xref: /linux/drivers/power/supply/power_supply_core.c (revision 334426094588f8179fe175a09ecc887ff0c75758)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Universal power supply monitor class
4  *
5  *  Copyright © 2007  Anton Vorontsov <cbou@mail.ru>
6  *  Copyright © 2004  Szabolcs Gyurko
7  *  Copyright © 2003  Ian Molton <spyro@f2s.com>
8  *
9  *  Modified: 2004, Oct     Szabolcs Gyurko
10  */
11 
12 #include <linux/cleanup.h>
13 #include <linux/module.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/device.h>
19 #include <linux/notifier.h>
20 #include <linux/err.h>
21 #include <linux/of.h>
22 #include <linux/power_supply.h>
23 #include <linux/property.h>
24 #include <linux/thermal.h>
25 #include <linux/fixp-arith.h>
26 #include "power_supply.h"
27 #include "samsung-sdi-battery.h"
28 
29 static const struct class power_supply_class = {
30 	.name = "power_supply",
31 	.dev_uevent = power_supply_uevent,
32 };
33 
34 static BLOCKING_NOTIFIER_HEAD(power_supply_notifier);
35 
36 static const struct device_type power_supply_dev_type = {
37 	.name = "power_supply",
38 	.groups = power_supply_attr_groups,
39 };
40 
41 #define POWER_SUPPLY_DEFERRED_REGISTER_TIME	msecs_to_jiffies(10)
42 
__power_supply_is_supplied_by(struct power_supply * supplier,struct power_supply * supply)43 static bool __power_supply_is_supplied_by(struct power_supply *supplier,
44 					 struct power_supply *supply)
45 {
46 	int i;
47 
48 	if (!supply->supplied_from && !supplier->supplied_to)
49 		return false;
50 
51 	/* Support both supplied_to and supplied_from modes */
52 	if (supply->supplied_from) {
53 		if (!supplier->desc->name)
54 			return false;
55 		for (i = 0; i < supply->num_supplies; i++)
56 			if (!strcmp(supplier->desc->name, supply->supplied_from[i]))
57 				return true;
58 	} else {
59 		if (!supply->desc->name)
60 			return false;
61 		for (i = 0; i < supplier->num_supplicants; i++)
62 			if (!strcmp(supplier->supplied_to[i], supply->desc->name))
63 				return true;
64 	}
65 
66 	return false;
67 }
68 
__power_supply_changed_work(struct power_supply * pst,void * data)69 static int __power_supply_changed_work(struct power_supply *pst, void *data)
70 {
71 	struct power_supply *psy = data;
72 
73 	if (__power_supply_is_supplied_by(psy, pst))
74 		power_supply_external_power_changed(pst);
75 
76 	return 0;
77 }
78 
power_supply_changed_work(struct work_struct * work)79 static void power_supply_changed_work(struct work_struct *work)
80 {
81 	int ret;
82 	unsigned long flags;
83 	struct power_supply *psy = container_of(work, struct power_supply,
84 						changed_work);
85 
86 	dev_dbg(&psy->dev, "%s\n", __func__);
87 
88 	spin_lock_irqsave(&psy->changed_lock, flags);
89 
90 	if (unlikely(psy->update_groups)) {
91 		psy->update_groups = false;
92 		spin_unlock_irqrestore(&psy->changed_lock, flags);
93 		ret = sysfs_update_groups(&psy->dev.kobj, power_supply_dev_type.groups);
94 		if (ret)
95 			dev_warn(&psy->dev, "failed to update sysfs groups: %pe\n", ERR_PTR(ret));
96 		spin_lock_irqsave(&psy->changed_lock, flags);
97 	}
98 
99 	/*
100 	 * Check 'changed' here to avoid issues due to race between
101 	 * power_supply_changed() and this routine. In worst case
102 	 * power_supply_changed() can be called again just before we take above
103 	 * lock. During the first call of this routine we will mark 'changed' as
104 	 * false and it will stay false for the next call as well.
105 	 */
106 	if (likely(psy->changed)) {
107 		psy->changed = false;
108 		spin_unlock_irqrestore(&psy->changed_lock, flags);
109 		power_supply_for_each_psy(psy, __power_supply_changed_work);
110 		power_supply_update_leds(psy);
111 		blocking_notifier_call_chain(&power_supply_notifier,
112 				PSY_EVENT_PROP_CHANGED, psy);
113 		kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE);
114 		spin_lock_irqsave(&psy->changed_lock, flags);
115 	}
116 
117 	/*
118 	 * Hold the wakeup_source until all events are processed.
119 	 * power_supply_changed() might have called again and have set 'changed'
120 	 * to true.
121 	 */
122 	if (likely(!psy->changed))
123 		pm_relax(&psy->dev);
124 	spin_unlock_irqrestore(&psy->changed_lock, flags);
125 }
126 
127 struct psy_for_each_psy_cb_data {
128 	int (*fn)(struct power_supply *psy, void *data);
129 	void *data;
130 };
131 
psy_for_each_psy_cb(struct device * dev,void * data)132 static int psy_for_each_psy_cb(struct device *dev, void *data)
133 {
134 	struct psy_for_each_psy_cb_data *cb_data = data;
135 	struct power_supply *psy = dev_to_psy(dev);
136 
137 	return cb_data->fn(psy, cb_data->data);
138 }
139 
power_supply_for_each_psy(void * data,int (* fn)(struct power_supply * psy,void * data))140 int power_supply_for_each_psy(void *data, int (*fn)(struct power_supply *psy, void *data))
141 {
142 	struct psy_for_each_psy_cb_data cb_data = {
143 		.fn = fn,
144 		.data = data,
145 	};
146 
147 	return class_for_each_device(&power_supply_class, NULL, &cb_data, psy_for_each_psy_cb);
148 }
149 EXPORT_SYMBOL_GPL(power_supply_for_each_psy);
150 
power_supply_changed(struct power_supply * psy)151 void power_supply_changed(struct power_supply *psy)
152 {
153 	unsigned long flags;
154 
155 	dev_dbg(&psy->dev, "%s\n", __func__);
156 
157 	spin_lock_irqsave(&psy->changed_lock, flags);
158 	psy->changed = true;
159 	pm_stay_awake(&psy->dev);
160 	spin_unlock_irqrestore(&psy->changed_lock, flags);
161 	schedule_work(&psy->changed_work);
162 }
163 EXPORT_SYMBOL_GPL(power_supply_changed);
164 
165 /*
166  * Notify that power supply was registered after parent finished the probing.
167  *
168  * Often power supply is registered from driver's probe function. However
169  * calling power_supply_changed() directly from power_supply_register()
170  * would lead to execution of get_property() function provided by the driver
171  * too early - before the probe ends.
172  *
173  * Avoid that by waiting on parent's mutex.
174  */
power_supply_deferred_register_work(struct work_struct * work)175 static void power_supply_deferred_register_work(struct work_struct *work)
176 {
177 	struct power_supply *psy = container_of(work, struct power_supply,
178 						deferred_register_work.work);
179 
180 	if (psy->dev.parent) {
181 		while (!device_trylock(psy->dev.parent)) {
182 			if (psy->removing)
183 				return;
184 			msleep(10);
185 		}
186 	}
187 
188 	power_supply_changed(psy);
189 
190 	if (psy->dev.parent)
191 		device_unlock(psy->dev.parent);
192 }
193 
194 #ifdef CONFIG_OF
__power_supply_populate_supplied_from(struct power_supply * epsy,void * data)195 static int __power_supply_populate_supplied_from(struct power_supply *epsy,
196 						 void *data)
197 {
198 	struct power_supply *psy = data;
199 	struct device_node *np;
200 	int i = 0;
201 
202 	do {
203 		np = of_parse_phandle(psy->of_node, "power-supplies", i++);
204 		if (!np)
205 			break;
206 
207 		if (np == epsy->of_node) {
208 			dev_dbg(&psy->dev, "%s: Found supply : %s\n",
209 				psy->desc->name, epsy->desc->name);
210 			psy->supplied_from[i-1] = (char *)epsy->desc->name;
211 			psy->num_supplies++;
212 			of_node_put(np);
213 			break;
214 		}
215 		of_node_put(np);
216 	} while (np);
217 
218 	return 0;
219 }
220 
power_supply_populate_supplied_from(struct power_supply * psy)221 static int power_supply_populate_supplied_from(struct power_supply *psy)
222 {
223 	int error;
224 
225 	error = power_supply_for_each_psy(psy, __power_supply_populate_supplied_from);
226 
227 	dev_dbg(&psy->dev, "%s %d\n", __func__, error);
228 
229 	return error;
230 }
231 
__power_supply_find_supply_from_node(struct power_supply * epsy,void * data)232 static int  __power_supply_find_supply_from_node(struct power_supply *epsy,
233 						 void *data)
234 {
235 	struct device_node *np = data;
236 
237 	/* returning non-zero breaks out of power_supply_for_each_psy loop */
238 	if (epsy->of_node == np)
239 		return 1;
240 
241 	return 0;
242 }
243 
power_supply_find_supply_from_node(struct device_node * supply_node)244 static int power_supply_find_supply_from_node(struct device_node *supply_node)
245 {
246 	int error;
247 
248 	/*
249 	 * power_supply_for_each_psy() either returns its own errors or values
250 	 * returned by __power_supply_find_supply_from_node().
251 	 *
252 	 * __power_supply_find_supply_from_node() will return 0 (no match)
253 	 * or 1 (match).
254 	 *
255 	 * We return 0 if power_supply_for_each_psy() returned 1, -EPROBE_DEFER if
256 	 * it returned 0, or error as returned by it.
257 	 */
258 	error = power_supply_for_each_psy(supply_node, __power_supply_find_supply_from_node);
259 
260 	return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER;
261 }
262 
power_supply_check_supplies(struct power_supply * psy)263 static int power_supply_check_supplies(struct power_supply *psy)
264 {
265 	struct device_node *np;
266 	int cnt = 0;
267 
268 	/* If there is already a list honor it */
269 	if (psy->supplied_from && psy->num_supplies > 0)
270 		return 0;
271 
272 	/* No device node found, nothing to do */
273 	if (!psy->of_node)
274 		return 0;
275 
276 	do {
277 		int ret;
278 
279 		np = of_parse_phandle(psy->of_node, "power-supplies", cnt++);
280 		if (!np)
281 			break;
282 
283 		ret = power_supply_find_supply_from_node(np);
284 		of_node_put(np);
285 
286 		if (ret) {
287 			dev_dbg(&psy->dev, "Failed to find supply!\n");
288 			return ret;
289 		}
290 	} while (np);
291 
292 	/* Missing valid "power-supplies" entries */
293 	if (cnt == 1)
294 		return 0;
295 
296 	/* All supplies found, allocate char ** array for filling */
297 	psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(*psy->supplied_from),
298 					  GFP_KERNEL);
299 	if (!psy->supplied_from)
300 		return -ENOMEM;
301 
302 	*psy->supplied_from = devm_kcalloc(&psy->dev,
303 					   cnt - 1, sizeof(**psy->supplied_from),
304 					   GFP_KERNEL);
305 	if (!*psy->supplied_from)
306 		return -ENOMEM;
307 
308 	return power_supply_populate_supplied_from(psy);
309 }
310 #else
power_supply_check_supplies(struct power_supply * psy)311 static int power_supply_check_supplies(struct power_supply *psy)
312 {
313 	int nval, ret;
314 
315 	if (!psy->dev.parent)
316 		return 0;
317 
318 	nval = device_property_string_array_count(psy->dev.parent, "supplied-from");
319 	if (nval <= 0)
320 		return 0;
321 
322 	psy->supplied_from = devm_kmalloc_array(&psy->dev, nval,
323 						sizeof(char *), GFP_KERNEL);
324 	if (!psy->supplied_from)
325 		return -ENOMEM;
326 
327 	ret = device_property_read_string_array(psy->dev.parent,
328 		"supplied-from", (const char **)psy->supplied_from, nval);
329 	if (ret < 0)
330 		return ret;
331 
332 	psy->num_supplies = nval;
333 
334 	return 0;
335 }
336 #endif
337 
338 struct psy_am_i_supplied_data {
339 	struct power_supply *psy;
340 	unsigned int count;
341 };
342 
__power_supply_am_i_supplied(struct power_supply * epsy,void * _data)343 static int __power_supply_am_i_supplied(struct power_supply *epsy, void *_data)
344 {
345 	union power_supply_propval ret = {0,};
346 	struct psy_am_i_supplied_data *data = _data;
347 
348 	if (__power_supply_is_supplied_by(epsy, data->psy)) {
349 		data->count++;
350 		if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE,
351 					&ret))
352 			return ret.intval;
353 	}
354 
355 	return 0;
356 }
357 
power_supply_am_i_supplied(struct power_supply * psy)358 int power_supply_am_i_supplied(struct power_supply *psy)
359 {
360 	struct psy_am_i_supplied_data data = { psy, 0 };
361 	int error;
362 
363 	error = power_supply_for_each_psy(&data, __power_supply_am_i_supplied);
364 
365 	dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error);
366 
367 	if (data.count == 0)
368 		return -ENODEV;
369 
370 	return error;
371 }
372 EXPORT_SYMBOL_GPL(power_supply_am_i_supplied);
373 
__power_supply_is_system_supplied(struct power_supply * psy,void * data)374 static int __power_supply_is_system_supplied(struct power_supply *psy, void *data)
375 {
376 	union power_supply_propval ret = {0,};
377 	unsigned int *count = data;
378 
379 	if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_SCOPE, &ret))
380 		if (ret.intval == POWER_SUPPLY_SCOPE_DEVICE)
381 			return 0;
382 
383 	(*count)++;
384 	if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY)
385 		if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE,
386 					&ret))
387 			return ret.intval;
388 
389 	return 0;
390 }
391 
power_supply_is_system_supplied(void)392 int power_supply_is_system_supplied(void)
393 {
394 	int error;
395 	unsigned int count = 0;
396 
397 	error = power_supply_for_each_psy(&count, __power_supply_is_system_supplied);
398 
399 	/*
400 	 * If no system scope power class device was found at all, most probably we
401 	 * are running on a desktop system, so assume we are on mains power.
402 	 */
403 	if (count == 0)
404 		return 1;
405 
406 	return error;
407 }
408 EXPORT_SYMBOL_GPL(power_supply_is_system_supplied);
409 
410 struct psy_get_supplier_prop_data {
411 	struct power_supply *psy;
412 	enum power_supply_property psp;
413 	union power_supply_propval *val;
414 };
415 
__power_supply_get_supplier_property(struct power_supply * epsy,void * _data)416 static int __power_supply_get_supplier_property(struct power_supply *epsy, void *_data)
417 {
418 	struct psy_get_supplier_prop_data *data = _data;
419 
420 	if (__power_supply_is_supplied_by(epsy, data->psy))
421 		if (!power_supply_get_property(epsy, data->psp, data->val))
422 			return 1; /* Success */
423 
424 	return 0; /* Continue iterating */
425 }
426 
power_supply_get_property_from_supplier(struct power_supply * psy,enum power_supply_property psp,union power_supply_propval * val)427 int power_supply_get_property_from_supplier(struct power_supply *psy,
428 					    enum power_supply_property psp,
429 					    union power_supply_propval *val)
430 {
431 	struct psy_get_supplier_prop_data data = {
432 		.psy = psy,
433 		.psp = psp,
434 		.val = val,
435 	};
436 	int ret;
437 
438 	/*
439 	 * This function is not intended for use with a supply with multiple
440 	 * suppliers, we simply pick the first supply to report the psp.
441 	 */
442 	ret = power_supply_for_each_psy(&data, __power_supply_get_supplier_property);
443 	if (ret < 0)
444 		return ret;
445 	if (ret == 0)
446 		return -ENODEV;
447 
448 	return 0;
449 }
450 EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier);
451 
power_supply_set_battery_charged(struct power_supply * psy)452 int power_supply_set_battery_charged(struct power_supply *psy)
453 {
454 	if (atomic_read(&psy->use_cnt) >= 0 &&
455 			psy->desc->type == POWER_SUPPLY_TYPE_BATTERY &&
456 			psy->desc->set_charged) {
457 		psy->desc->set_charged(psy);
458 		return 0;
459 	}
460 
461 	return -EINVAL;
462 }
463 EXPORT_SYMBOL_GPL(power_supply_set_battery_charged);
464 
power_supply_match_device_by_name(struct device * dev,const void * data)465 static int power_supply_match_device_by_name(struct device *dev, const void *data)
466 {
467 	const char *name = data;
468 	struct power_supply *psy = dev_to_psy(dev);
469 
470 	return strcmp(psy->desc->name, name) == 0;
471 }
472 
473 /**
474  * power_supply_get_by_name() - Search for a power supply and returns its ref
475  * @name: Power supply name to fetch
476  *
477  * If power supply was found, it increases reference count for the
478  * internal power supply's device. The user should power_supply_put()
479  * after usage.
480  *
481  * Return: On success returns a reference to a power supply with
482  * matching name equals to @name, a NULL otherwise.
483  */
power_supply_get_by_name(const char * name)484 struct power_supply *power_supply_get_by_name(const char *name)
485 {
486 	struct power_supply *psy = NULL;
487 	struct device *dev = class_find_device(&power_supply_class, NULL, name,
488 					       power_supply_match_device_by_name);
489 
490 	if (dev) {
491 		psy = dev_to_psy(dev);
492 		atomic_inc(&psy->use_cnt);
493 	}
494 
495 	return psy;
496 }
497 EXPORT_SYMBOL_GPL(power_supply_get_by_name);
498 
499 /**
500  * power_supply_put() - Drop reference obtained with power_supply_get_by_name
501  * @psy: Reference to put
502  *
503  * The reference to power supply should be put before unregistering
504  * the power supply.
505  */
power_supply_put(struct power_supply * psy)506 void power_supply_put(struct power_supply *psy)
507 {
508 	atomic_dec(&psy->use_cnt);
509 	put_device(&psy->dev);
510 }
511 EXPORT_SYMBOL_GPL(power_supply_put);
512 
513 #ifdef CONFIG_OF
power_supply_match_device_node(struct device * dev,const void * data)514 static int power_supply_match_device_node(struct device *dev, const void *data)
515 {
516 	return dev->parent && dev->parent->of_node == data;
517 }
518 
519 /**
520  * power_supply_get_by_phandle() - Search for a power supply and returns its ref
521  * @np: Pointer to device node holding phandle property
522  * @property: Name of property holding a power supply name
523  *
524  * If power supply was found, it increases reference count for the
525  * internal power supply's device. The user should power_supply_put()
526  * after usage.
527  *
528  * Return: On success returns a reference to a power supply with
529  * matching name equals to value under @property, NULL or ERR_PTR otherwise.
530  */
power_supply_get_by_phandle(struct device_node * np,const char * property)531 struct power_supply *power_supply_get_by_phandle(struct device_node *np,
532 							const char *property)
533 {
534 	struct device_node *power_supply_np;
535 	struct power_supply *psy = NULL;
536 	struct device *dev;
537 
538 	power_supply_np = of_parse_phandle(np, property, 0);
539 	if (!power_supply_np)
540 		return ERR_PTR(-ENODEV);
541 
542 	dev = class_find_device(&power_supply_class, NULL, power_supply_np,
543 				power_supply_match_device_node);
544 
545 	of_node_put(power_supply_np);
546 
547 	if (dev) {
548 		psy = dev_to_psy(dev);
549 		atomic_inc(&psy->use_cnt);
550 	}
551 
552 	return psy;
553 }
554 EXPORT_SYMBOL_GPL(power_supply_get_by_phandle);
555 
devm_power_supply_put(struct device * dev,void * res)556 static void devm_power_supply_put(struct device *dev, void *res)
557 {
558 	struct power_supply **psy = res;
559 
560 	power_supply_put(*psy);
561 }
562 
563 /**
564  * devm_power_supply_get_by_phandle() - Resource managed version of
565  *  power_supply_get_by_phandle()
566  * @dev: Pointer to device holding phandle property
567  * @property: Name of property holding a power supply phandle
568  *
569  * Return: On success returns a reference to a power supply with
570  * matching name equals to value under @property, NULL or ERR_PTR otherwise.
571  */
devm_power_supply_get_by_phandle(struct device * dev,const char * property)572 struct power_supply *devm_power_supply_get_by_phandle(struct device *dev,
573 						      const char *property)
574 {
575 	struct power_supply **ptr, *psy;
576 
577 	if (!dev->of_node)
578 		return ERR_PTR(-ENODEV);
579 
580 	ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL);
581 	if (!ptr)
582 		return ERR_PTR(-ENOMEM);
583 
584 	psy = power_supply_get_by_phandle(dev->of_node, property);
585 	if (IS_ERR_OR_NULL(psy)) {
586 		devres_free(ptr);
587 	} else {
588 		*ptr = psy;
589 		devres_add(dev, ptr);
590 	}
591 	return psy;
592 }
593 EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle);
594 #endif /* CONFIG_OF */
595 
power_supply_get_battery_info(struct power_supply * psy,struct power_supply_battery_info ** info_out)596 int power_supply_get_battery_info(struct power_supply *psy,
597 				  struct power_supply_battery_info **info_out)
598 {
599 	struct power_supply_resistance_temp_table *resist_table;
600 	struct power_supply_battery_info *info;
601 	struct device_node *battery_np = NULL;
602 	struct fwnode_reference_args args;
603 	struct fwnode_handle *fwnode = NULL;
604 	const char *value;
605 	int err, len, index;
606 	const __be32 *list;
607 	u32 min_max[2];
608 
609 	if (psy->of_node) {
610 		battery_np = of_parse_phandle(psy->of_node, "monitored-battery", 0);
611 		if (!battery_np)
612 			return -ENODEV;
613 
614 		fwnode = fwnode_handle_get(of_fwnode_handle(battery_np));
615 	} else if (psy->dev.parent) {
616 		err = fwnode_property_get_reference_args(
617 					dev_fwnode(psy->dev.parent),
618 					"monitored-battery", NULL, 0, 0, &args);
619 		if (err)
620 			return err;
621 
622 		fwnode = args.fwnode;
623 	}
624 
625 	if (!fwnode)
626 		return -ENOENT;
627 
628 	err = fwnode_property_read_string(fwnode, "compatible", &value);
629 	if (err)
630 		goto out_put_node;
631 
632 
633 	/* Try static batteries first */
634 	err = samsung_sdi_battery_get_info(&psy->dev, value, &info);
635 	if (!err)
636 		goto out_ret_pointer;
637 	else if (err == -ENODEV)
638 		/*
639 		 * Device does not have a static battery.
640 		 * Proceed to look for a simple battery.
641 		 */
642 		err = 0;
643 
644 	if (strcmp("simple-battery", value)) {
645 		err = -ENODEV;
646 		goto out_put_node;
647 	}
648 
649 	info = devm_kzalloc(&psy->dev, sizeof(*info), GFP_KERNEL);
650 	if (!info) {
651 		err = -ENOMEM;
652 		goto out_put_node;
653 	}
654 
655 	info->technology                     = POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
656 	info->energy_full_design_uwh         = -EINVAL;
657 	info->charge_full_design_uah         = -EINVAL;
658 	info->voltage_min_design_uv          = -EINVAL;
659 	info->voltage_max_design_uv          = -EINVAL;
660 	info->precharge_current_ua           = -EINVAL;
661 	info->charge_term_current_ua         = -EINVAL;
662 	info->constant_charge_current_max_ua = -EINVAL;
663 	info->constant_charge_voltage_max_uv = -EINVAL;
664 	info->tricklecharge_current_ua       = -EINVAL;
665 	info->precharge_voltage_max_uv       = -EINVAL;
666 	info->charge_restart_voltage_uv      = -EINVAL;
667 	info->overvoltage_limit_uv           = -EINVAL;
668 	info->maintenance_charge             = NULL;
669 	info->alert_low_temp_charge_current_ua = -EINVAL;
670 	info->alert_low_temp_charge_voltage_uv = -EINVAL;
671 	info->alert_high_temp_charge_current_ua = -EINVAL;
672 	info->alert_high_temp_charge_voltage_uv = -EINVAL;
673 	info->temp_ambient_alert_min         = INT_MIN;
674 	info->temp_ambient_alert_max         = INT_MAX;
675 	info->temp_alert_min                 = INT_MIN;
676 	info->temp_alert_max                 = INT_MAX;
677 	info->temp_min                       = INT_MIN;
678 	info->temp_max                       = INT_MAX;
679 	info->factory_internal_resistance_uohm  = -EINVAL;
680 	info->resist_table                   = NULL;
681 	info->bti_resistance_ohm             = -EINVAL;
682 	info->bti_resistance_tolerance       = -EINVAL;
683 
684 	for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) {
685 		info->ocv_table[index]       = NULL;
686 		info->ocv_temp[index]        = -EINVAL;
687 		info->ocv_table_size[index]  = -EINVAL;
688 	}
689 
690 	/* The property and field names below must correspond to elements
691 	 * in enum power_supply_property. For reasoning, see
692 	 * Documentation/power/power_supply_class.rst.
693 	 */
694 
695 	if (!fwnode_property_read_string(fwnode, "device-chemistry", &value)) {
696 		if (!strcmp("nickel-cadmium", value))
697 			info->technology = POWER_SUPPLY_TECHNOLOGY_NiCd;
698 		else if (!strcmp("nickel-metal-hydride", value))
699 			info->technology = POWER_SUPPLY_TECHNOLOGY_NiMH;
700 		else if (!strcmp("lithium-ion", value))
701 			/* Imprecise lithium-ion type */
702 			info->technology = POWER_SUPPLY_TECHNOLOGY_LION;
703 		else if (!strcmp("lithium-ion-polymer", value))
704 			info->technology = POWER_SUPPLY_TECHNOLOGY_LIPO;
705 		else if (!strcmp("lithium-ion-iron-phosphate", value))
706 			info->technology = POWER_SUPPLY_TECHNOLOGY_LiFe;
707 		else if (!strcmp("lithium-ion-manganese-oxide", value))
708 			info->technology = POWER_SUPPLY_TECHNOLOGY_LiMn;
709 		else
710 			dev_warn(&psy->dev, "%s unknown battery type\n", value);
711 	}
712 
713 	fwnode_property_read_u32(fwnode, "energy-full-design-microwatt-hours",
714 			     &info->energy_full_design_uwh);
715 	fwnode_property_read_u32(fwnode, "charge-full-design-microamp-hours",
716 			     &info->charge_full_design_uah);
717 	fwnode_property_read_u32(fwnode, "voltage-min-design-microvolt",
718 			     &info->voltage_min_design_uv);
719 	fwnode_property_read_u32(fwnode, "voltage-max-design-microvolt",
720 			     &info->voltage_max_design_uv);
721 	fwnode_property_read_u32(fwnode, "trickle-charge-current-microamp",
722 			     &info->tricklecharge_current_ua);
723 	fwnode_property_read_u32(fwnode, "precharge-current-microamp",
724 			     &info->precharge_current_ua);
725 	fwnode_property_read_u32(fwnode, "precharge-upper-limit-microvolt",
726 			     &info->precharge_voltage_max_uv);
727 	fwnode_property_read_u32(fwnode, "charge-term-current-microamp",
728 			     &info->charge_term_current_ua);
729 	fwnode_property_read_u32(fwnode, "re-charge-voltage-microvolt",
730 			     &info->charge_restart_voltage_uv);
731 	fwnode_property_read_u32(fwnode, "over-voltage-threshold-microvolt",
732 			     &info->overvoltage_limit_uv);
733 	fwnode_property_read_u32(fwnode, "constant-charge-current-max-microamp",
734 			     &info->constant_charge_current_max_ua);
735 	fwnode_property_read_u32(fwnode, "constant-charge-voltage-max-microvolt",
736 			     &info->constant_charge_voltage_max_uv);
737 	fwnode_property_read_u32(fwnode, "factory-internal-resistance-micro-ohms",
738 			     &info->factory_internal_resistance_uohm);
739 
740 	if (!fwnode_property_read_u32_array(fwnode, "ambient-celsius",
741 					    min_max, ARRAY_SIZE(min_max))) {
742 		info->temp_ambient_alert_min = min_max[0];
743 		info->temp_ambient_alert_max = min_max[1];
744 	}
745 	if (!fwnode_property_read_u32_array(fwnode, "alert-celsius",
746 					    min_max, ARRAY_SIZE(min_max))) {
747 		info->temp_alert_min = min_max[0];
748 		info->temp_alert_max = min_max[1];
749 	}
750 	if (!fwnode_property_read_u32_array(fwnode, "operating-range-celsius",
751 					    min_max, ARRAY_SIZE(min_max))) {
752 		info->temp_min = min_max[0];
753 		info->temp_max = min_max[1];
754 	}
755 
756 	/*
757 	 * The below code uses raw of-data parsing to parse
758 	 * /schemas/types.yaml#/definitions/uint32-matrix
759 	 * data, so for now this is only support with of.
760 	 */
761 	if (!battery_np)
762 		goto out_ret_pointer;
763 
764 	len = of_property_count_u32_elems(battery_np, "ocv-capacity-celsius");
765 	if (len < 0 && len != -EINVAL) {
766 		err = len;
767 		goto out_put_node;
768 	} else if (len > POWER_SUPPLY_OCV_TEMP_MAX) {
769 		dev_err(&psy->dev, "Too many temperature values\n");
770 		err = -EINVAL;
771 		goto out_put_node;
772 	} else if (len > 0) {
773 		of_property_read_u32_array(battery_np, "ocv-capacity-celsius",
774 					   info->ocv_temp, len);
775 	}
776 
777 	for (index = 0; index < len; index++) {
778 		struct power_supply_battery_ocv_table *table;
779 		int i, tab_len, size;
780 
781 		char *propname __free(kfree) = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d",
782 							 index);
783 		if (!propname) {
784 			power_supply_put_battery_info(psy, info);
785 			err = -ENOMEM;
786 			goto out_put_node;
787 		}
788 		list = of_get_property(battery_np, propname, &size);
789 		if (!list || !size) {
790 			dev_err(&psy->dev, "failed to get %s\n", propname);
791 			power_supply_put_battery_info(psy, info);
792 			err = -EINVAL;
793 			goto out_put_node;
794 		}
795 
796 		tab_len = size / (2 * sizeof(__be32));
797 		info->ocv_table_size[index] = tab_len;
798 
799 		info->ocv_table[index] = table =
800 			devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL);
801 		if (!info->ocv_table[index]) {
802 			power_supply_put_battery_info(psy, info);
803 			err = -ENOMEM;
804 			goto out_put_node;
805 		}
806 
807 		for (i = 0; i < tab_len; i++) {
808 			table[i].ocv = be32_to_cpu(*list);
809 			list++;
810 			table[i].capacity = be32_to_cpu(*list);
811 			list++;
812 		}
813 	}
814 
815 	list = of_get_property(battery_np, "resistance-temp-table", &len);
816 	if (!list || !len)
817 		goto out_ret_pointer;
818 
819 	info->resist_table_size = len / (2 * sizeof(__be32));
820 	info->resist_table = resist_table = devm_kcalloc(&psy->dev,
821 							 info->resist_table_size,
822 							 sizeof(*resist_table),
823 							 GFP_KERNEL);
824 	if (!info->resist_table) {
825 		power_supply_put_battery_info(psy, info);
826 		err = -ENOMEM;
827 		goto out_put_node;
828 	}
829 
830 	for (index = 0; index < info->resist_table_size; index++) {
831 		resist_table[index].temp = be32_to_cpu(*list++);
832 		resist_table[index].resistance = be32_to_cpu(*list++);
833 	}
834 
835 out_ret_pointer:
836 	/* Finally return the whole thing */
837 	*info_out = info;
838 
839 out_put_node:
840 	fwnode_handle_put(fwnode);
841 	of_node_put(battery_np);
842 	return err;
843 }
844 EXPORT_SYMBOL_GPL(power_supply_get_battery_info);
845 
power_supply_put_battery_info(struct power_supply * psy,struct power_supply_battery_info * info)846 void power_supply_put_battery_info(struct power_supply *psy,
847 				   struct power_supply_battery_info *info)
848 {
849 	int i;
850 
851 	for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
852 		if (info->ocv_table[i])
853 			devm_kfree(&psy->dev, info->ocv_table[i]);
854 	}
855 
856 	if (info->resist_table)
857 		devm_kfree(&psy->dev, info->resist_table);
858 
859 	devm_kfree(&psy->dev, info);
860 }
861 EXPORT_SYMBOL_GPL(power_supply_put_battery_info);
862 
863 const enum power_supply_property power_supply_battery_info_properties[] = {
864 	POWER_SUPPLY_PROP_TECHNOLOGY,
865 	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
866 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
867 	POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
868 	POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
869 	POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
870 	POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
871 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
872 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
873 	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
874 	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
875 	POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
876 	POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
877 	POWER_SUPPLY_PROP_TEMP_MIN,
878 	POWER_SUPPLY_PROP_TEMP_MAX,
879 };
880 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties);
881 
882 const size_t power_supply_battery_info_properties_size = ARRAY_SIZE(power_supply_battery_info_properties);
883 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties_size);
884 
power_supply_battery_info_has_prop(struct power_supply_battery_info * info,enum power_supply_property psp)885 bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info,
886 					enum power_supply_property psp)
887 {
888 	if (!info)
889 		return false;
890 
891 	switch (psp) {
892 	case POWER_SUPPLY_PROP_TECHNOLOGY:
893 		return info->technology != POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
894 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
895 		return info->energy_full_design_uwh >= 0;
896 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
897 		return info->charge_full_design_uah >= 0;
898 	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
899 		return info->voltage_min_design_uv >= 0;
900 	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
901 		return info->voltage_max_design_uv >= 0;
902 	case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
903 		return info->precharge_current_ua >= 0;
904 	case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
905 		return info->charge_term_current_ua >= 0;
906 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
907 		return info->constant_charge_current_max_ua >= 0;
908 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
909 		return info->constant_charge_voltage_max_uv >= 0;
910 	case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
911 		return info->temp_ambient_alert_min > INT_MIN;
912 	case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
913 		return info->temp_ambient_alert_max < INT_MAX;
914 	case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
915 		return info->temp_alert_min > INT_MIN;
916 	case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
917 		return info->temp_alert_max < INT_MAX;
918 	case POWER_SUPPLY_PROP_TEMP_MIN:
919 		return info->temp_min > INT_MIN;
920 	case POWER_SUPPLY_PROP_TEMP_MAX:
921 		return info->temp_max < INT_MAX;
922 	default:
923 		return false;
924 	}
925 }
926 EXPORT_SYMBOL_GPL(power_supply_battery_info_has_prop);
927 
power_supply_battery_info_get_prop(struct power_supply_battery_info * info,enum power_supply_property psp,union power_supply_propval * val)928 int power_supply_battery_info_get_prop(struct power_supply_battery_info *info,
929 				       enum power_supply_property psp,
930 				       union power_supply_propval *val)
931 {
932 	if (!info)
933 		return -EINVAL;
934 
935 	if (!power_supply_battery_info_has_prop(info, psp))
936 		return -EINVAL;
937 
938 	switch (psp) {
939 	case POWER_SUPPLY_PROP_TECHNOLOGY:
940 		val->intval = info->technology;
941 		return 0;
942 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
943 		val->intval = info->energy_full_design_uwh;
944 		return 0;
945 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
946 		val->intval = info->charge_full_design_uah;
947 		return 0;
948 	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
949 		val->intval = info->voltage_min_design_uv;
950 		return 0;
951 	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
952 		val->intval = info->voltage_max_design_uv;
953 		return 0;
954 	case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
955 		val->intval = info->precharge_current_ua;
956 		return 0;
957 	case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
958 		val->intval = info->charge_term_current_ua;
959 		return 0;
960 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
961 		val->intval = info->constant_charge_current_max_ua;
962 		return 0;
963 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
964 		val->intval = info->constant_charge_voltage_max_uv;
965 		return 0;
966 	case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
967 		val->intval = info->temp_ambient_alert_min;
968 		return 0;
969 	case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
970 		val->intval = info->temp_ambient_alert_max;
971 		return 0;
972 	case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
973 		val->intval = info->temp_alert_min;
974 		return 0;
975 	case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
976 		val->intval = info->temp_alert_max;
977 		return 0;
978 	case POWER_SUPPLY_PROP_TEMP_MIN:
979 		val->intval = info->temp_min;
980 		return 0;
981 	case POWER_SUPPLY_PROP_TEMP_MAX:
982 		val->intval = info->temp_max;
983 		return 0;
984 	default:
985 		return -EINVAL;
986 	}
987 }
988 EXPORT_SYMBOL_GPL(power_supply_battery_info_get_prop);
989 
990 /**
991  * power_supply_temp2resist_simple() - find the battery internal resistance
992  * percent from temperature
993  * @table: Pointer to battery resistance temperature table
994  * @table_len: The table length
995  * @temp: Current temperature
996  *
997  * This helper function is used to look up battery internal resistance percent
998  * according to current temperature value from the resistance temperature table,
999  * and the table must be ordered descending. Then the actual battery internal
1000  * resistance = the ideal battery internal resistance * percent / 100.
1001  *
1002  * Return: the battery internal resistance percent
1003  */
power_supply_temp2resist_simple(const struct power_supply_resistance_temp_table * table,int table_len,int temp)1004 int power_supply_temp2resist_simple(const struct power_supply_resistance_temp_table *table,
1005 				    int table_len, int temp)
1006 {
1007 	int i, high, low;
1008 
1009 	for (i = 0; i < table_len; i++)
1010 		if (temp > table[i].temp)
1011 			break;
1012 
1013 	/* The library function will deal with high == low */
1014 	if (i == 0)
1015 		high = low = i;
1016 	else if (i == table_len)
1017 		high = low = i - 1;
1018 	else
1019 		high = (low = i) - 1;
1020 
1021 	return fixp_linear_interpolate(table[low].temp,
1022 				       table[low].resistance,
1023 				       table[high].temp,
1024 				       table[high].resistance,
1025 				       temp);
1026 }
1027 EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple);
1028 
1029 /**
1030  * power_supply_vbat2ri() - find the battery internal resistance
1031  * from the battery voltage
1032  * @info: The battery information container
1033  * @vbat_uv: The battery voltage in microvolt
1034  * @charging: If we are charging (true) or not (false)
1035  *
1036  * This helper function is used to look up battery internal resistance
1037  * according to current battery voltage. Depending on whether the battery
1038  * is currently charging or not, different resistance will be returned.
1039  *
1040  * Returns the internal resistance in microohm or negative error code.
1041  */
power_supply_vbat2ri(struct power_supply_battery_info * info,int vbat_uv,bool charging)1042 int power_supply_vbat2ri(struct power_supply_battery_info *info,
1043 			 int vbat_uv, bool charging)
1044 {
1045 	const struct power_supply_vbat_ri_table *vbat2ri;
1046 	int table_len;
1047 	int i, high, low;
1048 
1049 	/*
1050 	 * If we are charging, and the battery supplies a separate table
1051 	 * for this state, we use that in order to compensate for the
1052 	 * charging voltage. Otherwise we use the main table.
1053 	 */
1054 	if (charging && info->vbat2ri_charging) {
1055 		vbat2ri = info->vbat2ri_charging;
1056 		table_len = info->vbat2ri_charging_size;
1057 	} else {
1058 		vbat2ri = info->vbat2ri_discharging;
1059 		table_len = info->vbat2ri_discharging_size;
1060 	}
1061 
1062 	/*
1063 	 * If no tables are specified, or if we are above the highest voltage in
1064 	 * the voltage table, just return the factory specified internal resistance.
1065 	 */
1066 	if (!vbat2ri || (table_len <= 0) || (vbat_uv > vbat2ri[0].vbat_uv)) {
1067 		if (charging && (info->factory_internal_resistance_charging_uohm > 0))
1068 			return info->factory_internal_resistance_charging_uohm;
1069 		else
1070 			return info->factory_internal_resistance_uohm;
1071 	}
1072 
1073 	/* Break loop at table_len - 1 because that is the highest index */
1074 	for (i = 0; i < table_len - 1; i++)
1075 		if (vbat_uv > vbat2ri[i].vbat_uv)
1076 			break;
1077 
1078 	/* The library function will deal with high == low */
1079 	if ((i == 0) || (i == (table_len - 1)))
1080 		high = i;
1081 	else
1082 		high = i - 1;
1083 	low = i;
1084 
1085 	return fixp_linear_interpolate(vbat2ri[low].vbat_uv,
1086 				       vbat2ri[low].ri_uohm,
1087 				       vbat2ri[high].vbat_uv,
1088 				       vbat2ri[high].ri_uohm,
1089 				       vbat_uv);
1090 }
1091 EXPORT_SYMBOL_GPL(power_supply_vbat2ri);
1092 
1093 const struct power_supply_maintenance_charge_table *
power_supply_get_maintenance_charging_setting(struct power_supply_battery_info * info,int index)1094 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info,
1095 					      int index)
1096 {
1097 	if (index >= info->maintenance_charge_size)
1098 		return NULL;
1099 	return &info->maintenance_charge[index];
1100 }
1101 EXPORT_SYMBOL_GPL(power_supply_get_maintenance_charging_setting);
1102 
1103 /**
1104  * power_supply_ocv2cap_simple() - find the battery capacity
1105  * @table: Pointer to battery OCV lookup table
1106  * @table_len: OCV table length
1107  * @ocv: Current OCV value
1108  *
1109  * This helper function is used to look up battery capacity according to
1110  * current OCV value from one OCV table, and the OCV table must be ordered
1111  * descending.
1112  *
1113  * Return: the battery capacity.
1114  */
power_supply_ocv2cap_simple(const struct power_supply_battery_ocv_table * table,int table_len,int ocv)1115 int power_supply_ocv2cap_simple(const struct power_supply_battery_ocv_table *table,
1116 				int table_len, int ocv)
1117 {
1118 	int i, high, low;
1119 
1120 	for (i = 0; i < table_len; i++)
1121 		if (ocv > table[i].ocv)
1122 			break;
1123 
1124 	/* The library function will deal with high == low */
1125 	if (i == 0)
1126 		high = low = i;
1127 	else if (i == table_len)
1128 		high = low = i - 1;
1129 	else
1130 		high = (low = i) - 1;
1131 
1132 	return fixp_linear_interpolate(table[low].ocv,
1133 				       table[low].capacity,
1134 				       table[high].ocv,
1135 				       table[high].capacity,
1136 				       ocv);
1137 }
1138 EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple);
1139 
1140 const struct power_supply_battery_ocv_table *
power_supply_find_ocv2cap_table(struct power_supply_battery_info * info,int temp,int * table_len)1141 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
1142 				int temp, int *table_len)
1143 {
1144 	int best_temp_diff = INT_MAX, temp_diff;
1145 	u8 i, best_index = 0;
1146 
1147 	if (!info->ocv_table[0])
1148 		return NULL;
1149 
1150 	for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
1151 		/* Out of capacity tables */
1152 		if (!info->ocv_table[i])
1153 			break;
1154 
1155 		temp_diff = abs(info->ocv_temp[i] - temp);
1156 
1157 		if (temp_diff < best_temp_diff) {
1158 			best_temp_diff = temp_diff;
1159 			best_index = i;
1160 		}
1161 	}
1162 
1163 	*table_len = info->ocv_table_size[best_index];
1164 	return info->ocv_table[best_index];
1165 }
1166 EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table);
1167 
power_supply_batinfo_ocv2cap(struct power_supply_battery_info * info,int ocv,int temp)1168 int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
1169 				 int ocv, int temp)
1170 {
1171 	const struct power_supply_battery_ocv_table *table;
1172 	int table_len;
1173 
1174 	table = power_supply_find_ocv2cap_table(info, temp, &table_len);
1175 	if (!table)
1176 		return -EINVAL;
1177 
1178 	return power_supply_ocv2cap_simple(table, table_len, ocv);
1179 }
1180 EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap);
1181 
power_supply_battery_bti_in_range(struct power_supply_battery_info * info,int resistance)1182 bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
1183 				       int resistance)
1184 {
1185 	int low, high;
1186 
1187 	/* Nothing like this can be checked */
1188 	if (info->bti_resistance_ohm <= 0)
1189 		return false;
1190 
1191 	/* This will be extremely strict and unlikely to work */
1192 	if (info->bti_resistance_tolerance <= 0)
1193 		return (info->bti_resistance_ohm == resistance);
1194 
1195 	low = info->bti_resistance_ohm -
1196 		(info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1197 	high = info->bti_resistance_ohm +
1198 		(info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1199 
1200 	return ((resistance >= low) && (resistance <= high));
1201 }
1202 EXPORT_SYMBOL_GPL(power_supply_battery_bti_in_range);
1203 
psy_desc_has_property(const struct power_supply_desc * psy_desc,enum power_supply_property psp)1204 static bool psy_desc_has_property(const struct power_supply_desc *psy_desc,
1205 				  enum power_supply_property psp)
1206 {
1207 	bool found = false;
1208 	int i;
1209 
1210 	for (i = 0; i < psy_desc->num_properties; i++) {
1211 		if (psy_desc->properties[i] == psp) {
1212 			found = true;
1213 			break;
1214 		}
1215 	}
1216 
1217 	return found;
1218 }
1219 
power_supply_ext_has_property(const struct power_supply_ext * psy_ext,enum power_supply_property psp)1220 bool power_supply_ext_has_property(const struct power_supply_ext *psy_ext,
1221 				   enum power_supply_property psp)
1222 {
1223 	int i;
1224 
1225 	for (i = 0; i < psy_ext->num_properties; i++)
1226 		if (psy_ext->properties[i] == psp)
1227 			return true;
1228 
1229 	return false;
1230 }
1231 
power_supply_has_property(struct power_supply * psy,enum power_supply_property psp)1232 bool power_supply_has_property(struct power_supply *psy,
1233 			       enum power_supply_property psp)
1234 {
1235 	struct power_supply_ext_registration *reg;
1236 
1237 	if (psy_desc_has_property(psy->desc, psp))
1238 		return true;
1239 
1240 	if (power_supply_battery_info_has_prop(psy->battery_info, psp))
1241 		return true;
1242 
1243 	power_supply_for_each_extension(reg, psy) {
1244 		if (power_supply_ext_has_property(reg->ext, psp))
1245 			return true;
1246 	}
1247 
1248 	return false;
1249 }
1250 
power_supply_get_property(struct power_supply * psy,enum power_supply_property psp,union power_supply_propval * val)1251 int power_supply_get_property(struct power_supply *psy,
1252 			    enum power_supply_property psp,
1253 			    union power_supply_propval *val)
1254 {
1255 	struct power_supply_ext_registration *reg;
1256 
1257 	if (atomic_read(&psy->use_cnt) <= 0) {
1258 		if (!psy->initialized)
1259 			return -EAGAIN;
1260 		return -ENODEV;
1261 	}
1262 
1263 	scoped_guard(rwsem_read, &psy->extensions_sem) {
1264 		power_supply_for_each_extension(reg, psy) {
1265 			if (power_supply_ext_has_property(reg->ext, psp))
1266 				return reg->ext->get_property(psy, reg->ext, reg->data, psp, val);
1267 		}
1268 	}
1269 
1270 	if (psy_desc_has_property(psy->desc, psp))
1271 		return psy->desc->get_property(psy, psp, val);
1272 	else if (power_supply_battery_info_has_prop(psy->battery_info, psp))
1273 		return power_supply_battery_info_get_prop(psy->battery_info, psp, val);
1274 	else
1275 		return -EINVAL;
1276 }
1277 EXPORT_SYMBOL_GPL(power_supply_get_property);
1278 
power_supply_set_property(struct power_supply * psy,enum power_supply_property psp,const union power_supply_propval * val)1279 int power_supply_set_property(struct power_supply *psy,
1280 			    enum power_supply_property psp,
1281 			    const union power_supply_propval *val)
1282 {
1283 	struct power_supply_ext_registration *reg;
1284 
1285 	if (atomic_read(&psy->use_cnt) <= 0)
1286 		return -ENODEV;
1287 
1288 	scoped_guard(rwsem_read, &psy->extensions_sem) {
1289 		power_supply_for_each_extension(reg, psy) {
1290 			if (power_supply_ext_has_property(reg->ext, psp)) {
1291 				if (reg->ext->set_property)
1292 					return reg->ext->set_property(psy, reg->ext, reg->data,
1293 								      psp, val);
1294 				else
1295 					return -ENODEV;
1296 			}
1297 		}
1298 	}
1299 
1300 	if (!psy->desc->set_property)
1301 		return -ENODEV;
1302 
1303 	return psy->desc->set_property(psy, psp, val);
1304 }
1305 EXPORT_SYMBOL_GPL(power_supply_set_property);
1306 
power_supply_property_is_writeable(struct power_supply * psy,enum power_supply_property psp)1307 int power_supply_property_is_writeable(struct power_supply *psy,
1308 					enum power_supply_property psp)
1309 {
1310 	struct power_supply_ext_registration *reg;
1311 
1312 	power_supply_for_each_extension(reg, psy) {
1313 		if (power_supply_ext_has_property(reg->ext, psp)) {
1314 			if (reg->ext->property_is_writeable)
1315 				return reg->ext->property_is_writeable(psy, reg->ext,
1316 								       reg->data, psp);
1317 			else
1318 				return 0;
1319 		}
1320 	}
1321 
1322 	if (!psy->desc->property_is_writeable)
1323 		return 0;
1324 
1325 	return psy->desc->property_is_writeable(psy, psp);
1326 }
1327 
power_supply_external_power_changed(struct power_supply * psy)1328 void power_supply_external_power_changed(struct power_supply *psy)
1329 {
1330 	if (atomic_read(&psy->use_cnt) <= 0 ||
1331 			!psy->desc->external_power_changed)
1332 		return;
1333 
1334 	psy->desc->external_power_changed(psy);
1335 }
1336 EXPORT_SYMBOL_GPL(power_supply_external_power_changed);
1337 
power_supply_powers(struct power_supply * psy,struct device * dev)1338 int power_supply_powers(struct power_supply *psy, struct device *dev)
1339 {
1340 	return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers");
1341 }
1342 EXPORT_SYMBOL_GPL(power_supply_powers);
1343 
power_supply_update_sysfs_and_hwmon(struct power_supply * psy)1344 static int power_supply_update_sysfs_and_hwmon(struct power_supply *psy)
1345 {
1346 	unsigned long flags;
1347 
1348 	spin_lock_irqsave(&psy->changed_lock, flags);
1349 	psy->update_groups = true;
1350 	spin_unlock_irqrestore(&psy->changed_lock, flags);
1351 
1352 	power_supply_changed(psy);
1353 
1354 	power_supply_remove_hwmon_sysfs(psy);
1355 	return power_supply_add_hwmon_sysfs(psy);
1356 }
1357 
power_supply_register_extension(struct power_supply * psy,const struct power_supply_ext * ext,struct device * dev,void * data)1358 int power_supply_register_extension(struct power_supply *psy, const struct power_supply_ext *ext,
1359 				    struct device *dev, void *data)
1360 {
1361 	struct power_supply_ext_registration *reg;
1362 	size_t i;
1363 	int ret;
1364 
1365 	if (!psy || !dev || !ext || !ext->name || !ext->properties || !ext->num_properties)
1366 		return -EINVAL;
1367 
1368 	guard(rwsem_write)(&psy->extensions_sem);
1369 
1370 	power_supply_for_each_extension(reg, psy)
1371 		if (strcmp(ext->name, reg->ext->name) == 0)
1372 			return -EEXIST;
1373 
1374 	for (i = 0; i < ext->num_properties; i++)
1375 		if (power_supply_has_property(psy, ext->properties[i]))
1376 			return -EEXIST;
1377 
1378 	reg = kmalloc(sizeof(*reg), GFP_KERNEL);
1379 	if (!reg)
1380 		return -ENOMEM;
1381 
1382 	reg->ext = ext;
1383 	reg->dev = dev;
1384 	reg->data = data;
1385 	list_add(&reg->list_head, &psy->extensions);
1386 
1387 	ret = power_supply_sysfs_add_extension(psy, ext, dev);
1388 	if (ret)
1389 		goto sysfs_add_failed;
1390 
1391 	ret = power_supply_update_sysfs_and_hwmon(psy);
1392 	if (ret)
1393 		goto sysfs_hwmon_failed;
1394 
1395 	return 0;
1396 
1397 sysfs_hwmon_failed:
1398 	power_supply_sysfs_remove_extension(psy, ext);
1399 sysfs_add_failed:
1400 	list_del(&reg->list_head);
1401 	kfree(reg);
1402 	return ret;
1403 }
1404 EXPORT_SYMBOL_GPL(power_supply_register_extension);
1405 
power_supply_unregister_extension(struct power_supply * psy,const struct power_supply_ext * ext)1406 void power_supply_unregister_extension(struct power_supply *psy, const struct power_supply_ext *ext)
1407 {
1408 	struct power_supply_ext_registration *reg;
1409 
1410 	guard(rwsem_write)(&psy->extensions_sem);
1411 
1412 	power_supply_for_each_extension(reg, psy) {
1413 		if (reg->ext == ext) {
1414 			list_del(&reg->list_head);
1415 			power_supply_sysfs_remove_extension(psy, ext);
1416 			kfree(reg);
1417 			power_supply_update_sysfs_and_hwmon(psy);
1418 			return;
1419 		}
1420 	}
1421 
1422 	dev_warn(&psy->dev, "Trying to unregister invalid extension");
1423 }
1424 EXPORT_SYMBOL_GPL(power_supply_unregister_extension);
1425 
power_supply_dev_release(struct device * dev)1426 static void power_supply_dev_release(struct device *dev)
1427 {
1428 	struct power_supply *psy = to_power_supply(dev);
1429 
1430 	dev_dbg(dev, "%s\n", __func__);
1431 	kfree(psy);
1432 }
1433 
power_supply_reg_notifier(struct notifier_block * nb)1434 int power_supply_reg_notifier(struct notifier_block *nb)
1435 {
1436 	return blocking_notifier_chain_register(&power_supply_notifier, nb);
1437 }
1438 EXPORT_SYMBOL_GPL(power_supply_reg_notifier);
1439 
power_supply_unreg_notifier(struct notifier_block * nb)1440 void power_supply_unreg_notifier(struct notifier_block *nb)
1441 {
1442 	blocking_notifier_chain_unregister(&power_supply_notifier, nb);
1443 }
1444 EXPORT_SYMBOL_GPL(power_supply_unreg_notifier);
1445 
1446 #ifdef CONFIG_THERMAL
power_supply_read_temp(struct thermal_zone_device * tzd,int * temp)1447 static int power_supply_read_temp(struct thermal_zone_device *tzd,
1448 		int *temp)
1449 {
1450 	struct power_supply *psy;
1451 	union power_supply_propval val;
1452 	int ret;
1453 
1454 	WARN_ON(tzd == NULL);
1455 	psy = thermal_zone_device_priv(tzd);
1456 	ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val);
1457 	if (ret)
1458 		return ret;
1459 
1460 	/* Convert tenths of degree Celsius to milli degree Celsius. */
1461 	*temp = val.intval * 100;
1462 
1463 	return ret;
1464 }
1465 
1466 static const struct thermal_zone_device_ops psy_tzd_ops = {
1467 	.get_temp = power_supply_read_temp,
1468 };
1469 
psy_register_thermal(struct power_supply * psy)1470 static int psy_register_thermal(struct power_supply *psy)
1471 {
1472 	int ret;
1473 
1474 	if (psy->desc->no_thermal)
1475 		return 0;
1476 
1477 	/* Register battery zone device psy reports temperature */
1478 	if (psy_desc_has_property(psy->desc, POWER_SUPPLY_PROP_TEMP)) {
1479 		/* Prefer our hwmon device and avoid duplicates */
1480 		struct thermal_zone_params tzp = {
1481 			.no_hwmon = IS_ENABLED(CONFIG_POWER_SUPPLY_HWMON)
1482 		};
1483 		psy->tzd = thermal_tripless_zone_device_register(psy->desc->name,
1484 				psy, &psy_tzd_ops, &tzp);
1485 		if (IS_ERR(psy->tzd))
1486 			return PTR_ERR(psy->tzd);
1487 		ret = thermal_zone_device_enable(psy->tzd);
1488 		if (ret)
1489 			thermal_zone_device_unregister(psy->tzd);
1490 		return ret;
1491 	}
1492 
1493 	return 0;
1494 }
1495 
psy_unregister_thermal(struct power_supply * psy)1496 static void psy_unregister_thermal(struct power_supply *psy)
1497 {
1498 	if (IS_ERR_OR_NULL(psy->tzd))
1499 		return;
1500 	thermal_zone_device_unregister(psy->tzd);
1501 }
1502 
1503 #else
psy_register_thermal(struct power_supply * psy)1504 static int psy_register_thermal(struct power_supply *psy)
1505 {
1506 	return 0;
1507 }
1508 
psy_unregister_thermal(struct power_supply * psy)1509 static void psy_unregister_thermal(struct power_supply *psy)
1510 {
1511 }
1512 #endif
1513 
1514 static struct power_supply *__must_check
__power_supply_register(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1515 __power_supply_register(struct device *parent,
1516 				   const struct power_supply_desc *desc,
1517 				   const struct power_supply_config *cfg)
1518 {
1519 	struct device *dev;
1520 	struct power_supply *psy;
1521 	int rc;
1522 
1523 	if (!desc || !desc->name || !desc->properties || !desc->num_properties)
1524 		return ERR_PTR(-EINVAL);
1525 
1526 	if (!parent)
1527 		pr_warn("%s: Expected proper parent device for '%s'\n",
1528 			__func__, desc->name);
1529 
1530 	psy = kzalloc(sizeof(*psy), GFP_KERNEL);
1531 	if (!psy)
1532 		return ERR_PTR(-ENOMEM);
1533 
1534 	dev = &psy->dev;
1535 
1536 	device_initialize(dev);
1537 
1538 	dev->class = &power_supply_class;
1539 	dev->type = &power_supply_dev_type;
1540 	dev->parent = parent;
1541 	dev->release = power_supply_dev_release;
1542 	dev_set_drvdata(dev, psy);
1543 	psy->desc = desc;
1544 	if (cfg) {
1545 		dev->groups = cfg->attr_grp;
1546 		psy->drv_data = cfg->drv_data;
1547 		psy->of_node =
1548 			cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node;
1549 		dev->of_node = psy->of_node;
1550 		psy->supplied_to = cfg->supplied_to;
1551 		psy->num_supplicants = cfg->num_supplicants;
1552 	}
1553 
1554 	rc = dev_set_name(dev, "%s", desc->name);
1555 	if (rc)
1556 		goto dev_set_name_failed;
1557 
1558 	INIT_WORK(&psy->changed_work, power_supply_changed_work);
1559 	INIT_DELAYED_WORK(&psy->deferred_register_work,
1560 			  power_supply_deferred_register_work);
1561 
1562 	rc = power_supply_check_supplies(psy);
1563 	if (rc) {
1564 		dev_dbg(dev, "Not all required supplies found, defer probe\n");
1565 		goto check_supplies_failed;
1566 	}
1567 
1568 	/*
1569 	 * Expose constant battery info, if it is available. While there are
1570 	 * some chargers accessing constant battery data, we only want to
1571 	 * expose battery data to userspace for battery devices.
1572 	 */
1573 	if (desc->type == POWER_SUPPLY_TYPE_BATTERY) {
1574 		rc = power_supply_get_battery_info(psy, &psy->battery_info);
1575 		if (rc && rc != -ENODEV && rc != -ENOENT)
1576 			goto check_supplies_failed;
1577 	}
1578 
1579 	spin_lock_init(&psy->changed_lock);
1580 	init_rwsem(&psy->extensions_sem);
1581 	INIT_LIST_HEAD(&psy->extensions);
1582 
1583 	rc = device_add(dev);
1584 	if (rc)
1585 		goto device_add_failed;
1586 
1587 	rc = device_init_wakeup(dev, cfg ? !cfg->no_wakeup_source : true);
1588 	if (rc)
1589 		goto wakeup_init_failed;
1590 
1591 	rc = psy_register_thermal(psy);
1592 	if (rc)
1593 		goto register_thermal_failed;
1594 
1595 	rc = power_supply_create_triggers(psy);
1596 	if (rc)
1597 		goto create_triggers_failed;
1598 
1599 	scoped_guard(rwsem_read, &psy->extensions_sem) {
1600 		rc = power_supply_add_hwmon_sysfs(psy);
1601 		if (rc)
1602 			goto add_hwmon_sysfs_failed;
1603 	}
1604 
1605 	/*
1606 	 * Update use_cnt after any uevents (most notably from device_add()).
1607 	 * We are here still during driver's probe but
1608 	 * the power_supply_uevent() calls back driver's get_property
1609 	 * method so:
1610 	 * 1. Driver did not assigned the returned struct power_supply,
1611 	 * 2. Driver could not finish initialization (anything in its probe
1612 	 *    after calling power_supply_register()).
1613 	 */
1614 	atomic_inc(&psy->use_cnt);
1615 	psy->initialized = true;
1616 
1617 	queue_delayed_work(system_power_efficient_wq,
1618 			   &psy->deferred_register_work,
1619 			   POWER_SUPPLY_DEFERRED_REGISTER_TIME);
1620 
1621 	return psy;
1622 
1623 add_hwmon_sysfs_failed:
1624 	power_supply_remove_triggers(psy);
1625 create_triggers_failed:
1626 	psy_unregister_thermal(psy);
1627 register_thermal_failed:
1628 wakeup_init_failed:
1629 	device_del(dev);
1630 device_add_failed:
1631 check_supplies_failed:
1632 dev_set_name_failed:
1633 	put_device(dev);
1634 	return ERR_PTR(rc);
1635 }
1636 
1637 /**
1638  * power_supply_register() - Register new power supply
1639  * @parent:	Device to be a parent of power supply's device, usually
1640  *		the device which probe function calls this
1641  * @desc:	Description of power supply, must be valid through whole
1642  *		lifetime of this power supply
1643  * @cfg:	Run-time specific configuration accessed during registering,
1644  *		may be NULL
1645  *
1646  * Return: A pointer to newly allocated power_supply on success
1647  * or ERR_PTR otherwise.
1648  * Use power_supply_unregister() on returned power_supply pointer to release
1649  * resources.
1650  */
power_supply_register(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1651 struct power_supply *__must_check power_supply_register(struct device *parent,
1652 		const struct power_supply_desc *desc,
1653 		const struct power_supply_config *cfg)
1654 {
1655 	return __power_supply_register(parent, desc, cfg);
1656 }
1657 EXPORT_SYMBOL_GPL(power_supply_register);
1658 
devm_power_supply_release(struct device * dev,void * res)1659 static void devm_power_supply_release(struct device *dev, void *res)
1660 {
1661 	struct power_supply **psy = res;
1662 
1663 	power_supply_unregister(*psy);
1664 }
1665 
1666 /**
1667  * devm_power_supply_register() - Register managed power supply
1668  * @parent:	Device to be a parent of power supply's device, usually
1669  *		the device which probe function calls this
1670  * @desc:	Description of power supply, must be valid through whole
1671  *		lifetime of this power supply
1672  * @cfg:	Run-time specific configuration accessed during registering,
1673  *		may be NULL
1674  *
1675  * Return: A pointer to newly allocated power_supply on success
1676  * or ERR_PTR otherwise.
1677  * The returned power_supply pointer will be automatically unregistered
1678  * on driver detach.
1679  */
1680 struct power_supply *__must_check
devm_power_supply_register(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1681 devm_power_supply_register(struct device *parent,
1682 		const struct power_supply_desc *desc,
1683 		const struct power_supply_config *cfg)
1684 {
1685 	struct power_supply **ptr, *psy;
1686 
1687 	ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1688 
1689 	if (!ptr)
1690 		return ERR_PTR(-ENOMEM);
1691 	psy = __power_supply_register(parent, desc, cfg);
1692 	if (IS_ERR(psy)) {
1693 		devres_free(ptr);
1694 	} else {
1695 		*ptr = psy;
1696 		devres_add(parent, ptr);
1697 	}
1698 	return psy;
1699 }
1700 EXPORT_SYMBOL_GPL(devm_power_supply_register);
1701 
1702 /**
1703  * power_supply_unregister() - Remove this power supply from system
1704  * @psy:	Pointer to power supply to unregister
1705  *
1706  * Remove this power supply from the system. The resources of power supply
1707  * will be freed here or on last power_supply_put() call.
1708  */
power_supply_unregister(struct power_supply * psy)1709 void power_supply_unregister(struct power_supply *psy)
1710 {
1711 	WARN_ON(atomic_dec_return(&psy->use_cnt));
1712 	psy->removing = true;
1713 	cancel_work_sync(&psy->changed_work);
1714 	cancel_delayed_work_sync(&psy->deferred_register_work);
1715 	sysfs_remove_link(&psy->dev.kobj, "powers");
1716 	power_supply_remove_hwmon_sysfs(psy);
1717 	power_supply_remove_triggers(psy);
1718 	psy_unregister_thermal(psy);
1719 	device_init_wakeup(&psy->dev, false);
1720 	device_unregister(&psy->dev);
1721 }
1722 EXPORT_SYMBOL_GPL(power_supply_unregister);
1723 
power_supply_get_drvdata(struct power_supply * psy)1724 void *power_supply_get_drvdata(struct power_supply *psy)
1725 {
1726 	return psy->drv_data;
1727 }
1728 EXPORT_SYMBOL_GPL(power_supply_get_drvdata);
1729 
power_supply_class_init(void)1730 static int __init power_supply_class_init(void)
1731 {
1732 	power_supply_init_attrs();
1733 	return class_register(&power_supply_class);
1734 }
1735 
power_supply_class_exit(void)1736 static void __exit power_supply_class_exit(void)
1737 {
1738 	class_unregister(&power_supply_class);
1739 }
1740 
1741 subsys_initcall(power_supply_class_init);
1742 module_exit(power_supply_class_exit);
1743 
1744 MODULE_DESCRIPTION("Universal power supply monitor class");
1745 MODULE_AUTHOR("Ian Molton <spyro@f2s.com>");
1746 MODULE_AUTHOR("Szabolcs Gyurko");
1747 MODULE_AUTHOR("Anton Vorontsov <cbou@mail.ru>");
1748