1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 Broadcom
4 */
5
6 /**
7 * DOC: VC4 KMS
8 *
9 * This is the general code for implementing KMS mode setting that
10 * doesn't clearly associate with any of the other objects (plane,
11 * crtc, HDMI encoder).
12 */
13
14 #include <linux/clk.h>
15 #include <linux/sort.h>
16
17 #include <drm/drm_atomic.h>
18 #include <drm/drm_atomic_helper.h>
19 #include <drm/drm_crtc.h>
20 #include <drm/drm_fourcc.h>
21 #include <drm/drm_gem_framebuffer_helper.h>
22 #include <drm/drm_probe_helper.h>
23 #include <drm/drm_vblank.h>
24
25 #include "vc4_drv.h"
26 #include "vc4_regs.h"
27
28 struct vc4_ctm_state {
29 struct drm_private_state base;
30 struct drm_color_ctm *ctm;
31 int fifo;
32 };
33
34 #define to_vc4_ctm_state(_state) \
35 container_of_const(_state, struct vc4_ctm_state, base)
36
37 struct vc4_load_tracker_state {
38 struct drm_private_state base;
39 u64 hvs_load;
40 u64 membus_load;
41 };
42
43 #define to_vc4_load_tracker_state(_state) \
44 container_of_const(_state, struct vc4_load_tracker_state, base)
45
vc4_get_ctm_state(struct drm_atomic_state * state,struct drm_private_obj * manager)46 static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state,
47 struct drm_private_obj *manager)
48 {
49 struct drm_device *dev = state->dev;
50 struct vc4_dev *vc4 = to_vc4_dev(dev);
51 struct drm_private_state *priv_state;
52 int ret;
53
54 ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx);
55 if (ret)
56 return ERR_PTR(ret);
57
58 priv_state = drm_atomic_get_private_obj_state(state, manager);
59 if (IS_ERR(priv_state))
60 return ERR_CAST(priv_state);
61
62 return to_vc4_ctm_state(priv_state);
63 }
64
65 static struct drm_private_state *
vc4_ctm_duplicate_state(struct drm_private_obj * obj)66 vc4_ctm_duplicate_state(struct drm_private_obj *obj)
67 {
68 struct vc4_ctm_state *state;
69
70 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
71 if (!state)
72 return NULL;
73
74 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
75
76 return &state->base;
77 }
78
vc4_ctm_destroy_state(struct drm_private_obj * obj,struct drm_private_state * state)79 static void vc4_ctm_destroy_state(struct drm_private_obj *obj,
80 struct drm_private_state *state)
81 {
82 struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state);
83
84 kfree(ctm_state);
85 }
86
87 static const struct drm_private_state_funcs vc4_ctm_state_funcs = {
88 .atomic_duplicate_state = vc4_ctm_duplicate_state,
89 .atomic_destroy_state = vc4_ctm_destroy_state,
90 };
91
vc4_ctm_obj_fini(struct drm_device * dev,void * unused)92 static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused)
93 {
94 struct vc4_dev *vc4 = to_vc4_dev(dev);
95
96 drm_atomic_private_obj_fini(&vc4->ctm_manager);
97 }
98
vc4_ctm_obj_init(struct vc4_dev * vc4)99 static int vc4_ctm_obj_init(struct vc4_dev *vc4)
100 {
101 struct vc4_ctm_state *ctm_state;
102
103 drm_modeset_lock_init(&vc4->ctm_state_lock);
104
105 ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL);
106 if (!ctm_state)
107 return -ENOMEM;
108
109 drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base,
110 &vc4_ctm_state_funcs);
111
112 return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL);
113 }
114
115 /* Converts a DRM S31.32 value to the HW S0.9 format. */
vc4_ctm_s31_32_to_s0_9(u64 in)116 static u16 vc4_ctm_s31_32_to_s0_9(u64 in)
117 {
118 u16 r;
119
120 /* Sign bit. */
121 r = in & BIT_ULL(63) ? BIT(9) : 0;
122
123 if ((in & GENMASK_ULL(62, 32)) > 0) {
124 /* We have zero integer bits so we can only saturate here. */
125 r |= GENMASK(8, 0);
126 } else {
127 /* Otherwise take the 9 most important fractional bits. */
128 r |= (in >> 23) & GENMASK(8, 0);
129 }
130
131 return r;
132 }
133
134 static void
vc4_ctm_commit(struct vc4_dev * vc4,struct drm_atomic_state * state)135 vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state)
136 {
137 struct vc4_hvs *hvs = vc4->hvs;
138 struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state);
139 struct drm_color_ctm *ctm = ctm_state->ctm;
140
141 if (ctm_state->fifo) {
142 HVS_WRITE(SCALER_OLEDCOEF2,
143 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]),
144 SCALER_OLEDCOEF2_R_TO_R) |
145 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]),
146 SCALER_OLEDCOEF2_R_TO_G) |
147 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]),
148 SCALER_OLEDCOEF2_R_TO_B));
149 HVS_WRITE(SCALER_OLEDCOEF1,
150 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]),
151 SCALER_OLEDCOEF1_G_TO_R) |
152 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]),
153 SCALER_OLEDCOEF1_G_TO_G) |
154 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]),
155 SCALER_OLEDCOEF1_G_TO_B));
156 HVS_WRITE(SCALER_OLEDCOEF0,
157 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]),
158 SCALER_OLEDCOEF0_B_TO_R) |
159 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]),
160 SCALER_OLEDCOEF0_B_TO_G) |
161 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]),
162 SCALER_OLEDCOEF0_B_TO_B));
163 }
164
165 HVS_WRITE(SCALER_OLEDOFFS,
166 VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO));
167 }
168
169 struct vc4_hvs_state *
vc4_hvs_get_new_global_state(const struct drm_atomic_state * state)170 vc4_hvs_get_new_global_state(const struct drm_atomic_state *state)
171 {
172 struct vc4_dev *vc4 = to_vc4_dev(state->dev);
173 struct drm_private_state *priv_state;
174
175 priv_state = drm_atomic_get_new_private_obj_state(state, &vc4->hvs_channels);
176 if (!priv_state)
177 return ERR_PTR(-EINVAL);
178
179 return to_vc4_hvs_state(priv_state);
180 }
181
182 struct vc4_hvs_state *
vc4_hvs_get_old_global_state(const struct drm_atomic_state * state)183 vc4_hvs_get_old_global_state(const struct drm_atomic_state *state)
184 {
185 struct vc4_dev *vc4 = to_vc4_dev(state->dev);
186 struct drm_private_state *priv_state;
187
188 priv_state = drm_atomic_get_old_private_obj_state(state, &vc4->hvs_channels);
189 if (!priv_state)
190 return ERR_PTR(-EINVAL);
191
192 return to_vc4_hvs_state(priv_state);
193 }
194
195 struct vc4_hvs_state *
vc4_hvs_get_global_state(struct drm_atomic_state * state)196 vc4_hvs_get_global_state(struct drm_atomic_state *state)
197 {
198 struct vc4_dev *vc4 = to_vc4_dev(state->dev);
199 struct drm_private_state *priv_state;
200
201 priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels);
202 if (IS_ERR(priv_state))
203 return ERR_CAST(priv_state);
204
205 return to_vc4_hvs_state(priv_state);
206 }
207
vc4_hvs_pv_muxing_commit(struct vc4_dev * vc4,struct drm_atomic_state * state)208 static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4,
209 struct drm_atomic_state *state)
210 {
211 struct vc4_hvs *hvs = vc4->hvs;
212 struct drm_crtc_state *crtc_state;
213 struct drm_crtc *crtc;
214 unsigned int i;
215
216 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
217 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
218 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
219 u32 dispctrl;
220 u32 dsp3_mux;
221
222 if (!crtc_state->active)
223 continue;
224
225 if (vc4_state->assigned_channel != 2)
226 continue;
227
228 /*
229 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
230 * FIFO X'.
231 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
232 *
233 * DSP3 is connected to FIFO2 unless the transposer is
234 * enabled. In this case, FIFO 2 is directly accessed by the
235 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
236 * route.
237 */
238 if (vc4_crtc->feeds_txp)
239 dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
240 else
241 dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
242
243 dispctrl = HVS_READ(SCALER_DISPCTRL) &
244 ~SCALER_DISPCTRL_DSP3_MUX_MASK;
245 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
246 }
247 }
248
vc5_hvs_pv_muxing_commit(struct vc4_dev * vc4,struct drm_atomic_state * state)249 static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4,
250 struct drm_atomic_state *state)
251 {
252 struct vc4_hvs *hvs = vc4->hvs;
253 struct drm_crtc_state *crtc_state;
254 struct drm_crtc *crtc;
255 unsigned char mux;
256 unsigned int i;
257 u32 reg;
258
259 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
260 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
261 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
262 unsigned int channel = vc4_state->assigned_channel;
263
264 if (!vc4_state->update_muxing)
265 continue;
266
267 switch (vc4_crtc->data->hvs_output) {
268 case 2:
269 drm_WARN_ON(&vc4->base,
270 VC4_GET_FIELD(HVS_READ(SCALER_DISPCTRL),
271 SCALER_DISPCTRL_DSP3_MUX) == channel);
272
273 mux = (channel == 2) ? 0 : 1;
274 reg = HVS_READ(SCALER_DISPECTRL);
275 HVS_WRITE(SCALER_DISPECTRL,
276 (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) |
277 VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX));
278 break;
279
280 case 3:
281 if (channel == VC4_HVS_CHANNEL_DISABLED)
282 mux = 3;
283 else
284 mux = channel;
285
286 reg = HVS_READ(SCALER_DISPCTRL);
287 HVS_WRITE(SCALER_DISPCTRL,
288 (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) |
289 VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX));
290 break;
291
292 case 4:
293 if (channel == VC4_HVS_CHANNEL_DISABLED)
294 mux = 3;
295 else
296 mux = channel;
297
298 reg = HVS_READ(SCALER_DISPEOLN);
299 HVS_WRITE(SCALER_DISPEOLN,
300 (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) |
301 VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX));
302
303 break;
304
305 case 5:
306 if (channel == VC4_HVS_CHANNEL_DISABLED)
307 mux = 3;
308 else
309 mux = channel;
310
311 reg = HVS_READ(SCALER_DISPDITHER);
312 HVS_WRITE(SCALER_DISPDITHER,
313 (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) |
314 VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX));
315 break;
316
317 default:
318 break;
319 }
320 }
321 }
322
vc4_atomic_commit_tail(struct drm_atomic_state * state)323 static void vc4_atomic_commit_tail(struct drm_atomic_state *state)
324 {
325 struct drm_device *dev = state->dev;
326 struct vc4_dev *vc4 = to_vc4_dev(dev);
327 struct vc4_hvs *hvs = vc4->hvs;
328 struct drm_crtc_state *new_crtc_state;
329 struct vc4_hvs_state *new_hvs_state;
330 struct drm_crtc *crtc;
331 struct vc4_hvs_state *old_hvs_state;
332 unsigned int channel;
333 int i;
334
335 old_hvs_state = vc4_hvs_get_old_global_state(state);
336 if (WARN_ON(IS_ERR(old_hvs_state)))
337 return;
338
339 new_hvs_state = vc4_hvs_get_new_global_state(state);
340 if (WARN_ON(IS_ERR(new_hvs_state)))
341 return;
342
343 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
344 struct vc4_crtc_state *vc4_crtc_state;
345
346 if (!new_crtc_state->commit)
347 continue;
348
349 vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
350 vc4_hvs_mask_underrun(hvs, vc4_crtc_state->assigned_channel);
351 }
352
353 for (channel = 0; channel < HVS_NUM_CHANNELS; channel++) {
354 struct drm_crtc_commit *commit;
355 int ret;
356
357 if (!old_hvs_state->fifo_state[channel].in_use)
358 continue;
359
360 commit = old_hvs_state->fifo_state[channel].pending_commit;
361 if (!commit)
362 continue;
363
364 ret = drm_crtc_commit_wait(commit);
365 if (ret)
366 drm_err(dev, "Timed out waiting for commit\n");
367
368 drm_crtc_commit_put(commit);
369 old_hvs_state->fifo_state[channel].pending_commit = NULL;
370 }
371
372 if (vc4->is_vc5) {
373 unsigned long state_rate = max(old_hvs_state->core_clock_rate,
374 new_hvs_state->core_clock_rate);
375 unsigned long core_rate = clamp_t(unsigned long, state_rate,
376 500000000, hvs->max_core_rate);
377
378 drm_dbg(dev, "Raising the core clock at %lu Hz\n", core_rate);
379
380 /*
381 * Do a temporary request on the core clock during the
382 * modeset.
383 */
384 WARN_ON(clk_set_min_rate(hvs->core_clk, core_rate));
385 }
386
387 drm_atomic_helper_commit_modeset_disables(dev, state);
388
389 vc4_ctm_commit(vc4, state);
390
391 if (vc4->is_vc5)
392 vc5_hvs_pv_muxing_commit(vc4, state);
393 else
394 vc4_hvs_pv_muxing_commit(vc4, state);
395
396 drm_atomic_helper_commit_planes(dev, state,
397 DRM_PLANE_COMMIT_ACTIVE_ONLY);
398
399 drm_atomic_helper_commit_modeset_enables(dev, state);
400
401 drm_atomic_helper_fake_vblank(state);
402
403 drm_atomic_helper_commit_hw_done(state);
404
405 drm_atomic_helper_wait_for_flip_done(dev, state);
406
407 drm_atomic_helper_cleanup_planes(dev, state);
408
409 if (vc4->is_vc5) {
410 unsigned long core_rate = min_t(unsigned long,
411 hvs->max_core_rate,
412 new_hvs_state->core_clock_rate);
413
414 drm_dbg(dev, "Running the core clock at %lu Hz\n", core_rate);
415
416 /*
417 * Request a clock rate based on the current HVS
418 * requirements.
419 */
420 WARN_ON(clk_set_min_rate(hvs->core_clk, core_rate));
421
422 drm_dbg(dev, "Core clock actual rate: %lu Hz\n",
423 clk_get_rate(hvs->core_clk));
424 }
425 }
426
vc4_atomic_commit_setup(struct drm_atomic_state * state)427 static int vc4_atomic_commit_setup(struct drm_atomic_state *state)
428 {
429 struct drm_crtc_state *crtc_state;
430 struct vc4_hvs_state *hvs_state;
431 struct drm_crtc *crtc;
432 unsigned int i;
433
434 hvs_state = vc4_hvs_get_new_global_state(state);
435 if (WARN_ON(IS_ERR(hvs_state)))
436 return PTR_ERR(hvs_state);
437
438 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
439 struct vc4_crtc_state *vc4_crtc_state =
440 to_vc4_crtc_state(crtc_state);
441 unsigned int channel =
442 vc4_crtc_state->assigned_channel;
443
444 if (channel == VC4_HVS_CHANNEL_DISABLED)
445 continue;
446
447 if (!hvs_state->fifo_state[channel].in_use)
448 continue;
449
450 hvs_state->fifo_state[channel].pending_commit =
451 drm_crtc_commit_get(crtc_state->commit);
452 }
453
454 return 0;
455 }
456
vc4_fb_create(struct drm_device * dev,struct drm_file * file_priv,const struct drm_mode_fb_cmd2 * mode_cmd)457 static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev,
458 struct drm_file *file_priv,
459 const struct drm_mode_fb_cmd2 *mode_cmd)
460 {
461 struct vc4_dev *vc4 = to_vc4_dev(dev);
462 struct drm_mode_fb_cmd2 mode_cmd_local;
463
464 if (WARN_ON_ONCE(vc4->is_vc5))
465 return ERR_PTR(-ENODEV);
466
467 /* If the user didn't specify a modifier, use the
468 * vc4_set_tiling_ioctl() state for the BO.
469 */
470 if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) {
471 struct drm_gem_object *gem_obj;
472 struct vc4_bo *bo;
473
474 gem_obj = drm_gem_object_lookup(file_priv,
475 mode_cmd->handles[0]);
476 if (!gem_obj) {
477 DRM_DEBUG("Failed to look up GEM BO %d\n",
478 mode_cmd->handles[0]);
479 return ERR_PTR(-ENOENT);
480 }
481 bo = to_vc4_bo(gem_obj);
482
483 mode_cmd_local = *mode_cmd;
484
485 if (bo->t_format) {
486 mode_cmd_local.modifier[0] =
487 DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED;
488 } else {
489 mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE;
490 }
491
492 drm_gem_object_put(gem_obj);
493
494 mode_cmd = &mode_cmd_local;
495 }
496
497 return drm_gem_fb_create(dev, file_priv, mode_cmd);
498 }
499
500 /* Our CTM has some peculiar limitations: we can only enable it for one CRTC
501 * at a time and the HW only supports S0.9 scalars. To account for the latter,
502 * we don't allow userland to set a CTM that we have no hope of approximating.
503 */
504 static int
vc4_ctm_atomic_check(struct drm_device * dev,struct drm_atomic_state * state)505 vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
506 {
507 struct vc4_dev *vc4 = to_vc4_dev(dev);
508 struct vc4_ctm_state *ctm_state = NULL;
509 struct drm_crtc *crtc;
510 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
511 struct drm_color_ctm *ctm;
512 int i;
513
514 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
515 /* CTM is being disabled. */
516 if (!new_crtc_state->ctm && old_crtc_state->ctm) {
517 ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
518 if (IS_ERR(ctm_state))
519 return PTR_ERR(ctm_state);
520 ctm_state->fifo = 0;
521 }
522 }
523
524 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
525 if (new_crtc_state->ctm == old_crtc_state->ctm)
526 continue;
527
528 if (!ctm_state) {
529 ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
530 if (IS_ERR(ctm_state))
531 return PTR_ERR(ctm_state);
532 }
533
534 /* CTM is being enabled or the matrix changed. */
535 if (new_crtc_state->ctm) {
536 struct vc4_crtc_state *vc4_crtc_state =
537 to_vc4_crtc_state(new_crtc_state);
538
539 /* fifo is 1-based since 0 disables CTM. */
540 int fifo = vc4_crtc_state->assigned_channel + 1;
541
542 /* Check userland isn't trying to turn on CTM for more
543 * than one CRTC at a time.
544 */
545 if (ctm_state->fifo && ctm_state->fifo != fifo) {
546 DRM_DEBUG_DRIVER("Too many CTM configured\n");
547 return -EINVAL;
548 }
549
550 /* Check we can approximate the specified CTM.
551 * We disallow scalars |c| > 1.0 since the HW has
552 * no integer bits.
553 */
554 ctm = new_crtc_state->ctm->data;
555 for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) {
556 u64 val = ctm->matrix[i];
557
558 val &= ~BIT_ULL(63);
559 if (val > BIT_ULL(32))
560 return -EINVAL;
561 }
562
563 ctm_state->fifo = fifo;
564 ctm_state->ctm = ctm;
565 }
566 }
567
568 return 0;
569 }
570
vc4_load_tracker_atomic_check(struct drm_atomic_state * state)571 static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state)
572 {
573 struct drm_plane_state *old_plane_state, *new_plane_state;
574 struct vc4_dev *vc4 = to_vc4_dev(state->dev);
575 struct vc4_load_tracker_state *load_state;
576 struct drm_private_state *priv_state;
577 struct drm_plane *plane;
578 int i;
579
580 priv_state = drm_atomic_get_private_obj_state(state,
581 &vc4->load_tracker);
582 if (IS_ERR(priv_state))
583 return PTR_ERR(priv_state);
584
585 load_state = to_vc4_load_tracker_state(priv_state);
586 for_each_oldnew_plane_in_state(state, plane, old_plane_state,
587 new_plane_state, i) {
588 struct vc4_plane_state *vc4_plane_state;
589
590 if (old_plane_state->fb && old_plane_state->crtc) {
591 vc4_plane_state = to_vc4_plane_state(old_plane_state);
592 load_state->membus_load -= vc4_plane_state->membus_load;
593 load_state->hvs_load -= vc4_plane_state->hvs_load;
594 }
595
596 if (new_plane_state->fb && new_plane_state->crtc) {
597 vc4_plane_state = to_vc4_plane_state(new_plane_state);
598 load_state->membus_load += vc4_plane_state->membus_load;
599 load_state->hvs_load += vc4_plane_state->hvs_load;
600 }
601 }
602
603 /* Don't check the load when the tracker is disabled. */
604 if (!vc4->load_tracker_enabled)
605 return 0;
606
607 /* The absolute limit is 2Gbyte/sec, but let's take a margin to let
608 * the system work when other blocks are accessing the memory.
609 */
610 if (load_state->membus_load > SZ_1G + SZ_512M)
611 return -ENOSPC;
612
613 /* HVS clock is supposed to run @ 250Mhz, let's take a margin and
614 * consider the maximum number of cycles is 240M.
615 */
616 if (load_state->hvs_load > 240000000ULL)
617 return -ENOSPC;
618
619 return 0;
620 }
621
622 static struct drm_private_state *
vc4_load_tracker_duplicate_state(struct drm_private_obj * obj)623 vc4_load_tracker_duplicate_state(struct drm_private_obj *obj)
624 {
625 struct vc4_load_tracker_state *state;
626
627 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
628 if (!state)
629 return NULL;
630
631 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
632
633 return &state->base;
634 }
635
vc4_load_tracker_destroy_state(struct drm_private_obj * obj,struct drm_private_state * state)636 static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj,
637 struct drm_private_state *state)
638 {
639 struct vc4_load_tracker_state *load_state;
640
641 load_state = to_vc4_load_tracker_state(state);
642 kfree(load_state);
643 }
644
645 static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = {
646 .atomic_duplicate_state = vc4_load_tracker_duplicate_state,
647 .atomic_destroy_state = vc4_load_tracker_destroy_state,
648 };
649
vc4_load_tracker_obj_fini(struct drm_device * dev,void * unused)650 static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused)
651 {
652 struct vc4_dev *vc4 = to_vc4_dev(dev);
653
654 drm_atomic_private_obj_fini(&vc4->load_tracker);
655 }
656
vc4_load_tracker_obj_init(struct vc4_dev * vc4)657 static int vc4_load_tracker_obj_init(struct vc4_dev *vc4)
658 {
659 struct vc4_load_tracker_state *load_state;
660
661 load_state = kzalloc(sizeof(*load_state), GFP_KERNEL);
662 if (!load_state)
663 return -ENOMEM;
664
665 drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker,
666 &load_state->base,
667 &vc4_load_tracker_state_funcs);
668
669 return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL);
670 }
671
672 static struct drm_private_state *
vc4_hvs_channels_duplicate_state(struct drm_private_obj * obj)673 vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj)
674 {
675 struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state);
676 struct vc4_hvs_state *state;
677 unsigned int i;
678
679 state = kzalloc(sizeof(*state), GFP_KERNEL);
680 if (!state)
681 return NULL;
682
683 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
684
685 for (i = 0; i < HVS_NUM_CHANNELS; i++) {
686 state->fifo_state[i].in_use = old_state->fifo_state[i].in_use;
687 state->fifo_state[i].fifo_load = old_state->fifo_state[i].fifo_load;
688 }
689
690 state->core_clock_rate = old_state->core_clock_rate;
691
692 return &state->base;
693 }
694
vc4_hvs_channels_destroy_state(struct drm_private_obj * obj,struct drm_private_state * state)695 static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj,
696 struct drm_private_state *state)
697 {
698 struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
699 unsigned int i;
700
701 for (i = 0; i < HVS_NUM_CHANNELS; i++) {
702 if (!hvs_state->fifo_state[i].pending_commit)
703 continue;
704
705 drm_crtc_commit_put(hvs_state->fifo_state[i].pending_commit);
706 }
707
708 kfree(hvs_state);
709 }
710
vc4_hvs_channels_print_state(struct drm_printer * p,const struct drm_private_state * state)711 static void vc4_hvs_channels_print_state(struct drm_printer *p,
712 const struct drm_private_state *state)
713 {
714 const struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
715 unsigned int i;
716
717 drm_printf(p, "HVS State\n");
718 drm_printf(p, "\tCore Clock Rate: %lu\n", hvs_state->core_clock_rate);
719
720 for (i = 0; i < HVS_NUM_CHANNELS; i++) {
721 drm_printf(p, "\tChannel %d\n", i);
722 drm_printf(p, "\t\tin use=%d\n", hvs_state->fifo_state[i].in_use);
723 drm_printf(p, "\t\tload=%lu\n", hvs_state->fifo_state[i].fifo_load);
724 }
725 }
726
727 static const struct drm_private_state_funcs vc4_hvs_state_funcs = {
728 .atomic_duplicate_state = vc4_hvs_channels_duplicate_state,
729 .atomic_destroy_state = vc4_hvs_channels_destroy_state,
730 .atomic_print_state = vc4_hvs_channels_print_state,
731 };
732
vc4_hvs_channels_obj_fini(struct drm_device * dev,void * unused)733 static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused)
734 {
735 struct vc4_dev *vc4 = to_vc4_dev(dev);
736
737 drm_atomic_private_obj_fini(&vc4->hvs_channels);
738 }
739
vc4_hvs_channels_obj_init(struct vc4_dev * vc4)740 static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4)
741 {
742 struct vc4_hvs_state *state;
743
744 state = kzalloc(sizeof(*state), GFP_KERNEL);
745 if (!state)
746 return -ENOMEM;
747
748 drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels,
749 &state->base,
750 &vc4_hvs_state_funcs);
751
752 return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL);
753 }
754
cmp_vc4_crtc_hvs_output(const void * a,const void * b)755 static int cmp_vc4_crtc_hvs_output(const void *a, const void *b)
756 {
757 const struct vc4_crtc *crtc_a =
758 to_vc4_crtc(*(const struct drm_crtc **)a);
759 const struct vc4_crtc_data *data_a =
760 vc4_crtc_to_vc4_crtc_data(crtc_a);
761 const struct vc4_crtc *crtc_b =
762 to_vc4_crtc(*(const struct drm_crtc **)b);
763 const struct vc4_crtc_data *data_b =
764 vc4_crtc_to_vc4_crtc_data(crtc_b);
765
766 return data_a->hvs_output - data_b->hvs_output;
767 }
768
769 /*
770 * The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and
771 * the TXP (and therefore all the CRTCs found on that platform).
772 *
773 * The naive (and our initial) implementation would just iterate over
774 * all the active CRTCs, try to find a suitable FIFO, and then remove it
775 * from the pool of available FIFOs. However, there are a few corner
776 * cases that need to be considered:
777 *
778 * - When running in a dual-display setup (so with two CRTCs involved),
779 * we can update the state of a single CRTC (for example by changing
780 * its mode using xrandr under X11) without affecting the other. In
781 * this case, the other CRTC wouldn't be in the state at all, so we
782 * need to consider all the running CRTCs in the DRM device to assign
783 * a FIFO, not just the one in the state.
784 *
785 * - To fix the above, we can't use drm_atomic_get_crtc_state on all
786 * enabled CRTCs to pull their CRTC state into the global state, since
787 * a page flip would start considering their vblank to complete. Since
788 * we don't have a guarantee that they are actually active, that
789 * vblank might never happen, and shouldn't even be considered if we
790 * want to do a page flip on a single CRTC. That can be tested by
791 * doing a modetest -v first on HDMI1 and then on HDMI0.
792 *
793 * - Since we need the pixelvalve to be disabled and enabled back when
794 * the FIFO is changed, we should keep the FIFO assigned for as long
795 * as the CRTC is enabled, only considering it free again once that
796 * CRTC has been disabled. This can be tested by booting X11 on a
797 * single display, and changing the resolution down and then back up.
798 */
vc4_pv_muxing_atomic_check(struct drm_device * dev,struct drm_atomic_state * state)799 static int vc4_pv_muxing_atomic_check(struct drm_device *dev,
800 struct drm_atomic_state *state)
801 {
802 struct vc4_hvs_state *hvs_new_state;
803 struct drm_crtc **sorted_crtcs;
804 struct drm_crtc *crtc;
805 unsigned int unassigned_channels = 0;
806 unsigned int i;
807 int ret;
808
809 hvs_new_state = vc4_hvs_get_global_state(state);
810 if (IS_ERR(hvs_new_state))
811 return PTR_ERR(hvs_new_state);
812
813 for (i = 0; i < ARRAY_SIZE(hvs_new_state->fifo_state); i++)
814 if (!hvs_new_state->fifo_state[i].in_use)
815 unassigned_channels |= BIT(i);
816
817 /*
818 * The problem we have to solve here is that we have up to 7
819 * encoders, connected to up to 6 CRTCs.
820 *
821 * Those CRTCs, depending on the instance, can be routed to 1, 2
822 * or 3 HVS FIFOs, and we need to set the muxing between FIFOs and
823 * outputs in the HVS accordingly.
824 *
825 * It would be pretty hard to come up with an algorithm that
826 * would generically solve this. However, the current routing
827 * trees we support allow us to simplify a bit the problem.
828 *
829 * Indeed, with the current supported layouts, if we try to
830 * assign in the ascending crtc index order the FIFOs, we can't
831 * fall into the situation where an earlier CRTC that had
832 * multiple routes is assigned one that was the only option for
833 * a later CRTC.
834 *
835 * If the layout changes and doesn't give us that in the future,
836 * we will need to have something smarter, but it works so far.
837 */
838 sorted_crtcs = kmalloc_array(dev->num_crtcs, sizeof(*sorted_crtcs), GFP_KERNEL);
839 if (!sorted_crtcs)
840 return -ENOMEM;
841
842 i = 0;
843 drm_for_each_crtc(crtc, dev)
844 sorted_crtcs[i++] = crtc;
845
846 sort(sorted_crtcs, i, sizeof(*sorted_crtcs), cmp_vc4_crtc_hvs_output, NULL);
847
848 for (i = 0; i < dev->num_crtcs; i++) {
849 struct vc4_crtc_state *old_vc4_crtc_state, *new_vc4_crtc_state;
850 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
851 struct vc4_crtc *vc4_crtc;
852 unsigned int matching_channels;
853 unsigned int channel;
854
855 crtc = sorted_crtcs[i];
856 if (!crtc)
857 continue;
858 vc4_crtc = to_vc4_crtc(crtc);
859
860 old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
861 if (!old_crtc_state)
862 continue;
863 old_vc4_crtc_state = to_vc4_crtc_state(old_crtc_state);
864
865 new_crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
866 if (!new_crtc_state)
867 continue;
868 new_vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
869
870 drm_dbg(dev, "%s: Trying to find a channel.\n", crtc->name);
871
872 /* Nothing to do here, let's skip it */
873 if (old_crtc_state->enable == new_crtc_state->enable) {
874 if (new_crtc_state->enable)
875 drm_dbg(dev, "%s: Already enabled, reusing channel %d.\n",
876 crtc->name, new_vc4_crtc_state->assigned_channel);
877 else
878 drm_dbg(dev, "%s: Disabled, ignoring.\n", crtc->name);
879
880 continue;
881 }
882
883 /* Muxing will need to be modified, mark it as such */
884 new_vc4_crtc_state->update_muxing = true;
885
886 /* If we're disabling our CRTC, we put back our channel */
887 if (!new_crtc_state->enable) {
888 channel = old_vc4_crtc_state->assigned_channel;
889
890 drm_dbg(dev, "%s: Disabling, Freeing channel %d\n",
891 crtc->name, channel);
892
893 hvs_new_state->fifo_state[channel].in_use = false;
894 new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
895 continue;
896 }
897
898 matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels;
899 if (!matching_channels) {
900 ret = -EINVAL;
901 goto err_free_crtc_array;
902 }
903
904 channel = ffs(matching_channels) - 1;
905
906 drm_dbg(dev, "Assigned HVS channel %d to CRTC %s\n", channel, crtc->name);
907 new_vc4_crtc_state->assigned_channel = channel;
908 unassigned_channels &= ~BIT(channel);
909 hvs_new_state->fifo_state[channel].in_use = true;
910 }
911
912 kfree(sorted_crtcs);
913 return 0;
914
915 err_free_crtc_array:
916 kfree(sorted_crtcs);
917 return ret;
918 }
919
920 static int
vc4_core_clock_atomic_check(struct drm_atomic_state * state)921 vc4_core_clock_atomic_check(struct drm_atomic_state *state)
922 {
923 struct vc4_dev *vc4 = to_vc4_dev(state->dev);
924 struct drm_private_state *priv_state;
925 struct vc4_hvs_state *hvs_new_state;
926 struct vc4_load_tracker_state *load_state;
927 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
928 struct drm_crtc *crtc;
929 unsigned int num_outputs;
930 unsigned long pixel_rate;
931 unsigned long cob_rate;
932 unsigned int i;
933
934 priv_state = drm_atomic_get_private_obj_state(state,
935 &vc4->load_tracker);
936 if (IS_ERR(priv_state))
937 return PTR_ERR(priv_state);
938
939 load_state = to_vc4_load_tracker_state(priv_state);
940
941 hvs_new_state = vc4_hvs_get_global_state(state);
942 if (IS_ERR(hvs_new_state))
943 return PTR_ERR(hvs_new_state);
944
945 for_each_oldnew_crtc_in_state(state, crtc,
946 old_crtc_state,
947 new_crtc_state,
948 i) {
949 if (old_crtc_state->active) {
950 struct vc4_crtc_state *old_vc4_state =
951 to_vc4_crtc_state(old_crtc_state);
952 unsigned int channel = old_vc4_state->assigned_channel;
953
954 hvs_new_state->fifo_state[channel].fifo_load = 0;
955 }
956
957 if (new_crtc_state->active) {
958 struct vc4_crtc_state *new_vc4_state =
959 to_vc4_crtc_state(new_crtc_state);
960 unsigned int channel = new_vc4_state->assigned_channel;
961
962 hvs_new_state->fifo_state[channel].fifo_load =
963 new_vc4_state->hvs_load;
964 }
965 }
966
967 cob_rate = 0;
968 num_outputs = 0;
969 for (i = 0; i < HVS_NUM_CHANNELS; i++) {
970 if (!hvs_new_state->fifo_state[i].in_use)
971 continue;
972
973 num_outputs++;
974 cob_rate = max_t(unsigned long,
975 hvs_new_state->fifo_state[i].fifo_load,
976 cob_rate);
977 }
978
979 pixel_rate = load_state->hvs_load;
980 if (num_outputs > 1) {
981 pixel_rate = (pixel_rate * 40) / 100;
982 } else {
983 pixel_rate = (pixel_rate * 60) / 100;
984 }
985
986 hvs_new_state->core_clock_rate = max(cob_rate, pixel_rate);
987
988 return 0;
989 }
990
991
992 static int
vc4_atomic_check(struct drm_device * dev,struct drm_atomic_state * state)993 vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
994 {
995 int ret;
996
997 ret = vc4_pv_muxing_atomic_check(dev, state);
998 if (ret)
999 return ret;
1000
1001 ret = vc4_ctm_atomic_check(dev, state);
1002 if (ret < 0)
1003 return ret;
1004
1005 ret = drm_atomic_helper_check(dev, state);
1006 if (ret)
1007 return ret;
1008
1009 ret = vc4_load_tracker_atomic_check(state);
1010 if (ret)
1011 return ret;
1012
1013 return vc4_core_clock_atomic_check(state);
1014 }
1015
1016 static struct drm_mode_config_helper_funcs vc4_mode_config_helpers = {
1017 .atomic_commit_setup = vc4_atomic_commit_setup,
1018 .atomic_commit_tail = vc4_atomic_commit_tail,
1019 };
1020
1021 static const struct drm_mode_config_funcs vc4_mode_funcs = {
1022 .atomic_check = vc4_atomic_check,
1023 .atomic_commit = drm_atomic_helper_commit,
1024 .fb_create = vc4_fb_create,
1025 };
1026
1027 static const struct drm_mode_config_funcs vc5_mode_funcs = {
1028 .atomic_check = vc4_atomic_check,
1029 .atomic_commit = drm_atomic_helper_commit,
1030 .fb_create = drm_gem_fb_create,
1031 };
1032
vc4_kms_load(struct drm_device * dev)1033 int vc4_kms_load(struct drm_device *dev)
1034 {
1035 struct vc4_dev *vc4 = to_vc4_dev(dev);
1036 int ret;
1037
1038 /*
1039 * The limits enforced by the load tracker aren't relevant for
1040 * the BCM2711, but the load tracker computations are used for
1041 * the core clock rate calculation.
1042 */
1043 if (!vc4->is_vc5) {
1044 /* Start with the load tracker enabled. Can be
1045 * disabled through the debugfs load_tracker file.
1046 */
1047 vc4->load_tracker_enabled = true;
1048 }
1049
1050 /* Set support for vblank irq fast disable, before drm_vblank_init() */
1051 dev->vblank_disable_immediate = true;
1052
1053 ret = drm_vblank_init(dev, dev->mode_config.num_crtc);
1054 if (ret < 0) {
1055 dev_err(dev->dev, "failed to initialize vblank\n");
1056 return ret;
1057 }
1058
1059 if (vc4->is_vc5) {
1060 dev->mode_config.max_width = 7680;
1061 dev->mode_config.max_height = 7680;
1062 } else {
1063 dev->mode_config.max_width = 2048;
1064 dev->mode_config.max_height = 2048;
1065 }
1066
1067 dev->mode_config.funcs = vc4->is_vc5 ? &vc5_mode_funcs : &vc4_mode_funcs;
1068 dev->mode_config.helper_private = &vc4_mode_config_helpers;
1069 dev->mode_config.preferred_depth = 24;
1070 dev->mode_config.async_page_flip = true;
1071 dev->mode_config.normalize_zpos = true;
1072
1073 ret = vc4_ctm_obj_init(vc4);
1074 if (ret)
1075 return ret;
1076
1077 ret = vc4_load_tracker_obj_init(vc4);
1078 if (ret)
1079 return ret;
1080
1081 ret = vc4_hvs_channels_obj_init(vc4);
1082 if (ret)
1083 return ret;
1084
1085 drm_mode_config_reset(dev);
1086
1087 drm_kms_helper_poll_init(dev);
1088
1089 return 0;
1090 }
1091