1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Universal power supply monitor class
4 *
5 * Copyright © 2007 Anton Vorontsov <cbou@mail.ru>
6 * Copyright © 2004 Szabolcs Gyurko
7 * Copyright © 2003 Ian Molton <spyro@f2s.com>
8 *
9 * Modified: 2004, Oct Szabolcs Gyurko
10 */
11
12 #include <linux/cleanup.h>
13 #include <linux/module.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/device.h>
19 #include <linux/notifier.h>
20 #include <linux/err.h>
21 #include <linux/of.h>
22 #include <linux/power_supply.h>
23 #include <linux/property.h>
24 #include <linux/thermal.h>
25 #include <linux/fixp-arith.h>
26 #include "power_supply.h"
27 #include "samsung-sdi-battery.h"
28
29 static const struct class power_supply_class = {
30 .name = "power_supply",
31 .dev_uevent = power_supply_uevent,
32 };
33
34 static BLOCKING_NOTIFIER_HEAD(power_supply_notifier);
35
36 static const struct device_type power_supply_dev_type = {
37 .name = "power_supply",
38 .groups = power_supply_attr_groups,
39 };
40
41 #define POWER_SUPPLY_DEFERRED_REGISTER_TIME msecs_to_jiffies(10)
42
__power_supply_is_supplied_by(struct power_supply * supplier,struct power_supply * supply)43 static bool __power_supply_is_supplied_by(struct power_supply *supplier,
44 struct power_supply *supply)
45 {
46 int i;
47
48 if (!supply->supplied_from && !supplier->supplied_to)
49 return false;
50
51 /* Support both supplied_to and supplied_from modes */
52 if (supply->supplied_from) {
53 if (!supplier->desc->name)
54 return false;
55 for (i = 0; i < supply->num_supplies; i++)
56 if (!strcmp(supplier->desc->name, supply->supplied_from[i]))
57 return true;
58 } else {
59 if (!supply->desc->name)
60 return false;
61 for (i = 0; i < supplier->num_supplicants; i++)
62 if (!strcmp(supplier->supplied_to[i], supply->desc->name))
63 return true;
64 }
65
66 return false;
67 }
68
__power_supply_changed_work(struct power_supply * pst,void * data)69 static int __power_supply_changed_work(struct power_supply *pst, void *data)
70 {
71 struct power_supply *psy = data;
72
73 if (__power_supply_is_supplied_by(psy, pst))
74 power_supply_external_power_changed(pst);
75
76 return 0;
77 }
78
power_supply_changed_work(struct work_struct * work)79 static void power_supply_changed_work(struct work_struct *work)
80 {
81 int ret;
82 unsigned long flags;
83 struct power_supply *psy = container_of(work, struct power_supply,
84 changed_work);
85
86 dev_dbg(&psy->dev, "%s\n", __func__);
87
88 spin_lock_irqsave(&psy->changed_lock, flags);
89
90 if (unlikely(psy->update_groups)) {
91 psy->update_groups = false;
92 spin_unlock_irqrestore(&psy->changed_lock, flags);
93 ret = sysfs_update_groups(&psy->dev.kobj, power_supply_dev_type.groups);
94 if (ret)
95 dev_warn(&psy->dev, "failed to update sysfs groups: %pe\n", ERR_PTR(ret));
96 spin_lock_irqsave(&psy->changed_lock, flags);
97 }
98
99 /*
100 * Check 'changed' here to avoid issues due to race between
101 * power_supply_changed() and this routine. In worst case
102 * power_supply_changed() can be called again just before we take above
103 * lock. During the first call of this routine we will mark 'changed' as
104 * false and it will stay false for the next call as well.
105 */
106 if (likely(psy->changed)) {
107 psy->changed = false;
108 spin_unlock_irqrestore(&psy->changed_lock, flags);
109 power_supply_for_each_psy(psy, __power_supply_changed_work);
110 power_supply_update_leds(psy);
111 blocking_notifier_call_chain(&power_supply_notifier,
112 PSY_EVENT_PROP_CHANGED, psy);
113 kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE);
114 spin_lock_irqsave(&psy->changed_lock, flags);
115 }
116
117 /*
118 * Hold the wakeup_source until all events are processed.
119 * power_supply_changed() might have called again and have set 'changed'
120 * to true.
121 */
122 if (likely(!psy->changed))
123 pm_relax(&psy->dev);
124 spin_unlock_irqrestore(&psy->changed_lock, flags);
125 }
126
127 struct psy_for_each_psy_cb_data {
128 int (*fn)(struct power_supply *psy, void *data);
129 void *data;
130 };
131
psy_for_each_psy_cb(struct device * dev,void * data)132 static int psy_for_each_psy_cb(struct device *dev, void *data)
133 {
134 struct psy_for_each_psy_cb_data *cb_data = data;
135 struct power_supply *psy = dev_to_psy(dev);
136
137 return cb_data->fn(psy, cb_data->data);
138 }
139
power_supply_for_each_psy(void * data,int (* fn)(struct power_supply * psy,void * data))140 int power_supply_for_each_psy(void *data, int (*fn)(struct power_supply *psy, void *data))
141 {
142 struct psy_for_each_psy_cb_data cb_data = {
143 .fn = fn,
144 .data = data,
145 };
146
147 return class_for_each_device(&power_supply_class, NULL, &cb_data, psy_for_each_psy_cb);
148 }
149 EXPORT_SYMBOL_GPL(power_supply_for_each_psy);
150
power_supply_changed(struct power_supply * psy)151 void power_supply_changed(struct power_supply *psy)
152 {
153 unsigned long flags;
154
155 dev_dbg(&psy->dev, "%s\n", __func__);
156
157 spin_lock_irqsave(&psy->changed_lock, flags);
158 psy->changed = true;
159 pm_stay_awake(&psy->dev);
160 spin_unlock_irqrestore(&psy->changed_lock, flags);
161 schedule_work(&psy->changed_work);
162 }
163 EXPORT_SYMBOL_GPL(power_supply_changed);
164
165 /*
166 * Notify that power supply was registered after parent finished the probing.
167 *
168 * Often power supply is registered from driver's probe function. However
169 * calling power_supply_changed() directly from power_supply_register()
170 * would lead to execution of get_property() function provided by the driver
171 * too early - before the probe ends.
172 *
173 * Avoid that by waiting on parent's mutex.
174 */
power_supply_deferred_register_work(struct work_struct * work)175 static void power_supply_deferred_register_work(struct work_struct *work)
176 {
177 struct power_supply *psy = container_of(work, struct power_supply,
178 deferred_register_work.work);
179
180 if (psy->dev.parent) {
181 while (!device_trylock(psy->dev.parent)) {
182 if (psy->removing)
183 return;
184 msleep(10);
185 }
186 }
187
188 power_supply_changed(psy);
189
190 if (psy->dev.parent)
191 device_unlock(psy->dev.parent);
192 }
193
194 #ifdef CONFIG_OF
__power_supply_populate_supplied_from(struct power_supply * epsy,void * data)195 static int __power_supply_populate_supplied_from(struct power_supply *epsy,
196 void *data)
197 {
198 struct power_supply *psy = data;
199 struct device_node *np;
200 int i = 0;
201
202 do {
203 np = of_parse_phandle(psy->of_node, "power-supplies", i++);
204 if (!np)
205 break;
206
207 if (np == epsy->of_node) {
208 dev_dbg(&psy->dev, "%s: Found supply : %s\n",
209 psy->desc->name, epsy->desc->name);
210 psy->supplied_from[i-1] = (char *)epsy->desc->name;
211 psy->num_supplies++;
212 of_node_put(np);
213 break;
214 }
215 of_node_put(np);
216 } while (np);
217
218 return 0;
219 }
220
power_supply_populate_supplied_from(struct power_supply * psy)221 static int power_supply_populate_supplied_from(struct power_supply *psy)
222 {
223 int error;
224
225 error = power_supply_for_each_psy(psy, __power_supply_populate_supplied_from);
226
227 dev_dbg(&psy->dev, "%s %d\n", __func__, error);
228
229 return error;
230 }
231
__power_supply_find_supply_from_node(struct power_supply * epsy,void * data)232 static int __power_supply_find_supply_from_node(struct power_supply *epsy,
233 void *data)
234 {
235 struct device_node *np = data;
236
237 /* returning non-zero breaks out of power_supply_for_each_psy loop */
238 if (epsy->of_node == np)
239 return 1;
240
241 return 0;
242 }
243
power_supply_find_supply_from_node(struct device_node * supply_node)244 static int power_supply_find_supply_from_node(struct device_node *supply_node)
245 {
246 int error;
247
248 /*
249 * power_supply_for_each_psy() either returns its own errors or values
250 * returned by __power_supply_find_supply_from_node().
251 *
252 * __power_supply_find_supply_from_node() will return 0 (no match)
253 * or 1 (match).
254 *
255 * We return 0 if power_supply_for_each_psy() returned 1, -EPROBE_DEFER if
256 * it returned 0, or error as returned by it.
257 */
258 error = power_supply_for_each_psy(supply_node, __power_supply_find_supply_from_node);
259
260 return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER;
261 }
262
power_supply_check_supplies(struct power_supply * psy)263 static int power_supply_check_supplies(struct power_supply *psy)
264 {
265 struct device_node *np;
266 int cnt = 0;
267
268 /* If there is already a list honor it */
269 if (psy->supplied_from && psy->num_supplies > 0)
270 return 0;
271
272 /* No device node found, nothing to do */
273 if (!psy->of_node)
274 return 0;
275
276 do {
277 int ret;
278
279 np = of_parse_phandle(psy->of_node, "power-supplies", cnt++);
280 if (!np)
281 break;
282
283 ret = power_supply_find_supply_from_node(np);
284 of_node_put(np);
285
286 if (ret) {
287 dev_dbg(&psy->dev, "Failed to find supply!\n");
288 return ret;
289 }
290 } while (np);
291
292 /* Missing valid "power-supplies" entries */
293 if (cnt == 1)
294 return 0;
295
296 /* All supplies found, allocate char ** array for filling */
297 psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(*psy->supplied_from),
298 GFP_KERNEL);
299 if (!psy->supplied_from)
300 return -ENOMEM;
301
302 *psy->supplied_from = devm_kcalloc(&psy->dev,
303 cnt - 1, sizeof(**psy->supplied_from),
304 GFP_KERNEL);
305 if (!*psy->supplied_from)
306 return -ENOMEM;
307
308 return power_supply_populate_supplied_from(psy);
309 }
310 #else
power_supply_check_supplies(struct power_supply * psy)311 static int power_supply_check_supplies(struct power_supply *psy)
312 {
313 int nval, ret;
314
315 if (!psy->dev.parent)
316 return 0;
317
318 nval = device_property_string_array_count(psy->dev.parent, "supplied-from");
319 if (nval <= 0)
320 return 0;
321
322 psy->supplied_from = devm_kmalloc_array(&psy->dev, nval,
323 sizeof(char *), GFP_KERNEL);
324 if (!psy->supplied_from)
325 return -ENOMEM;
326
327 ret = device_property_read_string_array(psy->dev.parent,
328 "supplied-from", (const char **)psy->supplied_from, nval);
329 if (ret < 0)
330 return ret;
331
332 psy->num_supplies = nval;
333
334 return 0;
335 }
336 #endif
337
338 struct psy_am_i_supplied_data {
339 struct power_supply *psy;
340 unsigned int count;
341 };
342
__power_supply_am_i_supplied(struct power_supply * epsy,void * _data)343 static int __power_supply_am_i_supplied(struct power_supply *epsy, void *_data)
344 {
345 union power_supply_propval ret = {0,};
346 struct psy_am_i_supplied_data *data = _data;
347
348 if (__power_supply_is_supplied_by(epsy, data->psy)) {
349 data->count++;
350 if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE,
351 &ret))
352 return ret.intval;
353 }
354
355 return 0;
356 }
357
power_supply_am_i_supplied(struct power_supply * psy)358 int power_supply_am_i_supplied(struct power_supply *psy)
359 {
360 struct psy_am_i_supplied_data data = { psy, 0 };
361 int error;
362
363 error = power_supply_for_each_psy(&data, __power_supply_am_i_supplied);
364
365 dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error);
366
367 if (data.count == 0)
368 return -ENODEV;
369
370 return error;
371 }
372 EXPORT_SYMBOL_GPL(power_supply_am_i_supplied);
373
__power_supply_is_system_supplied(struct power_supply * psy,void * data)374 static int __power_supply_is_system_supplied(struct power_supply *psy, void *data)
375 {
376 union power_supply_propval ret = {0,};
377 unsigned int *count = data;
378
379 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_SCOPE, &ret))
380 if (ret.intval == POWER_SUPPLY_SCOPE_DEVICE)
381 return 0;
382
383 (*count)++;
384 if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY)
385 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE,
386 &ret))
387 return ret.intval;
388
389 return 0;
390 }
391
power_supply_is_system_supplied(void)392 int power_supply_is_system_supplied(void)
393 {
394 int error;
395 unsigned int count = 0;
396
397 error = power_supply_for_each_psy(&count, __power_supply_is_system_supplied);
398
399 /*
400 * If no system scope power class device was found at all, most probably we
401 * are running on a desktop system, so assume we are on mains power.
402 */
403 if (count == 0)
404 return 1;
405
406 return error;
407 }
408 EXPORT_SYMBOL_GPL(power_supply_is_system_supplied);
409
410 struct psy_get_supplier_prop_data {
411 struct power_supply *psy;
412 enum power_supply_property psp;
413 union power_supply_propval *val;
414 };
415
__power_supply_get_supplier_property(struct power_supply * epsy,void * _data)416 static int __power_supply_get_supplier_property(struct power_supply *epsy, void *_data)
417 {
418 struct psy_get_supplier_prop_data *data = _data;
419
420 if (__power_supply_is_supplied_by(epsy, data->psy))
421 if (!power_supply_get_property(epsy, data->psp, data->val))
422 return 1; /* Success */
423
424 return 0; /* Continue iterating */
425 }
426
power_supply_get_property_from_supplier(struct power_supply * psy,enum power_supply_property psp,union power_supply_propval * val)427 int power_supply_get_property_from_supplier(struct power_supply *psy,
428 enum power_supply_property psp,
429 union power_supply_propval *val)
430 {
431 struct psy_get_supplier_prop_data data = {
432 .psy = psy,
433 .psp = psp,
434 .val = val,
435 };
436 int ret;
437
438 /*
439 * This function is not intended for use with a supply with multiple
440 * suppliers, we simply pick the first supply to report the psp.
441 */
442 ret = power_supply_for_each_psy(&data, __power_supply_get_supplier_property);
443 if (ret < 0)
444 return ret;
445 if (ret == 0)
446 return -ENODEV;
447
448 return 0;
449 }
450 EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier);
451
power_supply_set_battery_charged(struct power_supply * psy)452 int power_supply_set_battery_charged(struct power_supply *psy)
453 {
454 if (atomic_read(&psy->use_cnt) >= 0 &&
455 psy->desc->type == POWER_SUPPLY_TYPE_BATTERY &&
456 psy->desc->set_charged) {
457 psy->desc->set_charged(psy);
458 return 0;
459 }
460
461 return -EINVAL;
462 }
463 EXPORT_SYMBOL_GPL(power_supply_set_battery_charged);
464
power_supply_match_device_by_name(struct device * dev,const void * data)465 static int power_supply_match_device_by_name(struct device *dev, const void *data)
466 {
467 const char *name = data;
468 struct power_supply *psy = dev_to_psy(dev);
469
470 return strcmp(psy->desc->name, name) == 0;
471 }
472
473 /**
474 * power_supply_get_by_name() - Search for a power supply and returns its ref
475 * @name: Power supply name to fetch
476 *
477 * If power supply was found, it increases reference count for the
478 * internal power supply's device. The user should power_supply_put()
479 * after usage.
480 *
481 * Return: On success returns a reference to a power supply with
482 * matching name equals to @name, a NULL otherwise.
483 */
power_supply_get_by_name(const char * name)484 struct power_supply *power_supply_get_by_name(const char *name)
485 {
486 struct power_supply *psy = NULL;
487 struct device *dev = class_find_device(&power_supply_class, NULL, name,
488 power_supply_match_device_by_name);
489
490 if (dev) {
491 psy = dev_to_psy(dev);
492 atomic_inc(&psy->use_cnt);
493 }
494
495 return psy;
496 }
497 EXPORT_SYMBOL_GPL(power_supply_get_by_name);
498
499 /**
500 * power_supply_put() - Drop reference obtained with power_supply_get_by_name
501 * @psy: Reference to put
502 *
503 * The reference to power supply should be put before unregistering
504 * the power supply.
505 */
power_supply_put(struct power_supply * psy)506 void power_supply_put(struct power_supply *psy)
507 {
508 atomic_dec(&psy->use_cnt);
509 put_device(&psy->dev);
510 }
511 EXPORT_SYMBOL_GPL(power_supply_put);
512
513 #ifdef CONFIG_OF
power_supply_match_device_node(struct device * dev,const void * data)514 static int power_supply_match_device_node(struct device *dev, const void *data)
515 {
516 return dev->parent && dev->parent->of_node == data;
517 }
518
519 /**
520 * power_supply_get_by_phandle() - Search for a power supply and returns its ref
521 * @np: Pointer to device node holding phandle property
522 * @property: Name of property holding a power supply name
523 *
524 * If power supply was found, it increases reference count for the
525 * internal power supply's device. The user should power_supply_put()
526 * after usage.
527 *
528 * Return: On success returns a reference to a power supply with
529 * matching name equals to value under @property, NULL or ERR_PTR otherwise.
530 */
power_supply_get_by_phandle(struct device_node * np,const char * property)531 struct power_supply *power_supply_get_by_phandle(struct device_node *np,
532 const char *property)
533 {
534 struct device_node *power_supply_np;
535 struct power_supply *psy = NULL;
536 struct device *dev;
537
538 power_supply_np = of_parse_phandle(np, property, 0);
539 if (!power_supply_np)
540 return ERR_PTR(-ENODEV);
541
542 dev = class_find_device(&power_supply_class, NULL, power_supply_np,
543 power_supply_match_device_node);
544
545 of_node_put(power_supply_np);
546
547 if (dev) {
548 psy = dev_to_psy(dev);
549 atomic_inc(&psy->use_cnt);
550 }
551
552 return psy;
553 }
554 EXPORT_SYMBOL_GPL(power_supply_get_by_phandle);
555
devm_power_supply_put(struct device * dev,void * res)556 static void devm_power_supply_put(struct device *dev, void *res)
557 {
558 struct power_supply **psy = res;
559
560 power_supply_put(*psy);
561 }
562
563 /**
564 * devm_power_supply_get_by_phandle() - Resource managed version of
565 * power_supply_get_by_phandle()
566 * @dev: Pointer to device holding phandle property
567 * @property: Name of property holding a power supply phandle
568 *
569 * Return: On success returns a reference to a power supply with
570 * matching name equals to value under @property, NULL or ERR_PTR otherwise.
571 */
devm_power_supply_get_by_phandle(struct device * dev,const char * property)572 struct power_supply *devm_power_supply_get_by_phandle(struct device *dev,
573 const char *property)
574 {
575 struct power_supply **ptr, *psy;
576
577 if (!dev->of_node)
578 return ERR_PTR(-ENODEV);
579
580 ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL);
581 if (!ptr)
582 return ERR_PTR(-ENOMEM);
583
584 psy = power_supply_get_by_phandle(dev->of_node, property);
585 if (IS_ERR_OR_NULL(psy)) {
586 devres_free(ptr);
587 } else {
588 *ptr = psy;
589 devres_add(dev, ptr);
590 }
591 return psy;
592 }
593 EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle);
594 #endif /* CONFIG_OF */
595
power_supply_get_battery_info(struct power_supply * psy,struct power_supply_battery_info ** info_out)596 int power_supply_get_battery_info(struct power_supply *psy,
597 struct power_supply_battery_info **info_out)
598 {
599 struct power_supply_resistance_temp_table *resist_table;
600 struct power_supply_battery_info *info;
601 struct device_node *battery_np = NULL;
602 struct fwnode_reference_args args;
603 struct fwnode_handle *fwnode = NULL;
604 const char *value;
605 int err, len, index;
606 const __be32 *list;
607 u32 min_max[2];
608
609 if (psy->of_node) {
610 battery_np = of_parse_phandle(psy->of_node, "monitored-battery", 0);
611 if (!battery_np)
612 return -ENODEV;
613
614 fwnode = fwnode_handle_get(of_fwnode_handle(battery_np));
615 } else if (psy->dev.parent) {
616 err = fwnode_property_get_reference_args(
617 dev_fwnode(psy->dev.parent),
618 "monitored-battery", NULL, 0, 0, &args);
619 if (err)
620 return err;
621
622 fwnode = args.fwnode;
623 }
624
625 if (!fwnode)
626 return -ENOENT;
627
628 err = fwnode_property_read_string(fwnode, "compatible", &value);
629 if (err)
630 goto out_put_node;
631
632
633 /* Try static batteries first */
634 err = samsung_sdi_battery_get_info(&psy->dev, value, &info);
635 if (!err)
636 goto out_ret_pointer;
637 else if (err == -ENODEV)
638 /*
639 * Device does not have a static battery.
640 * Proceed to look for a simple battery.
641 */
642 err = 0;
643
644 if (strcmp("simple-battery", value)) {
645 err = -ENODEV;
646 goto out_put_node;
647 }
648
649 info = devm_kzalloc(&psy->dev, sizeof(*info), GFP_KERNEL);
650 if (!info) {
651 err = -ENOMEM;
652 goto out_put_node;
653 }
654
655 info->technology = POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
656 info->energy_full_design_uwh = -EINVAL;
657 info->charge_full_design_uah = -EINVAL;
658 info->voltage_min_design_uv = -EINVAL;
659 info->voltage_max_design_uv = -EINVAL;
660 info->precharge_current_ua = -EINVAL;
661 info->charge_term_current_ua = -EINVAL;
662 info->constant_charge_current_max_ua = -EINVAL;
663 info->constant_charge_voltage_max_uv = -EINVAL;
664 info->tricklecharge_current_ua = -EINVAL;
665 info->precharge_voltage_max_uv = -EINVAL;
666 info->charge_restart_voltage_uv = -EINVAL;
667 info->overvoltage_limit_uv = -EINVAL;
668 info->maintenance_charge = NULL;
669 info->alert_low_temp_charge_current_ua = -EINVAL;
670 info->alert_low_temp_charge_voltage_uv = -EINVAL;
671 info->alert_high_temp_charge_current_ua = -EINVAL;
672 info->alert_high_temp_charge_voltage_uv = -EINVAL;
673 info->temp_ambient_alert_min = INT_MIN;
674 info->temp_ambient_alert_max = INT_MAX;
675 info->temp_alert_min = INT_MIN;
676 info->temp_alert_max = INT_MAX;
677 info->temp_min = INT_MIN;
678 info->temp_max = INT_MAX;
679 info->factory_internal_resistance_uohm = -EINVAL;
680 info->resist_table = NULL;
681 info->bti_resistance_ohm = -EINVAL;
682 info->bti_resistance_tolerance = -EINVAL;
683
684 for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) {
685 info->ocv_table[index] = NULL;
686 info->ocv_temp[index] = -EINVAL;
687 info->ocv_table_size[index] = -EINVAL;
688 }
689
690 /* The property and field names below must correspond to elements
691 * in enum power_supply_property. For reasoning, see
692 * Documentation/power/power_supply_class.rst.
693 */
694
695 if (!fwnode_property_read_string(fwnode, "device-chemistry", &value)) {
696 if (!strcmp("nickel-cadmium", value))
697 info->technology = POWER_SUPPLY_TECHNOLOGY_NiCd;
698 else if (!strcmp("nickel-metal-hydride", value))
699 info->technology = POWER_SUPPLY_TECHNOLOGY_NiMH;
700 else if (!strcmp("lithium-ion", value))
701 /* Imprecise lithium-ion type */
702 info->technology = POWER_SUPPLY_TECHNOLOGY_LION;
703 else if (!strcmp("lithium-ion-polymer", value))
704 info->technology = POWER_SUPPLY_TECHNOLOGY_LIPO;
705 else if (!strcmp("lithium-ion-iron-phosphate", value))
706 info->technology = POWER_SUPPLY_TECHNOLOGY_LiFe;
707 else if (!strcmp("lithium-ion-manganese-oxide", value))
708 info->technology = POWER_SUPPLY_TECHNOLOGY_LiMn;
709 else
710 dev_warn(&psy->dev, "%s unknown battery type\n", value);
711 }
712
713 fwnode_property_read_u32(fwnode, "energy-full-design-microwatt-hours",
714 &info->energy_full_design_uwh);
715 fwnode_property_read_u32(fwnode, "charge-full-design-microamp-hours",
716 &info->charge_full_design_uah);
717 fwnode_property_read_u32(fwnode, "voltage-min-design-microvolt",
718 &info->voltage_min_design_uv);
719 fwnode_property_read_u32(fwnode, "voltage-max-design-microvolt",
720 &info->voltage_max_design_uv);
721 fwnode_property_read_u32(fwnode, "trickle-charge-current-microamp",
722 &info->tricklecharge_current_ua);
723 fwnode_property_read_u32(fwnode, "precharge-current-microamp",
724 &info->precharge_current_ua);
725 fwnode_property_read_u32(fwnode, "precharge-upper-limit-microvolt",
726 &info->precharge_voltage_max_uv);
727 fwnode_property_read_u32(fwnode, "charge-term-current-microamp",
728 &info->charge_term_current_ua);
729 fwnode_property_read_u32(fwnode, "re-charge-voltage-microvolt",
730 &info->charge_restart_voltage_uv);
731 fwnode_property_read_u32(fwnode, "over-voltage-threshold-microvolt",
732 &info->overvoltage_limit_uv);
733 fwnode_property_read_u32(fwnode, "constant-charge-current-max-microamp",
734 &info->constant_charge_current_max_ua);
735 fwnode_property_read_u32(fwnode, "constant-charge-voltage-max-microvolt",
736 &info->constant_charge_voltage_max_uv);
737 fwnode_property_read_u32(fwnode, "factory-internal-resistance-micro-ohms",
738 &info->factory_internal_resistance_uohm);
739
740 if (!fwnode_property_read_u32_array(fwnode, "ambient-celsius",
741 min_max, ARRAY_SIZE(min_max))) {
742 info->temp_ambient_alert_min = min_max[0];
743 info->temp_ambient_alert_max = min_max[1];
744 }
745 if (!fwnode_property_read_u32_array(fwnode, "alert-celsius",
746 min_max, ARRAY_SIZE(min_max))) {
747 info->temp_alert_min = min_max[0];
748 info->temp_alert_max = min_max[1];
749 }
750 if (!fwnode_property_read_u32_array(fwnode, "operating-range-celsius",
751 min_max, ARRAY_SIZE(min_max))) {
752 info->temp_min = min_max[0];
753 info->temp_max = min_max[1];
754 }
755
756 /*
757 * The below code uses raw of-data parsing to parse
758 * /schemas/types.yaml#/definitions/uint32-matrix
759 * data, so for now this is only support with of.
760 */
761 if (!battery_np)
762 goto out_ret_pointer;
763
764 len = of_property_count_u32_elems(battery_np, "ocv-capacity-celsius");
765 if (len < 0 && len != -EINVAL) {
766 err = len;
767 goto out_put_node;
768 } else if (len > POWER_SUPPLY_OCV_TEMP_MAX) {
769 dev_err(&psy->dev, "Too many temperature values\n");
770 err = -EINVAL;
771 goto out_put_node;
772 } else if (len > 0) {
773 of_property_read_u32_array(battery_np, "ocv-capacity-celsius",
774 info->ocv_temp, len);
775 }
776
777 for (index = 0; index < len; index++) {
778 struct power_supply_battery_ocv_table *table;
779 int i, tab_len, size;
780
781 char *propname __free(kfree) = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d",
782 index);
783 if (!propname) {
784 power_supply_put_battery_info(psy, info);
785 err = -ENOMEM;
786 goto out_put_node;
787 }
788 list = of_get_property(battery_np, propname, &size);
789 if (!list || !size) {
790 dev_err(&psy->dev, "failed to get %s\n", propname);
791 power_supply_put_battery_info(psy, info);
792 err = -EINVAL;
793 goto out_put_node;
794 }
795
796 tab_len = size / (2 * sizeof(__be32));
797 info->ocv_table_size[index] = tab_len;
798
799 info->ocv_table[index] = table =
800 devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL);
801 if (!info->ocv_table[index]) {
802 power_supply_put_battery_info(psy, info);
803 err = -ENOMEM;
804 goto out_put_node;
805 }
806
807 for (i = 0; i < tab_len; i++) {
808 table[i].ocv = be32_to_cpu(*list);
809 list++;
810 table[i].capacity = be32_to_cpu(*list);
811 list++;
812 }
813 }
814
815 list = of_get_property(battery_np, "resistance-temp-table", &len);
816 if (!list || !len)
817 goto out_ret_pointer;
818
819 info->resist_table_size = len / (2 * sizeof(__be32));
820 info->resist_table = resist_table = devm_kcalloc(&psy->dev,
821 info->resist_table_size,
822 sizeof(*resist_table),
823 GFP_KERNEL);
824 if (!info->resist_table) {
825 power_supply_put_battery_info(psy, info);
826 err = -ENOMEM;
827 goto out_put_node;
828 }
829
830 for (index = 0; index < info->resist_table_size; index++) {
831 resist_table[index].temp = be32_to_cpu(*list++);
832 resist_table[index].resistance = be32_to_cpu(*list++);
833 }
834
835 out_ret_pointer:
836 /* Finally return the whole thing */
837 *info_out = info;
838
839 out_put_node:
840 fwnode_handle_put(fwnode);
841 of_node_put(battery_np);
842 return err;
843 }
844 EXPORT_SYMBOL_GPL(power_supply_get_battery_info);
845
power_supply_put_battery_info(struct power_supply * psy,struct power_supply_battery_info * info)846 void power_supply_put_battery_info(struct power_supply *psy,
847 struct power_supply_battery_info *info)
848 {
849 int i;
850
851 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
852 if (info->ocv_table[i])
853 devm_kfree(&psy->dev, info->ocv_table[i]);
854 }
855
856 if (info->resist_table)
857 devm_kfree(&psy->dev, info->resist_table);
858
859 devm_kfree(&psy->dev, info);
860 }
861 EXPORT_SYMBOL_GPL(power_supply_put_battery_info);
862
863 const enum power_supply_property power_supply_battery_info_properties[] = {
864 POWER_SUPPLY_PROP_TECHNOLOGY,
865 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
866 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
867 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
868 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
869 POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
870 POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
871 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
872 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
873 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
874 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
875 POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
876 POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
877 POWER_SUPPLY_PROP_TEMP_MIN,
878 POWER_SUPPLY_PROP_TEMP_MAX,
879 };
880 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties);
881
882 const size_t power_supply_battery_info_properties_size = ARRAY_SIZE(power_supply_battery_info_properties);
883 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties_size);
884
power_supply_battery_info_has_prop(struct power_supply_battery_info * info,enum power_supply_property psp)885 bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info,
886 enum power_supply_property psp)
887 {
888 if (!info)
889 return false;
890
891 switch (psp) {
892 case POWER_SUPPLY_PROP_TECHNOLOGY:
893 return info->technology != POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
894 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
895 return info->energy_full_design_uwh >= 0;
896 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
897 return info->charge_full_design_uah >= 0;
898 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
899 return info->voltage_min_design_uv >= 0;
900 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
901 return info->voltage_max_design_uv >= 0;
902 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
903 return info->precharge_current_ua >= 0;
904 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
905 return info->charge_term_current_ua >= 0;
906 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
907 return info->constant_charge_current_max_ua >= 0;
908 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
909 return info->constant_charge_voltage_max_uv >= 0;
910 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
911 return info->temp_ambient_alert_min > INT_MIN;
912 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
913 return info->temp_ambient_alert_max < INT_MAX;
914 case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
915 return info->temp_alert_min > INT_MIN;
916 case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
917 return info->temp_alert_max < INT_MAX;
918 case POWER_SUPPLY_PROP_TEMP_MIN:
919 return info->temp_min > INT_MIN;
920 case POWER_SUPPLY_PROP_TEMP_MAX:
921 return info->temp_max < INT_MAX;
922 default:
923 return false;
924 }
925 }
926 EXPORT_SYMBOL_GPL(power_supply_battery_info_has_prop);
927
power_supply_battery_info_get_prop(struct power_supply_battery_info * info,enum power_supply_property psp,union power_supply_propval * val)928 int power_supply_battery_info_get_prop(struct power_supply_battery_info *info,
929 enum power_supply_property psp,
930 union power_supply_propval *val)
931 {
932 if (!info)
933 return -EINVAL;
934
935 if (!power_supply_battery_info_has_prop(info, psp))
936 return -EINVAL;
937
938 switch (psp) {
939 case POWER_SUPPLY_PROP_TECHNOLOGY:
940 val->intval = info->technology;
941 return 0;
942 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
943 val->intval = info->energy_full_design_uwh;
944 return 0;
945 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
946 val->intval = info->charge_full_design_uah;
947 return 0;
948 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
949 val->intval = info->voltage_min_design_uv;
950 return 0;
951 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
952 val->intval = info->voltage_max_design_uv;
953 return 0;
954 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
955 val->intval = info->precharge_current_ua;
956 return 0;
957 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
958 val->intval = info->charge_term_current_ua;
959 return 0;
960 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
961 val->intval = info->constant_charge_current_max_ua;
962 return 0;
963 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
964 val->intval = info->constant_charge_voltage_max_uv;
965 return 0;
966 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
967 val->intval = info->temp_ambient_alert_min;
968 return 0;
969 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
970 val->intval = info->temp_ambient_alert_max;
971 return 0;
972 case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
973 val->intval = info->temp_alert_min;
974 return 0;
975 case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
976 val->intval = info->temp_alert_max;
977 return 0;
978 case POWER_SUPPLY_PROP_TEMP_MIN:
979 val->intval = info->temp_min;
980 return 0;
981 case POWER_SUPPLY_PROP_TEMP_MAX:
982 val->intval = info->temp_max;
983 return 0;
984 default:
985 return -EINVAL;
986 }
987 }
988 EXPORT_SYMBOL_GPL(power_supply_battery_info_get_prop);
989
990 /**
991 * power_supply_temp2resist_simple() - find the battery internal resistance
992 * percent from temperature
993 * @table: Pointer to battery resistance temperature table
994 * @table_len: The table length
995 * @temp: Current temperature
996 *
997 * This helper function is used to look up battery internal resistance percent
998 * according to current temperature value from the resistance temperature table,
999 * and the table must be ordered descending. Then the actual battery internal
1000 * resistance = the ideal battery internal resistance * percent / 100.
1001 *
1002 * Return: the battery internal resistance percent
1003 */
power_supply_temp2resist_simple(const struct power_supply_resistance_temp_table * table,int table_len,int temp)1004 int power_supply_temp2resist_simple(const struct power_supply_resistance_temp_table *table,
1005 int table_len, int temp)
1006 {
1007 int i, high, low;
1008
1009 for (i = 0; i < table_len; i++)
1010 if (temp > table[i].temp)
1011 break;
1012
1013 /* The library function will deal with high == low */
1014 if (i == 0)
1015 high = low = i;
1016 else if (i == table_len)
1017 high = low = i - 1;
1018 else
1019 high = (low = i) - 1;
1020
1021 return fixp_linear_interpolate(table[low].temp,
1022 table[low].resistance,
1023 table[high].temp,
1024 table[high].resistance,
1025 temp);
1026 }
1027 EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple);
1028
1029 /**
1030 * power_supply_vbat2ri() - find the battery internal resistance
1031 * from the battery voltage
1032 * @info: The battery information container
1033 * @vbat_uv: The battery voltage in microvolt
1034 * @charging: If we are charging (true) or not (false)
1035 *
1036 * This helper function is used to look up battery internal resistance
1037 * according to current battery voltage. Depending on whether the battery
1038 * is currently charging or not, different resistance will be returned.
1039 *
1040 * Returns the internal resistance in microohm or negative error code.
1041 */
power_supply_vbat2ri(struct power_supply_battery_info * info,int vbat_uv,bool charging)1042 int power_supply_vbat2ri(struct power_supply_battery_info *info,
1043 int vbat_uv, bool charging)
1044 {
1045 const struct power_supply_vbat_ri_table *vbat2ri;
1046 int table_len;
1047 int i, high, low;
1048
1049 /*
1050 * If we are charging, and the battery supplies a separate table
1051 * for this state, we use that in order to compensate for the
1052 * charging voltage. Otherwise we use the main table.
1053 */
1054 if (charging && info->vbat2ri_charging) {
1055 vbat2ri = info->vbat2ri_charging;
1056 table_len = info->vbat2ri_charging_size;
1057 } else {
1058 vbat2ri = info->vbat2ri_discharging;
1059 table_len = info->vbat2ri_discharging_size;
1060 }
1061
1062 /*
1063 * If no tables are specified, or if we are above the highest voltage in
1064 * the voltage table, just return the factory specified internal resistance.
1065 */
1066 if (!vbat2ri || (table_len <= 0) || (vbat_uv > vbat2ri[0].vbat_uv)) {
1067 if (charging && (info->factory_internal_resistance_charging_uohm > 0))
1068 return info->factory_internal_resistance_charging_uohm;
1069 else
1070 return info->factory_internal_resistance_uohm;
1071 }
1072
1073 /* Break loop at table_len - 1 because that is the highest index */
1074 for (i = 0; i < table_len - 1; i++)
1075 if (vbat_uv > vbat2ri[i].vbat_uv)
1076 break;
1077
1078 /* The library function will deal with high == low */
1079 if ((i == 0) || (i == (table_len - 1)))
1080 high = i;
1081 else
1082 high = i - 1;
1083 low = i;
1084
1085 return fixp_linear_interpolate(vbat2ri[low].vbat_uv,
1086 vbat2ri[low].ri_uohm,
1087 vbat2ri[high].vbat_uv,
1088 vbat2ri[high].ri_uohm,
1089 vbat_uv);
1090 }
1091 EXPORT_SYMBOL_GPL(power_supply_vbat2ri);
1092
1093 const struct power_supply_maintenance_charge_table *
power_supply_get_maintenance_charging_setting(struct power_supply_battery_info * info,int index)1094 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info,
1095 int index)
1096 {
1097 if (index >= info->maintenance_charge_size)
1098 return NULL;
1099 return &info->maintenance_charge[index];
1100 }
1101 EXPORT_SYMBOL_GPL(power_supply_get_maintenance_charging_setting);
1102
1103 /**
1104 * power_supply_ocv2cap_simple() - find the battery capacity
1105 * @table: Pointer to battery OCV lookup table
1106 * @table_len: OCV table length
1107 * @ocv: Current OCV value
1108 *
1109 * This helper function is used to look up battery capacity according to
1110 * current OCV value from one OCV table, and the OCV table must be ordered
1111 * descending.
1112 *
1113 * Return: the battery capacity.
1114 */
power_supply_ocv2cap_simple(const struct power_supply_battery_ocv_table * table,int table_len,int ocv)1115 int power_supply_ocv2cap_simple(const struct power_supply_battery_ocv_table *table,
1116 int table_len, int ocv)
1117 {
1118 int i, high, low;
1119
1120 for (i = 0; i < table_len; i++)
1121 if (ocv > table[i].ocv)
1122 break;
1123
1124 /* The library function will deal with high == low */
1125 if (i == 0)
1126 high = low = i;
1127 else if (i == table_len)
1128 high = low = i - 1;
1129 else
1130 high = (low = i) - 1;
1131
1132 return fixp_linear_interpolate(table[low].ocv,
1133 table[low].capacity,
1134 table[high].ocv,
1135 table[high].capacity,
1136 ocv);
1137 }
1138 EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple);
1139
1140 const struct power_supply_battery_ocv_table *
power_supply_find_ocv2cap_table(struct power_supply_battery_info * info,int temp,int * table_len)1141 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
1142 int temp, int *table_len)
1143 {
1144 int best_temp_diff = INT_MAX, temp_diff;
1145 u8 i, best_index = 0;
1146
1147 if (!info->ocv_table[0])
1148 return NULL;
1149
1150 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
1151 /* Out of capacity tables */
1152 if (!info->ocv_table[i])
1153 break;
1154
1155 temp_diff = abs(info->ocv_temp[i] - temp);
1156
1157 if (temp_diff < best_temp_diff) {
1158 best_temp_diff = temp_diff;
1159 best_index = i;
1160 }
1161 }
1162
1163 *table_len = info->ocv_table_size[best_index];
1164 return info->ocv_table[best_index];
1165 }
1166 EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table);
1167
power_supply_batinfo_ocv2cap(struct power_supply_battery_info * info,int ocv,int temp)1168 int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
1169 int ocv, int temp)
1170 {
1171 const struct power_supply_battery_ocv_table *table;
1172 int table_len;
1173
1174 table = power_supply_find_ocv2cap_table(info, temp, &table_len);
1175 if (!table)
1176 return -EINVAL;
1177
1178 return power_supply_ocv2cap_simple(table, table_len, ocv);
1179 }
1180 EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap);
1181
power_supply_battery_bti_in_range(struct power_supply_battery_info * info,int resistance)1182 bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
1183 int resistance)
1184 {
1185 int low, high;
1186
1187 /* Nothing like this can be checked */
1188 if (info->bti_resistance_ohm <= 0)
1189 return false;
1190
1191 /* This will be extremely strict and unlikely to work */
1192 if (info->bti_resistance_tolerance <= 0)
1193 return (info->bti_resistance_ohm == resistance);
1194
1195 low = info->bti_resistance_ohm -
1196 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1197 high = info->bti_resistance_ohm +
1198 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1199
1200 return ((resistance >= low) && (resistance <= high));
1201 }
1202 EXPORT_SYMBOL_GPL(power_supply_battery_bti_in_range);
1203
psy_desc_has_property(const struct power_supply_desc * psy_desc,enum power_supply_property psp)1204 static bool psy_desc_has_property(const struct power_supply_desc *psy_desc,
1205 enum power_supply_property psp)
1206 {
1207 bool found = false;
1208 int i;
1209
1210 for (i = 0; i < psy_desc->num_properties; i++) {
1211 if (psy_desc->properties[i] == psp) {
1212 found = true;
1213 break;
1214 }
1215 }
1216
1217 return found;
1218 }
1219
power_supply_ext_has_property(const struct power_supply_ext * psy_ext,enum power_supply_property psp)1220 bool power_supply_ext_has_property(const struct power_supply_ext *psy_ext,
1221 enum power_supply_property psp)
1222 {
1223 int i;
1224
1225 for (i = 0; i < psy_ext->num_properties; i++)
1226 if (psy_ext->properties[i] == psp)
1227 return true;
1228
1229 return false;
1230 }
1231
power_supply_has_property(struct power_supply * psy,enum power_supply_property psp)1232 bool power_supply_has_property(struct power_supply *psy,
1233 enum power_supply_property psp)
1234 {
1235 struct power_supply_ext_registration *reg;
1236
1237 if (psy_desc_has_property(psy->desc, psp))
1238 return true;
1239
1240 if (power_supply_battery_info_has_prop(psy->battery_info, psp))
1241 return true;
1242
1243 power_supply_for_each_extension(reg, psy) {
1244 if (power_supply_ext_has_property(reg->ext, psp))
1245 return true;
1246 }
1247
1248 return false;
1249 }
1250
power_supply_get_property(struct power_supply * psy,enum power_supply_property psp,union power_supply_propval * val)1251 int power_supply_get_property(struct power_supply *psy,
1252 enum power_supply_property psp,
1253 union power_supply_propval *val)
1254 {
1255 struct power_supply_ext_registration *reg;
1256
1257 if (atomic_read(&psy->use_cnt) <= 0) {
1258 if (!psy->initialized)
1259 return -EAGAIN;
1260 return -ENODEV;
1261 }
1262
1263 scoped_guard(rwsem_read, &psy->extensions_sem) {
1264 power_supply_for_each_extension(reg, psy) {
1265 if (power_supply_ext_has_property(reg->ext, psp))
1266 return reg->ext->get_property(psy, reg->ext, reg->data, psp, val);
1267 }
1268 }
1269
1270 if (psy_desc_has_property(psy->desc, psp))
1271 return psy->desc->get_property(psy, psp, val);
1272 else if (power_supply_battery_info_has_prop(psy->battery_info, psp))
1273 return power_supply_battery_info_get_prop(psy->battery_info, psp, val);
1274 else
1275 return -EINVAL;
1276 }
1277 EXPORT_SYMBOL_GPL(power_supply_get_property);
1278
power_supply_set_property(struct power_supply * psy,enum power_supply_property psp,const union power_supply_propval * val)1279 int power_supply_set_property(struct power_supply *psy,
1280 enum power_supply_property psp,
1281 const union power_supply_propval *val)
1282 {
1283 struct power_supply_ext_registration *reg;
1284
1285 if (atomic_read(&psy->use_cnt) <= 0)
1286 return -ENODEV;
1287
1288 scoped_guard(rwsem_read, &psy->extensions_sem) {
1289 power_supply_for_each_extension(reg, psy) {
1290 if (power_supply_ext_has_property(reg->ext, psp)) {
1291 if (reg->ext->set_property)
1292 return reg->ext->set_property(psy, reg->ext, reg->data,
1293 psp, val);
1294 else
1295 return -ENODEV;
1296 }
1297 }
1298 }
1299
1300 if (!psy->desc->set_property)
1301 return -ENODEV;
1302
1303 return psy->desc->set_property(psy, psp, val);
1304 }
1305 EXPORT_SYMBOL_GPL(power_supply_set_property);
1306
power_supply_property_is_writeable(struct power_supply * psy,enum power_supply_property psp)1307 int power_supply_property_is_writeable(struct power_supply *psy,
1308 enum power_supply_property psp)
1309 {
1310 struct power_supply_ext_registration *reg;
1311
1312 power_supply_for_each_extension(reg, psy) {
1313 if (power_supply_ext_has_property(reg->ext, psp)) {
1314 if (reg->ext->property_is_writeable)
1315 return reg->ext->property_is_writeable(psy, reg->ext,
1316 reg->data, psp);
1317 else
1318 return 0;
1319 }
1320 }
1321
1322 if (!psy->desc->property_is_writeable)
1323 return 0;
1324
1325 return psy->desc->property_is_writeable(psy, psp);
1326 }
1327
power_supply_external_power_changed(struct power_supply * psy)1328 void power_supply_external_power_changed(struct power_supply *psy)
1329 {
1330 if (atomic_read(&psy->use_cnt) <= 0 ||
1331 !psy->desc->external_power_changed)
1332 return;
1333
1334 psy->desc->external_power_changed(psy);
1335 }
1336 EXPORT_SYMBOL_GPL(power_supply_external_power_changed);
1337
power_supply_powers(struct power_supply * psy,struct device * dev)1338 int power_supply_powers(struct power_supply *psy, struct device *dev)
1339 {
1340 return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers");
1341 }
1342 EXPORT_SYMBOL_GPL(power_supply_powers);
1343
power_supply_update_sysfs_and_hwmon(struct power_supply * psy)1344 static int power_supply_update_sysfs_and_hwmon(struct power_supply *psy)
1345 {
1346 unsigned long flags;
1347
1348 spin_lock_irqsave(&psy->changed_lock, flags);
1349 psy->update_groups = true;
1350 spin_unlock_irqrestore(&psy->changed_lock, flags);
1351
1352 power_supply_changed(psy);
1353
1354 power_supply_remove_hwmon_sysfs(psy);
1355 return power_supply_add_hwmon_sysfs(psy);
1356 }
1357
power_supply_register_extension(struct power_supply * psy,const struct power_supply_ext * ext,struct device * dev,void * data)1358 int power_supply_register_extension(struct power_supply *psy, const struct power_supply_ext *ext,
1359 struct device *dev, void *data)
1360 {
1361 struct power_supply_ext_registration *reg;
1362 size_t i;
1363 int ret;
1364
1365 if (!psy || !dev || !ext || !ext->name || !ext->properties || !ext->num_properties)
1366 return -EINVAL;
1367
1368 guard(rwsem_write)(&psy->extensions_sem);
1369
1370 power_supply_for_each_extension(reg, psy)
1371 if (strcmp(ext->name, reg->ext->name) == 0)
1372 return -EEXIST;
1373
1374 for (i = 0; i < ext->num_properties; i++)
1375 if (power_supply_has_property(psy, ext->properties[i]))
1376 return -EEXIST;
1377
1378 reg = kmalloc(sizeof(*reg), GFP_KERNEL);
1379 if (!reg)
1380 return -ENOMEM;
1381
1382 reg->ext = ext;
1383 reg->dev = dev;
1384 reg->data = data;
1385 list_add(®->list_head, &psy->extensions);
1386
1387 ret = power_supply_sysfs_add_extension(psy, ext, dev);
1388 if (ret)
1389 goto sysfs_add_failed;
1390
1391 ret = power_supply_update_sysfs_and_hwmon(psy);
1392 if (ret)
1393 goto sysfs_hwmon_failed;
1394
1395 return 0;
1396
1397 sysfs_hwmon_failed:
1398 power_supply_sysfs_remove_extension(psy, ext);
1399 sysfs_add_failed:
1400 list_del(®->list_head);
1401 kfree(reg);
1402 return ret;
1403 }
1404 EXPORT_SYMBOL_GPL(power_supply_register_extension);
1405
power_supply_unregister_extension(struct power_supply * psy,const struct power_supply_ext * ext)1406 void power_supply_unregister_extension(struct power_supply *psy, const struct power_supply_ext *ext)
1407 {
1408 struct power_supply_ext_registration *reg;
1409
1410 guard(rwsem_write)(&psy->extensions_sem);
1411
1412 power_supply_for_each_extension(reg, psy) {
1413 if (reg->ext == ext) {
1414 list_del(®->list_head);
1415 power_supply_sysfs_remove_extension(psy, ext);
1416 kfree(reg);
1417 power_supply_update_sysfs_and_hwmon(psy);
1418 return;
1419 }
1420 }
1421
1422 dev_warn(&psy->dev, "Trying to unregister invalid extension");
1423 }
1424 EXPORT_SYMBOL_GPL(power_supply_unregister_extension);
1425
power_supply_dev_release(struct device * dev)1426 static void power_supply_dev_release(struct device *dev)
1427 {
1428 struct power_supply *psy = to_power_supply(dev);
1429
1430 dev_dbg(dev, "%s\n", __func__);
1431 kfree(psy);
1432 }
1433
power_supply_reg_notifier(struct notifier_block * nb)1434 int power_supply_reg_notifier(struct notifier_block *nb)
1435 {
1436 return blocking_notifier_chain_register(&power_supply_notifier, nb);
1437 }
1438 EXPORT_SYMBOL_GPL(power_supply_reg_notifier);
1439
power_supply_unreg_notifier(struct notifier_block * nb)1440 void power_supply_unreg_notifier(struct notifier_block *nb)
1441 {
1442 blocking_notifier_chain_unregister(&power_supply_notifier, nb);
1443 }
1444 EXPORT_SYMBOL_GPL(power_supply_unreg_notifier);
1445
1446 #ifdef CONFIG_THERMAL
power_supply_read_temp(struct thermal_zone_device * tzd,int * temp)1447 static int power_supply_read_temp(struct thermal_zone_device *tzd,
1448 int *temp)
1449 {
1450 struct power_supply *psy;
1451 union power_supply_propval val;
1452 int ret;
1453
1454 WARN_ON(tzd == NULL);
1455 psy = thermal_zone_device_priv(tzd);
1456 ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val);
1457 if (ret)
1458 return ret;
1459
1460 /* Convert tenths of degree Celsius to milli degree Celsius. */
1461 *temp = val.intval * 100;
1462
1463 return ret;
1464 }
1465
1466 static const struct thermal_zone_device_ops psy_tzd_ops = {
1467 .get_temp = power_supply_read_temp,
1468 };
1469
psy_register_thermal(struct power_supply * psy)1470 static int psy_register_thermal(struct power_supply *psy)
1471 {
1472 int ret;
1473
1474 if (psy->desc->no_thermal)
1475 return 0;
1476
1477 /* Register battery zone device psy reports temperature */
1478 if (psy_desc_has_property(psy->desc, POWER_SUPPLY_PROP_TEMP)) {
1479 /* Prefer our hwmon device and avoid duplicates */
1480 struct thermal_zone_params tzp = {
1481 .no_hwmon = IS_ENABLED(CONFIG_POWER_SUPPLY_HWMON)
1482 };
1483 psy->tzd = thermal_tripless_zone_device_register(psy->desc->name,
1484 psy, &psy_tzd_ops, &tzp);
1485 if (IS_ERR(psy->tzd))
1486 return PTR_ERR(psy->tzd);
1487 ret = thermal_zone_device_enable(psy->tzd);
1488 if (ret)
1489 thermal_zone_device_unregister(psy->tzd);
1490 return ret;
1491 }
1492
1493 return 0;
1494 }
1495
psy_unregister_thermal(struct power_supply * psy)1496 static void psy_unregister_thermal(struct power_supply *psy)
1497 {
1498 if (IS_ERR_OR_NULL(psy->tzd))
1499 return;
1500 thermal_zone_device_unregister(psy->tzd);
1501 }
1502
1503 #else
psy_register_thermal(struct power_supply * psy)1504 static int psy_register_thermal(struct power_supply *psy)
1505 {
1506 return 0;
1507 }
1508
psy_unregister_thermal(struct power_supply * psy)1509 static void psy_unregister_thermal(struct power_supply *psy)
1510 {
1511 }
1512 #endif
1513
1514 static struct power_supply *__must_check
__power_supply_register(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1515 __power_supply_register(struct device *parent,
1516 const struct power_supply_desc *desc,
1517 const struct power_supply_config *cfg)
1518 {
1519 struct device *dev;
1520 struct power_supply *psy;
1521 int rc;
1522
1523 if (!desc || !desc->name || !desc->properties || !desc->num_properties)
1524 return ERR_PTR(-EINVAL);
1525
1526 if (!parent)
1527 pr_warn("%s: Expected proper parent device for '%s'\n",
1528 __func__, desc->name);
1529
1530 psy = kzalloc(sizeof(*psy), GFP_KERNEL);
1531 if (!psy)
1532 return ERR_PTR(-ENOMEM);
1533
1534 dev = &psy->dev;
1535
1536 device_initialize(dev);
1537
1538 dev->class = &power_supply_class;
1539 dev->type = &power_supply_dev_type;
1540 dev->parent = parent;
1541 dev->release = power_supply_dev_release;
1542 dev_set_drvdata(dev, psy);
1543 psy->desc = desc;
1544 if (cfg) {
1545 dev->groups = cfg->attr_grp;
1546 psy->drv_data = cfg->drv_data;
1547 psy->of_node =
1548 cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node;
1549 dev->of_node = psy->of_node;
1550 psy->supplied_to = cfg->supplied_to;
1551 psy->num_supplicants = cfg->num_supplicants;
1552 }
1553
1554 rc = dev_set_name(dev, "%s", desc->name);
1555 if (rc)
1556 goto dev_set_name_failed;
1557
1558 INIT_WORK(&psy->changed_work, power_supply_changed_work);
1559 INIT_DELAYED_WORK(&psy->deferred_register_work,
1560 power_supply_deferred_register_work);
1561
1562 rc = power_supply_check_supplies(psy);
1563 if (rc) {
1564 dev_dbg(dev, "Not all required supplies found, defer probe\n");
1565 goto check_supplies_failed;
1566 }
1567
1568 /*
1569 * Expose constant battery info, if it is available. While there are
1570 * some chargers accessing constant battery data, we only want to
1571 * expose battery data to userspace for battery devices.
1572 */
1573 if (desc->type == POWER_SUPPLY_TYPE_BATTERY) {
1574 rc = power_supply_get_battery_info(psy, &psy->battery_info);
1575 if (rc && rc != -ENODEV && rc != -ENOENT)
1576 goto check_supplies_failed;
1577 }
1578
1579 spin_lock_init(&psy->changed_lock);
1580 init_rwsem(&psy->extensions_sem);
1581 INIT_LIST_HEAD(&psy->extensions);
1582
1583 rc = device_add(dev);
1584 if (rc)
1585 goto device_add_failed;
1586
1587 rc = device_init_wakeup(dev, cfg ? !cfg->no_wakeup_source : true);
1588 if (rc)
1589 goto wakeup_init_failed;
1590
1591 rc = psy_register_thermal(psy);
1592 if (rc)
1593 goto register_thermal_failed;
1594
1595 rc = power_supply_create_triggers(psy);
1596 if (rc)
1597 goto create_triggers_failed;
1598
1599 scoped_guard(rwsem_read, &psy->extensions_sem) {
1600 rc = power_supply_add_hwmon_sysfs(psy);
1601 if (rc)
1602 goto add_hwmon_sysfs_failed;
1603 }
1604
1605 /*
1606 * Update use_cnt after any uevents (most notably from device_add()).
1607 * We are here still during driver's probe but
1608 * the power_supply_uevent() calls back driver's get_property
1609 * method so:
1610 * 1. Driver did not assigned the returned struct power_supply,
1611 * 2. Driver could not finish initialization (anything in its probe
1612 * after calling power_supply_register()).
1613 */
1614 atomic_inc(&psy->use_cnt);
1615 psy->initialized = true;
1616
1617 queue_delayed_work(system_power_efficient_wq,
1618 &psy->deferred_register_work,
1619 POWER_SUPPLY_DEFERRED_REGISTER_TIME);
1620
1621 return psy;
1622
1623 add_hwmon_sysfs_failed:
1624 power_supply_remove_triggers(psy);
1625 create_triggers_failed:
1626 psy_unregister_thermal(psy);
1627 register_thermal_failed:
1628 wakeup_init_failed:
1629 device_del(dev);
1630 device_add_failed:
1631 check_supplies_failed:
1632 dev_set_name_failed:
1633 put_device(dev);
1634 return ERR_PTR(rc);
1635 }
1636
1637 /**
1638 * power_supply_register() - Register new power supply
1639 * @parent: Device to be a parent of power supply's device, usually
1640 * the device which probe function calls this
1641 * @desc: Description of power supply, must be valid through whole
1642 * lifetime of this power supply
1643 * @cfg: Run-time specific configuration accessed during registering,
1644 * may be NULL
1645 *
1646 * Return: A pointer to newly allocated power_supply on success
1647 * or ERR_PTR otherwise.
1648 * Use power_supply_unregister() on returned power_supply pointer to release
1649 * resources.
1650 */
power_supply_register(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1651 struct power_supply *__must_check power_supply_register(struct device *parent,
1652 const struct power_supply_desc *desc,
1653 const struct power_supply_config *cfg)
1654 {
1655 return __power_supply_register(parent, desc, cfg);
1656 }
1657 EXPORT_SYMBOL_GPL(power_supply_register);
1658
devm_power_supply_release(struct device * dev,void * res)1659 static void devm_power_supply_release(struct device *dev, void *res)
1660 {
1661 struct power_supply **psy = res;
1662
1663 power_supply_unregister(*psy);
1664 }
1665
1666 /**
1667 * devm_power_supply_register() - Register managed power supply
1668 * @parent: Device to be a parent of power supply's device, usually
1669 * the device which probe function calls this
1670 * @desc: Description of power supply, must be valid through whole
1671 * lifetime of this power supply
1672 * @cfg: Run-time specific configuration accessed during registering,
1673 * may be NULL
1674 *
1675 * Return: A pointer to newly allocated power_supply on success
1676 * or ERR_PTR otherwise.
1677 * The returned power_supply pointer will be automatically unregistered
1678 * on driver detach.
1679 */
1680 struct power_supply *__must_check
devm_power_supply_register(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1681 devm_power_supply_register(struct device *parent,
1682 const struct power_supply_desc *desc,
1683 const struct power_supply_config *cfg)
1684 {
1685 struct power_supply **ptr, *psy;
1686
1687 ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1688
1689 if (!ptr)
1690 return ERR_PTR(-ENOMEM);
1691 psy = __power_supply_register(parent, desc, cfg);
1692 if (IS_ERR(psy)) {
1693 devres_free(ptr);
1694 } else {
1695 *ptr = psy;
1696 devres_add(parent, ptr);
1697 }
1698 return psy;
1699 }
1700 EXPORT_SYMBOL_GPL(devm_power_supply_register);
1701
1702 /**
1703 * power_supply_unregister() - Remove this power supply from system
1704 * @psy: Pointer to power supply to unregister
1705 *
1706 * Remove this power supply from the system. The resources of power supply
1707 * will be freed here or on last power_supply_put() call.
1708 */
power_supply_unregister(struct power_supply * psy)1709 void power_supply_unregister(struct power_supply *psy)
1710 {
1711 WARN_ON(atomic_dec_return(&psy->use_cnt));
1712 psy->removing = true;
1713 cancel_work_sync(&psy->changed_work);
1714 cancel_delayed_work_sync(&psy->deferred_register_work);
1715 sysfs_remove_link(&psy->dev.kobj, "powers");
1716 power_supply_remove_hwmon_sysfs(psy);
1717 power_supply_remove_triggers(psy);
1718 psy_unregister_thermal(psy);
1719 device_init_wakeup(&psy->dev, false);
1720 device_unregister(&psy->dev);
1721 }
1722 EXPORT_SYMBOL_GPL(power_supply_unregister);
1723
power_supply_get_drvdata(struct power_supply * psy)1724 void *power_supply_get_drvdata(struct power_supply *psy)
1725 {
1726 return psy->drv_data;
1727 }
1728 EXPORT_SYMBOL_GPL(power_supply_get_drvdata);
1729
power_supply_class_init(void)1730 static int __init power_supply_class_init(void)
1731 {
1732 power_supply_init_attrs();
1733 return class_register(&power_supply_class);
1734 }
1735
power_supply_class_exit(void)1736 static void __exit power_supply_class_exit(void)
1737 {
1738 class_unregister(&power_supply_class);
1739 }
1740
1741 subsys_initcall(power_supply_class_init);
1742 module_exit(power_supply_class_exit);
1743
1744 MODULE_DESCRIPTION("Universal power supply monitor class");
1745 MODULE_AUTHOR("Ian Molton <spyro@f2s.com>");
1746 MODULE_AUTHOR("Szabolcs Gyurko");
1747 MODULE_AUTHOR("Anton Vorontsov <cbou@mail.ru>");
1748