *
286 	 * Also, this function runs in atomic context, so __get_user() is not
287 	 * allowed to sleep. The page-fault handler detects that it is running
288 	 * in atomic context and will not try to take mmap_sem and handle the
289 	 * fault, so additional pagefault_enable()/disable() calls are not
290 	 * needed.
291 	 *
292 	 * The access can't be done via copy_from_user() here because
293 	 * vc_read_mem() must not use string instructions to access unsafe
294 	 * memory. The reason is that MOVS is emulated by the #VC handler by
295 	 * splitting the move up into a read and a write and taking a nested #VC
296 	 * exception on whatever of them is the MMIO access. Using string
297 	 * instructions here would cause infinite nesting.
298 	 */
299 	switch (size) {
300 	case 1: {
301 		u8 d1;
302 		u8 __user *s = (u8 __user *)src;
303 
304 		if (__get_user(d1, s))
305 			goto fault;
306 		memcpy(buf, &d1, 1);
307 		break;
308 	}
309 	case 2: {
310 		u16 d2;
311 		u16 __user *s = (u16 __user *)src;
312 
313 		if (__get_user(d2, s))
314 			goto fault;
315 		memcpy(buf, &d2, 2);
316 		break;
317 	}
318 	case 4: {
319 		u32 d4;
320 		u32 __user *s = (u32 __user *)src;
321 
322 		if (__get_user(d4, s))
323 			goto fault;
324 		memcpy(buf, &d4, 4);
325 		break;
326 	}
327 	case 8: {
328 		u64 d8;
329 		u64 __user *s = (u64 __user *)src;
330 		if (__get_user(d8, s))
331 			goto fault;
332 		memcpy(buf, &d8, 8);
333 		break;
334 	}
335 	default:
336 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
337 		return ES_UNSUPPORTED;
338 	}
339 
340 	return ES_OK;
341 
342 fault:
343 	if (user_mode(ctxt->regs))
344 		error_code |= X86_PF_USER;
345 
346 	ctxt->fi.vector = X86_TRAP_PF;
347 	ctxt->fi.error_code = error_code;
348 	ctxt->fi.cr2 = (unsigned long)src;
349 
350 	return ES_EXCEPTION;
351 }
352 
353 #define sev_printk(fmt, ...)		printk(fmt, ##__VA_ARGS__)
354 #define error(v)
355 #define has_cpuflag(f)			boot_cpu_has(f)
356 
357 #include "vc-shared.c"
358 
359 /* Writes to the SVSM CAA MSR are ignored */
__vc_handle_msr_caa(struct pt_regs * regs,bool write)360 static enum es_result __vc_handle_msr_caa(struct pt_regs *regs, bool write)
361 {
362 	if (write)
363 		return ES_OK;
364 
365 	regs->ax = lower_32_bits(this_cpu_read(svsm_caa_pa));
366 	regs->dx = upper_32_bits(this_cpu_read(svsm_caa_pa));
367 
368 	return ES_OK;
369 }
370 
371 /*
372  * TSC related accesses should not exit to the hypervisor when a guest is
373  * executing with Secure TSC enabled, so special handling is required for
374  * accesses of MSR_IA32_TSC and MSR_AMD64_GUEST_TSC_FREQ.
375  */
__vc_handle_secure_tsc_msrs(struct es_em_ctxt * ctxt,bool write)376 static enum es_result __vc_handle_secure_tsc_msrs(struct es_em_ctxt *ctxt, bool write)
377 {
378 	struct pt_regs *regs = ctxt->regs;
379 	u64 tsc;
380 
381 	/*
382 	 * Writing to MSR_IA32_TSC can cause subsequent reads of the TSC to
383 	 * return undefined values, and GUEST_TSC_FREQ is read-only. Generate
384 	 * a #GP on all writes.
385 	 */
386 	if (write) {
387 		ctxt->fi.vector = X86_TRAP_GP;
388 		ctxt->fi.error_code = 0;
389 		return ES_EXCEPTION;
390 	}
391 
392 	/*
393 	 * GUEST_TSC_FREQ read should not be intercepted when Secure TSC is
394 	 * enabled. Terminate the guest if a read is attempted.
395 	 */
396 	if (regs->cx == MSR_AMD64_GUEST_TSC_FREQ)
397 		return ES_VMM_ERROR;
398 
399 	/* Reads of MSR_IA32_TSC should return the current TSC value. */
400 	tsc = rdtsc_ordered();
401 	regs->ax = lower_32_bits(tsc);
402 	regs->dx = upper_32_bits(tsc);
403 
404 	return ES_OK;
405 }
406 
sev_es_ghcb_handle_msr(struct ghcb * ghcb,struct es_em_ctxt * ctxt,bool write)407 enum es_result sev_es_ghcb_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt, bool write)
408 {
409 	struct pt_regs *regs = ctxt->regs;
410 	enum es_result ret;
411 
412 	switch (regs->cx) {
413 	case MSR_SVSM_CAA:
414 		return __vc_handle_msr_caa(regs, write);
415 	case MSR_IA32_TSC:
416 	case MSR_AMD64_GUEST_TSC_FREQ:
417 		if (sev_status & MSR_AMD64_SNP_SECURE_TSC)
418 			return __vc_handle_secure_tsc_msrs(ctxt, write);
419 		break;
420 	case MSR_AMD64_SAVIC_CONTROL:
421 		/*
422 		 * AMD64_SAVIC_CONTROL should not be intercepted when
423 		 * Secure AVIC is enabled. Terminate the Secure AVIC guest
424 		 * if the interception is enabled.
425 		 */
426 		if (cc_platform_has(CC_ATTR_SNP_SECURE_AVIC))
427 			return ES_VMM_ERROR;
428 		break;
429 	default:
430 		break;
431 	}
432 
433 	ghcb_set_rcx(ghcb, regs->cx);
434 	if (write) {
435 		ghcb_set_rax(ghcb, regs->ax);
436 		ghcb_set_rdx(ghcb, regs->dx);
437 	}
438 
439 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, write, 0);
440 
441 	if ((ret == ES_OK) && !write) {
442 		regs->ax = ghcb->save.rax;
443 		regs->dx = ghcb->save.rdx;
444 	}
445 
446 	return ret;
447 }
448 
vc_handle_msr(struct ghcb * ghcb,struct es_em_ctxt * ctxt)449 static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
450 {
451 	return sev_es_ghcb_handle_msr(ghcb, ctxt, ctxt->insn.opcode.bytes[1] == 0x30);
452 }
453 
vc_early_forward_exception(struct es_em_ctxt * ctxt)454 static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
455 {
456 	int trapnr = ctxt->fi.vector;
457 
458 	if (trapnr == X86_TRAP_PF)
459 		native_write_cr2(ctxt->fi.cr2);
460 
461 	ctxt->regs->orig_ax = ctxt->fi.error_code;
462 	do_early_exception(ctxt->regs, trapnr);
463 }
464 
vc_insn_get_rm(struct es_em_ctxt * ctxt)465 static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
466 {
467 	long *reg_array;
468 	int offset;
469 
470 	reg_array = (long *)ctxt->regs;
471 	offset    = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
472 
473 	if (offset < 0)
474 		return NULL;
475 
476 	offset /= sizeof(long);
477 
478 	return reg_array + offset;
479 }
vc_do_mmio(struct ghcb * ghcb,struct es_em_ctxt * ctxt,unsigned int bytes,bool read)480 static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
481 				 unsigned int bytes, bool read)
482 {
483 	u64 exit_code, exit_info_1, exit_info_2;
484 	unsigned long ghcb_pa = __pa(ghcb);
485 	enum es_result res;
486 	phys_addr_t paddr;
487 	void __user *ref;
488 
489 	ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
490 	if (ref == (void __user *)-1L)
491 		return ES_UNSUPPORTED;
492 
493 	exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
494 
495 	res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
496 	if (res != ES_OK) {
497 		if (res == ES_EXCEPTION && !read)
498 			ctxt->fi.error_code |= X86_PF_WRITE;
499 
500 		return res;
501 	}
502 
503 	exit_info_1 = paddr;
504 	/* Can never be greater than 8 */
505 	exit_info_2 = bytes;
506 
507 	ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
508 
509 	return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2);
510 }
511 
512 /*
513  * The MOVS instruction has two memory operands, which raises the
514  * problem that it is not known whether the access to the source or the
515  * destination caused the #VC exception (and hence whether an MMIO read
516  * or write operation needs to be emulated).
517  *
518  * Instead of playing games with walking page-tables and trying to guess
519  * whether the source or destination is an MMIO range, split the move
520  * into two operations, a read and a write with only one memory operand.
521  * This will cause a nested #VC exception on the MMIO address which can
522  * then be handled.
523  *
524  * This implementation has the benefit that it also supports MOVS where
525  * source _and_ destination are MMIO regions.
526  *
527  * It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
528  * rare operation. If it turns out to be a performance problem the split
529  * operations can be moved to memcpy_fromio() and memcpy_toio().
530  */
vc_handle_mmio_movs(struct es_em_ctxt * ctxt,unsigned int bytes)531 static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
532 					  unsigned int bytes)
533 {
534 	unsigned long ds_base, es_base;
535 	unsigned char *src, *dst;
536 	unsigned char buffer[8];
537 	enum es_result ret;
538 	bool rep;
539 	int off;
540 
541 	ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
542 	es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
543 
544 	if (ds_base == -1L || es_base == -1L) {
545 		ctxt->fi.vector = X86_TRAP_GP;
546 		ctxt->fi.error_code = 0;
547 		return ES_EXCEPTION;
548 	}
549 
550 	src = ds_base + (unsigned char *)ctxt->regs->si;
551 	dst = es_base + (unsigned char *)ctxt->regs->di;
552 
553 	ret = vc_read_mem(ctxt, src, buffer, bytes);
554 	if (ret != ES_OK)
555 		return ret;
556 
557 	ret = vc_write_mem(ctxt, dst, buffer, bytes);
558 	if (ret != ES_OK)
559 		return ret;
560 
561 	if (ctxt->regs->flags & X86_EFLAGS_DF)
562 		off = -bytes;
563 	else
564 		off =  bytes;
565 
566 	ctxt->regs->si += off;
567 	ctxt->regs->di += off;
568 
569 	rep = insn_has_rep_prefix(&ctxt->insn);
570 	if (rep)
571 		ctxt->regs->cx -= 1;
572 
573 	if (!rep || ctxt->regs->cx == 0)
574 		return ES_OK;
575 	else
576 		return ES_RETRY;
577 }
578 
vc_handle_mmio(struct ghcb * ghcb,struct es_em_ctxt * ctxt)579 static enum es_result vc_handle_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
580 {
581 	struct insn *insn = &ctxt->insn;
582 	enum insn_mmio_type mmio;
583 	unsigned int bytes = 0;
584 	enum es_result ret;
585 	u8 sign_byte;
586 	long *reg_data;
587 
588 	mmio = insn_decode_mmio(insn, &bytes);
589 	if (mmio == INSN_MMIO_DECODE_FAILED)
590 		return ES_DECODE_FAILED;
591 
592 	if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) {
593 		reg_data = insn_get_modrm_reg_ptr(insn, ctxt->regs);
594 		if (!reg_data)
595 			return ES_DECODE_FAILED;
596 	}
597 
598 	if (user_mode(ctxt->regs))
599 		return ES_UNSUPPORTED;
600 
601 	switch (mmio) {
602 	case INSN_MMIO_WRITE:
603 		memcpy(ghcb->shared_buffer, reg_data, bytes);
604 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
605 		break;
606 	case INSN_MMIO_WRITE_IMM:
607 		memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
608 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
609 		break;
610 	case INSN_MMIO_READ:
611 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
612 		if (ret)
613 			break;
614 
615 		/* Zero-extend for 32-bit operation */
616 		if (bytes == 4)
617 			*reg_data = 0;
618 
619 		memcpy(reg_data, ghcb->shared_buffer, bytes);
620 		break;
621 	case INSN_MMIO_READ_ZERO_EXTEND:
622 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
623 		if (ret)
624 			break;
625 
626 		/* Zero extend based on operand size */
627 		memset(reg_data, 0, insn->opnd_bytes);
628 		memcpy(reg_data, ghcb->shared_buffer, bytes);
629 		break;
630 	case INSN_MMIO_READ_SIGN_EXTEND:
631 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
632 		if (ret)
633 			break;
634 
635 		if (bytes == 1) {
636 			u8 *val = (u8 *)ghcb->shared_buffer;
637 
638 			sign_byte = (*val & 0x80) ? 0xff : 0x00;
639 		} else {
640 			u16 *val = (u16 *)ghcb->shared_buffer;
641 
642 			sign_byte = (*val & 0x8000) ? 0xff : 0x00;
643 		}
644 
645 		/* Sign extend based on operand size */
646 		memset(reg_data, sign_byte, insn->opnd_bytes);
647 		memcpy(reg_data, ghcb->shared_buffer, bytes);
648 		break;
649 	case INSN_MMIO_MOVS:
650 		ret = vc_handle_mmio_movs(ctxt, bytes);
651 		break;
652 	default:
653 		ret = ES_UNSUPPORTED;
654 		break;
655 	}
656 
657 	return ret;
658 }
659 
vc_handle_dr7_write(struct ghcb * ghcb,struct es_em_ctxt * ctxt)660 static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
661 					  struct es_em_ctxt *ctxt)
662 {
663 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
664 	long val, *reg = vc_insn_get_rm(ctxt);
665 	enum es_result ret;
666 
667 	if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
668 		return ES_VMM_ERROR;
669 
670 	if (!reg)
671 		return ES_DECODE_FAILED;
672 
673 	val = *reg;
674 
675 	/* Upper 32 bits must be written as zeroes */
676 	if (val >> 32) {
677 		ctxt->fi.vector = X86_TRAP_GP;
678 		ctxt->fi.error_code = 0;
679 		return ES_EXCEPTION;
680 	}
681 
682 	/* Clear out other reserved bits and set bit 10 */
683 	val = (val & 0xffff23ffL) | BIT(10);
684 
685 	/* Early non-zero writes to DR7 are not supported */
686 	if (!data && (val & ~DR7_RESET_VALUE))
687 		return ES_UNSUPPORTED;
688 
689 	/* Using a value of 0 for ExitInfo1 means RAX holds the value */
690 	ghcb_set_rax(ghcb, val);
691 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
692 	if (ret != ES_OK)
693 		return ret;
694 
695 	if (data)
696 		data->dr7 = val;
697 
698 	return ES_OK;
699 }
700 
vc_handle_dr7_read(struct ghcb * ghcb,struct es_em_ctxt * ctxt)701 static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
702 					 struct es_em_ctxt *ctxt)
703 {
704 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
705 	long *reg = vc_insn_get_rm(ctxt);
706 
707 	if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
708 		return ES_VMM_ERROR;
709 
710 	if (!reg)
711 		return ES_DECODE_FAILED;
712 
713 	if (data)
714 		*reg = data->dr7;
715 	else
716 		*reg = DR7_RESET_VALUE;
717 
718 	return ES_OK;
719 }
720 
vc_handle_wbinvd(struct ghcb * ghcb,struct es_em_ctxt * ctxt)721 static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
722 				       struct es_em_ctxt *ctxt)
723 {
724 	return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0);
725 }
726 
vc_handle_rdpmc(struct ghcb * ghcb,struct es_em_ctxt * ctxt)727 static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
728 {
729 	enum es_result ret;
730 
731 	ghcb_set_rcx(ghcb, ctxt->regs->cx);
732 
733 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0);
734 	if (ret != ES_OK)
735 		return ret;
736 
737 	if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
738 		return ES_VMM_ERROR;
739 
740 	ctxt->regs->ax = ghcb->save.rax;
741 	ctxt->regs->dx = ghcb->save.rdx;
742 
743 	return ES_OK;
744 }
745 
vc_handle_monitor(struct ghcb * ghcb,struct es_em_ctxt * ctxt)746 static enum es_result vc_handle_monitor(struct ghcb *ghcb,
747 					struct es_em_ctxt *ctxt)
748 {
749 	/*
750 	 * Treat it as a NOP and do not leak a physical address to the
751 	 * hypervisor.
752 	 */
753 	return ES_OK;
754 }
755 
vc_handle_mwait(struct ghcb * ghcb,struct es_em_ctxt * ctxt)756 static enum es_result vc_handle_mwait(struct ghcb *ghcb,
757 				      struct es_em_ctxt *ctxt)
758 {
759 	/* Treat the same as MONITOR/MONITORX */
760 	return ES_OK;
761 }
762 
vc_handle_vmmcall(struct ghcb * ghcb,struct es_em_ctxt * ctxt)763 static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
764 					struct es_em_ctxt *ctxt)
765 {
766 	enum es_result ret;
767 
768 	ghcb_set_rax(ghcb, ctxt->regs->ax);
769 	ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
770 
771 	if (x86_platform.hyper.sev_es_hcall_prepare)
772 		x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
773 
774 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0);
775 	if (ret != ES_OK)
776 		return ret;
777 
778 	if (!ghcb_rax_is_valid(ghcb))
779 		return ES_VMM_ERROR;
780 
781 	ctxt->regs->ax = ghcb->save.rax;
782 
783 	/*
784 	 * Call sev_es_hcall_finish() after regs->ax is already set.
785 	 * This allows the hypervisor handler to overwrite it again if
786 	 * necessary.
787 	 */
788 	if (x86_platform.hyper.sev_es_hcall_finish &&
789 	    !x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
790 		return ES_VMM_ERROR;
791 
792 	return ES_OK;
793 }
794 
vc_handle_trap_ac(struct ghcb * ghcb,struct es_em_ctxt * ctxt)795 static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
796 					struct es_em_ctxt *ctxt)
797 {
798 	/*
799 	 * Calling ecx_alignment_check() directly does not work, because it
800 	 * enables IRQs and the GHCB is active. Forward the exception and call
801 	 * it later from vc_forward_exception().
802 	 */
803 	ctxt->fi.vector = X86_TRAP_AC;
804 	ctxt->fi.error_code = 0;
805 	return ES_EXCEPTION;
806 }
807 
vc_handle_exitcode(struct es_em_ctxt * ctxt,struct ghcb * ghcb,unsigned long exit_code)808 static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
809 					 struct ghcb *ghcb,
810 					 unsigned long exit_code)
811 {
812 	enum es_result result = vc_check_opcode_bytes(ctxt, exit_code);
813 
814 	if (result != ES_OK)
815 		return result;
816 
817 	switch (exit_code) {
818 	case SVM_EXIT_READ_DR7:
819 		result = vc_handle_dr7_read(ghcb, ctxt);
820 		break;
821 	case SVM_EXIT_WRITE_DR7:
822 		result = vc_handle_dr7_write(ghcb, ctxt);
823 		break;
824 	case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
825 		result = vc_handle_trap_ac(ghcb, ctxt);
826 		break;
827 	case SVM_EXIT_RDTSC:
828 	case SVM_EXIT_RDTSCP:
829 		result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
830 		break;
831 	case SVM_EXIT_RDPMC:
832 		result = vc_handle_rdpmc(ghcb, ctxt);
833 		break;
834 	case SVM_EXIT_INVD:
835 		pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
836 		result = ES_UNSUPPORTED;
837 		break;
838 	case SVM_EXIT_CPUID:
839 		result = vc_handle_cpuid(ghcb, ctxt);
840 		break;
841 	case SVM_EXIT_IOIO:
842 		result = vc_handle_ioio(ghcb, ctxt);
843 		break;
844 	case SVM_EXIT_MSR:
845 		result = vc_handle_msr(ghcb, ctxt);
846 		break;
847 	case SVM_EXIT_VMMCALL:
848 		result = vc_handle_vmmcall(ghcb, ctxt);
849 		break;
850 	case SVM_EXIT_WBINVD:
851 		result = vc_handle_wbinvd(ghcb, ctxt);
852 		break;
853 	case SVM_EXIT_MONITOR:
854 		result = vc_handle_monitor(ghcb, ctxt);
855 		break;
856 	case SVM_EXIT_MWAIT:
857 		result = vc_handle_mwait(ghcb, ctxt);
858 		break;
859 	case SVM_EXIT_NPF:
860 		result = vc_handle_mmio(ghcb, ctxt);
861 		break;
862 	default:
863 		/*
864 		 * Unexpected #VC exception
865 		 */
866 		result = ES_UNSUPPORTED;
867 	}
868 
869 	return result;
870 }
871 
is_vc2_stack(unsigned long sp)872 static __always_inline bool is_vc2_stack(unsigned long sp)
873 {
874 	return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
875 }
876 
vc_from_invalid_context(struct pt_regs * regs)877 static __always_inline bool vc_from_invalid_context(struct pt_regs *regs)
878 {
879 	unsigned long sp, prev_sp;
880 
881 	sp      = (unsigned long)regs;
882 	prev_sp = regs->sp;
883 
884 	/*
885 	 * If the code was already executing on the VC2 stack when the #VC
886 	 * happened, let it proceed to the normal handling routine. This way the
887 	 * code executing on the VC2 stack can cause #VC exceptions to get handled.
888 	 */
889 	return is_vc2_stack(sp) && !is_vc2_stack(prev_sp);
890 }
891 
vc_raw_handle_exception(struct pt_regs * regs,unsigned long error_code)892 static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code)
893 {
894 	struct ghcb_state state;
895 	struct es_em_ctxt ctxt;
896 	enum es_result result;
897 	struct ghcb *ghcb;
898 	bool ret = true;
899 
900 	ghcb = __sev_get_ghcb(&state);
901 
902 	vc_ghcb_invalidate(ghcb);
903 	result = vc_init_em_ctxt(&ctxt, regs, error_code);
904 
905 	if (result == ES_OK)
906 		result = vc_handle_exitcode(&ctxt, ghcb, error_code);
907 
908 	__sev_put_ghcb(&state);
909 
910 	/* Done - now check the result */
911 	switch (result) {
912 	case ES_OK:
913 		vc_finish_insn(&ctxt);
914 		break;
915 	case ES_UNSUPPORTED:
916 		pr_err_ratelimited("Unsupported exit-code 0x%02lx in #VC exception (IP: 0x%lx)\n",
917 				   error_code, regs->ip);
918 		ret = false;
919 		break;
920 	case ES_VMM_ERROR:
921 		pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
922 				   error_code, regs->ip);
923 		ret = false;
924 		break;
925 	case ES_DECODE_FAILED:
926 		pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
927 				   error_code, regs->ip);
928 		ret = false;
929 		break;
930 	case ES_EXCEPTION:
931 		vc_forward_exception(&ctxt);
932 		break;
933 	case ES_RETRY:
934 		/* Nothing to do */
935 		break;
936 	default:
937 		pr_emerg("Unknown result in %s():%d\n", __func__, result);
938 		/*
939 		 * Emulating the instruction which caused the #VC exception
940 		 * failed - can't continue so print debug information
941 		 */
942 		BUG();
943 	}
944 
945 	return ret;
946 }
947 
vc_is_db(unsigned long error_code)948 static __always_inline bool vc_is_db(unsigned long error_code)
949 {
950 	return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB;
951 }
952 
953 /*
954  * Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode
955  * and will panic when an error happens.
956  */
DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)957 DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)
958 {
959 	irqentry_state_t irq_state;
960 
961 	/*
962 	 * With the current implementation it is always possible to switch to a
963 	 * safe stack because #VC exceptions only happen at known places, like
964 	 * intercepted instructions or accesses to MMIO areas/IO ports. They can
965 	 * also happen with code instrumentation when the hypervisor intercepts
966 	 * #DB, but the critical paths are forbidden to be instrumented, so #DB
967 	 * exceptions currently also only happen in safe places.
968 	 *
969 	 * But keep this here in case the noinstr annotations are violated due
970 	 * to bug elsewhere.
971 	 */
972 	if (unlikely(vc_from_invalid_context(regs))) {
973 		instrumentation_begin();
974 		panic("Can't handle #VC exception from unsupported context\n");
975 		instrumentation_end();
976 	}
977 
978 	/*
979 	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
980 	 */
981 	if (vc_is_db(error_code)) {
982 		exc_debug(regs);
983 		return;
984 	}
985 
986 	irq_state = irqentry_nmi_enter(regs);
987 
988 	instrumentation_begin();
989 
990 	if (!vc_raw_handle_exception(regs, error_code)) {
991 		/* Show some debug info */
992 		show_regs(regs);
993 
994 		/* Ask hypervisor to sev_es_terminate */
995 		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
996 
997 		/* If that fails and we get here - just panic */
998 		panic("Returned from Terminate-Request to Hypervisor\n");
999 	}
1000 
1001 	instrumentation_end();
1002 	irqentry_nmi_exit(regs, irq_state);
1003 }
1004 
1005 /*
1006  * Runtime #VC exception handler when raised from user mode. Runs in IRQ mode
1007  * and will kill the current task with SIGBUS when an error happens.
1008  */
DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)1009 DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)
1010 {
1011 	/*
1012 	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1013 	 */
1014 	if (vc_is_db(error_code)) {
1015 		noist_exc_debug(regs);
1016 		return;
1017 	}
1018 
1019 	irqentry_enter_from_user_mode(regs);
1020 	instrumentation_begin();
1021 
1022 	if (!vc_raw_handle_exception(regs, error_code)) {
1023 		/*
1024 		 * Do not kill the machine if user-space triggered the
1025 		 * exception. Send SIGBUS instead and let user-space deal with
1026 		 * it.
1027 		 */
1028 		force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
1029 	}
1030 
1031 	instrumentation_end();
1032 	irqentry_exit_to_user_mode(regs);
1033 }
1034 
handle_vc_boot_ghcb(struct pt_regs * regs)1035 bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
1036 {
1037 	unsigned long exit_code = regs->orig_ax;
1038 	struct es_em_ctxt ctxt;
1039 	enum es_result result;
1040 
1041 	vc_ghcb_invalidate(boot_ghcb);
1042 
1043 	result = vc_init_em_ctxt(&ctxt, regs, exit_code);
1044 	if (result == ES_OK)
1045 		result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
1046 
1047 	/* Done - now check the result */
1048 	switch (result) {
1049 	case ES_OK:
1050 		vc_finish_insn(&ctxt);
1051 		break;
1052 	case ES_UNSUPPORTED:
1053 		early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
1054 				exit_code, regs->ip);
1055 		goto fail;
1056 	case ES_VMM_ERROR:
1057 		early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1058 				exit_code, regs->ip);
1059 		goto fail;
1060 	case ES_DECODE_FAILED:
1061 		early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1062 				exit_code, regs->ip);
1063 		goto fail;
1064 	case ES_EXCEPTION:
1065 		vc_early_forward_exception(&ctxt);
1066 		break;
1067 	case ES_RETRY:
1068 		/* Nothing to do */
1069 		break;
1070 	default:
1071 		BUG();
1072 	}
1073 
1074 	return true;
1075 
1076 fail:
1077 	show_regs(regs);
1078 
1079 	sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
1080 }
1081 
1082