1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5 */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <linux/bpf_mem_alloc.h>
30 #include <net/xdp.h>
31 #include <linux/trace_events.h>
32 #include <linux/kallsyms.h>
33
34 #include "disasm.h"
35
36 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
37 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
38 [_id] = & _name ## _verifier_ops,
39 #define BPF_MAP_TYPE(_id, _ops)
40 #define BPF_LINK_TYPE(_id, _name)
41 #include <linux/bpf_types.h>
42 #undef BPF_PROG_TYPE
43 #undef BPF_MAP_TYPE
44 #undef BPF_LINK_TYPE
45 };
46
47 enum bpf_features {
48 BPF_FEAT_RDONLY_CAST_TO_VOID = 0,
49 BPF_FEAT_STREAMS = 1,
50 __MAX_BPF_FEAT,
51 };
52
53 struct bpf_mem_alloc bpf_global_percpu_ma;
54 static bool bpf_global_percpu_ma_set;
55
56 /* bpf_check() is a static code analyzer that walks eBPF program
57 * instruction by instruction and updates register/stack state.
58 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
59 *
60 * The first pass is depth-first-search to check that the program is a DAG.
61 * It rejects the following programs:
62 * - larger than BPF_MAXINSNS insns
63 * - if loop is present (detected via back-edge)
64 * - unreachable insns exist (shouldn't be a forest. program = one function)
65 * - out of bounds or malformed jumps
66 * The second pass is all possible path descent from the 1st insn.
67 * Since it's analyzing all paths through the program, the length of the
68 * analysis is limited to 64k insn, which may be hit even if total number of
69 * insn is less then 4K, but there are too many branches that change stack/regs.
70 * Number of 'branches to be analyzed' is limited to 1k
71 *
72 * On entry to each instruction, each register has a type, and the instruction
73 * changes the types of the registers depending on instruction semantics.
74 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
75 * copied to R1.
76 *
77 * All registers are 64-bit.
78 * R0 - return register
79 * R1-R5 argument passing registers
80 * R6-R9 callee saved registers
81 * R10 - frame pointer read-only
82 *
83 * At the start of BPF program the register R1 contains a pointer to bpf_context
84 * and has type PTR_TO_CTX.
85 *
86 * Verifier tracks arithmetic operations on pointers in case:
87 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
88 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
89 * 1st insn copies R10 (which has FRAME_PTR) type into R1
90 * and 2nd arithmetic instruction is pattern matched to recognize
91 * that it wants to construct a pointer to some element within stack.
92 * So after 2nd insn, the register R1 has type PTR_TO_STACK
93 * (and -20 constant is saved for further stack bounds checking).
94 * Meaning that this reg is a pointer to stack plus known immediate constant.
95 *
96 * Most of the time the registers have SCALAR_VALUE type, which
97 * means the register has some value, but it's not a valid pointer.
98 * (like pointer plus pointer becomes SCALAR_VALUE type)
99 *
100 * When verifier sees load or store instructions the type of base register
101 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
102 * four pointer types recognized by check_mem_access() function.
103 *
104 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
105 * and the range of [ptr, ptr + map's value_size) is accessible.
106 *
107 * registers used to pass values to function calls are checked against
108 * function argument constraints.
109 *
110 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
111 * It means that the register type passed to this function must be
112 * PTR_TO_STACK and it will be used inside the function as
113 * 'pointer to map element key'
114 *
115 * For example the argument constraints for bpf_map_lookup_elem():
116 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
117 * .arg1_type = ARG_CONST_MAP_PTR,
118 * .arg2_type = ARG_PTR_TO_MAP_KEY,
119 *
120 * ret_type says that this function returns 'pointer to map elem value or null'
121 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
122 * 2nd argument should be a pointer to stack, which will be used inside
123 * the helper function as a pointer to map element key.
124 *
125 * On the kernel side the helper function looks like:
126 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
127 * {
128 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
129 * void *key = (void *) (unsigned long) r2;
130 * void *value;
131 *
132 * here kernel can access 'key' and 'map' pointers safely, knowing that
133 * [key, key + map->key_size) bytes are valid and were initialized on
134 * the stack of eBPF program.
135 * }
136 *
137 * Corresponding eBPF program may look like:
138 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
139 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
140 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
141 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
142 * here verifier looks at prototype of map_lookup_elem() and sees:
143 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
144 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
145 *
146 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
147 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
148 * and were initialized prior to this call.
149 * If it's ok, then verifier allows this BPF_CALL insn and looks at
150 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
151 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
152 * returns either pointer to map value or NULL.
153 *
154 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
155 * insn, the register holding that pointer in the true branch changes state to
156 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
157 * branch. See check_cond_jmp_op().
158 *
159 * After the call R0 is set to return type of the function and registers R1-R5
160 * are set to NOT_INIT to indicate that they are no longer readable.
161 *
162 * The following reference types represent a potential reference to a kernel
163 * resource which, after first being allocated, must be checked and freed by
164 * the BPF program:
165 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
166 *
167 * When the verifier sees a helper call return a reference type, it allocates a
168 * pointer id for the reference and stores it in the current function state.
169 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
170 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
171 * passes through a NULL-check conditional. For the branch wherein the state is
172 * changed to CONST_IMM, the verifier releases the reference.
173 *
174 * For each helper function that allocates a reference, such as
175 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
176 * bpf_sk_release(). When a reference type passes into the release function,
177 * the verifier also releases the reference. If any unchecked or unreleased
178 * reference remains at the end of the program, the verifier rejects it.
179 */
180
181 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
182 struct bpf_verifier_stack_elem {
183 /* verifier state is 'st'
184 * before processing instruction 'insn_idx'
185 * and after processing instruction 'prev_insn_idx'
186 */
187 struct bpf_verifier_state st;
188 int insn_idx;
189 int prev_insn_idx;
190 struct bpf_verifier_stack_elem *next;
191 /* length of verifier log at the time this state was pushed on stack */
192 u32 log_pos;
193 };
194
195 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
196 #define BPF_COMPLEXITY_LIMIT_STATES 64
197
198 #define BPF_MAP_KEY_POISON (1ULL << 63)
199 #define BPF_MAP_KEY_SEEN (1ULL << 62)
200
201 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE 512
202
203 #define BPF_PRIV_STACK_MIN_SIZE 64
204
205 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx);
206 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id);
207 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
208 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
209 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
210 static int ref_set_non_owning(struct bpf_verifier_env *env,
211 struct bpf_reg_state *reg);
212 static void specialize_kfunc(struct bpf_verifier_env *env,
213 u32 func_id, u16 offset, unsigned long *addr);
214 static bool is_trusted_reg(const struct bpf_reg_state *reg);
215
bpf_map_ptr_poisoned(const struct bpf_insn_aux_data * aux)216 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
217 {
218 return aux->map_ptr_state.poison;
219 }
220
bpf_map_ptr_unpriv(const struct bpf_insn_aux_data * aux)221 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
222 {
223 return aux->map_ptr_state.unpriv;
224 }
225
bpf_map_ptr_store(struct bpf_insn_aux_data * aux,struct bpf_map * map,bool unpriv,bool poison)226 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
227 struct bpf_map *map,
228 bool unpriv, bool poison)
229 {
230 unpriv |= bpf_map_ptr_unpriv(aux);
231 aux->map_ptr_state.unpriv = unpriv;
232 aux->map_ptr_state.poison = poison;
233 aux->map_ptr_state.map_ptr = map;
234 }
235
bpf_map_key_poisoned(const struct bpf_insn_aux_data * aux)236 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
237 {
238 return aux->map_key_state & BPF_MAP_KEY_POISON;
239 }
240
bpf_map_key_unseen(const struct bpf_insn_aux_data * aux)241 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
242 {
243 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
244 }
245
bpf_map_key_immediate(const struct bpf_insn_aux_data * aux)246 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
247 {
248 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
249 }
250
bpf_map_key_store(struct bpf_insn_aux_data * aux,u64 state)251 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
252 {
253 bool poisoned = bpf_map_key_poisoned(aux);
254
255 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
256 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
257 }
258
bpf_helper_call(const struct bpf_insn * insn)259 static bool bpf_helper_call(const struct bpf_insn *insn)
260 {
261 return insn->code == (BPF_JMP | BPF_CALL) &&
262 insn->src_reg == 0;
263 }
264
bpf_pseudo_call(const struct bpf_insn * insn)265 static bool bpf_pseudo_call(const struct bpf_insn *insn)
266 {
267 return insn->code == (BPF_JMP | BPF_CALL) &&
268 insn->src_reg == BPF_PSEUDO_CALL;
269 }
270
bpf_pseudo_kfunc_call(const struct bpf_insn * insn)271 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
272 {
273 return insn->code == (BPF_JMP | BPF_CALL) &&
274 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
275 }
276
277 struct bpf_call_arg_meta {
278 struct bpf_map *map_ptr;
279 bool raw_mode;
280 bool pkt_access;
281 u8 release_regno;
282 int regno;
283 int access_size;
284 int mem_size;
285 u64 msize_max_value;
286 int ref_obj_id;
287 int dynptr_id;
288 int map_uid;
289 int func_id;
290 struct btf *btf;
291 u32 btf_id;
292 struct btf *ret_btf;
293 u32 ret_btf_id;
294 u32 subprogno;
295 struct btf_field *kptr_field;
296 s64 const_map_key;
297 };
298
299 struct bpf_kfunc_call_arg_meta {
300 /* In parameters */
301 struct btf *btf;
302 u32 func_id;
303 u32 kfunc_flags;
304 const struct btf_type *func_proto;
305 const char *func_name;
306 /* Out parameters */
307 u32 ref_obj_id;
308 u8 release_regno;
309 bool r0_rdonly;
310 u32 ret_btf_id;
311 u64 r0_size;
312 u32 subprogno;
313 struct {
314 u64 value;
315 bool found;
316 } arg_constant;
317
318 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
319 * generally to pass info about user-defined local kptr types to later
320 * verification logic
321 * bpf_obj_drop/bpf_percpu_obj_drop
322 * Record the local kptr type to be drop'd
323 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
324 * Record the local kptr type to be refcount_incr'd and use
325 * arg_owning_ref to determine whether refcount_acquire should be
326 * fallible
327 */
328 struct btf *arg_btf;
329 u32 arg_btf_id;
330 bool arg_owning_ref;
331 bool arg_prog;
332
333 struct {
334 struct btf_field *field;
335 } arg_list_head;
336 struct {
337 struct btf_field *field;
338 } arg_rbtree_root;
339 struct {
340 enum bpf_dynptr_type type;
341 u32 id;
342 u32 ref_obj_id;
343 } initialized_dynptr;
344 struct {
345 u8 spi;
346 u8 frameno;
347 } iter;
348 struct {
349 struct bpf_map *ptr;
350 int uid;
351 } map;
352 u64 mem_size;
353 };
354
355 struct btf *btf_vmlinux;
356
btf_type_name(const struct btf * btf,u32 id)357 static const char *btf_type_name(const struct btf *btf, u32 id)
358 {
359 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
360 }
361
362 static DEFINE_MUTEX(bpf_verifier_lock);
363 static DEFINE_MUTEX(bpf_percpu_ma_lock);
364
verbose(void * private_data,const char * fmt,...)365 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
366 {
367 struct bpf_verifier_env *env = private_data;
368 va_list args;
369
370 if (!bpf_verifier_log_needed(&env->log))
371 return;
372
373 va_start(args, fmt);
374 bpf_verifier_vlog(&env->log, fmt, args);
375 va_end(args);
376 }
377
verbose_invalid_scalar(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct bpf_retval_range range,const char * ctx,const char * reg_name)378 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
379 struct bpf_reg_state *reg,
380 struct bpf_retval_range range, const char *ctx,
381 const char *reg_name)
382 {
383 bool unknown = true;
384
385 verbose(env, "%s the register %s has", ctx, reg_name);
386 if (reg->smin_value > S64_MIN) {
387 verbose(env, " smin=%lld", reg->smin_value);
388 unknown = false;
389 }
390 if (reg->smax_value < S64_MAX) {
391 verbose(env, " smax=%lld", reg->smax_value);
392 unknown = false;
393 }
394 if (unknown)
395 verbose(env, " unknown scalar value");
396 verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval);
397 }
398
reg_not_null(const struct bpf_reg_state * reg)399 static bool reg_not_null(const struct bpf_reg_state *reg)
400 {
401 enum bpf_reg_type type;
402
403 type = reg->type;
404 if (type_may_be_null(type))
405 return false;
406
407 type = base_type(type);
408 return type == PTR_TO_SOCKET ||
409 type == PTR_TO_TCP_SOCK ||
410 type == PTR_TO_MAP_VALUE ||
411 type == PTR_TO_MAP_KEY ||
412 type == PTR_TO_SOCK_COMMON ||
413 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
414 (type == PTR_TO_MEM && !(reg->type & PTR_UNTRUSTED)) ||
415 type == CONST_PTR_TO_MAP;
416 }
417
reg_btf_record(const struct bpf_reg_state * reg)418 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
419 {
420 struct btf_record *rec = NULL;
421 struct btf_struct_meta *meta;
422
423 if (reg->type == PTR_TO_MAP_VALUE) {
424 rec = reg->map_ptr->record;
425 } else if (type_is_ptr_alloc_obj(reg->type)) {
426 meta = btf_find_struct_meta(reg->btf, reg->btf_id);
427 if (meta)
428 rec = meta->record;
429 }
430 return rec;
431 }
432
subprog_is_global(const struct bpf_verifier_env * env,int subprog)433 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
434 {
435 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
436
437 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
438 }
439
subprog_name(const struct bpf_verifier_env * env,int subprog)440 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog)
441 {
442 struct bpf_func_info *info;
443
444 if (!env->prog->aux->func_info)
445 return "";
446
447 info = &env->prog->aux->func_info[subprog];
448 return btf_type_name(env->prog->aux->btf, info->type_id);
449 }
450
mark_subprog_exc_cb(struct bpf_verifier_env * env,int subprog)451 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog)
452 {
453 struct bpf_subprog_info *info = subprog_info(env, subprog);
454
455 info->is_cb = true;
456 info->is_async_cb = true;
457 info->is_exception_cb = true;
458 }
459
subprog_is_exc_cb(struct bpf_verifier_env * env,int subprog)460 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog)
461 {
462 return subprog_info(env, subprog)->is_exception_cb;
463 }
464
reg_may_point_to_spin_lock(const struct bpf_reg_state * reg)465 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
466 {
467 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK);
468 }
469
type_is_rdonly_mem(u32 type)470 static bool type_is_rdonly_mem(u32 type)
471 {
472 return type & MEM_RDONLY;
473 }
474
is_acquire_function(enum bpf_func_id func_id,const struct bpf_map * map)475 static bool is_acquire_function(enum bpf_func_id func_id,
476 const struct bpf_map *map)
477 {
478 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
479
480 if (func_id == BPF_FUNC_sk_lookup_tcp ||
481 func_id == BPF_FUNC_sk_lookup_udp ||
482 func_id == BPF_FUNC_skc_lookup_tcp ||
483 func_id == BPF_FUNC_ringbuf_reserve ||
484 func_id == BPF_FUNC_kptr_xchg)
485 return true;
486
487 if (func_id == BPF_FUNC_map_lookup_elem &&
488 (map_type == BPF_MAP_TYPE_SOCKMAP ||
489 map_type == BPF_MAP_TYPE_SOCKHASH))
490 return true;
491
492 return false;
493 }
494
is_ptr_cast_function(enum bpf_func_id func_id)495 static bool is_ptr_cast_function(enum bpf_func_id func_id)
496 {
497 return func_id == BPF_FUNC_tcp_sock ||
498 func_id == BPF_FUNC_sk_fullsock ||
499 func_id == BPF_FUNC_skc_to_tcp_sock ||
500 func_id == BPF_FUNC_skc_to_tcp6_sock ||
501 func_id == BPF_FUNC_skc_to_udp6_sock ||
502 func_id == BPF_FUNC_skc_to_mptcp_sock ||
503 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
504 func_id == BPF_FUNC_skc_to_tcp_request_sock;
505 }
506
is_dynptr_ref_function(enum bpf_func_id func_id)507 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
508 {
509 return func_id == BPF_FUNC_dynptr_data;
510 }
511
512 static bool is_sync_callback_calling_kfunc(u32 btf_id);
513 static bool is_async_callback_calling_kfunc(u32 btf_id);
514 static bool is_callback_calling_kfunc(u32 btf_id);
515 static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
516
517 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id);
518
is_sync_callback_calling_function(enum bpf_func_id func_id)519 static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
520 {
521 return func_id == BPF_FUNC_for_each_map_elem ||
522 func_id == BPF_FUNC_find_vma ||
523 func_id == BPF_FUNC_loop ||
524 func_id == BPF_FUNC_user_ringbuf_drain;
525 }
526
is_async_callback_calling_function(enum bpf_func_id func_id)527 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
528 {
529 return func_id == BPF_FUNC_timer_set_callback;
530 }
531
is_callback_calling_function(enum bpf_func_id func_id)532 static bool is_callback_calling_function(enum bpf_func_id func_id)
533 {
534 return is_sync_callback_calling_function(func_id) ||
535 is_async_callback_calling_function(func_id);
536 }
537
is_sync_callback_calling_insn(struct bpf_insn * insn)538 static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
539 {
540 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) ||
541 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm));
542 }
543
is_async_callback_calling_insn(struct bpf_insn * insn)544 static bool is_async_callback_calling_insn(struct bpf_insn *insn)
545 {
546 return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) ||
547 (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm));
548 }
549
is_may_goto_insn(struct bpf_insn * insn)550 static bool is_may_goto_insn(struct bpf_insn *insn)
551 {
552 return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO;
553 }
554
is_may_goto_insn_at(struct bpf_verifier_env * env,int insn_idx)555 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx)
556 {
557 return is_may_goto_insn(&env->prog->insnsi[insn_idx]);
558 }
559
is_storage_get_function(enum bpf_func_id func_id)560 static bool is_storage_get_function(enum bpf_func_id func_id)
561 {
562 return func_id == BPF_FUNC_sk_storage_get ||
563 func_id == BPF_FUNC_inode_storage_get ||
564 func_id == BPF_FUNC_task_storage_get ||
565 func_id == BPF_FUNC_cgrp_storage_get;
566 }
567
helper_multiple_ref_obj_use(enum bpf_func_id func_id,const struct bpf_map * map)568 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
569 const struct bpf_map *map)
570 {
571 int ref_obj_uses = 0;
572
573 if (is_ptr_cast_function(func_id))
574 ref_obj_uses++;
575 if (is_acquire_function(func_id, map))
576 ref_obj_uses++;
577 if (is_dynptr_ref_function(func_id))
578 ref_obj_uses++;
579
580 return ref_obj_uses > 1;
581 }
582
is_cmpxchg_insn(const struct bpf_insn * insn)583 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
584 {
585 return BPF_CLASS(insn->code) == BPF_STX &&
586 BPF_MODE(insn->code) == BPF_ATOMIC &&
587 insn->imm == BPF_CMPXCHG;
588 }
589
is_atomic_load_insn(const struct bpf_insn * insn)590 static bool is_atomic_load_insn(const struct bpf_insn *insn)
591 {
592 return BPF_CLASS(insn->code) == BPF_STX &&
593 BPF_MODE(insn->code) == BPF_ATOMIC &&
594 insn->imm == BPF_LOAD_ACQ;
595 }
596
__get_spi(s32 off)597 static int __get_spi(s32 off)
598 {
599 return (-off - 1) / BPF_REG_SIZE;
600 }
601
func(struct bpf_verifier_env * env,const struct bpf_reg_state * reg)602 static struct bpf_func_state *func(struct bpf_verifier_env *env,
603 const struct bpf_reg_state *reg)
604 {
605 struct bpf_verifier_state *cur = env->cur_state;
606
607 return cur->frame[reg->frameno];
608 }
609
is_spi_bounds_valid(struct bpf_func_state * state,int spi,int nr_slots)610 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
611 {
612 int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
613
614 /* We need to check that slots between [spi - nr_slots + 1, spi] are
615 * within [0, allocated_stack).
616 *
617 * Please note that the spi grows downwards. For example, a dynptr
618 * takes the size of two stack slots; the first slot will be at
619 * spi and the second slot will be at spi - 1.
620 */
621 return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
622 }
623
stack_slot_obj_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * obj_kind,int nr_slots)624 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
625 const char *obj_kind, int nr_slots)
626 {
627 int off, spi;
628
629 if (!tnum_is_const(reg->var_off)) {
630 verbose(env, "%s has to be at a constant offset\n", obj_kind);
631 return -EINVAL;
632 }
633
634 off = reg->off + reg->var_off.value;
635 if (off % BPF_REG_SIZE) {
636 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
637 return -EINVAL;
638 }
639
640 spi = __get_spi(off);
641 if (spi + 1 < nr_slots) {
642 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
643 return -EINVAL;
644 }
645
646 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
647 return -ERANGE;
648 return spi;
649 }
650
dynptr_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg)651 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
652 {
653 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
654 }
655
iter_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)656 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
657 {
658 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
659 }
660
irq_flag_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg)661 static int irq_flag_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
662 {
663 return stack_slot_obj_get_spi(env, reg, "irq_flag", 1);
664 }
665
arg_to_dynptr_type(enum bpf_arg_type arg_type)666 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
667 {
668 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
669 case DYNPTR_TYPE_LOCAL:
670 return BPF_DYNPTR_TYPE_LOCAL;
671 case DYNPTR_TYPE_RINGBUF:
672 return BPF_DYNPTR_TYPE_RINGBUF;
673 case DYNPTR_TYPE_SKB:
674 return BPF_DYNPTR_TYPE_SKB;
675 case DYNPTR_TYPE_XDP:
676 return BPF_DYNPTR_TYPE_XDP;
677 case DYNPTR_TYPE_SKB_META:
678 return BPF_DYNPTR_TYPE_SKB_META;
679 default:
680 return BPF_DYNPTR_TYPE_INVALID;
681 }
682 }
683
get_dynptr_type_flag(enum bpf_dynptr_type type)684 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
685 {
686 switch (type) {
687 case BPF_DYNPTR_TYPE_LOCAL:
688 return DYNPTR_TYPE_LOCAL;
689 case BPF_DYNPTR_TYPE_RINGBUF:
690 return DYNPTR_TYPE_RINGBUF;
691 case BPF_DYNPTR_TYPE_SKB:
692 return DYNPTR_TYPE_SKB;
693 case BPF_DYNPTR_TYPE_XDP:
694 return DYNPTR_TYPE_XDP;
695 case BPF_DYNPTR_TYPE_SKB_META:
696 return DYNPTR_TYPE_SKB_META;
697 default:
698 return 0;
699 }
700 }
701
dynptr_type_refcounted(enum bpf_dynptr_type type)702 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
703 {
704 return type == BPF_DYNPTR_TYPE_RINGBUF;
705 }
706
707 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
708 enum bpf_dynptr_type type,
709 bool first_slot, int dynptr_id);
710
711 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
712 struct bpf_reg_state *reg);
713
mark_dynptr_stack_regs(struct bpf_verifier_env * env,struct bpf_reg_state * sreg1,struct bpf_reg_state * sreg2,enum bpf_dynptr_type type)714 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
715 struct bpf_reg_state *sreg1,
716 struct bpf_reg_state *sreg2,
717 enum bpf_dynptr_type type)
718 {
719 int id = ++env->id_gen;
720
721 __mark_dynptr_reg(sreg1, type, true, id);
722 __mark_dynptr_reg(sreg2, type, false, id);
723 }
724
mark_dynptr_cb_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_dynptr_type type)725 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
726 struct bpf_reg_state *reg,
727 enum bpf_dynptr_type type)
728 {
729 __mark_dynptr_reg(reg, type, true, ++env->id_gen);
730 }
731
732 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
733 struct bpf_func_state *state, int spi);
734
mark_stack_slots_dynptr(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_arg_type arg_type,int insn_idx,int clone_ref_obj_id)735 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
736 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
737 {
738 struct bpf_func_state *state = func(env, reg);
739 enum bpf_dynptr_type type;
740 int spi, i, err;
741
742 spi = dynptr_get_spi(env, reg);
743 if (spi < 0)
744 return spi;
745
746 /* We cannot assume both spi and spi - 1 belong to the same dynptr,
747 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
748 * to ensure that for the following example:
749 * [d1][d1][d2][d2]
750 * spi 3 2 1 0
751 * So marking spi = 2 should lead to destruction of both d1 and d2. In
752 * case they do belong to same dynptr, second call won't see slot_type
753 * as STACK_DYNPTR and will simply skip destruction.
754 */
755 err = destroy_if_dynptr_stack_slot(env, state, spi);
756 if (err)
757 return err;
758 err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
759 if (err)
760 return err;
761
762 for (i = 0; i < BPF_REG_SIZE; i++) {
763 state->stack[spi].slot_type[i] = STACK_DYNPTR;
764 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
765 }
766
767 type = arg_to_dynptr_type(arg_type);
768 if (type == BPF_DYNPTR_TYPE_INVALID)
769 return -EINVAL;
770
771 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
772 &state->stack[spi - 1].spilled_ptr, type);
773
774 if (dynptr_type_refcounted(type)) {
775 /* The id is used to track proper releasing */
776 int id;
777
778 if (clone_ref_obj_id)
779 id = clone_ref_obj_id;
780 else
781 id = acquire_reference(env, insn_idx);
782
783 if (id < 0)
784 return id;
785
786 state->stack[spi].spilled_ptr.ref_obj_id = id;
787 state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
788 }
789
790 bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi));
791
792 return 0;
793 }
794
invalidate_dynptr(struct bpf_verifier_env * env,struct bpf_func_state * state,int spi)795 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
796 {
797 int i;
798
799 for (i = 0; i < BPF_REG_SIZE; i++) {
800 state->stack[spi].slot_type[i] = STACK_INVALID;
801 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
802 }
803
804 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
805 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
806
807 bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi));
808 }
809
unmark_stack_slots_dynptr(struct bpf_verifier_env * env,struct bpf_reg_state * reg)810 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
811 {
812 struct bpf_func_state *state = func(env, reg);
813 int spi, ref_obj_id, i;
814
815 spi = dynptr_get_spi(env, reg);
816 if (spi < 0)
817 return spi;
818
819 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
820 invalidate_dynptr(env, state, spi);
821 return 0;
822 }
823
824 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
825
826 /* If the dynptr has a ref_obj_id, then we need to invalidate
827 * two things:
828 *
829 * 1) Any dynptrs with a matching ref_obj_id (clones)
830 * 2) Any slices derived from this dynptr.
831 */
832
833 /* Invalidate any slices associated with this dynptr */
834 WARN_ON_ONCE(release_reference(env, ref_obj_id));
835
836 /* Invalidate any dynptr clones */
837 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
838 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
839 continue;
840
841 /* it should always be the case that if the ref obj id
842 * matches then the stack slot also belongs to a
843 * dynptr
844 */
845 if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
846 verifier_bug(env, "misconfigured ref_obj_id");
847 return -EFAULT;
848 }
849 if (state->stack[i].spilled_ptr.dynptr.first_slot)
850 invalidate_dynptr(env, state, i);
851 }
852
853 return 0;
854 }
855
856 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
857 struct bpf_reg_state *reg);
858
mark_reg_invalid(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)859 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
860 {
861 if (!env->allow_ptr_leaks)
862 __mark_reg_not_init(env, reg);
863 else
864 __mark_reg_unknown(env, reg);
865 }
866
destroy_if_dynptr_stack_slot(struct bpf_verifier_env * env,struct bpf_func_state * state,int spi)867 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
868 struct bpf_func_state *state, int spi)
869 {
870 struct bpf_func_state *fstate;
871 struct bpf_reg_state *dreg;
872 int i, dynptr_id;
873
874 /* We always ensure that STACK_DYNPTR is never set partially,
875 * hence just checking for slot_type[0] is enough. This is
876 * different for STACK_SPILL, where it may be only set for
877 * 1 byte, so code has to use is_spilled_reg.
878 */
879 if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
880 return 0;
881
882 /* Reposition spi to first slot */
883 if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
884 spi = spi + 1;
885
886 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
887 verbose(env, "cannot overwrite referenced dynptr\n");
888 return -EINVAL;
889 }
890
891 mark_stack_slot_scratched(env, spi);
892 mark_stack_slot_scratched(env, spi - 1);
893
894 /* Writing partially to one dynptr stack slot destroys both. */
895 for (i = 0; i < BPF_REG_SIZE; i++) {
896 state->stack[spi].slot_type[i] = STACK_INVALID;
897 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
898 }
899
900 dynptr_id = state->stack[spi].spilled_ptr.id;
901 /* Invalidate any slices associated with this dynptr */
902 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
903 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
904 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
905 continue;
906 if (dreg->dynptr_id == dynptr_id)
907 mark_reg_invalid(env, dreg);
908 }));
909
910 /* Do not release reference state, we are destroying dynptr on stack,
911 * not using some helper to release it. Just reset register.
912 */
913 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
914 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
915
916 bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi));
917
918 return 0;
919 }
920
is_dynptr_reg_valid_uninit(struct bpf_verifier_env * env,struct bpf_reg_state * reg)921 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
922 {
923 int spi;
924
925 if (reg->type == CONST_PTR_TO_DYNPTR)
926 return false;
927
928 spi = dynptr_get_spi(env, reg);
929
930 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
931 * error because this just means the stack state hasn't been updated yet.
932 * We will do check_mem_access to check and update stack bounds later.
933 */
934 if (spi < 0 && spi != -ERANGE)
935 return false;
936
937 /* We don't need to check if the stack slots are marked by previous
938 * dynptr initializations because we allow overwriting existing unreferenced
939 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
940 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
941 * touching are completely destructed before we reinitialize them for a new
942 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
943 * instead of delaying it until the end where the user will get "Unreleased
944 * reference" error.
945 */
946 return true;
947 }
948
is_dynptr_reg_valid_init(struct bpf_verifier_env * env,struct bpf_reg_state * reg)949 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
950 {
951 struct bpf_func_state *state = func(env, reg);
952 int i, spi;
953
954 /* This already represents first slot of initialized bpf_dynptr.
955 *
956 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
957 * check_func_arg_reg_off's logic, so we don't need to check its
958 * offset and alignment.
959 */
960 if (reg->type == CONST_PTR_TO_DYNPTR)
961 return true;
962
963 spi = dynptr_get_spi(env, reg);
964 if (spi < 0)
965 return false;
966 if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
967 return false;
968
969 for (i = 0; i < BPF_REG_SIZE; i++) {
970 if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
971 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
972 return false;
973 }
974
975 return true;
976 }
977
is_dynptr_type_expected(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_arg_type arg_type)978 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
979 enum bpf_arg_type arg_type)
980 {
981 struct bpf_func_state *state = func(env, reg);
982 enum bpf_dynptr_type dynptr_type;
983 int spi;
984
985 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */
986 if (arg_type == ARG_PTR_TO_DYNPTR)
987 return true;
988
989 dynptr_type = arg_to_dynptr_type(arg_type);
990 if (reg->type == CONST_PTR_TO_DYNPTR) {
991 return reg->dynptr.type == dynptr_type;
992 } else {
993 spi = dynptr_get_spi(env, reg);
994 if (spi < 0)
995 return false;
996 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
997 }
998 }
999
1000 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1001
1002 static bool in_rcu_cs(struct bpf_verifier_env *env);
1003
1004 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta);
1005
mark_stack_slots_iter(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,struct bpf_reg_state * reg,int insn_idx,struct btf * btf,u32 btf_id,int nr_slots)1006 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1007 struct bpf_kfunc_call_arg_meta *meta,
1008 struct bpf_reg_state *reg, int insn_idx,
1009 struct btf *btf, u32 btf_id, int nr_slots)
1010 {
1011 struct bpf_func_state *state = func(env, reg);
1012 int spi, i, j, id;
1013
1014 spi = iter_get_spi(env, reg, nr_slots);
1015 if (spi < 0)
1016 return spi;
1017
1018 id = acquire_reference(env, insn_idx);
1019 if (id < 0)
1020 return id;
1021
1022 for (i = 0; i < nr_slots; i++) {
1023 struct bpf_stack_state *slot = &state->stack[spi - i];
1024 struct bpf_reg_state *st = &slot->spilled_ptr;
1025
1026 __mark_reg_known_zero(st);
1027 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1028 if (is_kfunc_rcu_protected(meta)) {
1029 if (in_rcu_cs(env))
1030 st->type |= MEM_RCU;
1031 else
1032 st->type |= PTR_UNTRUSTED;
1033 }
1034 st->ref_obj_id = i == 0 ? id : 0;
1035 st->iter.btf = btf;
1036 st->iter.btf_id = btf_id;
1037 st->iter.state = BPF_ITER_STATE_ACTIVE;
1038 st->iter.depth = 0;
1039
1040 for (j = 0; j < BPF_REG_SIZE; j++)
1041 slot->slot_type[j] = STACK_ITER;
1042
1043 bpf_mark_stack_write(env, state->frameno, BIT(spi - i));
1044 mark_stack_slot_scratched(env, spi - i);
1045 }
1046
1047 return 0;
1048 }
1049
unmark_stack_slots_iter(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)1050 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1051 struct bpf_reg_state *reg, int nr_slots)
1052 {
1053 struct bpf_func_state *state = func(env, reg);
1054 int spi, i, j;
1055
1056 spi = iter_get_spi(env, reg, nr_slots);
1057 if (spi < 0)
1058 return spi;
1059
1060 for (i = 0; i < nr_slots; i++) {
1061 struct bpf_stack_state *slot = &state->stack[spi - i];
1062 struct bpf_reg_state *st = &slot->spilled_ptr;
1063
1064 if (i == 0)
1065 WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1066
1067 __mark_reg_not_init(env, st);
1068
1069 for (j = 0; j < BPF_REG_SIZE; j++)
1070 slot->slot_type[j] = STACK_INVALID;
1071
1072 bpf_mark_stack_write(env, state->frameno, BIT(spi - i));
1073 mark_stack_slot_scratched(env, spi - i);
1074 }
1075
1076 return 0;
1077 }
1078
is_iter_reg_valid_uninit(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)1079 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1080 struct bpf_reg_state *reg, int nr_slots)
1081 {
1082 struct bpf_func_state *state = func(env, reg);
1083 int spi, i, j;
1084
1085 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1086 * will do check_mem_access to check and update stack bounds later, so
1087 * return true for that case.
1088 */
1089 spi = iter_get_spi(env, reg, nr_slots);
1090 if (spi == -ERANGE)
1091 return true;
1092 if (spi < 0)
1093 return false;
1094
1095 for (i = 0; i < nr_slots; i++) {
1096 struct bpf_stack_state *slot = &state->stack[spi - i];
1097
1098 for (j = 0; j < BPF_REG_SIZE; j++)
1099 if (slot->slot_type[j] == STACK_ITER)
1100 return false;
1101 }
1102
1103 return true;
1104 }
1105
is_iter_reg_valid_init(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct btf * btf,u32 btf_id,int nr_slots)1106 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1107 struct btf *btf, u32 btf_id, int nr_slots)
1108 {
1109 struct bpf_func_state *state = func(env, reg);
1110 int spi, i, j;
1111
1112 spi = iter_get_spi(env, reg, nr_slots);
1113 if (spi < 0)
1114 return -EINVAL;
1115
1116 for (i = 0; i < nr_slots; i++) {
1117 struct bpf_stack_state *slot = &state->stack[spi - i];
1118 struct bpf_reg_state *st = &slot->spilled_ptr;
1119
1120 if (st->type & PTR_UNTRUSTED)
1121 return -EPROTO;
1122 /* only main (first) slot has ref_obj_id set */
1123 if (i == 0 && !st->ref_obj_id)
1124 return -EINVAL;
1125 if (i != 0 && st->ref_obj_id)
1126 return -EINVAL;
1127 if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1128 return -EINVAL;
1129
1130 for (j = 0; j < BPF_REG_SIZE; j++)
1131 if (slot->slot_type[j] != STACK_ITER)
1132 return -EINVAL;
1133 }
1134
1135 return 0;
1136 }
1137
1138 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx);
1139 static int release_irq_state(struct bpf_verifier_state *state, int id);
1140
mark_stack_slot_irq_flag(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,struct bpf_reg_state * reg,int insn_idx,int kfunc_class)1141 static int mark_stack_slot_irq_flag(struct bpf_verifier_env *env,
1142 struct bpf_kfunc_call_arg_meta *meta,
1143 struct bpf_reg_state *reg, int insn_idx,
1144 int kfunc_class)
1145 {
1146 struct bpf_func_state *state = func(env, reg);
1147 struct bpf_stack_state *slot;
1148 struct bpf_reg_state *st;
1149 int spi, i, id;
1150
1151 spi = irq_flag_get_spi(env, reg);
1152 if (spi < 0)
1153 return spi;
1154
1155 id = acquire_irq_state(env, insn_idx);
1156 if (id < 0)
1157 return id;
1158
1159 slot = &state->stack[spi];
1160 st = &slot->spilled_ptr;
1161
1162 bpf_mark_stack_write(env, reg->frameno, BIT(spi));
1163 __mark_reg_known_zero(st);
1164 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1165 st->ref_obj_id = id;
1166 st->irq.kfunc_class = kfunc_class;
1167
1168 for (i = 0; i < BPF_REG_SIZE; i++)
1169 slot->slot_type[i] = STACK_IRQ_FLAG;
1170
1171 mark_stack_slot_scratched(env, spi);
1172 return 0;
1173 }
1174
unmark_stack_slot_irq_flag(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int kfunc_class)1175 static int unmark_stack_slot_irq_flag(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1176 int kfunc_class)
1177 {
1178 struct bpf_func_state *state = func(env, reg);
1179 struct bpf_stack_state *slot;
1180 struct bpf_reg_state *st;
1181 int spi, i, err;
1182
1183 spi = irq_flag_get_spi(env, reg);
1184 if (spi < 0)
1185 return spi;
1186
1187 slot = &state->stack[spi];
1188 st = &slot->spilled_ptr;
1189
1190 if (st->irq.kfunc_class != kfunc_class) {
1191 const char *flag_kfunc = st->irq.kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock";
1192 const char *used_kfunc = kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock";
1193
1194 verbose(env, "irq flag acquired by %s kfuncs cannot be restored with %s kfuncs\n",
1195 flag_kfunc, used_kfunc);
1196 return -EINVAL;
1197 }
1198
1199 err = release_irq_state(env->cur_state, st->ref_obj_id);
1200 WARN_ON_ONCE(err && err != -EACCES);
1201 if (err) {
1202 int insn_idx = 0;
1203
1204 for (int i = 0; i < env->cur_state->acquired_refs; i++) {
1205 if (env->cur_state->refs[i].id == env->cur_state->active_irq_id) {
1206 insn_idx = env->cur_state->refs[i].insn_idx;
1207 break;
1208 }
1209 }
1210
1211 verbose(env, "cannot restore irq state out of order, expected id=%d acquired at insn_idx=%d\n",
1212 env->cur_state->active_irq_id, insn_idx);
1213 return err;
1214 }
1215
1216 __mark_reg_not_init(env, st);
1217
1218 bpf_mark_stack_write(env, reg->frameno, BIT(spi));
1219
1220 for (i = 0; i < BPF_REG_SIZE; i++)
1221 slot->slot_type[i] = STACK_INVALID;
1222
1223 mark_stack_slot_scratched(env, spi);
1224 return 0;
1225 }
1226
is_irq_flag_reg_valid_uninit(struct bpf_verifier_env * env,struct bpf_reg_state * reg)1227 static bool is_irq_flag_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1228 {
1229 struct bpf_func_state *state = func(env, reg);
1230 struct bpf_stack_state *slot;
1231 int spi, i;
1232
1233 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1234 * will do check_mem_access to check and update stack bounds later, so
1235 * return true for that case.
1236 */
1237 spi = irq_flag_get_spi(env, reg);
1238 if (spi == -ERANGE)
1239 return true;
1240 if (spi < 0)
1241 return false;
1242
1243 slot = &state->stack[spi];
1244
1245 for (i = 0; i < BPF_REG_SIZE; i++)
1246 if (slot->slot_type[i] == STACK_IRQ_FLAG)
1247 return false;
1248 return true;
1249 }
1250
is_irq_flag_reg_valid_init(struct bpf_verifier_env * env,struct bpf_reg_state * reg)1251 static int is_irq_flag_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1252 {
1253 struct bpf_func_state *state = func(env, reg);
1254 struct bpf_stack_state *slot;
1255 struct bpf_reg_state *st;
1256 int spi, i;
1257
1258 spi = irq_flag_get_spi(env, reg);
1259 if (spi < 0)
1260 return -EINVAL;
1261
1262 slot = &state->stack[spi];
1263 st = &slot->spilled_ptr;
1264
1265 if (!st->ref_obj_id)
1266 return -EINVAL;
1267
1268 for (i = 0; i < BPF_REG_SIZE; i++)
1269 if (slot->slot_type[i] != STACK_IRQ_FLAG)
1270 return -EINVAL;
1271 return 0;
1272 }
1273
1274 /* Check if given stack slot is "special":
1275 * - spilled register state (STACK_SPILL);
1276 * - dynptr state (STACK_DYNPTR);
1277 * - iter state (STACK_ITER).
1278 * - irq flag state (STACK_IRQ_FLAG)
1279 */
is_stack_slot_special(const struct bpf_stack_state * stack)1280 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1281 {
1282 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1283
1284 switch (type) {
1285 case STACK_SPILL:
1286 case STACK_DYNPTR:
1287 case STACK_ITER:
1288 case STACK_IRQ_FLAG:
1289 return true;
1290 case STACK_INVALID:
1291 case STACK_MISC:
1292 case STACK_ZERO:
1293 return false;
1294 default:
1295 WARN_ONCE(1, "unknown stack slot type %d\n", type);
1296 return true;
1297 }
1298 }
1299
1300 /* The reg state of a pointer or a bounded scalar was saved when
1301 * it was spilled to the stack.
1302 */
is_spilled_reg(const struct bpf_stack_state * stack)1303 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1304 {
1305 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1306 }
1307
is_spilled_scalar_reg(const struct bpf_stack_state * stack)1308 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1309 {
1310 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1311 stack->spilled_ptr.type == SCALAR_VALUE;
1312 }
1313
is_spilled_scalar_reg64(const struct bpf_stack_state * stack)1314 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack)
1315 {
1316 return stack->slot_type[0] == STACK_SPILL &&
1317 stack->spilled_ptr.type == SCALAR_VALUE;
1318 }
1319
1320 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which
1321 * case they are equivalent, or it's STACK_ZERO, in which case we preserve
1322 * more precise STACK_ZERO.
1323 * Regardless of allow_ptr_leaks setting (i.e., privileged or unprivileged
1324 * mode), we won't promote STACK_INVALID to STACK_MISC. In privileged case it is
1325 * unnecessary as both are considered equivalent when loading data and pruning,
1326 * in case of unprivileged mode it will be incorrect to allow reads of invalid
1327 * slots.
1328 */
mark_stack_slot_misc(struct bpf_verifier_env * env,u8 * stype)1329 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype)
1330 {
1331 if (*stype == STACK_ZERO)
1332 return;
1333 if (*stype == STACK_INVALID)
1334 return;
1335 *stype = STACK_MISC;
1336 }
1337
scrub_spilled_slot(u8 * stype)1338 static void scrub_spilled_slot(u8 *stype)
1339 {
1340 if (*stype != STACK_INVALID)
1341 *stype = STACK_MISC;
1342 }
1343
1344 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1345 * small to hold src. This is different from krealloc since we don't want to preserve
1346 * the contents of dst.
1347 *
1348 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1349 * not be allocated.
1350 */
copy_array(void * dst,const void * src,size_t n,size_t size,gfp_t flags)1351 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1352 {
1353 size_t alloc_bytes;
1354 void *orig = dst;
1355 size_t bytes;
1356
1357 if (ZERO_OR_NULL_PTR(src))
1358 goto out;
1359
1360 if (unlikely(check_mul_overflow(n, size, &bytes)))
1361 return NULL;
1362
1363 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1364 dst = krealloc(orig, alloc_bytes, flags);
1365 if (!dst) {
1366 kfree(orig);
1367 return NULL;
1368 }
1369
1370 memcpy(dst, src, bytes);
1371 out:
1372 return dst ? dst : ZERO_SIZE_PTR;
1373 }
1374
1375 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1376 * small to hold new_n items. new items are zeroed out if the array grows.
1377 *
1378 * Contrary to krealloc_array, does not free arr if new_n is zero.
1379 */
realloc_array(void * arr,size_t old_n,size_t new_n,size_t size)1380 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1381 {
1382 size_t alloc_size;
1383 void *new_arr;
1384
1385 if (!new_n || old_n == new_n)
1386 goto out;
1387
1388 alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1389 new_arr = krealloc(arr, alloc_size, GFP_KERNEL_ACCOUNT);
1390 if (!new_arr) {
1391 kfree(arr);
1392 return NULL;
1393 }
1394 arr = new_arr;
1395
1396 if (new_n > old_n)
1397 memset(arr + old_n * size, 0, (new_n - old_n) * size);
1398
1399 out:
1400 return arr ? arr : ZERO_SIZE_PTR;
1401 }
1402
copy_reference_state(struct bpf_verifier_state * dst,const struct bpf_verifier_state * src)1403 static int copy_reference_state(struct bpf_verifier_state *dst, const struct bpf_verifier_state *src)
1404 {
1405 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1406 sizeof(struct bpf_reference_state), GFP_KERNEL_ACCOUNT);
1407 if (!dst->refs)
1408 return -ENOMEM;
1409
1410 dst->acquired_refs = src->acquired_refs;
1411 dst->active_locks = src->active_locks;
1412 dst->active_preempt_locks = src->active_preempt_locks;
1413 dst->active_rcu_lock = src->active_rcu_lock;
1414 dst->active_irq_id = src->active_irq_id;
1415 dst->active_lock_id = src->active_lock_id;
1416 dst->active_lock_ptr = src->active_lock_ptr;
1417 return 0;
1418 }
1419
copy_stack_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1420 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1421 {
1422 size_t n = src->allocated_stack / BPF_REG_SIZE;
1423
1424 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1425 GFP_KERNEL_ACCOUNT);
1426 if (!dst->stack)
1427 return -ENOMEM;
1428
1429 dst->allocated_stack = src->allocated_stack;
1430 return 0;
1431 }
1432
resize_reference_state(struct bpf_verifier_state * state,size_t n)1433 static int resize_reference_state(struct bpf_verifier_state *state, size_t n)
1434 {
1435 state->refs = realloc_array(state->refs, state->acquired_refs, n,
1436 sizeof(struct bpf_reference_state));
1437 if (!state->refs)
1438 return -ENOMEM;
1439
1440 state->acquired_refs = n;
1441 return 0;
1442 }
1443
1444 /* Possibly update state->allocated_stack to be at least size bytes. Also
1445 * possibly update the function's high-water mark in its bpf_subprog_info.
1446 */
grow_stack_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int size)1447 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size)
1448 {
1449 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n;
1450
1451 /* The stack size is always a multiple of BPF_REG_SIZE. */
1452 size = round_up(size, BPF_REG_SIZE);
1453 n = size / BPF_REG_SIZE;
1454
1455 if (old_n >= n)
1456 return 0;
1457
1458 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1459 if (!state->stack)
1460 return -ENOMEM;
1461
1462 state->allocated_stack = size;
1463
1464 /* update known max for given subprogram */
1465 if (env->subprog_info[state->subprogno].stack_depth < size)
1466 env->subprog_info[state->subprogno].stack_depth = size;
1467
1468 return 0;
1469 }
1470
1471 /* Acquire a pointer id from the env and update the state->refs to include
1472 * this new pointer reference.
1473 * On success, returns a valid pointer id to associate with the register
1474 * On failure, returns a negative errno.
1475 */
acquire_reference_state(struct bpf_verifier_env * env,int insn_idx)1476 static struct bpf_reference_state *acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1477 {
1478 struct bpf_verifier_state *state = env->cur_state;
1479 int new_ofs = state->acquired_refs;
1480 int err;
1481
1482 err = resize_reference_state(state, state->acquired_refs + 1);
1483 if (err)
1484 return NULL;
1485 state->refs[new_ofs].insn_idx = insn_idx;
1486
1487 return &state->refs[new_ofs];
1488 }
1489
acquire_reference(struct bpf_verifier_env * env,int insn_idx)1490 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx)
1491 {
1492 struct bpf_reference_state *s;
1493
1494 s = acquire_reference_state(env, insn_idx);
1495 if (!s)
1496 return -ENOMEM;
1497 s->type = REF_TYPE_PTR;
1498 s->id = ++env->id_gen;
1499 return s->id;
1500 }
1501
acquire_lock_state(struct bpf_verifier_env * env,int insn_idx,enum ref_state_type type,int id,void * ptr)1502 static int acquire_lock_state(struct bpf_verifier_env *env, int insn_idx, enum ref_state_type type,
1503 int id, void *ptr)
1504 {
1505 struct bpf_verifier_state *state = env->cur_state;
1506 struct bpf_reference_state *s;
1507
1508 s = acquire_reference_state(env, insn_idx);
1509 if (!s)
1510 return -ENOMEM;
1511 s->type = type;
1512 s->id = id;
1513 s->ptr = ptr;
1514
1515 state->active_locks++;
1516 state->active_lock_id = id;
1517 state->active_lock_ptr = ptr;
1518 return 0;
1519 }
1520
acquire_irq_state(struct bpf_verifier_env * env,int insn_idx)1521 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx)
1522 {
1523 struct bpf_verifier_state *state = env->cur_state;
1524 struct bpf_reference_state *s;
1525
1526 s = acquire_reference_state(env, insn_idx);
1527 if (!s)
1528 return -ENOMEM;
1529 s->type = REF_TYPE_IRQ;
1530 s->id = ++env->id_gen;
1531
1532 state->active_irq_id = s->id;
1533 return s->id;
1534 }
1535
release_reference_state(struct bpf_verifier_state * state,int idx)1536 static void release_reference_state(struct bpf_verifier_state *state, int idx)
1537 {
1538 int last_idx;
1539 size_t rem;
1540
1541 /* IRQ state requires the relative ordering of elements remaining the
1542 * same, since it relies on the refs array to behave as a stack, so that
1543 * it can detect out-of-order IRQ restore. Hence use memmove to shift
1544 * the array instead of swapping the final element into the deleted idx.
1545 */
1546 last_idx = state->acquired_refs - 1;
1547 rem = state->acquired_refs - idx - 1;
1548 if (last_idx && idx != last_idx)
1549 memmove(&state->refs[idx], &state->refs[idx + 1], sizeof(*state->refs) * rem);
1550 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1551 state->acquired_refs--;
1552 return;
1553 }
1554
find_reference_state(struct bpf_verifier_state * state,int ptr_id)1555 static bool find_reference_state(struct bpf_verifier_state *state, int ptr_id)
1556 {
1557 int i;
1558
1559 for (i = 0; i < state->acquired_refs; i++)
1560 if (state->refs[i].id == ptr_id)
1561 return true;
1562
1563 return false;
1564 }
1565
release_lock_state(struct bpf_verifier_state * state,int type,int id,void * ptr)1566 static int release_lock_state(struct bpf_verifier_state *state, int type, int id, void *ptr)
1567 {
1568 void *prev_ptr = NULL;
1569 u32 prev_id = 0;
1570 int i;
1571
1572 for (i = 0; i < state->acquired_refs; i++) {
1573 if (state->refs[i].type == type && state->refs[i].id == id &&
1574 state->refs[i].ptr == ptr) {
1575 release_reference_state(state, i);
1576 state->active_locks--;
1577 /* Reassign active lock (id, ptr). */
1578 state->active_lock_id = prev_id;
1579 state->active_lock_ptr = prev_ptr;
1580 return 0;
1581 }
1582 if (state->refs[i].type & REF_TYPE_LOCK_MASK) {
1583 prev_id = state->refs[i].id;
1584 prev_ptr = state->refs[i].ptr;
1585 }
1586 }
1587 return -EINVAL;
1588 }
1589
release_irq_state(struct bpf_verifier_state * state,int id)1590 static int release_irq_state(struct bpf_verifier_state *state, int id)
1591 {
1592 u32 prev_id = 0;
1593 int i;
1594
1595 if (id != state->active_irq_id)
1596 return -EACCES;
1597
1598 for (i = 0; i < state->acquired_refs; i++) {
1599 if (state->refs[i].type != REF_TYPE_IRQ)
1600 continue;
1601 if (state->refs[i].id == id) {
1602 release_reference_state(state, i);
1603 state->active_irq_id = prev_id;
1604 return 0;
1605 } else {
1606 prev_id = state->refs[i].id;
1607 }
1608 }
1609 return -EINVAL;
1610 }
1611
find_lock_state(struct bpf_verifier_state * state,enum ref_state_type type,int id,void * ptr)1612 static struct bpf_reference_state *find_lock_state(struct bpf_verifier_state *state, enum ref_state_type type,
1613 int id, void *ptr)
1614 {
1615 int i;
1616
1617 for (i = 0; i < state->acquired_refs; i++) {
1618 struct bpf_reference_state *s = &state->refs[i];
1619
1620 if (!(s->type & type))
1621 continue;
1622
1623 if (s->id == id && s->ptr == ptr)
1624 return s;
1625 }
1626 return NULL;
1627 }
1628
update_peak_states(struct bpf_verifier_env * env)1629 static void update_peak_states(struct bpf_verifier_env *env)
1630 {
1631 u32 cur_states;
1632
1633 cur_states = env->explored_states_size + env->free_list_size + env->num_backedges;
1634 env->peak_states = max(env->peak_states, cur_states);
1635 }
1636
free_func_state(struct bpf_func_state * state)1637 static void free_func_state(struct bpf_func_state *state)
1638 {
1639 if (!state)
1640 return;
1641 kfree(state->stack);
1642 kfree(state);
1643 }
1644
clear_jmp_history(struct bpf_verifier_state * state)1645 static void clear_jmp_history(struct bpf_verifier_state *state)
1646 {
1647 kfree(state->jmp_history);
1648 state->jmp_history = NULL;
1649 state->jmp_history_cnt = 0;
1650 }
1651
free_verifier_state(struct bpf_verifier_state * state,bool free_self)1652 static void free_verifier_state(struct bpf_verifier_state *state,
1653 bool free_self)
1654 {
1655 int i;
1656
1657 for (i = 0; i <= state->curframe; i++) {
1658 free_func_state(state->frame[i]);
1659 state->frame[i] = NULL;
1660 }
1661 kfree(state->refs);
1662 clear_jmp_history(state);
1663 if (free_self)
1664 kfree(state);
1665 }
1666
1667 /* struct bpf_verifier_state->parent refers to states
1668 * that are in either of env->{expored_states,free_list}.
1669 * In both cases the state is contained in struct bpf_verifier_state_list.
1670 */
state_parent_as_list(struct bpf_verifier_state * st)1671 static struct bpf_verifier_state_list *state_parent_as_list(struct bpf_verifier_state *st)
1672 {
1673 if (st->parent)
1674 return container_of(st->parent, struct bpf_verifier_state_list, state);
1675 return NULL;
1676 }
1677
1678 static bool incomplete_read_marks(struct bpf_verifier_env *env,
1679 struct bpf_verifier_state *st);
1680
1681 /* A state can be freed if it is no longer referenced:
1682 * - is in the env->free_list;
1683 * - has no children states;
1684 */
maybe_free_verifier_state(struct bpf_verifier_env * env,struct bpf_verifier_state_list * sl)1685 static void maybe_free_verifier_state(struct bpf_verifier_env *env,
1686 struct bpf_verifier_state_list *sl)
1687 {
1688 if (!sl->in_free_list
1689 || sl->state.branches != 0
1690 || incomplete_read_marks(env, &sl->state))
1691 return;
1692 list_del(&sl->node);
1693 free_verifier_state(&sl->state, false);
1694 kfree(sl);
1695 env->free_list_size--;
1696 }
1697
1698 /* copy verifier state from src to dst growing dst stack space
1699 * when necessary to accommodate larger src stack
1700 */
copy_func_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1701 static int copy_func_state(struct bpf_func_state *dst,
1702 const struct bpf_func_state *src)
1703 {
1704 memcpy(dst, src, offsetof(struct bpf_func_state, stack));
1705 return copy_stack_state(dst, src);
1706 }
1707
copy_verifier_state(struct bpf_verifier_state * dst_state,const struct bpf_verifier_state * src)1708 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1709 const struct bpf_verifier_state *src)
1710 {
1711 struct bpf_func_state *dst;
1712 int i, err;
1713
1714 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1715 src->jmp_history_cnt, sizeof(*dst_state->jmp_history),
1716 GFP_KERNEL_ACCOUNT);
1717 if (!dst_state->jmp_history)
1718 return -ENOMEM;
1719 dst_state->jmp_history_cnt = src->jmp_history_cnt;
1720
1721 /* if dst has more stack frames then src frame, free them, this is also
1722 * necessary in case of exceptional exits using bpf_throw.
1723 */
1724 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1725 free_func_state(dst_state->frame[i]);
1726 dst_state->frame[i] = NULL;
1727 }
1728 err = copy_reference_state(dst_state, src);
1729 if (err)
1730 return err;
1731 dst_state->speculative = src->speculative;
1732 dst_state->in_sleepable = src->in_sleepable;
1733 dst_state->cleaned = src->cleaned;
1734 dst_state->curframe = src->curframe;
1735 dst_state->branches = src->branches;
1736 dst_state->parent = src->parent;
1737 dst_state->first_insn_idx = src->first_insn_idx;
1738 dst_state->last_insn_idx = src->last_insn_idx;
1739 dst_state->dfs_depth = src->dfs_depth;
1740 dst_state->callback_unroll_depth = src->callback_unroll_depth;
1741 dst_state->may_goto_depth = src->may_goto_depth;
1742 dst_state->equal_state = src->equal_state;
1743 for (i = 0; i <= src->curframe; i++) {
1744 dst = dst_state->frame[i];
1745 if (!dst) {
1746 dst = kzalloc(sizeof(*dst), GFP_KERNEL_ACCOUNT);
1747 if (!dst)
1748 return -ENOMEM;
1749 dst_state->frame[i] = dst;
1750 }
1751 err = copy_func_state(dst, src->frame[i]);
1752 if (err)
1753 return err;
1754 }
1755 return 0;
1756 }
1757
state_htab_size(struct bpf_verifier_env * env)1758 static u32 state_htab_size(struct bpf_verifier_env *env)
1759 {
1760 return env->prog->len;
1761 }
1762
explored_state(struct bpf_verifier_env * env,int idx)1763 static struct list_head *explored_state(struct bpf_verifier_env *env, int idx)
1764 {
1765 struct bpf_verifier_state *cur = env->cur_state;
1766 struct bpf_func_state *state = cur->frame[cur->curframe];
1767
1768 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1769 }
1770
same_callsites(struct bpf_verifier_state * a,struct bpf_verifier_state * b)1771 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1772 {
1773 int fr;
1774
1775 if (a->curframe != b->curframe)
1776 return false;
1777
1778 for (fr = a->curframe; fr >= 0; fr--)
1779 if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1780 return false;
1781
1782 return true;
1783 }
1784
1785 /* Return IP for a given frame in a call stack */
frame_insn_idx(struct bpf_verifier_state * st,u32 frame)1786 static u32 frame_insn_idx(struct bpf_verifier_state *st, u32 frame)
1787 {
1788 return frame == st->curframe
1789 ? st->insn_idx
1790 : st->frame[frame + 1]->callsite;
1791 }
1792
1793 /* For state @st look for a topmost frame with frame_insn_idx() in some SCC,
1794 * if such frame exists form a corresponding @callchain as an array of
1795 * call sites leading to this frame and SCC id.
1796 * E.g.:
1797 *
1798 * void foo() { A: loop {... SCC#1 ...}; }
1799 * void bar() { B: loop { C: foo(); ... SCC#2 ... }
1800 * D: loop { E: foo(); ... SCC#3 ... } }
1801 * void main() { F: bar(); }
1802 *
1803 * @callchain at (A) would be either (F,SCC#2) or (F,SCC#3) depending
1804 * on @st frame call sites being (F,C,A) or (F,E,A).
1805 */
compute_scc_callchain(struct bpf_verifier_env * env,struct bpf_verifier_state * st,struct bpf_scc_callchain * callchain)1806 static bool compute_scc_callchain(struct bpf_verifier_env *env,
1807 struct bpf_verifier_state *st,
1808 struct bpf_scc_callchain *callchain)
1809 {
1810 u32 i, scc, insn_idx;
1811
1812 memset(callchain, 0, sizeof(*callchain));
1813 for (i = 0; i <= st->curframe; i++) {
1814 insn_idx = frame_insn_idx(st, i);
1815 scc = env->insn_aux_data[insn_idx].scc;
1816 if (scc) {
1817 callchain->scc = scc;
1818 break;
1819 } else if (i < st->curframe) {
1820 callchain->callsites[i] = insn_idx;
1821 } else {
1822 return false;
1823 }
1824 }
1825 return true;
1826 }
1827
1828 /* Check if bpf_scc_visit instance for @callchain exists. */
scc_visit_lookup(struct bpf_verifier_env * env,struct bpf_scc_callchain * callchain)1829 static struct bpf_scc_visit *scc_visit_lookup(struct bpf_verifier_env *env,
1830 struct bpf_scc_callchain *callchain)
1831 {
1832 struct bpf_scc_info *info = env->scc_info[callchain->scc];
1833 struct bpf_scc_visit *visits = info->visits;
1834 u32 i;
1835
1836 if (!info)
1837 return NULL;
1838 for (i = 0; i < info->num_visits; i++)
1839 if (memcmp(callchain, &visits[i].callchain, sizeof(*callchain)) == 0)
1840 return &visits[i];
1841 return NULL;
1842 }
1843
1844 /* Allocate a new bpf_scc_visit instance corresponding to @callchain.
1845 * Allocated instances are alive for a duration of the do_check_common()
1846 * call and are freed by free_states().
1847 */
scc_visit_alloc(struct bpf_verifier_env * env,struct bpf_scc_callchain * callchain)1848 static struct bpf_scc_visit *scc_visit_alloc(struct bpf_verifier_env *env,
1849 struct bpf_scc_callchain *callchain)
1850 {
1851 struct bpf_scc_visit *visit;
1852 struct bpf_scc_info *info;
1853 u32 scc, num_visits;
1854 u64 new_sz;
1855
1856 scc = callchain->scc;
1857 info = env->scc_info[scc];
1858 num_visits = info ? info->num_visits : 0;
1859 new_sz = sizeof(*info) + sizeof(struct bpf_scc_visit) * (num_visits + 1);
1860 info = kvrealloc(env->scc_info[scc], new_sz, GFP_KERNEL_ACCOUNT);
1861 if (!info)
1862 return NULL;
1863 env->scc_info[scc] = info;
1864 info->num_visits = num_visits + 1;
1865 visit = &info->visits[num_visits];
1866 memset(visit, 0, sizeof(*visit));
1867 memcpy(&visit->callchain, callchain, sizeof(*callchain));
1868 return visit;
1869 }
1870
1871 /* Form a string '(callsite#1,callsite#2,...,scc)' in env->tmp_str_buf */
format_callchain(struct bpf_verifier_env * env,struct bpf_scc_callchain * callchain)1872 static char *format_callchain(struct bpf_verifier_env *env, struct bpf_scc_callchain *callchain)
1873 {
1874 char *buf = env->tmp_str_buf;
1875 int i, delta = 0;
1876
1877 delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "(");
1878 for (i = 0; i < ARRAY_SIZE(callchain->callsites); i++) {
1879 if (!callchain->callsites[i])
1880 break;
1881 delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "%u,",
1882 callchain->callsites[i]);
1883 }
1884 delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "%u)", callchain->scc);
1885 return env->tmp_str_buf;
1886 }
1887
1888 /* If callchain for @st exists (@st is in some SCC), ensure that
1889 * bpf_scc_visit instance for this callchain exists.
1890 * If instance does not exist or is empty, assign visit->entry_state to @st.
1891 */
maybe_enter_scc(struct bpf_verifier_env * env,struct bpf_verifier_state * st)1892 static int maybe_enter_scc(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1893 {
1894 struct bpf_scc_callchain *callchain = &env->callchain_buf;
1895 struct bpf_scc_visit *visit;
1896
1897 if (!compute_scc_callchain(env, st, callchain))
1898 return 0;
1899 visit = scc_visit_lookup(env, callchain);
1900 visit = visit ?: scc_visit_alloc(env, callchain);
1901 if (!visit)
1902 return -ENOMEM;
1903 if (!visit->entry_state) {
1904 visit->entry_state = st;
1905 if (env->log.level & BPF_LOG_LEVEL2)
1906 verbose(env, "SCC enter %s\n", format_callchain(env, callchain));
1907 }
1908 return 0;
1909 }
1910
1911 static int propagate_backedges(struct bpf_verifier_env *env, struct bpf_scc_visit *visit);
1912
1913 /* If callchain for @st exists (@st is in some SCC), make it empty:
1914 * - set visit->entry_state to NULL;
1915 * - flush accumulated backedges.
1916 */
maybe_exit_scc(struct bpf_verifier_env * env,struct bpf_verifier_state * st)1917 static int maybe_exit_scc(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1918 {
1919 struct bpf_scc_callchain *callchain = &env->callchain_buf;
1920 struct bpf_scc_visit *visit;
1921
1922 if (!compute_scc_callchain(env, st, callchain))
1923 return 0;
1924 visit = scc_visit_lookup(env, callchain);
1925 if (!visit) {
1926 /*
1927 * If path traversal stops inside an SCC, corresponding bpf_scc_visit
1928 * must exist for non-speculative paths. For non-speculative paths
1929 * traversal stops when:
1930 * a. Verification error is found, maybe_exit_scc() is not called.
1931 * b. Top level BPF_EXIT is reached. Top level BPF_EXIT is not a member
1932 * of any SCC.
1933 * c. A checkpoint is reached and matched. Checkpoints are created by
1934 * is_state_visited(), which calls maybe_enter_scc(), which allocates
1935 * bpf_scc_visit instances for checkpoints within SCCs.
1936 * (c) is the only case that can reach this point.
1937 */
1938 if (!st->speculative) {
1939 verifier_bug(env, "scc exit: no visit info for call chain %s",
1940 format_callchain(env, callchain));
1941 return -EFAULT;
1942 }
1943 return 0;
1944 }
1945 if (visit->entry_state != st)
1946 return 0;
1947 if (env->log.level & BPF_LOG_LEVEL2)
1948 verbose(env, "SCC exit %s\n", format_callchain(env, callchain));
1949 visit->entry_state = NULL;
1950 env->num_backedges -= visit->num_backedges;
1951 visit->num_backedges = 0;
1952 update_peak_states(env);
1953 return propagate_backedges(env, visit);
1954 }
1955
1956 /* Lookup an bpf_scc_visit instance corresponding to @st callchain
1957 * and add @backedge to visit->backedges. @st callchain must exist.
1958 */
add_scc_backedge(struct bpf_verifier_env * env,struct bpf_verifier_state * st,struct bpf_scc_backedge * backedge)1959 static int add_scc_backedge(struct bpf_verifier_env *env,
1960 struct bpf_verifier_state *st,
1961 struct bpf_scc_backedge *backedge)
1962 {
1963 struct bpf_scc_callchain *callchain = &env->callchain_buf;
1964 struct bpf_scc_visit *visit;
1965
1966 if (!compute_scc_callchain(env, st, callchain)) {
1967 verifier_bug(env, "add backedge: no SCC in verification path, insn_idx %d",
1968 st->insn_idx);
1969 return -EFAULT;
1970 }
1971 visit = scc_visit_lookup(env, callchain);
1972 if (!visit) {
1973 verifier_bug(env, "add backedge: no visit info for call chain %s",
1974 format_callchain(env, callchain));
1975 return -EFAULT;
1976 }
1977 if (env->log.level & BPF_LOG_LEVEL2)
1978 verbose(env, "SCC backedge %s\n", format_callchain(env, callchain));
1979 backedge->next = visit->backedges;
1980 visit->backedges = backedge;
1981 visit->num_backedges++;
1982 env->num_backedges++;
1983 update_peak_states(env);
1984 return 0;
1985 }
1986
1987 /* bpf_reg_state->live marks for registers in a state @st are incomplete,
1988 * if state @st is in some SCC and not all execution paths starting at this
1989 * SCC are fully explored.
1990 */
incomplete_read_marks(struct bpf_verifier_env * env,struct bpf_verifier_state * st)1991 static bool incomplete_read_marks(struct bpf_verifier_env *env,
1992 struct bpf_verifier_state *st)
1993 {
1994 struct bpf_scc_callchain *callchain = &env->callchain_buf;
1995 struct bpf_scc_visit *visit;
1996
1997 if (!compute_scc_callchain(env, st, callchain))
1998 return false;
1999 visit = scc_visit_lookup(env, callchain);
2000 if (!visit)
2001 return false;
2002 return !!visit->backedges;
2003 }
2004
free_backedges(struct bpf_scc_visit * visit)2005 static void free_backedges(struct bpf_scc_visit *visit)
2006 {
2007 struct bpf_scc_backedge *backedge, *next;
2008
2009 for (backedge = visit->backedges; backedge; backedge = next) {
2010 free_verifier_state(&backedge->state, false);
2011 next = backedge->next;
2012 kfree(backedge);
2013 }
2014 visit->backedges = NULL;
2015 }
2016
update_branch_counts(struct bpf_verifier_env * env,struct bpf_verifier_state * st)2017 static int update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
2018 {
2019 struct bpf_verifier_state_list *sl = NULL, *parent_sl;
2020 struct bpf_verifier_state *parent;
2021 int err;
2022
2023 while (st) {
2024 u32 br = --st->branches;
2025
2026 /* verifier_bug_if(br > 1, ...) technically makes sense here,
2027 * but see comment in push_stack(), hence:
2028 */
2029 verifier_bug_if((int)br < 0, env, "%s:branches_to_explore=%d", __func__, br);
2030 if (br)
2031 break;
2032 err = maybe_exit_scc(env, st);
2033 if (err)
2034 return err;
2035 parent = st->parent;
2036 parent_sl = state_parent_as_list(st);
2037 if (sl)
2038 maybe_free_verifier_state(env, sl);
2039 st = parent;
2040 sl = parent_sl;
2041 }
2042 return 0;
2043 }
2044
pop_stack(struct bpf_verifier_env * env,int * prev_insn_idx,int * insn_idx,bool pop_log)2045 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
2046 int *insn_idx, bool pop_log)
2047 {
2048 struct bpf_verifier_state *cur = env->cur_state;
2049 struct bpf_verifier_stack_elem *elem, *head = env->head;
2050 int err;
2051
2052 if (env->head == NULL)
2053 return -ENOENT;
2054
2055 if (cur) {
2056 err = copy_verifier_state(cur, &head->st);
2057 if (err)
2058 return err;
2059 }
2060 if (pop_log)
2061 bpf_vlog_reset(&env->log, head->log_pos);
2062 if (insn_idx)
2063 *insn_idx = head->insn_idx;
2064 if (prev_insn_idx)
2065 *prev_insn_idx = head->prev_insn_idx;
2066 elem = head->next;
2067 free_verifier_state(&head->st, false);
2068 kfree(head);
2069 env->head = elem;
2070 env->stack_size--;
2071 return 0;
2072 }
2073
error_recoverable_with_nospec(int err)2074 static bool error_recoverable_with_nospec(int err)
2075 {
2076 /* Should only return true for non-fatal errors that are allowed to
2077 * occur during speculative verification. For these we can insert a
2078 * nospec and the program might still be accepted. Do not include
2079 * something like ENOMEM because it is likely to re-occur for the next
2080 * architectural path once it has been recovered-from in all speculative
2081 * paths.
2082 */
2083 return err == -EPERM || err == -EACCES || err == -EINVAL;
2084 }
2085
push_stack(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,bool speculative)2086 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
2087 int insn_idx, int prev_insn_idx,
2088 bool speculative)
2089 {
2090 struct bpf_verifier_state *cur = env->cur_state;
2091 struct bpf_verifier_stack_elem *elem;
2092 int err;
2093
2094 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL_ACCOUNT);
2095 if (!elem)
2096 return NULL;
2097
2098 elem->insn_idx = insn_idx;
2099 elem->prev_insn_idx = prev_insn_idx;
2100 elem->next = env->head;
2101 elem->log_pos = env->log.end_pos;
2102 env->head = elem;
2103 env->stack_size++;
2104 err = copy_verifier_state(&elem->st, cur);
2105 if (err)
2106 return NULL;
2107 elem->st.speculative |= speculative;
2108 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2109 verbose(env, "The sequence of %d jumps is too complex.\n",
2110 env->stack_size);
2111 return NULL;
2112 }
2113 if (elem->st.parent) {
2114 ++elem->st.parent->branches;
2115 /* WARN_ON(branches > 2) technically makes sense here,
2116 * but
2117 * 1. speculative states will bump 'branches' for non-branch
2118 * instructions
2119 * 2. is_state_visited() heuristics may decide not to create
2120 * a new state for a sequence of branches and all such current
2121 * and cloned states will be pointing to a single parent state
2122 * which might have large 'branches' count.
2123 */
2124 }
2125 return &elem->st;
2126 }
2127
2128 #define CALLER_SAVED_REGS 6
2129 static const int caller_saved[CALLER_SAVED_REGS] = {
2130 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
2131 };
2132
2133 /* This helper doesn't clear reg->id */
___mark_reg_known(struct bpf_reg_state * reg,u64 imm)2134 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2135 {
2136 reg->var_off = tnum_const(imm);
2137 reg->smin_value = (s64)imm;
2138 reg->smax_value = (s64)imm;
2139 reg->umin_value = imm;
2140 reg->umax_value = imm;
2141
2142 reg->s32_min_value = (s32)imm;
2143 reg->s32_max_value = (s32)imm;
2144 reg->u32_min_value = (u32)imm;
2145 reg->u32_max_value = (u32)imm;
2146 }
2147
2148 /* Mark the unknown part of a register (variable offset or scalar value) as
2149 * known to have the value @imm.
2150 */
__mark_reg_known(struct bpf_reg_state * reg,u64 imm)2151 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2152 {
2153 /* Clear off and union(map_ptr, range) */
2154 memset(((u8 *)reg) + sizeof(reg->type), 0,
2155 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
2156 reg->id = 0;
2157 reg->ref_obj_id = 0;
2158 ___mark_reg_known(reg, imm);
2159 }
2160
__mark_reg32_known(struct bpf_reg_state * reg,u64 imm)2161 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
2162 {
2163 reg->var_off = tnum_const_subreg(reg->var_off, imm);
2164 reg->s32_min_value = (s32)imm;
2165 reg->s32_max_value = (s32)imm;
2166 reg->u32_min_value = (u32)imm;
2167 reg->u32_max_value = (u32)imm;
2168 }
2169
2170 /* Mark the 'variable offset' part of a register as zero. This should be
2171 * used only on registers holding a pointer type.
2172 */
__mark_reg_known_zero(struct bpf_reg_state * reg)2173 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
2174 {
2175 __mark_reg_known(reg, 0);
2176 }
2177
__mark_reg_const_zero(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)2178 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
2179 {
2180 __mark_reg_known(reg, 0);
2181 reg->type = SCALAR_VALUE;
2182 /* all scalars are assumed imprecise initially (unless unprivileged,
2183 * in which case everything is forced to be precise)
2184 */
2185 reg->precise = !env->bpf_capable;
2186 }
2187
mark_reg_known_zero(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2188 static void mark_reg_known_zero(struct bpf_verifier_env *env,
2189 struct bpf_reg_state *regs, u32 regno)
2190 {
2191 if (WARN_ON(regno >= MAX_BPF_REG)) {
2192 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
2193 /* Something bad happened, let's kill all regs */
2194 for (regno = 0; regno < MAX_BPF_REG; regno++)
2195 __mark_reg_not_init(env, regs + regno);
2196 return;
2197 }
2198 __mark_reg_known_zero(regs + regno);
2199 }
2200
__mark_dynptr_reg(struct bpf_reg_state * reg,enum bpf_dynptr_type type,bool first_slot,int dynptr_id)2201 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
2202 bool first_slot, int dynptr_id)
2203 {
2204 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
2205 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
2206 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
2207 */
2208 __mark_reg_known_zero(reg);
2209 reg->type = CONST_PTR_TO_DYNPTR;
2210 /* Give each dynptr a unique id to uniquely associate slices to it. */
2211 reg->id = dynptr_id;
2212 reg->dynptr.type = type;
2213 reg->dynptr.first_slot = first_slot;
2214 }
2215
mark_ptr_not_null_reg(struct bpf_reg_state * reg)2216 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
2217 {
2218 if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
2219 const struct bpf_map *map = reg->map_ptr;
2220
2221 if (map->inner_map_meta) {
2222 reg->type = CONST_PTR_TO_MAP;
2223 reg->map_ptr = map->inner_map_meta;
2224 /* transfer reg's id which is unique for every map_lookup_elem
2225 * as UID of the inner map.
2226 */
2227 if (btf_record_has_field(map->inner_map_meta->record,
2228 BPF_TIMER | BPF_WORKQUEUE | BPF_TASK_WORK)) {
2229 reg->map_uid = reg->id;
2230 }
2231 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
2232 reg->type = PTR_TO_XDP_SOCK;
2233 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
2234 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
2235 reg->type = PTR_TO_SOCKET;
2236 } else {
2237 reg->type = PTR_TO_MAP_VALUE;
2238 }
2239 return;
2240 }
2241
2242 reg->type &= ~PTR_MAYBE_NULL;
2243 }
2244
mark_reg_graph_node(struct bpf_reg_state * regs,u32 regno,struct btf_field_graph_root * ds_head)2245 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
2246 struct btf_field_graph_root *ds_head)
2247 {
2248 __mark_reg_known_zero(®s[regno]);
2249 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
2250 regs[regno].btf = ds_head->btf;
2251 regs[regno].btf_id = ds_head->value_btf_id;
2252 regs[regno].off = ds_head->node_offset;
2253 }
2254
reg_is_pkt_pointer(const struct bpf_reg_state * reg)2255 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
2256 {
2257 return type_is_pkt_pointer(reg->type);
2258 }
2259
reg_is_pkt_pointer_any(const struct bpf_reg_state * reg)2260 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
2261 {
2262 return reg_is_pkt_pointer(reg) ||
2263 reg->type == PTR_TO_PACKET_END;
2264 }
2265
reg_is_dynptr_slice_pkt(const struct bpf_reg_state * reg)2266 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
2267 {
2268 return base_type(reg->type) == PTR_TO_MEM &&
2269 (reg->type &
2270 (DYNPTR_TYPE_SKB | DYNPTR_TYPE_XDP | DYNPTR_TYPE_SKB_META));
2271 }
2272
2273 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
reg_is_init_pkt_pointer(const struct bpf_reg_state * reg,enum bpf_reg_type which)2274 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2275 enum bpf_reg_type which)
2276 {
2277 /* The register can already have a range from prior markings.
2278 * This is fine as long as it hasn't been advanced from its
2279 * origin.
2280 */
2281 return reg->type == which &&
2282 reg->id == 0 &&
2283 reg->off == 0 &&
2284 tnum_equals_const(reg->var_off, 0);
2285 }
2286
2287 /* Reset the min/max bounds of a register */
__mark_reg_unbounded(struct bpf_reg_state * reg)2288 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2289 {
2290 reg->smin_value = S64_MIN;
2291 reg->smax_value = S64_MAX;
2292 reg->umin_value = 0;
2293 reg->umax_value = U64_MAX;
2294
2295 reg->s32_min_value = S32_MIN;
2296 reg->s32_max_value = S32_MAX;
2297 reg->u32_min_value = 0;
2298 reg->u32_max_value = U32_MAX;
2299 }
2300
__mark_reg64_unbounded(struct bpf_reg_state * reg)2301 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2302 {
2303 reg->smin_value = S64_MIN;
2304 reg->smax_value = S64_MAX;
2305 reg->umin_value = 0;
2306 reg->umax_value = U64_MAX;
2307 }
2308
__mark_reg32_unbounded(struct bpf_reg_state * reg)2309 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2310 {
2311 reg->s32_min_value = S32_MIN;
2312 reg->s32_max_value = S32_MAX;
2313 reg->u32_min_value = 0;
2314 reg->u32_max_value = U32_MAX;
2315 }
2316
__update_reg32_bounds(struct bpf_reg_state * reg)2317 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2318 {
2319 struct tnum var32_off = tnum_subreg(reg->var_off);
2320
2321 /* min signed is max(sign bit) | min(other bits) */
2322 reg->s32_min_value = max_t(s32, reg->s32_min_value,
2323 var32_off.value | (var32_off.mask & S32_MIN));
2324 /* max signed is min(sign bit) | max(other bits) */
2325 reg->s32_max_value = min_t(s32, reg->s32_max_value,
2326 var32_off.value | (var32_off.mask & S32_MAX));
2327 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2328 reg->u32_max_value = min(reg->u32_max_value,
2329 (u32)(var32_off.value | var32_off.mask));
2330 }
2331
__update_reg64_bounds(struct bpf_reg_state * reg)2332 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2333 {
2334 /* min signed is max(sign bit) | min(other bits) */
2335 reg->smin_value = max_t(s64, reg->smin_value,
2336 reg->var_off.value | (reg->var_off.mask & S64_MIN));
2337 /* max signed is min(sign bit) | max(other bits) */
2338 reg->smax_value = min_t(s64, reg->smax_value,
2339 reg->var_off.value | (reg->var_off.mask & S64_MAX));
2340 reg->umin_value = max(reg->umin_value, reg->var_off.value);
2341 reg->umax_value = min(reg->umax_value,
2342 reg->var_off.value | reg->var_off.mask);
2343 }
2344
__update_reg_bounds(struct bpf_reg_state * reg)2345 static void __update_reg_bounds(struct bpf_reg_state *reg)
2346 {
2347 __update_reg32_bounds(reg);
2348 __update_reg64_bounds(reg);
2349 }
2350
2351 /* Uses signed min/max values to inform unsigned, and vice-versa */
__reg32_deduce_bounds(struct bpf_reg_state * reg)2352 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2353 {
2354 /* If upper 32 bits of u64/s64 range don't change, we can use lower 32
2355 * bits to improve our u32/s32 boundaries.
2356 *
2357 * E.g., the case where we have upper 32 bits as zero ([10, 20] in
2358 * u64) is pretty trivial, it's obvious that in u32 we'll also have
2359 * [10, 20] range. But this property holds for any 64-bit range as
2360 * long as upper 32 bits in that entire range of values stay the same.
2361 *
2362 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311]
2363 * in decimal) has the same upper 32 bits throughout all the values in
2364 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15])
2365 * range.
2366 *
2367 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32,
2368 * following the rules outlined below about u64/s64 correspondence
2369 * (which equally applies to u32 vs s32 correspondence). In general it
2370 * depends on actual hexadecimal values of 32-bit range. They can form
2371 * only valid u32, or only valid s32 ranges in some cases.
2372 *
2373 * So we use all these insights to derive bounds for subregisters here.
2374 */
2375 if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) {
2376 /* u64 to u32 casting preserves validity of low 32 bits as
2377 * a range, if upper 32 bits are the same
2378 */
2379 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value);
2380 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value);
2381
2382 if ((s32)reg->umin_value <= (s32)reg->umax_value) {
2383 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2384 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2385 }
2386 }
2387 if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) {
2388 /* low 32 bits should form a proper u32 range */
2389 if ((u32)reg->smin_value <= (u32)reg->smax_value) {
2390 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value);
2391 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value);
2392 }
2393 /* low 32 bits should form a proper s32 range */
2394 if ((s32)reg->smin_value <= (s32)reg->smax_value) {
2395 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2396 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2397 }
2398 }
2399 /* Special case where upper bits form a small sequence of two
2400 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to
2401 * 0x00000000 is also valid), while lower bits form a proper s32 range
2402 * going from negative numbers to positive numbers. E.g., let's say we
2403 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]).
2404 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff,
2405 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits,
2406 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]).
2407 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in
2408 * upper 32 bits. As a random example, s64 range
2409 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range
2410 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister.
2411 */
2412 if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) &&
2413 (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) {
2414 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2415 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2416 }
2417 if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) &&
2418 (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) {
2419 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2420 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2421 }
2422 /* if u32 range forms a valid s32 range (due to matching sign bit),
2423 * try to learn from that
2424 */
2425 if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) {
2426 reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value);
2427 reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value);
2428 }
2429 /* If we cannot cross the sign boundary, then signed and unsigned bounds
2430 * are the same, so combine. This works even in the negative case, e.g.
2431 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2432 */
2433 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2434 reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value);
2435 reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value);
2436 }
2437 }
2438
__reg64_deduce_bounds(struct bpf_reg_state * reg)2439 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2440 {
2441 /* If u64 range forms a valid s64 range (due to matching sign bit),
2442 * try to learn from that. Let's do a bit of ASCII art to see when
2443 * this is happening. Let's take u64 range first:
2444 *
2445 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX
2446 * |-------------------------------|--------------------------------|
2447 *
2448 * Valid u64 range is formed when umin and umax are anywhere in the
2449 * range [0, U64_MAX], and umin <= umax. u64 case is simple and
2450 * straightforward. Let's see how s64 range maps onto the same range
2451 * of values, annotated below the line for comparison:
2452 *
2453 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX
2454 * |-------------------------------|--------------------------------|
2455 * 0 S64_MAX S64_MIN -1
2456 *
2457 * So s64 values basically start in the middle and they are logically
2458 * contiguous to the right of it, wrapping around from -1 to 0, and
2459 * then finishing as S64_MAX (0x7fffffffffffffff) right before
2460 * S64_MIN. We can try drawing the continuity of u64 vs s64 values
2461 * more visually as mapped to sign-agnostic range of hex values.
2462 *
2463 * u64 start u64 end
2464 * _______________________________________________________________
2465 * / \
2466 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX
2467 * |-------------------------------|--------------------------------|
2468 * 0 S64_MAX S64_MIN -1
2469 * / \
2470 * >------------------------------ ------------------------------->
2471 * s64 continues... s64 end s64 start s64 "midpoint"
2472 *
2473 * What this means is that, in general, we can't always derive
2474 * something new about u64 from any random s64 range, and vice versa.
2475 *
2476 * But we can do that in two particular cases. One is when entire
2477 * u64/s64 range is *entirely* contained within left half of the above
2478 * diagram or when it is *entirely* contained in the right half. I.e.:
2479 *
2480 * |-------------------------------|--------------------------------|
2481 * ^ ^ ^ ^
2482 * A B C D
2483 *
2484 * [A, B] and [C, D] are contained entirely in their respective halves
2485 * and form valid contiguous ranges as both u64 and s64 values. [A, B]
2486 * will be non-negative both as u64 and s64 (and in fact it will be
2487 * identical ranges no matter the signedness). [C, D] treated as s64
2488 * will be a range of negative values, while in u64 it will be
2489 * non-negative range of values larger than 0x8000000000000000.
2490 *
2491 * Now, any other range here can't be represented in both u64 and s64
2492 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid
2493 * contiguous u64 ranges, but they are discontinuous in s64. [B, C]
2494 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX],
2495 * for example. Similarly, valid s64 range [D, A] (going from negative
2496 * to positive values), would be two separate [D, U64_MAX] and [0, A]
2497 * ranges as u64. Currently reg_state can't represent two segments per
2498 * numeric domain, so in such situations we can only derive maximal
2499 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64).
2500 *
2501 * So we use these facts to derive umin/umax from smin/smax and vice
2502 * versa only if they stay within the same "half". This is equivalent
2503 * to checking sign bit: lower half will have sign bit as zero, upper
2504 * half have sign bit 1. Below in code we simplify this by just
2505 * casting umin/umax as smin/smax and checking if they form valid
2506 * range, and vice versa. Those are equivalent checks.
2507 */
2508 if ((s64)reg->umin_value <= (s64)reg->umax_value) {
2509 reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value);
2510 reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value);
2511 }
2512 /* If we cannot cross the sign boundary, then signed and unsigned bounds
2513 * are the same, so combine. This works even in the negative case, e.g.
2514 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2515 */
2516 if ((u64)reg->smin_value <= (u64)reg->smax_value) {
2517 reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value);
2518 reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value);
2519 } else {
2520 /* If the s64 range crosses the sign boundary, then it's split
2521 * between the beginning and end of the U64 domain. In that
2522 * case, we can derive new bounds if the u64 range overlaps
2523 * with only one end of the s64 range.
2524 *
2525 * In the following example, the u64 range overlaps only with
2526 * positive portion of the s64 range.
2527 *
2528 * 0 U64_MAX
2529 * | [xxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxx] |
2530 * |----------------------------|----------------------------|
2531 * |xxxxx s64 range xxxxxxxxx] [xxxxxxx|
2532 * 0 S64_MAX S64_MIN -1
2533 *
2534 * We can thus derive the following new s64 and u64 ranges.
2535 *
2536 * 0 U64_MAX
2537 * | [xxxxxx u64 range xxxxx] |
2538 * |----------------------------|----------------------------|
2539 * | [xxxxxx s64 range xxxxx] |
2540 * 0 S64_MAX S64_MIN -1
2541 *
2542 * If they overlap in two places, we can't derive anything
2543 * because reg_state can't represent two ranges per numeric
2544 * domain.
2545 *
2546 * 0 U64_MAX
2547 * | [xxxxxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxxxxx] |
2548 * |----------------------------|----------------------------|
2549 * |xxxxx s64 range xxxxxxxxx] [xxxxxxxxxx|
2550 * 0 S64_MAX S64_MIN -1
2551 *
2552 * The first condition below corresponds to the first diagram
2553 * above.
2554 */
2555 if (reg->umax_value < (u64)reg->smin_value) {
2556 reg->smin_value = (s64)reg->umin_value;
2557 reg->umax_value = min_t(u64, reg->umax_value, reg->smax_value);
2558 } else if ((u64)reg->smax_value < reg->umin_value) {
2559 /* This second condition considers the case where the u64 range
2560 * overlaps with the negative portion of the s64 range:
2561 *
2562 * 0 U64_MAX
2563 * | [xxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxx] |
2564 * |----------------------------|----------------------------|
2565 * |xxxxxxxxx] [xxxxxxxxxxxx s64 range |
2566 * 0 S64_MAX S64_MIN -1
2567 */
2568 reg->smax_value = (s64)reg->umax_value;
2569 reg->umin_value = max_t(u64, reg->umin_value, reg->smin_value);
2570 }
2571 }
2572 }
2573
__reg_deduce_mixed_bounds(struct bpf_reg_state * reg)2574 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg)
2575 {
2576 /* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit
2577 * values on both sides of 64-bit range in hope to have tighter range.
2578 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from
2579 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff].
2580 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound
2581 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of
2582 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a
2583 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff].
2584 * We just need to make sure that derived bounds we are intersecting
2585 * with are well-formed ranges in respective s64 or u64 domain, just
2586 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments.
2587 */
2588 __u64 new_umin, new_umax;
2589 __s64 new_smin, new_smax;
2590
2591 /* u32 -> u64 tightening, it's always well-formed */
2592 new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value;
2593 new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value;
2594 reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2595 reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2596 /* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */
2597 new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value;
2598 new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value;
2599 reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2600 reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2601
2602 /* Here we would like to handle a special case after sign extending load,
2603 * when upper bits for a 64-bit range are all 1s or all 0s.
2604 *
2605 * Upper bits are all 1s when register is in a range:
2606 * [0xffff_ffff_0000_0000, 0xffff_ffff_ffff_ffff]
2607 * Upper bits are all 0s when register is in a range:
2608 * [0x0000_0000_0000_0000, 0x0000_0000_ffff_ffff]
2609 * Together this forms are continuous range:
2610 * [0xffff_ffff_0000_0000, 0x0000_0000_ffff_ffff]
2611 *
2612 * Now, suppose that register range is in fact tighter:
2613 * [0xffff_ffff_8000_0000, 0x0000_0000_ffff_ffff] (R)
2614 * Also suppose that it's 32-bit range is positive,
2615 * meaning that lower 32-bits of the full 64-bit register
2616 * are in the range:
2617 * [0x0000_0000, 0x7fff_ffff] (W)
2618 *
2619 * If this happens, then any value in a range:
2620 * [0xffff_ffff_0000_0000, 0xffff_ffff_7fff_ffff]
2621 * is smaller than a lowest bound of the range (R):
2622 * 0xffff_ffff_8000_0000
2623 * which means that upper bits of the full 64-bit register
2624 * can't be all 1s, when lower bits are in range (W).
2625 *
2626 * Note that:
2627 * - 0xffff_ffff_8000_0000 == (s64)S32_MIN
2628 * - 0x0000_0000_7fff_ffff == (s64)S32_MAX
2629 * These relations are used in the conditions below.
2630 */
2631 if (reg->s32_min_value >= 0 && reg->smin_value >= S32_MIN && reg->smax_value <= S32_MAX) {
2632 reg->smin_value = reg->s32_min_value;
2633 reg->smax_value = reg->s32_max_value;
2634 reg->umin_value = reg->s32_min_value;
2635 reg->umax_value = reg->s32_max_value;
2636 reg->var_off = tnum_intersect(reg->var_off,
2637 tnum_range(reg->smin_value, reg->smax_value));
2638 }
2639 }
2640
__reg_deduce_bounds(struct bpf_reg_state * reg)2641 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2642 {
2643 __reg32_deduce_bounds(reg);
2644 __reg64_deduce_bounds(reg);
2645 __reg_deduce_mixed_bounds(reg);
2646 }
2647
2648 /* Attempts to improve var_off based on unsigned min/max information */
__reg_bound_offset(struct bpf_reg_state * reg)2649 static void __reg_bound_offset(struct bpf_reg_state *reg)
2650 {
2651 struct tnum var64_off = tnum_intersect(reg->var_off,
2652 tnum_range(reg->umin_value,
2653 reg->umax_value));
2654 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2655 tnum_range(reg->u32_min_value,
2656 reg->u32_max_value));
2657
2658 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2659 }
2660
reg_bounds_sync(struct bpf_reg_state * reg)2661 static void reg_bounds_sync(struct bpf_reg_state *reg)
2662 {
2663 /* We might have learned new bounds from the var_off. */
2664 __update_reg_bounds(reg);
2665 /* We might have learned something about the sign bit. */
2666 __reg_deduce_bounds(reg);
2667 __reg_deduce_bounds(reg);
2668 __reg_deduce_bounds(reg);
2669 /* We might have learned some bits from the bounds. */
2670 __reg_bound_offset(reg);
2671 /* Intersecting with the old var_off might have improved our bounds
2672 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2673 * then new var_off is (0; 0x7f...fc) which improves our umax.
2674 */
2675 __update_reg_bounds(reg);
2676 }
2677
reg_bounds_sanity_check(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * ctx)2678 static int reg_bounds_sanity_check(struct bpf_verifier_env *env,
2679 struct bpf_reg_state *reg, const char *ctx)
2680 {
2681 const char *msg;
2682
2683 if (reg->umin_value > reg->umax_value ||
2684 reg->smin_value > reg->smax_value ||
2685 reg->u32_min_value > reg->u32_max_value ||
2686 reg->s32_min_value > reg->s32_max_value) {
2687 msg = "range bounds violation";
2688 goto out;
2689 }
2690
2691 if (tnum_is_const(reg->var_off)) {
2692 u64 uval = reg->var_off.value;
2693 s64 sval = (s64)uval;
2694
2695 if (reg->umin_value != uval || reg->umax_value != uval ||
2696 reg->smin_value != sval || reg->smax_value != sval) {
2697 msg = "const tnum out of sync with range bounds";
2698 goto out;
2699 }
2700 }
2701
2702 if (tnum_subreg_is_const(reg->var_off)) {
2703 u32 uval32 = tnum_subreg(reg->var_off).value;
2704 s32 sval32 = (s32)uval32;
2705
2706 if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 ||
2707 reg->s32_min_value != sval32 || reg->s32_max_value != sval32) {
2708 msg = "const subreg tnum out of sync with range bounds";
2709 goto out;
2710 }
2711 }
2712
2713 return 0;
2714 out:
2715 verifier_bug(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] "
2716 "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)",
2717 ctx, msg, reg->umin_value, reg->umax_value,
2718 reg->smin_value, reg->smax_value,
2719 reg->u32_min_value, reg->u32_max_value,
2720 reg->s32_min_value, reg->s32_max_value,
2721 reg->var_off.value, reg->var_off.mask);
2722 if (env->test_reg_invariants)
2723 return -EFAULT;
2724 __mark_reg_unbounded(reg);
2725 return 0;
2726 }
2727
__reg32_bound_s64(s32 a)2728 static bool __reg32_bound_s64(s32 a)
2729 {
2730 return a >= 0 && a <= S32_MAX;
2731 }
2732
__reg_assign_32_into_64(struct bpf_reg_state * reg)2733 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2734 {
2735 reg->umin_value = reg->u32_min_value;
2736 reg->umax_value = reg->u32_max_value;
2737
2738 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2739 * be positive otherwise set to worse case bounds and refine later
2740 * from tnum.
2741 */
2742 if (__reg32_bound_s64(reg->s32_min_value) &&
2743 __reg32_bound_s64(reg->s32_max_value)) {
2744 reg->smin_value = reg->s32_min_value;
2745 reg->smax_value = reg->s32_max_value;
2746 } else {
2747 reg->smin_value = 0;
2748 reg->smax_value = U32_MAX;
2749 }
2750 }
2751
2752 /* Mark a register as having a completely unknown (scalar) value. */
__mark_reg_unknown_imprecise(struct bpf_reg_state * reg)2753 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg)
2754 {
2755 /*
2756 * Clear type, off, and union(map_ptr, range) and
2757 * padding between 'type' and union
2758 */
2759 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2760 reg->type = SCALAR_VALUE;
2761 reg->id = 0;
2762 reg->ref_obj_id = 0;
2763 reg->var_off = tnum_unknown;
2764 reg->frameno = 0;
2765 reg->precise = false;
2766 __mark_reg_unbounded(reg);
2767 }
2768
2769 /* Mark a register as having a completely unknown (scalar) value,
2770 * initialize .precise as true when not bpf capable.
2771 */
__mark_reg_unknown(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)2772 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2773 struct bpf_reg_state *reg)
2774 {
2775 __mark_reg_unknown_imprecise(reg);
2776 reg->precise = !env->bpf_capable;
2777 }
2778
mark_reg_unknown(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2779 static void mark_reg_unknown(struct bpf_verifier_env *env,
2780 struct bpf_reg_state *regs, u32 regno)
2781 {
2782 if (WARN_ON(regno >= MAX_BPF_REG)) {
2783 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2784 /* Something bad happened, let's kill all regs except FP */
2785 for (regno = 0; regno < BPF_REG_FP; regno++)
2786 __mark_reg_not_init(env, regs + regno);
2787 return;
2788 }
2789 __mark_reg_unknown(env, regs + regno);
2790 }
2791
__mark_reg_s32_range(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,s32 s32_min,s32 s32_max)2792 static int __mark_reg_s32_range(struct bpf_verifier_env *env,
2793 struct bpf_reg_state *regs,
2794 u32 regno,
2795 s32 s32_min,
2796 s32 s32_max)
2797 {
2798 struct bpf_reg_state *reg = regs + regno;
2799
2800 reg->s32_min_value = max_t(s32, reg->s32_min_value, s32_min);
2801 reg->s32_max_value = min_t(s32, reg->s32_max_value, s32_max);
2802
2803 reg->smin_value = max_t(s64, reg->smin_value, s32_min);
2804 reg->smax_value = min_t(s64, reg->smax_value, s32_max);
2805
2806 reg_bounds_sync(reg);
2807
2808 return reg_bounds_sanity_check(env, reg, "s32_range");
2809 }
2810
__mark_reg_not_init(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)2811 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2812 struct bpf_reg_state *reg)
2813 {
2814 __mark_reg_unknown(env, reg);
2815 reg->type = NOT_INIT;
2816 }
2817
mark_reg_not_init(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2818 static void mark_reg_not_init(struct bpf_verifier_env *env,
2819 struct bpf_reg_state *regs, u32 regno)
2820 {
2821 if (WARN_ON(regno >= MAX_BPF_REG)) {
2822 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2823 /* Something bad happened, let's kill all regs except FP */
2824 for (regno = 0; regno < BPF_REG_FP; regno++)
2825 __mark_reg_not_init(env, regs + regno);
2826 return;
2827 }
2828 __mark_reg_not_init(env, regs + regno);
2829 }
2830
mark_btf_ld_reg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum bpf_reg_type reg_type,struct btf * btf,u32 btf_id,enum bpf_type_flag flag)2831 static int mark_btf_ld_reg(struct bpf_verifier_env *env,
2832 struct bpf_reg_state *regs, u32 regno,
2833 enum bpf_reg_type reg_type,
2834 struct btf *btf, u32 btf_id,
2835 enum bpf_type_flag flag)
2836 {
2837 switch (reg_type) {
2838 case SCALAR_VALUE:
2839 mark_reg_unknown(env, regs, regno);
2840 return 0;
2841 case PTR_TO_BTF_ID:
2842 mark_reg_known_zero(env, regs, regno);
2843 regs[regno].type = PTR_TO_BTF_ID | flag;
2844 regs[regno].btf = btf;
2845 regs[regno].btf_id = btf_id;
2846 if (type_may_be_null(flag))
2847 regs[regno].id = ++env->id_gen;
2848 return 0;
2849 case PTR_TO_MEM:
2850 mark_reg_known_zero(env, regs, regno);
2851 regs[regno].type = PTR_TO_MEM | flag;
2852 regs[regno].mem_size = 0;
2853 return 0;
2854 default:
2855 verifier_bug(env, "unexpected reg_type %d in %s\n", reg_type, __func__);
2856 return -EFAULT;
2857 }
2858 }
2859
2860 #define DEF_NOT_SUBREG (0)
init_reg_state(struct bpf_verifier_env * env,struct bpf_func_state * state)2861 static void init_reg_state(struct bpf_verifier_env *env,
2862 struct bpf_func_state *state)
2863 {
2864 struct bpf_reg_state *regs = state->regs;
2865 int i;
2866
2867 for (i = 0; i < MAX_BPF_REG; i++) {
2868 mark_reg_not_init(env, regs, i);
2869 regs[i].subreg_def = DEF_NOT_SUBREG;
2870 }
2871
2872 /* frame pointer */
2873 regs[BPF_REG_FP].type = PTR_TO_STACK;
2874 mark_reg_known_zero(env, regs, BPF_REG_FP);
2875 regs[BPF_REG_FP].frameno = state->frameno;
2876 }
2877
retval_range(s32 minval,s32 maxval)2878 static struct bpf_retval_range retval_range(s32 minval, s32 maxval)
2879 {
2880 return (struct bpf_retval_range){ minval, maxval };
2881 }
2882
2883 #define BPF_MAIN_FUNC (-1)
init_func_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int callsite,int frameno,int subprogno)2884 static void init_func_state(struct bpf_verifier_env *env,
2885 struct bpf_func_state *state,
2886 int callsite, int frameno, int subprogno)
2887 {
2888 state->callsite = callsite;
2889 state->frameno = frameno;
2890 state->subprogno = subprogno;
2891 state->callback_ret_range = retval_range(0, 0);
2892 init_reg_state(env, state);
2893 mark_verifier_state_scratched(env);
2894 }
2895
2896 /* Similar to push_stack(), but for async callbacks */
push_async_cb(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,int subprog,bool is_sleepable)2897 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2898 int insn_idx, int prev_insn_idx,
2899 int subprog, bool is_sleepable)
2900 {
2901 struct bpf_verifier_stack_elem *elem;
2902 struct bpf_func_state *frame;
2903
2904 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL_ACCOUNT);
2905 if (!elem)
2906 return NULL;
2907
2908 elem->insn_idx = insn_idx;
2909 elem->prev_insn_idx = prev_insn_idx;
2910 elem->next = env->head;
2911 elem->log_pos = env->log.end_pos;
2912 env->head = elem;
2913 env->stack_size++;
2914 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2915 verbose(env,
2916 "The sequence of %d jumps is too complex for async cb.\n",
2917 env->stack_size);
2918 return NULL;
2919 }
2920 /* Unlike push_stack() do not copy_verifier_state().
2921 * The caller state doesn't matter.
2922 * This is async callback. It starts in a fresh stack.
2923 * Initialize it similar to do_check_common().
2924 */
2925 elem->st.branches = 1;
2926 elem->st.in_sleepable = is_sleepable;
2927 frame = kzalloc(sizeof(*frame), GFP_KERNEL_ACCOUNT);
2928 if (!frame)
2929 return NULL;
2930 init_func_state(env, frame,
2931 BPF_MAIN_FUNC /* callsite */,
2932 0 /* frameno within this callchain */,
2933 subprog /* subprog number within this prog */);
2934 elem->st.frame[0] = frame;
2935 return &elem->st;
2936 }
2937
2938
2939 enum reg_arg_type {
2940 SRC_OP, /* register is used as source operand */
2941 DST_OP, /* register is used as destination operand */
2942 DST_OP_NO_MARK /* same as above, check only, don't mark */
2943 };
2944
cmp_subprogs(const void * a,const void * b)2945 static int cmp_subprogs(const void *a, const void *b)
2946 {
2947 return ((struct bpf_subprog_info *)a)->start -
2948 ((struct bpf_subprog_info *)b)->start;
2949 }
2950
2951 /* Find subprogram that contains instruction at 'off' */
bpf_find_containing_subprog(struct bpf_verifier_env * env,int off)2952 struct bpf_subprog_info *bpf_find_containing_subprog(struct bpf_verifier_env *env, int off)
2953 {
2954 struct bpf_subprog_info *vals = env->subprog_info;
2955 int l, r, m;
2956
2957 if (off >= env->prog->len || off < 0 || env->subprog_cnt == 0)
2958 return NULL;
2959
2960 l = 0;
2961 r = env->subprog_cnt - 1;
2962 while (l < r) {
2963 m = l + (r - l + 1) / 2;
2964 if (vals[m].start <= off)
2965 l = m;
2966 else
2967 r = m - 1;
2968 }
2969 return &vals[l];
2970 }
2971
2972 /* Find subprogram that starts exactly at 'off' */
find_subprog(struct bpf_verifier_env * env,int off)2973 static int find_subprog(struct bpf_verifier_env *env, int off)
2974 {
2975 struct bpf_subprog_info *p;
2976
2977 p = bpf_find_containing_subprog(env, off);
2978 if (!p || p->start != off)
2979 return -ENOENT;
2980 return p - env->subprog_info;
2981 }
2982
add_subprog(struct bpf_verifier_env * env,int off)2983 static int add_subprog(struct bpf_verifier_env *env, int off)
2984 {
2985 int insn_cnt = env->prog->len;
2986 int ret;
2987
2988 if (off >= insn_cnt || off < 0) {
2989 verbose(env, "call to invalid destination\n");
2990 return -EINVAL;
2991 }
2992 ret = find_subprog(env, off);
2993 if (ret >= 0)
2994 return ret;
2995 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2996 verbose(env, "too many subprograms\n");
2997 return -E2BIG;
2998 }
2999 /* determine subprog starts. The end is one before the next starts */
3000 env->subprog_info[env->subprog_cnt++].start = off;
3001 sort(env->subprog_info, env->subprog_cnt,
3002 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
3003 return env->subprog_cnt - 1;
3004 }
3005
bpf_find_exception_callback_insn_off(struct bpf_verifier_env * env)3006 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env)
3007 {
3008 struct bpf_prog_aux *aux = env->prog->aux;
3009 struct btf *btf = aux->btf;
3010 const struct btf_type *t;
3011 u32 main_btf_id, id;
3012 const char *name;
3013 int ret, i;
3014
3015 /* Non-zero func_info_cnt implies valid btf */
3016 if (!aux->func_info_cnt)
3017 return 0;
3018 main_btf_id = aux->func_info[0].type_id;
3019
3020 t = btf_type_by_id(btf, main_btf_id);
3021 if (!t) {
3022 verbose(env, "invalid btf id for main subprog in func_info\n");
3023 return -EINVAL;
3024 }
3025
3026 name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:");
3027 if (IS_ERR(name)) {
3028 ret = PTR_ERR(name);
3029 /* If there is no tag present, there is no exception callback */
3030 if (ret == -ENOENT)
3031 ret = 0;
3032 else if (ret == -EEXIST)
3033 verbose(env, "multiple exception callback tags for main subprog\n");
3034 return ret;
3035 }
3036
3037 ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC);
3038 if (ret < 0) {
3039 verbose(env, "exception callback '%s' could not be found in BTF\n", name);
3040 return ret;
3041 }
3042 id = ret;
3043 t = btf_type_by_id(btf, id);
3044 if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
3045 verbose(env, "exception callback '%s' must have global linkage\n", name);
3046 return -EINVAL;
3047 }
3048 ret = 0;
3049 for (i = 0; i < aux->func_info_cnt; i++) {
3050 if (aux->func_info[i].type_id != id)
3051 continue;
3052 ret = aux->func_info[i].insn_off;
3053 /* Further func_info and subprog checks will also happen
3054 * later, so assume this is the right insn_off for now.
3055 */
3056 if (!ret) {
3057 verbose(env, "invalid exception callback insn_off in func_info: 0\n");
3058 ret = -EINVAL;
3059 }
3060 }
3061 if (!ret) {
3062 verbose(env, "exception callback type id not found in func_info\n");
3063 ret = -EINVAL;
3064 }
3065 return ret;
3066 }
3067
3068 #define MAX_KFUNC_DESCS 256
3069 #define MAX_KFUNC_BTFS 256
3070
3071 struct bpf_kfunc_desc {
3072 struct btf_func_model func_model;
3073 u32 func_id;
3074 s32 imm;
3075 u16 offset;
3076 unsigned long addr;
3077 };
3078
3079 struct bpf_kfunc_btf {
3080 struct btf *btf;
3081 struct module *module;
3082 u16 offset;
3083 };
3084
3085 struct bpf_kfunc_desc_tab {
3086 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during
3087 * verification. JITs do lookups by bpf_insn, where func_id may not be
3088 * available, therefore at the end of verification do_misc_fixups()
3089 * sorts this by imm and offset.
3090 */
3091 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
3092 u32 nr_descs;
3093 };
3094
3095 struct bpf_kfunc_btf_tab {
3096 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
3097 u32 nr_descs;
3098 };
3099
kfunc_desc_cmp_by_id_off(const void * a,const void * b)3100 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
3101 {
3102 const struct bpf_kfunc_desc *d0 = a;
3103 const struct bpf_kfunc_desc *d1 = b;
3104
3105 /* func_id is not greater than BTF_MAX_TYPE */
3106 return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
3107 }
3108
kfunc_btf_cmp_by_off(const void * a,const void * b)3109 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
3110 {
3111 const struct bpf_kfunc_btf *d0 = a;
3112 const struct bpf_kfunc_btf *d1 = b;
3113
3114 return d0->offset - d1->offset;
3115 }
3116
3117 static const struct bpf_kfunc_desc *
find_kfunc_desc(const struct bpf_prog * prog,u32 func_id,u16 offset)3118 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
3119 {
3120 struct bpf_kfunc_desc desc = {
3121 .func_id = func_id,
3122 .offset = offset,
3123 };
3124 struct bpf_kfunc_desc_tab *tab;
3125
3126 tab = prog->aux->kfunc_tab;
3127 return bsearch(&desc, tab->descs, tab->nr_descs,
3128 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
3129 }
3130
bpf_get_kfunc_addr(const struct bpf_prog * prog,u32 func_id,u16 btf_fd_idx,u8 ** func_addr)3131 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
3132 u16 btf_fd_idx, u8 **func_addr)
3133 {
3134 const struct bpf_kfunc_desc *desc;
3135
3136 desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
3137 if (!desc)
3138 return -EFAULT;
3139
3140 *func_addr = (u8 *)desc->addr;
3141 return 0;
3142 }
3143
__find_kfunc_desc_btf(struct bpf_verifier_env * env,s16 offset)3144 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
3145 s16 offset)
3146 {
3147 struct bpf_kfunc_btf kf_btf = { .offset = offset };
3148 struct bpf_kfunc_btf_tab *tab;
3149 struct bpf_kfunc_btf *b;
3150 struct module *mod;
3151 struct btf *btf;
3152 int btf_fd;
3153
3154 tab = env->prog->aux->kfunc_btf_tab;
3155 b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
3156 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
3157 if (!b) {
3158 if (tab->nr_descs == MAX_KFUNC_BTFS) {
3159 verbose(env, "too many different module BTFs\n");
3160 return ERR_PTR(-E2BIG);
3161 }
3162
3163 if (bpfptr_is_null(env->fd_array)) {
3164 verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
3165 return ERR_PTR(-EPROTO);
3166 }
3167
3168 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
3169 offset * sizeof(btf_fd),
3170 sizeof(btf_fd)))
3171 return ERR_PTR(-EFAULT);
3172
3173 btf = btf_get_by_fd(btf_fd);
3174 if (IS_ERR(btf)) {
3175 verbose(env, "invalid module BTF fd specified\n");
3176 return btf;
3177 }
3178
3179 if (!btf_is_module(btf)) {
3180 verbose(env, "BTF fd for kfunc is not a module BTF\n");
3181 btf_put(btf);
3182 return ERR_PTR(-EINVAL);
3183 }
3184
3185 mod = btf_try_get_module(btf);
3186 if (!mod) {
3187 btf_put(btf);
3188 return ERR_PTR(-ENXIO);
3189 }
3190
3191 b = &tab->descs[tab->nr_descs++];
3192 b->btf = btf;
3193 b->module = mod;
3194 b->offset = offset;
3195
3196 /* sort() reorders entries by value, so b may no longer point
3197 * to the right entry after this
3198 */
3199 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3200 kfunc_btf_cmp_by_off, NULL);
3201 } else {
3202 btf = b->btf;
3203 }
3204
3205 return btf;
3206 }
3207
bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab * tab)3208 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
3209 {
3210 if (!tab)
3211 return;
3212
3213 while (tab->nr_descs--) {
3214 module_put(tab->descs[tab->nr_descs].module);
3215 btf_put(tab->descs[tab->nr_descs].btf);
3216 }
3217 kfree(tab);
3218 }
3219
find_kfunc_desc_btf(struct bpf_verifier_env * env,s16 offset)3220 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
3221 {
3222 if (offset) {
3223 if (offset < 0) {
3224 /* In the future, this can be allowed to increase limit
3225 * of fd index into fd_array, interpreted as u16.
3226 */
3227 verbose(env, "negative offset disallowed for kernel module function call\n");
3228 return ERR_PTR(-EINVAL);
3229 }
3230
3231 return __find_kfunc_desc_btf(env, offset);
3232 }
3233 return btf_vmlinux ?: ERR_PTR(-ENOENT);
3234 }
3235
add_kfunc_call(struct bpf_verifier_env * env,u32 func_id,s16 offset)3236 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
3237 {
3238 const struct btf_type *func, *func_proto;
3239 struct bpf_kfunc_btf_tab *btf_tab;
3240 struct bpf_kfunc_desc_tab *tab;
3241 struct bpf_prog_aux *prog_aux;
3242 struct bpf_kfunc_desc *desc;
3243 const char *func_name;
3244 struct btf *desc_btf;
3245 unsigned long call_imm;
3246 unsigned long addr;
3247 int err;
3248
3249 prog_aux = env->prog->aux;
3250 tab = prog_aux->kfunc_tab;
3251 btf_tab = prog_aux->kfunc_btf_tab;
3252 if (!tab) {
3253 if (!btf_vmlinux) {
3254 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
3255 return -ENOTSUPP;
3256 }
3257
3258 if (!env->prog->jit_requested) {
3259 verbose(env, "JIT is required for calling kernel function\n");
3260 return -ENOTSUPP;
3261 }
3262
3263 if (!bpf_jit_supports_kfunc_call()) {
3264 verbose(env, "JIT does not support calling kernel function\n");
3265 return -ENOTSUPP;
3266 }
3267
3268 if (!env->prog->gpl_compatible) {
3269 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
3270 return -EINVAL;
3271 }
3272
3273 tab = kzalloc(sizeof(*tab), GFP_KERNEL_ACCOUNT);
3274 if (!tab)
3275 return -ENOMEM;
3276 prog_aux->kfunc_tab = tab;
3277 }
3278
3279 /* func_id == 0 is always invalid, but instead of returning an error, be
3280 * conservative and wait until the code elimination pass before returning
3281 * error, so that invalid calls that get pruned out can be in BPF programs
3282 * loaded from userspace. It is also required that offset be untouched
3283 * for such calls.
3284 */
3285 if (!func_id && !offset)
3286 return 0;
3287
3288 if (!btf_tab && offset) {
3289 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL_ACCOUNT);
3290 if (!btf_tab)
3291 return -ENOMEM;
3292 prog_aux->kfunc_btf_tab = btf_tab;
3293 }
3294
3295 desc_btf = find_kfunc_desc_btf(env, offset);
3296 if (IS_ERR(desc_btf)) {
3297 verbose(env, "failed to find BTF for kernel function\n");
3298 return PTR_ERR(desc_btf);
3299 }
3300
3301 if (find_kfunc_desc(env->prog, func_id, offset))
3302 return 0;
3303
3304 if (tab->nr_descs == MAX_KFUNC_DESCS) {
3305 verbose(env, "too many different kernel function calls\n");
3306 return -E2BIG;
3307 }
3308
3309 func = btf_type_by_id(desc_btf, func_id);
3310 if (!func || !btf_type_is_func(func)) {
3311 verbose(env, "kernel btf_id %u is not a function\n",
3312 func_id);
3313 return -EINVAL;
3314 }
3315 func_proto = btf_type_by_id(desc_btf, func->type);
3316 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
3317 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
3318 func_id);
3319 return -EINVAL;
3320 }
3321
3322 func_name = btf_name_by_offset(desc_btf, func->name_off);
3323 addr = kallsyms_lookup_name(func_name);
3324 if (!addr) {
3325 verbose(env, "cannot find address for kernel function %s\n",
3326 func_name);
3327 return -EINVAL;
3328 }
3329 specialize_kfunc(env, func_id, offset, &addr);
3330
3331 if (bpf_jit_supports_far_kfunc_call()) {
3332 call_imm = func_id;
3333 } else {
3334 call_imm = BPF_CALL_IMM(addr);
3335 /* Check whether the relative offset overflows desc->imm */
3336 if ((unsigned long)(s32)call_imm != call_imm) {
3337 verbose(env, "address of kernel function %s is out of range\n",
3338 func_name);
3339 return -EINVAL;
3340 }
3341 }
3342
3343 if (bpf_dev_bound_kfunc_id(func_id)) {
3344 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
3345 if (err)
3346 return err;
3347 }
3348
3349 desc = &tab->descs[tab->nr_descs++];
3350 desc->func_id = func_id;
3351 desc->imm = call_imm;
3352 desc->offset = offset;
3353 desc->addr = addr;
3354 err = btf_distill_func_proto(&env->log, desc_btf,
3355 func_proto, func_name,
3356 &desc->func_model);
3357 if (!err)
3358 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3359 kfunc_desc_cmp_by_id_off, NULL);
3360 return err;
3361 }
3362
kfunc_desc_cmp_by_imm_off(const void * a,const void * b)3363 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
3364 {
3365 const struct bpf_kfunc_desc *d0 = a;
3366 const struct bpf_kfunc_desc *d1 = b;
3367
3368 if (d0->imm != d1->imm)
3369 return d0->imm < d1->imm ? -1 : 1;
3370 if (d0->offset != d1->offset)
3371 return d0->offset < d1->offset ? -1 : 1;
3372 return 0;
3373 }
3374
sort_kfunc_descs_by_imm_off(struct bpf_prog * prog)3375 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
3376 {
3377 struct bpf_kfunc_desc_tab *tab;
3378
3379 tab = prog->aux->kfunc_tab;
3380 if (!tab)
3381 return;
3382
3383 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3384 kfunc_desc_cmp_by_imm_off, NULL);
3385 }
3386
bpf_prog_has_kfunc_call(const struct bpf_prog * prog)3387 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
3388 {
3389 return !!prog->aux->kfunc_tab;
3390 }
3391
3392 const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog * prog,const struct bpf_insn * insn)3393 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
3394 const struct bpf_insn *insn)
3395 {
3396 const struct bpf_kfunc_desc desc = {
3397 .imm = insn->imm,
3398 .offset = insn->off,
3399 };
3400 const struct bpf_kfunc_desc *res;
3401 struct bpf_kfunc_desc_tab *tab;
3402
3403 tab = prog->aux->kfunc_tab;
3404 res = bsearch(&desc, tab->descs, tab->nr_descs,
3405 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
3406
3407 return res ? &res->func_model : NULL;
3408 }
3409
add_kfunc_in_insns(struct bpf_verifier_env * env,struct bpf_insn * insn,int cnt)3410 static int add_kfunc_in_insns(struct bpf_verifier_env *env,
3411 struct bpf_insn *insn, int cnt)
3412 {
3413 int i, ret;
3414
3415 for (i = 0; i < cnt; i++, insn++) {
3416 if (bpf_pseudo_kfunc_call(insn)) {
3417 ret = add_kfunc_call(env, insn->imm, insn->off);
3418 if (ret < 0)
3419 return ret;
3420 }
3421 }
3422 return 0;
3423 }
3424
add_subprog_and_kfunc(struct bpf_verifier_env * env)3425 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
3426 {
3427 struct bpf_subprog_info *subprog = env->subprog_info;
3428 int i, ret, insn_cnt = env->prog->len, ex_cb_insn;
3429 struct bpf_insn *insn = env->prog->insnsi;
3430
3431 /* Add entry function. */
3432 ret = add_subprog(env, 0);
3433 if (ret)
3434 return ret;
3435
3436 for (i = 0; i < insn_cnt; i++, insn++) {
3437 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
3438 !bpf_pseudo_kfunc_call(insn))
3439 continue;
3440
3441 if (!env->bpf_capable) {
3442 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
3443 return -EPERM;
3444 }
3445
3446 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
3447 ret = add_subprog(env, i + insn->imm + 1);
3448 else
3449 ret = add_kfunc_call(env, insn->imm, insn->off);
3450
3451 if (ret < 0)
3452 return ret;
3453 }
3454
3455 ret = bpf_find_exception_callback_insn_off(env);
3456 if (ret < 0)
3457 return ret;
3458 ex_cb_insn = ret;
3459
3460 /* If ex_cb_insn > 0, this means that the main program has a subprog
3461 * marked using BTF decl tag to serve as the exception callback.
3462 */
3463 if (ex_cb_insn) {
3464 ret = add_subprog(env, ex_cb_insn);
3465 if (ret < 0)
3466 return ret;
3467 for (i = 1; i < env->subprog_cnt; i++) {
3468 if (env->subprog_info[i].start != ex_cb_insn)
3469 continue;
3470 env->exception_callback_subprog = i;
3471 mark_subprog_exc_cb(env, i);
3472 break;
3473 }
3474 }
3475
3476 /* Add a fake 'exit' subprog which could simplify subprog iteration
3477 * logic. 'subprog_cnt' should not be increased.
3478 */
3479 subprog[env->subprog_cnt].start = insn_cnt;
3480
3481 if (env->log.level & BPF_LOG_LEVEL2)
3482 for (i = 0; i < env->subprog_cnt; i++)
3483 verbose(env, "func#%d @%d\n", i, subprog[i].start);
3484
3485 return 0;
3486 }
3487
check_subprogs(struct bpf_verifier_env * env)3488 static int check_subprogs(struct bpf_verifier_env *env)
3489 {
3490 int i, subprog_start, subprog_end, off, cur_subprog = 0;
3491 struct bpf_subprog_info *subprog = env->subprog_info;
3492 struct bpf_insn *insn = env->prog->insnsi;
3493 int insn_cnt = env->prog->len;
3494
3495 /* now check that all jumps are within the same subprog */
3496 subprog_start = subprog[cur_subprog].start;
3497 subprog_end = subprog[cur_subprog + 1].start;
3498 for (i = 0; i < insn_cnt; i++) {
3499 u8 code = insn[i].code;
3500
3501 if (code == (BPF_JMP | BPF_CALL) &&
3502 insn[i].src_reg == 0 &&
3503 insn[i].imm == BPF_FUNC_tail_call) {
3504 subprog[cur_subprog].has_tail_call = true;
3505 subprog[cur_subprog].tail_call_reachable = true;
3506 }
3507 if (BPF_CLASS(code) == BPF_LD &&
3508 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
3509 subprog[cur_subprog].has_ld_abs = true;
3510 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
3511 goto next;
3512 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
3513 goto next;
3514 off = i + bpf_jmp_offset(&insn[i]) + 1;
3515 if (off < subprog_start || off >= subprog_end) {
3516 verbose(env, "jump out of range from insn %d to %d\n", i, off);
3517 return -EINVAL;
3518 }
3519 next:
3520 if (i == subprog_end - 1) {
3521 /* to avoid fall-through from one subprog into another
3522 * the last insn of the subprog should be either exit
3523 * or unconditional jump back or bpf_throw call
3524 */
3525 if (code != (BPF_JMP | BPF_EXIT) &&
3526 code != (BPF_JMP32 | BPF_JA) &&
3527 code != (BPF_JMP | BPF_JA)) {
3528 verbose(env, "last insn is not an exit or jmp\n");
3529 return -EINVAL;
3530 }
3531 subprog_start = subprog_end;
3532 cur_subprog++;
3533 if (cur_subprog < env->subprog_cnt)
3534 subprog_end = subprog[cur_subprog + 1].start;
3535 }
3536 }
3537 return 0;
3538 }
3539
mark_stack_slot_obj_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int spi,int nr_slots)3540 static int mark_stack_slot_obj_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3541 int spi, int nr_slots)
3542 {
3543 int err, i;
3544
3545 for (i = 0; i < nr_slots; i++) {
3546 err = bpf_mark_stack_read(env, reg->frameno, env->insn_idx, BIT(spi - i));
3547 if (err)
3548 return err;
3549 mark_stack_slot_scratched(env, spi - i);
3550 }
3551 return 0;
3552 }
3553
mark_dynptr_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg)3554 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3555 {
3556 int spi;
3557
3558 /* For CONST_PTR_TO_DYNPTR, it must have already been done by
3559 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3560 * check_kfunc_call.
3561 */
3562 if (reg->type == CONST_PTR_TO_DYNPTR)
3563 return 0;
3564 spi = dynptr_get_spi(env, reg);
3565 if (spi < 0)
3566 return spi;
3567 /* Caller ensures dynptr is valid and initialized, which means spi is in
3568 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3569 * read.
3570 */
3571 return mark_stack_slot_obj_read(env, reg, spi, BPF_DYNPTR_NR_SLOTS);
3572 }
3573
mark_iter_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int spi,int nr_slots)3574 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3575 int spi, int nr_slots)
3576 {
3577 return mark_stack_slot_obj_read(env, reg, spi, nr_slots);
3578 }
3579
mark_irq_flag_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg)3580 static int mark_irq_flag_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3581 {
3582 int spi;
3583
3584 spi = irq_flag_get_spi(env, reg);
3585 if (spi < 0)
3586 return spi;
3587 return mark_stack_slot_obj_read(env, reg, spi, 1);
3588 }
3589
3590 /* This function is supposed to be used by the following 32-bit optimization
3591 * code only. It returns TRUE if the source or destination register operates
3592 * on 64-bit, otherwise return FALSE.
3593 */
is_reg64(struct bpf_insn * insn,u32 regno,struct bpf_reg_state * reg,enum reg_arg_type t)3594 static bool is_reg64(struct bpf_insn *insn,
3595 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3596 {
3597 u8 code, class, op;
3598
3599 code = insn->code;
3600 class = BPF_CLASS(code);
3601 op = BPF_OP(code);
3602 if (class == BPF_JMP) {
3603 /* BPF_EXIT for "main" will reach here. Return TRUE
3604 * conservatively.
3605 */
3606 if (op == BPF_EXIT)
3607 return true;
3608 if (op == BPF_CALL) {
3609 /* BPF to BPF call will reach here because of marking
3610 * caller saved clobber with DST_OP_NO_MARK for which we
3611 * don't care the register def because they are anyway
3612 * marked as NOT_INIT already.
3613 */
3614 if (insn->src_reg == BPF_PSEUDO_CALL)
3615 return false;
3616 /* Helper call will reach here because of arg type
3617 * check, conservatively return TRUE.
3618 */
3619 if (t == SRC_OP)
3620 return true;
3621
3622 return false;
3623 }
3624 }
3625
3626 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3627 return false;
3628
3629 if (class == BPF_ALU64 || class == BPF_JMP ||
3630 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3631 return true;
3632
3633 if (class == BPF_ALU || class == BPF_JMP32)
3634 return false;
3635
3636 if (class == BPF_LDX) {
3637 if (t != SRC_OP)
3638 return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX;
3639 /* LDX source must be ptr. */
3640 return true;
3641 }
3642
3643 if (class == BPF_STX) {
3644 /* BPF_STX (including atomic variants) has one or more source
3645 * operands, one of which is a ptr. Check whether the caller is
3646 * asking about it.
3647 */
3648 if (t == SRC_OP && reg->type != SCALAR_VALUE)
3649 return true;
3650 return BPF_SIZE(code) == BPF_DW;
3651 }
3652
3653 if (class == BPF_LD) {
3654 u8 mode = BPF_MODE(code);
3655
3656 /* LD_IMM64 */
3657 if (mode == BPF_IMM)
3658 return true;
3659
3660 /* Both LD_IND and LD_ABS return 32-bit data. */
3661 if (t != SRC_OP)
3662 return false;
3663
3664 /* Implicit ctx ptr. */
3665 if (regno == BPF_REG_6)
3666 return true;
3667
3668 /* Explicit source could be any width. */
3669 return true;
3670 }
3671
3672 if (class == BPF_ST)
3673 /* The only source register for BPF_ST is a ptr. */
3674 return true;
3675
3676 /* Conservatively return true at default. */
3677 return true;
3678 }
3679
3680 /* Return the regno defined by the insn, or -1. */
insn_def_regno(const struct bpf_insn * insn)3681 static int insn_def_regno(const struct bpf_insn *insn)
3682 {
3683 switch (BPF_CLASS(insn->code)) {
3684 case BPF_JMP:
3685 case BPF_JMP32:
3686 case BPF_ST:
3687 return -1;
3688 case BPF_STX:
3689 if (BPF_MODE(insn->code) == BPF_ATOMIC ||
3690 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) {
3691 if (insn->imm == BPF_CMPXCHG)
3692 return BPF_REG_0;
3693 else if (insn->imm == BPF_LOAD_ACQ)
3694 return insn->dst_reg;
3695 else if (insn->imm & BPF_FETCH)
3696 return insn->src_reg;
3697 }
3698 return -1;
3699 default:
3700 return insn->dst_reg;
3701 }
3702 }
3703
3704 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
insn_has_def32(struct bpf_insn * insn)3705 static bool insn_has_def32(struct bpf_insn *insn)
3706 {
3707 int dst_reg = insn_def_regno(insn);
3708
3709 if (dst_reg == -1)
3710 return false;
3711
3712 return !is_reg64(insn, dst_reg, NULL, DST_OP);
3713 }
3714
mark_insn_zext(struct bpf_verifier_env * env,struct bpf_reg_state * reg)3715 static void mark_insn_zext(struct bpf_verifier_env *env,
3716 struct bpf_reg_state *reg)
3717 {
3718 s32 def_idx = reg->subreg_def;
3719
3720 if (def_idx == DEF_NOT_SUBREG)
3721 return;
3722
3723 env->insn_aux_data[def_idx - 1].zext_dst = true;
3724 /* The dst will be zero extended, so won't be sub-register anymore. */
3725 reg->subreg_def = DEF_NOT_SUBREG;
3726 }
3727
__check_reg_arg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum reg_arg_type t)3728 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno,
3729 enum reg_arg_type t)
3730 {
3731 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3732 struct bpf_reg_state *reg;
3733 bool rw64;
3734
3735 if (regno >= MAX_BPF_REG) {
3736 verbose(env, "R%d is invalid\n", regno);
3737 return -EINVAL;
3738 }
3739
3740 mark_reg_scratched(env, regno);
3741
3742 reg = ®s[regno];
3743 rw64 = is_reg64(insn, regno, reg, t);
3744 if (t == SRC_OP) {
3745 /* check whether register used as source operand can be read */
3746 if (reg->type == NOT_INIT) {
3747 verbose(env, "R%d !read_ok\n", regno);
3748 return -EACCES;
3749 }
3750 /* We don't need to worry about FP liveness because it's read-only */
3751 if (regno == BPF_REG_FP)
3752 return 0;
3753
3754 if (rw64)
3755 mark_insn_zext(env, reg);
3756
3757 return 0;
3758 } else {
3759 /* check whether register used as dest operand can be written to */
3760 if (regno == BPF_REG_FP) {
3761 verbose(env, "frame pointer is read only\n");
3762 return -EACCES;
3763 }
3764 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3765 if (t == DST_OP)
3766 mark_reg_unknown(env, regs, regno);
3767 }
3768 return 0;
3769 }
3770
check_reg_arg(struct bpf_verifier_env * env,u32 regno,enum reg_arg_type t)3771 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3772 enum reg_arg_type t)
3773 {
3774 struct bpf_verifier_state *vstate = env->cur_state;
3775 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3776
3777 return __check_reg_arg(env, state->regs, regno, t);
3778 }
3779
insn_stack_access_flags(int frameno,int spi)3780 static int insn_stack_access_flags(int frameno, int spi)
3781 {
3782 return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno;
3783 }
3784
insn_stack_access_spi(int insn_flags)3785 static int insn_stack_access_spi(int insn_flags)
3786 {
3787 return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK;
3788 }
3789
insn_stack_access_frameno(int insn_flags)3790 static int insn_stack_access_frameno(int insn_flags)
3791 {
3792 return insn_flags & INSN_F_FRAMENO_MASK;
3793 }
3794
mark_jmp_point(struct bpf_verifier_env * env,int idx)3795 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3796 {
3797 env->insn_aux_data[idx].jmp_point = true;
3798 }
3799
is_jmp_point(struct bpf_verifier_env * env,int insn_idx)3800 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3801 {
3802 return env->insn_aux_data[insn_idx].jmp_point;
3803 }
3804
3805 #define LR_FRAMENO_BITS 3
3806 #define LR_SPI_BITS 6
3807 #define LR_ENTRY_BITS (LR_SPI_BITS + LR_FRAMENO_BITS + 1)
3808 #define LR_SIZE_BITS 4
3809 #define LR_FRAMENO_MASK ((1ull << LR_FRAMENO_BITS) - 1)
3810 #define LR_SPI_MASK ((1ull << LR_SPI_BITS) - 1)
3811 #define LR_SIZE_MASK ((1ull << LR_SIZE_BITS) - 1)
3812 #define LR_SPI_OFF LR_FRAMENO_BITS
3813 #define LR_IS_REG_OFF (LR_SPI_BITS + LR_FRAMENO_BITS)
3814 #define LINKED_REGS_MAX 6
3815
3816 struct linked_reg {
3817 u8 frameno;
3818 union {
3819 u8 spi;
3820 u8 regno;
3821 };
3822 bool is_reg;
3823 };
3824
3825 struct linked_regs {
3826 int cnt;
3827 struct linked_reg entries[LINKED_REGS_MAX];
3828 };
3829
linked_regs_push(struct linked_regs * s)3830 static struct linked_reg *linked_regs_push(struct linked_regs *s)
3831 {
3832 if (s->cnt < LINKED_REGS_MAX)
3833 return &s->entries[s->cnt++];
3834
3835 return NULL;
3836 }
3837
3838 /* Use u64 as a vector of 6 10-bit values, use first 4-bits to track
3839 * number of elements currently in stack.
3840 * Pack one history entry for linked registers as 10 bits in the following format:
3841 * - 3-bits frameno
3842 * - 6-bits spi_or_reg
3843 * - 1-bit is_reg
3844 */
linked_regs_pack(struct linked_regs * s)3845 static u64 linked_regs_pack(struct linked_regs *s)
3846 {
3847 u64 val = 0;
3848 int i;
3849
3850 for (i = 0; i < s->cnt; ++i) {
3851 struct linked_reg *e = &s->entries[i];
3852 u64 tmp = 0;
3853
3854 tmp |= e->frameno;
3855 tmp |= e->spi << LR_SPI_OFF;
3856 tmp |= (e->is_reg ? 1 : 0) << LR_IS_REG_OFF;
3857
3858 val <<= LR_ENTRY_BITS;
3859 val |= tmp;
3860 }
3861 val <<= LR_SIZE_BITS;
3862 val |= s->cnt;
3863 return val;
3864 }
3865
linked_regs_unpack(u64 val,struct linked_regs * s)3866 static void linked_regs_unpack(u64 val, struct linked_regs *s)
3867 {
3868 int i;
3869
3870 s->cnt = val & LR_SIZE_MASK;
3871 val >>= LR_SIZE_BITS;
3872
3873 for (i = 0; i < s->cnt; ++i) {
3874 struct linked_reg *e = &s->entries[i];
3875
3876 e->frameno = val & LR_FRAMENO_MASK;
3877 e->spi = (val >> LR_SPI_OFF) & LR_SPI_MASK;
3878 e->is_reg = (val >> LR_IS_REG_OFF) & 0x1;
3879 val >>= LR_ENTRY_BITS;
3880 }
3881 }
3882
3883 /* for any branch, call, exit record the history of jmps in the given state */
push_jmp_history(struct bpf_verifier_env * env,struct bpf_verifier_state * cur,int insn_flags,u64 linked_regs)3884 static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur,
3885 int insn_flags, u64 linked_regs)
3886 {
3887 u32 cnt = cur->jmp_history_cnt;
3888 struct bpf_jmp_history_entry *p;
3889 size_t alloc_size;
3890
3891 /* combine instruction flags if we already recorded this instruction */
3892 if (env->cur_hist_ent) {
3893 /* atomic instructions push insn_flags twice, for READ and
3894 * WRITE sides, but they should agree on stack slot
3895 */
3896 verifier_bug_if((env->cur_hist_ent->flags & insn_flags) &&
3897 (env->cur_hist_ent->flags & insn_flags) != insn_flags,
3898 env, "insn history: insn_idx %d cur flags %x new flags %x",
3899 env->insn_idx, env->cur_hist_ent->flags, insn_flags);
3900 env->cur_hist_ent->flags |= insn_flags;
3901 verifier_bug_if(env->cur_hist_ent->linked_regs != 0, env,
3902 "insn history: insn_idx %d linked_regs: %#llx",
3903 env->insn_idx, env->cur_hist_ent->linked_regs);
3904 env->cur_hist_ent->linked_regs = linked_regs;
3905 return 0;
3906 }
3907
3908 cnt++;
3909 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3910 p = krealloc(cur->jmp_history, alloc_size, GFP_KERNEL_ACCOUNT);
3911 if (!p)
3912 return -ENOMEM;
3913 cur->jmp_history = p;
3914
3915 p = &cur->jmp_history[cnt - 1];
3916 p->idx = env->insn_idx;
3917 p->prev_idx = env->prev_insn_idx;
3918 p->flags = insn_flags;
3919 p->linked_regs = linked_regs;
3920 cur->jmp_history_cnt = cnt;
3921 env->cur_hist_ent = p;
3922
3923 return 0;
3924 }
3925
get_jmp_hist_entry(struct bpf_verifier_state * st,u32 hist_end,int insn_idx)3926 static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st,
3927 u32 hist_end, int insn_idx)
3928 {
3929 if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx)
3930 return &st->jmp_history[hist_end - 1];
3931 return NULL;
3932 }
3933
3934 /* Backtrack one insn at a time. If idx is not at the top of recorded
3935 * history then previous instruction came from straight line execution.
3936 * Return -ENOENT if we exhausted all instructions within given state.
3937 *
3938 * It's legal to have a bit of a looping with the same starting and ending
3939 * insn index within the same state, e.g.: 3->4->5->3, so just because current
3940 * instruction index is the same as state's first_idx doesn't mean we are
3941 * done. If there is still some jump history left, we should keep going. We
3942 * need to take into account that we might have a jump history between given
3943 * state's parent and itself, due to checkpointing. In this case, we'll have
3944 * history entry recording a jump from last instruction of parent state and
3945 * first instruction of given state.
3946 */
get_prev_insn_idx(struct bpf_verifier_state * st,int i,u32 * history)3947 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3948 u32 *history)
3949 {
3950 u32 cnt = *history;
3951
3952 if (i == st->first_insn_idx) {
3953 if (cnt == 0)
3954 return -ENOENT;
3955 if (cnt == 1 && st->jmp_history[0].idx == i)
3956 return -ENOENT;
3957 }
3958
3959 if (cnt && st->jmp_history[cnt - 1].idx == i) {
3960 i = st->jmp_history[cnt - 1].prev_idx;
3961 (*history)--;
3962 } else {
3963 i--;
3964 }
3965 return i;
3966 }
3967
disasm_kfunc_name(void * data,const struct bpf_insn * insn)3968 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3969 {
3970 const struct btf_type *func;
3971 struct btf *desc_btf;
3972
3973 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3974 return NULL;
3975
3976 desc_btf = find_kfunc_desc_btf(data, insn->off);
3977 if (IS_ERR(desc_btf))
3978 return "<error>";
3979
3980 func = btf_type_by_id(desc_btf, insn->imm);
3981 return btf_name_by_offset(desc_btf, func->name_off);
3982 }
3983
verbose_insn(struct bpf_verifier_env * env,struct bpf_insn * insn)3984 static void verbose_insn(struct bpf_verifier_env *env, struct bpf_insn *insn)
3985 {
3986 const struct bpf_insn_cbs cbs = {
3987 .cb_call = disasm_kfunc_name,
3988 .cb_print = verbose,
3989 .private_data = env,
3990 };
3991
3992 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3993 }
3994
bt_init(struct backtrack_state * bt,u32 frame)3995 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3996 {
3997 bt->frame = frame;
3998 }
3999
bt_reset(struct backtrack_state * bt)4000 static inline void bt_reset(struct backtrack_state *bt)
4001 {
4002 struct bpf_verifier_env *env = bt->env;
4003
4004 memset(bt, 0, sizeof(*bt));
4005 bt->env = env;
4006 }
4007
bt_empty(struct backtrack_state * bt)4008 static inline u32 bt_empty(struct backtrack_state *bt)
4009 {
4010 u64 mask = 0;
4011 int i;
4012
4013 for (i = 0; i <= bt->frame; i++)
4014 mask |= bt->reg_masks[i] | bt->stack_masks[i];
4015
4016 return mask == 0;
4017 }
4018
bt_subprog_enter(struct backtrack_state * bt)4019 static inline int bt_subprog_enter(struct backtrack_state *bt)
4020 {
4021 if (bt->frame == MAX_CALL_FRAMES - 1) {
4022 verifier_bug(bt->env, "subprog enter from frame %d", bt->frame);
4023 return -EFAULT;
4024 }
4025 bt->frame++;
4026 return 0;
4027 }
4028
bt_subprog_exit(struct backtrack_state * bt)4029 static inline int bt_subprog_exit(struct backtrack_state *bt)
4030 {
4031 if (bt->frame == 0) {
4032 verifier_bug(bt->env, "subprog exit from frame 0");
4033 return -EFAULT;
4034 }
4035 bt->frame--;
4036 return 0;
4037 }
4038
bt_set_frame_reg(struct backtrack_state * bt,u32 frame,u32 reg)4039 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
4040 {
4041 bt->reg_masks[frame] |= 1 << reg;
4042 }
4043
bt_clear_frame_reg(struct backtrack_state * bt,u32 frame,u32 reg)4044 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
4045 {
4046 bt->reg_masks[frame] &= ~(1 << reg);
4047 }
4048
bt_set_reg(struct backtrack_state * bt,u32 reg)4049 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
4050 {
4051 bt_set_frame_reg(bt, bt->frame, reg);
4052 }
4053
bt_clear_reg(struct backtrack_state * bt,u32 reg)4054 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
4055 {
4056 bt_clear_frame_reg(bt, bt->frame, reg);
4057 }
4058
bt_set_frame_slot(struct backtrack_state * bt,u32 frame,u32 slot)4059 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
4060 {
4061 bt->stack_masks[frame] |= 1ull << slot;
4062 }
4063
bt_clear_frame_slot(struct backtrack_state * bt,u32 frame,u32 slot)4064 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
4065 {
4066 bt->stack_masks[frame] &= ~(1ull << slot);
4067 }
4068
bt_frame_reg_mask(struct backtrack_state * bt,u32 frame)4069 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
4070 {
4071 return bt->reg_masks[frame];
4072 }
4073
bt_reg_mask(struct backtrack_state * bt)4074 static inline u32 bt_reg_mask(struct backtrack_state *bt)
4075 {
4076 return bt->reg_masks[bt->frame];
4077 }
4078
bt_frame_stack_mask(struct backtrack_state * bt,u32 frame)4079 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
4080 {
4081 return bt->stack_masks[frame];
4082 }
4083
bt_stack_mask(struct backtrack_state * bt)4084 static inline u64 bt_stack_mask(struct backtrack_state *bt)
4085 {
4086 return bt->stack_masks[bt->frame];
4087 }
4088
bt_is_reg_set(struct backtrack_state * bt,u32 reg)4089 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
4090 {
4091 return bt->reg_masks[bt->frame] & (1 << reg);
4092 }
4093
bt_is_frame_reg_set(struct backtrack_state * bt,u32 frame,u32 reg)4094 static inline bool bt_is_frame_reg_set(struct backtrack_state *bt, u32 frame, u32 reg)
4095 {
4096 return bt->reg_masks[frame] & (1 << reg);
4097 }
4098
bt_is_frame_slot_set(struct backtrack_state * bt,u32 frame,u32 slot)4099 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot)
4100 {
4101 return bt->stack_masks[frame] & (1ull << slot);
4102 }
4103
4104 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
fmt_reg_mask(char * buf,ssize_t buf_sz,u32 reg_mask)4105 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
4106 {
4107 DECLARE_BITMAP(mask, 64);
4108 bool first = true;
4109 int i, n;
4110
4111 buf[0] = '\0';
4112
4113 bitmap_from_u64(mask, reg_mask);
4114 for_each_set_bit(i, mask, 32) {
4115 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
4116 first = false;
4117 buf += n;
4118 buf_sz -= n;
4119 if (buf_sz < 0)
4120 break;
4121 }
4122 }
4123 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
bpf_fmt_stack_mask(char * buf,ssize_t buf_sz,u64 stack_mask)4124 void bpf_fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
4125 {
4126 DECLARE_BITMAP(mask, 64);
4127 bool first = true;
4128 int i, n;
4129
4130 buf[0] = '\0';
4131
4132 bitmap_from_u64(mask, stack_mask);
4133 for_each_set_bit(i, mask, 64) {
4134 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
4135 first = false;
4136 buf += n;
4137 buf_sz -= n;
4138 if (buf_sz < 0)
4139 break;
4140 }
4141 }
4142
4143 /* If any register R in hist->linked_regs is marked as precise in bt,
4144 * do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs.
4145 */
bt_sync_linked_regs(struct backtrack_state * bt,struct bpf_jmp_history_entry * hist)4146 static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_jmp_history_entry *hist)
4147 {
4148 struct linked_regs linked_regs;
4149 bool some_precise = false;
4150 int i;
4151
4152 if (!hist || hist->linked_regs == 0)
4153 return;
4154
4155 linked_regs_unpack(hist->linked_regs, &linked_regs);
4156 for (i = 0; i < linked_regs.cnt; ++i) {
4157 struct linked_reg *e = &linked_regs.entries[i];
4158
4159 if ((e->is_reg && bt_is_frame_reg_set(bt, e->frameno, e->regno)) ||
4160 (!e->is_reg && bt_is_frame_slot_set(bt, e->frameno, e->spi))) {
4161 some_precise = true;
4162 break;
4163 }
4164 }
4165
4166 if (!some_precise)
4167 return;
4168
4169 for (i = 0; i < linked_regs.cnt; ++i) {
4170 struct linked_reg *e = &linked_regs.entries[i];
4171
4172 if (e->is_reg)
4173 bt_set_frame_reg(bt, e->frameno, e->regno);
4174 else
4175 bt_set_frame_slot(bt, e->frameno, e->spi);
4176 }
4177 }
4178
4179 /* For given verifier state backtrack_insn() is called from the last insn to
4180 * the first insn. Its purpose is to compute a bitmask of registers and
4181 * stack slots that needs precision in the parent verifier state.
4182 *
4183 * @idx is an index of the instruction we are currently processing;
4184 * @subseq_idx is an index of the subsequent instruction that:
4185 * - *would be* executed next, if jump history is viewed in forward order;
4186 * - *was* processed previously during backtracking.
4187 */
backtrack_insn(struct bpf_verifier_env * env,int idx,int subseq_idx,struct bpf_jmp_history_entry * hist,struct backtrack_state * bt)4188 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
4189 struct bpf_jmp_history_entry *hist, struct backtrack_state *bt)
4190 {
4191 struct bpf_insn *insn = env->prog->insnsi + idx;
4192 u8 class = BPF_CLASS(insn->code);
4193 u8 opcode = BPF_OP(insn->code);
4194 u8 mode = BPF_MODE(insn->code);
4195 u32 dreg = insn->dst_reg;
4196 u32 sreg = insn->src_reg;
4197 u32 spi, i, fr;
4198
4199 if (insn->code == 0)
4200 return 0;
4201 if (env->log.level & BPF_LOG_LEVEL2) {
4202 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
4203 verbose(env, "mark_precise: frame%d: regs=%s ",
4204 bt->frame, env->tmp_str_buf);
4205 bpf_fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
4206 verbose(env, "stack=%s before ", env->tmp_str_buf);
4207 verbose(env, "%d: ", idx);
4208 verbose_insn(env, insn);
4209 }
4210
4211 /* If there is a history record that some registers gained range at this insn,
4212 * propagate precision marks to those registers, so that bt_is_reg_set()
4213 * accounts for these registers.
4214 */
4215 bt_sync_linked_regs(bt, hist);
4216
4217 if (class == BPF_ALU || class == BPF_ALU64) {
4218 if (!bt_is_reg_set(bt, dreg))
4219 return 0;
4220 if (opcode == BPF_END || opcode == BPF_NEG) {
4221 /* sreg is reserved and unused
4222 * dreg still need precision before this insn
4223 */
4224 return 0;
4225 } else if (opcode == BPF_MOV) {
4226 if (BPF_SRC(insn->code) == BPF_X) {
4227 /* dreg = sreg or dreg = (s8, s16, s32)sreg
4228 * dreg needs precision after this insn
4229 * sreg needs precision before this insn
4230 */
4231 bt_clear_reg(bt, dreg);
4232 if (sreg != BPF_REG_FP)
4233 bt_set_reg(bt, sreg);
4234 } else {
4235 /* dreg = K
4236 * dreg needs precision after this insn.
4237 * Corresponding register is already marked
4238 * as precise=true in this verifier state.
4239 * No further markings in parent are necessary
4240 */
4241 bt_clear_reg(bt, dreg);
4242 }
4243 } else {
4244 if (BPF_SRC(insn->code) == BPF_X) {
4245 /* dreg += sreg
4246 * both dreg and sreg need precision
4247 * before this insn
4248 */
4249 if (sreg != BPF_REG_FP)
4250 bt_set_reg(bt, sreg);
4251 } /* else dreg += K
4252 * dreg still needs precision before this insn
4253 */
4254 }
4255 } else if (class == BPF_LDX || is_atomic_load_insn(insn)) {
4256 if (!bt_is_reg_set(bt, dreg))
4257 return 0;
4258 bt_clear_reg(bt, dreg);
4259
4260 /* scalars can only be spilled into stack w/o losing precision.
4261 * Load from any other memory can be zero extended.
4262 * The desire to keep that precision is already indicated
4263 * by 'precise' mark in corresponding register of this state.
4264 * No further tracking necessary.
4265 */
4266 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
4267 return 0;
4268 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
4269 * that [fp - off] slot contains scalar that needs to be
4270 * tracked with precision
4271 */
4272 spi = insn_stack_access_spi(hist->flags);
4273 fr = insn_stack_access_frameno(hist->flags);
4274 bt_set_frame_slot(bt, fr, spi);
4275 } else if (class == BPF_STX || class == BPF_ST) {
4276 if (bt_is_reg_set(bt, dreg))
4277 /* stx & st shouldn't be using _scalar_ dst_reg
4278 * to access memory. It means backtracking
4279 * encountered a case of pointer subtraction.
4280 */
4281 return -ENOTSUPP;
4282 /* scalars can only be spilled into stack */
4283 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
4284 return 0;
4285 spi = insn_stack_access_spi(hist->flags);
4286 fr = insn_stack_access_frameno(hist->flags);
4287 if (!bt_is_frame_slot_set(bt, fr, spi))
4288 return 0;
4289 bt_clear_frame_slot(bt, fr, spi);
4290 if (class == BPF_STX)
4291 bt_set_reg(bt, sreg);
4292 } else if (class == BPF_JMP || class == BPF_JMP32) {
4293 if (bpf_pseudo_call(insn)) {
4294 int subprog_insn_idx, subprog;
4295
4296 subprog_insn_idx = idx + insn->imm + 1;
4297 subprog = find_subprog(env, subprog_insn_idx);
4298 if (subprog < 0)
4299 return -EFAULT;
4300
4301 if (subprog_is_global(env, subprog)) {
4302 /* check that jump history doesn't have any
4303 * extra instructions from subprog; the next
4304 * instruction after call to global subprog
4305 * should be literally next instruction in
4306 * caller program
4307 */
4308 verifier_bug_if(idx + 1 != subseq_idx, env,
4309 "extra insn from subprog");
4310 /* r1-r5 are invalidated after subprog call,
4311 * so for global func call it shouldn't be set
4312 * anymore
4313 */
4314 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
4315 verifier_bug(env, "global subprog unexpected regs %x",
4316 bt_reg_mask(bt));
4317 return -EFAULT;
4318 }
4319 /* global subprog always sets R0 */
4320 bt_clear_reg(bt, BPF_REG_0);
4321 return 0;
4322 } else {
4323 /* static subprog call instruction, which
4324 * means that we are exiting current subprog,
4325 * so only r1-r5 could be still requested as
4326 * precise, r0 and r6-r10 or any stack slot in
4327 * the current frame should be zero by now
4328 */
4329 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
4330 verifier_bug(env, "static subprog unexpected regs %x",
4331 bt_reg_mask(bt));
4332 return -EFAULT;
4333 }
4334 /* we are now tracking register spills correctly,
4335 * so any instance of leftover slots is a bug
4336 */
4337 if (bt_stack_mask(bt) != 0) {
4338 verifier_bug(env,
4339 "static subprog leftover stack slots %llx",
4340 bt_stack_mask(bt));
4341 return -EFAULT;
4342 }
4343 /* propagate r1-r5 to the caller */
4344 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
4345 if (bt_is_reg_set(bt, i)) {
4346 bt_clear_reg(bt, i);
4347 bt_set_frame_reg(bt, bt->frame - 1, i);
4348 }
4349 }
4350 if (bt_subprog_exit(bt))
4351 return -EFAULT;
4352 return 0;
4353 }
4354 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) {
4355 /* exit from callback subprog to callback-calling helper or
4356 * kfunc call. Use idx/subseq_idx check to discern it from
4357 * straight line code backtracking.
4358 * Unlike the subprog call handling above, we shouldn't
4359 * propagate precision of r1-r5 (if any requested), as they are
4360 * not actually arguments passed directly to callback subprogs
4361 */
4362 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
4363 verifier_bug(env, "callback unexpected regs %x",
4364 bt_reg_mask(bt));
4365 return -EFAULT;
4366 }
4367 if (bt_stack_mask(bt) != 0) {
4368 verifier_bug(env, "callback leftover stack slots %llx",
4369 bt_stack_mask(bt));
4370 return -EFAULT;
4371 }
4372 /* clear r1-r5 in callback subprog's mask */
4373 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4374 bt_clear_reg(bt, i);
4375 if (bt_subprog_exit(bt))
4376 return -EFAULT;
4377 return 0;
4378 } else if (opcode == BPF_CALL) {
4379 /* kfunc with imm==0 is invalid and fixup_kfunc_call will
4380 * catch this error later. Make backtracking conservative
4381 * with ENOTSUPP.
4382 */
4383 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
4384 return -ENOTSUPP;
4385 /* regular helper call sets R0 */
4386 bt_clear_reg(bt, BPF_REG_0);
4387 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
4388 /* if backtracking was looking for registers R1-R5
4389 * they should have been found already.
4390 */
4391 verifier_bug(env, "backtracking call unexpected regs %x",
4392 bt_reg_mask(bt));
4393 return -EFAULT;
4394 }
4395 } else if (opcode == BPF_EXIT) {
4396 bool r0_precise;
4397
4398 /* Backtracking to a nested function call, 'idx' is a part of
4399 * the inner frame 'subseq_idx' is a part of the outer frame.
4400 * In case of a regular function call, instructions giving
4401 * precision to registers R1-R5 should have been found already.
4402 * In case of a callback, it is ok to have R1-R5 marked for
4403 * backtracking, as these registers are set by the function
4404 * invoking callback.
4405 */
4406 if (subseq_idx >= 0 && bpf_calls_callback(env, subseq_idx))
4407 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4408 bt_clear_reg(bt, i);
4409 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
4410 verifier_bug(env, "backtracking exit unexpected regs %x",
4411 bt_reg_mask(bt));
4412 return -EFAULT;
4413 }
4414
4415 /* BPF_EXIT in subprog or callback always returns
4416 * right after the call instruction, so by checking
4417 * whether the instruction at subseq_idx-1 is subprog
4418 * call or not we can distinguish actual exit from
4419 * *subprog* from exit from *callback*. In the former
4420 * case, we need to propagate r0 precision, if
4421 * necessary. In the former we never do that.
4422 */
4423 r0_precise = subseq_idx - 1 >= 0 &&
4424 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
4425 bt_is_reg_set(bt, BPF_REG_0);
4426
4427 bt_clear_reg(bt, BPF_REG_0);
4428 if (bt_subprog_enter(bt))
4429 return -EFAULT;
4430
4431 if (r0_precise)
4432 bt_set_reg(bt, BPF_REG_0);
4433 /* r6-r9 and stack slots will stay set in caller frame
4434 * bitmasks until we return back from callee(s)
4435 */
4436 return 0;
4437 } else if (BPF_SRC(insn->code) == BPF_X) {
4438 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
4439 return 0;
4440 /* dreg <cond> sreg
4441 * Both dreg and sreg need precision before
4442 * this insn. If only sreg was marked precise
4443 * before it would be equally necessary to
4444 * propagate it to dreg.
4445 */
4446 if (!hist || !(hist->flags & INSN_F_SRC_REG_STACK))
4447 bt_set_reg(bt, sreg);
4448 if (!hist || !(hist->flags & INSN_F_DST_REG_STACK))
4449 bt_set_reg(bt, dreg);
4450 } else if (BPF_SRC(insn->code) == BPF_K) {
4451 /* dreg <cond> K
4452 * Only dreg still needs precision before
4453 * this insn, so for the K-based conditional
4454 * there is nothing new to be marked.
4455 */
4456 }
4457 } else if (class == BPF_LD) {
4458 if (!bt_is_reg_set(bt, dreg))
4459 return 0;
4460 bt_clear_reg(bt, dreg);
4461 /* It's ld_imm64 or ld_abs or ld_ind.
4462 * For ld_imm64 no further tracking of precision
4463 * into parent is necessary
4464 */
4465 if (mode == BPF_IND || mode == BPF_ABS)
4466 /* to be analyzed */
4467 return -ENOTSUPP;
4468 }
4469 /* Propagate precision marks to linked registers, to account for
4470 * registers marked as precise in this function.
4471 */
4472 bt_sync_linked_regs(bt, hist);
4473 return 0;
4474 }
4475
4476 /* the scalar precision tracking algorithm:
4477 * . at the start all registers have precise=false.
4478 * . scalar ranges are tracked as normal through alu and jmp insns.
4479 * . once precise value of the scalar register is used in:
4480 * . ptr + scalar alu
4481 * . if (scalar cond K|scalar)
4482 * . helper_call(.., scalar, ...) where ARG_CONST is expected
4483 * backtrack through the verifier states and mark all registers and
4484 * stack slots with spilled constants that these scalar registers
4485 * should be precise.
4486 * . during state pruning two registers (or spilled stack slots)
4487 * are equivalent if both are not precise.
4488 *
4489 * Note the verifier cannot simply walk register parentage chain,
4490 * since many different registers and stack slots could have been
4491 * used to compute single precise scalar.
4492 *
4493 * The approach of starting with precise=true for all registers and then
4494 * backtrack to mark a register as not precise when the verifier detects
4495 * that program doesn't care about specific value (e.g., when helper
4496 * takes register as ARG_ANYTHING parameter) is not safe.
4497 *
4498 * It's ok to walk single parentage chain of the verifier states.
4499 * It's possible that this backtracking will go all the way till 1st insn.
4500 * All other branches will be explored for needing precision later.
4501 *
4502 * The backtracking needs to deal with cases like:
4503 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
4504 * r9 -= r8
4505 * r5 = r9
4506 * if r5 > 0x79f goto pc+7
4507 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
4508 * r5 += 1
4509 * ...
4510 * call bpf_perf_event_output#25
4511 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
4512 *
4513 * and this case:
4514 * r6 = 1
4515 * call foo // uses callee's r6 inside to compute r0
4516 * r0 += r6
4517 * if r0 == 0 goto
4518 *
4519 * to track above reg_mask/stack_mask needs to be independent for each frame.
4520 *
4521 * Also if parent's curframe > frame where backtracking started,
4522 * the verifier need to mark registers in both frames, otherwise callees
4523 * may incorrectly prune callers. This is similar to
4524 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
4525 *
4526 * For now backtracking falls back into conservative marking.
4527 */
mark_all_scalars_precise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)4528 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
4529 struct bpf_verifier_state *st)
4530 {
4531 struct bpf_func_state *func;
4532 struct bpf_reg_state *reg;
4533 int i, j;
4534
4535 if (env->log.level & BPF_LOG_LEVEL2) {
4536 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
4537 st->curframe);
4538 }
4539
4540 /* big hammer: mark all scalars precise in this path.
4541 * pop_stack may still get !precise scalars.
4542 * We also skip current state and go straight to first parent state,
4543 * because precision markings in current non-checkpointed state are
4544 * not needed. See why in the comment in __mark_chain_precision below.
4545 */
4546 for (st = st->parent; st; st = st->parent) {
4547 for (i = 0; i <= st->curframe; i++) {
4548 func = st->frame[i];
4549 for (j = 0; j < BPF_REG_FP; j++) {
4550 reg = &func->regs[j];
4551 if (reg->type != SCALAR_VALUE || reg->precise)
4552 continue;
4553 reg->precise = true;
4554 if (env->log.level & BPF_LOG_LEVEL2) {
4555 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
4556 i, j);
4557 }
4558 }
4559 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4560 if (!is_spilled_reg(&func->stack[j]))
4561 continue;
4562 reg = &func->stack[j].spilled_ptr;
4563 if (reg->type != SCALAR_VALUE || reg->precise)
4564 continue;
4565 reg->precise = true;
4566 if (env->log.level & BPF_LOG_LEVEL2) {
4567 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
4568 i, -(j + 1) * 8);
4569 }
4570 }
4571 }
4572 }
4573 }
4574
mark_all_scalars_imprecise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)4575 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4576 {
4577 struct bpf_func_state *func;
4578 struct bpf_reg_state *reg;
4579 int i, j;
4580
4581 for (i = 0; i <= st->curframe; i++) {
4582 func = st->frame[i];
4583 for (j = 0; j < BPF_REG_FP; j++) {
4584 reg = &func->regs[j];
4585 if (reg->type != SCALAR_VALUE)
4586 continue;
4587 reg->precise = false;
4588 }
4589 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4590 if (!is_spilled_reg(&func->stack[j]))
4591 continue;
4592 reg = &func->stack[j].spilled_ptr;
4593 if (reg->type != SCALAR_VALUE)
4594 continue;
4595 reg->precise = false;
4596 }
4597 }
4598 }
4599
4600 /*
4601 * __mark_chain_precision() backtracks BPF program instruction sequence and
4602 * chain of verifier states making sure that register *regno* (if regno >= 0)
4603 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4604 * SCALARS, as well as any other registers and slots that contribute to
4605 * a tracked state of given registers/stack slots, depending on specific BPF
4606 * assembly instructions (see backtrack_insns() for exact instruction handling
4607 * logic). This backtracking relies on recorded jmp_history and is able to
4608 * traverse entire chain of parent states. This process ends only when all the
4609 * necessary registers/slots and their transitive dependencies are marked as
4610 * precise.
4611 *
4612 * One important and subtle aspect is that precise marks *do not matter* in
4613 * the currently verified state (current state). It is important to understand
4614 * why this is the case.
4615 *
4616 * First, note that current state is the state that is not yet "checkpointed",
4617 * i.e., it is not yet put into env->explored_states, and it has no children
4618 * states as well. It's ephemeral, and can end up either a) being discarded if
4619 * compatible explored state is found at some point or BPF_EXIT instruction is
4620 * reached or b) checkpointed and put into env->explored_states, branching out
4621 * into one or more children states.
4622 *
4623 * In the former case, precise markings in current state are completely
4624 * ignored by state comparison code (see regsafe() for details). Only
4625 * checkpointed ("old") state precise markings are important, and if old
4626 * state's register/slot is precise, regsafe() assumes current state's
4627 * register/slot as precise and checks value ranges exactly and precisely. If
4628 * states turn out to be compatible, current state's necessary precise
4629 * markings and any required parent states' precise markings are enforced
4630 * after the fact with propagate_precision() logic, after the fact. But it's
4631 * important to realize that in this case, even after marking current state
4632 * registers/slots as precise, we immediately discard current state. So what
4633 * actually matters is any of the precise markings propagated into current
4634 * state's parent states, which are always checkpointed (due to b) case above).
4635 * As such, for scenario a) it doesn't matter if current state has precise
4636 * markings set or not.
4637 *
4638 * Now, for the scenario b), checkpointing and forking into child(ren)
4639 * state(s). Note that before current state gets to checkpointing step, any
4640 * processed instruction always assumes precise SCALAR register/slot
4641 * knowledge: if precise value or range is useful to prune jump branch, BPF
4642 * verifier takes this opportunity enthusiastically. Similarly, when
4643 * register's value is used to calculate offset or memory address, exact
4644 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4645 * what we mentioned above about state comparison ignoring precise markings
4646 * during state comparison, BPF verifier ignores and also assumes precise
4647 * markings *at will* during instruction verification process. But as verifier
4648 * assumes precision, it also propagates any precision dependencies across
4649 * parent states, which are not yet finalized, so can be further restricted
4650 * based on new knowledge gained from restrictions enforced by their children
4651 * states. This is so that once those parent states are finalized, i.e., when
4652 * they have no more active children state, state comparison logic in
4653 * is_state_visited() would enforce strict and precise SCALAR ranges, if
4654 * required for correctness.
4655 *
4656 * To build a bit more intuition, note also that once a state is checkpointed,
4657 * the path we took to get to that state is not important. This is crucial
4658 * property for state pruning. When state is checkpointed and finalized at
4659 * some instruction index, it can be correctly and safely used to "short
4660 * circuit" any *compatible* state that reaches exactly the same instruction
4661 * index. I.e., if we jumped to that instruction from a completely different
4662 * code path than original finalized state was derived from, it doesn't
4663 * matter, current state can be discarded because from that instruction
4664 * forward having a compatible state will ensure we will safely reach the
4665 * exit. States describe preconditions for further exploration, but completely
4666 * forget the history of how we got here.
4667 *
4668 * This also means that even if we needed precise SCALAR range to get to
4669 * finalized state, but from that point forward *that same* SCALAR register is
4670 * never used in a precise context (i.e., it's precise value is not needed for
4671 * correctness), it's correct and safe to mark such register as "imprecise"
4672 * (i.e., precise marking set to false). This is what we rely on when we do
4673 * not set precise marking in current state. If no child state requires
4674 * precision for any given SCALAR register, it's safe to dictate that it can
4675 * be imprecise. If any child state does require this register to be precise,
4676 * we'll mark it precise later retroactively during precise markings
4677 * propagation from child state to parent states.
4678 *
4679 * Skipping precise marking setting in current state is a mild version of
4680 * relying on the above observation. But we can utilize this property even
4681 * more aggressively by proactively forgetting any precise marking in the
4682 * current state (which we inherited from the parent state), right before we
4683 * checkpoint it and branch off into new child state. This is done by
4684 * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4685 * finalized states which help in short circuiting more future states.
4686 */
__mark_chain_precision(struct bpf_verifier_env * env,struct bpf_verifier_state * starting_state,int regno,bool * changed)4687 static int __mark_chain_precision(struct bpf_verifier_env *env,
4688 struct bpf_verifier_state *starting_state,
4689 int regno,
4690 bool *changed)
4691 {
4692 struct bpf_verifier_state *st = starting_state;
4693 struct backtrack_state *bt = &env->bt;
4694 int first_idx = st->first_insn_idx;
4695 int last_idx = starting_state->insn_idx;
4696 int subseq_idx = -1;
4697 struct bpf_func_state *func;
4698 bool tmp, skip_first = true;
4699 struct bpf_reg_state *reg;
4700 int i, fr, err;
4701
4702 if (!env->bpf_capable)
4703 return 0;
4704
4705 changed = changed ?: &tmp;
4706 /* set frame number from which we are starting to backtrack */
4707 bt_init(bt, starting_state->curframe);
4708
4709 /* Do sanity checks against current state of register and/or stack
4710 * slot, but don't set precise flag in current state, as precision
4711 * tracking in the current state is unnecessary.
4712 */
4713 func = st->frame[bt->frame];
4714 if (regno >= 0) {
4715 reg = &func->regs[regno];
4716 if (reg->type != SCALAR_VALUE) {
4717 verifier_bug(env, "backtracking misuse");
4718 return -EFAULT;
4719 }
4720 bt_set_reg(bt, regno);
4721 }
4722
4723 if (bt_empty(bt))
4724 return 0;
4725
4726 for (;;) {
4727 DECLARE_BITMAP(mask, 64);
4728 u32 history = st->jmp_history_cnt;
4729 struct bpf_jmp_history_entry *hist;
4730
4731 if (env->log.level & BPF_LOG_LEVEL2) {
4732 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4733 bt->frame, last_idx, first_idx, subseq_idx);
4734 }
4735
4736 if (last_idx < 0) {
4737 /* we are at the entry into subprog, which
4738 * is expected for global funcs, but only if
4739 * requested precise registers are R1-R5
4740 * (which are global func's input arguments)
4741 */
4742 if (st->curframe == 0 &&
4743 st->frame[0]->subprogno > 0 &&
4744 st->frame[0]->callsite == BPF_MAIN_FUNC &&
4745 bt_stack_mask(bt) == 0 &&
4746 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4747 bitmap_from_u64(mask, bt_reg_mask(bt));
4748 for_each_set_bit(i, mask, 32) {
4749 reg = &st->frame[0]->regs[i];
4750 bt_clear_reg(bt, i);
4751 if (reg->type == SCALAR_VALUE) {
4752 reg->precise = true;
4753 *changed = true;
4754 }
4755 }
4756 return 0;
4757 }
4758
4759 verifier_bug(env, "backtracking func entry subprog %d reg_mask %x stack_mask %llx",
4760 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4761 return -EFAULT;
4762 }
4763
4764 for (i = last_idx;;) {
4765 if (skip_first) {
4766 err = 0;
4767 skip_first = false;
4768 } else {
4769 hist = get_jmp_hist_entry(st, history, i);
4770 err = backtrack_insn(env, i, subseq_idx, hist, bt);
4771 }
4772 if (err == -ENOTSUPP) {
4773 mark_all_scalars_precise(env, starting_state);
4774 bt_reset(bt);
4775 return 0;
4776 } else if (err) {
4777 return err;
4778 }
4779 if (bt_empty(bt))
4780 /* Found assignment(s) into tracked register in this state.
4781 * Since this state is already marked, just return.
4782 * Nothing to be tracked further in the parent state.
4783 */
4784 return 0;
4785 subseq_idx = i;
4786 i = get_prev_insn_idx(st, i, &history);
4787 if (i == -ENOENT)
4788 break;
4789 if (i >= env->prog->len) {
4790 /* This can happen if backtracking reached insn 0
4791 * and there are still reg_mask or stack_mask
4792 * to backtrack.
4793 * It means the backtracking missed the spot where
4794 * particular register was initialized with a constant.
4795 */
4796 verifier_bug(env, "backtracking idx %d", i);
4797 return -EFAULT;
4798 }
4799 }
4800 st = st->parent;
4801 if (!st)
4802 break;
4803
4804 for (fr = bt->frame; fr >= 0; fr--) {
4805 func = st->frame[fr];
4806 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4807 for_each_set_bit(i, mask, 32) {
4808 reg = &func->regs[i];
4809 if (reg->type != SCALAR_VALUE) {
4810 bt_clear_frame_reg(bt, fr, i);
4811 continue;
4812 }
4813 if (reg->precise) {
4814 bt_clear_frame_reg(bt, fr, i);
4815 } else {
4816 reg->precise = true;
4817 *changed = true;
4818 }
4819 }
4820
4821 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4822 for_each_set_bit(i, mask, 64) {
4823 if (verifier_bug_if(i >= func->allocated_stack / BPF_REG_SIZE,
4824 env, "stack slot %d, total slots %d",
4825 i, func->allocated_stack / BPF_REG_SIZE))
4826 return -EFAULT;
4827
4828 if (!is_spilled_scalar_reg(&func->stack[i])) {
4829 bt_clear_frame_slot(bt, fr, i);
4830 continue;
4831 }
4832 reg = &func->stack[i].spilled_ptr;
4833 if (reg->precise) {
4834 bt_clear_frame_slot(bt, fr, i);
4835 } else {
4836 reg->precise = true;
4837 *changed = true;
4838 }
4839 }
4840 if (env->log.level & BPF_LOG_LEVEL2) {
4841 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4842 bt_frame_reg_mask(bt, fr));
4843 verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4844 fr, env->tmp_str_buf);
4845 bpf_fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4846 bt_frame_stack_mask(bt, fr));
4847 verbose(env, "stack=%s: ", env->tmp_str_buf);
4848 print_verifier_state(env, st, fr, true);
4849 }
4850 }
4851
4852 if (bt_empty(bt))
4853 return 0;
4854
4855 subseq_idx = first_idx;
4856 last_idx = st->last_insn_idx;
4857 first_idx = st->first_insn_idx;
4858 }
4859
4860 /* if we still have requested precise regs or slots, we missed
4861 * something (e.g., stack access through non-r10 register), so
4862 * fallback to marking all precise
4863 */
4864 if (!bt_empty(bt)) {
4865 mark_all_scalars_precise(env, starting_state);
4866 bt_reset(bt);
4867 }
4868
4869 return 0;
4870 }
4871
mark_chain_precision(struct bpf_verifier_env * env,int regno)4872 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4873 {
4874 return __mark_chain_precision(env, env->cur_state, regno, NULL);
4875 }
4876
4877 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4878 * desired reg and stack masks across all relevant frames
4879 */
mark_chain_precision_batch(struct bpf_verifier_env * env,struct bpf_verifier_state * starting_state)4880 static int mark_chain_precision_batch(struct bpf_verifier_env *env,
4881 struct bpf_verifier_state *starting_state)
4882 {
4883 return __mark_chain_precision(env, starting_state, -1, NULL);
4884 }
4885
is_spillable_regtype(enum bpf_reg_type type)4886 static bool is_spillable_regtype(enum bpf_reg_type type)
4887 {
4888 switch (base_type(type)) {
4889 case PTR_TO_MAP_VALUE:
4890 case PTR_TO_STACK:
4891 case PTR_TO_CTX:
4892 case PTR_TO_PACKET:
4893 case PTR_TO_PACKET_META:
4894 case PTR_TO_PACKET_END:
4895 case PTR_TO_FLOW_KEYS:
4896 case CONST_PTR_TO_MAP:
4897 case PTR_TO_SOCKET:
4898 case PTR_TO_SOCK_COMMON:
4899 case PTR_TO_TCP_SOCK:
4900 case PTR_TO_XDP_SOCK:
4901 case PTR_TO_BTF_ID:
4902 case PTR_TO_BUF:
4903 case PTR_TO_MEM:
4904 case PTR_TO_FUNC:
4905 case PTR_TO_MAP_KEY:
4906 case PTR_TO_ARENA:
4907 return true;
4908 default:
4909 return false;
4910 }
4911 }
4912
4913 /* Does this register contain a constant zero? */
register_is_null(struct bpf_reg_state * reg)4914 static bool register_is_null(struct bpf_reg_state *reg)
4915 {
4916 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4917 }
4918
4919 /* check if register is a constant scalar value */
is_reg_const(struct bpf_reg_state * reg,bool subreg32)4920 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32)
4921 {
4922 return reg->type == SCALAR_VALUE &&
4923 tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off);
4924 }
4925
4926 /* assuming is_reg_const() is true, return constant value of a register */
reg_const_value(struct bpf_reg_state * reg,bool subreg32)4927 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32)
4928 {
4929 return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value;
4930 }
4931
__is_pointer_value(bool allow_ptr_leaks,const struct bpf_reg_state * reg)4932 static bool __is_pointer_value(bool allow_ptr_leaks,
4933 const struct bpf_reg_state *reg)
4934 {
4935 if (allow_ptr_leaks)
4936 return false;
4937
4938 return reg->type != SCALAR_VALUE;
4939 }
4940
assign_scalar_id_before_mov(struct bpf_verifier_env * env,struct bpf_reg_state * src_reg)4941 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env,
4942 struct bpf_reg_state *src_reg)
4943 {
4944 if (src_reg->type != SCALAR_VALUE)
4945 return;
4946
4947 if (src_reg->id & BPF_ADD_CONST) {
4948 /*
4949 * The verifier is processing rX = rY insn and
4950 * rY->id has special linked register already.
4951 * Cleared it, since multiple rX += const are not supported.
4952 */
4953 src_reg->id = 0;
4954 src_reg->off = 0;
4955 }
4956
4957 if (!src_reg->id && !tnum_is_const(src_reg->var_off))
4958 /* Ensure that src_reg has a valid ID that will be copied to
4959 * dst_reg and then will be used by sync_linked_regs() to
4960 * propagate min/max range.
4961 */
4962 src_reg->id = ++env->id_gen;
4963 }
4964
4965 /* Copy src state preserving dst->parent and dst->live fields */
copy_register_state(struct bpf_reg_state * dst,const struct bpf_reg_state * src)4966 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4967 {
4968 *dst = *src;
4969 }
4970
save_register_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int spi,struct bpf_reg_state * reg,int size)4971 static void save_register_state(struct bpf_verifier_env *env,
4972 struct bpf_func_state *state,
4973 int spi, struct bpf_reg_state *reg,
4974 int size)
4975 {
4976 int i;
4977
4978 copy_register_state(&state->stack[spi].spilled_ptr, reg);
4979
4980 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4981 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4982
4983 /* size < 8 bytes spill */
4984 for (; i; i--)
4985 mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]);
4986 }
4987
is_bpf_st_mem(struct bpf_insn * insn)4988 static bool is_bpf_st_mem(struct bpf_insn *insn)
4989 {
4990 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4991 }
4992
get_reg_width(struct bpf_reg_state * reg)4993 static int get_reg_width(struct bpf_reg_state *reg)
4994 {
4995 return fls64(reg->umax_value);
4996 }
4997
4998 /* See comment for mark_fastcall_pattern_for_call() */
check_fastcall_stack_contract(struct bpf_verifier_env * env,struct bpf_func_state * state,int insn_idx,int off)4999 static void check_fastcall_stack_contract(struct bpf_verifier_env *env,
5000 struct bpf_func_state *state, int insn_idx, int off)
5001 {
5002 struct bpf_subprog_info *subprog = &env->subprog_info[state->subprogno];
5003 struct bpf_insn_aux_data *aux = env->insn_aux_data;
5004 int i;
5005
5006 if (subprog->fastcall_stack_off <= off || aux[insn_idx].fastcall_pattern)
5007 return;
5008 /* access to the region [max_stack_depth .. fastcall_stack_off)
5009 * from something that is not a part of the fastcall pattern,
5010 * disable fastcall rewrites for current subprogram by setting
5011 * fastcall_stack_off to a value smaller than any possible offset.
5012 */
5013 subprog->fastcall_stack_off = S16_MIN;
5014 /* reset fastcall aux flags within subprogram,
5015 * happens at most once per subprogram
5016 */
5017 for (i = subprog->start; i < (subprog + 1)->start; ++i) {
5018 aux[i].fastcall_spills_num = 0;
5019 aux[i].fastcall_pattern = 0;
5020 }
5021 }
5022
5023 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
5024 * stack boundary and alignment are checked in check_mem_access()
5025 */
check_stack_write_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int off,int size,int value_regno,int insn_idx)5026 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
5027 /* stack frame we're writing to */
5028 struct bpf_func_state *state,
5029 int off, int size, int value_regno,
5030 int insn_idx)
5031 {
5032 struct bpf_func_state *cur; /* state of the current function */
5033 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
5034 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5035 struct bpf_reg_state *reg = NULL;
5036 int insn_flags = insn_stack_access_flags(state->frameno, spi);
5037
5038 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
5039 * so it's aligned access and [off, off + size) are within stack limits
5040 */
5041 if (!env->allow_ptr_leaks &&
5042 is_spilled_reg(&state->stack[spi]) &&
5043 !is_spilled_scalar_reg(&state->stack[spi]) &&
5044 size != BPF_REG_SIZE) {
5045 verbose(env, "attempt to corrupt spilled pointer on stack\n");
5046 return -EACCES;
5047 }
5048
5049 cur = env->cur_state->frame[env->cur_state->curframe];
5050 if (value_regno >= 0)
5051 reg = &cur->regs[value_regno];
5052 if (!env->bypass_spec_v4) {
5053 bool sanitize = reg && is_spillable_regtype(reg->type);
5054
5055 for (i = 0; i < size; i++) {
5056 u8 type = state->stack[spi].slot_type[i];
5057
5058 if (type != STACK_MISC && type != STACK_ZERO) {
5059 sanitize = true;
5060 break;
5061 }
5062 }
5063
5064 if (sanitize)
5065 env->insn_aux_data[insn_idx].nospec_result = true;
5066 }
5067
5068 err = destroy_if_dynptr_stack_slot(env, state, spi);
5069 if (err)
5070 return err;
5071
5072 if (!(off % BPF_REG_SIZE) && size == BPF_REG_SIZE) {
5073 /* only mark the slot as written if all 8 bytes were written
5074 * otherwise read propagation may incorrectly stop too soon
5075 * when stack slots are partially written.
5076 * This heuristic means that read propagation will be
5077 * conservative, since it will add reg_live_read marks
5078 * to stack slots all the way to first state when programs
5079 * writes+reads less than 8 bytes
5080 */
5081 bpf_mark_stack_write(env, state->frameno, BIT(spi));
5082 }
5083
5084 check_fastcall_stack_contract(env, state, insn_idx, off);
5085 mark_stack_slot_scratched(env, spi);
5086 if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) {
5087 bool reg_value_fits;
5088
5089 reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size;
5090 /* Make sure that reg had an ID to build a relation on spill. */
5091 if (reg_value_fits)
5092 assign_scalar_id_before_mov(env, reg);
5093 save_register_state(env, state, spi, reg, size);
5094 /* Break the relation on a narrowing spill. */
5095 if (!reg_value_fits)
5096 state->stack[spi].spilled_ptr.id = 0;
5097 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
5098 env->bpf_capable) {
5099 struct bpf_reg_state *tmp_reg = &env->fake_reg[0];
5100
5101 memset(tmp_reg, 0, sizeof(*tmp_reg));
5102 __mark_reg_known(tmp_reg, insn->imm);
5103 tmp_reg->type = SCALAR_VALUE;
5104 save_register_state(env, state, spi, tmp_reg, size);
5105 } else if (reg && is_spillable_regtype(reg->type)) {
5106 /* register containing pointer is being spilled into stack */
5107 if (size != BPF_REG_SIZE) {
5108 verbose_linfo(env, insn_idx, "; ");
5109 verbose(env, "invalid size of register spill\n");
5110 return -EACCES;
5111 }
5112 if (state != cur && reg->type == PTR_TO_STACK) {
5113 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
5114 return -EINVAL;
5115 }
5116 save_register_state(env, state, spi, reg, size);
5117 } else {
5118 u8 type = STACK_MISC;
5119
5120 /* regular write of data into stack destroys any spilled ptr */
5121 state->stack[spi].spilled_ptr.type = NOT_INIT;
5122 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
5123 if (is_stack_slot_special(&state->stack[spi]))
5124 for (i = 0; i < BPF_REG_SIZE; i++)
5125 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
5126
5127 /* when we zero initialize stack slots mark them as such */
5128 if ((reg && register_is_null(reg)) ||
5129 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
5130 /* STACK_ZERO case happened because register spill
5131 * wasn't properly aligned at the stack slot boundary,
5132 * so it's not a register spill anymore; force
5133 * originating register to be precise to make
5134 * STACK_ZERO correct for subsequent states
5135 */
5136 err = mark_chain_precision(env, value_regno);
5137 if (err)
5138 return err;
5139 type = STACK_ZERO;
5140 }
5141
5142 /* Mark slots affected by this stack write. */
5143 for (i = 0; i < size; i++)
5144 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type;
5145 insn_flags = 0; /* not a register spill */
5146 }
5147
5148 if (insn_flags)
5149 return push_jmp_history(env, env->cur_state, insn_flags, 0);
5150 return 0;
5151 }
5152
5153 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
5154 * known to contain a variable offset.
5155 * This function checks whether the write is permitted and conservatively
5156 * tracks the effects of the write, considering that each stack slot in the
5157 * dynamic range is potentially written to.
5158 *
5159 * 'off' includes 'regno->off'.
5160 * 'value_regno' can be -1, meaning that an unknown value is being written to
5161 * the stack.
5162 *
5163 * Spilled pointers in range are not marked as written because we don't know
5164 * what's going to be actually written. This means that read propagation for
5165 * future reads cannot be terminated by this write.
5166 *
5167 * For privileged programs, uninitialized stack slots are considered
5168 * initialized by this write (even though we don't know exactly what offsets
5169 * are going to be written to). The idea is that we don't want the verifier to
5170 * reject future reads that access slots written to through variable offsets.
5171 */
check_stack_write_var_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int ptr_regno,int off,int size,int value_regno,int insn_idx)5172 static int check_stack_write_var_off(struct bpf_verifier_env *env,
5173 /* func where register points to */
5174 struct bpf_func_state *state,
5175 int ptr_regno, int off, int size,
5176 int value_regno, int insn_idx)
5177 {
5178 struct bpf_func_state *cur; /* state of the current function */
5179 int min_off, max_off;
5180 int i, err;
5181 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
5182 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5183 bool writing_zero = false;
5184 /* set if the fact that we're writing a zero is used to let any
5185 * stack slots remain STACK_ZERO
5186 */
5187 bool zero_used = false;
5188
5189 cur = env->cur_state->frame[env->cur_state->curframe];
5190 ptr_reg = &cur->regs[ptr_regno];
5191 min_off = ptr_reg->smin_value + off;
5192 max_off = ptr_reg->smax_value + off + size;
5193 if (value_regno >= 0)
5194 value_reg = &cur->regs[value_regno];
5195 if ((value_reg && register_is_null(value_reg)) ||
5196 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
5197 writing_zero = true;
5198
5199 for (i = min_off; i < max_off; i++) {
5200 int spi;
5201
5202 spi = __get_spi(i);
5203 err = destroy_if_dynptr_stack_slot(env, state, spi);
5204 if (err)
5205 return err;
5206 }
5207
5208 check_fastcall_stack_contract(env, state, insn_idx, min_off);
5209 /* Variable offset writes destroy any spilled pointers in range. */
5210 for (i = min_off; i < max_off; i++) {
5211 u8 new_type, *stype;
5212 int slot, spi;
5213
5214 slot = -i - 1;
5215 spi = slot / BPF_REG_SIZE;
5216 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
5217 mark_stack_slot_scratched(env, spi);
5218
5219 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
5220 /* Reject the write if range we may write to has not
5221 * been initialized beforehand. If we didn't reject
5222 * here, the ptr status would be erased below (even
5223 * though not all slots are actually overwritten),
5224 * possibly opening the door to leaks.
5225 *
5226 * We do however catch STACK_INVALID case below, and
5227 * only allow reading possibly uninitialized memory
5228 * later for CAP_PERFMON, as the write may not happen to
5229 * that slot.
5230 */
5231 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
5232 insn_idx, i);
5233 return -EINVAL;
5234 }
5235
5236 /* If writing_zero and the spi slot contains a spill of value 0,
5237 * maintain the spill type.
5238 */
5239 if (writing_zero && *stype == STACK_SPILL &&
5240 is_spilled_scalar_reg(&state->stack[spi])) {
5241 struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr;
5242
5243 if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) {
5244 zero_used = true;
5245 continue;
5246 }
5247 }
5248
5249 /* Erase all other spilled pointers. */
5250 state->stack[spi].spilled_ptr.type = NOT_INIT;
5251
5252 /* Update the slot type. */
5253 new_type = STACK_MISC;
5254 if (writing_zero && *stype == STACK_ZERO) {
5255 new_type = STACK_ZERO;
5256 zero_used = true;
5257 }
5258 /* If the slot is STACK_INVALID, we check whether it's OK to
5259 * pretend that it will be initialized by this write. The slot
5260 * might not actually be written to, and so if we mark it as
5261 * initialized future reads might leak uninitialized memory.
5262 * For privileged programs, we will accept such reads to slots
5263 * that may or may not be written because, if we're reject
5264 * them, the error would be too confusing.
5265 */
5266 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
5267 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
5268 insn_idx, i);
5269 return -EINVAL;
5270 }
5271 *stype = new_type;
5272 }
5273 if (zero_used) {
5274 /* backtracking doesn't work for STACK_ZERO yet. */
5275 err = mark_chain_precision(env, value_regno);
5276 if (err)
5277 return err;
5278 }
5279 return 0;
5280 }
5281
5282 /* When register 'dst_regno' is assigned some values from stack[min_off,
5283 * max_off), we set the register's type according to the types of the
5284 * respective stack slots. If all the stack values are known to be zeros, then
5285 * so is the destination reg. Otherwise, the register is considered to be
5286 * SCALAR. This function does not deal with register filling; the caller must
5287 * ensure that all spilled registers in the stack range have been marked as
5288 * read.
5289 */
mark_reg_stack_read(struct bpf_verifier_env * env,struct bpf_func_state * ptr_state,int min_off,int max_off,int dst_regno)5290 static void mark_reg_stack_read(struct bpf_verifier_env *env,
5291 /* func where src register points to */
5292 struct bpf_func_state *ptr_state,
5293 int min_off, int max_off, int dst_regno)
5294 {
5295 struct bpf_verifier_state *vstate = env->cur_state;
5296 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5297 int i, slot, spi;
5298 u8 *stype;
5299 int zeros = 0;
5300
5301 for (i = min_off; i < max_off; i++) {
5302 slot = -i - 1;
5303 spi = slot / BPF_REG_SIZE;
5304 mark_stack_slot_scratched(env, spi);
5305 stype = ptr_state->stack[spi].slot_type;
5306 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
5307 break;
5308 zeros++;
5309 }
5310 if (zeros == max_off - min_off) {
5311 /* Any access_size read into register is zero extended,
5312 * so the whole register == const_zero.
5313 */
5314 __mark_reg_const_zero(env, &state->regs[dst_regno]);
5315 } else {
5316 /* have read misc data from the stack */
5317 mark_reg_unknown(env, state->regs, dst_regno);
5318 }
5319 }
5320
5321 /* Read the stack at 'off' and put the results into the register indicated by
5322 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
5323 * spilled reg.
5324 *
5325 * 'dst_regno' can be -1, meaning that the read value is not going to a
5326 * register.
5327 *
5328 * The access is assumed to be within the current stack bounds.
5329 */
check_stack_read_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * reg_state,int off,int size,int dst_regno)5330 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
5331 /* func where src register points to */
5332 struct bpf_func_state *reg_state,
5333 int off, int size, int dst_regno)
5334 {
5335 struct bpf_verifier_state *vstate = env->cur_state;
5336 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5337 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
5338 struct bpf_reg_state *reg;
5339 u8 *stype, type;
5340 int insn_flags = insn_stack_access_flags(reg_state->frameno, spi);
5341 int err;
5342
5343 stype = reg_state->stack[spi].slot_type;
5344 reg = ®_state->stack[spi].spilled_ptr;
5345
5346 mark_stack_slot_scratched(env, spi);
5347 check_fastcall_stack_contract(env, state, env->insn_idx, off);
5348 err = bpf_mark_stack_read(env, reg_state->frameno, env->insn_idx, BIT(spi));
5349 if (err)
5350 return err;
5351
5352 if (is_spilled_reg(®_state->stack[spi])) {
5353 u8 spill_size = 1;
5354
5355 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
5356 spill_size++;
5357
5358 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
5359 if (reg->type != SCALAR_VALUE) {
5360 verbose_linfo(env, env->insn_idx, "; ");
5361 verbose(env, "invalid size of register fill\n");
5362 return -EACCES;
5363 }
5364
5365 if (dst_regno < 0)
5366 return 0;
5367
5368 if (size <= spill_size &&
5369 bpf_stack_narrow_access_ok(off, size, spill_size)) {
5370 /* The earlier check_reg_arg() has decided the
5371 * subreg_def for this insn. Save it first.
5372 */
5373 s32 subreg_def = state->regs[dst_regno].subreg_def;
5374
5375 copy_register_state(&state->regs[dst_regno], reg);
5376 state->regs[dst_regno].subreg_def = subreg_def;
5377
5378 /* Break the relation on a narrowing fill.
5379 * coerce_reg_to_size will adjust the boundaries.
5380 */
5381 if (get_reg_width(reg) > size * BITS_PER_BYTE)
5382 state->regs[dst_regno].id = 0;
5383 } else {
5384 int spill_cnt = 0, zero_cnt = 0;
5385
5386 for (i = 0; i < size; i++) {
5387 type = stype[(slot - i) % BPF_REG_SIZE];
5388 if (type == STACK_SPILL) {
5389 spill_cnt++;
5390 continue;
5391 }
5392 if (type == STACK_MISC)
5393 continue;
5394 if (type == STACK_ZERO) {
5395 zero_cnt++;
5396 continue;
5397 }
5398 if (type == STACK_INVALID && env->allow_uninit_stack)
5399 continue;
5400 verbose(env, "invalid read from stack off %d+%d size %d\n",
5401 off, i, size);
5402 return -EACCES;
5403 }
5404
5405 if (spill_cnt == size &&
5406 tnum_is_const(reg->var_off) && reg->var_off.value == 0) {
5407 __mark_reg_const_zero(env, &state->regs[dst_regno]);
5408 /* this IS register fill, so keep insn_flags */
5409 } else if (zero_cnt == size) {
5410 /* similarly to mark_reg_stack_read(), preserve zeroes */
5411 __mark_reg_const_zero(env, &state->regs[dst_regno]);
5412 insn_flags = 0; /* not restoring original register state */
5413 } else {
5414 mark_reg_unknown(env, state->regs, dst_regno);
5415 insn_flags = 0; /* not restoring original register state */
5416 }
5417 }
5418 } else if (dst_regno >= 0) {
5419 /* restore register state from stack */
5420 copy_register_state(&state->regs[dst_regno], reg);
5421 /* mark reg as written since spilled pointer state likely
5422 * has its liveness marks cleared by is_state_visited()
5423 * which resets stack/reg liveness for state transitions
5424 */
5425 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
5426 /* If dst_regno==-1, the caller is asking us whether
5427 * it is acceptable to use this value as a SCALAR_VALUE
5428 * (e.g. for XADD).
5429 * We must not allow unprivileged callers to do that
5430 * with spilled pointers.
5431 */
5432 verbose(env, "leaking pointer from stack off %d\n",
5433 off);
5434 return -EACCES;
5435 }
5436 } else {
5437 for (i = 0; i < size; i++) {
5438 type = stype[(slot - i) % BPF_REG_SIZE];
5439 if (type == STACK_MISC)
5440 continue;
5441 if (type == STACK_ZERO)
5442 continue;
5443 if (type == STACK_INVALID && env->allow_uninit_stack)
5444 continue;
5445 verbose(env, "invalid read from stack off %d+%d size %d\n",
5446 off, i, size);
5447 return -EACCES;
5448 }
5449 if (dst_regno >= 0)
5450 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
5451 insn_flags = 0; /* we are not restoring spilled register */
5452 }
5453 if (insn_flags)
5454 return push_jmp_history(env, env->cur_state, insn_flags, 0);
5455 return 0;
5456 }
5457
5458 enum bpf_access_src {
5459 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
5460 ACCESS_HELPER = 2, /* the access is performed by a helper */
5461 };
5462
5463 static int check_stack_range_initialized(struct bpf_verifier_env *env,
5464 int regno, int off, int access_size,
5465 bool zero_size_allowed,
5466 enum bpf_access_type type,
5467 struct bpf_call_arg_meta *meta);
5468
reg_state(struct bpf_verifier_env * env,int regno)5469 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
5470 {
5471 return cur_regs(env) + regno;
5472 }
5473
5474 /* Read the stack at 'ptr_regno + off' and put the result into the register
5475 * 'dst_regno'.
5476 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
5477 * but not its variable offset.
5478 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
5479 *
5480 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
5481 * filling registers (i.e. reads of spilled register cannot be detected when
5482 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
5483 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
5484 * offset; for a fixed offset check_stack_read_fixed_off should be used
5485 * instead.
5486 */
check_stack_read_var_off(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)5487 static int check_stack_read_var_off(struct bpf_verifier_env *env,
5488 int ptr_regno, int off, int size, int dst_regno)
5489 {
5490 /* The state of the source register. */
5491 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5492 struct bpf_func_state *ptr_state = func(env, reg);
5493 int err;
5494 int min_off, max_off;
5495
5496 /* Note that we pass a NULL meta, so raw access will not be permitted.
5497 */
5498 err = check_stack_range_initialized(env, ptr_regno, off, size,
5499 false, BPF_READ, NULL);
5500 if (err)
5501 return err;
5502
5503 min_off = reg->smin_value + off;
5504 max_off = reg->smax_value + off;
5505 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
5506 check_fastcall_stack_contract(env, ptr_state, env->insn_idx, min_off);
5507 return 0;
5508 }
5509
5510 /* check_stack_read dispatches to check_stack_read_fixed_off or
5511 * check_stack_read_var_off.
5512 *
5513 * The caller must ensure that the offset falls within the allocated stack
5514 * bounds.
5515 *
5516 * 'dst_regno' is a register which will receive the value from the stack. It
5517 * can be -1, meaning that the read value is not going to a register.
5518 */
check_stack_read(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)5519 static int check_stack_read(struct bpf_verifier_env *env,
5520 int ptr_regno, int off, int size,
5521 int dst_regno)
5522 {
5523 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5524 struct bpf_func_state *state = func(env, reg);
5525 int err;
5526 /* Some accesses are only permitted with a static offset. */
5527 bool var_off = !tnum_is_const(reg->var_off);
5528
5529 /* The offset is required to be static when reads don't go to a
5530 * register, in order to not leak pointers (see
5531 * check_stack_read_fixed_off).
5532 */
5533 if (dst_regno < 0 && var_off) {
5534 char tn_buf[48];
5535
5536 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5537 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
5538 tn_buf, off, size);
5539 return -EACCES;
5540 }
5541 /* Variable offset is prohibited for unprivileged mode for simplicity
5542 * since it requires corresponding support in Spectre masking for stack
5543 * ALU. See also retrieve_ptr_limit(). The check in
5544 * check_stack_access_for_ptr_arithmetic() called by
5545 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
5546 * with variable offsets, therefore no check is required here. Further,
5547 * just checking it here would be insufficient as speculative stack
5548 * writes could still lead to unsafe speculative behaviour.
5549 */
5550 if (!var_off) {
5551 off += reg->var_off.value;
5552 err = check_stack_read_fixed_off(env, state, off, size,
5553 dst_regno);
5554 } else {
5555 /* Variable offset stack reads need more conservative handling
5556 * than fixed offset ones. Note that dst_regno >= 0 on this
5557 * branch.
5558 */
5559 err = check_stack_read_var_off(env, ptr_regno, off, size,
5560 dst_regno);
5561 }
5562 return err;
5563 }
5564
5565
5566 /* check_stack_write dispatches to check_stack_write_fixed_off or
5567 * check_stack_write_var_off.
5568 *
5569 * 'ptr_regno' is the register used as a pointer into the stack.
5570 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
5571 * 'value_regno' is the register whose value we're writing to the stack. It can
5572 * be -1, meaning that we're not writing from a register.
5573 *
5574 * The caller must ensure that the offset falls within the maximum stack size.
5575 */
check_stack_write(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int value_regno,int insn_idx)5576 static int check_stack_write(struct bpf_verifier_env *env,
5577 int ptr_regno, int off, int size,
5578 int value_regno, int insn_idx)
5579 {
5580 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5581 struct bpf_func_state *state = func(env, reg);
5582 int err;
5583
5584 if (tnum_is_const(reg->var_off)) {
5585 off += reg->var_off.value;
5586 err = check_stack_write_fixed_off(env, state, off, size,
5587 value_regno, insn_idx);
5588 } else {
5589 /* Variable offset stack reads need more conservative handling
5590 * than fixed offset ones.
5591 */
5592 err = check_stack_write_var_off(env, state,
5593 ptr_regno, off, size,
5594 value_regno, insn_idx);
5595 }
5596 return err;
5597 }
5598
check_map_access_type(struct bpf_verifier_env * env,u32 regno,int off,int size,enum bpf_access_type type)5599 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
5600 int off, int size, enum bpf_access_type type)
5601 {
5602 struct bpf_reg_state *regs = cur_regs(env);
5603 struct bpf_map *map = regs[regno].map_ptr;
5604 u32 cap = bpf_map_flags_to_cap(map);
5605
5606 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
5607 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
5608 map->value_size, off, size);
5609 return -EACCES;
5610 }
5611
5612 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5613 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5614 map->value_size, off, size);
5615 return -EACCES;
5616 }
5617
5618 return 0;
5619 }
5620
5621 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
__check_mem_access(struct bpf_verifier_env * env,int regno,int off,int size,u32 mem_size,bool zero_size_allowed)5622 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5623 int off, int size, u32 mem_size,
5624 bool zero_size_allowed)
5625 {
5626 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5627 struct bpf_reg_state *reg;
5628
5629 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5630 return 0;
5631
5632 reg = &cur_regs(env)[regno];
5633 switch (reg->type) {
5634 case PTR_TO_MAP_KEY:
5635 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5636 mem_size, off, size);
5637 break;
5638 case PTR_TO_MAP_VALUE:
5639 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5640 mem_size, off, size);
5641 break;
5642 case PTR_TO_PACKET:
5643 case PTR_TO_PACKET_META:
5644 case PTR_TO_PACKET_END:
5645 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5646 off, size, regno, reg->id, off, mem_size);
5647 break;
5648 case PTR_TO_MEM:
5649 default:
5650 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5651 mem_size, off, size);
5652 }
5653
5654 return -EACCES;
5655 }
5656
5657 /* check read/write into a memory region with possible variable offset */
check_mem_region_access(struct bpf_verifier_env * env,u32 regno,int off,int size,u32 mem_size,bool zero_size_allowed)5658 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5659 int off, int size, u32 mem_size,
5660 bool zero_size_allowed)
5661 {
5662 struct bpf_verifier_state *vstate = env->cur_state;
5663 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5664 struct bpf_reg_state *reg = &state->regs[regno];
5665 int err;
5666
5667 /* We may have adjusted the register pointing to memory region, so we
5668 * need to try adding each of min_value and max_value to off
5669 * to make sure our theoretical access will be safe.
5670 *
5671 * The minimum value is only important with signed
5672 * comparisons where we can't assume the floor of a
5673 * value is 0. If we are using signed variables for our
5674 * index'es we need to make sure that whatever we use
5675 * will have a set floor within our range.
5676 */
5677 if (reg->smin_value < 0 &&
5678 (reg->smin_value == S64_MIN ||
5679 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5680 reg->smin_value + off < 0)) {
5681 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5682 regno);
5683 return -EACCES;
5684 }
5685 err = __check_mem_access(env, regno, reg->smin_value + off, size,
5686 mem_size, zero_size_allowed);
5687 if (err) {
5688 verbose(env, "R%d min value is outside of the allowed memory range\n",
5689 regno);
5690 return err;
5691 }
5692
5693 /* If we haven't set a max value then we need to bail since we can't be
5694 * sure we won't do bad things.
5695 * If reg->umax_value + off could overflow, treat that as unbounded too.
5696 */
5697 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5698 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5699 regno);
5700 return -EACCES;
5701 }
5702 err = __check_mem_access(env, regno, reg->umax_value + off, size,
5703 mem_size, zero_size_allowed);
5704 if (err) {
5705 verbose(env, "R%d max value is outside of the allowed memory range\n",
5706 regno);
5707 return err;
5708 }
5709
5710 return 0;
5711 }
5712
__check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,bool fixed_off_ok)5713 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5714 const struct bpf_reg_state *reg, int regno,
5715 bool fixed_off_ok)
5716 {
5717 /* Access to this pointer-typed register or passing it to a helper
5718 * is only allowed in its original, unmodified form.
5719 */
5720
5721 if (reg->off < 0) {
5722 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5723 reg_type_str(env, reg->type), regno, reg->off);
5724 return -EACCES;
5725 }
5726
5727 if (!fixed_off_ok && reg->off) {
5728 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5729 reg_type_str(env, reg->type), regno, reg->off);
5730 return -EACCES;
5731 }
5732
5733 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5734 char tn_buf[48];
5735
5736 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5737 verbose(env, "variable %s access var_off=%s disallowed\n",
5738 reg_type_str(env, reg->type), tn_buf);
5739 return -EACCES;
5740 }
5741
5742 return 0;
5743 }
5744
check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno)5745 static int check_ptr_off_reg(struct bpf_verifier_env *env,
5746 const struct bpf_reg_state *reg, int regno)
5747 {
5748 return __check_ptr_off_reg(env, reg, regno, false);
5749 }
5750
map_kptr_match_type(struct bpf_verifier_env * env,struct btf_field * kptr_field,struct bpf_reg_state * reg,u32 regno)5751 static int map_kptr_match_type(struct bpf_verifier_env *env,
5752 struct btf_field *kptr_field,
5753 struct bpf_reg_state *reg, u32 regno)
5754 {
5755 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5756 int perm_flags;
5757 const char *reg_name = "";
5758
5759 if (btf_is_kernel(reg->btf)) {
5760 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5761
5762 /* Only unreferenced case accepts untrusted pointers */
5763 if (kptr_field->type == BPF_KPTR_UNREF)
5764 perm_flags |= PTR_UNTRUSTED;
5765 } else {
5766 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5767 if (kptr_field->type == BPF_KPTR_PERCPU)
5768 perm_flags |= MEM_PERCPU;
5769 }
5770
5771 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5772 goto bad_type;
5773
5774 /* We need to verify reg->type and reg->btf, before accessing reg->btf */
5775 reg_name = btf_type_name(reg->btf, reg->btf_id);
5776
5777 /* For ref_ptr case, release function check should ensure we get one
5778 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5779 * normal store of unreferenced kptr, we must ensure var_off is zero.
5780 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5781 * reg->off and reg->ref_obj_id are not needed here.
5782 */
5783 if (__check_ptr_off_reg(env, reg, regno, true))
5784 return -EACCES;
5785
5786 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5787 * we also need to take into account the reg->off.
5788 *
5789 * We want to support cases like:
5790 *
5791 * struct foo {
5792 * struct bar br;
5793 * struct baz bz;
5794 * };
5795 *
5796 * struct foo *v;
5797 * v = func(); // PTR_TO_BTF_ID
5798 * val->foo = v; // reg->off is zero, btf and btf_id match type
5799 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5800 * // first member type of struct after comparison fails
5801 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5802 * // to match type
5803 *
5804 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5805 * is zero. We must also ensure that btf_struct_ids_match does not walk
5806 * the struct to match type against first member of struct, i.e. reject
5807 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5808 * strict mode to true for type match.
5809 */
5810 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5811 kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5812 kptr_field->type != BPF_KPTR_UNREF))
5813 goto bad_type;
5814 return 0;
5815 bad_type:
5816 verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5817 reg_type_str(env, reg->type), reg_name);
5818 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5819 if (kptr_field->type == BPF_KPTR_UNREF)
5820 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5821 targ_name);
5822 else
5823 verbose(env, "\n");
5824 return -EINVAL;
5825 }
5826
in_sleepable(struct bpf_verifier_env * env)5827 static bool in_sleepable(struct bpf_verifier_env *env)
5828 {
5829 return env->prog->sleepable ||
5830 (env->cur_state && env->cur_state->in_sleepable);
5831 }
5832
5833 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5834 * can dereference RCU protected pointers and result is PTR_TRUSTED.
5835 */
in_rcu_cs(struct bpf_verifier_env * env)5836 static bool in_rcu_cs(struct bpf_verifier_env *env)
5837 {
5838 return env->cur_state->active_rcu_lock ||
5839 env->cur_state->active_locks ||
5840 !in_sleepable(env);
5841 }
5842
5843 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5844 BTF_SET_START(rcu_protected_types)
5845 #ifdef CONFIG_NET
BTF_ID(struct,prog_test_ref_kfunc)5846 BTF_ID(struct, prog_test_ref_kfunc)
5847 #endif
5848 #ifdef CONFIG_CGROUPS
5849 BTF_ID(struct, cgroup)
5850 #endif
5851 #ifdef CONFIG_BPF_JIT
5852 BTF_ID(struct, bpf_cpumask)
5853 #endif
5854 BTF_ID(struct, task_struct)
5855 #ifdef CONFIG_CRYPTO
5856 BTF_ID(struct, bpf_crypto_ctx)
5857 #endif
5858 BTF_SET_END(rcu_protected_types)
5859
5860 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5861 {
5862 if (!btf_is_kernel(btf))
5863 return true;
5864 return btf_id_set_contains(&rcu_protected_types, btf_id);
5865 }
5866
kptr_pointee_btf_record(struct btf_field * kptr_field)5867 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field)
5868 {
5869 struct btf_struct_meta *meta;
5870
5871 if (btf_is_kernel(kptr_field->kptr.btf))
5872 return NULL;
5873
5874 meta = btf_find_struct_meta(kptr_field->kptr.btf,
5875 kptr_field->kptr.btf_id);
5876
5877 return meta ? meta->record : NULL;
5878 }
5879
rcu_safe_kptr(const struct btf_field * field)5880 static bool rcu_safe_kptr(const struct btf_field *field)
5881 {
5882 const struct btf_field_kptr *kptr = &field->kptr;
5883
5884 return field->type == BPF_KPTR_PERCPU ||
5885 (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id));
5886 }
5887
btf_ld_kptr_type(struct bpf_verifier_env * env,struct btf_field * kptr_field)5888 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field)
5889 {
5890 struct btf_record *rec;
5891 u32 ret;
5892
5893 ret = PTR_MAYBE_NULL;
5894 if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) {
5895 ret |= MEM_RCU;
5896 if (kptr_field->type == BPF_KPTR_PERCPU)
5897 ret |= MEM_PERCPU;
5898 else if (!btf_is_kernel(kptr_field->kptr.btf))
5899 ret |= MEM_ALLOC;
5900
5901 rec = kptr_pointee_btf_record(kptr_field);
5902 if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE))
5903 ret |= NON_OWN_REF;
5904 } else {
5905 ret |= PTR_UNTRUSTED;
5906 }
5907
5908 return ret;
5909 }
5910
mark_uptr_ld_reg(struct bpf_verifier_env * env,u32 regno,struct btf_field * field)5911 static int mark_uptr_ld_reg(struct bpf_verifier_env *env, u32 regno,
5912 struct btf_field *field)
5913 {
5914 struct bpf_reg_state *reg;
5915 const struct btf_type *t;
5916
5917 t = btf_type_by_id(field->kptr.btf, field->kptr.btf_id);
5918 mark_reg_known_zero(env, cur_regs(env), regno);
5919 reg = reg_state(env, regno);
5920 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
5921 reg->mem_size = t->size;
5922 reg->id = ++env->id_gen;
5923
5924 return 0;
5925 }
5926
check_map_kptr_access(struct bpf_verifier_env * env,u32 regno,int value_regno,int insn_idx,struct btf_field * kptr_field)5927 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5928 int value_regno, int insn_idx,
5929 struct btf_field *kptr_field)
5930 {
5931 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5932 int class = BPF_CLASS(insn->code);
5933 struct bpf_reg_state *val_reg;
5934 int ret;
5935
5936 /* Things we already checked for in check_map_access and caller:
5937 * - Reject cases where variable offset may touch kptr
5938 * - size of access (must be BPF_DW)
5939 * - tnum_is_const(reg->var_off)
5940 * - kptr_field->offset == off + reg->var_off.value
5941 */
5942 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5943 if (BPF_MODE(insn->code) != BPF_MEM) {
5944 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5945 return -EACCES;
5946 }
5947
5948 /* We only allow loading referenced kptr, since it will be marked as
5949 * untrusted, similar to unreferenced kptr.
5950 */
5951 if (class != BPF_LDX &&
5952 (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) {
5953 verbose(env, "store to referenced kptr disallowed\n");
5954 return -EACCES;
5955 }
5956 if (class != BPF_LDX && kptr_field->type == BPF_UPTR) {
5957 verbose(env, "store to uptr disallowed\n");
5958 return -EACCES;
5959 }
5960
5961 if (class == BPF_LDX) {
5962 if (kptr_field->type == BPF_UPTR)
5963 return mark_uptr_ld_reg(env, value_regno, kptr_field);
5964
5965 /* We can simply mark the value_regno receiving the pointer
5966 * value from map as PTR_TO_BTF_ID, with the correct type.
5967 */
5968 ret = mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID,
5969 kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5970 btf_ld_kptr_type(env, kptr_field));
5971 if (ret < 0)
5972 return ret;
5973 } else if (class == BPF_STX) {
5974 val_reg = reg_state(env, value_regno);
5975 if (!register_is_null(val_reg) &&
5976 map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5977 return -EACCES;
5978 } else if (class == BPF_ST) {
5979 if (insn->imm) {
5980 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5981 kptr_field->offset);
5982 return -EACCES;
5983 }
5984 } else {
5985 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5986 return -EACCES;
5987 }
5988 return 0;
5989 }
5990
5991 /* check read/write into a map element with possible variable offset */
check_map_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed,enum bpf_access_src src)5992 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5993 int off, int size, bool zero_size_allowed,
5994 enum bpf_access_src src)
5995 {
5996 struct bpf_verifier_state *vstate = env->cur_state;
5997 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5998 struct bpf_reg_state *reg = &state->regs[regno];
5999 struct bpf_map *map = reg->map_ptr;
6000 struct btf_record *rec;
6001 int err, i;
6002
6003 err = check_mem_region_access(env, regno, off, size, map->value_size,
6004 zero_size_allowed);
6005 if (err)
6006 return err;
6007
6008 if (IS_ERR_OR_NULL(map->record))
6009 return 0;
6010 rec = map->record;
6011 for (i = 0; i < rec->cnt; i++) {
6012 struct btf_field *field = &rec->fields[i];
6013 u32 p = field->offset;
6014
6015 /* If any part of a field can be touched by load/store, reject
6016 * this program. To check that [x1, x2) overlaps with [y1, y2),
6017 * it is sufficient to check x1 < y2 && y1 < x2.
6018 */
6019 if (reg->smin_value + off < p + field->size &&
6020 p < reg->umax_value + off + size) {
6021 switch (field->type) {
6022 case BPF_KPTR_UNREF:
6023 case BPF_KPTR_REF:
6024 case BPF_KPTR_PERCPU:
6025 case BPF_UPTR:
6026 if (src != ACCESS_DIRECT) {
6027 verbose(env, "%s cannot be accessed indirectly by helper\n",
6028 btf_field_type_name(field->type));
6029 return -EACCES;
6030 }
6031 if (!tnum_is_const(reg->var_off)) {
6032 verbose(env, "%s access cannot have variable offset\n",
6033 btf_field_type_name(field->type));
6034 return -EACCES;
6035 }
6036 if (p != off + reg->var_off.value) {
6037 verbose(env, "%s access misaligned expected=%u off=%llu\n",
6038 btf_field_type_name(field->type),
6039 p, off + reg->var_off.value);
6040 return -EACCES;
6041 }
6042 if (size != bpf_size_to_bytes(BPF_DW)) {
6043 verbose(env, "%s access size must be BPF_DW\n",
6044 btf_field_type_name(field->type));
6045 return -EACCES;
6046 }
6047 break;
6048 default:
6049 verbose(env, "%s cannot be accessed directly by load/store\n",
6050 btf_field_type_name(field->type));
6051 return -EACCES;
6052 }
6053 }
6054 }
6055 return 0;
6056 }
6057
6058 #define MAX_PACKET_OFF 0xffff
6059
may_access_direct_pkt_data(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_access_type t)6060 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
6061 const struct bpf_call_arg_meta *meta,
6062 enum bpf_access_type t)
6063 {
6064 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
6065
6066 switch (prog_type) {
6067 /* Program types only with direct read access go here! */
6068 case BPF_PROG_TYPE_LWT_IN:
6069 case BPF_PROG_TYPE_LWT_OUT:
6070 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
6071 case BPF_PROG_TYPE_SK_REUSEPORT:
6072 case BPF_PROG_TYPE_FLOW_DISSECTOR:
6073 case BPF_PROG_TYPE_CGROUP_SKB:
6074 if (t == BPF_WRITE)
6075 return false;
6076 fallthrough;
6077
6078 /* Program types with direct read + write access go here! */
6079 case BPF_PROG_TYPE_SCHED_CLS:
6080 case BPF_PROG_TYPE_SCHED_ACT:
6081 case BPF_PROG_TYPE_XDP:
6082 case BPF_PROG_TYPE_LWT_XMIT:
6083 case BPF_PROG_TYPE_SK_SKB:
6084 case BPF_PROG_TYPE_SK_MSG:
6085 if (meta)
6086 return meta->pkt_access;
6087
6088 env->seen_direct_write = true;
6089 return true;
6090
6091 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
6092 if (t == BPF_WRITE)
6093 env->seen_direct_write = true;
6094
6095 return true;
6096
6097 default:
6098 return false;
6099 }
6100 }
6101
check_packet_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)6102 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
6103 int size, bool zero_size_allowed)
6104 {
6105 struct bpf_reg_state *regs = cur_regs(env);
6106 struct bpf_reg_state *reg = ®s[regno];
6107 int err;
6108
6109 /* We may have added a variable offset to the packet pointer; but any
6110 * reg->range we have comes after that. We are only checking the fixed
6111 * offset.
6112 */
6113
6114 /* We don't allow negative numbers, because we aren't tracking enough
6115 * detail to prove they're safe.
6116 */
6117 if (reg->smin_value < 0) {
6118 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
6119 regno);
6120 return -EACCES;
6121 }
6122
6123 err = reg->range < 0 ? -EINVAL :
6124 __check_mem_access(env, regno, off, size, reg->range,
6125 zero_size_allowed);
6126 if (err) {
6127 verbose(env, "R%d offset is outside of the packet\n", regno);
6128 return err;
6129 }
6130
6131 /* __check_mem_access has made sure "off + size - 1" is within u16.
6132 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
6133 * otherwise find_good_pkt_pointers would have refused to set range info
6134 * that __check_mem_access would have rejected this pkt access.
6135 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
6136 */
6137 env->prog->aux->max_pkt_offset =
6138 max_t(u32, env->prog->aux->max_pkt_offset,
6139 off + reg->umax_value + size - 1);
6140
6141 return err;
6142 }
6143
6144 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
check_ctx_access(struct bpf_verifier_env * env,int insn_idx,int off,int size,enum bpf_access_type t,struct bpf_insn_access_aux * info)6145 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
6146 enum bpf_access_type t, struct bpf_insn_access_aux *info)
6147 {
6148 if (env->ops->is_valid_access &&
6149 env->ops->is_valid_access(off, size, t, env->prog, info)) {
6150 /* A non zero info.ctx_field_size indicates that this field is a
6151 * candidate for later verifier transformation to load the whole
6152 * field and then apply a mask when accessed with a narrower
6153 * access than actual ctx access size. A zero info.ctx_field_size
6154 * will only allow for whole field access and rejects any other
6155 * type of narrower access.
6156 */
6157 if (base_type(info->reg_type) == PTR_TO_BTF_ID) {
6158 if (info->ref_obj_id &&
6159 !find_reference_state(env->cur_state, info->ref_obj_id)) {
6160 verbose(env, "invalid bpf_context access off=%d. Reference may already be released\n",
6161 off);
6162 return -EACCES;
6163 }
6164 } else {
6165 env->insn_aux_data[insn_idx].ctx_field_size = info->ctx_field_size;
6166 }
6167 /* remember the offset of last byte accessed in ctx */
6168 if (env->prog->aux->max_ctx_offset < off + size)
6169 env->prog->aux->max_ctx_offset = off + size;
6170 return 0;
6171 }
6172
6173 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
6174 return -EACCES;
6175 }
6176
check_flow_keys_access(struct bpf_verifier_env * env,int off,int size)6177 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
6178 int size)
6179 {
6180 if (size < 0 || off < 0 ||
6181 (u64)off + size > sizeof(struct bpf_flow_keys)) {
6182 verbose(env, "invalid access to flow keys off=%d size=%d\n",
6183 off, size);
6184 return -EACCES;
6185 }
6186 return 0;
6187 }
6188
check_sock_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int size,enum bpf_access_type t)6189 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
6190 u32 regno, int off, int size,
6191 enum bpf_access_type t)
6192 {
6193 struct bpf_reg_state *regs = cur_regs(env);
6194 struct bpf_reg_state *reg = ®s[regno];
6195 struct bpf_insn_access_aux info = {};
6196 bool valid;
6197
6198 if (reg->smin_value < 0) {
6199 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
6200 regno);
6201 return -EACCES;
6202 }
6203
6204 switch (reg->type) {
6205 case PTR_TO_SOCK_COMMON:
6206 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
6207 break;
6208 case PTR_TO_SOCKET:
6209 valid = bpf_sock_is_valid_access(off, size, t, &info);
6210 break;
6211 case PTR_TO_TCP_SOCK:
6212 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
6213 break;
6214 case PTR_TO_XDP_SOCK:
6215 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
6216 break;
6217 default:
6218 valid = false;
6219 }
6220
6221
6222 if (valid) {
6223 env->insn_aux_data[insn_idx].ctx_field_size =
6224 info.ctx_field_size;
6225 return 0;
6226 }
6227
6228 verbose(env, "R%d invalid %s access off=%d size=%d\n",
6229 regno, reg_type_str(env, reg->type), off, size);
6230
6231 return -EACCES;
6232 }
6233
is_pointer_value(struct bpf_verifier_env * env,int regno)6234 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
6235 {
6236 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
6237 }
6238
is_ctx_reg(struct bpf_verifier_env * env,int regno)6239 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
6240 {
6241 const struct bpf_reg_state *reg = reg_state(env, regno);
6242
6243 return reg->type == PTR_TO_CTX;
6244 }
6245
is_sk_reg(struct bpf_verifier_env * env,int regno)6246 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
6247 {
6248 const struct bpf_reg_state *reg = reg_state(env, regno);
6249
6250 return type_is_sk_pointer(reg->type);
6251 }
6252
is_pkt_reg(struct bpf_verifier_env * env,int regno)6253 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
6254 {
6255 const struct bpf_reg_state *reg = reg_state(env, regno);
6256
6257 return type_is_pkt_pointer(reg->type);
6258 }
6259
is_flow_key_reg(struct bpf_verifier_env * env,int regno)6260 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
6261 {
6262 const struct bpf_reg_state *reg = reg_state(env, regno);
6263
6264 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
6265 return reg->type == PTR_TO_FLOW_KEYS;
6266 }
6267
is_arena_reg(struct bpf_verifier_env * env,int regno)6268 static bool is_arena_reg(struct bpf_verifier_env *env, int regno)
6269 {
6270 const struct bpf_reg_state *reg = reg_state(env, regno);
6271
6272 return reg->type == PTR_TO_ARENA;
6273 }
6274
6275 /* Return false if @regno contains a pointer whose type isn't supported for
6276 * atomic instruction @insn.
6277 */
atomic_ptr_type_ok(struct bpf_verifier_env * env,int regno,struct bpf_insn * insn)6278 static bool atomic_ptr_type_ok(struct bpf_verifier_env *env, int regno,
6279 struct bpf_insn *insn)
6280 {
6281 if (is_ctx_reg(env, regno))
6282 return false;
6283 if (is_pkt_reg(env, regno))
6284 return false;
6285 if (is_flow_key_reg(env, regno))
6286 return false;
6287 if (is_sk_reg(env, regno))
6288 return false;
6289 if (is_arena_reg(env, regno))
6290 return bpf_jit_supports_insn(insn, true);
6291
6292 return true;
6293 }
6294
6295 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
6296 #ifdef CONFIG_NET
6297 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
6298 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
6299 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
6300 #endif
6301 [CONST_PTR_TO_MAP] = btf_bpf_map_id,
6302 };
6303
is_trusted_reg(const struct bpf_reg_state * reg)6304 static bool is_trusted_reg(const struct bpf_reg_state *reg)
6305 {
6306 /* A referenced register is always trusted. */
6307 if (reg->ref_obj_id)
6308 return true;
6309
6310 /* Types listed in the reg2btf_ids are always trusted */
6311 if (reg2btf_ids[base_type(reg->type)] &&
6312 !bpf_type_has_unsafe_modifiers(reg->type))
6313 return true;
6314
6315 /* If a register is not referenced, it is trusted if it has the
6316 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
6317 * other type modifiers may be safe, but we elect to take an opt-in
6318 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
6319 * not.
6320 *
6321 * Eventually, we should make PTR_TRUSTED the single source of truth
6322 * for whether a register is trusted.
6323 */
6324 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
6325 !bpf_type_has_unsafe_modifiers(reg->type);
6326 }
6327
is_rcu_reg(const struct bpf_reg_state * reg)6328 static bool is_rcu_reg(const struct bpf_reg_state *reg)
6329 {
6330 return reg->type & MEM_RCU;
6331 }
6332
clear_trusted_flags(enum bpf_type_flag * flag)6333 static void clear_trusted_flags(enum bpf_type_flag *flag)
6334 {
6335 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
6336 }
6337
check_pkt_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict)6338 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
6339 const struct bpf_reg_state *reg,
6340 int off, int size, bool strict)
6341 {
6342 struct tnum reg_off;
6343 int ip_align;
6344
6345 /* Byte size accesses are always allowed. */
6346 if (!strict || size == 1)
6347 return 0;
6348
6349 /* For platforms that do not have a Kconfig enabling
6350 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
6351 * NET_IP_ALIGN is universally set to '2'. And on platforms
6352 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
6353 * to this code only in strict mode where we want to emulate
6354 * the NET_IP_ALIGN==2 checking. Therefore use an
6355 * unconditional IP align value of '2'.
6356 */
6357 ip_align = 2;
6358
6359 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
6360 if (!tnum_is_aligned(reg_off, size)) {
6361 char tn_buf[48];
6362
6363 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6364 verbose(env,
6365 "misaligned packet access off %d+%s+%d+%d size %d\n",
6366 ip_align, tn_buf, reg->off, off, size);
6367 return -EACCES;
6368 }
6369
6370 return 0;
6371 }
6372
check_generic_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,const char * pointer_desc,int off,int size,bool strict)6373 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
6374 const struct bpf_reg_state *reg,
6375 const char *pointer_desc,
6376 int off, int size, bool strict)
6377 {
6378 struct tnum reg_off;
6379
6380 /* Byte size accesses are always allowed. */
6381 if (!strict || size == 1)
6382 return 0;
6383
6384 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
6385 if (!tnum_is_aligned(reg_off, size)) {
6386 char tn_buf[48];
6387
6388 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6389 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
6390 pointer_desc, tn_buf, reg->off, off, size);
6391 return -EACCES;
6392 }
6393
6394 return 0;
6395 }
6396
check_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict_alignment_once)6397 static int check_ptr_alignment(struct bpf_verifier_env *env,
6398 const struct bpf_reg_state *reg, int off,
6399 int size, bool strict_alignment_once)
6400 {
6401 bool strict = env->strict_alignment || strict_alignment_once;
6402 const char *pointer_desc = "";
6403
6404 switch (reg->type) {
6405 case PTR_TO_PACKET:
6406 case PTR_TO_PACKET_META:
6407 /* Special case, because of NET_IP_ALIGN. Given metadata sits
6408 * right in front, treat it the very same way.
6409 */
6410 return check_pkt_ptr_alignment(env, reg, off, size, strict);
6411 case PTR_TO_FLOW_KEYS:
6412 pointer_desc = "flow keys ";
6413 break;
6414 case PTR_TO_MAP_KEY:
6415 pointer_desc = "key ";
6416 break;
6417 case PTR_TO_MAP_VALUE:
6418 pointer_desc = "value ";
6419 break;
6420 case PTR_TO_CTX:
6421 pointer_desc = "context ";
6422 break;
6423 case PTR_TO_STACK:
6424 pointer_desc = "stack ";
6425 /* The stack spill tracking logic in check_stack_write_fixed_off()
6426 * and check_stack_read_fixed_off() relies on stack accesses being
6427 * aligned.
6428 */
6429 strict = true;
6430 break;
6431 case PTR_TO_SOCKET:
6432 pointer_desc = "sock ";
6433 break;
6434 case PTR_TO_SOCK_COMMON:
6435 pointer_desc = "sock_common ";
6436 break;
6437 case PTR_TO_TCP_SOCK:
6438 pointer_desc = "tcp_sock ";
6439 break;
6440 case PTR_TO_XDP_SOCK:
6441 pointer_desc = "xdp_sock ";
6442 break;
6443 case PTR_TO_ARENA:
6444 return 0;
6445 default:
6446 break;
6447 }
6448 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
6449 strict);
6450 }
6451
bpf_enable_priv_stack(struct bpf_prog * prog)6452 static enum priv_stack_mode bpf_enable_priv_stack(struct bpf_prog *prog)
6453 {
6454 if (!bpf_jit_supports_private_stack())
6455 return NO_PRIV_STACK;
6456
6457 /* bpf_prog_check_recur() checks all prog types that use bpf trampoline
6458 * while kprobe/tp/perf_event/raw_tp don't use trampoline hence checked
6459 * explicitly.
6460 */
6461 switch (prog->type) {
6462 case BPF_PROG_TYPE_KPROBE:
6463 case BPF_PROG_TYPE_TRACEPOINT:
6464 case BPF_PROG_TYPE_PERF_EVENT:
6465 case BPF_PROG_TYPE_RAW_TRACEPOINT:
6466 return PRIV_STACK_ADAPTIVE;
6467 case BPF_PROG_TYPE_TRACING:
6468 case BPF_PROG_TYPE_LSM:
6469 case BPF_PROG_TYPE_STRUCT_OPS:
6470 if (prog->aux->priv_stack_requested || bpf_prog_check_recur(prog))
6471 return PRIV_STACK_ADAPTIVE;
6472 fallthrough;
6473 default:
6474 break;
6475 }
6476
6477 return NO_PRIV_STACK;
6478 }
6479
round_up_stack_depth(struct bpf_verifier_env * env,int stack_depth)6480 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth)
6481 {
6482 if (env->prog->jit_requested)
6483 return round_up(stack_depth, 16);
6484
6485 /* round up to 32-bytes, since this is granularity
6486 * of interpreter stack size
6487 */
6488 return round_up(max_t(u32, stack_depth, 1), 32);
6489 }
6490
6491 /* starting from main bpf function walk all instructions of the function
6492 * and recursively walk all callees that given function can call.
6493 * Ignore jump and exit insns.
6494 * Since recursion is prevented by check_cfg() this algorithm
6495 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
6496 */
check_max_stack_depth_subprog(struct bpf_verifier_env * env,int idx,bool priv_stack_supported)6497 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx,
6498 bool priv_stack_supported)
6499 {
6500 struct bpf_subprog_info *subprog = env->subprog_info;
6501 struct bpf_insn *insn = env->prog->insnsi;
6502 int depth = 0, frame = 0, i, subprog_end, subprog_depth;
6503 bool tail_call_reachable = false;
6504 int ret_insn[MAX_CALL_FRAMES];
6505 int ret_prog[MAX_CALL_FRAMES];
6506 int j;
6507
6508 i = subprog[idx].start;
6509 if (!priv_stack_supported)
6510 subprog[idx].priv_stack_mode = NO_PRIV_STACK;
6511 process_func:
6512 /* protect against potential stack overflow that might happen when
6513 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
6514 * depth for such case down to 256 so that the worst case scenario
6515 * would result in 8k stack size (32 which is tailcall limit * 256 =
6516 * 8k).
6517 *
6518 * To get the idea what might happen, see an example:
6519 * func1 -> sub rsp, 128
6520 * subfunc1 -> sub rsp, 256
6521 * tailcall1 -> add rsp, 256
6522 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
6523 * subfunc2 -> sub rsp, 64
6524 * subfunc22 -> sub rsp, 128
6525 * tailcall2 -> add rsp, 128
6526 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
6527 *
6528 * tailcall will unwind the current stack frame but it will not get rid
6529 * of caller's stack as shown on the example above.
6530 */
6531 if (idx && subprog[idx].has_tail_call && depth >= 256) {
6532 verbose(env,
6533 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
6534 depth);
6535 return -EACCES;
6536 }
6537
6538 subprog_depth = round_up_stack_depth(env, subprog[idx].stack_depth);
6539 if (priv_stack_supported) {
6540 /* Request private stack support only if the subprog stack
6541 * depth is no less than BPF_PRIV_STACK_MIN_SIZE. This is to
6542 * avoid jit penalty if the stack usage is small.
6543 */
6544 if (subprog[idx].priv_stack_mode == PRIV_STACK_UNKNOWN &&
6545 subprog_depth >= BPF_PRIV_STACK_MIN_SIZE)
6546 subprog[idx].priv_stack_mode = PRIV_STACK_ADAPTIVE;
6547 }
6548
6549 if (subprog[idx].priv_stack_mode == PRIV_STACK_ADAPTIVE) {
6550 if (subprog_depth > MAX_BPF_STACK) {
6551 verbose(env, "stack size of subprog %d is %d. Too large\n",
6552 idx, subprog_depth);
6553 return -EACCES;
6554 }
6555 } else {
6556 depth += subprog_depth;
6557 if (depth > MAX_BPF_STACK) {
6558 verbose(env, "combined stack size of %d calls is %d. Too large\n",
6559 frame + 1, depth);
6560 return -EACCES;
6561 }
6562 }
6563 continue_func:
6564 subprog_end = subprog[idx + 1].start;
6565 for (; i < subprog_end; i++) {
6566 int next_insn, sidx;
6567
6568 if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) {
6569 bool err = false;
6570
6571 if (!is_bpf_throw_kfunc(insn + i))
6572 continue;
6573 if (subprog[idx].is_cb)
6574 err = true;
6575 for (int c = 0; c < frame && !err; c++) {
6576 if (subprog[ret_prog[c]].is_cb) {
6577 err = true;
6578 break;
6579 }
6580 }
6581 if (!err)
6582 continue;
6583 verbose(env,
6584 "bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n",
6585 i, idx);
6586 return -EINVAL;
6587 }
6588
6589 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
6590 continue;
6591 /* remember insn and function to return to */
6592 ret_insn[frame] = i + 1;
6593 ret_prog[frame] = idx;
6594
6595 /* find the callee */
6596 next_insn = i + insn[i].imm + 1;
6597 sidx = find_subprog(env, next_insn);
6598 if (verifier_bug_if(sidx < 0, env, "callee not found at insn %d", next_insn))
6599 return -EFAULT;
6600 if (subprog[sidx].is_async_cb) {
6601 if (subprog[sidx].has_tail_call) {
6602 verifier_bug(env, "subprog has tail_call and async cb");
6603 return -EFAULT;
6604 }
6605 /* async callbacks don't increase bpf prog stack size unless called directly */
6606 if (!bpf_pseudo_call(insn + i))
6607 continue;
6608 if (subprog[sidx].is_exception_cb) {
6609 verbose(env, "insn %d cannot call exception cb directly", i);
6610 return -EINVAL;
6611 }
6612 }
6613 i = next_insn;
6614 idx = sidx;
6615 if (!priv_stack_supported)
6616 subprog[idx].priv_stack_mode = NO_PRIV_STACK;
6617
6618 if (subprog[idx].has_tail_call)
6619 tail_call_reachable = true;
6620
6621 frame++;
6622 if (frame >= MAX_CALL_FRAMES) {
6623 verbose(env, "the call stack of %d frames is too deep !\n",
6624 frame);
6625 return -E2BIG;
6626 }
6627 goto process_func;
6628 }
6629 /* if tail call got detected across bpf2bpf calls then mark each of the
6630 * currently present subprog frames as tail call reachable subprogs;
6631 * this info will be utilized by JIT so that we will be preserving the
6632 * tail call counter throughout bpf2bpf calls combined with tailcalls
6633 */
6634 if (tail_call_reachable)
6635 for (j = 0; j < frame; j++) {
6636 if (subprog[ret_prog[j]].is_exception_cb) {
6637 verbose(env, "cannot tail call within exception cb\n");
6638 return -EINVAL;
6639 }
6640 subprog[ret_prog[j]].tail_call_reachable = true;
6641 }
6642 if (subprog[0].tail_call_reachable)
6643 env->prog->aux->tail_call_reachable = true;
6644
6645 /* end of for() loop means the last insn of the 'subprog'
6646 * was reached. Doesn't matter whether it was JA or EXIT
6647 */
6648 if (frame == 0)
6649 return 0;
6650 if (subprog[idx].priv_stack_mode != PRIV_STACK_ADAPTIVE)
6651 depth -= round_up_stack_depth(env, subprog[idx].stack_depth);
6652 frame--;
6653 i = ret_insn[frame];
6654 idx = ret_prog[frame];
6655 goto continue_func;
6656 }
6657
check_max_stack_depth(struct bpf_verifier_env * env)6658 static int check_max_stack_depth(struct bpf_verifier_env *env)
6659 {
6660 enum priv_stack_mode priv_stack_mode = PRIV_STACK_UNKNOWN;
6661 struct bpf_subprog_info *si = env->subprog_info;
6662 bool priv_stack_supported;
6663 int ret;
6664
6665 for (int i = 0; i < env->subprog_cnt; i++) {
6666 if (si[i].has_tail_call) {
6667 priv_stack_mode = NO_PRIV_STACK;
6668 break;
6669 }
6670 }
6671
6672 if (priv_stack_mode == PRIV_STACK_UNKNOWN)
6673 priv_stack_mode = bpf_enable_priv_stack(env->prog);
6674
6675 /* All async_cb subprogs use normal kernel stack. If a particular
6676 * subprog appears in both main prog and async_cb subtree, that
6677 * subprog will use normal kernel stack to avoid potential nesting.
6678 * The reverse subprog traversal ensures when main prog subtree is
6679 * checked, the subprogs appearing in async_cb subtrees are already
6680 * marked as using normal kernel stack, so stack size checking can
6681 * be done properly.
6682 */
6683 for (int i = env->subprog_cnt - 1; i >= 0; i--) {
6684 if (!i || si[i].is_async_cb) {
6685 priv_stack_supported = !i && priv_stack_mode == PRIV_STACK_ADAPTIVE;
6686 ret = check_max_stack_depth_subprog(env, i, priv_stack_supported);
6687 if (ret < 0)
6688 return ret;
6689 }
6690 }
6691
6692 for (int i = 0; i < env->subprog_cnt; i++) {
6693 if (si[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) {
6694 env->prog->aux->jits_use_priv_stack = true;
6695 break;
6696 }
6697 }
6698
6699 return 0;
6700 }
6701
6702 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
get_callee_stack_depth(struct bpf_verifier_env * env,const struct bpf_insn * insn,int idx)6703 static int get_callee_stack_depth(struct bpf_verifier_env *env,
6704 const struct bpf_insn *insn, int idx)
6705 {
6706 int start = idx + insn->imm + 1, subprog;
6707
6708 subprog = find_subprog(env, start);
6709 if (verifier_bug_if(subprog < 0, env, "get stack depth: no program at insn %d", start))
6710 return -EFAULT;
6711 return env->subprog_info[subprog].stack_depth;
6712 }
6713 #endif
6714
__check_buffer_access(struct bpf_verifier_env * env,const char * buf_info,const struct bpf_reg_state * reg,int regno,int off,int size)6715 static int __check_buffer_access(struct bpf_verifier_env *env,
6716 const char *buf_info,
6717 const struct bpf_reg_state *reg,
6718 int regno, int off, int size)
6719 {
6720 if (off < 0) {
6721 verbose(env,
6722 "R%d invalid %s buffer access: off=%d, size=%d\n",
6723 regno, buf_info, off, size);
6724 return -EACCES;
6725 }
6726 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6727 char tn_buf[48];
6728
6729 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6730 verbose(env,
6731 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
6732 regno, off, tn_buf);
6733 return -EACCES;
6734 }
6735
6736 return 0;
6737 }
6738
check_tp_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size)6739 static int check_tp_buffer_access(struct bpf_verifier_env *env,
6740 const struct bpf_reg_state *reg,
6741 int regno, int off, int size)
6742 {
6743 int err;
6744
6745 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
6746 if (err)
6747 return err;
6748
6749 if (off + size > env->prog->aux->max_tp_access)
6750 env->prog->aux->max_tp_access = off + size;
6751
6752 return 0;
6753 }
6754
check_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size,bool zero_size_allowed,u32 * max_access)6755 static int check_buffer_access(struct bpf_verifier_env *env,
6756 const struct bpf_reg_state *reg,
6757 int regno, int off, int size,
6758 bool zero_size_allowed,
6759 u32 *max_access)
6760 {
6761 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
6762 int err;
6763
6764 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6765 if (err)
6766 return err;
6767
6768 if (off + size > *max_access)
6769 *max_access = off + size;
6770
6771 return 0;
6772 }
6773
6774 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
zext_32_to_64(struct bpf_reg_state * reg)6775 static void zext_32_to_64(struct bpf_reg_state *reg)
6776 {
6777 reg->var_off = tnum_subreg(reg->var_off);
6778 __reg_assign_32_into_64(reg);
6779 }
6780
6781 /* truncate register to smaller size (in bytes)
6782 * must be called with size < BPF_REG_SIZE
6783 */
coerce_reg_to_size(struct bpf_reg_state * reg,int size)6784 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6785 {
6786 u64 mask;
6787
6788 /* clear high bits in bit representation */
6789 reg->var_off = tnum_cast(reg->var_off, size);
6790
6791 /* fix arithmetic bounds */
6792 mask = ((u64)1 << (size * 8)) - 1;
6793 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6794 reg->umin_value &= mask;
6795 reg->umax_value &= mask;
6796 } else {
6797 reg->umin_value = 0;
6798 reg->umax_value = mask;
6799 }
6800 reg->smin_value = reg->umin_value;
6801 reg->smax_value = reg->umax_value;
6802
6803 /* If size is smaller than 32bit register the 32bit register
6804 * values are also truncated so we push 64-bit bounds into
6805 * 32-bit bounds. Above were truncated < 32-bits already.
6806 */
6807 if (size < 4)
6808 __mark_reg32_unbounded(reg);
6809
6810 reg_bounds_sync(reg);
6811 }
6812
set_sext64_default_val(struct bpf_reg_state * reg,int size)6813 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6814 {
6815 if (size == 1) {
6816 reg->smin_value = reg->s32_min_value = S8_MIN;
6817 reg->smax_value = reg->s32_max_value = S8_MAX;
6818 } else if (size == 2) {
6819 reg->smin_value = reg->s32_min_value = S16_MIN;
6820 reg->smax_value = reg->s32_max_value = S16_MAX;
6821 } else {
6822 /* size == 4 */
6823 reg->smin_value = reg->s32_min_value = S32_MIN;
6824 reg->smax_value = reg->s32_max_value = S32_MAX;
6825 }
6826 reg->umin_value = reg->u32_min_value = 0;
6827 reg->umax_value = U64_MAX;
6828 reg->u32_max_value = U32_MAX;
6829 reg->var_off = tnum_unknown;
6830 }
6831
coerce_reg_to_size_sx(struct bpf_reg_state * reg,int size)6832 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6833 {
6834 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6835 u64 top_smax_value, top_smin_value;
6836 u64 num_bits = size * 8;
6837
6838 if (tnum_is_const(reg->var_off)) {
6839 u64_cval = reg->var_off.value;
6840 if (size == 1)
6841 reg->var_off = tnum_const((s8)u64_cval);
6842 else if (size == 2)
6843 reg->var_off = tnum_const((s16)u64_cval);
6844 else
6845 /* size == 4 */
6846 reg->var_off = tnum_const((s32)u64_cval);
6847
6848 u64_cval = reg->var_off.value;
6849 reg->smax_value = reg->smin_value = u64_cval;
6850 reg->umax_value = reg->umin_value = u64_cval;
6851 reg->s32_max_value = reg->s32_min_value = u64_cval;
6852 reg->u32_max_value = reg->u32_min_value = u64_cval;
6853 return;
6854 }
6855
6856 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6857 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6858
6859 if (top_smax_value != top_smin_value)
6860 goto out;
6861
6862 /* find the s64_min and s64_min after sign extension */
6863 if (size == 1) {
6864 init_s64_max = (s8)reg->smax_value;
6865 init_s64_min = (s8)reg->smin_value;
6866 } else if (size == 2) {
6867 init_s64_max = (s16)reg->smax_value;
6868 init_s64_min = (s16)reg->smin_value;
6869 } else {
6870 init_s64_max = (s32)reg->smax_value;
6871 init_s64_min = (s32)reg->smin_value;
6872 }
6873
6874 s64_max = max(init_s64_max, init_s64_min);
6875 s64_min = min(init_s64_max, init_s64_min);
6876
6877 /* both of s64_max/s64_min positive or negative */
6878 if ((s64_max >= 0) == (s64_min >= 0)) {
6879 reg->s32_min_value = reg->smin_value = s64_min;
6880 reg->s32_max_value = reg->smax_value = s64_max;
6881 reg->u32_min_value = reg->umin_value = s64_min;
6882 reg->u32_max_value = reg->umax_value = s64_max;
6883 reg->var_off = tnum_range(s64_min, s64_max);
6884 return;
6885 }
6886
6887 out:
6888 set_sext64_default_val(reg, size);
6889 }
6890
set_sext32_default_val(struct bpf_reg_state * reg,int size)6891 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6892 {
6893 if (size == 1) {
6894 reg->s32_min_value = S8_MIN;
6895 reg->s32_max_value = S8_MAX;
6896 } else {
6897 /* size == 2 */
6898 reg->s32_min_value = S16_MIN;
6899 reg->s32_max_value = S16_MAX;
6900 }
6901 reg->u32_min_value = 0;
6902 reg->u32_max_value = U32_MAX;
6903 reg->var_off = tnum_subreg(tnum_unknown);
6904 }
6905
coerce_subreg_to_size_sx(struct bpf_reg_state * reg,int size)6906 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6907 {
6908 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6909 u32 top_smax_value, top_smin_value;
6910 u32 num_bits = size * 8;
6911
6912 if (tnum_is_const(reg->var_off)) {
6913 u32_val = reg->var_off.value;
6914 if (size == 1)
6915 reg->var_off = tnum_const((s8)u32_val);
6916 else
6917 reg->var_off = tnum_const((s16)u32_val);
6918
6919 u32_val = reg->var_off.value;
6920 reg->s32_min_value = reg->s32_max_value = u32_val;
6921 reg->u32_min_value = reg->u32_max_value = u32_val;
6922 return;
6923 }
6924
6925 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6926 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6927
6928 if (top_smax_value != top_smin_value)
6929 goto out;
6930
6931 /* find the s32_min and s32_min after sign extension */
6932 if (size == 1) {
6933 init_s32_max = (s8)reg->s32_max_value;
6934 init_s32_min = (s8)reg->s32_min_value;
6935 } else {
6936 /* size == 2 */
6937 init_s32_max = (s16)reg->s32_max_value;
6938 init_s32_min = (s16)reg->s32_min_value;
6939 }
6940 s32_max = max(init_s32_max, init_s32_min);
6941 s32_min = min(init_s32_max, init_s32_min);
6942
6943 if ((s32_min >= 0) == (s32_max >= 0)) {
6944 reg->s32_min_value = s32_min;
6945 reg->s32_max_value = s32_max;
6946 reg->u32_min_value = (u32)s32_min;
6947 reg->u32_max_value = (u32)s32_max;
6948 reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max));
6949 return;
6950 }
6951
6952 out:
6953 set_sext32_default_val(reg, size);
6954 }
6955
bpf_map_is_rdonly(const struct bpf_map * map)6956 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6957 {
6958 /* A map is considered read-only if the following condition are true:
6959 *
6960 * 1) BPF program side cannot change any of the map content. The
6961 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6962 * and was set at map creation time.
6963 * 2) The map value(s) have been initialized from user space by a
6964 * loader and then "frozen", such that no new map update/delete
6965 * operations from syscall side are possible for the rest of
6966 * the map's lifetime from that point onwards.
6967 * 3) Any parallel/pending map update/delete operations from syscall
6968 * side have been completed. Only after that point, it's safe to
6969 * assume that map value(s) are immutable.
6970 */
6971 return (map->map_flags & BPF_F_RDONLY_PROG) &&
6972 READ_ONCE(map->frozen) &&
6973 !bpf_map_write_active(map);
6974 }
6975
bpf_map_direct_read(struct bpf_map * map,int off,int size,u64 * val,bool is_ldsx)6976 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6977 bool is_ldsx)
6978 {
6979 void *ptr;
6980 u64 addr;
6981 int err;
6982
6983 err = map->ops->map_direct_value_addr(map, &addr, off);
6984 if (err)
6985 return err;
6986 ptr = (void *)(long)addr + off;
6987
6988 switch (size) {
6989 case sizeof(u8):
6990 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6991 break;
6992 case sizeof(u16):
6993 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6994 break;
6995 case sizeof(u32):
6996 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6997 break;
6998 case sizeof(u64):
6999 *val = *(u64 *)ptr;
7000 break;
7001 default:
7002 return -EINVAL;
7003 }
7004 return 0;
7005 }
7006
7007 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu)
7008 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null)
7009 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted)
7010 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type) __PASTE(__type, __safe_trusted_or_null)
7011
7012 /*
7013 * Allow list few fields as RCU trusted or full trusted.
7014 * This logic doesn't allow mix tagging and will be removed once GCC supports
7015 * btf_type_tag.
7016 */
7017
7018 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
BTF_TYPE_SAFE_RCU(struct task_struct)7019 BTF_TYPE_SAFE_RCU(struct task_struct) {
7020 const cpumask_t *cpus_ptr;
7021 struct css_set __rcu *cgroups;
7022 struct task_struct __rcu *real_parent;
7023 struct task_struct *group_leader;
7024 };
7025
BTF_TYPE_SAFE_RCU(struct cgroup)7026 BTF_TYPE_SAFE_RCU(struct cgroup) {
7027 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
7028 struct kernfs_node *kn;
7029 };
7030
BTF_TYPE_SAFE_RCU(struct css_set)7031 BTF_TYPE_SAFE_RCU(struct css_set) {
7032 struct cgroup *dfl_cgrp;
7033 };
7034
BTF_TYPE_SAFE_RCU(struct cgroup_subsys_state)7035 BTF_TYPE_SAFE_RCU(struct cgroup_subsys_state) {
7036 struct cgroup *cgroup;
7037 };
7038
7039 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)7040 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
7041 struct file __rcu *exe_file;
7042 };
7043
7044 /* skb->sk, req->sk are not RCU protected, but we mark them as such
7045 * because bpf prog accessible sockets are SOCK_RCU_FREE.
7046 */
BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)7047 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
7048 struct sock *sk;
7049 };
7050
BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)7051 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
7052 struct sock *sk;
7053 };
7054
7055 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)7056 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
7057 struct seq_file *seq;
7058 };
7059
BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)7060 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
7061 struct bpf_iter_meta *meta;
7062 struct task_struct *task;
7063 };
7064
BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)7065 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
7066 struct file *file;
7067 };
7068
BTF_TYPE_SAFE_TRUSTED(struct file)7069 BTF_TYPE_SAFE_TRUSTED(struct file) {
7070 struct inode *f_inode;
7071 };
7072
BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry)7073 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry) {
7074 struct inode *d_inode;
7075 };
7076
BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)7077 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) {
7078 struct sock *sk;
7079 };
7080
type_is_rcu(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)7081 static bool type_is_rcu(struct bpf_verifier_env *env,
7082 struct bpf_reg_state *reg,
7083 const char *field_name, u32 btf_id)
7084 {
7085 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
7086 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
7087 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
7088 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup_subsys_state));
7089
7090 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
7091 }
7092
type_is_rcu_or_null(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)7093 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
7094 struct bpf_reg_state *reg,
7095 const char *field_name, u32 btf_id)
7096 {
7097 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
7098 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
7099 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
7100
7101 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
7102 }
7103
type_is_trusted(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)7104 static bool type_is_trusted(struct bpf_verifier_env *env,
7105 struct bpf_reg_state *reg,
7106 const char *field_name, u32 btf_id)
7107 {
7108 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
7109 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
7110 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
7111 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
7112
7113 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
7114 }
7115
type_is_trusted_or_null(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)7116 static bool type_is_trusted_or_null(struct bpf_verifier_env *env,
7117 struct bpf_reg_state *reg,
7118 const char *field_name, u32 btf_id)
7119 {
7120 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket));
7121 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry));
7122
7123 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id,
7124 "__safe_trusted_or_null");
7125 }
7126
check_ptr_to_btf_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)7127 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
7128 struct bpf_reg_state *regs,
7129 int regno, int off, int size,
7130 enum bpf_access_type atype,
7131 int value_regno)
7132 {
7133 struct bpf_reg_state *reg = regs + regno;
7134 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
7135 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
7136 const char *field_name = NULL;
7137 enum bpf_type_flag flag = 0;
7138 u32 btf_id = 0;
7139 int ret;
7140
7141 if (!env->allow_ptr_leaks) {
7142 verbose(env,
7143 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
7144 tname);
7145 return -EPERM;
7146 }
7147 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
7148 verbose(env,
7149 "Cannot access kernel 'struct %s' from non-GPL compatible program\n",
7150 tname);
7151 return -EINVAL;
7152 }
7153 if (off < 0) {
7154 verbose(env,
7155 "R%d is ptr_%s invalid negative access: off=%d\n",
7156 regno, tname, off);
7157 return -EACCES;
7158 }
7159 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
7160 char tn_buf[48];
7161
7162 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7163 verbose(env,
7164 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
7165 regno, tname, off, tn_buf);
7166 return -EACCES;
7167 }
7168
7169 if (reg->type & MEM_USER) {
7170 verbose(env,
7171 "R%d is ptr_%s access user memory: off=%d\n",
7172 regno, tname, off);
7173 return -EACCES;
7174 }
7175
7176 if (reg->type & MEM_PERCPU) {
7177 verbose(env,
7178 "R%d is ptr_%s access percpu memory: off=%d\n",
7179 regno, tname, off);
7180 return -EACCES;
7181 }
7182
7183 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
7184 if (!btf_is_kernel(reg->btf)) {
7185 verifier_bug(env, "reg->btf must be kernel btf");
7186 return -EFAULT;
7187 }
7188 ret = env->ops->btf_struct_access(&env->log, reg, off, size);
7189 } else {
7190 /* Writes are permitted with default btf_struct_access for
7191 * program allocated objects (which always have ref_obj_id > 0),
7192 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
7193 */
7194 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
7195 verbose(env, "only read is supported\n");
7196 return -EACCES;
7197 }
7198
7199 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
7200 !(reg->type & MEM_RCU) && !reg->ref_obj_id) {
7201 verifier_bug(env, "ref_obj_id for allocated object must be non-zero");
7202 return -EFAULT;
7203 }
7204
7205 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
7206 }
7207
7208 if (ret < 0)
7209 return ret;
7210
7211 if (ret != PTR_TO_BTF_ID) {
7212 /* just mark; */
7213
7214 } else if (type_flag(reg->type) & PTR_UNTRUSTED) {
7215 /* If this is an untrusted pointer, all pointers formed by walking it
7216 * also inherit the untrusted flag.
7217 */
7218 flag = PTR_UNTRUSTED;
7219
7220 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
7221 /* By default any pointer obtained from walking a trusted pointer is no
7222 * longer trusted, unless the field being accessed has explicitly been
7223 * marked as inheriting its parent's state of trust (either full or RCU).
7224 * For example:
7225 * 'cgroups' pointer is untrusted if task->cgroups dereference
7226 * happened in a sleepable program outside of bpf_rcu_read_lock()
7227 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
7228 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
7229 *
7230 * A regular RCU-protected pointer with __rcu tag can also be deemed
7231 * trusted if we are in an RCU CS. Such pointer can be NULL.
7232 */
7233 if (type_is_trusted(env, reg, field_name, btf_id)) {
7234 flag |= PTR_TRUSTED;
7235 } else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) {
7236 flag |= PTR_TRUSTED | PTR_MAYBE_NULL;
7237 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
7238 if (type_is_rcu(env, reg, field_name, btf_id)) {
7239 /* ignore __rcu tag and mark it MEM_RCU */
7240 flag |= MEM_RCU;
7241 } else if (flag & MEM_RCU ||
7242 type_is_rcu_or_null(env, reg, field_name, btf_id)) {
7243 /* __rcu tagged pointers can be NULL */
7244 flag |= MEM_RCU | PTR_MAYBE_NULL;
7245
7246 /* We always trust them */
7247 if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
7248 flag & PTR_UNTRUSTED)
7249 flag &= ~PTR_UNTRUSTED;
7250 } else if (flag & (MEM_PERCPU | MEM_USER)) {
7251 /* keep as-is */
7252 } else {
7253 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
7254 clear_trusted_flags(&flag);
7255 }
7256 } else {
7257 /*
7258 * If not in RCU CS or MEM_RCU pointer can be NULL then
7259 * aggressively mark as untrusted otherwise such
7260 * pointers will be plain PTR_TO_BTF_ID without flags
7261 * and will be allowed to be passed into helpers for
7262 * compat reasons.
7263 */
7264 flag = PTR_UNTRUSTED;
7265 }
7266 } else {
7267 /* Old compat. Deprecated */
7268 clear_trusted_flags(&flag);
7269 }
7270
7271 if (atype == BPF_READ && value_regno >= 0) {
7272 ret = mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
7273 if (ret < 0)
7274 return ret;
7275 }
7276
7277 return 0;
7278 }
7279
check_ptr_to_map_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)7280 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
7281 struct bpf_reg_state *regs,
7282 int regno, int off, int size,
7283 enum bpf_access_type atype,
7284 int value_regno)
7285 {
7286 struct bpf_reg_state *reg = regs + regno;
7287 struct bpf_map *map = reg->map_ptr;
7288 struct bpf_reg_state map_reg;
7289 enum bpf_type_flag flag = 0;
7290 const struct btf_type *t;
7291 const char *tname;
7292 u32 btf_id;
7293 int ret;
7294
7295 if (!btf_vmlinux) {
7296 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
7297 return -ENOTSUPP;
7298 }
7299
7300 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
7301 verbose(env, "map_ptr access not supported for map type %d\n",
7302 map->map_type);
7303 return -ENOTSUPP;
7304 }
7305
7306 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
7307 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
7308
7309 if (!env->allow_ptr_leaks) {
7310 verbose(env,
7311 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
7312 tname);
7313 return -EPERM;
7314 }
7315
7316 if (off < 0) {
7317 verbose(env, "R%d is %s invalid negative access: off=%d\n",
7318 regno, tname, off);
7319 return -EACCES;
7320 }
7321
7322 if (atype != BPF_READ) {
7323 verbose(env, "only read from %s is supported\n", tname);
7324 return -EACCES;
7325 }
7326
7327 /* Simulate access to a PTR_TO_BTF_ID */
7328 memset(&map_reg, 0, sizeof(map_reg));
7329 ret = mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID,
7330 btf_vmlinux, *map->ops->map_btf_id, 0);
7331 if (ret < 0)
7332 return ret;
7333 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
7334 if (ret < 0)
7335 return ret;
7336
7337 if (value_regno >= 0) {
7338 ret = mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
7339 if (ret < 0)
7340 return ret;
7341 }
7342
7343 return 0;
7344 }
7345
7346 /* Check that the stack access at the given offset is within bounds. The
7347 * maximum valid offset is -1.
7348 *
7349 * The minimum valid offset is -MAX_BPF_STACK for writes, and
7350 * -state->allocated_stack for reads.
7351 */
check_stack_slot_within_bounds(struct bpf_verifier_env * env,s64 off,struct bpf_func_state * state,enum bpf_access_type t)7352 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
7353 s64 off,
7354 struct bpf_func_state *state,
7355 enum bpf_access_type t)
7356 {
7357 int min_valid_off;
7358
7359 if (t == BPF_WRITE || env->allow_uninit_stack)
7360 min_valid_off = -MAX_BPF_STACK;
7361 else
7362 min_valid_off = -state->allocated_stack;
7363
7364 if (off < min_valid_off || off > -1)
7365 return -EACCES;
7366 return 0;
7367 }
7368
7369 /* Check that the stack access at 'regno + off' falls within the maximum stack
7370 * bounds.
7371 *
7372 * 'off' includes `regno->offset`, but not its dynamic part (if any).
7373 */
check_stack_access_within_bounds(struct bpf_verifier_env * env,int regno,int off,int access_size,enum bpf_access_type type)7374 static int check_stack_access_within_bounds(
7375 struct bpf_verifier_env *env,
7376 int regno, int off, int access_size,
7377 enum bpf_access_type type)
7378 {
7379 struct bpf_reg_state *regs = cur_regs(env);
7380 struct bpf_reg_state *reg = regs + regno;
7381 struct bpf_func_state *state = func(env, reg);
7382 s64 min_off, max_off;
7383 int err;
7384 char *err_extra;
7385
7386 if (type == BPF_READ)
7387 err_extra = " read from";
7388 else
7389 err_extra = " write to";
7390
7391 if (tnum_is_const(reg->var_off)) {
7392 min_off = (s64)reg->var_off.value + off;
7393 max_off = min_off + access_size;
7394 } else {
7395 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
7396 reg->smin_value <= -BPF_MAX_VAR_OFF) {
7397 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
7398 err_extra, regno);
7399 return -EACCES;
7400 }
7401 min_off = reg->smin_value + off;
7402 max_off = reg->smax_value + off + access_size;
7403 }
7404
7405 err = check_stack_slot_within_bounds(env, min_off, state, type);
7406 if (!err && max_off > 0)
7407 err = -EINVAL; /* out of stack access into non-negative offsets */
7408 if (!err && access_size < 0)
7409 /* access_size should not be negative (or overflow an int); others checks
7410 * along the way should have prevented such an access.
7411 */
7412 err = -EFAULT; /* invalid negative access size; integer overflow? */
7413
7414 if (err) {
7415 if (tnum_is_const(reg->var_off)) {
7416 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
7417 err_extra, regno, off, access_size);
7418 } else {
7419 char tn_buf[48];
7420
7421 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7422 verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n",
7423 err_extra, regno, tn_buf, off, access_size);
7424 }
7425 return err;
7426 }
7427
7428 /* Note that there is no stack access with offset zero, so the needed stack
7429 * size is -min_off, not -min_off+1.
7430 */
7431 return grow_stack_state(env, state, -min_off /* size */);
7432 }
7433
get_func_retval_range(struct bpf_prog * prog,struct bpf_retval_range * range)7434 static bool get_func_retval_range(struct bpf_prog *prog,
7435 struct bpf_retval_range *range)
7436 {
7437 if (prog->type == BPF_PROG_TYPE_LSM &&
7438 prog->expected_attach_type == BPF_LSM_MAC &&
7439 !bpf_lsm_get_retval_range(prog, range)) {
7440 return true;
7441 }
7442 return false;
7443 }
7444
7445 /* check whether memory at (regno + off) is accessible for t = (read | write)
7446 * if t==write, value_regno is a register which value is stored into memory
7447 * if t==read, value_regno is a register which will receive the value from memory
7448 * if t==write && value_regno==-1, some unknown value is stored into memory
7449 * if t==read && value_regno==-1, don't care what we read from memory
7450 */
check_mem_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int bpf_size,enum bpf_access_type t,int value_regno,bool strict_alignment_once,bool is_ldsx)7451 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
7452 int off, int bpf_size, enum bpf_access_type t,
7453 int value_regno, bool strict_alignment_once, bool is_ldsx)
7454 {
7455 struct bpf_reg_state *regs = cur_regs(env);
7456 struct bpf_reg_state *reg = regs + regno;
7457 int size, err = 0;
7458
7459 size = bpf_size_to_bytes(bpf_size);
7460 if (size < 0)
7461 return size;
7462
7463 /* alignment checks will add in reg->off themselves */
7464 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
7465 if (err)
7466 return err;
7467
7468 /* for access checks, reg->off is just part of off */
7469 off += reg->off;
7470
7471 if (reg->type == PTR_TO_MAP_KEY) {
7472 if (t == BPF_WRITE) {
7473 verbose(env, "write to change key R%d not allowed\n", regno);
7474 return -EACCES;
7475 }
7476
7477 err = check_mem_region_access(env, regno, off, size,
7478 reg->map_ptr->key_size, false);
7479 if (err)
7480 return err;
7481 if (value_regno >= 0)
7482 mark_reg_unknown(env, regs, value_regno);
7483 } else if (reg->type == PTR_TO_MAP_VALUE) {
7484 struct btf_field *kptr_field = NULL;
7485
7486 if (t == BPF_WRITE && value_regno >= 0 &&
7487 is_pointer_value(env, value_regno)) {
7488 verbose(env, "R%d leaks addr into map\n", value_regno);
7489 return -EACCES;
7490 }
7491 err = check_map_access_type(env, regno, off, size, t);
7492 if (err)
7493 return err;
7494 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
7495 if (err)
7496 return err;
7497 if (tnum_is_const(reg->var_off))
7498 kptr_field = btf_record_find(reg->map_ptr->record,
7499 off + reg->var_off.value, BPF_KPTR | BPF_UPTR);
7500 if (kptr_field) {
7501 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
7502 } else if (t == BPF_READ && value_regno >= 0) {
7503 struct bpf_map *map = reg->map_ptr;
7504
7505 /* if map is read-only, track its contents as scalars */
7506 if (tnum_is_const(reg->var_off) &&
7507 bpf_map_is_rdonly(map) &&
7508 map->ops->map_direct_value_addr) {
7509 int map_off = off + reg->var_off.value;
7510 u64 val = 0;
7511
7512 err = bpf_map_direct_read(map, map_off, size,
7513 &val, is_ldsx);
7514 if (err)
7515 return err;
7516
7517 regs[value_regno].type = SCALAR_VALUE;
7518 __mark_reg_known(®s[value_regno], val);
7519 } else {
7520 mark_reg_unknown(env, regs, value_regno);
7521 }
7522 }
7523 } else if (base_type(reg->type) == PTR_TO_MEM) {
7524 bool rdonly_mem = type_is_rdonly_mem(reg->type);
7525 bool rdonly_untrusted = rdonly_mem && (reg->type & PTR_UNTRUSTED);
7526
7527 if (type_may_be_null(reg->type)) {
7528 verbose(env, "R%d invalid mem access '%s'\n", regno,
7529 reg_type_str(env, reg->type));
7530 return -EACCES;
7531 }
7532
7533 if (t == BPF_WRITE && rdonly_mem) {
7534 verbose(env, "R%d cannot write into %s\n",
7535 regno, reg_type_str(env, reg->type));
7536 return -EACCES;
7537 }
7538
7539 if (t == BPF_WRITE && value_regno >= 0 &&
7540 is_pointer_value(env, value_regno)) {
7541 verbose(env, "R%d leaks addr into mem\n", value_regno);
7542 return -EACCES;
7543 }
7544
7545 /*
7546 * Accesses to untrusted PTR_TO_MEM are done through probe
7547 * instructions, hence no need to check bounds in that case.
7548 */
7549 if (!rdonly_untrusted)
7550 err = check_mem_region_access(env, regno, off, size,
7551 reg->mem_size, false);
7552 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
7553 mark_reg_unknown(env, regs, value_regno);
7554 } else if (reg->type == PTR_TO_CTX) {
7555 struct bpf_retval_range range;
7556 struct bpf_insn_access_aux info = {
7557 .reg_type = SCALAR_VALUE,
7558 .is_ldsx = is_ldsx,
7559 .log = &env->log,
7560 };
7561
7562 if (t == BPF_WRITE && value_regno >= 0 &&
7563 is_pointer_value(env, value_regno)) {
7564 verbose(env, "R%d leaks addr into ctx\n", value_regno);
7565 return -EACCES;
7566 }
7567
7568 err = check_ptr_off_reg(env, reg, regno);
7569 if (err < 0)
7570 return err;
7571
7572 err = check_ctx_access(env, insn_idx, off, size, t, &info);
7573 if (err)
7574 verbose_linfo(env, insn_idx, "; ");
7575 if (!err && t == BPF_READ && value_regno >= 0) {
7576 /* ctx access returns either a scalar, or a
7577 * PTR_TO_PACKET[_META,_END]. In the latter
7578 * case, we know the offset is zero.
7579 */
7580 if (info.reg_type == SCALAR_VALUE) {
7581 if (info.is_retval && get_func_retval_range(env->prog, &range)) {
7582 err = __mark_reg_s32_range(env, regs, value_regno,
7583 range.minval, range.maxval);
7584 if (err)
7585 return err;
7586 } else {
7587 mark_reg_unknown(env, regs, value_regno);
7588 }
7589 } else {
7590 mark_reg_known_zero(env, regs,
7591 value_regno);
7592 if (type_may_be_null(info.reg_type))
7593 regs[value_regno].id = ++env->id_gen;
7594 /* A load of ctx field could have different
7595 * actual load size with the one encoded in the
7596 * insn. When the dst is PTR, it is for sure not
7597 * a sub-register.
7598 */
7599 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
7600 if (base_type(info.reg_type) == PTR_TO_BTF_ID) {
7601 regs[value_regno].btf = info.btf;
7602 regs[value_regno].btf_id = info.btf_id;
7603 regs[value_regno].ref_obj_id = info.ref_obj_id;
7604 }
7605 }
7606 regs[value_regno].type = info.reg_type;
7607 }
7608
7609 } else if (reg->type == PTR_TO_STACK) {
7610 /* Basic bounds checks. */
7611 err = check_stack_access_within_bounds(env, regno, off, size, t);
7612 if (err)
7613 return err;
7614
7615 if (t == BPF_READ)
7616 err = check_stack_read(env, regno, off, size,
7617 value_regno);
7618 else
7619 err = check_stack_write(env, regno, off, size,
7620 value_regno, insn_idx);
7621 } else if (reg_is_pkt_pointer(reg)) {
7622 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
7623 verbose(env, "cannot write into packet\n");
7624 return -EACCES;
7625 }
7626 if (t == BPF_WRITE && value_regno >= 0 &&
7627 is_pointer_value(env, value_regno)) {
7628 verbose(env, "R%d leaks addr into packet\n",
7629 value_regno);
7630 return -EACCES;
7631 }
7632 err = check_packet_access(env, regno, off, size, false);
7633 if (!err && t == BPF_READ && value_regno >= 0)
7634 mark_reg_unknown(env, regs, value_regno);
7635 } else if (reg->type == PTR_TO_FLOW_KEYS) {
7636 if (t == BPF_WRITE && value_regno >= 0 &&
7637 is_pointer_value(env, value_regno)) {
7638 verbose(env, "R%d leaks addr into flow keys\n",
7639 value_regno);
7640 return -EACCES;
7641 }
7642
7643 err = check_flow_keys_access(env, off, size);
7644 if (!err && t == BPF_READ && value_regno >= 0)
7645 mark_reg_unknown(env, regs, value_regno);
7646 } else if (type_is_sk_pointer(reg->type)) {
7647 if (t == BPF_WRITE) {
7648 verbose(env, "R%d cannot write into %s\n",
7649 regno, reg_type_str(env, reg->type));
7650 return -EACCES;
7651 }
7652 err = check_sock_access(env, insn_idx, regno, off, size, t);
7653 if (!err && value_regno >= 0)
7654 mark_reg_unknown(env, regs, value_regno);
7655 } else if (reg->type == PTR_TO_TP_BUFFER) {
7656 err = check_tp_buffer_access(env, reg, regno, off, size);
7657 if (!err && t == BPF_READ && value_regno >= 0)
7658 mark_reg_unknown(env, regs, value_regno);
7659 } else if (base_type(reg->type) == PTR_TO_BTF_ID &&
7660 !type_may_be_null(reg->type)) {
7661 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
7662 value_regno);
7663 } else if (reg->type == CONST_PTR_TO_MAP) {
7664 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
7665 value_regno);
7666 } else if (base_type(reg->type) == PTR_TO_BUF) {
7667 bool rdonly_mem = type_is_rdonly_mem(reg->type);
7668 u32 *max_access;
7669
7670 if (rdonly_mem) {
7671 if (t == BPF_WRITE) {
7672 verbose(env, "R%d cannot write into %s\n",
7673 regno, reg_type_str(env, reg->type));
7674 return -EACCES;
7675 }
7676 max_access = &env->prog->aux->max_rdonly_access;
7677 } else {
7678 max_access = &env->prog->aux->max_rdwr_access;
7679 }
7680
7681 err = check_buffer_access(env, reg, regno, off, size, false,
7682 max_access);
7683
7684 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
7685 mark_reg_unknown(env, regs, value_regno);
7686 } else if (reg->type == PTR_TO_ARENA) {
7687 if (t == BPF_READ && value_regno >= 0)
7688 mark_reg_unknown(env, regs, value_regno);
7689 } else {
7690 verbose(env, "R%d invalid mem access '%s'\n", regno,
7691 reg_type_str(env, reg->type));
7692 return -EACCES;
7693 }
7694
7695 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
7696 regs[value_regno].type == SCALAR_VALUE) {
7697 if (!is_ldsx)
7698 /* b/h/w load zero-extends, mark upper bits as known 0 */
7699 coerce_reg_to_size(®s[value_regno], size);
7700 else
7701 coerce_reg_to_size_sx(®s[value_regno], size);
7702 }
7703 return err;
7704 }
7705
7706 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
7707 bool allow_trust_mismatch);
7708
check_load_mem(struct bpf_verifier_env * env,struct bpf_insn * insn,bool strict_alignment_once,bool is_ldsx,bool allow_trust_mismatch,const char * ctx)7709 static int check_load_mem(struct bpf_verifier_env *env, struct bpf_insn *insn,
7710 bool strict_alignment_once, bool is_ldsx,
7711 bool allow_trust_mismatch, const char *ctx)
7712 {
7713 struct bpf_reg_state *regs = cur_regs(env);
7714 enum bpf_reg_type src_reg_type;
7715 int err;
7716
7717 /* check src operand */
7718 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7719 if (err)
7720 return err;
7721
7722 /* check dst operand */
7723 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7724 if (err)
7725 return err;
7726
7727 src_reg_type = regs[insn->src_reg].type;
7728
7729 /* Check if (src_reg + off) is readable. The state of dst_reg will be
7730 * updated by this call.
7731 */
7732 err = check_mem_access(env, env->insn_idx, insn->src_reg, insn->off,
7733 BPF_SIZE(insn->code), BPF_READ, insn->dst_reg,
7734 strict_alignment_once, is_ldsx);
7735 err = err ?: save_aux_ptr_type(env, src_reg_type,
7736 allow_trust_mismatch);
7737 err = err ?: reg_bounds_sanity_check(env, ®s[insn->dst_reg], ctx);
7738
7739 return err;
7740 }
7741
check_store_reg(struct bpf_verifier_env * env,struct bpf_insn * insn,bool strict_alignment_once)7742 static int check_store_reg(struct bpf_verifier_env *env, struct bpf_insn *insn,
7743 bool strict_alignment_once)
7744 {
7745 struct bpf_reg_state *regs = cur_regs(env);
7746 enum bpf_reg_type dst_reg_type;
7747 int err;
7748
7749 /* check src1 operand */
7750 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7751 if (err)
7752 return err;
7753
7754 /* check src2 operand */
7755 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7756 if (err)
7757 return err;
7758
7759 dst_reg_type = regs[insn->dst_reg].type;
7760
7761 /* Check if (dst_reg + off) is writeable. */
7762 err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off,
7763 BPF_SIZE(insn->code), BPF_WRITE, insn->src_reg,
7764 strict_alignment_once, false);
7765 err = err ?: save_aux_ptr_type(env, dst_reg_type, false);
7766
7767 return err;
7768 }
7769
check_atomic_rmw(struct bpf_verifier_env * env,struct bpf_insn * insn)7770 static int check_atomic_rmw(struct bpf_verifier_env *env,
7771 struct bpf_insn *insn)
7772 {
7773 int load_reg;
7774 int err;
7775
7776 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
7777 verbose(env, "invalid atomic operand size\n");
7778 return -EINVAL;
7779 }
7780
7781 /* check src1 operand */
7782 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7783 if (err)
7784 return err;
7785
7786 /* check src2 operand */
7787 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7788 if (err)
7789 return err;
7790
7791 if (insn->imm == BPF_CMPXCHG) {
7792 /* Check comparison of R0 with memory location */
7793 const u32 aux_reg = BPF_REG_0;
7794
7795 err = check_reg_arg(env, aux_reg, SRC_OP);
7796 if (err)
7797 return err;
7798
7799 if (is_pointer_value(env, aux_reg)) {
7800 verbose(env, "R%d leaks addr into mem\n", aux_reg);
7801 return -EACCES;
7802 }
7803 }
7804
7805 if (is_pointer_value(env, insn->src_reg)) {
7806 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
7807 return -EACCES;
7808 }
7809
7810 if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) {
7811 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
7812 insn->dst_reg,
7813 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
7814 return -EACCES;
7815 }
7816
7817 if (insn->imm & BPF_FETCH) {
7818 if (insn->imm == BPF_CMPXCHG)
7819 load_reg = BPF_REG_0;
7820 else
7821 load_reg = insn->src_reg;
7822
7823 /* check and record load of old value */
7824 err = check_reg_arg(env, load_reg, DST_OP);
7825 if (err)
7826 return err;
7827 } else {
7828 /* This instruction accesses a memory location but doesn't
7829 * actually load it into a register.
7830 */
7831 load_reg = -1;
7832 }
7833
7834 /* Check whether we can read the memory, with second call for fetch
7835 * case to simulate the register fill.
7836 */
7837 err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off,
7838 BPF_SIZE(insn->code), BPF_READ, -1, true, false);
7839 if (!err && load_reg >= 0)
7840 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7841 insn->off, BPF_SIZE(insn->code),
7842 BPF_READ, load_reg, true, false);
7843 if (err)
7844 return err;
7845
7846 if (is_arena_reg(env, insn->dst_reg)) {
7847 err = save_aux_ptr_type(env, PTR_TO_ARENA, false);
7848 if (err)
7849 return err;
7850 }
7851 /* Check whether we can write into the same memory. */
7852 err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off,
7853 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
7854 if (err)
7855 return err;
7856 return 0;
7857 }
7858
check_atomic_load(struct bpf_verifier_env * env,struct bpf_insn * insn)7859 static int check_atomic_load(struct bpf_verifier_env *env,
7860 struct bpf_insn *insn)
7861 {
7862 int err;
7863
7864 err = check_load_mem(env, insn, true, false, false, "atomic_load");
7865 if (err)
7866 return err;
7867
7868 if (!atomic_ptr_type_ok(env, insn->src_reg, insn)) {
7869 verbose(env, "BPF_ATOMIC loads from R%d %s is not allowed\n",
7870 insn->src_reg,
7871 reg_type_str(env, reg_state(env, insn->src_reg)->type));
7872 return -EACCES;
7873 }
7874
7875 return 0;
7876 }
7877
check_atomic_store(struct bpf_verifier_env * env,struct bpf_insn * insn)7878 static int check_atomic_store(struct bpf_verifier_env *env,
7879 struct bpf_insn *insn)
7880 {
7881 int err;
7882
7883 err = check_store_reg(env, insn, true);
7884 if (err)
7885 return err;
7886
7887 if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) {
7888 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
7889 insn->dst_reg,
7890 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
7891 return -EACCES;
7892 }
7893
7894 return 0;
7895 }
7896
check_atomic(struct bpf_verifier_env * env,struct bpf_insn * insn)7897 static int check_atomic(struct bpf_verifier_env *env, struct bpf_insn *insn)
7898 {
7899 switch (insn->imm) {
7900 case BPF_ADD:
7901 case BPF_ADD | BPF_FETCH:
7902 case BPF_AND:
7903 case BPF_AND | BPF_FETCH:
7904 case BPF_OR:
7905 case BPF_OR | BPF_FETCH:
7906 case BPF_XOR:
7907 case BPF_XOR | BPF_FETCH:
7908 case BPF_XCHG:
7909 case BPF_CMPXCHG:
7910 return check_atomic_rmw(env, insn);
7911 case BPF_LOAD_ACQ:
7912 if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) {
7913 verbose(env,
7914 "64-bit load-acquires are only supported on 64-bit arches\n");
7915 return -EOPNOTSUPP;
7916 }
7917 return check_atomic_load(env, insn);
7918 case BPF_STORE_REL:
7919 if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) {
7920 verbose(env,
7921 "64-bit store-releases are only supported on 64-bit arches\n");
7922 return -EOPNOTSUPP;
7923 }
7924 return check_atomic_store(env, insn);
7925 default:
7926 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n",
7927 insn->imm);
7928 return -EINVAL;
7929 }
7930 }
7931
7932 /* When register 'regno' is used to read the stack (either directly or through
7933 * a helper function) make sure that it's within stack boundary and, depending
7934 * on the access type and privileges, that all elements of the stack are
7935 * initialized.
7936 *
7937 * 'off' includes 'regno->off', but not its dynamic part (if any).
7938 *
7939 * All registers that have been spilled on the stack in the slots within the
7940 * read offsets are marked as read.
7941 */
check_stack_range_initialized(struct bpf_verifier_env * env,int regno,int off,int access_size,bool zero_size_allowed,enum bpf_access_type type,struct bpf_call_arg_meta * meta)7942 static int check_stack_range_initialized(
7943 struct bpf_verifier_env *env, int regno, int off,
7944 int access_size, bool zero_size_allowed,
7945 enum bpf_access_type type, struct bpf_call_arg_meta *meta)
7946 {
7947 struct bpf_reg_state *reg = reg_state(env, regno);
7948 struct bpf_func_state *state = func(env, reg);
7949 int err, min_off, max_off, i, j, slot, spi;
7950 /* Some accesses can write anything into the stack, others are
7951 * read-only.
7952 */
7953 bool clobber = false;
7954
7955 if (access_size == 0 && !zero_size_allowed) {
7956 verbose(env, "invalid zero-sized read\n");
7957 return -EACCES;
7958 }
7959
7960 if (type == BPF_WRITE)
7961 clobber = true;
7962
7963 err = check_stack_access_within_bounds(env, regno, off, access_size, type);
7964 if (err)
7965 return err;
7966
7967
7968 if (tnum_is_const(reg->var_off)) {
7969 min_off = max_off = reg->var_off.value + off;
7970 } else {
7971 /* Variable offset is prohibited for unprivileged mode for
7972 * simplicity since it requires corresponding support in
7973 * Spectre masking for stack ALU.
7974 * See also retrieve_ptr_limit().
7975 */
7976 if (!env->bypass_spec_v1) {
7977 char tn_buf[48];
7978
7979 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7980 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
7981 regno, tn_buf);
7982 return -EACCES;
7983 }
7984 /* Only initialized buffer on stack is allowed to be accessed
7985 * with variable offset. With uninitialized buffer it's hard to
7986 * guarantee that whole memory is marked as initialized on
7987 * helper return since specific bounds are unknown what may
7988 * cause uninitialized stack leaking.
7989 */
7990 if (meta && meta->raw_mode)
7991 meta = NULL;
7992
7993 min_off = reg->smin_value + off;
7994 max_off = reg->smax_value + off;
7995 }
7996
7997 if (meta && meta->raw_mode) {
7998 /* Ensure we won't be overwriting dynptrs when simulating byte
7999 * by byte access in check_helper_call using meta.access_size.
8000 * This would be a problem if we have a helper in the future
8001 * which takes:
8002 *
8003 * helper(uninit_mem, len, dynptr)
8004 *
8005 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
8006 * may end up writing to dynptr itself when touching memory from
8007 * arg 1. This can be relaxed on a case by case basis for known
8008 * safe cases, but reject due to the possibilitiy of aliasing by
8009 * default.
8010 */
8011 for (i = min_off; i < max_off + access_size; i++) {
8012 int stack_off = -i - 1;
8013
8014 spi = __get_spi(i);
8015 /* raw_mode may write past allocated_stack */
8016 if (state->allocated_stack <= stack_off)
8017 continue;
8018 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
8019 verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
8020 return -EACCES;
8021 }
8022 }
8023 meta->access_size = access_size;
8024 meta->regno = regno;
8025 return 0;
8026 }
8027
8028 for (i = min_off; i < max_off + access_size; i++) {
8029 u8 *stype;
8030
8031 slot = -i - 1;
8032 spi = slot / BPF_REG_SIZE;
8033 if (state->allocated_stack <= slot) {
8034 verbose(env, "allocated_stack too small\n");
8035 return -EFAULT;
8036 }
8037
8038 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
8039 if (*stype == STACK_MISC)
8040 goto mark;
8041 if ((*stype == STACK_ZERO) ||
8042 (*stype == STACK_INVALID && env->allow_uninit_stack)) {
8043 if (clobber) {
8044 /* helper can write anything into the stack */
8045 *stype = STACK_MISC;
8046 }
8047 goto mark;
8048 }
8049
8050 if (is_spilled_reg(&state->stack[spi]) &&
8051 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
8052 env->allow_ptr_leaks)) {
8053 if (clobber) {
8054 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
8055 for (j = 0; j < BPF_REG_SIZE; j++)
8056 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
8057 }
8058 goto mark;
8059 }
8060
8061 if (tnum_is_const(reg->var_off)) {
8062 verbose(env, "invalid read from stack R%d off %d+%d size %d\n",
8063 regno, min_off, i - min_off, access_size);
8064 } else {
8065 char tn_buf[48];
8066
8067 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8068 verbose(env, "invalid read from stack R%d var_off %s+%d size %d\n",
8069 regno, tn_buf, i - min_off, access_size);
8070 }
8071 return -EACCES;
8072 mark:
8073 /* reading any byte out of 8-byte 'spill_slot' will cause
8074 * the whole slot to be marked as 'read'
8075 */
8076 err = bpf_mark_stack_read(env, reg->frameno, env->insn_idx, BIT(spi));
8077 if (err)
8078 return err;
8079 /* We do not call bpf_mark_stack_write(), as we can not
8080 * be sure that whether stack slot is written to or not. Hence,
8081 * we must still conservatively propagate reads upwards even if
8082 * helper may write to the entire memory range.
8083 */
8084 }
8085 return 0;
8086 }
8087
check_helper_mem_access(struct bpf_verifier_env * env,int regno,int access_size,enum bpf_access_type access_type,bool zero_size_allowed,struct bpf_call_arg_meta * meta)8088 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
8089 int access_size, enum bpf_access_type access_type,
8090 bool zero_size_allowed,
8091 struct bpf_call_arg_meta *meta)
8092 {
8093 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
8094 u32 *max_access;
8095
8096 switch (base_type(reg->type)) {
8097 case PTR_TO_PACKET:
8098 case PTR_TO_PACKET_META:
8099 return check_packet_access(env, regno, reg->off, access_size,
8100 zero_size_allowed);
8101 case PTR_TO_MAP_KEY:
8102 if (access_type == BPF_WRITE) {
8103 verbose(env, "R%d cannot write into %s\n", regno,
8104 reg_type_str(env, reg->type));
8105 return -EACCES;
8106 }
8107 return check_mem_region_access(env, regno, reg->off, access_size,
8108 reg->map_ptr->key_size, false);
8109 case PTR_TO_MAP_VALUE:
8110 if (check_map_access_type(env, regno, reg->off, access_size, access_type))
8111 return -EACCES;
8112 return check_map_access(env, regno, reg->off, access_size,
8113 zero_size_allowed, ACCESS_HELPER);
8114 case PTR_TO_MEM:
8115 if (type_is_rdonly_mem(reg->type)) {
8116 if (access_type == BPF_WRITE) {
8117 verbose(env, "R%d cannot write into %s\n", regno,
8118 reg_type_str(env, reg->type));
8119 return -EACCES;
8120 }
8121 }
8122 return check_mem_region_access(env, regno, reg->off,
8123 access_size, reg->mem_size,
8124 zero_size_allowed);
8125 case PTR_TO_BUF:
8126 if (type_is_rdonly_mem(reg->type)) {
8127 if (access_type == BPF_WRITE) {
8128 verbose(env, "R%d cannot write into %s\n", regno,
8129 reg_type_str(env, reg->type));
8130 return -EACCES;
8131 }
8132
8133 max_access = &env->prog->aux->max_rdonly_access;
8134 } else {
8135 max_access = &env->prog->aux->max_rdwr_access;
8136 }
8137 return check_buffer_access(env, reg, regno, reg->off,
8138 access_size, zero_size_allowed,
8139 max_access);
8140 case PTR_TO_STACK:
8141 return check_stack_range_initialized(
8142 env,
8143 regno, reg->off, access_size,
8144 zero_size_allowed, access_type, meta);
8145 case PTR_TO_BTF_ID:
8146 return check_ptr_to_btf_access(env, regs, regno, reg->off,
8147 access_size, BPF_READ, -1);
8148 case PTR_TO_CTX:
8149 /* in case the function doesn't know how to access the context,
8150 * (because we are in a program of type SYSCALL for example), we
8151 * can not statically check its size.
8152 * Dynamically check it now.
8153 */
8154 if (!env->ops->convert_ctx_access) {
8155 int offset = access_size - 1;
8156
8157 /* Allow zero-byte read from PTR_TO_CTX */
8158 if (access_size == 0)
8159 return zero_size_allowed ? 0 : -EACCES;
8160
8161 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
8162 access_type, -1, false, false);
8163 }
8164
8165 fallthrough;
8166 default: /* scalar_value or invalid ptr */
8167 /* Allow zero-byte read from NULL, regardless of pointer type */
8168 if (zero_size_allowed && access_size == 0 &&
8169 register_is_null(reg))
8170 return 0;
8171
8172 verbose(env, "R%d type=%s ", regno,
8173 reg_type_str(env, reg->type));
8174 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
8175 return -EACCES;
8176 }
8177 }
8178
8179 /* verify arguments to helpers or kfuncs consisting of a pointer and an access
8180 * size.
8181 *
8182 * @regno is the register containing the access size. regno-1 is the register
8183 * containing the pointer.
8184 */
check_mem_size_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,enum bpf_access_type access_type,bool zero_size_allowed,struct bpf_call_arg_meta * meta)8185 static int check_mem_size_reg(struct bpf_verifier_env *env,
8186 struct bpf_reg_state *reg, u32 regno,
8187 enum bpf_access_type access_type,
8188 bool zero_size_allowed,
8189 struct bpf_call_arg_meta *meta)
8190 {
8191 int err;
8192
8193 /* This is used to refine r0 return value bounds for helpers
8194 * that enforce this value as an upper bound on return values.
8195 * See do_refine_retval_range() for helpers that can refine
8196 * the return value. C type of helper is u32 so we pull register
8197 * bound from umax_value however, if negative verifier errors
8198 * out. Only upper bounds can be learned because retval is an
8199 * int type and negative retvals are allowed.
8200 */
8201 meta->msize_max_value = reg->umax_value;
8202
8203 /* The register is SCALAR_VALUE; the access check happens using
8204 * its boundaries. For unprivileged variable accesses, disable
8205 * raw mode so that the program is required to initialize all
8206 * the memory that the helper could just partially fill up.
8207 */
8208 if (!tnum_is_const(reg->var_off))
8209 meta = NULL;
8210
8211 if (reg->smin_value < 0) {
8212 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
8213 regno);
8214 return -EACCES;
8215 }
8216
8217 if (reg->umin_value == 0 && !zero_size_allowed) {
8218 verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n",
8219 regno, reg->umin_value, reg->umax_value);
8220 return -EACCES;
8221 }
8222
8223 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
8224 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
8225 regno);
8226 return -EACCES;
8227 }
8228 err = check_helper_mem_access(env, regno - 1, reg->umax_value,
8229 access_type, zero_size_allowed, meta);
8230 if (!err)
8231 err = mark_chain_precision(env, regno);
8232 return err;
8233 }
8234
check_mem_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,u32 mem_size)8235 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
8236 u32 regno, u32 mem_size)
8237 {
8238 bool may_be_null = type_may_be_null(reg->type);
8239 struct bpf_reg_state saved_reg;
8240 int err;
8241
8242 if (register_is_null(reg))
8243 return 0;
8244
8245 /* Assuming that the register contains a value check if the memory
8246 * access is safe. Temporarily save and restore the register's state as
8247 * the conversion shouldn't be visible to a caller.
8248 */
8249 if (may_be_null) {
8250 saved_reg = *reg;
8251 mark_ptr_not_null_reg(reg);
8252 }
8253
8254 err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL);
8255 err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL);
8256
8257 if (may_be_null)
8258 *reg = saved_reg;
8259
8260 return err;
8261 }
8262
check_kfunc_mem_size_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno)8263 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
8264 u32 regno)
8265 {
8266 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
8267 bool may_be_null = type_may_be_null(mem_reg->type);
8268 struct bpf_reg_state saved_reg;
8269 struct bpf_call_arg_meta meta;
8270 int err;
8271
8272 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
8273
8274 memset(&meta, 0, sizeof(meta));
8275
8276 if (may_be_null) {
8277 saved_reg = *mem_reg;
8278 mark_ptr_not_null_reg(mem_reg);
8279 }
8280
8281 err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta);
8282 err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta);
8283
8284 if (may_be_null)
8285 *mem_reg = saved_reg;
8286
8287 return err;
8288 }
8289
8290 enum {
8291 PROCESS_SPIN_LOCK = (1 << 0),
8292 PROCESS_RES_LOCK = (1 << 1),
8293 PROCESS_LOCK_IRQ = (1 << 2),
8294 };
8295
8296 /* Implementation details:
8297 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
8298 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
8299 * Two bpf_map_lookups (even with the same key) will have different reg->id.
8300 * Two separate bpf_obj_new will also have different reg->id.
8301 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
8302 * clears reg->id after value_or_null->value transition, since the verifier only
8303 * cares about the range of access to valid map value pointer and doesn't care
8304 * about actual address of the map element.
8305 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
8306 * reg->id > 0 after value_or_null->value transition. By doing so
8307 * two bpf_map_lookups will be considered two different pointers that
8308 * point to different bpf_spin_locks. Likewise for pointers to allocated objects
8309 * returned from bpf_obj_new.
8310 * The verifier allows taking only one bpf_spin_lock at a time to avoid
8311 * dead-locks.
8312 * Since only one bpf_spin_lock is allowed the checks are simpler than
8313 * reg_is_refcounted() logic. The verifier needs to remember only
8314 * one spin_lock instead of array of acquired_refs.
8315 * env->cur_state->active_locks remembers which map value element or allocated
8316 * object got locked and clears it after bpf_spin_unlock.
8317 */
process_spin_lock(struct bpf_verifier_env * env,int regno,int flags)8318 static int process_spin_lock(struct bpf_verifier_env *env, int regno, int flags)
8319 {
8320 bool is_lock = flags & PROCESS_SPIN_LOCK, is_res_lock = flags & PROCESS_RES_LOCK;
8321 const char *lock_str = is_res_lock ? "bpf_res_spin" : "bpf_spin";
8322 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
8323 struct bpf_verifier_state *cur = env->cur_state;
8324 bool is_const = tnum_is_const(reg->var_off);
8325 bool is_irq = flags & PROCESS_LOCK_IRQ;
8326 u64 val = reg->var_off.value;
8327 struct bpf_map *map = NULL;
8328 struct btf *btf = NULL;
8329 struct btf_record *rec;
8330 u32 spin_lock_off;
8331 int err;
8332
8333 if (!is_const) {
8334 verbose(env,
8335 "R%d doesn't have constant offset. %s_lock has to be at the constant offset\n",
8336 regno, lock_str);
8337 return -EINVAL;
8338 }
8339 if (reg->type == PTR_TO_MAP_VALUE) {
8340 map = reg->map_ptr;
8341 if (!map->btf) {
8342 verbose(env,
8343 "map '%s' has to have BTF in order to use %s_lock\n",
8344 map->name, lock_str);
8345 return -EINVAL;
8346 }
8347 } else {
8348 btf = reg->btf;
8349 }
8350
8351 rec = reg_btf_record(reg);
8352 if (!btf_record_has_field(rec, is_res_lock ? BPF_RES_SPIN_LOCK : BPF_SPIN_LOCK)) {
8353 verbose(env, "%s '%s' has no valid %s_lock\n", map ? "map" : "local",
8354 map ? map->name : "kptr", lock_str);
8355 return -EINVAL;
8356 }
8357 spin_lock_off = is_res_lock ? rec->res_spin_lock_off : rec->spin_lock_off;
8358 if (spin_lock_off != val + reg->off) {
8359 verbose(env, "off %lld doesn't point to 'struct %s_lock' that is at %d\n",
8360 val + reg->off, lock_str, spin_lock_off);
8361 return -EINVAL;
8362 }
8363 if (is_lock) {
8364 void *ptr;
8365 int type;
8366
8367 if (map)
8368 ptr = map;
8369 else
8370 ptr = btf;
8371
8372 if (!is_res_lock && cur->active_locks) {
8373 if (find_lock_state(env->cur_state, REF_TYPE_LOCK, 0, NULL)) {
8374 verbose(env,
8375 "Locking two bpf_spin_locks are not allowed\n");
8376 return -EINVAL;
8377 }
8378 } else if (is_res_lock && cur->active_locks) {
8379 if (find_lock_state(env->cur_state, REF_TYPE_RES_LOCK | REF_TYPE_RES_LOCK_IRQ, reg->id, ptr)) {
8380 verbose(env, "Acquiring the same lock again, AA deadlock detected\n");
8381 return -EINVAL;
8382 }
8383 }
8384
8385 if (is_res_lock && is_irq)
8386 type = REF_TYPE_RES_LOCK_IRQ;
8387 else if (is_res_lock)
8388 type = REF_TYPE_RES_LOCK;
8389 else
8390 type = REF_TYPE_LOCK;
8391 err = acquire_lock_state(env, env->insn_idx, type, reg->id, ptr);
8392 if (err < 0) {
8393 verbose(env, "Failed to acquire lock state\n");
8394 return err;
8395 }
8396 } else {
8397 void *ptr;
8398 int type;
8399
8400 if (map)
8401 ptr = map;
8402 else
8403 ptr = btf;
8404
8405 if (!cur->active_locks) {
8406 verbose(env, "%s_unlock without taking a lock\n", lock_str);
8407 return -EINVAL;
8408 }
8409
8410 if (is_res_lock && is_irq)
8411 type = REF_TYPE_RES_LOCK_IRQ;
8412 else if (is_res_lock)
8413 type = REF_TYPE_RES_LOCK;
8414 else
8415 type = REF_TYPE_LOCK;
8416 if (!find_lock_state(cur, type, reg->id, ptr)) {
8417 verbose(env, "%s_unlock of different lock\n", lock_str);
8418 return -EINVAL;
8419 }
8420 if (reg->id != cur->active_lock_id || ptr != cur->active_lock_ptr) {
8421 verbose(env, "%s_unlock cannot be out of order\n", lock_str);
8422 return -EINVAL;
8423 }
8424 if (release_lock_state(cur, type, reg->id, ptr)) {
8425 verbose(env, "%s_unlock of different lock\n", lock_str);
8426 return -EINVAL;
8427 }
8428
8429 invalidate_non_owning_refs(env);
8430 }
8431 return 0;
8432 }
8433
8434 /* Check if @regno is a pointer to a specific field in a map value */
check_map_field_pointer(struct bpf_verifier_env * env,u32 regno,enum btf_field_type field_type)8435 static int check_map_field_pointer(struct bpf_verifier_env *env, u32 regno,
8436 enum btf_field_type field_type)
8437 {
8438 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
8439 bool is_const = tnum_is_const(reg->var_off);
8440 struct bpf_map *map = reg->map_ptr;
8441 u64 val = reg->var_off.value;
8442 const char *struct_name = btf_field_type_name(field_type);
8443 int field_off = -1;
8444
8445 if (!is_const) {
8446 verbose(env,
8447 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
8448 regno, struct_name);
8449 return -EINVAL;
8450 }
8451 if (!map->btf) {
8452 verbose(env, "map '%s' has to have BTF in order to use %s\n", map->name,
8453 struct_name);
8454 return -EINVAL;
8455 }
8456 if (!btf_record_has_field(map->record, field_type)) {
8457 verbose(env, "map '%s' has no valid %s\n", map->name, struct_name);
8458 return -EINVAL;
8459 }
8460 switch (field_type) {
8461 case BPF_TIMER:
8462 field_off = map->record->timer_off;
8463 break;
8464 case BPF_TASK_WORK:
8465 field_off = map->record->task_work_off;
8466 break;
8467 default:
8468 verifier_bug(env, "unsupported BTF field type: %s\n", struct_name);
8469 return -EINVAL;
8470 }
8471 if (field_off != val + reg->off) {
8472 verbose(env, "off %lld doesn't point to 'struct %s' that is at %d\n",
8473 val + reg->off, struct_name, field_off);
8474 return -EINVAL;
8475 }
8476 return 0;
8477 }
8478
process_timer_func(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)8479 static int process_timer_func(struct bpf_verifier_env *env, int regno,
8480 struct bpf_call_arg_meta *meta)
8481 {
8482 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
8483 struct bpf_map *map = reg->map_ptr;
8484 int err;
8485
8486 err = check_map_field_pointer(env, regno, BPF_TIMER);
8487 if (err)
8488 return err;
8489
8490 if (meta->map_ptr) {
8491 verifier_bug(env, "Two map pointers in a timer helper");
8492 return -EFAULT;
8493 }
8494 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
8495 verbose(env, "bpf_timer cannot be used for PREEMPT_RT.\n");
8496 return -EOPNOTSUPP;
8497 }
8498 meta->map_uid = reg->map_uid;
8499 meta->map_ptr = map;
8500 return 0;
8501 }
8502
process_wq_func(struct bpf_verifier_env * env,int regno,struct bpf_kfunc_call_arg_meta * meta)8503 static int process_wq_func(struct bpf_verifier_env *env, int regno,
8504 struct bpf_kfunc_call_arg_meta *meta)
8505 {
8506 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
8507 struct bpf_map *map = reg->map_ptr;
8508 u64 val = reg->var_off.value;
8509
8510 if (map->record->wq_off != val + reg->off) {
8511 verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n",
8512 val + reg->off, map->record->wq_off);
8513 return -EINVAL;
8514 }
8515 meta->map.uid = reg->map_uid;
8516 meta->map.ptr = map;
8517 return 0;
8518 }
8519
process_task_work_func(struct bpf_verifier_env * env,int regno,struct bpf_kfunc_call_arg_meta * meta)8520 static int process_task_work_func(struct bpf_verifier_env *env, int regno,
8521 struct bpf_kfunc_call_arg_meta *meta)
8522 {
8523 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
8524 struct bpf_map *map = reg->map_ptr;
8525 int err;
8526
8527 err = check_map_field_pointer(env, regno, BPF_TASK_WORK);
8528 if (err)
8529 return err;
8530
8531 if (meta->map.ptr) {
8532 verifier_bug(env, "Two map pointers in a bpf_task_work helper");
8533 return -EFAULT;
8534 }
8535 meta->map.uid = reg->map_uid;
8536 meta->map.ptr = map;
8537 return 0;
8538 }
8539
process_kptr_func(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)8540 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
8541 struct bpf_call_arg_meta *meta)
8542 {
8543 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
8544 struct btf_field *kptr_field;
8545 struct bpf_map *map_ptr;
8546 struct btf_record *rec;
8547 u32 kptr_off;
8548
8549 if (type_is_ptr_alloc_obj(reg->type)) {
8550 rec = reg_btf_record(reg);
8551 } else { /* PTR_TO_MAP_VALUE */
8552 map_ptr = reg->map_ptr;
8553 if (!map_ptr->btf) {
8554 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
8555 map_ptr->name);
8556 return -EINVAL;
8557 }
8558 rec = map_ptr->record;
8559 meta->map_ptr = map_ptr;
8560 }
8561
8562 if (!tnum_is_const(reg->var_off)) {
8563 verbose(env,
8564 "R%d doesn't have constant offset. kptr has to be at the constant offset\n",
8565 regno);
8566 return -EINVAL;
8567 }
8568
8569 if (!btf_record_has_field(rec, BPF_KPTR)) {
8570 verbose(env, "R%d has no valid kptr\n", regno);
8571 return -EINVAL;
8572 }
8573
8574 kptr_off = reg->off + reg->var_off.value;
8575 kptr_field = btf_record_find(rec, kptr_off, BPF_KPTR);
8576 if (!kptr_field) {
8577 verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
8578 return -EACCES;
8579 }
8580 if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) {
8581 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
8582 return -EACCES;
8583 }
8584 meta->kptr_field = kptr_field;
8585 return 0;
8586 }
8587
8588 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
8589 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
8590 *
8591 * In both cases we deal with the first 8 bytes, but need to mark the next 8
8592 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
8593 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
8594 *
8595 * Mutability of bpf_dynptr is at two levels, one is at the level of struct
8596 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
8597 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
8598 * mutate the view of the dynptr and also possibly destroy it. In the latter
8599 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
8600 * memory that dynptr points to.
8601 *
8602 * The verifier will keep track both levels of mutation (bpf_dynptr's in
8603 * reg->type and the memory's in reg->dynptr.type), but there is no support for
8604 * readonly dynptr view yet, hence only the first case is tracked and checked.
8605 *
8606 * This is consistent with how C applies the const modifier to a struct object,
8607 * where the pointer itself inside bpf_dynptr becomes const but not what it
8608 * points to.
8609 *
8610 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
8611 * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
8612 */
process_dynptr_func(struct bpf_verifier_env * env,int regno,int insn_idx,enum bpf_arg_type arg_type,int clone_ref_obj_id)8613 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
8614 enum bpf_arg_type arg_type, int clone_ref_obj_id)
8615 {
8616 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
8617 int err;
8618
8619 if (reg->type != PTR_TO_STACK && reg->type != CONST_PTR_TO_DYNPTR) {
8620 verbose(env,
8621 "arg#%d expected pointer to stack or const struct bpf_dynptr\n",
8622 regno - 1);
8623 return -EINVAL;
8624 }
8625
8626 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
8627 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
8628 */
8629 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
8630 verifier_bug(env, "misconfigured dynptr helper type flags");
8631 return -EFAULT;
8632 }
8633
8634 /* MEM_UNINIT - Points to memory that is an appropriate candidate for
8635 * constructing a mutable bpf_dynptr object.
8636 *
8637 * Currently, this is only possible with PTR_TO_STACK
8638 * pointing to a region of at least 16 bytes which doesn't
8639 * contain an existing bpf_dynptr.
8640 *
8641 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
8642 * mutated or destroyed. However, the memory it points to
8643 * may be mutated.
8644 *
8645 * None - Points to a initialized dynptr that can be mutated and
8646 * destroyed, including mutation of the memory it points
8647 * to.
8648 */
8649 if (arg_type & MEM_UNINIT) {
8650 int i;
8651
8652 if (!is_dynptr_reg_valid_uninit(env, reg)) {
8653 verbose(env, "Dynptr has to be an uninitialized dynptr\n");
8654 return -EINVAL;
8655 }
8656
8657 /* we write BPF_DW bits (8 bytes) at a time */
8658 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
8659 err = check_mem_access(env, insn_idx, regno,
8660 i, BPF_DW, BPF_WRITE, -1, false, false);
8661 if (err)
8662 return err;
8663 }
8664
8665 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
8666 } else /* MEM_RDONLY and None case from above */ {
8667 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
8668 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
8669 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
8670 return -EINVAL;
8671 }
8672
8673 if (!is_dynptr_reg_valid_init(env, reg)) {
8674 verbose(env,
8675 "Expected an initialized dynptr as arg #%d\n",
8676 regno - 1);
8677 return -EINVAL;
8678 }
8679
8680 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
8681 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
8682 verbose(env,
8683 "Expected a dynptr of type %s as arg #%d\n",
8684 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno - 1);
8685 return -EINVAL;
8686 }
8687
8688 err = mark_dynptr_read(env, reg);
8689 }
8690 return err;
8691 }
8692
iter_ref_obj_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int spi)8693 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
8694 {
8695 struct bpf_func_state *state = func(env, reg);
8696
8697 return state->stack[spi].spilled_ptr.ref_obj_id;
8698 }
8699
is_iter_kfunc(struct bpf_kfunc_call_arg_meta * meta)8700 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8701 {
8702 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
8703 }
8704
is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta * meta)8705 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8706 {
8707 return meta->kfunc_flags & KF_ITER_NEW;
8708 }
8709
is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta * meta)8710 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8711 {
8712 return meta->kfunc_flags & KF_ITER_NEXT;
8713 }
8714
is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta * meta)8715 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8716 {
8717 return meta->kfunc_flags & KF_ITER_DESTROY;
8718 }
8719
is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta * meta,int arg_idx,const struct btf_param * arg)8720 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg_idx,
8721 const struct btf_param *arg)
8722 {
8723 /* btf_check_iter_kfuncs() guarantees that first argument of any iter
8724 * kfunc is iter state pointer
8725 */
8726 if (is_iter_kfunc(meta))
8727 return arg_idx == 0;
8728
8729 /* iter passed as an argument to a generic kfunc */
8730 return btf_param_match_suffix(meta->btf, arg, "__iter");
8731 }
8732
process_iter_arg(struct bpf_verifier_env * env,int regno,int insn_idx,struct bpf_kfunc_call_arg_meta * meta)8733 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
8734 struct bpf_kfunc_call_arg_meta *meta)
8735 {
8736 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
8737 const struct btf_type *t;
8738 int spi, err, i, nr_slots, btf_id;
8739
8740 if (reg->type != PTR_TO_STACK) {
8741 verbose(env, "arg#%d expected pointer to an iterator on stack\n", regno - 1);
8742 return -EINVAL;
8743 }
8744
8745 /* For iter_{new,next,destroy} functions, btf_check_iter_kfuncs()
8746 * ensures struct convention, so we wouldn't need to do any BTF
8747 * validation here. But given iter state can be passed as a parameter
8748 * to any kfunc, if arg has "__iter" suffix, we need to be a bit more
8749 * conservative here.
8750 */
8751 btf_id = btf_check_iter_arg(meta->btf, meta->func_proto, regno - 1);
8752 if (btf_id < 0) {
8753 verbose(env, "expected valid iter pointer as arg #%d\n", regno - 1);
8754 return -EINVAL;
8755 }
8756 t = btf_type_by_id(meta->btf, btf_id);
8757 nr_slots = t->size / BPF_REG_SIZE;
8758
8759 if (is_iter_new_kfunc(meta)) {
8760 /* bpf_iter_<type>_new() expects pointer to uninit iter state */
8761 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
8762 verbose(env, "expected uninitialized iter_%s as arg #%d\n",
8763 iter_type_str(meta->btf, btf_id), regno - 1);
8764 return -EINVAL;
8765 }
8766
8767 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
8768 err = check_mem_access(env, insn_idx, regno,
8769 i, BPF_DW, BPF_WRITE, -1, false, false);
8770 if (err)
8771 return err;
8772 }
8773
8774 err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots);
8775 if (err)
8776 return err;
8777 } else {
8778 /* iter_next() or iter_destroy(), as well as any kfunc
8779 * accepting iter argument, expect initialized iter state
8780 */
8781 err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots);
8782 switch (err) {
8783 case 0:
8784 break;
8785 case -EINVAL:
8786 verbose(env, "expected an initialized iter_%s as arg #%d\n",
8787 iter_type_str(meta->btf, btf_id), regno - 1);
8788 return err;
8789 case -EPROTO:
8790 verbose(env, "expected an RCU CS when using %s\n", meta->func_name);
8791 return err;
8792 default:
8793 return err;
8794 }
8795
8796 spi = iter_get_spi(env, reg, nr_slots);
8797 if (spi < 0)
8798 return spi;
8799
8800 err = mark_iter_read(env, reg, spi, nr_slots);
8801 if (err)
8802 return err;
8803
8804 /* remember meta->iter info for process_iter_next_call() */
8805 meta->iter.spi = spi;
8806 meta->iter.frameno = reg->frameno;
8807 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
8808
8809 if (is_iter_destroy_kfunc(meta)) {
8810 err = unmark_stack_slots_iter(env, reg, nr_slots);
8811 if (err)
8812 return err;
8813 }
8814 }
8815
8816 return 0;
8817 }
8818
8819 /* Look for a previous loop entry at insn_idx: nearest parent state
8820 * stopped at insn_idx with callsites matching those in cur->frame.
8821 */
find_prev_entry(struct bpf_verifier_env * env,struct bpf_verifier_state * cur,int insn_idx)8822 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
8823 struct bpf_verifier_state *cur,
8824 int insn_idx)
8825 {
8826 struct bpf_verifier_state_list *sl;
8827 struct bpf_verifier_state *st;
8828 struct list_head *pos, *head;
8829
8830 /* Explored states are pushed in stack order, most recent states come first */
8831 head = explored_state(env, insn_idx);
8832 list_for_each(pos, head) {
8833 sl = container_of(pos, struct bpf_verifier_state_list, node);
8834 /* If st->branches != 0 state is a part of current DFS verification path,
8835 * hence cur & st for a loop.
8836 */
8837 st = &sl->state;
8838 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
8839 st->dfs_depth < cur->dfs_depth)
8840 return st;
8841 }
8842
8843 return NULL;
8844 }
8845
8846 static void reset_idmap_scratch(struct bpf_verifier_env *env);
8847 static bool regs_exact(const struct bpf_reg_state *rold,
8848 const struct bpf_reg_state *rcur,
8849 struct bpf_idmap *idmap);
8850
maybe_widen_reg(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_idmap * idmap)8851 static void maybe_widen_reg(struct bpf_verifier_env *env,
8852 struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
8853 struct bpf_idmap *idmap)
8854 {
8855 if (rold->type != SCALAR_VALUE)
8856 return;
8857 if (rold->type != rcur->type)
8858 return;
8859 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
8860 return;
8861 __mark_reg_unknown(env, rcur);
8862 }
8863
widen_imprecise_scalars(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur)8864 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
8865 struct bpf_verifier_state *old,
8866 struct bpf_verifier_state *cur)
8867 {
8868 struct bpf_func_state *fold, *fcur;
8869 int i, fr, num_slots;
8870
8871 reset_idmap_scratch(env);
8872 for (fr = old->curframe; fr >= 0; fr--) {
8873 fold = old->frame[fr];
8874 fcur = cur->frame[fr];
8875
8876 for (i = 0; i < MAX_BPF_REG; i++)
8877 maybe_widen_reg(env,
8878 &fold->regs[i],
8879 &fcur->regs[i],
8880 &env->idmap_scratch);
8881
8882 num_slots = min(fold->allocated_stack / BPF_REG_SIZE,
8883 fcur->allocated_stack / BPF_REG_SIZE);
8884 for (i = 0; i < num_slots; i++) {
8885 if (!is_spilled_reg(&fold->stack[i]) ||
8886 !is_spilled_reg(&fcur->stack[i]))
8887 continue;
8888
8889 maybe_widen_reg(env,
8890 &fold->stack[i].spilled_ptr,
8891 &fcur->stack[i].spilled_ptr,
8892 &env->idmap_scratch);
8893 }
8894 }
8895 return 0;
8896 }
8897
get_iter_from_state(struct bpf_verifier_state * cur_st,struct bpf_kfunc_call_arg_meta * meta)8898 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st,
8899 struct bpf_kfunc_call_arg_meta *meta)
8900 {
8901 int iter_frameno = meta->iter.frameno;
8902 int iter_spi = meta->iter.spi;
8903
8904 return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
8905 }
8906
8907 /* process_iter_next_call() is called when verifier gets to iterator's next
8908 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
8909 * to it as just "iter_next()" in comments below.
8910 *
8911 * BPF verifier relies on a crucial contract for any iter_next()
8912 * implementation: it should *eventually* return NULL, and once that happens
8913 * it should keep returning NULL. That is, once iterator exhausts elements to
8914 * iterate, it should never reset or spuriously return new elements.
8915 *
8916 * With the assumption of such contract, process_iter_next_call() simulates
8917 * a fork in the verifier state to validate loop logic correctness and safety
8918 * without having to simulate infinite amount of iterations.
8919 *
8920 * In current state, we first assume that iter_next() returned NULL and
8921 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
8922 * conditions we should not form an infinite loop and should eventually reach
8923 * exit.
8924 *
8925 * Besides that, we also fork current state and enqueue it for later
8926 * verification. In a forked state we keep iterator state as ACTIVE
8927 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
8928 * also bump iteration depth to prevent erroneous infinite loop detection
8929 * later on (see iter_active_depths_differ() comment for details). In this
8930 * state we assume that we'll eventually loop back to another iter_next()
8931 * calls (it could be in exactly same location or in some other instruction,
8932 * it doesn't matter, we don't make any unnecessary assumptions about this,
8933 * everything revolves around iterator state in a stack slot, not which
8934 * instruction is calling iter_next()). When that happens, we either will come
8935 * to iter_next() with equivalent state and can conclude that next iteration
8936 * will proceed in exactly the same way as we just verified, so it's safe to
8937 * assume that loop converges. If not, we'll go on another iteration
8938 * simulation with a different input state, until all possible starting states
8939 * are validated or we reach maximum number of instructions limit.
8940 *
8941 * This way, we will either exhaustively discover all possible input states
8942 * that iterator loop can start with and eventually will converge, or we'll
8943 * effectively regress into bounded loop simulation logic and either reach
8944 * maximum number of instructions if loop is not provably convergent, or there
8945 * is some statically known limit on number of iterations (e.g., if there is
8946 * an explicit `if n > 100 then break;` statement somewhere in the loop).
8947 *
8948 * Iteration convergence logic in is_state_visited() relies on exact
8949 * states comparison, which ignores read and precision marks.
8950 * This is necessary because read and precision marks are not finalized
8951 * while in the loop. Exact comparison might preclude convergence for
8952 * simple programs like below:
8953 *
8954 * i = 0;
8955 * while(iter_next(&it))
8956 * i++;
8957 *
8958 * At each iteration step i++ would produce a new distinct state and
8959 * eventually instruction processing limit would be reached.
8960 *
8961 * To avoid such behavior speculatively forget (widen) range for
8962 * imprecise scalar registers, if those registers were not precise at the
8963 * end of the previous iteration and do not match exactly.
8964 *
8965 * This is a conservative heuristic that allows to verify wide range of programs,
8966 * however it precludes verification of programs that conjure an
8967 * imprecise value on the first loop iteration and use it as precise on a second.
8968 * For example, the following safe program would fail to verify:
8969 *
8970 * struct bpf_num_iter it;
8971 * int arr[10];
8972 * int i = 0, a = 0;
8973 * bpf_iter_num_new(&it, 0, 10);
8974 * while (bpf_iter_num_next(&it)) {
8975 * if (a == 0) {
8976 * a = 1;
8977 * i = 7; // Because i changed verifier would forget
8978 * // it's range on second loop entry.
8979 * } else {
8980 * arr[i] = 42; // This would fail to verify.
8981 * }
8982 * }
8983 * bpf_iter_num_destroy(&it);
8984 */
process_iter_next_call(struct bpf_verifier_env * env,int insn_idx,struct bpf_kfunc_call_arg_meta * meta)8985 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
8986 struct bpf_kfunc_call_arg_meta *meta)
8987 {
8988 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
8989 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
8990 struct bpf_reg_state *cur_iter, *queued_iter;
8991
8992 BTF_TYPE_EMIT(struct bpf_iter);
8993
8994 cur_iter = get_iter_from_state(cur_st, meta);
8995
8996 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
8997 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
8998 verifier_bug(env, "unexpected iterator state %d (%s)",
8999 cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
9000 return -EFAULT;
9001 }
9002
9003 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
9004 /* Because iter_next() call is a checkpoint is_state_visitied()
9005 * should guarantee parent state with same call sites and insn_idx.
9006 */
9007 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
9008 !same_callsites(cur_st->parent, cur_st)) {
9009 verifier_bug(env, "bad parent state for iter next call");
9010 return -EFAULT;
9011 }
9012 /* Note cur_st->parent in the call below, it is necessary to skip
9013 * checkpoint created for cur_st by is_state_visited()
9014 * right at this instruction.
9015 */
9016 prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
9017 /* branch out active iter state */
9018 queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
9019 if (!queued_st)
9020 return -ENOMEM;
9021
9022 queued_iter = get_iter_from_state(queued_st, meta);
9023 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
9024 queued_iter->iter.depth++;
9025 if (prev_st)
9026 widen_imprecise_scalars(env, prev_st, queued_st);
9027
9028 queued_fr = queued_st->frame[queued_st->curframe];
9029 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
9030 }
9031
9032 /* switch to DRAINED state, but keep the depth unchanged */
9033 /* mark current iter state as drained and assume returned NULL */
9034 cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
9035 __mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]);
9036
9037 return 0;
9038 }
9039
arg_type_is_mem_size(enum bpf_arg_type type)9040 static bool arg_type_is_mem_size(enum bpf_arg_type type)
9041 {
9042 return type == ARG_CONST_SIZE ||
9043 type == ARG_CONST_SIZE_OR_ZERO;
9044 }
9045
arg_type_is_raw_mem(enum bpf_arg_type type)9046 static bool arg_type_is_raw_mem(enum bpf_arg_type type)
9047 {
9048 return base_type(type) == ARG_PTR_TO_MEM &&
9049 type & MEM_UNINIT;
9050 }
9051
arg_type_is_release(enum bpf_arg_type type)9052 static bool arg_type_is_release(enum bpf_arg_type type)
9053 {
9054 return type & OBJ_RELEASE;
9055 }
9056
arg_type_is_dynptr(enum bpf_arg_type type)9057 static bool arg_type_is_dynptr(enum bpf_arg_type type)
9058 {
9059 return base_type(type) == ARG_PTR_TO_DYNPTR;
9060 }
9061
resolve_map_arg_type(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_arg_type * arg_type)9062 static int resolve_map_arg_type(struct bpf_verifier_env *env,
9063 const struct bpf_call_arg_meta *meta,
9064 enum bpf_arg_type *arg_type)
9065 {
9066 if (!meta->map_ptr) {
9067 /* kernel subsystem misconfigured verifier */
9068 verifier_bug(env, "invalid map_ptr to access map->type");
9069 return -EFAULT;
9070 }
9071
9072 switch (meta->map_ptr->map_type) {
9073 case BPF_MAP_TYPE_SOCKMAP:
9074 case BPF_MAP_TYPE_SOCKHASH:
9075 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
9076 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
9077 } else {
9078 verbose(env, "invalid arg_type for sockmap/sockhash\n");
9079 return -EINVAL;
9080 }
9081 break;
9082 case BPF_MAP_TYPE_BLOOM_FILTER:
9083 if (meta->func_id == BPF_FUNC_map_peek_elem)
9084 *arg_type = ARG_PTR_TO_MAP_VALUE;
9085 break;
9086 default:
9087 break;
9088 }
9089 return 0;
9090 }
9091
9092 struct bpf_reg_types {
9093 const enum bpf_reg_type types[10];
9094 u32 *btf_id;
9095 };
9096
9097 static const struct bpf_reg_types sock_types = {
9098 .types = {
9099 PTR_TO_SOCK_COMMON,
9100 PTR_TO_SOCKET,
9101 PTR_TO_TCP_SOCK,
9102 PTR_TO_XDP_SOCK,
9103 },
9104 };
9105
9106 #ifdef CONFIG_NET
9107 static const struct bpf_reg_types btf_id_sock_common_types = {
9108 .types = {
9109 PTR_TO_SOCK_COMMON,
9110 PTR_TO_SOCKET,
9111 PTR_TO_TCP_SOCK,
9112 PTR_TO_XDP_SOCK,
9113 PTR_TO_BTF_ID,
9114 PTR_TO_BTF_ID | PTR_TRUSTED,
9115 },
9116 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
9117 };
9118 #endif
9119
9120 static const struct bpf_reg_types mem_types = {
9121 .types = {
9122 PTR_TO_STACK,
9123 PTR_TO_PACKET,
9124 PTR_TO_PACKET_META,
9125 PTR_TO_MAP_KEY,
9126 PTR_TO_MAP_VALUE,
9127 PTR_TO_MEM,
9128 PTR_TO_MEM | MEM_RINGBUF,
9129 PTR_TO_BUF,
9130 PTR_TO_BTF_ID | PTR_TRUSTED,
9131 },
9132 };
9133
9134 static const struct bpf_reg_types spin_lock_types = {
9135 .types = {
9136 PTR_TO_MAP_VALUE,
9137 PTR_TO_BTF_ID | MEM_ALLOC,
9138 }
9139 };
9140
9141 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
9142 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
9143 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
9144 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
9145 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
9146 static const struct bpf_reg_types btf_ptr_types = {
9147 .types = {
9148 PTR_TO_BTF_ID,
9149 PTR_TO_BTF_ID | PTR_TRUSTED,
9150 PTR_TO_BTF_ID | MEM_RCU,
9151 },
9152 };
9153 static const struct bpf_reg_types percpu_btf_ptr_types = {
9154 .types = {
9155 PTR_TO_BTF_ID | MEM_PERCPU,
9156 PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU,
9157 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
9158 }
9159 };
9160 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
9161 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
9162 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
9163 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
9164 static const struct bpf_reg_types kptr_xchg_dest_types = {
9165 .types = {
9166 PTR_TO_MAP_VALUE,
9167 PTR_TO_BTF_ID | MEM_ALLOC
9168 }
9169 };
9170 static const struct bpf_reg_types dynptr_types = {
9171 .types = {
9172 PTR_TO_STACK,
9173 CONST_PTR_TO_DYNPTR,
9174 }
9175 };
9176
9177 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
9178 [ARG_PTR_TO_MAP_KEY] = &mem_types,
9179 [ARG_PTR_TO_MAP_VALUE] = &mem_types,
9180 [ARG_CONST_SIZE] = &scalar_types,
9181 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
9182 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
9183 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
9184 [ARG_PTR_TO_CTX] = &context_types,
9185 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
9186 #ifdef CONFIG_NET
9187 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
9188 #endif
9189 [ARG_PTR_TO_SOCKET] = &fullsock_types,
9190 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
9191 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
9192 [ARG_PTR_TO_MEM] = &mem_types,
9193 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types,
9194 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
9195 [ARG_PTR_TO_FUNC] = &func_ptr_types,
9196 [ARG_PTR_TO_STACK] = &stack_ptr_types,
9197 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
9198 [ARG_PTR_TO_TIMER] = &timer_types,
9199 [ARG_KPTR_XCHG_DEST] = &kptr_xchg_dest_types,
9200 [ARG_PTR_TO_DYNPTR] = &dynptr_types,
9201 };
9202
check_reg_type(struct bpf_verifier_env * env,u32 regno,enum bpf_arg_type arg_type,const u32 * arg_btf_id,struct bpf_call_arg_meta * meta)9203 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
9204 enum bpf_arg_type arg_type,
9205 const u32 *arg_btf_id,
9206 struct bpf_call_arg_meta *meta)
9207 {
9208 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
9209 enum bpf_reg_type expected, type = reg->type;
9210 const struct bpf_reg_types *compatible;
9211 int i, j;
9212
9213 compatible = compatible_reg_types[base_type(arg_type)];
9214 if (!compatible) {
9215 verifier_bug(env, "unsupported arg type %d", arg_type);
9216 return -EFAULT;
9217 }
9218
9219 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
9220 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
9221 *
9222 * Same for MAYBE_NULL:
9223 *
9224 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
9225 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
9226 *
9227 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
9228 *
9229 * Therefore we fold these flags depending on the arg_type before comparison.
9230 */
9231 if (arg_type & MEM_RDONLY)
9232 type &= ~MEM_RDONLY;
9233 if (arg_type & PTR_MAYBE_NULL)
9234 type &= ~PTR_MAYBE_NULL;
9235 if (base_type(arg_type) == ARG_PTR_TO_MEM)
9236 type &= ~DYNPTR_TYPE_FLAG_MASK;
9237
9238 /* Local kptr types are allowed as the source argument of bpf_kptr_xchg */
9239 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type) && regno == BPF_REG_2) {
9240 type &= ~MEM_ALLOC;
9241 type &= ~MEM_PERCPU;
9242 }
9243
9244 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
9245 expected = compatible->types[i];
9246 if (expected == NOT_INIT)
9247 break;
9248
9249 if (type == expected)
9250 goto found;
9251 }
9252
9253 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
9254 for (j = 0; j + 1 < i; j++)
9255 verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
9256 verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
9257 return -EACCES;
9258
9259 found:
9260 if (base_type(reg->type) != PTR_TO_BTF_ID)
9261 return 0;
9262
9263 if (compatible == &mem_types) {
9264 if (!(arg_type & MEM_RDONLY)) {
9265 verbose(env,
9266 "%s() may write into memory pointed by R%d type=%s\n",
9267 func_id_name(meta->func_id),
9268 regno, reg_type_str(env, reg->type));
9269 return -EACCES;
9270 }
9271 return 0;
9272 }
9273
9274 switch ((int)reg->type) {
9275 case PTR_TO_BTF_ID:
9276 case PTR_TO_BTF_ID | PTR_TRUSTED:
9277 case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL:
9278 case PTR_TO_BTF_ID | MEM_RCU:
9279 case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
9280 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
9281 {
9282 /* For bpf_sk_release, it needs to match against first member
9283 * 'struct sock_common', hence make an exception for it. This
9284 * allows bpf_sk_release to work for multiple socket types.
9285 */
9286 bool strict_type_match = arg_type_is_release(arg_type) &&
9287 meta->func_id != BPF_FUNC_sk_release;
9288
9289 if (type_may_be_null(reg->type) &&
9290 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
9291 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
9292 return -EACCES;
9293 }
9294
9295 if (!arg_btf_id) {
9296 if (!compatible->btf_id) {
9297 verifier_bug(env, "missing arg compatible BTF ID");
9298 return -EFAULT;
9299 }
9300 arg_btf_id = compatible->btf_id;
9301 }
9302
9303 if (meta->func_id == BPF_FUNC_kptr_xchg) {
9304 if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
9305 return -EACCES;
9306 } else {
9307 if (arg_btf_id == BPF_PTR_POISON) {
9308 verbose(env, "verifier internal error:");
9309 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
9310 regno);
9311 return -EACCES;
9312 }
9313
9314 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
9315 btf_vmlinux, *arg_btf_id,
9316 strict_type_match)) {
9317 verbose(env, "R%d is of type %s but %s is expected\n",
9318 regno, btf_type_name(reg->btf, reg->btf_id),
9319 btf_type_name(btf_vmlinux, *arg_btf_id));
9320 return -EACCES;
9321 }
9322 }
9323 break;
9324 }
9325 case PTR_TO_BTF_ID | MEM_ALLOC:
9326 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC:
9327 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
9328 meta->func_id != BPF_FUNC_kptr_xchg) {
9329 verifier_bug(env, "unimplemented handling of MEM_ALLOC");
9330 return -EFAULT;
9331 }
9332 /* Check if local kptr in src arg matches kptr in dst arg */
9333 if (meta->func_id == BPF_FUNC_kptr_xchg && regno == BPF_REG_2) {
9334 if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
9335 return -EACCES;
9336 }
9337 break;
9338 case PTR_TO_BTF_ID | MEM_PERCPU:
9339 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU:
9340 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
9341 /* Handled by helper specific checks */
9342 break;
9343 default:
9344 verifier_bug(env, "invalid PTR_TO_BTF_ID register for type match");
9345 return -EFAULT;
9346 }
9347 return 0;
9348 }
9349
9350 static struct btf_field *
reg_find_field_offset(const struct bpf_reg_state * reg,s32 off,u32 fields)9351 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
9352 {
9353 struct btf_field *field;
9354 struct btf_record *rec;
9355
9356 rec = reg_btf_record(reg);
9357 if (!rec)
9358 return NULL;
9359
9360 field = btf_record_find(rec, off, fields);
9361 if (!field)
9362 return NULL;
9363
9364 return field;
9365 }
9366
check_func_arg_reg_off(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,enum bpf_arg_type arg_type)9367 static int check_func_arg_reg_off(struct bpf_verifier_env *env,
9368 const struct bpf_reg_state *reg, int regno,
9369 enum bpf_arg_type arg_type)
9370 {
9371 u32 type = reg->type;
9372
9373 /* When referenced register is passed to release function, its fixed
9374 * offset must be 0.
9375 *
9376 * We will check arg_type_is_release reg has ref_obj_id when storing
9377 * meta->release_regno.
9378 */
9379 if (arg_type_is_release(arg_type)) {
9380 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
9381 * may not directly point to the object being released, but to
9382 * dynptr pointing to such object, which might be at some offset
9383 * on the stack. In that case, we simply to fallback to the
9384 * default handling.
9385 */
9386 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
9387 return 0;
9388
9389 /* Doing check_ptr_off_reg check for the offset will catch this
9390 * because fixed_off_ok is false, but checking here allows us
9391 * to give the user a better error message.
9392 */
9393 if (reg->off) {
9394 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
9395 regno);
9396 return -EINVAL;
9397 }
9398 return __check_ptr_off_reg(env, reg, regno, false);
9399 }
9400
9401 switch (type) {
9402 /* Pointer types where both fixed and variable offset is explicitly allowed: */
9403 case PTR_TO_STACK:
9404 case PTR_TO_PACKET:
9405 case PTR_TO_PACKET_META:
9406 case PTR_TO_MAP_KEY:
9407 case PTR_TO_MAP_VALUE:
9408 case PTR_TO_MEM:
9409 case PTR_TO_MEM | MEM_RDONLY:
9410 case PTR_TO_MEM | MEM_RINGBUF:
9411 case PTR_TO_BUF:
9412 case PTR_TO_BUF | MEM_RDONLY:
9413 case PTR_TO_ARENA:
9414 case SCALAR_VALUE:
9415 return 0;
9416 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows
9417 * fixed offset.
9418 */
9419 case PTR_TO_BTF_ID:
9420 case PTR_TO_BTF_ID | MEM_ALLOC:
9421 case PTR_TO_BTF_ID | PTR_TRUSTED:
9422 case PTR_TO_BTF_ID | MEM_RCU:
9423 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
9424 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
9425 /* When referenced PTR_TO_BTF_ID is passed to release function,
9426 * its fixed offset must be 0. In the other cases, fixed offset
9427 * can be non-zero. This was already checked above. So pass
9428 * fixed_off_ok as true to allow fixed offset for all other
9429 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
9430 * still need to do checks instead of returning.
9431 */
9432 return __check_ptr_off_reg(env, reg, regno, true);
9433 default:
9434 return __check_ptr_off_reg(env, reg, regno, false);
9435 }
9436 }
9437
get_dynptr_arg_reg(struct bpf_verifier_env * env,const struct bpf_func_proto * fn,struct bpf_reg_state * regs)9438 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
9439 const struct bpf_func_proto *fn,
9440 struct bpf_reg_state *regs)
9441 {
9442 struct bpf_reg_state *state = NULL;
9443 int i;
9444
9445 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
9446 if (arg_type_is_dynptr(fn->arg_type[i])) {
9447 if (state) {
9448 verbose(env, "verifier internal error: multiple dynptr args\n");
9449 return NULL;
9450 }
9451 state = ®s[BPF_REG_1 + i];
9452 }
9453
9454 if (!state)
9455 verbose(env, "verifier internal error: no dynptr arg found\n");
9456
9457 return state;
9458 }
9459
dynptr_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg)9460 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
9461 {
9462 struct bpf_func_state *state = func(env, reg);
9463 int spi;
9464
9465 if (reg->type == CONST_PTR_TO_DYNPTR)
9466 return reg->id;
9467 spi = dynptr_get_spi(env, reg);
9468 if (spi < 0)
9469 return spi;
9470 return state->stack[spi].spilled_ptr.id;
9471 }
9472
dynptr_ref_obj_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg)9473 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
9474 {
9475 struct bpf_func_state *state = func(env, reg);
9476 int spi;
9477
9478 if (reg->type == CONST_PTR_TO_DYNPTR)
9479 return reg->ref_obj_id;
9480 spi = dynptr_get_spi(env, reg);
9481 if (spi < 0)
9482 return spi;
9483 return state->stack[spi].spilled_ptr.ref_obj_id;
9484 }
9485
dynptr_get_type(struct bpf_verifier_env * env,struct bpf_reg_state * reg)9486 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
9487 struct bpf_reg_state *reg)
9488 {
9489 struct bpf_func_state *state = func(env, reg);
9490 int spi;
9491
9492 if (reg->type == CONST_PTR_TO_DYNPTR)
9493 return reg->dynptr.type;
9494
9495 spi = __get_spi(reg->off);
9496 if (spi < 0) {
9497 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
9498 return BPF_DYNPTR_TYPE_INVALID;
9499 }
9500
9501 return state->stack[spi].spilled_ptr.dynptr.type;
9502 }
9503
check_reg_const_str(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno)9504 static int check_reg_const_str(struct bpf_verifier_env *env,
9505 struct bpf_reg_state *reg, u32 regno)
9506 {
9507 struct bpf_map *map = reg->map_ptr;
9508 int err;
9509 int map_off;
9510 u64 map_addr;
9511 char *str_ptr;
9512
9513 if (reg->type != PTR_TO_MAP_VALUE)
9514 return -EINVAL;
9515
9516 if (!bpf_map_is_rdonly(map)) {
9517 verbose(env, "R%d does not point to a readonly map'\n", regno);
9518 return -EACCES;
9519 }
9520
9521 if (!tnum_is_const(reg->var_off)) {
9522 verbose(env, "R%d is not a constant address'\n", regno);
9523 return -EACCES;
9524 }
9525
9526 if (!map->ops->map_direct_value_addr) {
9527 verbose(env, "no direct value access support for this map type\n");
9528 return -EACCES;
9529 }
9530
9531 err = check_map_access(env, regno, reg->off,
9532 map->value_size - reg->off, false,
9533 ACCESS_HELPER);
9534 if (err)
9535 return err;
9536
9537 map_off = reg->off + reg->var_off.value;
9538 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
9539 if (err) {
9540 verbose(env, "direct value access on string failed\n");
9541 return err;
9542 }
9543
9544 str_ptr = (char *)(long)(map_addr);
9545 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
9546 verbose(env, "string is not zero-terminated\n");
9547 return -EINVAL;
9548 }
9549 return 0;
9550 }
9551
9552 /* Returns constant key value in `value` if possible, else negative error */
get_constant_map_key(struct bpf_verifier_env * env,struct bpf_reg_state * key,u32 key_size,s64 * value)9553 static int get_constant_map_key(struct bpf_verifier_env *env,
9554 struct bpf_reg_state *key,
9555 u32 key_size,
9556 s64 *value)
9557 {
9558 struct bpf_func_state *state = func(env, key);
9559 struct bpf_reg_state *reg;
9560 int slot, spi, off;
9561 int spill_size = 0;
9562 int zero_size = 0;
9563 int stack_off;
9564 int i, err;
9565 u8 *stype;
9566
9567 if (!env->bpf_capable)
9568 return -EOPNOTSUPP;
9569 if (key->type != PTR_TO_STACK)
9570 return -EOPNOTSUPP;
9571 if (!tnum_is_const(key->var_off))
9572 return -EOPNOTSUPP;
9573
9574 stack_off = key->off + key->var_off.value;
9575 slot = -stack_off - 1;
9576 spi = slot / BPF_REG_SIZE;
9577 off = slot % BPF_REG_SIZE;
9578 stype = state->stack[spi].slot_type;
9579
9580 /* First handle precisely tracked STACK_ZERO */
9581 for (i = off; i >= 0 && stype[i] == STACK_ZERO; i--)
9582 zero_size++;
9583 if (zero_size >= key_size) {
9584 *value = 0;
9585 return 0;
9586 }
9587
9588 /* Check that stack contains a scalar spill of expected size */
9589 if (!is_spilled_scalar_reg(&state->stack[spi]))
9590 return -EOPNOTSUPP;
9591 for (i = off; i >= 0 && stype[i] == STACK_SPILL; i--)
9592 spill_size++;
9593 if (spill_size != key_size)
9594 return -EOPNOTSUPP;
9595
9596 reg = &state->stack[spi].spilled_ptr;
9597 if (!tnum_is_const(reg->var_off))
9598 /* Stack value not statically known */
9599 return -EOPNOTSUPP;
9600
9601 /* We are relying on a constant value. So mark as precise
9602 * to prevent pruning on it.
9603 */
9604 bt_set_frame_slot(&env->bt, key->frameno, spi);
9605 err = mark_chain_precision_batch(env, env->cur_state);
9606 if (err < 0)
9607 return err;
9608
9609 *value = reg->var_off.value;
9610 return 0;
9611 }
9612
9613 static bool can_elide_value_nullness(enum bpf_map_type type);
9614
check_func_arg(struct bpf_verifier_env * env,u32 arg,struct bpf_call_arg_meta * meta,const struct bpf_func_proto * fn,int insn_idx)9615 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
9616 struct bpf_call_arg_meta *meta,
9617 const struct bpf_func_proto *fn,
9618 int insn_idx)
9619 {
9620 u32 regno = BPF_REG_1 + arg;
9621 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
9622 enum bpf_arg_type arg_type = fn->arg_type[arg];
9623 enum bpf_reg_type type = reg->type;
9624 u32 *arg_btf_id = NULL;
9625 u32 key_size;
9626 int err = 0;
9627
9628 if (arg_type == ARG_DONTCARE)
9629 return 0;
9630
9631 err = check_reg_arg(env, regno, SRC_OP);
9632 if (err)
9633 return err;
9634
9635 if (arg_type == ARG_ANYTHING) {
9636 if (is_pointer_value(env, regno)) {
9637 verbose(env, "R%d leaks addr into helper function\n",
9638 regno);
9639 return -EACCES;
9640 }
9641 return 0;
9642 }
9643
9644 if (type_is_pkt_pointer(type) &&
9645 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
9646 verbose(env, "helper access to the packet is not allowed\n");
9647 return -EACCES;
9648 }
9649
9650 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
9651 err = resolve_map_arg_type(env, meta, &arg_type);
9652 if (err)
9653 return err;
9654 }
9655
9656 if (register_is_null(reg) && type_may_be_null(arg_type))
9657 /* A NULL register has a SCALAR_VALUE type, so skip
9658 * type checking.
9659 */
9660 goto skip_type_check;
9661
9662 /* arg_btf_id and arg_size are in a union. */
9663 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
9664 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
9665 arg_btf_id = fn->arg_btf_id[arg];
9666
9667 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
9668 if (err)
9669 return err;
9670
9671 err = check_func_arg_reg_off(env, reg, regno, arg_type);
9672 if (err)
9673 return err;
9674
9675 skip_type_check:
9676 if (arg_type_is_release(arg_type)) {
9677 if (arg_type_is_dynptr(arg_type)) {
9678 struct bpf_func_state *state = func(env, reg);
9679 int spi;
9680
9681 /* Only dynptr created on stack can be released, thus
9682 * the get_spi and stack state checks for spilled_ptr
9683 * should only be done before process_dynptr_func for
9684 * PTR_TO_STACK.
9685 */
9686 if (reg->type == PTR_TO_STACK) {
9687 spi = dynptr_get_spi(env, reg);
9688 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
9689 verbose(env, "arg %d is an unacquired reference\n", regno);
9690 return -EINVAL;
9691 }
9692 } else {
9693 verbose(env, "cannot release unowned const bpf_dynptr\n");
9694 return -EINVAL;
9695 }
9696 } else if (!reg->ref_obj_id && !register_is_null(reg)) {
9697 verbose(env, "R%d must be referenced when passed to release function\n",
9698 regno);
9699 return -EINVAL;
9700 }
9701 if (meta->release_regno) {
9702 verifier_bug(env, "more than one release argument");
9703 return -EFAULT;
9704 }
9705 meta->release_regno = regno;
9706 }
9707
9708 if (reg->ref_obj_id && base_type(arg_type) != ARG_KPTR_XCHG_DEST) {
9709 if (meta->ref_obj_id) {
9710 verbose(env, "more than one arg with ref_obj_id R%d %u %u",
9711 regno, reg->ref_obj_id,
9712 meta->ref_obj_id);
9713 return -EACCES;
9714 }
9715 meta->ref_obj_id = reg->ref_obj_id;
9716 }
9717
9718 switch (base_type(arg_type)) {
9719 case ARG_CONST_MAP_PTR:
9720 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
9721 if (meta->map_ptr) {
9722 /* Use map_uid (which is unique id of inner map) to reject:
9723 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
9724 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
9725 * if (inner_map1 && inner_map2) {
9726 * timer = bpf_map_lookup_elem(inner_map1);
9727 * if (timer)
9728 * // mismatch would have been allowed
9729 * bpf_timer_init(timer, inner_map2);
9730 * }
9731 *
9732 * Comparing map_ptr is enough to distinguish normal and outer maps.
9733 */
9734 if (meta->map_ptr != reg->map_ptr ||
9735 meta->map_uid != reg->map_uid) {
9736 verbose(env,
9737 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
9738 meta->map_uid, reg->map_uid);
9739 return -EINVAL;
9740 }
9741 }
9742 meta->map_ptr = reg->map_ptr;
9743 meta->map_uid = reg->map_uid;
9744 break;
9745 case ARG_PTR_TO_MAP_KEY:
9746 /* bpf_map_xxx(..., map_ptr, ..., key) call:
9747 * check that [key, key + map->key_size) are within
9748 * stack limits and initialized
9749 */
9750 if (!meta->map_ptr) {
9751 /* in function declaration map_ptr must come before
9752 * map_key, so that it's verified and known before
9753 * we have to check map_key here. Otherwise it means
9754 * that kernel subsystem misconfigured verifier
9755 */
9756 verifier_bug(env, "invalid map_ptr to access map->key");
9757 return -EFAULT;
9758 }
9759 key_size = meta->map_ptr->key_size;
9760 err = check_helper_mem_access(env, regno, key_size, BPF_READ, false, NULL);
9761 if (err)
9762 return err;
9763 if (can_elide_value_nullness(meta->map_ptr->map_type)) {
9764 err = get_constant_map_key(env, reg, key_size, &meta->const_map_key);
9765 if (err < 0) {
9766 meta->const_map_key = -1;
9767 if (err == -EOPNOTSUPP)
9768 err = 0;
9769 else
9770 return err;
9771 }
9772 }
9773 break;
9774 case ARG_PTR_TO_MAP_VALUE:
9775 if (type_may_be_null(arg_type) && register_is_null(reg))
9776 return 0;
9777
9778 /* bpf_map_xxx(..., map_ptr, ..., value) call:
9779 * check [value, value + map->value_size) validity
9780 */
9781 if (!meta->map_ptr) {
9782 /* kernel subsystem misconfigured verifier */
9783 verifier_bug(env, "invalid map_ptr to access map->value");
9784 return -EFAULT;
9785 }
9786 meta->raw_mode = arg_type & MEM_UNINIT;
9787 err = check_helper_mem_access(env, regno, meta->map_ptr->value_size,
9788 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
9789 false, meta);
9790 break;
9791 case ARG_PTR_TO_PERCPU_BTF_ID:
9792 if (!reg->btf_id) {
9793 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
9794 return -EACCES;
9795 }
9796 meta->ret_btf = reg->btf;
9797 meta->ret_btf_id = reg->btf_id;
9798 break;
9799 case ARG_PTR_TO_SPIN_LOCK:
9800 if (in_rbtree_lock_required_cb(env)) {
9801 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
9802 return -EACCES;
9803 }
9804 if (meta->func_id == BPF_FUNC_spin_lock) {
9805 err = process_spin_lock(env, regno, PROCESS_SPIN_LOCK);
9806 if (err)
9807 return err;
9808 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
9809 err = process_spin_lock(env, regno, 0);
9810 if (err)
9811 return err;
9812 } else {
9813 verifier_bug(env, "spin lock arg on unexpected helper");
9814 return -EFAULT;
9815 }
9816 break;
9817 case ARG_PTR_TO_TIMER:
9818 err = process_timer_func(env, regno, meta);
9819 if (err)
9820 return err;
9821 break;
9822 case ARG_PTR_TO_FUNC:
9823 meta->subprogno = reg->subprogno;
9824 break;
9825 case ARG_PTR_TO_MEM:
9826 /* The access to this pointer is only checked when we hit the
9827 * next is_mem_size argument below.
9828 */
9829 meta->raw_mode = arg_type & MEM_UNINIT;
9830 if (arg_type & MEM_FIXED_SIZE) {
9831 err = check_helper_mem_access(env, regno, fn->arg_size[arg],
9832 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
9833 false, meta);
9834 if (err)
9835 return err;
9836 if (arg_type & MEM_ALIGNED)
9837 err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true);
9838 }
9839 break;
9840 case ARG_CONST_SIZE:
9841 err = check_mem_size_reg(env, reg, regno,
9842 fn->arg_type[arg - 1] & MEM_WRITE ?
9843 BPF_WRITE : BPF_READ,
9844 false, meta);
9845 break;
9846 case ARG_CONST_SIZE_OR_ZERO:
9847 err = check_mem_size_reg(env, reg, regno,
9848 fn->arg_type[arg - 1] & MEM_WRITE ?
9849 BPF_WRITE : BPF_READ,
9850 true, meta);
9851 break;
9852 case ARG_PTR_TO_DYNPTR:
9853 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
9854 if (err)
9855 return err;
9856 break;
9857 case ARG_CONST_ALLOC_SIZE_OR_ZERO:
9858 if (!tnum_is_const(reg->var_off)) {
9859 verbose(env, "R%d is not a known constant'\n",
9860 regno);
9861 return -EACCES;
9862 }
9863 meta->mem_size = reg->var_off.value;
9864 err = mark_chain_precision(env, regno);
9865 if (err)
9866 return err;
9867 break;
9868 case ARG_PTR_TO_CONST_STR:
9869 {
9870 err = check_reg_const_str(env, reg, regno);
9871 if (err)
9872 return err;
9873 break;
9874 }
9875 case ARG_KPTR_XCHG_DEST:
9876 err = process_kptr_func(env, regno, meta);
9877 if (err)
9878 return err;
9879 break;
9880 }
9881
9882 return err;
9883 }
9884
may_update_sockmap(struct bpf_verifier_env * env,int func_id)9885 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
9886 {
9887 enum bpf_attach_type eatype = env->prog->expected_attach_type;
9888 enum bpf_prog_type type = resolve_prog_type(env->prog);
9889
9890 if (func_id != BPF_FUNC_map_update_elem &&
9891 func_id != BPF_FUNC_map_delete_elem)
9892 return false;
9893
9894 /* It's not possible to get access to a locked struct sock in these
9895 * contexts, so updating is safe.
9896 */
9897 switch (type) {
9898 case BPF_PROG_TYPE_TRACING:
9899 if (eatype == BPF_TRACE_ITER)
9900 return true;
9901 break;
9902 case BPF_PROG_TYPE_SOCK_OPS:
9903 /* map_update allowed only via dedicated helpers with event type checks */
9904 if (func_id == BPF_FUNC_map_delete_elem)
9905 return true;
9906 break;
9907 case BPF_PROG_TYPE_SOCKET_FILTER:
9908 case BPF_PROG_TYPE_SCHED_CLS:
9909 case BPF_PROG_TYPE_SCHED_ACT:
9910 case BPF_PROG_TYPE_XDP:
9911 case BPF_PROG_TYPE_SK_REUSEPORT:
9912 case BPF_PROG_TYPE_FLOW_DISSECTOR:
9913 case BPF_PROG_TYPE_SK_LOOKUP:
9914 return true;
9915 default:
9916 break;
9917 }
9918
9919 verbose(env, "cannot update sockmap in this context\n");
9920 return false;
9921 }
9922
allow_tail_call_in_subprogs(struct bpf_verifier_env * env)9923 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
9924 {
9925 return env->prog->jit_requested &&
9926 bpf_jit_supports_subprog_tailcalls();
9927 }
9928
check_map_func_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,int func_id)9929 static int check_map_func_compatibility(struct bpf_verifier_env *env,
9930 struct bpf_map *map, int func_id)
9931 {
9932 if (!map)
9933 return 0;
9934
9935 /* We need a two way check, first is from map perspective ... */
9936 switch (map->map_type) {
9937 case BPF_MAP_TYPE_PROG_ARRAY:
9938 if (func_id != BPF_FUNC_tail_call)
9939 goto error;
9940 break;
9941 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
9942 if (func_id != BPF_FUNC_perf_event_read &&
9943 func_id != BPF_FUNC_perf_event_output &&
9944 func_id != BPF_FUNC_skb_output &&
9945 func_id != BPF_FUNC_perf_event_read_value &&
9946 func_id != BPF_FUNC_xdp_output)
9947 goto error;
9948 break;
9949 case BPF_MAP_TYPE_RINGBUF:
9950 if (func_id != BPF_FUNC_ringbuf_output &&
9951 func_id != BPF_FUNC_ringbuf_reserve &&
9952 func_id != BPF_FUNC_ringbuf_query &&
9953 func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
9954 func_id != BPF_FUNC_ringbuf_submit_dynptr &&
9955 func_id != BPF_FUNC_ringbuf_discard_dynptr)
9956 goto error;
9957 break;
9958 case BPF_MAP_TYPE_USER_RINGBUF:
9959 if (func_id != BPF_FUNC_user_ringbuf_drain)
9960 goto error;
9961 break;
9962 case BPF_MAP_TYPE_STACK_TRACE:
9963 if (func_id != BPF_FUNC_get_stackid)
9964 goto error;
9965 break;
9966 case BPF_MAP_TYPE_CGROUP_ARRAY:
9967 if (func_id != BPF_FUNC_skb_under_cgroup &&
9968 func_id != BPF_FUNC_current_task_under_cgroup)
9969 goto error;
9970 break;
9971 case BPF_MAP_TYPE_CGROUP_STORAGE:
9972 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
9973 if (func_id != BPF_FUNC_get_local_storage)
9974 goto error;
9975 break;
9976 case BPF_MAP_TYPE_DEVMAP:
9977 case BPF_MAP_TYPE_DEVMAP_HASH:
9978 if (func_id != BPF_FUNC_redirect_map &&
9979 func_id != BPF_FUNC_map_lookup_elem)
9980 goto error;
9981 break;
9982 /* Restrict bpf side of cpumap and xskmap, open when use-cases
9983 * appear.
9984 */
9985 case BPF_MAP_TYPE_CPUMAP:
9986 if (func_id != BPF_FUNC_redirect_map)
9987 goto error;
9988 break;
9989 case BPF_MAP_TYPE_XSKMAP:
9990 if (func_id != BPF_FUNC_redirect_map &&
9991 func_id != BPF_FUNC_map_lookup_elem)
9992 goto error;
9993 break;
9994 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
9995 case BPF_MAP_TYPE_HASH_OF_MAPS:
9996 if (func_id != BPF_FUNC_map_lookup_elem)
9997 goto error;
9998 break;
9999 case BPF_MAP_TYPE_SOCKMAP:
10000 if (func_id != BPF_FUNC_sk_redirect_map &&
10001 func_id != BPF_FUNC_sock_map_update &&
10002 func_id != BPF_FUNC_msg_redirect_map &&
10003 func_id != BPF_FUNC_sk_select_reuseport &&
10004 func_id != BPF_FUNC_map_lookup_elem &&
10005 !may_update_sockmap(env, func_id))
10006 goto error;
10007 break;
10008 case BPF_MAP_TYPE_SOCKHASH:
10009 if (func_id != BPF_FUNC_sk_redirect_hash &&
10010 func_id != BPF_FUNC_sock_hash_update &&
10011 func_id != BPF_FUNC_msg_redirect_hash &&
10012 func_id != BPF_FUNC_sk_select_reuseport &&
10013 func_id != BPF_FUNC_map_lookup_elem &&
10014 !may_update_sockmap(env, func_id))
10015 goto error;
10016 break;
10017 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
10018 if (func_id != BPF_FUNC_sk_select_reuseport)
10019 goto error;
10020 break;
10021 case BPF_MAP_TYPE_QUEUE:
10022 case BPF_MAP_TYPE_STACK:
10023 if (func_id != BPF_FUNC_map_peek_elem &&
10024 func_id != BPF_FUNC_map_pop_elem &&
10025 func_id != BPF_FUNC_map_push_elem)
10026 goto error;
10027 break;
10028 case BPF_MAP_TYPE_SK_STORAGE:
10029 if (func_id != BPF_FUNC_sk_storage_get &&
10030 func_id != BPF_FUNC_sk_storage_delete &&
10031 func_id != BPF_FUNC_kptr_xchg)
10032 goto error;
10033 break;
10034 case BPF_MAP_TYPE_INODE_STORAGE:
10035 if (func_id != BPF_FUNC_inode_storage_get &&
10036 func_id != BPF_FUNC_inode_storage_delete &&
10037 func_id != BPF_FUNC_kptr_xchg)
10038 goto error;
10039 break;
10040 case BPF_MAP_TYPE_TASK_STORAGE:
10041 if (func_id != BPF_FUNC_task_storage_get &&
10042 func_id != BPF_FUNC_task_storage_delete &&
10043 func_id != BPF_FUNC_kptr_xchg)
10044 goto error;
10045 break;
10046 case BPF_MAP_TYPE_CGRP_STORAGE:
10047 if (func_id != BPF_FUNC_cgrp_storage_get &&
10048 func_id != BPF_FUNC_cgrp_storage_delete &&
10049 func_id != BPF_FUNC_kptr_xchg)
10050 goto error;
10051 break;
10052 case BPF_MAP_TYPE_BLOOM_FILTER:
10053 if (func_id != BPF_FUNC_map_peek_elem &&
10054 func_id != BPF_FUNC_map_push_elem)
10055 goto error;
10056 break;
10057 default:
10058 break;
10059 }
10060
10061 /* ... and second from the function itself. */
10062 switch (func_id) {
10063 case BPF_FUNC_tail_call:
10064 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
10065 goto error;
10066 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
10067 verbose(env, "mixing of tail_calls and bpf-to-bpf calls is not supported\n");
10068 return -EINVAL;
10069 }
10070 break;
10071 case BPF_FUNC_perf_event_read:
10072 case BPF_FUNC_perf_event_output:
10073 case BPF_FUNC_perf_event_read_value:
10074 case BPF_FUNC_skb_output:
10075 case BPF_FUNC_xdp_output:
10076 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
10077 goto error;
10078 break;
10079 case BPF_FUNC_ringbuf_output:
10080 case BPF_FUNC_ringbuf_reserve:
10081 case BPF_FUNC_ringbuf_query:
10082 case BPF_FUNC_ringbuf_reserve_dynptr:
10083 case BPF_FUNC_ringbuf_submit_dynptr:
10084 case BPF_FUNC_ringbuf_discard_dynptr:
10085 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
10086 goto error;
10087 break;
10088 case BPF_FUNC_user_ringbuf_drain:
10089 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
10090 goto error;
10091 break;
10092 case BPF_FUNC_get_stackid:
10093 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
10094 goto error;
10095 break;
10096 case BPF_FUNC_current_task_under_cgroup:
10097 case BPF_FUNC_skb_under_cgroup:
10098 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
10099 goto error;
10100 break;
10101 case BPF_FUNC_redirect_map:
10102 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
10103 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
10104 map->map_type != BPF_MAP_TYPE_CPUMAP &&
10105 map->map_type != BPF_MAP_TYPE_XSKMAP)
10106 goto error;
10107 break;
10108 case BPF_FUNC_sk_redirect_map:
10109 case BPF_FUNC_msg_redirect_map:
10110 case BPF_FUNC_sock_map_update:
10111 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
10112 goto error;
10113 break;
10114 case BPF_FUNC_sk_redirect_hash:
10115 case BPF_FUNC_msg_redirect_hash:
10116 case BPF_FUNC_sock_hash_update:
10117 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
10118 goto error;
10119 break;
10120 case BPF_FUNC_get_local_storage:
10121 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
10122 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
10123 goto error;
10124 break;
10125 case BPF_FUNC_sk_select_reuseport:
10126 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
10127 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
10128 map->map_type != BPF_MAP_TYPE_SOCKHASH)
10129 goto error;
10130 break;
10131 case BPF_FUNC_map_pop_elem:
10132 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
10133 map->map_type != BPF_MAP_TYPE_STACK)
10134 goto error;
10135 break;
10136 case BPF_FUNC_map_peek_elem:
10137 case BPF_FUNC_map_push_elem:
10138 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
10139 map->map_type != BPF_MAP_TYPE_STACK &&
10140 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
10141 goto error;
10142 break;
10143 case BPF_FUNC_map_lookup_percpu_elem:
10144 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
10145 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
10146 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
10147 goto error;
10148 break;
10149 case BPF_FUNC_sk_storage_get:
10150 case BPF_FUNC_sk_storage_delete:
10151 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
10152 goto error;
10153 break;
10154 case BPF_FUNC_inode_storage_get:
10155 case BPF_FUNC_inode_storage_delete:
10156 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
10157 goto error;
10158 break;
10159 case BPF_FUNC_task_storage_get:
10160 case BPF_FUNC_task_storage_delete:
10161 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
10162 goto error;
10163 break;
10164 case BPF_FUNC_cgrp_storage_get:
10165 case BPF_FUNC_cgrp_storage_delete:
10166 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
10167 goto error;
10168 break;
10169 default:
10170 break;
10171 }
10172
10173 return 0;
10174 error:
10175 verbose(env, "cannot pass map_type %d into func %s#%d\n",
10176 map->map_type, func_id_name(func_id), func_id);
10177 return -EINVAL;
10178 }
10179
check_raw_mode_ok(const struct bpf_func_proto * fn)10180 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
10181 {
10182 int count = 0;
10183
10184 if (arg_type_is_raw_mem(fn->arg1_type))
10185 count++;
10186 if (arg_type_is_raw_mem(fn->arg2_type))
10187 count++;
10188 if (arg_type_is_raw_mem(fn->arg3_type))
10189 count++;
10190 if (arg_type_is_raw_mem(fn->arg4_type))
10191 count++;
10192 if (arg_type_is_raw_mem(fn->arg5_type))
10193 count++;
10194
10195 /* We only support one arg being in raw mode at the moment,
10196 * which is sufficient for the helper functions we have
10197 * right now.
10198 */
10199 return count <= 1;
10200 }
10201
check_args_pair_invalid(const struct bpf_func_proto * fn,int arg)10202 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
10203 {
10204 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
10205 bool has_size = fn->arg_size[arg] != 0;
10206 bool is_next_size = false;
10207
10208 if (arg + 1 < ARRAY_SIZE(fn->arg_type))
10209 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
10210
10211 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
10212 return is_next_size;
10213
10214 return has_size == is_next_size || is_next_size == is_fixed;
10215 }
10216
check_arg_pair_ok(const struct bpf_func_proto * fn)10217 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
10218 {
10219 /* bpf_xxx(..., buf, len) call will access 'len'
10220 * bytes from memory 'buf'. Both arg types need
10221 * to be paired, so make sure there's no buggy
10222 * helper function specification.
10223 */
10224 if (arg_type_is_mem_size(fn->arg1_type) ||
10225 check_args_pair_invalid(fn, 0) ||
10226 check_args_pair_invalid(fn, 1) ||
10227 check_args_pair_invalid(fn, 2) ||
10228 check_args_pair_invalid(fn, 3) ||
10229 check_args_pair_invalid(fn, 4))
10230 return false;
10231
10232 return true;
10233 }
10234
check_btf_id_ok(const struct bpf_func_proto * fn)10235 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
10236 {
10237 int i;
10238
10239 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
10240 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
10241 return !!fn->arg_btf_id[i];
10242 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
10243 return fn->arg_btf_id[i] == BPF_PTR_POISON;
10244 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
10245 /* arg_btf_id and arg_size are in a union. */
10246 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
10247 !(fn->arg_type[i] & MEM_FIXED_SIZE)))
10248 return false;
10249 }
10250
10251 return true;
10252 }
10253
check_func_proto(const struct bpf_func_proto * fn,int func_id)10254 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
10255 {
10256 return check_raw_mode_ok(fn) &&
10257 check_arg_pair_ok(fn) &&
10258 check_btf_id_ok(fn) ? 0 : -EINVAL;
10259 }
10260
10261 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
10262 * are now invalid, so turn them into unknown SCALAR_VALUE.
10263 *
10264 * This also applies to dynptr slices belonging to skb and xdp dynptrs,
10265 * since these slices point to packet data.
10266 */
clear_all_pkt_pointers(struct bpf_verifier_env * env)10267 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
10268 {
10269 struct bpf_func_state *state;
10270 struct bpf_reg_state *reg;
10271
10272 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
10273 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
10274 mark_reg_invalid(env, reg);
10275 }));
10276 }
10277
10278 enum {
10279 AT_PKT_END = -1,
10280 BEYOND_PKT_END = -2,
10281 };
10282
mark_pkt_end(struct bpf_verifier_state * vstate,int regn,bool range_open)10283 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
10284 {
10285 struct bpf_func_state *state = vstate->frame[vstate->curframe];
10286 struct bpf_reg_state *reg = &state->regs[regn];
10287
10288 if (reg->type != PTR_TO_PACKET)
10289 /* PTR_TO_PACKET_META is not supported yet */
10290 return;
10291
10292 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
10293 * How far beyond pkt_end it goes is unknown.
10294 * if (!range_open) it's the case of pkt >= pkt_end
10295 * if (range_open) it's the case of pkt > pkt_end
10296 * hence this pointer is at least 1 byte bigger than pkt_end
10297 */
10298 if (range_open)
10299 reg->range = BEYOND_PKT_END;
10300 else
10301 reg->range = AT_PKT_END;
10302 }
10303
release_reference_nomark(struct bpf_verifier_state * state,int ref_obj_id)10304 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id)
10305 {
10306 int i;
10307
10308 for (i = 0; i < state->acquired_refs; i++) {
10309 if (state->refs[i].type != REF_TYPE_PTR)
10310 continue;
10311 if (state->refs[i].id == ref_obj_id) {
10312 release_reference_state(state, i);
10313 return 0;
10314 }
10315 }
10316 return -EINVAL;
10317 }
10318
10319 /* The pointer with the specified id has released its reference to kernel
10320 * resources. Identify all copies of the same pointer and clear the reference.
10321 *
10322 * This is the release function corresponding to acquire_reference(). Idempotent.
10323 */
release_reference(struct bpf_verifier_env * env,int ref_obj_id)10324 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id)
10325 {
10326 struct bpf_verifier_state *vstate = env->cur_state;
10327 struct bpf_func_state *state;
10328 struct bpf_reg_state *reg;
10329 int err;
10330
10331 err = release_reference_nomark(vstate, ref_obj_id);
10332 if (err)
10333 return err;
10334
10335 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
10336 if (reg->ref_obj_id == ref_obj_id)
10337 mark_reg_invalid(env, reg);
10338 }));
10339
10340 return 0;
10341 }
10342
invalidate_non_owning_refs(struct bpf_verifier_env * env)10343 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
10344 {
10345 struct bpf_func_state *unused;
10346 struct bpf_reg_state *reg;
10347
10348 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
10349 if (type_is_non_owning_ref(reg->type))
10350 mark_reg_invalid(env, reg);
10351 }));
10352 }
10353
clear_caller_saved_regs(struct bpf_verifier_env * env,struct bpf_reg_state * regs)10354 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
10355 struct bpf_reg_state *regs)
10356 {
10357 int i;
10358
10359 /* after the call registers r0 - r5 were scratched */
10360 for (i = 0; i < CALLER_SAVED_REGS; i++) {
10361 mark_reg_not_init(env, regs, caller_saved[i]);
10362 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK);
10363 }
10364 }
10365
10366 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
10367 struct bpf_func_state *caller,
10368 struct bpf_func_state *callee,
10369 int insn_idx);
10370
10371 static bool is_task_work_add_kfunc(u32 func_id);
10372
10373 static int set_callee_state(struct bpf_verifier_env *env,
10374 struct bpf_func_state *caller,
10375 struct bpf_func_state *callee, int insn_idx);
10376
setup_func_entry(struct bpf_verifier_env * env,int subprog,int callsite,set_callee_state_fn set_callee_state_cb,struct bpf_verifier_state * state)10377 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite,
10378 set_callee_state_fn set_callee_state_cb,
10379 struct bpf_verifier_state *state)
10380 {
10381 struct bpf_func_state *caller, *callee;
10382 int err;
10383
10384 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
10385 verbose(env, "the call stack of %d frames is too deep\n",
10386 state->curframe + 2);
10387 return -E2BIG;
10388 }
10389
10390 if (state->frame[state->curframe + 1]) {
10391 verifier_bug(env, "Frame %d already allocated", state->curframe + 1);
10392 return -EFAULT;
10393 }
10394
10395 caller = state->frame[state->curframe];
10396 callee = kzalloc(sizeof(*callee), GFP_KERNEL_ACCOUNT);
10397 if (!callee)
10398 return -ENOMEM;
10399 state->frame[state->curframe + 1] = callee;
10400
10401 /* callee cannot access r0, r6 - r9 for reading and has to write
10402 * into its own stack before reading from it.
10403 * callee can read/write into caller's stack
10404 */
10405 init_func_state(env, callee,
10406 /* remember the callsite, it will be used by bpf_exit */
10407 callsite,
10408 state->curframe + 1 /* frameno within this callchain */,
10409 subprog /* subprog number within this prog */);
10410 err = set_callee_state_cb(env, caller, callee, callsite);
10411 if (err)
10412 goto err_out;
10413
10414 /* only increment it after check_reg_arg() finished */
10415 state->curframe++;
10416
10417 return 0;
10418
10419 err_out:
10420 free_func_state(callee);
10421 state->frame[state->curframe + 1] = NULL;
10422 return err;
10423 }
10424
btf_check_func_arg_match(struct bpf_verifier_env * env,int subprog,const struct btf * btf,struct bpf_reg_state * regs)10425 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
10426 const struct btf *btf,
10427 struct bpf_reg_state *regs)
10428 {
10429 struct bpf_subprog_info *sub = subprog_info(env, subprog);
10430 struct bpf_verifier_log *log = &env->log;
10431 u32 i;
10432 int ret;
10433
10434 ret = btf_prepare_func_args(env, subprog);
10435 if (ret)
10436 return ret;
10437
10438 /* check that BTF function arguments match actual types that the
10439 * verifier sees.
10440 */
10441 for (i = 0; i < sub->arg_cnt; i++) {
10442 u32 regno = i + 1;
10443 struct bpf_reg_state *reg = ®s[regno];
10444 struct bpf_subprog_arg_info *arg = &sub->args[i];
10445
10446 if (arg->arg_type == ARG_ANYTHING) {
10447 if (reg->type != SCALAR_VALUE) {
10448 bpf_log(log, "R%d is not a scalar\n", regno);
10449 return -EINVAL;
10450 }
10451 } else if (arg->arg_type & PTR_UNTRUSTED) {
10452 /*
10453 * Anything is allowed for untrusted arguments, as these are
10454 * read-only and probe read instructions would protect against
10455 * invalid memory access.
10456 */
10457 } else if (arg->arg_type == ARG_PTR_TO_CTX) {
10458 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
10459 if (ret < 0)
10460 return ret;
10461 /* If function expects ctx type in BTF check that caller
10462 * is passing PTR_TO_CTX.
10463 */
10464 if (reg->type != PTR_TO_CTX) {
10465 bpf_log(log, "arg#%d expects pointer to ctx\n", i);
10466 return -EINVAL;
10467 }
10468 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
10469 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
10470 if (ret < 0)
10471 return ret;
10472 if (check_mem_reg(env, reg, regno, arg->mem_size))
10473 return -EINVAL;
10474 if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) {
10475 bpf_log(log, "arg#%d is expected to be non-NULL\n", i);
10476 return -EINVAL;
10477 }
10478 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
10479 /*
10480 * Can pass any value and the kernel won't crash, but
10481 * only PTR_TO_ARENA or SCALAR make sense. Everything
10482 * else is a bug in the bpf program. Point it out to
10483 * the user at the verification time instead of
10484 * run-time debug nightmare.
10485 */
10486 if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) {
10487 bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno);
10488 return -EINVAL;
10489 }
10490 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
10491 ret = check_func_arg_reg_off(env, reg, regno, ARG_PTR_TO_DYNPTR);
10492 if (ret)
10493 return ret;
10494
10495 ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0);
10496 if (ret)
10497 return ret;
10498 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
10499 struct bpf_call_arg_meta meta;
10500 int err;
10501
10502 if (register_is_null(reg) && type_may_be_null(arg->arg_type))
10503 continue;
10504
10505 memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */
10506 err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta);
10507 err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type);
10508 if (err)
10509 return err;
10510 } else {
10511 verifier_bug(env, "unrecognized arg#%d type %d", i, arg->arg_type);
10512 return -EFAULT;
10513 }
10514 }
10515
10516 return 0;
10517 }
10518
10519 /* Compare BTF of a function call with given bpf_reg_state.
10520 * Returns:
10521 * EFAULT - there is a verifier bug. Abort verification.
10522 * EINVAL - there is a type mismatch or BTF is not available.
10523 * 0 - BTF matches with what bpf_reg_state expects.
10524 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
10525 */
btf_check_subprog_call(struct bpf_verifier_env * env,int subprog,struct bpf_reg_state * regs)10526 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
10527 struct bpf_reg_state *regs)
10528 {
10529 struct bpf_prog *prog = env->prog;
10530 struct btf *btf = prog->aux->btf;
10531 u32 btf_id;
10532 int err;
10533
10534 if (!prog->aux->func_info)
10535 return -EINVAL;
10536
10537 btf_id = prog->aux->func_info[subprog].type_id;
10538 if (!btf_id)
10539 return -EFAULT;
10540
10541 if (prog->aux->func_info_aux[subprog].unreliable)
10542 return -EINVAL;
10543
10544 err = btf_check_func_arg_match(env, subprog, btf, regs);
10545 /* Compiler optimizations can remove arguments from static functions
10546 * or mismatched type can be passed into a global function.
10547 * In such cases mark the function as unreliable from BTF point of view.
10548 */
10549 if (err)
10550 prog->aux->func_info_aux[subprog].unreliable = true;
10551 return err;
10552 }
10553
push_callback_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int insn_idx,int subprog,set_callee_state_fn set_callee_state_cb)10554 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10555 int insn_idx, int subprog,
10556 set_callee_state_fn set_callee_state_cb)
10557 {
10558 struct bpf_verifier_state *state = env->cur_state, *callback_state;
10559 struct bpf_func_state *caller, *callee;
10560 int err;
10561
10562 caller = state->frame[state->curframe];
10563 err = btf_check_subprog_call(env, subprog, caller->regs);
10564 if (err == -EFAULT)
10565 return err;
10566
10567 /* set_callee_state is used for direct subprog calls, but we are
10568 * interested in validating only BPF helpers that can call subprogs as
10569 * callbacks
10570 */
10571 env->subprog_info[subprog].is_cb = true;
10572 if (bpf_pseudo_kfunc_call(insn) &&
10573 !is_callback_calling_kfunc(insn->imm)) {
10574 verifier_bug(env, "kfunc %s#%d not marked as callback-calling",
10575 func_id_name(insn->imm), insn->imm);
10576 return -EFAULT;
10577 } else if (!bpf_pseudo_kfunc_call(insn) &&
10578 !is_callback_calling_function(insn->imm)) { /* helper */
10579 verifier_bug(env, "helper %s#%d not marked as callback-calling",
10580 func_id_name(insn->imm), insn->imm);
10581 return -EFAULT;
10582 }
10583
10584 if (is_async_callback_calling_insn(insn)) {
10585 struct bpf_verifier_state *async_cb;
10586
10587 /* there is no real recursion here. timer and workqueue callbacks are async */
10588 env->subprog_info[subprog].is_async_cb = true;
10589 async_cb = push_async_cb(env, env->subprog_info[subprog].start,
10590 insn_idx, subprog,
10591 is_bpf_wq_set_callback_impl_kfunc(insn->imm) ||
10592 is_task_work_add_kfunc(insn->imm));
10593 if (!async_cb)
10594 return -EFAULT;
10595 callee = async_cb->frame[0];
10596 callee->async_entry_cnt = caller->async_entry_cnt + 1;
10597
10598 /* Convert bpf_timer_set_callback() args into timer callback args */
10599 err = set_callee_state_cb(env, caller, callee, insn_idx);
10600 if (err)
10601 return err;
10602
10603 return 0;
10604 }
10605
10606 /* for callback functions enqueue entry to callback and
10607 * proceed with next instruction within current frame.
10608 */
10609 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false);
10610 if (!callback_state)
10611 return -ENOMEM;
10612
10613 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb,
10614 callback_state);
10615 if (err)
10616 return err;
10617
10618 callback_state->callback_unroll_depth++;
10619 callback_state->frame[callback_state->curframe - 1]->callback_depth++;
10620 caller->callback_depth = 0;
10621 return 0;
10622 }
10623
check_func_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)10624 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10625 int *insn_idx)
10626 {
10627 struct bpf_verifier_state *state = env->cur_state;
10628 struct bpf_func_state *caller;
10629 int err, subprog, target_insn;
10630
10631 target_insn = *insn_idx + insn->imm + 1;
10632 subprog = find_subprog(env, target_insn);
10633 if (verifier_bug_if(subprog < 0, env, "target of func call at insn %d is not a program",
10634 target_insn))
10635 return -EFAULT;
10636
10637 caller = state->frame[state->curframe];
10638 err = btf_check_subprog_call(env, subprog, caller->regs);
10639 if (err == -EFAULT)
10640 return err;
10641 if (subprog_is_global(env, subprog)) {
10642 const char *sub_name = subprog_name(env, subprog);
10643
10644 if (env->cur_state->active_locks) {
10645 verbose(env, "global function calls are not allowed while holding a lock,\n"
10646 "use static function instead\n");
10647 return -EINVAL;
10648 }
10649
10650 if (env->subprog_info[subprog].might_sleep &&
10651 (env->cur_state->active_rcu_lock || env->cur_state->active_preempt_locks ||
10652 env->cur_state->active_irq_id || !in_sleepable(env))) {
10653 verbose(env, "global functions that may sleep are not allowed in non-sleepable context,\n"
10654 "i.e., in a RCU/IRQ/preempt-disabled section, or in\n"
10655 "a non-sleepable BPF program context\n");
10656 return -EINVAL;
10657 }
10658
10659 if (err) {
10660 verbose(env, "Caller passes invalid args into func#%d ('%s')\n",
10661 subprog, sub_name);
10662 return err;
10663 }
10664
10665 verbose(env, "Func#%d ('%s') is global and assumed valid.\n",
10666 subprog, sub_name);
10667 if (env->subprog_info[subprog].changes_pkt_data)
10668 clear_all_pkt_pointers(env);
10669 /* mark global subprog for verifying after main prog */
10670 subprog_aux(env, subprog)->called = true;
10671 clear_caller_saved_regs(env, caller->regs);
10672
10673 /* All global functions return a 64-bit SCALAR_VALUE */
10674 mark_reg_unknown(env, caller->regs, BPF_REG_0);
10675 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10676
10677 /* continue with next insn after call */
10678 return 0;
10679 }
10680
10681 /* for regular function entry setup new frame and continue
10682 * from that frame.
10683 */
10684 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state);
10685 if (err)
10686 return err;
10687
10688 clear_caller_saved_regs(env, caller->regs);
10689
10690 /* and go analyze first insn of the callee */
10691 *insn_idx = env->subprog_info[subprog].start - 1;
10692
10693 bpf_reset_live_stack_callchain(env);
10694
10695 if (env->log.level & BPF_LOG_LEVEL) {
10696 verbose(env, "caller:\n");
10697 print_verifier_state(env, state, caller->frameno, true);
10698 verbose(env, "callee:\n");
10699 print_verifier_state(env, state, state->curframe, true);
10700 }
10701
10702 return 0;
10703 }
10704
map_set_for_each_callback_args(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee)10705 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
10706 struct bpf_func_state *caller,
10707 struct bpf_func_state *callee)
10708 {
10709 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
10710 * void *callback_ctx, u64 flags);
10711 * callback_fn(struct bpf_map *map, void *key, void *value,
10712 * void *callback_ctx);
10713 */
10714 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
10715
10716 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
10717 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
10718 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
10719
10720 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
10721 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
10722 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
10723
10724 /* pointer to stack or null */
10725 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
10726
10727 /* unused */
10728 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10729 return 0;
10730 }
10731
set_callee_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10732 static int set_callee_state(struct bpf_verifier_env *env,
10733 struct bpf_func_state *caller,
10734 struct bpf_func_state *callee, int insn_idx)
10735 {
10736 int i;
10737
10738 /* copy r1 - r5 args that callee can access. The copy includes parent
10739 * pointers, which connects us up to the liveness chain
10740 */
10741 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
10742 callee->regs[i] = caller->regs[i];
10743 return 0;
10744 }
10745
set_map_elem_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10746 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
10747 struct bpf_func_state *caller,
10748 struct bpf_func_state *callee,
10749 int insn_idx)
10750 {
10751 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
10752 struct bpf_map *map;
10753 int err;
10754
10755 /* valid map_ptr and poison value does not matter */
10756 map = insn_aux->map_ptr_state.map_ptr;
10757 if (!map->ops->map_set_for_each_callback_args ||
10758 !map->ops->map_for_each_callback) {
10759 verbose(env, "callback function not allowed for map\n");
10760 return -ENOTSUPP;
10761 }
10762
10763 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
10764 if (err)
10765 return err;
10766
10767 callee->in_callback_fn = true;
10768 callee->callback_ret_range = retval_range(0, 1);
10769 return 0;
10770 }
10771
set_loop_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10772 static int set_loop_callback_state(struct bpf_verifier_env *env,
10773 struct bpf_func_state *caller,
10774 struct bpf_func_state *callee,
10775 int insn_idx)
10776 {
10777 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
10778 * u64 flags);
10779 * callback_fn(u64 index, void *callback_ctx);
10780 */
10781 callee->regs[BPF_REG_1].type = SCALAR_VALUE;
10782 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
10783
10784 /* unused */
10785 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10786 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10787 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10788
10789 callee->in_callback_fn = true;
10790 callee->callback_ret_range = retval_range(0, 1);
10791 return 0;
10792 }
10793
set_timer_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10794 static int set_timer_callback_state(struct bpf_verifier_env *env,
10795 struct bpf_func_state *caller,
10796 struct bpf_func_state *callee,
10797 int insn_idx)
10798 {
10799 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
10800
10801 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
10802 * callback_fn(struct bpf_map *map, void *key, void *value);
10803 */
10804 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
10805 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
10806 callee->regs[BPF_REG_1].map_ptr = map_ptr;
10807
10808 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
10809 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
10810 callee->regs[BPF_REG_2].map_ptr = map_ptr;
10811
10812 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
10813 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
10814 callee->regs[BPF_REG_3].map_ptr = map_ptr;
10815
10816 /* unused */
10817 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10818 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10819 callee->in_async_callback_fn = true;
10820 callee->callback_ret_range = retval_range(0, 0);
10821 return 0;
10822 }
10823
set_find_vma_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10824 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
10825 struct bpf_func_state *caller,
10826 struct bpf_func_state *callee,
10827 int insn_idx)
10828 {
10829 /* bpf_find_vma(struct task_struct *task, u64 addr,
10830 * void *callback_fn, void *callback_ctx, u64 flags)
10831 * (callback_fn)(struct task_struct *task,
10832 * struct vm_area_struct *vma, void *callback_ctx);
10833 */
10834 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
10835
10836 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
10837 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
10838 callee->regs[BPF_REG_2].btf = btf_vmlinux;
10839 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA];
10840
10841 /* pointer to stack or null */
10842 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
10843
10844 /* unused */
10845 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10846 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10847 callee->in_callback_fn = true;
10848 callee->callback_ret_range = retval_range(0, 1);
10849 return 0;
10850 }
10851
set_user_ringbuf_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10852 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
10853 struct bpf_func_state *caller,
10854 struct bpf_func_state *callee,
10855 int insn_idx)
10856 {
10857 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
10858 * callback_ctx, u64 flags);
10859 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
10860 */
10861 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
10862 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
10863 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
10864
10865 /* unused */
10866 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10867 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10868 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10869
10870 callee->in_callback_fn = true;
10871 callee->callback_ret_range = retval_range(0, 1);
10872 return 0;
10873 }
10874
set_rbtree_add_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10875 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
10876 struct bpf_func_state *caller,
10877 struct bpf_func_state *callee,
10878 int insn_idx)
10879 {
10880 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
10881 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
10882 *
10883 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
10884 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
10885 * by this point, so look at 'root'
10886 */
10887 struct btf_field *field;
10888
10889 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
10890 BPF_RB_ROOT);
10891 if (!field || !field->graph_root.value_btf_id)
10892 return -EFAULT;
10893
10894 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
10895 ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
10896 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
10897 ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
10898
10899 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10900 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10901 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10902 callee->in_callback_fn = true;
10903 callee->callback_ret_range = retval_range(0, 1);
10904 return 0;
10905 }
10906
set_task_work_schedule_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10907 static int set_task_work_schedule_callback_state(struct bpf_verifier_env *env,
10908 struct bpf_func_state *caller,
10909 struct bpf_func_state *callee,
10910 int insn_idx)
10911 {
10912 struct bpf_map *map_ptr = caller->regs[BPF_REG_3].map_ptr;
10913
10914 /*
10915 * callback_fn(struct bpf_map *map, void *key, void *value);
10916 */
10917 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
10918 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
10919 callee->regs[BPF_REG_1].map_ptr = map_ptr;
10920
10921 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
10922 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
10923 callee->regs[BPF_REG_2].map_ptr = map_ptr;
10924
10925 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
10926 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
10927 callee->regs[BPF_REG_3].map_ptr = map_ptr;
10928
10929 /* unused */
10930 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10931 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10932 callee->in_async_callback_fn = true;
10933 callee->callback_ret_range = retval_range(S32_MIN, S32_MAX);
10934 return 0;
10935 }
10936
10937 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
10938
10939 /* Are we currently verifying the callback for a rbtree helper that must
10940 * be called with lock held? If so, no need to complain about unreleased
10941 * lock
10942 */
in_rbtree_lock_required_cb(struct bpf_verifier_env * env)10943 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
10944 {
10945 struct bpf_verifier_state *state = env->cur_state;
10946 struct bpf_insn *insn = env->prog->insnsi;
10947 struct bpf_func_state *callee;
10948 int kfunc_btf_id;
10949
10950 if (!state->curframe)
10951 return false;
10952
10953 callee = state->frame[state->curframe];
10954
10955 if (!callee->in_callback_fn)
10956 return false;
10957
10958 kfunc_btf_id = insn[callee->callsite].imm;
10959 return is_rbtree_lock_required_kfunc(kfunc_btf_id);
10960 }
10961
retval_range_within(struct bpf_retval_range range,const struct bpf_reg_state * reg,bool return_32bit)10962 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg,
10963 bool return_32bit)
10964 {
10965 if (return_32bit)
10966 return range.minval <= reg->s32_min_value && reg->s32_max_value <= range.maxval;
10967 else
10968 return range.minval <= reg->smin_value && reg->smax_value <= range.maxval;
10969 }
10970
prepare_func_exit(struct bpf_verifier_env * env,int * insn_idx)10971 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
10972 {
10973 struct bpf_verifier_state *state = env->cur_state, *prev_st;
10974 struct bpf_func_state *caller, *callee;
10975 struct bpf_reg_state *r0;
10976 bool in_callback_fn;
10977 int err;
10978
10979 callee = state->frame[state->curframe];
10980 r0 = &callee->regs[BPF_REG_0];
10981 if (r0->type == PTR_TO_STACK) {
10982 /* technically it's ok to return caller's stack pointer
10983 * (or caller's caller's pointer) back to the caller,
10984 * since these pointers are valid. Only current stack
10985 * pointer will be invalid as soon as function exits,
10986 * but let's be conservative
10987 */
10988 verbose(env, "cannot return stack pointer to the caller\n");
10989 return -EINVAL;
10990 }
10991
10992 caller = state->frame[state->curframe - 1];
10993 if (callee->in_callback_fn) {
10994 if (r0->type != SCALAR_VALUE) {
10995 verbose(env, "R0 not a scalar value\n");
10996 return -EACCES;
10997 }
10998
10999 /* we are going to rely on register's precise value */
11000 err = mark_chain_precision(env, BPF_REG_0);
11001 if (err)
11002 return err;
11003
11004 /* enforce R0 return value range, and bpf_callback_t returns 64bit */
11005 if (!retval_range_within(callee->callback_ret_range, r0, false)) {
11006 verbose_invalid_scalar(env, r0, callee->callback_ret_range,
11007 "At callback return", "R0");
11008 return -EINVAL;
11009 }
11010 if (!bpf_calls_callback(env, callee->callsite)) {
11011 verifier_bug(env, "in callback at %d, callsite %d !calls_callback",
11012 *insn_idx, callee->callsite);
11013 return -EFAULT;
11014 }
11015 } else {
11016 /* return to the caller whatever r0 had in the callee */
11017 caller->regs[BPF_REG_0] = *r0;
11018 }
11019
11020 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
11021 * there function call logic would reschedule callback visit. If iteration
11022 * converges is_state_visited() would prune that visit eventually.
11023 */
11024 in_callback_fn = callee->in_callback_fn;
11025 if (in_callback_fn)
11026 *insn_idx = callee->callsite;
11027 else
11028 *insn_idx = callee->callsite + 1;
11029
11030 if (env->log.level & BPF_LOG_LEVEL) {
11031 verbose(env, "returning from callee:\n");
11032 print_verifier_state(env, state, callee->frameno, true);
11033 verbose(env, "to caller at %d:\n", *insn_idx);
11034 print_verifier_state(env, state, caller->frameno, true);
11035 }
11036 /* clear everything in the callee. In case of exceptional exits using
11037 * bpf_throw, this will be done by copy_verifier_state for extra frames. */
11038 free_func_state(callee);
11039 state->frame[state->curframe--] = NULL;
11040
11041 /* for callbacks widen imprecise scalars to make programs like below verify:
11042 *
11043 * struct ctx { int i; }
11044 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... }
11045 * ...
11046 * struct ctx = { .i = 0; }
11047 * bpf_loop(100, cb, &ctx, 0);
11048 *
11049 * This is similar to what is done in process_iter_next_call() for open
11050 * coded iterators.
11051 */
11052 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL;
11053 if (prev_st) {
11054 err = widen_imprecise_scalars(env, prev_st, state);
11055 if (err)
11056 return err;
11057 }
11058 return 0;
11059 }
11060
do_refine_retval_range(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int ret_type,int func_id,struct bpf_call_arg_meta * meta)11061 static int do_refine_retval_range(struct bpf_verifier_env *env,
11062 struct bpf_reg_state *regs, int ret_type,
11063 int func_id,
11064 struct bpf_call_arg_meta *meta)
11065 {
11066 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0];
11067
11068 if (ret_type != RET_INTEGER)
11069 return 0;
11070
11071 switch (func_id) {
11072 case BPF_FUNC_get_stack:
11073 case BPF_FUNC_get_task_stack:
11074 case BPF_FUNC_probe_read_str:
11075 case BPF_FUNC_probe_read_kernel_str:
11076 case BPF_FUNC_probe_read_user_str:
11077 ret_reg->smax_value = meta->msize_max_value;
11078 ret_reg->s32_max_value = meta->msize_max_value;
11079 ret_reg->smin_value = -MAX_ERRNO;
11080 ret_reg->s32_min_value = -MAX_ERRNO;
11081 reg_bounds_sync(ret_reg);
11082 break;
11083 case BPF_FUNC_get_smp_processor_id:
11084 ret_reg->umax_value = nr_cpu_ids - 1;
11085 ret_reg->u32_max_value = nr_cpu_ids - 1;
11086 ret_reg->smax_value = nr_cpu_ids - 1;
11087 ret_reg->s32_max_value = nr_cpu_ids - 1;
11088 ret_reg->umin_value = 0;
11089 ret_reg->u32_min_value = 0;
11090 ret_reg->smin_value = 0;
11091 ret_reg->s32_min_value = 0;
11092 reg_bounds_sync(ret_reg);
11093 break;
11094 }
11095
11096 return reg_bounds_sanity_check(env, ret_reg, "retval");
11097 }
11098
11099 static int
record_func_map(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)11100 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
11101 int func_id, int insn_idx)
11102 {
11103 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
11104 struct bpf_map *map = meta->map_ptr;
11105
11106 if (func_id != BPF_FUNC_tail_call &&
11107 func_id != BPF_FUNC_map_lookup_elem &&
11108 func_id != BPF_FUNC_map_update_elem &&
11109 func_id != BPF_FUNC_map_delete_elem &&
11110 func_id != BPF_FUNC_map_push_elem &&
11111 func_id != BPF_FUNC_map_pop_elem &&
11112 func_id != BPF_FUNC_map_peek_elem &&
11113 func_id != BPF_FUNC_for_each_map_elem &&
11114 func_id != BPF_FUNC_redirect_map &&
11115 func_id != BPF_FUNC_map_lookup_percpu_elem)
11116 return 0;
11117
11118 if (map == NULL) {
11119 verifier_bug(env, "expected map for helper call");
11120 return -EFAULT;
11121 }
11122
11123 /* In case of read-only, some additional restrictions
11124 * need to be applied in order to prevent altering the
11125 * state of the map from program side.
11126 */
11127 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
11128 (func_id == BPF_FUNC_map_delete_elem ||
11129 func_id == BPF_FUNC_map_update_elem ||
11130 func_id == BPF_FUNC_map_push_elem ||
11131 func_id == BPF_FUNC_map_pop_elem)) {
11132 verbose(env, "write into map forbidden\n");
11133 return -EACCES;
11134 }
11135
11136 if (!aux->map_ptr_state.map_ptr)
11137 bpf_map_ptr_store(aux, meta->map_ptr,
11138 !meta->map_ptr->bypass_spec_v1, false);
11139 else if (aux->map_ptr_state.map_ptr != meta->map_ptr)
11140 bpf_map_ptr_store(aux, meta->map_ptr,
11141 !meta->map_ptr->bypass_spec_v1, true);
11142 return 0;
11143 }
11144
11145 static int
record_func_key(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)11146 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
11147 int func_id, int insn_idx)
11148 {
11149 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
11150 struct bpf_reg_state *regs = cur_regs(env), *reg;
11151 struct bpf_map *map = meta->map_ptr;
11152 u64 val, max;
11153 int err;
11154
11155 if (func_id != BPF_FUNC_tail_call)
11156 return 0;
11157 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
11158 verbose(env, "expected prog array map for tail call");
11159 return -EINVAL;
11160 }
11161
11162 reg = ®s[BPF_REG_3];
11163 val = reg->var_off.value;
11164 max = map->max_entries;
11165
11166 if (!(is_reg_const(reg, false) && val < max)) {
11167 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
11168 return 0;
11169 }
11170
11171 err = mark_chain_precision(env, BPF_REG_3);
11172 if (err)
11173 return err;
11174 if (bpf_map_key_unseen(aux))
11175 bpf_map_key_store(aux, val);
11176 else if (!bpf_map_key_poisoned(aux) &&
11177 bpf_map_key_immediate(aux) != val)
11178 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
11179 return 0;
11180 }
11181
check_reference_leak(struct bpf_verifier_env * env,bool exception_exit)11182 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit)
11183 {
11184 struct bpf_verifier_state *state = env->cur_state;
11185 enum bpf_prog_type type = resolve_prog_type(env->prog);
11186 struct bpf_reg_state *reg = reg_state(env, BPF_REG_0);
11187 bool refs_lingering = false;
11188 int i;
11189
11190 if (!exception_exit && cur_func(env)->frameno)
11191 return 0;
11192
11193 for (i = 0; i < state->acquired_refs; i++) {
11194 if (state->refs[i].type != REF_TYPE_PTR)
11195 continue;
11196 /* Allow struct_ops programs to return a referenced kptr back to
11197 * kernel. Type checks are performed later in check_return_code.
11198 */
11199 if (type == BPF_PROG_TYPE_STRUCT_OPS && !exception_exit &&
11200 reg->ref_obj_id == state->refs[i].id)
11201 continue;
11202 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
11203 state->refs[i].id, state->refs[i].insn_idx);
11204 refs_lingering = true;
11205 }
11206 return refs_lingering ? -EINVAL : 0;
11207 }
11208
check_resource_leak(struct bpf_verifier_env * env,bool exception_exit,bool check_lock,const char * prefix)11209 static int check_resource_leak(struct bpf_verifier_env *env, bool exception_exit, bool check_lock, const char *prefix)
11210 {
11211 int err;
11212
11213 if (check_lock && env->cur_state->active_locks) {
11214 verbose(env, "%s cannot be used inside bpf_spin_lock-ed region\n", prefix);
11215 return -EINVAL;
11216 }
11217
11218 err = check_reference_leak(env, exception_exit);
11219 if (err) {
11220 verbose(env, "%s would lead to reference leak\n", prefix);
11221 return err;
11222 }
11223
11224 if (check_lock && env->cur_state->active_irq_id) {
11225 verbose(env, "%s cannot be used inside bpf_local_irq_save-ed region\n", prefix);
11226 return -EINVAL;
11227 }
11228
11229 if (check_lock && env->cur_state->active_rcu_lock) {
11230 verbose(env, "%s cannot be used inside bpf_rcu_read_lock-ed region\n", prefix);
11231 return -EINVAL;
11232 }
11233
11234 if (check_lock && env->cur_state->active_preempt_locks) {
11235 verbose(env, "%s cannot be used inside bpf_preempt_disable-ed region\n", prefix);
11236 return -EINVAL;
11237 }
11238
11239 return 0;
11240 }
11241
check_bpf_snprintf_call(struct bpf_verifier_env * env,struct bpf_reg_state * regs)11242 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
11243 struct bpf_reg_state *regs)
11244 {
11245 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3];
11246 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5];
11247 struct bpf_map *fmt_map = fmt_reg->map_ptr;
11248 struct bpf_bprintf_data data = {};
11249 int err, fmt_map_off, num_args;
11250 u64 fmt_addr;
11251 char *fmt;
11252
11253 /* data must be an array of u64 */
11254 if (data_len_reg->var_off.value % 8)
11255 return -EINVAL;
11256 num_args = data_len_reg->var_off.value / 8;
11257
11258 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
11259 * and map_direct_value_addr is set.
11260 */
11261 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
11262 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
11263 fmt_map_off);
11264 if (err) {
11265 verbose(env, "failed to retrieve map value address\n");
11266 return -EFAULT;
11267 }
11268 fmt = (char *)(long)fmt_addr + fmt_map_off;
11269
11270 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
11271 * can focus on validating the format specifiers.
11272 */
11273 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
11274 if (err < 0)
11275 verbose(env, "Invalid format string\n");
11276
11277 return err;
11278 }
11279
check_get_func_ip(struct bpf_verifier_env * env)11280 static int check_get_func_ip(struct bpf_verifier_env *env)
11281 {
11282 enum bpf_prog_type type = resolve_prog_type(env->prog);
11283 int func_id = BPF_FUNC_get_func_ip;
11284
11285 if (type == BPF_PROG_TYPE_TRACING) {
11286 if (!bpf_prog_has_trampoline(env->prog)) {
11287 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
11288 func_id_name(func_id), func_id);
11289 return -ENOTSUPP;
11290 }
11291 return 0;
11292 } else if (type == BPF_PROG_TYPE_KPROBE) {
11293 return 0;
11294 }
11295
11296 verbose(env, "func %s#%d not supported for program type %d\n",
11297 func_id_name(func_id), func_id, type);
11298 return -ENOTSUPP;
11299 }
11300
cur_aux(const struct bpf_verifier_env * env)11301 static struct bpf_insn_aux_data *cur_aux(const struct bpf_verifier_env *env)
11302 {
11303 return &env->insn_aux_data[env->insn_idx];
11304 }
11305
loop_flag_is_zero(struct bpf_verifier_env * env)11306 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
11307 {
11308 struct bpf_reg_state *regs = cur_regs(env);
11309 struct bpf_reg_state *reg = ®s[BPF_REG_4];
11310 bool reg_is_null = register_is_null(reg);
11311
11312 if (reg_is_null)
11313 mark_chain_precision(env, BPF_REG_4);
11314
11315 return reg_is_null;
11316 }
11317
update_loop_inline_state(struct bpf_verifier_env * env,u32 subprogno)11318 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
11319 {
11320 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
11321
11322 if (!state->initialized) {
11323 state->initialized = 1;
11324 state->fit_for_inline = loop_flag_is_zero(env);
11325 state->callback_subprogno = subprogno;
11326 return;
11327 }
11328
11329 if (!state->fit_for_inline)
11330 return;
11331
11332 state->fit_for_inline = (loop_flag_is_zero(env) &&
11333 state->callback_subprogno == subprogno);
11334 }
11335
11336 /* Returns whether or not the given map type can potentially elide
11337 * lookup return value nullness check. This is possible if the key
11338 * is statically known.
11339 */
can_elide_value_nullness(enum bpf_map_type type)11340 static bool can_elide_value_nullness(enum bpf_map_type type)
11341 {
11342 switch (type) {
11343 case BPF_MAP_TYPE_ARRAY:
11344 case BPF_MAP_TYPE_PERCPU_ARRAY:
11345 return true;
11346 default:
11347 return false;
11348 }
11349 }
11350
get_helper_proto(struct bpf_verifier_env * env,int func_id,const struct bpf_func_proto ** ptr)11351 static int get_helper_proto(struct bpf_verifier_env *env, int func_id,
11352 const struct bpf_func_proto **ptr)
11353 {
11354 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID)
11355 return -ERANGE;
11356
11357 if (!env->ops->get_func_proto)
11358 return -EINVAL;
11359
11360 *ptr = env->ops->get_func_proto(func_id, env->prog);
11361 return *ptr && (*ptr)->func ? 0 : -EINVAL;
11362 }
11363
check_helper_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)11364 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11365 int *insn_idx_p)
11366 {
11367 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
11368 bool returns_cpu_specific_alloc_ptr = false;
11369 const struct bpf_func_proto *fn = NULL;
11370 enum bpf_return_type ret_type;
11371 enum bpf_type_flag ret_flag;
11372 struct bpf_reg_state *regs;
11373 struct bpf_call_arg_meta meta;
11374 int insn_idx = *insn_idx_p;
11375 bool changes_data;
11376 int i, err, func_id;
11377
11378 /* find function prototype */
11379 func_id = insn->imm;
11380 err = get_helper_proto(env, insn->imm, &fn);
11381 if (err == -ERANGE) {
11382 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), func_id);
11383 return -EINVAL;
11384 }
11385
11386 if (err) {
11387 verbose(env, "program of this type cannot use helper %s#%d\n",
11388 func_id_name(func_id), func_id);
11389 return err;
11390 }
11391
11392 /* eBPF programs must be GPL compatible to use GPL-ed functions */
11393 if (!env->prog->gpl_compatible && fn->gpl_only) {
11394 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
11395 return -EINVAL;
11396 }
11397
11398 if (fn->allowed && !fn->allowed(env->prog)) {
11399 verbose(env, "helper call is not allowed in probe\n");
11400 return -EINVAL;
11401 }
11402
11403 if (!in_sleepable(env) && fn->might_sleep) {
11404 verbose(env, "helper call might sleep in a non-sleepable prog\n");
11405 return -EINVAL;
11406 }
11407
11408 /* With LD_ABS/IND some JITs save/restore skb from r1. */
11409 changes_data = bpf_helper_changes_pkt_data(func_id);
11410 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
11411 verifier_bug(env, "func %s#%d: r1 != ctx", func_id_name(func_id), func_id);
11412 return -EFAULT;
11413 }
11414
11415 memset(&meta, 0, sizeof(meta));
11416 meta.pkt_access = fn->pkt_access;
11417
11418 err = check_func_proto(fn, func_id);
11419 if (err) {
11420 verifier_bug(env, "incorrect func proto %s#%d", func_id_name(func_id), func_id);
11421 return err;
11422 }
11423
11424 if (env->cur_state->active_rcu_lock) {
11425 if (fn->might_sleep) {
11426 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
11427 func_id_name(func_id), func_id);
11428 return -EINVAL;
11429 }
11430
11431 if (in_sleepable(env) && is_storage_get_function(func_id))
11432 env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
11433 }
11434
11435 if (env->cur_state->active_preempt_locks) {
11436 if (fn->might_sleep) {
11437 verbose(env, "sleepable helper %s#%d in non-preemptible region\n",
11438 func_id_name(func_id), func_id);
11439 return -EINVAL;
11440 }
11441
11442 if (in_sleepable(env) && is_storage_get_function(func_id))
11443 env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
11444 }
11445
11446 if (env->cur_state->active_irq_id) {
11447 if (fn->might_sleep) {
11448 verbose(env, "sleepable helper %s#%d in IRQ-disabled region\n",
11449 func_id_name(func_id), func_id);
11450 return -EINVAL;
11451 }
11452
11453 if (in_sleepable(env) && is_storage_get_function(func_id))
11454 env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
11455 }
11456
11457 meta.func_id = func_id;
11458 /* check args */
11459 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
11460 err = check_func_arg(env, i, &meta, fn, insn_idx);
11461 if (err)
11462 return err;
11463 }
11464
11465 err = record_func_map(env, &meta, func_id, insn_idx);
11466 if (err)
11467 return err;
11468
11469 err = record_func_key(env, &meta, func_id, insn_idx);
11470 if (err)
11471 return err;
11472
11473 /* Mark slots with STACK_MISC in case of raw mode, stack offset
11474 * is inferred from register state.
11475 */
11476 for (i = 0; i < meta.access_size; i++) {
11477 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
11478 BPF_WRITE, -1, false, false);
11479 if (err)
11480 return err;
11481 }
11482
11483 regs = cur_regs(env);
11484
11485 if (meta.release_regno) {
11486 err = -EINVAL;
11487 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
11488 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
11489 * is safe to do directly.
11490 */
11491 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
11492 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
11493 verifier_bug(env, "CONST_PTR_TO_DYNPTR cannot be released");
11494 return -EFAULT;
11495 }
11496 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]);
11497 } else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) {
11498 u32 ref_obj_id = meta.ref_obj_id;
11499 bool in_rcu = in_rcu_cs(env);
11500 struct bpf_func_state *state;
11501 struct bpf_reg_state *reg;
11502
11503 err = release_reference_nomark(env->cur_state, ref_obj_id);
11504 if (!err) {
11505 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
11506 if (reg->ref_obj_id == ref_obj_id) {
11507 if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) {
11508 reg->ref_obj_id = 0;
11509 reg->type &= ~MEM_ALLOC;
11510 reg->type |= MEM_RCU;
11511 } else {
11512 mark_reg_invalid(env, reg);
11513 }
11514 }
11515 }));
11516 }
11517 } else if (meta.ref_obj_id) {
11518 err = release_reference(env, meta.ref_obj_id);
11519 } else if (register_is_null(®s[meta.release_regno])) {
11520 /* meta.ref_obj_id can only be 0 if register that is meant to be
11521 * released is NULL, which must be > R0.
11522 */
11523 err = 0;
11524 }
11525 if (err) {
11526 verbose(env, "func %s#%d reference has not been acquired before\n",
11527 func_id_name(func_id), func_id);
11528 return err;
11529 }
11530 }
11531
11532 switch (func_id) {
11533 case BPF_FUNC_tail_call:
11534 err = check_resource_leak(env, false, true, "tail_call");
11535 if (err)
11536 return err;
11537 break;
11538 case BPF_FUNC_get_local_storage:
11539 /* check that flags argument in get_local_storage(map, flags) is 0,
11540 * this is required because get_local_storage() can't return an error.
11541 */
11542 if (!register_is_null(®s[BPF_REG_2])) {
11543 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
11544 return -EINVAL;
11545 }
11546 break;
11547 case BPF_FUNC_for_each_map_elem:
11548 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11549 set_map_elem_callback_state);
11550 break;
11551 case BPF_FUNC_timer_set_callback:
11552 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11553 set_timer_callback_state);
11554 break;
11555 case BPF_FUNC_find_vma:
11556 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11557 set_find_vma_callback_state);
11558 break;
11559 case BPF_FUNC_snprintf:
11560 err = check_bpf_snprintf_call(env, regs);
11561 break;
11562 case BPF_FUNC_loop:
11563 update_loop_inline_state(env, meta.subprogno);
11564 /* Verifier relies on R1 value to determine if bpf_loop() iteration
11565 * is finished, thus mark it precise.
11566 */
11567 err = mark_chain_precision(env, BPF_REG_1);
11568 if (err)
11569 return err;
11570 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) {
11571 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11572 set_loop_callback_state);
11573 } else {
11574 cur_func(env)->callback_depth = 0;
11575 if (env->log.level & BPF_LOG_LEVEL2)
11576 verbose(env, "frame%d bpf_loop iteration limit reached\n",
11577 env->cur_state->curframe);
11578 }
11579 break;
11580 case BPF_FUNC_dynptr_from_mem:
11581 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
11582 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
11583 reg_type_str(env, regs[BPF_REG_1].type));
11584 return -EACCES;
11585 }
11586 break;
11587 case BPF_FUNC_set_retval:
11588 if (prog_type == BPF_PROG_TYPE_LSM &&
11589 env->prog->expected_attach_type == BPF_LSM_CGROUP) {
11590 if (!env->prog->aux->attach_func_proto->type) {
11591 /* Make sure programs that attach to void
11592 * hooks don't try to modify return value.
11593 */
11594 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
11595 return -EINVAL;
11596 }
11597 }
11598 break;
11599 case BPF_FUNC_dynptr_data:
11600 {
11601 struct bpf_reg_state *reg;
11602 int id, ref_obj_id;
11603
11604 reg = get_dynptr_arg_reg(env, fn, regs);
11605 if (!reg)
11606 return -EFAULT;
11607
11608
11609 if (meta.dynptr_id) {
11610 verifier_bug(env, "meta.dynptr_id already set");
11611 return -EFAULT;
11612 }
11613 if (meta.ref_obj_id) {
11614 verifier_bug(env, "meta.ref_obj_id already set");
11615 return -EFAULT;
11616 }
11617
11618 id = dynptr_id(env, reg);
11619 if (id < 0) {
11620 verifier_bug(env, "failed to obtain dynptr id");
11621 return id;
11622 }
11623
11624 ref_obj_id = dynptr_ref_obj_id(env, reg);
11625 if (ref_obj_id < 0) {
11626 verifier_bug(env, "failed to obtain dynptr ref_obj_id");
11627 return ref_obj_id;
11628 }
11629
11630 meta.dynptr_id = id;
11631 meta.ref_obj_id = ref_obj_id;
11632
11633 break;
11634 }
11635 case BPF_FUNC_dynptr_write:
11636 {
11637 enum bpf_dynptr_type dynptr_type;
11638 struct bpf_reg_state *reg;
11639
11640 reg = get_dynptr_arg_reg(env, fn, regs);
11641 if (!reg)
11642 return -EFAULT;
11643
11644 dynptr_type = dynptr_get_type(env, reg);
11645 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
11646 return -EFAULT;
11647
11648 if (dynptr_type == BPF_DYNPTR_TYPE_SKB ||
11649 dynptr_type == BPF_DYNPTR_TYPE_SKB_META)
11650 /* this will trigger clear_all_pkt_pointers(), which will
11651 * invalidate all dynptr slices associated with the skb
11652 */
11653 changes_data = true;
11654
11655 break;
11656 }
11657 case BPF_FUNC_per_cpu_ptr:
11658 case BPF_FUNC_this_cpu_ptr:
11659 {
11660 struct bpf_reg_state *reg = ®s[BPF_REG_1];
11661 const struct btf_type *type;
11662
11663 if (reg->type & MEM_RCU) {
11664 type = btf_type_by_id(reg->btf, reg->btf_id);
11665 if (!type || !btf_type_is_struct(type)) {
11666 verbose(env, "Helper has invalid btf/btf_id in R1\n");
11667 return -EFAULT;
11668 }
11669 returns_cpu_specific_alloc_ptr = true;
11670 env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true;
11671 }
11672 break;
11673 }
11674 case BPF_FUNC_user_ringbuf_drain:
11675 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11676 set_user_ringbuf_callback_state);
11677 break;
11678 }
11679
11680 if (err)
11681 return err;
11682
11683 /* reset caller saved regs */
11684 for (i = 0; i < CALLER_SAVED_REGS; i++) {
11685 mark_reg_not_init(env, regs, caller_saved[i]);
11686 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
11687 }
11688
11689 /* helper call returns 64-bit value. */
11690 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
11691
11692 /* update return register (already marked as written above) */
11693 ret_type = fn->ret_type;
11694 ret_flag = type_flag(ret_type);
11695
11696 switch (base_type(ret_type)) {
11697 case RET_INTEGER:
11698 /* sets type to SCALAR_VALUE */
11699 mark_reg_unknown(env, regs, BPF_REG_0);
11700 break;
11701 case RET_VOID:
11702 regs[BPF_REG_0].type = NOT_INIT;
11703 break;
11704 case RET_PTR_TO_MAP_VALUE:
11705 /* There is no offset yet applied, variable or fixed */
11706 mark_reg_known_zero(env, regs, BPF_REG_0);
11707 /* remember map_ptr, so that check_map_access()
11708 * can check 'value_size' boundary of memory access
11709 * to map element returned from bpf_map_lookup_elem()
11710 */
11711 if (meta.map_ptr == NULL) {
11712 verifier_bug(env, "unexpected null map_ptr");
11713 return -EFAULT;
11714 }
11715
11716 if (func_id == BPF_FUNC_map_lookup_elem &&
11717 can_elide_value_nullness(meta.map_ptr->map_type) &&
11718 meta.const_map_key >= 0 &&
11719 meta.const_map_key < meta.map_ptr->max_entries)
11720 ret_flag &= ~PTR_MAYBE_NULL;
11721
11722 regs[BPF_REG_0].map_ptr = meta.map_ptr;
11723 regs[BPF_REG_0].map_uid = meta.map_uid;
11724 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
11725 if (!type_may_be_null(ret_flag) &&
11726 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) {
11727 regs[BPF_REG_0].id = ++env->id_gen;
11728 }
11729 break;
11730 case RET_PTR_TO_SOCKET:
11731 mark_reg_known_zero(env, regs, BPF_REG_0);
11732 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
11733 break;
11734 case RET_PTR_TO_SOCK_COMMON:
11735 mark_reg_known_zero(env, regs, BPF_REG_0);
11736 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
11737 break;
11738 case RET_PTR_TO_TCP_SOCK:
11739 mark_reg_known_zero(env, regs, BPF_REG_0);
11740 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
11741 break;
11742 case RET_PTR_TO_MEM:
11743 mark_reg_known_zero(env, regs, BPF_REG_0);
11744 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
11745 regs[BPF_REG_0].mem_size = meta.mem_size;
11746 break;
11747 case RET_PTR_TO_MEM_OR_BTF_ID:
11748 {
11749 const struct btf_type *t;
11750
11751 mark_reg_known_zero(env, regs, BPF_REG_0);
11752 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
11753 if (!btf_type_is_struct(t)) {
11754 u32 tsize;
11755 const struct btf_type *ret;
11756 const char *tname;
11757
11758 /* resolve the type size of ksym. */
11759 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
11760 if (IS_ERR(ret)) {
11761 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
11762 verbose(env, "unable to resolve the size of type '%s': %ld\n",
11763 tname, PTR_ERR(ret));
11764 return -EINVAL;
11765 }
11766 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
11767 regs[BPF_REG_0].mem_size = tsize;
11768 } else {
11769 if (returns_cpu_specific_alloc_ptr) {
11770 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU;
11771 } else {
11772 /* MEM_RDONLY may be carried from ret_flag, but it
11773 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
11774 * it will confuse the check of PTR_TO_BTF_ID in
11775 * check_mem_access().
11776 */
11777 ret_flag &= ~MEM_RDONLY;
11778 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
11779 }
11780
11781 regs[BPF_REG_0].btf = meta.ret_btf;
11782 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
11783 }
11784 break;
11785 }
11786 case RET_PTR_TO_BTF_ID:
11787 {
11788 struct btf *ret_btf;
11789 int ret_btf_id;
11790
11791 mark_reg_known_zero(env, regs, BPF_REG_0);
11792 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
11793 if (func_id == BPF_FUNC_kptr_xchg) {
11794 ret_btf = meta.kptr_field->kptr.btf;
11795 ret_btf_id = meta.kptr_field->kptr.btf_id;
11796 if (!btf_is_kernel(ret_btf)) {
11797 regs[BPF_REG_0].type |= MEM_ALLOC;
11798 if (meta.kptr_field->type == BPF_KPTR_PERCPU)
11799 regs[BPF_REG_0].type |= MEM_PERCPU;
11800 }
11801 } else {
11802 if (fn->ret_btf_id == BPF_PTR_POISON) {
11803 verifier_bug(env, "func %s has non-overwritten BPF_PTR_POISON return type",
11804 func_id_name(func_id));
11805 return -EFAULT;
11806 }
11807 ret_btf = btf_vmlinux;
11808 ret_btf_id = *fn->ret_btf_id;
11809 }
11810 if (ret_btf_id == 0) {
11811 verbose(env, "invalid return type %u of func %s#%d\n",
11812 base_type(ret_type), func_id_name(func_id),
11813 func_id);
11814 return -EINVAL;
11815 }
11816 regs[BPF_REG_0].btf = ret_btf;
11817 regs[BPF_REG_0].btf_id = ret_btf_id;
11818 break;
11819 }
11820 default:
11821 verbose(env, "unknown return type %u of func %s#%d\n",
11822 base_type(ret_type), func_id_name(func_id), func_id);
11823 return -EINVAL;
11824 }
11825
11826 if (type_may_be_null(regs[BPF_REG_0].type))
11827 regs[BPF_REG_0].id = ++env->id_gen;
11828
11829 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
11830 verifier_bug(env, "func %s#%d sets ref_obj_id more than once",
11831 func_id_name(func_id), func_id);
11832 return -EFAULT;
11833 }
11834
11835 if (is_dynptr_ref_function(func_id))
11836 regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
11837
11838 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
11839 /* For release_reference() */
11840 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
11841 } else if (is_acquire_function(func_id, meta.map_ptr)) {
11842 int id = acquire_reference(env, insn_idx);
11843
11844 if (id < 0)
11845 return id;
11846 /* For mark_ptr_or_null_reg() */
11847 regs[BPF_REG_0].id = id;
11848 /* For release_reference() */
11849 regs[BPF_REG_0].ref_obj_id = id;
11850 }
11851
11852 err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta);
11853 if (err)
11854 return err;
11855
11856 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
11857 if (err)
11858 return err;
11859
11860 if ((func_id == BPF_FUNC_get_stack ||
11861 func_id == BPF_FUNC_get_task_stack) &&
11862 !env->prog->has_callchain_buf) {
11863 const char *err_str;
11864
11865 #ifdef CONFIG_PERF_EVENTS
11866 err = get_callchain_buffers(sysctl_perf_event_max_stack);
11867 err_str = "cannot get callchain buffer for func %s#%d\n";
11868 #else
11869 err = -ENOTSUPP;
11870 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
11871 #endif
11872 if (err) {
11873 verbose(env, err_str, func_id_name(func_id), func_id);
11874 return err;
11875 }
11876
11877 env->prog->has_callchain_buf = true;
11878 }
11879
11880 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
11881 env->prog->call_get_stack = true;
11882
11883 if (func_id == BPF_FUNC_get_func_ip) {
11884 if (check_get_func_ip(env))
11885 return -ENOTSUPP;
11886 env->prog->call_get_func_ip = true;
11887 }
11888
11889 if (changes_data)
11890 clear_all_pkt_pointers(env);
11891 return 0;
11892 }
11893
11894 /* mark_btf_func_reg_size() is used when the reg size is determined by
11895 * the BTF func_proto's return value size and argument.
11896 */
__mark_btf_func_reg_size(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,size_t reg_size)11897 static void __mark_btf_func_reg_size(struct bpf_verifier_env *env, struct bpf_reg_state *regs,
11898 u32 regno, size_t reg_size)
11899 {
11900 struct bpf_reg_state *reg = ®s[regno];
11901
11902 if (regno == BPF_REG_0) {
11903 /* Function return value */
11904 reg->subreg_def = reg_size == sizeof(u64) ?
11905 DEF_NOT_SUBREG : env->insn_idx + 1;
11906 } else if (reg_size == sizeof(u64)) {
11907 /* Function argument */
11908 mark_insn_zext(env, reg);
11909 }
11910 }
11911
mark_btf_func_reg_size(struct bpf_verifier_env * env,u32 regno,size_t reg_size)11912 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
11913 size_t reg_size)
11914 {
11915 return __mark_btf_func_reg_size(env, cur_regs(env), regno, reg_size);
11916 }
11917
is_kfunc_acquire(struct bpf_kfunc_call_arg_meta * meta)11918 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
11919 {
11920 return meta->kfunc_flags & KF_ACQUIRE;
11921 }
11922
is_kfunc_release(struct bpf_kfunc_call_arg_meta * meta)11923 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
11924 {
11925 return meta->kfunc_flags & KF_RELEASE;
11926 }
11927
is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta * meta)11928 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
11929 {
11930 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
11931 }
11932
is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta * meta)11933 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
11934 {
11935 return meta->kfunc_flags & KF_SLEEPABLE;
11936 }
11937
is_kfunc_destructive(struct bpf_kfunc_call_arg_meta * meta)11938 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
11939 {
11940 return meta->kfunc_flags & KF_DESTRUCTIVE;
11941 }
11942
is_kfunc_rcu(struct bpf_kfunc_call_arg_meta * meta)11943 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
11944 {
11945 return meta->kfunc_flags & KF_RCU;
11946 }
11947
is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta * meta)11948 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta)
11949 {
11950 return meta->kfunc_flags & KF_RCU_PROTECTED;
11951 }
11952
is_kfunc_arg_mem_size(const struct btf * btf,const struct btf_param * arg,const struct bpf_reg_state * reg)11953 static bool is_kfunc_arg_mem_size(const struct btf *btf,
11954 const struct btf_param *arg,
11955 const struct bpf_reg_state *reg)
11956 {
11957 const struct btf_type *t;
11958
11959 t = btf_type_skip_modifiers(btf, arg->type, NULL);
11960 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
11961 return false;
11962
11963 return btf_param_match_suffix(btf, arg, "__sz");
11964 }
11965
is_kfunc_arg_const_mem_size(const struct btf * btf,const struct btf_param * arg,const struct bpf_reg_state * reg)11966 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
11967 const struct btf_param *arg,
11968 const struct bpf_reg_state *reg)
11969 {
11970 const struct btf_type *t;
11971
11972 t = btf_type_skip_modifiers(btf, arg->type, NULL);
11973 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
11974 return false;
11975
11976 return btf_param_match_suffix(btf, arg, "__szk");
11977 }
11978
is_kfunc_arg_optional(const struct btf * btf,const struct btf_param * arg)11979 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
11980 {
11981 return btf_param_match_suffix(btf, arg, "__opt");
11982 }
11983
is_kfunc_arg_constant(const struct btf * btf,const struct btf_param * arg)11984 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
11985 {
11986 return btf_param_match_suffix(btf, arg, "__k");
11987 }
11988
is_kfunc_arg_ignore(const struct btf * btf,const struct btf_param * arg)11989 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
11990 {
11991 return btf_param_match_suffix(btf, arg, "__ign");
11992 }
11993
is_kfunc_arg_map(const struct btf * btf,const struct btf_param * arg)11994 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg)
11995 {
11996 return btf_param_match_suffix(btf, arg, "__map");
11997 }
11998
is_kfunc_arg_alloc_obj(const struct btf * btf,const struct btf_param * arg)11999 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
12000 {
12001 return btf_param_match_suffix(btf, arg, "__alloc");
12002 }
12003
is_kfunc_arg_uninit(const struct btf * btf,const struct btf_param * arg)12004 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
12005 {
12006 return btf_param_match_suffix(btf, arg, "__uninit");
12007 }
12008
is_kfunc_arg_refcounted_kptr(const struct btf * btf,const struct btf_param * arg)12009 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
12010 {
12011 return btf_param_match_suffix(btf, arg, "__refcounted_kptr");
12012 }
12013
is_kfunc_arg_nullable(const struct btf * btf,const struct btf_param * arg)12014 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg)
12015 {
12016 return btf_param_match_suffix(btf, arg, "__nullable");
12017 }
12018
is_kfunc_arg_const_str(const struct btf * btf,const struct btf_param * arg)12019 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg)
12020 {
12021 return btf_param_match_suffix(btf, arg, "__str");
12022 }
12023
is_kfunc_arg_irq_flag(const struct btf * btf,const struct btf_param * arg)12024 static bool is_kfunc_arg_irq_flag(const struct btf *btf, const struct btf_param *arg)
12025 {
12026 return btf_param_match_suffix(btf, arg, "__irq_flag");
12027 }
12028
is_kfunc_arg_prog(const struct btf * btf,const struct btf_param * arg)12029 static bool is_kfunc_arg_prog(const struct btf *btf, const struct btf_param *arg)
12030 {
12031 return btf_param_match_suffix(btf, arg, "__prog");
12032 }
12033
is_kfunc_arg_scalar_with_name(const struct btf * btf,const struct btf_param * arg,const char * name)12034 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
12035 const struct btf_param *arg,
12036 const char *name)
12037 {
12038 int len, target_len = strlen(name);
12039 const char *param_name;
12040
12041 param_name = btf_name_by_offset(btf, arg->name_off);
12042 if (str_is_empty(param_name))
12043 return false;
12044 len = strlen(param_name);
12045 if (len != target_len)
12046 return false;
12047 if (strcmp(param_name, name))
12048 return false;
12049
12050 return true;
12051 }
12052
12053 enum {
12054 KF_ARG_DYNPTR_ID,
12055 KF_ARG_LIST_HEAD_ID,
12056 KF_ARG_LIST_NODE_ID,
12057 KF_ARG_RB_ROOT_ID,
12058 KF_ARG_RB_NODE_ID,
12059 KF_ARG_WORKQUEUE_ID,
12060 KF_ARG_RES_SPIN_LOCK_ID,
12061 KF_ARG_TASK_WORK_ID,
12062 };
12063
12064 BTF_ID_LIST(kf_arg_btf_ids)
BTF_ID(struct,bpf_dynptr)12065 BTF_ID(struct, bpf_dynptr)
12066 BTF_ID(struct, bpf_list_head)
12067 BTF_ID(struct, bpf_list_node)
12068 BTF_ID(struct, bpf_rb_root)
12069 BTF_ID(struct, bpf_rb_node)
12070 BTF_ID(struct, bpf_wq)
12071 BTF_ID(struct, bpf_res_spin_lock)
12072 BTF_ID(struct, bpf_task_work)
12073
12074 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
12075 const struct btf_param *arg, int type)
12076 {
12077 const struct btf_type *t;
12078 u32 res_id;
12079
12080 t = btf_type_skip_modifiers(btf, arg->type, NULL);
12081 if (!t)
12082 return false;
12083 if (!btf_type_is_ptr(t))
12084 return false;
12085 t = btf_type_skip_modifiers(btf, t->type, &res_id);
12086 if (!t)
12087 return false;
12088 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
12089 }
12090
is_kfunc_arg_dynptr(const struct btf * btf,const struct btf_param * arg)12091 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
12092 {
12093 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
12094 }
12095
is_kfunc_arg_list_head(const struct btf * btf,const struct btf_param * arg)12096 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
12097 {
12098 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
12099 }
12100
is_kfunc_arg_list_node(const struct btf * btf,const struct btf_param * arg)12101 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
12102 {
12103 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
12104 }
12105
is_kfunc_arg_rbtree_root(const struct btf * btf,const struct btf_param * arg)12106 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
12107 {
12108 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
12109 }
12110
is_kfunc_arg_rbtree_node(const struct btf * btf,const struct btf_param * arg)12111 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
12112 {
12113 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
12114 }
12115
is_kfunc_arg_wq(const struct btf * btf,const struct btf_param * arg)12116 static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg)
12117 {
12118 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID);
12119 }
12120
is_kfunc_arg_task_work(const struct btf * btf,const struct btf_param * arg)12121 static bool is_kfunc_arg_task_work(const struct btf *btf, const struct btf_param *arg)
12122 {
12123 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_TASK_WORK_ID);
12124 }
12125
is_kfunc_arg_res_spin_lock(const struct btf * btf,const struct btf_param * arg)12126 static bool is_kfunc_arg_res_spin_lock(const struct btf *btf, const struct btf_param *arg)
12127 {
12128 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RES_SPIN_LOCK_ID);
12129 }
12130
is_rbtree_node_type(const struct btf_type * t)12131 static bool is_rbtree_node_type(const struct btf_type *t)
12132 {
12133 return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_RB_NODE_ID]);
12134 }
12135
is_list_node_type(const struct btf_type * t)12136 static bool is_list_node_type(const struct btf_type *t)
12137 {
12138 return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_LIST_NODE_ID]);
12139 }
12140
is_kfunc_arg_callback(struct bpf_verifier_env * env,const struct btf * btf,const struct btf_param * arg)12141 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
12142 const struct btf_param *arg)
12143 {
12144 const struct btf_type *t;
12145
12146 t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
12147 if (!t)
12148 return false;
12149
12150 return true;
12151 }
12152
12153 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
__btf_type_is_scalar_struct(struct bpf_verifier_env * env,const struct btf * btf,const struct btf_type * t,int rec)12154 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
12155 const struct btf *btf,
12156 const struct btf_type *t, int rec)
12157 {
12158 const struct btf_type *member_type;
12159 const struct btf_member *member;
12160 u32 i;
12161
12162 if (!btf_type_is_struct(t))
12163 return false;
12164
12165 for_each_member(i, t, member) {
12166 const struct btf_array *array;
12167
12168 member_type = btf_type_skip_modifiers(btf, member->type, NULL);
12169 if (btf_type_is_struct(member_type)) {
12170 if (rec >= 3) {
12171 verbose(env, "max struct nesting depth exceeded\n");
12172 return false;
12173 }
12174 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
12175 return false;
12176 continue;
12177 }
12178 if (btf_type_is_array(member_type)) {
12179 array = btf_array(member_type);
12180 if (!array->nelems)
12181 return false;
12182 member_type = btf_type_skip_modifiers(btf, array->type, NULL);
12183 if (!btf_type_is_scalar(member_type))
12184 return false;
12185 continue;
12186 }
12187 if (!btf_type_is_scalar(member_type))
12188 return false;
12189 }
12190 return true;
12191 }
12192
12193 enum kfunc_ptr_arg_type {
12194 KF_ARG_PTR_TO_CTX,
12195 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */
12196 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
12197 KF_ARG_PTR_TO_DYNPTR,
12198 KF_ARG_PTR_TO_ITER,
12199 KF_ARG_PTR_TO_LIST_HEAD,
12200 KF_ARG_PTR_TO_LIST_NODE,
12201 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */
12202 KF_ARG_PTR_TO_MEM,
12203 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */
12204 KF_ARG_PTR_TO_CALLBACK,
12205 KF_ARG_PTR_TO_RB_ROOT,
12206 KF_ARG_PTR_TO_RB_NODE,
12207 KF_ARG_PTR_TO_NULL,
12208 KF_ARG_PTR_TO_CONST_STR,
12209 KF_ARG_PTR_TO_MAP,
12210 KF_ARG_PTR_TO_WORKQUEUE,
12211 KF_ARG_PTR_TO_IRQ_FLAG,
12212 KF_ARG_PTR_TO_RES_SPIN_LOCK,
12213 KF_ARG_PTR_TO_TASK_WORK,
12214 };
12215
12216 enum special_kfunc_type {
12217 KF_bpf_obj_new_impl,
12218 KF_bpf_obj_drop_impl,
12219 KF_bpf_refcount_acquire_impl,
12220 KF_bpf_list_push_front_impl,
12221 KF_bpf_list_push_back_impl,
12222 KF_bpf_list_pop_front,
12223 KF_bpf_list_pop_back,
12224 KF_bpf_list_front,
12225 KF_bpf_list_back,
12226 KF_bpf_cast_to_kern_ctx,
12227 KF_bpf_rdonly_cast,
12228 KF_bpf_rcu_read_lock,
12229 KF_bpf_rcu_read_unlock,
12230 KF_bpf_rbtree_remove,
12231 KF_bpf_rbtree_add_impl,
12232 KF_bpf_rbtree_first,
12233 KF_bpf_rbtree_root,
12234 KF_bpf_rbtree_left,
12235 KF_bpf_rbtree_right,
12236 KF_bpf_dynptr_from_skb,
12237 KF_bpf_dynptr_from_xdp,
12238 KF_bpf_dynptr_from_skb_meta,
12239 KF_bpf_xdp_pull_data,
12240 KF_bpf_dynptr_slice,
12241 KF_bpf_dynptr_slice_rdwr,
12242 KF_bpf_dynptr_clone,
12243 KF_bpf_percpu_obj_new_impl,
12244 KF_bpf_percpu_obj_drop_impl,
12245 KF_bpf_throw,
12246 KF_bpf_wq_set_callback_impl,
12247 KF_bpf_preempt_disable,
12248 KF_bpf_preempt_enable,
12249 KF_bpf_iter_css_task_new,
12250 KF_bpf_session_cookie,
12251 KF_bpf_get_kmem_cache,
12252 KF_bpf_local_irq_save,
12253 KF_bpf_local_irq_restore,
12254 KF_bpf_iter_num_new,
12255 KF_bpf_iter_num_next,
12256 KF_bpf_iter_num_destroy,
12257 KF_bpf_set_dentry_xattr,
12258 KF_bpf_remove_dentry_xattr,
12259 KF_bpf_res_spin_lock,
12260 KF_bpf_res_spin_unlock,
12261 KF_bpf_res_spin_lock_irqsave,
12262 KF_bpf_res_spin_unlock_irqrestore,
12263 KF___bpf_trap,
12264 KF_bpf_task_work_schedule_signal_impl,
12265 KF_bpf_task_work_schedule_resume_impl,
12266 };
12267
12268 BTF_ID_LIST(special_kfunc_list)
BTF_ID(func,bpf_obj_new_impl)12269 BTF_ID(func, bpf_obj_new_impl)
12270 BTF_ID(func, bpf_obj_drop_impl)
12271 BTF_ID(func, bpf_refcount_acquire_impl)
12272 BTF_ID(func, bpf_list_push_front_impl)
12273 BTF_ID(func, bpf_list_push_back_impl)
12274 BTF_ID(func, bpf_list_pop_front)
12275 BTF_ID(func, bpf_list_pop_back)
12276 BTF_ID(func, bpf_list_front)
12277 BTF_ID(func, bpf_list_back)
12278 BTF_ID(func, bpf_cast_to_kern_ctx)
12279 BTF_ID(func, bpf_rdonly_cast)
12280 BTF_ID(func, bpf_rcu_read_lock)
12281 BTF_ID(func, bpf_rcu_read_unlock)
12282 BTF_ID(func, bpf_rbtree_remove)
12283 BTF_ID(func, bpf_rbtree_add_impl)
12284 BTF_ID(func, bpf_rbtree_first)
12285 BTF_ID(func, bpf_rbtree_root)
12286 BTF_ID(func, bpf_rbtree_left)
12287 BTF_ID(func, bpf_rbtree_right)
12288 #ifdef CONFIG_NET
12289 BTF_ID(func, bpf_dynptr_from_skb)
12290 BTF_ID(func, bpf_dynptr_from_xdp)
12291 BTF_ID(func, bpf_dynptr_from_skb_meta)
12292 BTF_ID(func, bpf_xdp_pull_data)
12293 #else
12294 BTF_ID_UNUSED
12295 BTF_ID_UNUSED
12296 BTF_ID_UNUSED
12297 BTF_ID_UNUSED
12298 #endif
12299 BTF_ID(func, bpf_dynptr_slice)
12300 BTF_ID(func, bpf_dynptr_slice_rdwr)
12301 BTF_ID(func, bpf_dynptr_clone)
12302 BTF_ID(func, bpf_percpu_obj_new_impl)
12303 BTF_ID(func, bpf_percpu_obj_drop_impl)
12304 BTF_ID(func, bpf_throw)
12305 BTF_ID(func, bpf_wq_set_callback_impl)
12306 BTF_ID(func, bpf_preempt_disable)
12307 BTF_ID(func, bpf_preempt_enable)
12308 #ifdef CONFIG_CGROUPS
12309 BTF_ID(func, bpf_iter_css_task_new)
12310 #else
12311 BTF_ID_UNUSED
12312 #endif
12313 #ifdef CONFIG_BPF_EVENTS
12314 BTF_ID(func, bpf_session_cookie)
12315 #else
12316 BTF_ID_UNUSED
12317 #endif
12318 BTF_ID(func, bpf_get_kmem_cache)
12319 BTF_ID(func, bpf_local_irq_save)
12320 BTF_ID(func, bpf_local_irq_restore)
12321 BTF_ID(func, bpf_iter_num_new)
12322 BTF_ID(func, bpf_iter_num_next)
12323 BTF_ID(func, bpf_iter_num_destroy)
12324 #ifdef CONFIG_BPF_LSM
12325 BTF_ID(func, bpf_set_dentry_xattr)
12326 BTF_ID(func, bpf_remove_dentry_xattr)
12327 #else
12328 BTF_ID_UNUSED
12329 BTF_ID_UNUSED
12330 #endif
12331 BTF_ID(func, bpf_res_spin_lock)
12332 BTF_ID(func, bpf_res_spin_unlock)
12333 BTF_ID(func, bpf_res_spin_lock_irqsave)
12334 BTF_ID(func, bpf_res_spin_unlock_irqrestore)
12335 BTF_ID(func, __bpf_trap)
12336 BTF_ID(func, bpf_task_work_schedule_signal_impl)
12337 BTF_ID(func, bpf_task_work_schedule_resume_impl)
12338
12339 static bool is_task_work_add_kfunc(u32 func_id)
12340 {
12341 return func_id == special_kfunc_list[KF_bpf_task_work_schedule_signal_impl] ||
12342 func_id == special_kfunc_list[KF_bpf_task_work_schedule_resume_impl];
12343 }
12344
is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta * meta)12345 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
12346 {
12347 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
12348 meta->arg_owning_ref) {
12349 return false;
12350 }
12351
12352 return meta->kfunc_flags & KF_RET_NULL;
12353 }
12354
is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta * meta)12355 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
12356 {
12357 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
12358 }
12359
is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta * meta)12360 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
12361 {
12362 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
12363 }
12364
is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta * meta)12365 static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta)
12366 {
12367 return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable];
12368 }
12369
is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta * meta)12370 static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta)
12371 {
12372 return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable];
12373 }
12374
is_kfunc_pkt_changing(struct bpf_kfunc_call_arg_meta * meta)12375 static bool is_kfunc_pkt_changing(struct bpf_kfunc_call_arg_meta *meta)
12376 {
12377 return meta->func_id == special_kfunc_list[KF_bpf_xdp_pull_data];
12378 }
12379
12380 static enum kfunc_ptr_arg_type
get_kfunc_ptr_arg_type(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,const struct btf_type * t,const struct btf_type * ref_t,const char * ref_tname,const struct btf_param * args,int argno,int nargs)12381 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
12382 struct bpf_kfunc_call_arg_meta *meta,
12383 const struct btf_type *t, const struct btf_type *ref_t,
12384 const char *ref_tname, const struct btf_param *args,
12385 int argno, int nargs)
12386 {
12387 u32 regno = argno + 1;
12388 struct bpf_reg_state *regs = cur_regs(env);
12389 struct bpf_reg_state *reg = ®s[regno];
12390 bool arg_mem_size = false;
12391
12392 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
12393 return KF_ARG_PTR_TO_CTX;
12394
12395 /* In this function, we verify the kfunc's BTF as per the argument type,
12396 * leaving the rest of the verification with respect to the register
12397 * type to our caller. When a set of conditions hold in the BTF type of
12398 * arguments, we resolve it to a known kfunc_ptr_arg_type.
12399 */
12400 if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
12401 return KF_ARG_PTR_TO_CTX;
12402
12403 if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg))
12404 return KF_ARG_PTR_TO_NULL;
12405
12406 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
12407 return KF_ARG_PTR_TO_ALLOC_BTF_ID;
12408
12409 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
12410 return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
12411
12412 if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
12413 return KF_ARG_PTR_TO_DYNPTR;
12414
12415 if (is_kfunc_arg_iter(meta, argno, &args[argno]))
12416 return KF_ARG_PTR_TO_ITER;
12417
12418 if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
12419 return KF_ARG_PTR_TO_LIST_HEAD;
12420
12421 if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
12422 return KF_ARG_PTR_TO_LIST_NODE;
12423
12424 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
12425 return KF_ARG_PTR_TO_RB_ROOT;
12426
12427 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
12428 return KF_ARG_PTR_TO_RB_NODE;
12429
12430 if (is_kfunc_arg_const_str(meta->btf, &args[argno]))
12431 return KF_ARG_PTR_TO_CONST_STR;
12432
12433 if (is_kfunc_arg_map(meta->btf, &args[argno]))
12434 return KF_ARG_PTR_TO_MAP;
12435
12436 if (is_kfunc_arg_wq(meta->btf, &args[argno]))
12437 return KF_ARG_PTR_TO_WORKQUEUE;
12438
12439 if (is_kfunc_arg_task_work(meta->btf, &args[argno]))
12440 return KF_ARG_PTR_TO_TASK_WORK;
12441
12442 if (is_kfunc_arg_irq_flag(meta->btf, &args[argno]))
12443 return KF_ARG_PTR_TO_IRQ_FLAG;
12444
12445 if (is_kfunc_arg_res_spin_lock(meta->btf, &args[argno]))
12446 return KF_ARG_PTR_TO_RES_SPIN_LOCK;
12447
12448 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
12449 if (!btf_type_is_struct(ref_t)) {
12450 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
12451 meta->func_name, argno, btf_type_str(ref_t), ref_tname);
12452 return -EINVAL;
12453 }
12454 return KF_ARG_PTR_TO_BTF_ID;
12455 }
12456
12457 if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
12458 return KF_ARG_PTR_TO_CALLBACK;
12459
12460 if (argno + 1 < nargs &&
12461 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) ||
12462 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1])))
12463 arg_mem_size = true;
12464
12465 /* This is the catch all argument type of register types supported by
12466 * check_helper_mem_access. However, we only allow when argument type is
12467 * pointer to scalar, or struct composed (recursively) of scalars. When
12468 * arg_mem_size is true, the pointer can be void *.
12469 */
12470 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
12471 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
12472 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
12473 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
12474 return -EINVAL;
12475 }
12476 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
12477 }
12478
process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const struct btf_type * ref_t,const char * ref_tname,u32 ref_id,struct bpf_kfunc_call_arg_meta * meta,int argno)12479 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
12480 struct bpf_reg_state *reg,
12481 const struct btf_type *ref_t,
12482 const char *ref_tname, u32 ref_id,
12483 struct bpf_kfunc_call_arg_meta *meta,
12484 int argno)
12485 {
12486 const struct btf_type *reg_ref_t;
12487 bool strict_type_match = false;
12488 const struct btf *reg_btf;
12489 const char *reg_ref_tname;
12490 bool taking_projection;
12491 bool struct_same;
12492 u32 reg_ref_id;
12493
12494 if (base_type(reg->type) == PTR_TO_BTF_ID) {
12495 reg_btf = reg->btf;
12496 reg_ref_id = reg->btf_id;
12497 } else {
12498 reg_btf = btf_vmlinux;
12499 reg_ref_id = *reg2btf_ids[base_type(reg->type)];
12500 }
12501
12502 /* Enforce strict type matching for calls to kfuncs that are acquiring
12503 * or releasing a reference, or are no-cast aliases. We do _not_
12504 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
12505 * as we want to enable BPF programs to pass types that are bitwise
12506 * equivalent without forcing them to explicitly cast with something
12507 * like bpf_cast_to_kern_ctx().
12508 *
12509 * For example, say we had a type like the following:
12510 *
12511 * struct bpf_cpumask {
12512 * cpumask_t cpumask;
12513 * refcount_t usage;
12514 * };
12515 *
12516 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
12517 * to a struct cpumask, so it would be safe to pass a struct
12518 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
12519 *
12520 * The philosophy here is similar to how we allow scalars of different
12521 * types to be passed to kfuncs as long as the size is the same. The
12522 * only difference here is that we're simply allowing
12523 * btf_struct_ids_match() to walk the struct at the 0th offset, and
12524 * resolve types.
12525 */
12526 if ((is_kfunc_release(meta) && reg->ref_obj_id) ||
12527 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
12528 strict_type_match = true;
12529
12530 WARN_ON_ONCE(is_kfunc_release(meta) &&
12531 (reg->off || !tnum_is_const(reg->var_off) ||
12532 reg->var_off.value));
12533
12534 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id);
12535 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
12536 struct_same = btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match);
12537 /* If kfunc is accepting a projection type (ie. __sk_buff), it cannot
12538 * actually use it -- it must cast to the underlying type. So we allow
12539 * caller to pass in the underlying type.
12540 */
12541 taking_projection = btf_is_projection_of(ref_tname, reg_ref_tname);
12542 if (!taking_projection && !struct_same) {
12543 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
12544 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
12545 btf_type_str(reg_ref_t), reg_ref_tname);
12546 return -EINVAL;
12547 }
12548 return 0;
12549 }
12550
process_irq_flag(struct bpf_verifier_env * env,int regno,struct bpf_kfunc_call_arg_meta * meta)12551 static int process_irq_flag(struct bpf_verifier_env *env, int regno,
12552 struct bpf_kfunc_call_arg_meta *meta)
12553 {
12554 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
12555 int err, kfunc_class = IRQ_NATIVE_KFUNC;
12556 bool irq_save;
12557
12558 if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_save] ||
12559 meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) {
12560 irq_save = true;
12561 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])
12562 kfunc_class = IRQ_LOCK_KFUNC;
12563 } else if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_restore] ||
12564 meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) {
12565 irq_save = false;
12566 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore])
12567 kfunc_class = IRQ_LOCK_KFUNC;
12568 } else {
12569 verifier_bug(env, "unknown irq flags kfunc");
12570 return -EFAULT;
12571 }
12572
12573 if (irq_save) {
12574 if (!is_irq_flag_reg_valid_uninit(env, reg)) {
12575 verbose(env, "expected uninitialized irq flag as arg#%d\n", regno - 1);
12576 return -EINVAL;
12577 }
12578
12579 err = check_mem_access(env, env->insn_idx, regno, 0, BPF_DW, BPF_WRITE, -1, false, false);
12580 if (err)
12581 return err;
12582
12583 err = mark_stack_slot_irq_flag(env, meta, reg, env->insn_idx, kfunc_class);
12584 if (err)
12585 return err;
12586 } else {
12587 err = is_irq_flag_reg_valid_init(env, reg);
12588 if (err) {
12589 verbose(env, "expected an initialized irq flag as arg#%d\n", regno - 1);
12590 return err;
12591 }
12592
12593 err = mark_irq_flag_read(env, reg);
12594 if (err)
12595 return err;
12596
12597 err = unmark_stack_slot_irq_flag(env, reg, kfunc_class);
12598 if (err)
12599 return err;
12600 }
12601 return 0;
12602 }
12603
12604
ref_set_non_owning(struct bpf_verifier_env * env,struct bpf_reg_state * reg)12605 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
12606 {
12607 struct btf_record *rec = reg_btf_record(reg);
12608
12609 if (!env->cur_state->active_locks) {
12610 verifier_bug(env, "%s w/o active lock", __func__);
12611 return -EFAULT;
12612 }
12613
12614 if (type_flag(reg->type) & NON_OWN_REF) {
12615 verifier_bug(env, "NON_OWN_REF already set");
12616 return -EFAULT;
12617 }
12618
12619 reg->type |= NON_OWN_REF;
12620 if (rec->refcount_off >= 0)
12621 reg->type |= MEM_RCU;
12622
12623 return 0;
12624 }
12625
ref_convert_owning_non_owning(struct bpf_verifier_env * env,u32 ref_obj_id)12626 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
12627 {
12628 struct bpf_verifier_state *state = env->cur_state;
12629 struct bpf_func_state *unused;
12630 struct bpf_reg_state *reg;
12631 int i;
12632
12633 if (!ref_obj_id) {
12634 verifier_bug(env, "ref_obj_id is zero for owning -> non-owning conversion");
12635 return -EFAULT;
12636 }
12637
12638 for (i = 0; i < state->acquired_refs; i++) {
12639 if (state->refs[i].id != ref_obj_id)
12640 continue;
12641
12642 /* Clear ref_obj_id here so release_reference doesn't clobber
12643 * the whole reg
12644 */
12645 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
12646 if (reg->ref_obj_id == ref_obj_id) {
12647 reg->ref_obj_id = 0;
12648 ref_set_non_owning(env, reg);
12649 }
12650 }));
12651 return 0;
12652 }
12653
12654 verifier_bug(env, "ref state missing for ref_obj_id");
12655 return -EFAULT;
12656 }
12657
12658 /* Implementation details:
12659 *
12660 * Each register points to some region of memory, which we define as an
12661 * allocation. Each allocation may embed a bpf_spin_lock which protects any
12662 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
12663 * allocation. The lock and the data it protects are colocated in the same
12664 * memory region.
12665 *
12666 * Hence, everytime a register holds a pointer value pointing to such
12667 * allocation, the verifier preserves a unique reg->id for it.
12668 *
12669 * The verifier remembers the lock 'ptr' and the lock 'id' whenever
12670 * bpf_spin_lock is called.
12671 *
12672 * To enable this, lock state in the verifier captures two values:
12673 * active_lock.ptr = Register's type specific pointer
12674 * active_lock.id = A unique ID for each register pointer value
12675 *
12676 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
12677 * supported register types.
12678 *
12679 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
12680 * allocated objects is the reg->btf pointer.
12681 *
12682 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
12683 * can establish the provenance of the map value statically for each distinct
12684 * lookup into such maps. They always contain a single map value hence unique
12685 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
12686 *
12687 * So, in case of global variables, they use array maps with max_entries = 1,
12688 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
12689 * into the same map value as max_entries is 1, as described above).
12690 *
12691 * In case of inner map lookups, the inner map pointer has same map_ptr as the
12692 * outer map pointer (in verifier context), but each lookup into an inner map
12693 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
12694 * maps from the same outer map share the same map_ptr as active_lock.ptr, they
12695 * will get different reg->id assigned to each lookup, hence different
12696 * active_lock.id.
12697 *
12698 * In case of allocated objects, active_lock.ptr is the reg->btf, and the
12699 * reg->id is a unique ID preserved after the NULL pointer check on the pointer
12700 * returned from bpf_obj_new. Each allocation receives a new reg->id.
12701 */
check_reg_allocation_locked(struct bpf_verifier_env * env,struct bpf_reg_state * reg)12702 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
12703 {
12704 struct bpf_reference_state *s;
12705 void *ptr;
12706 u32 id;
12707
12708 switch ((int)reg->type) {
12709 case PTR_TO_MAP_VALUE:
12710 ptr = reg->map_ptr;
12711 break;
12712 case PTR_TO_BTF_ID | MEM_ALLOC:
12713 ptr = reg->btf;
12714 break;
12715 default:
12716 verifier_bug(env, "unknown reg type for lock check");
12717 return -EFAULT;
12718 }
12719 id = reg->id;
12720
12721 if (!env->cur_state->active_locks)
12722 return -EINVAL;
12723 s = find_lock_state(env->cur_state, REF_TYPE_LOCK_MASK, id, ptr);
12724 if (!s) {
12725 verbose(env, "held lock and object are not in the same allocation\n");
12726 return -EINVAL;
12727 }
12728 return 0;
12729 }
12730
is_bpf_list_api_kfunc(u32 btf_id)12731 static bool is_bpf_list_api_kfunc(u32 btf_id)
12732 {
12733 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
12734 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
12735 btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
12736 btf_id == special_kfunc_list[KF_bpf_list_pop_back] ||
12737 btf_id == special_kfunc_list[KF_bpf_list_front] ||
12738 btf_id == special_kfunc_list[KF_bpf_list_back];
12739 }
12740
is_bpf_rbtree_api_kfunc(u32 btf_id)12741 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
12742 {
12743 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
12744 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
12745 btf_id == special_kfunc_list[KF_bpf_rbtree_first] ||
12746 btf_id == special_kfunc_list[KF_bpf_rbtree_root] ||
12747 btf_id == special_kfunc_list[KF_bpf_rbtree_left] ||
12748 btf_id == special_kfunc_list[KF_bpf_rbtree_right];
12749 }
12750
is_bpf_iter_num_api_kfunc(u32 btf_id)12751 static bool is_bpf_iter_num_api_kfunc(u32 btf_id)
12752 {
12753 return btf_id == special_kfunc_list[KF_bpf_iter_num_new] ||
12754 btf_id == special_kfunc_list[KF_bpf_iter_num_next] ||
12755 btf_id == special_kfunc_list[KF_bpf_iter_num_destroy];
12756 }
12757
is_bpf_graph_api_kfunc(u32 btf_id)12758 static bool is_bpf_graph_api_kfunc(u32 btf_id)
12759 {
12760 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
12761 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
12762 }
12763
is_bpf_res_spin_lock_kfunc(u32 btf_id)12764 static bool is_bpf_res_spin_lock_kfunc(u32 btf_id)
12765 {
12766 return btf_id == special_kfunc_list[KF_bpf_res_spin_lock] ||
12767 btf_id == special_kfunc_list[KF_bpf_res_spin_unlock] ||
12768 btf_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] ||
12769 btf_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore];
12770 }
12771
kfunc_spin_allowed(u32 btf_id)12772 static bool kfunc_spin_allowed(u32 btf_id)
12773 {
12774 return is_bpf_graph_api_kfunc(btf_id) || is_bpf_iter_num_api_kfunc(btf_id) ||
12775 is_bpf_res_spin_lock_kfunc(btf_id);
12776 }
12777
is_sync_callback_calling_kfunc(u32 btf_id)12778 static bool is_sync_callback_calling_kfunc(u32 btf_id)
12779 {
12780 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
12781 }
12782
is_async_callback_calling_kfunc(u32 btf_id)12783 static bool is_async_callback_calling_kfunc(u32 btf_id)
12784 {
12785 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl] ||
12786 is_task_work_add_kfunc(btf_id);
12787 }
12788
is_bpf_throw_kfunc(struct bpf_insn * insn)12789 static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
12790 {
12791 return bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
12792 insn->imm == special_kfunc_list[KF_bpf_throw];
12793 }
12794
is_bpf_wq_set_callback_impl_kfunc(u32 btf_id)12795 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id)
12796 {
12797 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl];
12798 }
12799
is_callback_calling_kfunc(u32 btf_id)12800 static bool is_callback_calling_kfunc(u32 btf_id)
12801 {
12802 return is_sync_callback_calling_kfunc(btf_id) ||
12803 is_async_callback_calling_kfunc(btf_id);
12804 }
12805
is_rbtree_lock_required_kfunc(u32 btf_id)12806 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
12807 {
12808 return is_bpf_rbtree_api_kfunc(btf_id);
12809 }
12810
check_kfunc_is_graph_root_api(struct bpf_verifier_env * env,enum btf_field_type head_field_type,u32 kfunc_btf_id)12811 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
12812 enum btf_field_type head_field_type,
12813 u32 kfunc_btf_id)
12814 {
12815 bool ret;
12816
12817 switch (head_field_type) {
12818 case BPF_LIST_HEAD:
12819 ret = is_bpf_list_api_kfunc(kfunc_btf_id);
12820 break;
12821 case BPF_RB_ROOT:
12822 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
12823 break;
12824 default:
12825 verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
12826 btf_field_type_name(head_field_type));
12827 return false;
12828 }
12829
12830 if (!ret)
12831 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
12832 btf_field_type_name(head_field_type));
12833 return ret;
12834 }
12835
check_kfunc_is_graph_node_api(struct bpf_verifier_env * env,enum btf_field_type node_field_type,u32 kfunc_btf_id)12836 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
12837 enum btf_field_type node_field_type,
12838 u32 kfunc_btf_id)
12839 {
12840 bool ret;
12841
12842 switch (node_field_type) {
12843 case BPF_LIST_NODE:
12844 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
12845 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
12846 break;
12847 case BPF_RB_NODE:
12848 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
12849 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
12850 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_left] ||
12851 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_right]);
12852 break;
12853 default:
12854 verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
12855 btf_field_type_name(node_field_type));
12856 return false;
12857 }
12858
12859 if (!ret)
12860 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
12861 btf_field_type_name(node_field_type));
12862 return ret;
12863 }
12864
12865 static int
__process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta,enum btf_field_type head_field_type,struct btf_field ** head_field)12866 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
12867 struct bpf_reg_state *reg, u32 regno,
12868 struct bpf_kfunc_call_arg_meta *meta,
12869 enum btf_field_type head_field_type,
12870 struct btf_field **head_field)
12871 {
12872 const char *head_type_name;
12873 struct btf_field *field;
12874 struct btf_record *rec;
12875 u32 head_off;
12876
12877 if (meta->btf != btf_vmlinux) {
12878 verifier_bug(env, "unexpected btf mismatch in kfunc call");
12879 return -EFAULT;
12880 }
12881
12882 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
12883 return -EFAULT;
12884
12885 head_type_name = btf_field_type_name(head_field_type);
12886 if (!tnum_is_const(reg->var_off)) {
12887 verbose(env,
12888 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
12889 regno, head_type_name);
12890 return -EINVAL;
12891 }
12892
12893 rec = reg_btf_record(reg);
12894 head_off = reg->off + reg->var_off.value;
12895 field = btf_record_find(rec, head_off, head_field_type);
12896 if (!field) {
12897 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
12898 return -EINVAL;
12899 }
12900
12901 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */
12902 if (check_reg_allocation_locked(env, reg)) {
12903 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
12904 rec->spin_lock_off, head_type_name);
12905 return -EINVAL;
12906 }
12907
12908 if (*head_field) {
12909 verifier_bug(env, "repeating %s arg", head_type_name);
12910 return -EFAULT;
12911 }
12912 *head_field = field;
12913 return 0;
12914 }
12915
process_kf_arg_ptr_to_list_head(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)12916 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
12917 struct bpf_reg_state *reg, u32 regno,
12918 struct bpf_kfunc_call_arg_meta *meta)
12919 {
12920 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
12921 &meta->arg_list_head.field);
12922 }
12923
process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)12924 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
12925 struct bpf_reg_state *reg, u32 regno,
12926 struct bpf_kfunc_call_arg_meta *meta)
12927 {
12928 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
12929 &meta->arg_rbtree_root.field);
12930 }
12931
12932 static int
__process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta,enum btf_field_type head_field_type,enum btf_field_type node_field_type,struct btf_field ** node_field)12933 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
12934 struct bpf_reg_state *reg, u32 regno,
12935 struct bpf_kfunc_call_arg_meta *meta,
12936 enum btf_field_type head_field_type,
12937 enum btf_field_type node_field_type,
12938 struct btf_field **node_field)
12939 {
12940 const char *node_type_name;
12941 const struct btf_type *et, *t;
12942 struct btf_field *field;
12943 u32 node_off;
12944
12945 if (meta->btf != btf_vmlinux) {
12946 verifier_bug(env, "unexpected btf mismatch in kfunc call");
12947 return -EFAULT;
12948 }
12949
12950 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
12951 return -EFAULT;
12952
12953 node_type_name = btf_field_type_name(node_field_type);
12954 if (!tnum_is_const(reg->var_off)) {
12955 verbose(env,
12956 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
12957 regno, node_type_name);
12958 return -EINVAL;
12959 }
12960
12961 node_off = reg->off + reg->var_off.value;
12962 field = reg_find_field_offset(reg, node_off, node_field_type);
12963 if (!field) {
12964 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
12965 return -EINVAL;
12966 }
12967
12968 field = *node_field;
12969
12970 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
12971 t = btf_type_by_id(reg->btf, reg->btf_id);
12972 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
12973 field->graph_root.value_btf_id, true)) {
12974 verbose(env, "operation on %s expects arg#1 %s at offset=%d "
12975 "in struct %s, but arg is at offset=%d in struct %s\n",
12976 btf_field_type_name(head_field_type),
12977 btf_field_type_name(node_field_type),
12978 field->graph_root.node_offset,
12979 btf_name_by_offset(field->graph_root.btf, et->name_off),
12980 node_off, btf_name_by_offset(reg->btf, t->name_off));
12981 return -EINVAL;
12982 }
12983 meta->arg_btf = reg->btf;
12984 meta->arg_btf_id = reg->btf_id;
12985
12986 if (node_off != field->graph_root.node_offset) {
12987 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
12988 node_off, btf_field_type_name(node_field_type),
12989 field->graph_root.node_offset,
12990 btf_name_by_offset(field->graph_root.btf, et->name_off));
12991 return -EINVAL;
12992 }
12993
12994 return 0;
12995 }
12996
process_kf_arg_ptr_to_list_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)12997 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
12998 struct bpf_reg_state *reg, u32 regno,
12999 struct bpf_kfunc_call_arg_meta *meta)
13000 {
13001 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
13002 BPF_LIST_HEAD, BPF_LIST_NODE,
13003 &meta->arg_list_head.field);
13004 }
13005
process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)13006 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
13007 struct bpf_reg_state *reg, u32 regno,
13008 struct bpf_kfunc_call_arg_meta *meta)
13009 {
13010 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
13011 BPF_RB_ROOT, BPF_RB_NODE,
13012 &meta->arg_rbtree_root.field);
13013 }
13014
13015 /*
13016 * css_task iter allowlist is needed to avoid dead locking on css_set_lock.
13017 * LSM hooks and iters (both sleepable and non-sleepable) are safe.
13018 * Any sleepable progs are also safe since bpf_check_attach_target() enforce
13019 * them can only be attached to some specific hook points.
13020 */
check_css_task_iter_allowlist(struct bpf_verifier_env * env)13021 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env)
13022 {
13023 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
13024
13025 switch (prog_type) {
13026 case BPF_PROG_TYPE_LSM:
13027 return true;
13028 case BPF_PROG_TYPE_TRACING:
13029 if (env->prog->expected_attach_type == BPF_TRACE_ITER)
13030 return true;
13031 fallthrough;
13032 default:
13033 return in_sleepable(env);
13034 }
13035 }
13036
check_kfunc_args(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,int insn_idx)13037 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
13038 int insn_idx)
13039 {
13040 const char *func_name = meta->func_name, *ref_tname;
13041 const struct btf *btf = meta->btf;
13042 const struct btf_param *args;
13043 struct btf_record *rec;
13044 u32 i, nargs;
13045 int ret;
13046
13047 args = (const struct btf_param *)(meta->func_proto + 1);
13048 nargs = btf_type_vlen(meta->func_proto);
13049 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
13050 verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
13051 MAX_BPF_FUNC_REG_ARGS);
13052 return -EINVAL;
13053 }
13054
13055 /* Check that BTF function arguments match actual types that the
13056 * verifier sees.
13057 */
13058 for (i = 0; i < nargs; i++) {
13059 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1];
13060 const struct btf_type *t, *ref_t, *resolve_ret;
13061 enum bpf_arg_type arg_type = ARG_DONTCARE;
13062 u32 regno = i + 1, ref_id, type_size;
13063 bool is_ret_buf_sz = false;
13064 int kf_arg_type;
13065
13066 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
13067
13068 if (is_kfunc_arg_ignore(btf, &args[i]))
13069 continue;
13070
13071 if (is_kfunc_arg_prog(btf, &args[i])) {
13072 /* Used to reject repeated use of __prog. */
13073 if (meta->arg_prog) {
13074 verifier_bug(env, "Only 1 prog->aux argument supported per-kfunc");
13075 return -EFAULT;
13076 }
13077 meta->arg_prog = true;
13078 cur_aux(env)->arg_prog = regno;
13079 continue;
13080 }
13081
13082 if (btf_type_is_scalar(t)) {
13083 if (reg->type != SCALAR_VALUE) {
13084 verbose(env, "R%d is not a scalar\n", regno);
13085 return -EINVAL;
13086 }
13087
13088 if (is_kfunc_arg_constant(meta->btf, &args[i])) {
13089 if (meta->arg_constant.found) {
13090 verifier_bug(env, "only one constant argument permitted");
13091 return -EFAULT;
13092 }
13093 if (!tnum_is_const(reg->var_off)) {
13094 verbose(env, "R%d must be a known constant\n", regno);
13095 return -EINVAL;
13096 }
13097 ret = mark_chain_precision(env, regno);
13098 if (ret < 0)
13099 return ret;
13100 meta->arg_constant.found = true;
13101 meta->arg_constant.value = reg->var_off.value;
13102 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
13103 meta->r0_rdonly = true;
13104 is_ret_buf_sz = true;
13105 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
13106 is_ret_buf_sz = true;
13107 }
13108
13109 if (is_ret_buf_sz) {
13110 if (meta->r0_size) {
13111 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
13112 return -EINVAL;
13113 }
13114
13115 if (!tnum_is_const(reg->var_off)) {
13116 verbose(env, "R%d is not a const\n", regno);
13117 return -EINVAL;
13118 }
13119
13120 meta->r0_size = reg->var_off.value;
13121 ret = mark_chain_precision(env, regno);
13122 if (ret)
13123 return ret;
13124 }
13125 continue;
13126 }
13127
13128 if (!btf_type_is_ptr(t)) {
13129 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
13130 return -EINVAL;
13131 }
13132
13133 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
13134 (register_is_null(reg) || type_may_be_null(reg->type)) &&
13135 !is_kfunc_arg_nullable(meta->btf, &args[i])) {
13136 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
13137 return -EACCES;
13138 }
13139
13140 if (reg->ref_obj_id) {
13141 if (is_kfunc_release(meta) && meta->ref_obj_id) {
13142 verifier_bug(env, "more than one arg with ref_obj_id R%d %u %u",
13143 regno, reg->ref_obj_id,
13144 meta->ref_obj_id);
13145 return -EFAULT;
13146 }
13147 meta->ref_obj_id = reg->ref_obj_id;
13148 if (is_kfunc_release(meta))
13149 meta->release_regno = regno;
13150 }
13151
13152 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
13153 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
13154
13155 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
13156 if (kf_arg_type < 0)
13157 return kf_arg_type;
13158
13159 switch (kf_arg_type) {
13160 case KF_ARG_PTR_TO_NULL:
13161 continue;
13162 case KF_ARG_PTR_TO_MAP:
13163 if (!reg->map_ptr) {
13164 verbose(env, "pointer in R%d isn't map pointer\n", regno);
13165 return -EINVAL;
13166 }
13167 if (meta->map.ptr && (reg->map_ptr->record->wq_off >= 0 ||
13168 reg->map_ptr->record->task_work_off >= 0)) {
13169 /* Use map_uid (which is unique id of inner map) to reject:
13170 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
13171 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
13172 * if (inner_map1 && inner_map2) {
13173 * wq = bpf_map_lookup_elem(inner_map1);
13174 * if (wq)
13175 * // mismatch would have been allowed
13176 * bpf_wq_init(wq, inner_map2);
13177 * }
13178 *
13179 * Comparing map_ptr is enough to distinguish normal and outer maps.
13180 */
13181 if (meta->map.ptr != reg->map_ptr ||
13182 meta->map.uid != reg->map_uid) {
13183 if (reg->map_ptr->record->task_work_off >= 0) {
13184 verbose(env,
13185 "bpf_task_work pointer in R2 map_uid=%d doesn't match map pointer in R3 map_uid=%d\n",
13186 meta->map.uid, reg->map_uid);
13187 return -EINVAL;
13188 }
13189 verbose(env,
13190 "workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
13191 meta->map.uid, reg->map_uid);
13192 return -EINVAL;
13193 }
13194 }
13195 meta->map.ptr = reg->map_ptr;
13196 meta->map.uid = reg->map_uid;
13197 fallthrough;
13198 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
13199 case KF_ARG_PTR_TO_BTF_ID:
13200 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
13201 break;
13202
13203 if (!is_trusted_reg(reg)) {
13204 if (!is_kfunc_rcu(meta)) {
13205 verbose(env, "R%d must be referenced or trusted\n", regno);
13206 return -EINVAL;
13207 }
13208 if (!is_rcu_reg(reg)) {
13209 verbose(env, "R%d must be a rcu pointer\n", regno);
13210 return -EINVAL;
13211 }
13212 }
13213 fallthrough;
13214 case KF_ARG_PTR_TO_CTX:
13215 case KF_ARG_PTR_TO_DYNPTR:
13216 case KF_ARG_PTR_TO_ITER:
13217 case KF_ARG_PTR_TO_LIST_HEAD:
13218 case KF_ARG_PTR_TO_LIST_NODE:
13219 case KF_ARG_PTR_TO_RB_ROOT:
13220 case KF_ARG_PTR_TO_RB_NODE:
13221 case KF_ARG_PTR_TO_MEM:
13222 case KF_ARG_PTR_TO_MEM_SIZE:
13223 case KF_ARG_PTR_TO_CALLBACK:
13224 case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
13225 case KF_ARG_PTR_TO_CONST_STR:
13226 case KF_ARG_PTR_TO_WORKQUEUE:
13227 case KF_ARG_PTR_TO_TASK_WORK:
13228 case KF_ARG_PTR_TO_IRQ_FLAG:
13229 case KF_ARG_PTR_TO_RES_SPIN_LOCK:
13230 break;
13231 default:
13232 verifier_bug(env, "unknown kfunc arg type %d", kf_arg_type);
13233 return -EFAULT;
13234 }
13235
13236 if (is_kfunc_release(meta) && reg->ref_obj_id)
13237 arg_type |= OBJ_RELEASE;
13238 ret = check_func_arg_reg_off(env, reg, regno, arg_type);
13239 if (ret < 0)
13240 return ret;
13241
13242 switch (kf_arg_type) {
13243 case KF_ARG_PTR_TO_CTX:
13244 if (reg->type != PTR_TO_CTX) {
13245 verbose(env, "arg#%d expected pointer to ctx, but got %s\n",
13246 i, reg_type_str(env, reg->type));
13247 return -EINVAL;
13248 }
13249
13250 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
13251 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
13252 if (ret < 0)
13253 return -EINVAL;
13254 meta->ret_btf_id = ret;
13255 }
13256 break;
13257 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
13258 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
13259 if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) {
13260 verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i);
13261 return -EINVAL;
13262 }
13263 } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) {
13264 if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
13265 verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i);
13266 return -EINVAL;
13267 }
13268 } else {
13269 verbose(env, "arg#%d expected pointer to allocated object\n", i);
13270 return -EINVAL;
13271 }
13272 if (!reg->ref_obj_id) {
13273 verbose(env, "allocated object must be referenced\n");
13274 return -EINVAL;
13275 }
13276 if (meta->btf == btf_vmlinux) {
13277 meta->arg_btf = reg->btf;
13278 meta->arg_btf_id = reg->btf_id;
13279 }
13280 break;
13281 case KF_ARG_PTR_TO_DYNPTR:
13282 {
13283 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
13284 int clone_ref_obj_id = 0;
13285
13286 if (reg->type == CONST_PTR_TO_DYNPTR)
13287 dynptr_arg_type |= MEM_RDONLY;
13288
13289 if (is_kfunc_arg_uninit(btf, &args[i]))
13290 dynptr_arg_type |= MEM_UNINIT;
13291
13292 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
13293 dynptr_arg_type |= DYNPTR_TYPE_SKB;
13294 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
13295 dynptr_arg_type |= DYNPTR_TYPE_XDP;
13296 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb_meta]) {
13297 dynptr_arg_type |= DYNPTR_TYPE_SKB_META;
13298 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
13299 (dynptr_arg_type & MEM_UNINIT)) {
13300 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
13301
13302 if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
13303 verifier_bug(env, "no dynptr type for parent of clone");
13304 return -EFAULT;
13305 }
13306
13307 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
13308 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
13309 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
13310 verifier_bug(env, "missing ref obj id for parent of clone");
13311 return -EFAULT;
13312 }
13313 }
13314
13315 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
13316 if (ret < 0)
13317 return ret;
13318
13319 if (!(dynptr_arg_type & MEM_UNINIT)) {
13320 int id = dynptr_id(env, reg);
13321
13322 if (id < 0) {
13323 verifier_bug(env, "failed to obtain dynptr id");
13324 return id;
13325 }
13326 meta->initialized_dynptr.id = id;
13327 meta->initialized_dynptr.type = dynptr_get_type(env, reg);
13328 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
13329 }
13330
13331 break;
13332 }
13333 case KF_ARG_PTR_TO_ITER:
13334 if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) {
13335 if (!check_css_task_iter_allowlist(env)) {
13336 verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n");
13337 return -EINVAL;
13338 }
13339 }
13340 ret = process_iter_arg(env, regno, insn_idx, meta);
13341 if (ret < 0)
13342 return ret;
13343 break;
13344 case KF_ARG_PTR_TO_LIST_HEAD:
13345 if (reg->type != PTR_TO_MAP_VALUE &&
13346 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13347 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
13348 return -EINVAL;
13349 }
13350 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
13351 verbose(env, "allocated object must be referenced\n");
13352 return -EINVAL;
13353 }
13354 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
13355 if (ret < 0)
13356 return ret;
13357 break;
13358 case KF_ARG_PTR_TO_RB_ROOT:
13359 if (reg->type != PTR_TO_MAP_VALUE &&
13360 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13361 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
13362 return -EINVAL;
13363 }
13364 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
13365 verbose(env, "allocated object must be referenced\n");
13366 return -EINVAL;
13367 }
13368 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
13369 if (ret < 0)
13370 return ret;
13371 break;
13372 case KF_ARG_PTR_TO_LIST_NODE:
13373 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13374 verbose(env, "arg#%d expected pointer to allocated object\n", i);
13375 return -EINVAL;
13376 }
13377 if (!reg->ref_obj_id) {
13378 verbose(env, "allocated object must be referenced\n");
13379 return -EINVAL;
13380 }
13381 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
13382 if (ret < 0)
13383 return ret;
13384 break;
13385 case KF_ARG_PTR_TO_RB_NODE:
13386 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
13387 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13388 verbose(env, "arg#%d expected pointer to allocated object\n", i);
13389 return -EINVAL;
13390 }
13391 if (!reg->ref_obj_id) {
13392 verbose(env, "allocated object must be referenced\n");
13393 return -EINVAL;
13394 }
13395 } else {
13396 if (!type_is_non_owning_ref(reg->type) && !reg->ref_obj_id) {
13397 verbose(env, "%s can only take non-owning or refcounted bpf_rb_node pointer\n", func_name);
13398 return -EINVAL;
13399 }
13400 if (in_rbtree_lock_required_cb(env)) {
13401 verbose(env, "%s not allowed in rbtree cb\n", func_name);
13402 return -EINVAL;
13403 }
13404 }
13405
13406 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
13407 if (ret < 0)
13408 return ret;
13409 break;
13410 case KF_ARG_PTR_TO_MAP:
13411 /* If argument has '__map' suffix expect 'struct bpf_map *' */
13412 ref_id = *reg2btf_ids[CONST_PTR_TO_MAP];
13413 ref_t = btf_type_by_id(btf_vmlinux, ref_id);
13414 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
13415 fallthrough;
13416 case KF_ARG_PTR_TO_BTF_ID:
13417 /* Only base_type is checked, further checks are done here */
13418 if ((base_type(reg->type) != PTR_TO_BTF_ID ||
13419 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
13420 !reg2btf_ids[base_type(reg->type)]) {
13421 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
13422 verbose(env, "expected %s or socket\n",
13423 reg_type_str(env, base_type(reg->type) |
13424 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
13425 return -EINVAL;
13426 }
13427 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
13428 if (ret < 0)
13429 return ret;
13430 break;
13431 case KF_ARG_PTR_TO_MEM:
13432 resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
13433 if (IS_ERR(resolve_ret)) {
13434 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
13435 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
13436 return -EINVAL;
13437 }
13438 ret = check_mem_reg(env, reg, regno, type_size);
13439 if (ret < 0)
13440 return ret;
13441 break;
13442 case KF_ARG_PTR_TO_MEM_SIZE:
13443 {
13444 struct bpf_reg_state *buff_reg = ®s[regno];
13445 const struct btf_param *buff_arg = &args[i];
13446 struct bpf_reg_state *size_reg = ®s[regno + 1];
13447 const struct btf_param *size_arg = &args[i + 1];
13448
13449 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
13450 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
13451 if (ret < 0) {
13452 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
13453 return ret;
13454 }
13455 }
13456
13457 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
13458 if (meta->arg_constant.found) {
13459 verifier_bug(env, "only one constant argument permitted");
13460 return -EFAULT;
13461 }
13462 if (!tnum_is_const(size_reg->var_off)) {
13463 verbose(env, "R%d must be a known constant\n", regno + 1);
13464 return -EINVAL;
13465 }
13466 meta->arg_constant.found = true;
13467 meta->arg_constant.value = size_reg->var_off.value;
13468 }
13469
13470 /* Skip next '__sz' or '__szk' argument */
13471 i++;
13472 break;
13473 }
13474 case KF_ARG_PTR_TO_CALLBACK:
13475 if (reg->type != PTR_TO_FUNC) {
13476 verbose(env, "arg%d expected pointer to func\n", i);
13477 return -EINVAL;
13478 }
13479 meta->subprogno = reg->subprogno;
13480 break;
13481 case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
13482 if (!type_is_ptr_alloc_obj(reg->type)) {
13483 verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
13484 return -EINVAL;
13485 }
13486 if (!type_is_non_owning_ref(reg->type))
13487 meta->arg_owning_ref = true;
13488
13489 rec = reg_btf_record(reg);
13490 if (!rec) {
13491 verifier_bug(env, "Couldn't find btf_record");
13492 return -EFAULT;
13493 }
13494
13495 if (rec->refcount_off < 0) {
13496 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
13497 return -EINVAL;
13498 }
13499
13500 meta->arg_btf = reg->btf;
13501 meta->arg_btf_id = reg->btf_id;
13502 break;
13503 case KF_ARG_PTR_TO_CONST_STR:
13504 if (reg->type != PTR_TO_MAP_VALUE) {
13505 verbose(env, "arg#%d doesn't point to a const string\n", i);
13506 return -EINVAL;
13507 }
13508 ret = check_reg_const_str(env, reg, regno);
13509 if (ret)
13510 return ret;
13511 break;
13512 case KF_ARG_PTR_TO_WORKQUEUE:
13513 if (reg->type != PTR_TO_MAP_VALUE) {
13514 verbose(env, "arg#%d doesn't point to a map value\n", i);
13515 return -EINVAL;
13516 }
13517 ret = process_wq_func(env, regno, meta);
13518 if (ret < 0)
13519 return ret;
13520 break;
13521 case KF_ARG_PTR_TO_TASK_WORK:
13522 if (reg->type != PTR_TO_MAP_VALUE) {
13523 verbose(env, "arg#%d doesn't point to a map value\n", i);
13524 return -EINVAL;
13525 }
13526 ret = process_task_work_func(env, regno, meta);
13527 if (ret < 0)
13528 return ret;
13529 break;
13530 case KF_ARG_PTR_TO_IRQ_FLAG:
13531 if (reg->type != PTR_TO_STACK) {
13532 verbose(env, "arg#%d doesn't point to an irq flag on stack\n", i);
13533 return -EINVAL;
13534 }
13535 ret = process_irq_flag(env, regno, meta);
13536 if (ret < 0)
13537 return ret;
13538 break;
13539 case KF_ARG_PTR_TO_RES_SPIN_LOCK:
13540 {
13541 int flags = PROCESS_RES_LOCK;
13542
13543 if (reg->type != PTR_TO_MAP_VALUE && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13544 verbose(env, "arg#%d doesn't point to map value or allocated object\n", i);
13545 return -EINVAL;
13546 }
13547
13548 if (!is_bpf_res_spin_lock_kfunc(meta->func_id))
13549 return -EFAULT;
13550 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock] ||
13551 meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])
13552 flags |= PROCESS_SPIN_LOCK;
13553 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] ||
13554 meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore])
13555 flags |= PROCESS_LOCK_IRQ;
13556 ret = process_spin_lock(env, regno, flags);
13557 if (ret < 0)
13558 return ret;
13559 break;
13560 }
13561 }
13562 }
13563
13564 if (is_kfunc_release(meta) && !meta->release_regno) {
13565 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
13566 func_name);
13567 return -EINVAL;
13568 }
13569
13570 return 0;
13571 }
13572
fetch_kfunc_meta(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_kfunc_call_arg_meta * meta,const char ** kfunc_name)13573 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
13574 struct bpf_insn *insn,
13575 struct bpf_kfunc_call_arg_meta *meta,
13576 const char **kfunc_name)
13577 {
13578 const struct btf_type *func, *func_proto;
13579 u32 func_id, *kfunc_flags;
13580 const char *func_name;
13581 struct btf *desc_btf;
13582
13583 if (kfunc_name)
13584 *kfunc_name = NULL;
13585
13586 if (!insn->imm)
13587 return -EINVAL;
13588
13589 desc_btf = find_kfunc_desc_btf(env, insn->off);
13590 if (IS_ERR(desc_btf))
13591 return PTR_ERR(desc_btf);
13592
13593 func_id = insn->imm;
13594 func = btf_type_by_id(desc_btf, func_id);
13595 func_name = btf_name_by_offset(desc_btf, func->name_off);
13596 if (kfunc_name)
13597 *kfunc_name = func_name;
13598 func_proto = btf_type_by_id(desc_btf, func->type);
13599
13600 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
13601 if (!kfunc_flags) {
13602 return -EACCES;
13603 }
13604
13605 memset(meta, 0, sizeof(*meta));
13606 meta->btf = desc_btf;
13607 meta->func_id = func_id;
13608 meta->kfunc_flags = *kfunc_flags;
13609 meta->func_proto = func_proto;
13610 meta->func_name = func_name;
13611
13612 return 0;
13613 }
13614
13615 /* check special kfuncs and return:
13616 * 1 - not fall-through to 'else' branch, continue verification
13617 * 0 - fall-through to 'else' branch
13618 * < 0 - not fall-through to 'else' branch, return error
13619 */
check_special_kfunc(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,struct bpf_reg_state * regs,struct bpf_insn_aux_data * insn_aux,const struct btf_type * ptr_type,struct btf * desc_btf)13620 static int check_special_kfunc(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
13621 struct bpf_reg_state *regs, struct bpf_insn_aux_data *insn_aux,
13622 const struct btf_type *ptr_type, struct btf *desc_btf)
13623 {
13624 const struct btf_type *ret_t;
13625 int err = 0;
13626
13627 if (meta->btf != btf_vmlinux)
13628 return 0;
13629
13630 if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
13631 meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
13632 struct btf_struct_meta *struct_meta;
13633 struct btf *ret_btf;
13634 u32 ret_btf_id;
13635
13636 if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set)
13637 return -ENOMEM;
13638
13639 if (((u64)(u32)meta->arg_constant.value) != meta->arg_constant.value) {
13640 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
13641 return -EINVAL;
13642 }
13643
13644 ret_btf = env->prog->aux->btf;
13645 ret_btf_id = meta->arg_constant.value;
13646
13647 /* This may be NULL due to user not supplying a BTF */
13648 if (!ret_btf) {
13649 verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n");
13650 return -EINVAL;
13651 }
13652
13653 ret_t = btf_type_by_id(ret_btf, ret_btf_id);
13654 if (!ret_t || !__btf_type_is_struct(ret_t)) {
13655 verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n");
13656 return -EINVAL;
13657 }
13658
13659 if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
13660 if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) {
13661 verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n",
13662 ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE);
13663 return -EINVAL;
13664 }
13665
13666 if (!bpf_global_percpu_ma_set) {
13667 mutex_lock(&bpf_percpu_ma_lock);
13668 if (!bpf_global_percpu_ma_set) {
13669 /* Charge memory allocated with bpf_global_percpu_ma to
13670 * root memcg. The obj_cgroup for root memcg is NULL.
13671 */
13672 err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL);
13673 if (!err)
13674 bpf_global_percpu_ma_set = true;
13675 }
13676 mutex_unlock(&bpf_percpu_ma_lock);
13677 if (err)
13678 return err;
13679 }
13680
13681 mutex_lock(&bpf_percpu_ma_lock);
13682 err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size);
13683 mutex_unlock(&bpf_percpu_ma_lock);
13684 if (err)
13685 return err;
13686 }
13687
13688 struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id);
13689 if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
13690 if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) {
13691 verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n");
13692 return -EINVAL;
13693 }
13694
13695 if (struct_meta) {
13696 verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n");
13697 return -EINVAL;
13698 }
13699 }
13700
13701 mark_reg_known_zero(env, regs, BPF_REG_0);
13702 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
13703 regs[BPF_REG_0].btf = ret_btf;
13704 regs[BPF_REG_0].btf_id = ret_btf_id;
13705 if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl])
13706 regs[BPF_REG_0].type |= MEM_PERCPU;
13707
13708 insn_aux->obj_new_size = ret_t->size;
13709 insn_aux->kptr_struct_meta = struct_meta;
13710 } else if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
13711 mark_reg_known_zero(env, regs, BPF_REG_0);
13712 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
13713 regs[BPF_REG_0].btf = meta->arg_btf;
13714 regs[BPF_REG_0].btf_id = meta->arg_btf_id;
13715
13716 insn_aux->kptr_struct_meta =
13717 btf_find_struct_meta(meta->arg_btf,
13718 meta->arg_btf_id);
13719 } else if (is_list_node_type(ptr_type)) {
13720 struct btf_field *field = meta->arg_list_head.field;
13721
13722 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
13723 } else if (is_rbtree_node_type(ptr_type)) {
13724 struct btf_field *field = meta->arg_rbtree_root.field;
13725
13726 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
13727 } else if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
13728 mark_reg_known_zero(env, regs, BPF_REG_0);
13729 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
13730 regs[BPF_REG_0].btf = desc_btf;
13731 regs[BPF_REG_0].btf_id = meta->ret_btf_id;
13732 } else if (meta->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
13733 ret_t = btf_type_by_id(desc_btf, meta->arg_constant.value);
13734 if (!ret_t) {
13735 verbose(env, "Unknown type ID %lld passed to kfunc bpf_rdonly_cast\n",
13736 meta->arg_constant.value);
13737 return -EINVAL;
13738 } else if (btf_type_is_struct(ret_t)) {
13739 mark_reg_known_zero(env, regs, BPF_REG_0);
13740 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
13741 regs[BPF_REG_0].btf = desc_btf;
13742 regs[BPF_REG_0].btf_id = meta->arg_constant.value;
13743 } else if (btf_type_is_void(ret_t)) {
13744 mark_reg_known_zero(env, regs, BPF_REG_0);
13745 regs[BPF_REG_0].type = PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED;
13746 regs[BPF_REG_0].mem_size = 0;
13747 } else {
13748 verbose(env,
13749 "kfunc bpf_rdonly_cast type ID argument must be of a struct or void\n");
13750 return -EINVAL;
13751 }
13752 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
13753 meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
13754 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta->initialized_dynptr.type);
13755
13756 mark_reg_known_zero(env, regs, BPF_REG_0);
13757
13758 if (!meta->arg_constant.found) {
13759 verifier_bug(env, "bpf_dynptr_slice(_rdwr) no constant size");
13760 return -EFAULT;
13761 }
13762
13763 regs[BPF_REG_0].mem_size = meta->arg_constant.value;
13764
13765 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
13766 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
13767
13768 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
13769 regs[BPF_REG_0].type |= MEM_RDONLY;
13770 } else {
13771 /* this will set env->seen_direct_write to true */
13772 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
13773 verbose(env, "the prog does not allow writes to packet data\n");
13774 return -EINVAL;
13775 }
13776 }
13777
13778 if (!meta->initialized_dynptr.id) {
13779 verifier_bug(env, "no dynptr id");
13780 return -EFAULT;
13781 }
13782 regs[BPF_REG_0].dynptr_id = meta->initialized_dynptr.id;
13783
13784 /* we don't need to set BPF_REG_0's ref obj id
13785 * because packet slices are not refcounted (see
13786 * dynptr_type_refcounted)
13787 */
13788 } else {
13789 return 0;
13790 }
13791
13792 return 1;
13793 }
13794
13795 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name);
13796
check_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)13797 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
13798 int *insn_idx_p)
13799 {
13800 bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable;
13801 u32 i, nargs, ptr_type_id, release_ref_obj_id;
13802 struct bpf_reg_state *regs = cur_regs(env);
13803 const char *func_name, *ptr_type_name;
13804 const struct btf_type *t, *ptr_type;
13805 struct bpf_kfunc_call_arg_meta meta;
13806 struct bpf_insn_aux_data *insn_aux;
13807 int err, insn_idx = *insn_idx_p;
13808 const struct btf_param *args;
13809 struct btf *desc_btf;
13810
13811 /* skip for now, but return error when we find this in fixup_kfunc_call */
13812 if (!insn->imm)
13813 return 0;
13814
13815 err = fetch_kfunc_meta(env, insn, &meta, &func_name);
13816 if (err == -EACCES && func_name)
13817 verbose(env, "calling kernel function %s is not allowed\n", func_name);
13818 if (err)
13819 return err;
13820 desc_btf = meta.btf;
13821 insn_aux = &env->insn_aux_data[insn_idx];
13822
13823 insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
13824
13825 if (!insn->off &&
13826 (insn->imm == special_kfunc_list[KF_bpf_res_spin_lock] ||
13827 insn->imm == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])) {
13828 struct bpf_verifier_state *branch;
13829 struct bpf_reg_state *regs;
13830
13831 branch = push_stack(env, env->insn_idx + 1, env->insn_idx, false);
13832 if (!branch) {
13833 verbose(env, "failed to push state for failed lock acquisition\n");
13834 return -ENOMEM;
13835 }
13836
13837 regs = branch->frame[branch->curframe]->regs;
13838
13839 /* Clear r0-r5 registers in forked state */
13840 for (i = 0; i < CALLER_SAVED_REGS; i++)
13841 mark_reg_not_init(env, regs, caller_saved[i]);
13842
13843 mark_reg_unknown(env, regs, BPF_REG_0);
13844 err = __mark_reg_s32_range(env, regs, BPF_REG_0, -MAX_ERRNO, -1);
13845 if (err) {
13846 verbose(env, "failed to mark s32 range for retval in forked state for lock\n");
13847 return err;
13848 }
13849 __mark_btf_func_reg_size(env, regs, BPF_REG_0, sizeof(u32));
13850 } else if (!insn->off && insn->imm == special_kfunc_list[KF___bpf_trap]) {
13851 verbose(env, "unexpected __bpf_trap() due to uninitialized variable?\n");
13852 return -EFAULT;
13853 }
13854
13855 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
13856 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
13857 return -EACCES;
13858 }
13859
13860 sleepable = is_kfunc_sleepable(&meta);
13861 if (sleepable && !in_sleepable(env)) {
13862 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
13863 return -EACCES;
13864 }
13865
13866 /* Check the arguments */
13867 err = check_kfunc_args(env, &meta, insn_idx);
13868 if (err < 0)
13869 return err;
13870
13871 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
13872 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
13873 set_rbtree_add_callback_state);
13874 if (err) {
13875 verbose(env, "kfunc %s#%d failed callback verification\n",
13876 func_name, meta.func_id);
13877 return err;
13878 }
13879 }
13880
13881 if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) {
13882 meta.r0_size = sizeof(u64);
13883 meta.r0_rdonly = false;
13884 }
13885
13886 if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) {
13887 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
13888 set_timer_callback_state);
13889 if (err) {
13890 verbose(env, "kfunc %s#%d failed callback verification\n",
13891 func_name, meta.func_id);
13892 return err;
13893 }
13894 }
13895
13896 if (is_task_work_add_kfunc(meta.func_id)) {
13897 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
13898 set_task_work_schedule_callback_state);
13899 if (err) {
13900 verbose(env, "kfunc %s#%d failed callback verification\n",
13901 func_name, meta.func_id);
13902 return err;
13903 }
13904 }
13905
13906 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
13907 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
13908
13909 preempt_disable = is_kfunc_bpf_preempt_disable(&meta);
13910 preempt_enable = is_kfunc_bpf_preempt_enable(&meta);
13911
13912 if (env->cur_state->active_rcu_lock) {
13913 struct bpf_func_state *state;
13914 struct bpf_reg_state *reg;
13915 u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER);
13916
13917 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
13918 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
13919 return -EACCES;
13920 }
13921
13922 if (rcu_lock) {
13923 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
13924 return -EINVAL;
13925 } else if (rcu_unlock) {
13926 bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({
13927 if (reg->type & MEM_RCU) {
13928 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
13929 reg->type |= PTR_UNTRUSTED;
13930 }
13931 }));
13932 env->cur_state->active_rcu_lock = false;
13933 } else if (sleepable) {
13934 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
13935 return -EACCES;
13936 }
13937 } else if (rcu_lock) {
13938 env->cur_state->active_rcu_lock = true;
13939 } else if (rcu_unlock) {
13940 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
13941 return -EINVAL;
13942 }
13943
13944 if (env->cur_state->active_preempt_locks) {
13945 if (preempt_disable) {
13946 env->cur_state->active_preempt_locks++;
13947 } else if (preempt_enable) {
13948 env->cur_state->active_preempt_locks--;
13949 } else if (sleepable) {
13950 verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name);
13951 return -EACCES;
13952 }
13953 } else if (preempt_disable) {
13954 env->cur_state->active_preempt_locks++;
13955 } else if (preempt_enable) {
13956 verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name);
13957 return -EINVAL;
13958 }
13959
13960 if (env->cur_state->active_irq_id && sleepable) {
13961 verbose(env, "kernel func %s is sleepable within IRQ-disabled region\n", func_name);
13962 return -EACCES;
13963 }
13964
13965 if (is_kfunc_rcu_protected(&meta) && !in_rcu_cs(env)) {
13966 verbose(env, "kernel func %s requires RCU critical section protection\n", func_name);
13967 return -EACCES;
13968 }
13969
13970 /* In case of release function, we get register number of refcounted
13971 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
13972 */
13973 if (meta.release_regno) {
13974 err = release_reference(env, regs[meta.release_regno].ref_obj_id);
13975 if (err) {
13976 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
13977 func_name, meta.func_id);
13978 return err;
13979 }
13980 }
13981
13982 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
13983 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
13984 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
13985 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
13986 insn_aux->insert_off = regs[BPF_REG_2].off;
13987 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
13988 err = ref_convert_owning_non_owning(env, release_ref_obj_id);
13989 if (err) {
13990 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
13991 func_name, meta.func_id);
13992 return err;
13993 }
13994
13995 err = release_reference(env, release_ref_obj_id);
13996 if (err) {
13997 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
13998 func_name, meta.func_id);
13999 return err;
14000 }
14001 }
14002
14003 if (meta.func_id == special_kfunc_list[KF_bpf_throw]) {
14004 if (!bpf_jit_supports_exceptions()) {
14005 verbose(env, "JIT does not support calling kfunc %s#%d\n",
14006 func_name, meta.func_id);
14007 return -ENOTSUPP;
14008 }
14009 env->seen_exception = true;
14010
14011 /* In the case of the default callback, the cookie value passed
14012 * to bpf_throw becomes the return value of the program.
14013 */
14014 if (!env->exception_callback_subprog) {
14015 err = check_return_code(env, BPF_REG_1, "R1");
14016 if (err < 0)
14017 return err;
14018 }
14019 }
14020
14021 for (i = 0; i < CALLER_SAVED_REGS; i++)
14022 mark_reg_not_init(env, regs, caller_saved[i]);
14023
14024 /* Check return type */
14025 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
14026
14027 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
14028 /* Only exception is bpf_obj_new_impl */
14029 if (meta.btf != btf_vmlinux ||
14030 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
14031 meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] &&
14032 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
14033 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
14034 return -EINVAL;
14035 }
14036 }
14037
14038 if (btf_type_is_scalar(t)) {
14039 mark_reg_unknown(env, regs, BPF_REG_0);
14040 if (meta.btf == btf_vmlinux && (meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock] ||
14041 meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]))
14042 __mark_reg_const_zero(env, ®s[BPF_REG_0]);
14043 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
14044 } else if (btf_type_is_ptr(t)) {
14045 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
14046 err = check_special_kfunc(env, &meta, regs, insn_aux, ptr_type, desc_btf);
14047 if (err) {
14048 if (err < 0)
14049 return err;
14050 } else if (btf_type_is_void(ptr_type)) {
14051 /* kfunc returning 'void *' is equivalent to returning scalar */
14052 mark_reg_unknown(env, regs, BPF_REG_0);
14053 } else if (!__btf_type_is_struct(ptr_type)) {
14054 if (!meta.r0_size) {
14055 __u32 sz;
14056
14057 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
14058 meta.r0_size = sz;
14059 meta.r0_rdonly = true;
14060 }
14061 }
14062 if (!meta.r0_size) {
14063 ptr_type_name = btf_name_by_offset(desc_btf,
14064 ptr_type->name_off);
14065 verbose(env,
14066 "kernel function %s returns pointer type %s %s is not supported\n",
14067 func_name,
14068 btf_type_str(ptr_type),
14069 ptr_type_name);
14070 return -EINVAL;
14071 }
14072
14073 mark_reg_known_zero(env, regs, BPF_REG_0);
14074 regs[BPF_REG_0].type = PTR_TO_MEM;
14075 regs[BPF_REG_0].mem_size = meta.r0_size;
14076
14077 if (meta.r0_rdonly)
14078 regs[BPF_REG_0].type |= MEM_RDONLY;
14079
14080 /* Ensures we don't access the memory after a release_reference() */
14081 if (meta.ref_obj_id)
14082 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
14083
14084 if (is_kfunc_rcu_protected(&meta))
14085 regs[BPF_REG_0].type |= MEM_RCU;
14086 } else {
14087 mark_reg_known_zero(env, regs, BPF_REG_0);
14088 regs[BPF_REG_0].btf = desc_btf;
14089 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
14090 regs[BPF_REG_0].btf_id = ptr_type_id;
14091
14092 if (meta.func_id == special_kfunc_list[KF_bpf_get_kmem_cache])
14093 regs[BPF_REG_0].type |= PTR_UNTRUSTED;
14094 else if (is_kfunc_rcu_protected(&meta))
14095 regs[BPF_REG_0].type |= MEM_RCU;
14096
14097 if (is_iter_next_kfunc(&meta)) {
14098 struct bpf_reg_state *cur_iter;
14099
14100 cur_iter = get_iter_from_state(env->cur_state, &meta);
14101
14102 if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */
14103 regs[BPF_REG_0].type |= MEM_RCU;
14104 else
14105 regs[BPF_REG_0].type |= PTR_TRUSTED;
14106 }
14107 }
14108
14109 if (is_kfunc_ret_null(&meta)) {
14110 regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
14111 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
14112 regs[BPF_REG_0].id = ++env->id_gen;
14113 }
14114 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
14115 if (is_kfunc_acquire(&meta)) {
14116 int id = acquire_reference(env, insn_idx);
14117
14118 if (id < 0)
14119 return id;
14120 if (is_kfunc_ret_null(&meta))
14121 regs[BPF_REG_0].id = id;
14122 regs[BPF_REG_0].ref_obj_id = id;
14123 } else if (is_rbtree_node_type(ptr_type) || is_list_node_type(ptr_type)) {
14124 ref_set_non_owning(env, ®s[BPF_REG_0]);
14125 }
14126
14127 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id)
14128 regs[BPF_REG_0].id = ++env->id_gen;
14129 } else if (btf_type_is_void(t)) {
14130 if (meta.btf == btf_vmlinux) {
14131 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
14132 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
14133 insn_aux->kptr_struct_meta =
14134 btf_find_struct_meta(meta.arg_btf,
14135 meta.arg_btf_id);
14136 }
14137 }
14138 }
14139
14140 if (is_kfunc_pkt_changing(&meta))
14141 clear_all_pkt_pointers(env);
14142
14143 nargs = btf_type_vlen(meta.func_proto);
14144 args = (const struct btf_param *)(meta.func_proto + 1);
14145 for (i = 0; i < nargs; i++) {
14146 u32 regno = i + 1;
14147
14148 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
14149 if (btf_type_is_ptr(t))
14150 mark_btf_func_reg_size(env, regno, sizeof(void *));
14151 else
14152 /* scalar. ensured by btf_check_kfunc_arg_match() */
14153 mark_btf_func_reg_size(env, regno, t->size);
14154 }
14155
14156 if (is_iter_next_kfunc(&meta)) {
14157 err = process_iter_next_call(env, insn_idx, &meta);
14158 if (err)
14159 return err;
14160 }
14161
14162 return 0;
14163 }
14164
check_reg_sane_offset(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,enum bpf_reg_type type)14165 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
14166 const struct bpf_reg_state *reg,
14167 enum bpf_reg_type type)
14168 {
14169 bool known = tnum_is_const(reg->var_off);
14170 s64 val = reg->var_off.value;
14171 s64 smin = reg->smin_value;
14172
14173 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
14174 verbose(env, "math between %s pointer and %lld is not allowed\n",
14175 reg_type_str(env, type), val);
14176 return false;
14177 }
14178
14179 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
14180 verbose(env, "%s pointer offset %d is not allowed\n",
14181 reg_type_str(env, type), reg->off);
14182 return false;
14183 }
14184
14185 if (smin == S64_MIN) {
14186 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
14187 reg_type_str(env, type));
14188 return false;
14189 }
14190
14191 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
14192 verbose(env, "value %lld makes %s pointer be out of bounds\n",
14193 smin, reg_type_str(env, type));
14194 return false;
14195 }
14196
14197 return true;
14198 }
14199
14200 enum {
14201 REASON_BOUNDS = -1,
14202 REASON_TYPE = -2,
14203 REASON_PATHS = -3,
14204 REASON_LIMIT = -4,
14205 REASON_STACK = -5,
14206 };
14207
retrieve_ptr_limit(const struct bpf_reg_state * ptr_reg,u32 * alu_limit,bool mask_to_left)14208 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
14209 u32 *alu_limit, bool mask_to_left)
14210 {
14211 u32 max = 0, ptr_limit = 0;
14212
14213 switch (ptr_reg->type) {
14214 case PTR_TO_STACK:
14215 /* Offset 0 is out-of-bounds, but acceptable start for the
14216 * left direction, see BPF_REG_FP. Also, unknown scalar
14217 * offset where we would need to deal with min/max bounds is
14218 * currently prohibited for unprivileged.
14219 */
14220 max = MAX_BPF_STACK + mask_to_left;
14221 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
14222 break;
14223 case PTR_TO_MAP_VALUE:
14224 max = ptr_reg->map_ptr->value_size;
14225 ptr_limit = (mask_to_left ?
14226 ptr_reg->smin_value :
14227 ptr_reg->umax_value) + ptr_reg->off;
14228 break;
14229 default:
14230 return REASON_TYPE;
14231 }
14232
14233 if (ptr_limit >= max)
14234 return REASON_LIMIT;
14235 *alu_limit = ptr_limit;
14236 return 0;
14237 }
14238
can_skip_alu_sanitation(const struct bpf_verifier_env * env,const struct bpf_insn * insn)14239 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
14240 const struct bpf_insn *insn)
14241 {
14242 return env->bypass_spec_v1 ||
14243 BPF_SRC(insn->code) == BPF_K ||
14244 cur_aux(env)->nospec;
14245 }
14246
update_alu_sanitation_state(struct bpf_insn_aux_data * aux,u32 alu_state,u32 alu_limit)14247 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
14248 u32 alu_state, u32 alu_limit)
14249 {
14250 /* If we arrived here from different branches with different
14251 * state or limits to sanitize, then this won't work.
14252 */
14253 if (aux->alu_state &&
14254 (aux->alu_state != alu_state ||
14255 aux->alu_limit != alu_limit))
14256 return REASON_PATHS;
14257
14258 /* Corresponding fixup done in do_misc_fixups(). */
14259 aux->alu_state = alu_state;
14260 aux->alu_limit = alu_limit;
14261 return 0;
14262 }
14263
sanitize_val_alu(struct bpf_verifier_env * env,struct bpf_insn * insn)14264 static int sanitize_val_alu(struct bpf_verifier_env *env,
14265 struct bpf_insn *insn)
14266 {
14267 struct bpf_insn_aux_data *aux = cur_aux(env);
14268
14269 if (can_skip_alu_sanitation(env, insn))
14270 return 0;
14271
14272 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
14273 }
14274
sanitize_needed(u8 opcode)14275 static bool sanitize_needed(u8 opcode)
14276 {
14277 return opcode == BPF_ADD || opcode == BPF_SUB;
14278 }
14279
14280 struct bpf_sanitize_info {
14281 struct bpf_insn_aux_data aux;
14282 bool mask_to_left;
14283 };
14284
14285 static struct bpf_verifier_state *
sanitize_speculative_path(struct bpf_verifier_env * env,const struct bpf_insn * insn,u32 next_idx,u32 curr_idx)14286 sanitize_speculative_path(struct bpf_verifier_env *env,
14287 const struct bpf_insn *insn,
14288 u32 next_idx, u32 curr_idx)
14289 {
14290 struct bpf_verifier_state *branch;
14291 struct bpf_reg_state *regs;
14292
14293 branch = push_stack(env, next_idx, curr_idx, true);
14294 if (branch && insn) {
14295 regs = branch->frame[branch->curframe]->regs;
14296 if (BPF_SRC(insn->code) == BPF_K) {
14297 mark_reg_unknown(env, regs, insn->dst_reg);
14298 } else if (BPF_SRC(insn->code) == BPF_X) {
14299 mark_reg_unknown(env, regs, insn->dst_reg);
14300 mark_reg_unknown(env, regs, insn->src_reg);
14301 }
14302 }
14303 return branch;
14304 }
14305
sanitize_ptr_alu(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg,struct bpf_reg_state * dst_reg,struct bpf_sanitize_info * info,const bool commit_window)14306 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
14307 struct bpf_insn *insn,
14308 const struct bpf_reg_state *ptr_reg,
14309 const struct bpf_reg_state *off_reg,
14310 struct bpf_reg_state *dst_reg,
14311 struct bpf_sanitize_info *info,
14312 const bool commit_window)
14313 {
14314 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
14315 struct bpf_verifier_state *vstate = env->cur_state;
14316 bool off_is_imm = tnum_is_const(off_reg->var_off);
14317 bool off_is_neg = off_reg->smin_value < 0;
14318 bool ptr_is_dst_reg = ptr_reg == dst_reg;
14319 u8 opcode = BPF_OP(insn->code);
14320 u32 alu_state, alu_limit;
14321 struct bpf_reg_state tmp;
14322 bool ret;
14323 int err;
14324
14325 if (can_skip_alu_sanitation(env, insn))
14326 return 0;
14327
14328 /* We already marked aux for masking from non-speculative
14329 * paths, thus we got here in the first place. We only care
14330 * to explore bad access from here.
14331 */
14332 if (vstate->speculative)
14333 goto do_sim;
14334
14335 if (!commit_window) {
14336 if (!tnum_is_const(off_reg->var_off) &&
14337 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
14338 return REASON_BOUNDS;
14339
14340 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
14341 (opcode == BPF_SUB && !off_is_neg);
14342 }
14343
14344 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
14345 if (err < 0)
14346 return err;
14347
14348 if (commit_window) {
14349 /* In commit phase we narrow the masking window based on
14350 * the observed pointer move after the simulated operation.
14351 */
14352 alu_state = info->aux.alu_state;
14353 alu_limit = abs(info->aux.alu_limit - alu_limit);
14354 } else {
14355 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
14356 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
14357 alu_state |= ptr_is_dst_reg ?
14358 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
14359
14360 /* Limit pruning on unknown scalars to enable deep search for
14361 * potential masking differences from other program paths.
14362 */
14363 if (!off_is_imm)
14364 env->explore_alu_limits = true;
14365 }
14366
14367 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
14368 if (err < 0)
14369 return err;
14370 do_sim:
14371 /* If we're in commit phase, we're done here given we already
14372 * pushed the truncated dst_reg into the speculative verification
14373 * stack.
14374 *
14375 * Also, when register is a known constant, we rewrite register-based
14376 * operation to immediate-based, and thus do not need masking (and as
14377 * a consequence, do not need to simulate the zero-truncation either).
14378 */
14379 if (commit_window || off_is_imm)
14380 return 0;
14381
14382 /* Simulate and find potential out-of-bounds access under
14383 * speculative execution from truncation as a result of
14384 * masking when off was not within expected range. If off
14385 * sits in dst, then we temporarily need to move ptr there
14386 * to simulate dst (== 0) +/-= ptr. Needed, for example,
14387 * for cases where we use K-based arithmetic in one direction
14388 * and truncated reg-based in the other in order to explore
14389 * bad access.
14390 */
14391 if (!ptr_is_dst_reg) {
14392 tmp = *dst_reg;
14393 copy_register_state(dst_reg, ptr_reg);
14394 }
14395 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
14396 env->insn_idx);
14397 if (!ptr_is_dst_reg && ret)
14398 *dst_reg = tmp;
14399 return !ret ? REASON_STACK : 0;
14400 }
14401
sanitize_mark_insn_seen(struct bpf_verifier_env * env)14402 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
14403 {
14404 struct bpf_verifier_state *vstate = env->cur_state;
14405
14406 /* If we simulate paths under speculation, we don't update the
14407 * insn as 'seen' such that when we verify unreachable paths in
14408 * the non-speculative domain, sanitize_dead_code() can still
14409 * rewrite/sanitize them.
14410 */
14411 if (!vstate->speculative)
14412 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
14413 }
14414
sanitize_err(struct bpf_verifier_env * env,const struct bpf_insn * insn,int reason,const struct bpf_reg_state * off_reg,const struct bpf_reg_state * dst_reg)14415 static int sanitize_err(struct bpf_verifier_env *env,
14416 const struct bpf_insn *insn, int reason,
14417 const struct bpf_reg_state *off_reg,
14418 const struct bpf_reg_state *dst_reg)
14419 {
14420 static const char *err = "pointer arithmetic with it prohibited for !root";
14421 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
14422 u32 dst = insn->dst_reg, src = insn->src_reg;
14423
14424 switch (reason) {
14425 case REASON_BOUNDS:
14426 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
14427 off_reg == dst_reg ? dst : src, err);
14428 break;
14429 case REASON_TYPE:
14430 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
14431 off_reg == dst_reg ? src : dst, err);
14432 break;
14433 case REASON_PATHS:
14434 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
14435 dst, op, err);
14436 break;
14437 case REASON_LIMIT:
14438 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
14439 dst, op, err);
14440 break;
14441 case REASON_STACK:
14442 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
14443 dst, err);
14444 return -ENOMEM;
14445 default:
14446 verifier_bug(env, "unknown reason (%d)", reason);
14447 break;
14448 }
14449
14450 return -EACCES;
14451 }
14452
14453 /* check that stack access falls within stack limits and that 'reg' doesn't
14454 * have a variable offset.
14455 *
14456 * Variable offset is prohibited for unprivileged mode for simplicity since it
14457 * requires corresponding support in Spectre masking for stack ALU. See also
14458 * retrieve_ptr_limit().
14459 *
14460 *
14461 * 'off' includes 'reg->off'.
14462 */
check_stack_access_for_ptr_arithmetic(struct bpf_verifier_env * env,int regno,const struct bpf_reg_state * reg,int off)14463 static int check_stack_access_for_ptr_arithmetic(
14464 struct bpf_verifier_env *env,
14465 int regno,
14466 const struct bpf_reg_state *reg,
14467 int off)
14468 {
14469 if (!tnum_is_const(reg->var_off)) {
14470 char tn_buf[48];
14471
14472 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
14473 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
14474 regno, tn_buf, off);
14475 return -EACCES;
14476 }
14477
14478 if (off >= 0 || off < -MAX_BPF_STACK) {
14479 verbose(env, "R%d stack pointer arithmetic goes out of range, "
14480 "prohibited for !root; off=%d\n", regno, off);
14481 return -EACCES;
14482 }
14483
14484 return 0;
14485 }
14486
sanitize_check_bounds(struct bpf_verifier_env * env,const struct bpf_insn * insn,const struct bpf_reg_state * dst_reg)14487 static int sanitize_check_bounds(struct bpf_verifier_env *env,
14488 const struct bpf_insn *insn,
14489 const struct bpf_reg_state *dst_reg)
14490 {
14491 u32 dst = insn->dst_reg;
14492
14493 /* For unprivileged we require that resulting offset must be in bounds
14494 * in order to be able to sanitize access later on.
14495 */
14496 if (env->bypass_spec_v1)
14497 return 0;
14498
14499 switch (dst_reg->type) {
14500 case PTR_TO_STACK:
14501 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
14502 dst_reg->off + dst_reg->var_off.value))
14503 return -EACCES;
14504 break;
14505 case PTR_TO_MAP_VALUE:
14506 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
14507 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
14508 "prohibited for !root\n", dst);
14509 return -EACCES;
14510 }
14511 break;
14512 default:
14513 return -EOPNOTSUPP;
14514 }
14515
14516 return 0;
14517 }
14518
14519 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
14520 * Caller should also handle BPF_MOV case separately.
14521 * If we return -EACCES, caller may want to try again treating pointer as a
14522 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
14523 */
adjust_ptr_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg)14524 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
14525 struct bpf_insn *insn,
14526 const struct bpf_reg_state *ptr_reg,
14527 const struct bpf_reg_state *off_reg)
14528 {
14529 struct bpf_verifier_state *vstate = env->cur_state;
14530 struct bpf_func_state *state = vstate->frame[vstate->curframe];
14531 struct bpf_reg_state *regs = state->regs, *dst_reg;
14532 bool known = tnum_is_const(off_reg->var_off);
14533 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
14534 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
14535 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
14536 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
14537 struct bpf_sanitize_info info = {};
14538 u8 opcode = BPF_OP(insn->code);
14539 u32 dst = insn->dst_reg;
14540 int ret, bounds_ret;
14541
14542 dst_reg = ®s[dst];
14543
14544 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
14545 smin_val > smax_val || umin_val > umax_val) {
14546 /* Taint dst register if offset had invalid bounds derived from
14547 * e.g. dead branches.
14548 */
14549 __mark_reg_unknown(env, dst_reg);
14550 return 0;
14551 }
14552
14553 if (BPF_CLASS(insn->code) != BPF_ALU64) {
14554 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
14555 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
14556 __mark_reg_unknown(env, dst_reg);
14557 return 0;
14558 }
14559
14560 verbose(env,
14561 "R%d 32-bit pointer arithmetic prohibited\n",
14562 dst);
14563 return -EACCES;
14564 }
14565
14566 if (ptr_reg->type & PTR_MAYBE_NULL) {
14567 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
14568 dst, reg_type_str(env, ptr_reg->type));
14569 return -EACCES;
14570 }
14571
14572 /*
14573 * Accesses to untrusted PTR_TO_MEM are done through probe
14574 * instructions, hence no need to track offsets.
14575 */
14576 if (base_type(ptr_reg->type) == PTR_TO_MEM && (ptr_reg->type & PTR_UNTRUSTED))
14577 return 0;
14578
14579 switch (base_type(ptr_reg->type)) {
14580 case PTR_TO_CTX:
14581 case PTR_TO_MAP_VALUE:
14582 case PTR_TO_MAP_KEY:
14583 case PTR_TO_STACK:
14584 case PTR_TO_PACKET_META:
14585 case PTR_TO_PACKET:
14586 case PTR_TO_TP_BUFFER:
14587 case PTR_TO_BTF_ID:
14588 case PTR_TO_MEM:
14589 case PTR_TO_BUF:
14590 case PTR_TO_FUNC:
14591 case CONST_PTR_TO_DYNPTR:
14592 break;
14593 case PTR_TO_FLOW_KEYS:
14594 if (known)
14595 break;
14596 fallthrough;
14597 case CONST_PTR_TO_MAP:
14598 /* smin_val represents the known value */
14599 if (known && smin_val == 0 && opcode == BPF_ADD)
14600 break;
14601 fallthrough;
14602 default:
14603 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
14604 dst, reg_type_str(env, ptr_reg->type));
14605 return -EACCES;
14606 }
14607
14608 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
14609 * The id may be overwritten later if we create a new variable offset.
14610 */
14611 dst_reg->type = ptr_reg->type;
14612 dst_reg->id = ptr_reg->id;
14613
14614 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
14615 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
14616 return -EINVAL;
14617
14618 /* pointer types do not carry 32-bit bounds at the moment. */
14619 __mark_reg32_unbounded(dst_reg);
14620
14621 if (sanitize_needed(opcode)) {
14622 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
14623 &info, false);
14624 if (ret < 0)
14625 return sanitize_err(env, insn, ret, off_reg, dst_reg);
14626 }
14627
14628 switch (opcode) {
14629 case BPF_ADD:
14630 /* We can take a fixed offset as long as it doesn't overflow
14631 * the s32 'off' field
14632 */
14633 if (known && (ptr_reg->off + smin_val ==
14634 (s64)(s32)(ptr_reg->off + smin_val))) {
14635 /* pointer += K. Accumulate it into fixed offset */
14636 dst_reg->smin_value = smin_ptr;
14637 dst_reg->smax_value = smax_ptr;
14638 dst_reg->umin_value = umin_ptr;
14639 dst_reg->umax_value = umax_ptr;
14640 dst_reg->var_off = ptr_reg->var_off;
14641 dst_reg->off = ptr_reg->off + smin_val;
14642 dst_reg->raw = ptr_reg->raw;
14643 break;
14644 }
14645 /* A new variable offset is created. Note that off_reg->off
14646 * == 0, since it's a scalar.
14647 * dst_reg gets the pointer type and since some positive
14648 * integer value was added to the pointer, give it a new 'id'
14649 * if it's a PTR_TO_PACKET.
14650 * this creates a new 'base' pointer, off_reg (variable) gets
14651 * added into the variable offset, and we copy the fixed offset
14652 * from ptr_reg.
14653 */
14654 if (check_add_overflow(smin_ptr, smin_val, &dst_reg->smin_value) ||
14655 check_add_overflow(smax_ptr, smax_val, &dst_reg->smax_value)) {
14656 dst_reg->smin_value = S64_MIN;
14657 dst_reg->smax_value = S64_MAX;
14658 }
14659 if (check_add_overflow(umin_ptr, umin_val, &dst_reg->umin_value) ||
14660 check_add_overflow(umax_ptr, umax_val, &dst_reg->umax_value)) {
14661 dst_reg->umin_value = 0;
14662 dst_reg->umax_value = U64_MAX;
14663 }
14664 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
14665 dst_reg->off = ptr_reg->off;
14666 dst_reg->raw = ptr_reg->raw;
14667 if (reg_is_pkt_pointer(ptr_reg)) {
14668 dst_reg->id = ++env->id_gen;
14669 /* something was added to pkt_ptr, set range to zero */
14670 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
14671 }
14672 break;
14673 case BPF_SUB:
14674 if (dst_reg == off_reg) {
14675 /* scalar -= pointer. Creates an unknown scalar */
14676 verbose(env, "R%d tried to subtract pointer from scalar\n",
14677 dst);
14678 return -EACCES;
14679 }
14680 /* We don't allow subtraction from FP, because (according to
14681 * test_verifier.c test "invalid fp arithmetic", JITs might not
14682 * be able to deal with it.
14683 */
14684 if (ptr_reg->type == PTR_TO_STACK) {
14685 verbose(env, "R%d subtraction from stack pointer prohibited\n",
14686 dst);
14687 return -EACCES;
14688 }
14689 if (known && (ptr_reg->off - smin_val ==
14690 (s64)(s32)(ptr_reg->off - smin_val))) {
14691 /* pointer -= K. Subtract it from fixed offset */
14692 dst_reg->smin_value = smin_ptr;
14693 dst_reg->smax_value = smax_ptr;
14694 dst_reg->umin_value = umin_ptr;
14695 dst_reg->umax_value = umax_ptr;
14696 dst_reg->var_off = ptr_reg->var_off;
14697 dst_reg->id = ptr_reg->id;
14698 dst_reg->off = ptr_reg->off - smin_val;
14699 dst_reg->raw = ptr_reg->raw;
14700 break;
14701 }
14702 /* A new variable offset is created. If the subtrahend is known
14703 * nonnegative, then any reg->range we had before is still good.
14704 */
14705 if (check_sub_overflow(smin_ptr, smax_val, &dst_reg->smin_value) ||
14706 check_sub_overflow(smax_ptr, smin_val, &dst_reg->smax_value)) {
14707 /* Overflow possible, we know nothing */
14708 dst_reg->smin_value = S64_MIN;
14709 dst_reg->smax_value = S64_MAX;
14710 }
14711 if (umin_ptr < umax_val) {
14712 /* Overflow possible, we know nothing */
14713 dst_reg->umin_value = 0;
14714 dst_reg->umax_value = U64_MAX;
14715 } else {
14716 /* Cannot overflow (as long as bounds are consistent) */
14717 dst_reg->umin_value = umin_ptr - umax_val;
14718 dst_reg->umax_value = umax_ptr - umin_val;
14719 }
14720 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
14721 dst_reg->off = ptr_reg->off;
14722 dst_reg->raw = ptr_reg->raw;
14723 if (reg_is_pkt_pointer(ptr_reg)) {
14724 dst_reg->id = ++env->id_gen;
14725 /* something was added to pkt_ptr, set range to zero */
14726 if (smin_val < 0)
14727 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
14728 }
14729 break;
14730 case BPF_AND:
14731 case BPF_OR:
14732 case BPF_XOR:
14733 /* bitwise ops on pointers are troublesome, prohibit. */
14734 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
14735 dst, bpf_alu_string[opcode >> 4]);
14736 return -EACCES;
14737 default:
14738 /* other operators (e.g. MUL,LSH) produce non-pointer results */
14739 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
14740 dst, bpf_alu_string[opcode >> 4]);
14741 return -EACCES;
14742 }
14743
14744 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
14745 return -EINVAL;
14746 reg_bounds_sync(dst_reg);
14747 bounds_ret = sanitize_check_bounds(env, insn, dst_reg);
14748 if (bounds_ret == -EACCES)
14749 return bounds_ret;
14750 if (sanitize_needed(opcode)) {
14751 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
14752 &info, true);
14753 if (verifier_bug_if(!can_skip_alu_sanitation(env, insn)
14754 && !env->cur_state->speculative
14755 && bounds_ret
14756 && !ret,
14757 env, "Pointer type unsupported by sanitize_check_bounds() not rejected by retrieve_ptr_limit() as required")) {
14758 return -EFAULT;
14759 }
14760 if (ret < 0)
14761 return sanitize_err(env, insn, ret, off_reg, dst_reg);
14762 }
14763
14764 return 0;
14765 }
14766
scalar32_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14767 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
14768 struct bpf_reg_state *src_reg)
14769 {
14770 s32 *dst_smin = &dst_reg->s32_min_value;
14771 s32 *dst_smax = &dst_reg->s32_max_value;
14772 u32 *dst_umin = &dst_reg->u32_min_value;
14773 u32 *dst_umax = &dst_reg->u32_max_value;
14774 u32 umin_val = src_reg->u32_min_value;
14775 u32 umax_val = src_reg->u32_max_value;
14776 bool min_overflow, max_overflow;
14777
14778 if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) ||
14779 check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) {
14780 *dst_smin = S32_MIN;
14781 *dst_smax = S32_MAX;
14782 }
14783
14784 /* If either all additions overflow or no additions overflow, then
14785 * it is okay to set: dst_umin = dst_umin + src_umin, dst_umax =
14786 * dst_umax + src_umax. Otherwise (some additions overflow), set
14787 * the output bounds to unbounded.
14788 */
14789 min_overflow = check_add_overflow(*dst_umin, umin_val, dst_umin);
14790 max_overflow = check_add_overflow(*dst_umax, umax_val, dst_umax);
14791
14792 if (!min_overflow && max_overflow) {
14793 *dst_umin = 0;
14794 *dst_umax = U32_MAX;
14795 }
14796 }
14797
scalar_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14798 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
14799 struct bpf_reg_state *src_reg)
14800 {
14801 s64 *dst_smin = &dst_reg->smin_value;
14802 s64 *dst_smax = &dst_reg->smax_value;
14803 u64 *dst_umin = &dst_reg->umin_value;
14804 u64 *dst_umax = &dst_reg->umax_value;
14805 u64 umin_val = src_reg->umin_value;
14806 u64 umax_val = src_reg->umax_value;
14807 bool min_overflow, max_overflow;
14808
14809 if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) ||
14810 check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) {
14811 *dst_smin = S64_MIN;
14812 *dst_smax = S64_MAX;
14813 }
14814
14815 /* If either all additions overflow or no additions overflow, then
14816 * it is okay to set: dst_umin = dst_umin + src_umin, dst_umax =
14817 * dst_umax + src_umax. Otherwise (some additions overflow), set
14818 * the output bounds to unbounded.
14819 */
14820 min_overflow = check_add_overflow(*dst_umin, umin_val, dst_umin);
14821 max_overflow = check_add_overflow(*dst_umax, umax_val, dst_umax);
14822
14823 if (!min_overflow && max_overflow) {
14824 *dst_umin = 0;
14825 *dst_umax = U64_MAX;
14826 }
14827 }
14828
scalar32_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14829 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
14830 struct bpf_reg_state *src_reg)
14831 {
14832 s32 *dst_smin = &dst_reg->s32_min_value;
14833 s32 *dst_smax = &dst_reg->s32_max_value;
14834 u32 *dst_umin = &dst_reg->u32_min_value;
14835 u32 *dst_umax = &dst_reg->u32_max_value;
14836 u32 umin_val = src_reg->u32_min_value;
14837 u32 umax_val = src_reg->u32_max_value;
14838 bool min_underflow, max_underflow;
14839
14840 if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) ||
14841 check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) {
14842 /* Overflow possible, we know nothing */
14843 *dst_smin = S32_MIN;
14844 *dst_smax = S32_MAX;
14845 }
14846
14847 /* If either all subtractions underflow or no subtractions
14848 * underflow, it is okay to set: dst_umin = dst_umin - src_umax,
14849 * dst_umax = dst_umax - src_umin. Otherwise (some subtractions
14850 * underflow), set the output bounds to unbounded.
14851 */
14852 min_underflow = check_sub_overflow(*dst_umin, umax_val, dst_umin);
14853 max_underflow = check_sub_overflow(*dst_umax, umin_val, dst_umax);
14854
14855 if (min_underflow && !max_underflow) {
14856 *dst_umin = 0;
14857 *dst_umax = U32_MAX;
14858 }
14859 }
14860
scalar_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14861 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
14862 struct bpf_reg_state *src_reg)
14863 {
14864 s64 *dst_smin = &dst_reg->smin_value;
14865 s64 *dst_smax = &dst_reg->smax_value;
14866 u64 *dst_umin = &dst_reg->umin_value;
14867 u64 *dst_umax = &dst_reg->umax_value;
14868 u64 umin_val = src_reg->umin_value;
14869 u64 umax_val = src_reg->umax_value;
14870 bool min_underflow, max_underflow;
14871
14872 if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) ||
14873 check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) {
14874 /* Overflow possible, we know nothing */
14875 *dst_smin = S64_MIN;
14876 *dst_smax = S64_MAX;
14877 }
14878
14879 /* If either all subtractions underflow or no subtractions
14880 * underflow, it is okay to set: dst_umin = dst_umin - src_umax,
14881 * dst_umax = dst_umax - src_umin. Otherwise (some subtractions
14882 * underflow), set the output bounds to unbounded.
14883 */
14884 min_underflow = check_sub_overflow(*dst_umin, umax_val, dst_umin);
14885 max_underflow = check_sub_overflow(*dst_umax, umin_val, dst_umax);
14886
14887 if (min_underflow && !max_underflow) {
14888 *dst_umin = 0;
14889 *dst_umax = U64_MAX;
14890 }
14891 }
14892
scalar32_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14893 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
14894 struct bpf_reg_state *src_reg)
14895 {
14896 s32 *dst_smin = &dst_reg->s32_min_value;
14897 s32 *dst_smax = &dst_reg->s32_max_value;
14898 u32 *dst_umin = &dst_reg->u32_min_value;
14899 u32 *dst_umax = &dst_reg->u32_max_value;
14900 s32 tmp_prod[4];
14901
14902 if (check_mul_overflow(*dst_umax, src_reg->u32_max_value, dst_umax) ||
14903 check_mul_overflow(*dst_umin, src_reg->u32_min_value, dst_umin)) {
14904 /* Overflow possible, we know nothing */
14905 *dst_umin = 0;
14906 *dst_umax = U32_MAX;
14907 }
14908 if (check_mul_overflow(*dst_smin, src_reg->s32_min_value, &tmp_prod[0]) ||
14909 check_mul_overflow(*dst_smin, src_reg->s32_max_value, &tmp_prod[1]) ||
14910 check_mul_overflow(*dst_smax, src_reg->s32_min_value, &tmp_prod[2]) ||
14911 check_mul_overflow(*dst_smax, src_reg->s32_max_value, &tmp_prod[3])) {
14912 /* Overflow possible, we know nothing */
14913 *dst_smin = S32_MIN;
14914 *dst_smax = S32_MAX;
14915 } else {
14916 *dst_smin = min_array(tmp_prod, 4);
14917 *dst_smax = max_array(tmp_prod, 4);
14918 }
14919 }
14920
scalar_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14921 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
14922 struct bpf_reg_state *src_reg)
14923 {
14924 s64 *dst_smin = &dst_reg->smin_value;
14925 s64 *dst_smax = &dst_reg->smax_value;
14926 u64 *dst_umin = &dst_reg->umin_value;
14927 u64 *dst_umax = &dst_reg->umax_value;
14928 s64 tmp_prod[4];
14929
14930 if (check_mul_overflow(*dst_umax, src_reg->umax_value, dst_umax) ||
14931 check_mul_overflow(*dst_umin, src_reg->umin_value, dst_umin)) {
14932 /* Overflow possible, we know nothing */
14933 *dst_umin = 0;
14934 *dst_umax = U64_MAX;
14935 }
14936 if (check_mul_overflow(*dst_smin, src_reg->smin_value, &tmp_prod[0]) ||
14937 check_mul_overflow(*dst_smin, src_reg->smax_value, &tmp_prod[1]) ||
14938 check_mul_overflow(*dst_smax, src_reg->smin_value, &tmp_prod[2]) ||
14939 check_mul_overflow(*dst_smax, src_reg->smax_value, &tmp_prod[3])) {
14940 /* Overflow possible, we know nothing */
14941 *dst_smin = S64_MIN;
14942 *dst_smax = S64_MAX;
14943 } else {
14944 *dst_smin = min_array(tmp_prod, 4);
14945 *dst_smax = max_array(tmp_prod, 4);
14946 }
14947 }
14948
scalar32_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14949 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
14950 struct bpf_reg_state *src_reg)
14951 {
14952 bool src_known = tnum_subreg_is_const(src_reg->var_off);
14953 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
14954 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
14955 u32 umax_val = src_reg->u32_max_value;
14956
14957 if (src_known && dst_known) {
14958 __mark_reg32_known(dst_reg, var32_off.value);
14959 return;
14960 }
14961
14962 /* We get our minimum from the var_off, since that's inherently
14963 * bitwise. Our maximum is the minimum of the operands' maxima.
14964 */
14965 dst_reg->u32_min_value = var32_off.value;
14966 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
14967
14968 /* Safe to set s32 bounds by casting u32 result into s32 when u32
14969 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
14970 */
14971 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
14972 dst_reg->s32_min_value = dst_reg->u32_min_value;
14973 dst_reg->s32_max_value = dst_reg->u32_max_value;
14974 } else {
14975 dst_reg->s32_min_value = S32_MIN;
14976 dst_reg->s32_max_value = S32_MAX;
14977 }
14978 }
14979
scalar_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14980 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
14981 struct bpf_reg_state *src_reg)
14982 {
14983 bool src_known = tnum_is_const(src_reg->var_off);
14984 bool dst_known = tnum_is_const(dst_reg->var_off);
14985 u64 umax_val = src_reg->umax_value;
14986
14987 if (src_known && dst_known) {
14988 __mark_reg_known(dst_reg, dst_reg->var_off.value);
14989 return;
14990 }
14991
14992 /* We get our minimum from the var_off, since that's inherently
14993 * bitwise. Our maximum is the minimum of the operands' maxima.
14994 */
14995 dst_reg->umin_value = dst_reg->var_off.value;
14996 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
14997
14998 /* Safe to set s64 bounds by casting u64 result into s64 when u64
14999 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
15000 */
15001 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
15002 dst_reg->smin_value = dst_reg->umin_value;
15003 dst_reg->smax_value = dst_reg->umax_value;
15004 } else {
15005 dst_reg->smin_value = S64_MIN;
15006 dst_reg->smax_value = S64_MAX;
15007 }
15008 /* We may learn something more from the var_off */
15009 __update_reg_bounds(dst_reg);
15010 }
15011
scalar32_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15012 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
15013 struct bpf_reg_state *src_reg)
15014 {
15015 bool src_known = tnum_subreg_is_const(src_reg->var_off);
15016 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
15017 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
15018 u32 umin_val = src_reg->u32_min_value;
15019
15020 if (src_known && dst_known) {
15021 __mark_reg32_known(dst_reg, var32_off.value);
15022 return;
15023 }
15024
15025 /* We get our maximum from the var_off, and our minimum is the
15026 * maximum of the operands' minima
15027 */
15028 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
15029 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
15030
15031 /* Safe to set s32 bounds by casting u32 result into s32 when u32
15032 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
15033 */
15034 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
15035 dst_reg->s32_min_value = dst_reg->u32_min_value;
15036 dst_reg->s32_max_value = dst_reg->u32_max_value;
15037 } else {
15038 dst_reg->s32_min_value = S32_MIN;
15039 dst_reg->s32_max_value = S32_MAX;
15040 }
15041 }
15042
scalar_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15043 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
15044 struct bpf_reg_state *src_reg)
15045 {
15046 bool src_known = tnum_is_const(src_reg->var_off);
15047 bool dst_known = tnum_is_const(dst_reg->var_off);
15048 u64 umin_val = src_reg->umin_value;
15049
15050 if (src_known && dst_known) {
15051 __mark_reg_known(dst_reg, dst_reg->var_off.value);
15052 return;
15053 }
15054
15055 /* We get our maximum from the var_off, and our minimum is the
15056 * maximum of the operands' minima
15057 */
15058 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
15059 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
15060
15061 /* Safe to set s64 bounds by casting u64 result into s64 when u64
15062 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
15063 */
15064 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
15065 dst_reg->smin_value = dst_reg->umin_value;
15066 dst_reg->smax_value = dst_reg->umax_value;
15067 } else {
15068 dst_reg->smin_value = S64_MIN;
15069 dst_reg->smax_value = S64_MAX;
15070 }
15071 /* We may learn something more from the var_off */
15072 __update_reg_bounds(dst_reg);
15073 }
15074
scalar32_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15075 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
15076 struct bpf_reg_state *src_reg)
15077 {
15078 bool src_known = tnum_subreg_is_const(src_reg->var_off);
15079 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
15080 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
15081
15082 if (src_known && dst_known) {
15083 __mark_reg32_known(dst_reg, var32_off.value);
15084 return;
15085 }
15086
15087 /* We get both minimum and maximum from the var32_off. */
15088 dst_reg->u32_min_value = var32_off.value;
15089 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
15090
15091 /* Safe to set s32 bounds by casting u32 result into s32 when u32
15092 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
15093 */
15094 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
15095 dst_reg->s32_min_value = dst_reg->u32_min_value;
15096 dst_reg->s32_max_value = dst_reg->u32_max_value;
15097 } else {
15098 dst_reg->s32_min_value = S32_MIN;
15099 dst_reg->s32_max_value = S32_MAX;
15100 }
15101 }
15102
scalar_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15103 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
15104 struct bpf_reg_state *src_reg)
15105 {
15106 bool src_known = tnum_is_const(src_reg->var_off);
15107 bool dst_known = tnum_is_const(dst_reg->var_off);
15108
15109 if (src_known && dst_known) {
15110 /* dst_reg->var_off.value has been updated earlier */
15111 __mark_reg_known(dst_reg, dst_reg->var_off.value);
15112 return;
15113 }
15114
15115 /* We get both minimum and maximum from the var_off. */
15116 dst_reg->umin_value = dst_reg->var_off.value;
15117 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
15118
15119 /* Safe to set s64 bounds by casting u64 result into s64 when u64
15120 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
15121 */
15122 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
15123 dst_reg->smin_value = dst_reg->umin_value;
15124 dst_reg->smax_value = dst_reg->umax_value;
15125 } else {
15126 dst_reg->smin_value = S64_MIN;
15127 dst_reg->smax_value = S64_MAX;
15128 }
15129
15130 __update_reg_bounds(dst_reg);
15131 }
15132
__scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)15133 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
15134 u64 umin_val, u64 umax_val)
15135 {
15136 /* We lose all sign bit information (except what we can pick
15137 * up from var_off)
15138 */
15139 dst_reg->s32_min_value = S32_MIN;
15140 dst_reg->s32_max_value = S32_MAX;
15141 /* If we might shift our top bit out, then we know nothing */
15142 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
15143 dst_reg->u32_min_value = 0;
15144 dst_reg->u32_max_value = U32_MAX;
15145 } else {
15146 dst_reg->u32_min_value <<= umin_val;
15147 dst_reg->u32_max_value <<= umax_val;
15148 }
15149 }
15150
scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15151 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
15152 struct bpf_reg_state *src_reg)
15153 {
15154 u32 umax_val = src_reg->u32_max_value;
15155 u32 umin_val = src_reg->u32_min_value;
15156 /* u32 alu operation will zext upper bits */
15157 struct tnum subreg = tnum_subreg(dst_reg->var_off);
15158
15159 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
15160 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
15161 /* Not required but being careful mark reg64 bounds as unknown so
15162 * that we are forced to pick them up from tnum and zext later and
15163 * if some path skips this step we are still safe.
15164 */
15165 __mark_reg64_unbounded(dst_reg);
15166 __update_reg32_bounds(dst_reg);
15167 }
15168
__scalar64_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)15169 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
15170 u64 umin_val, u64 umax_val)
15171 {
15172 /* Special case <<32 because it is a common compiler pattern to sign
15173 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
15174 * positive we know this shift will also be positive so we can track
15175 * bounds correctly. Otherwise we lose all sign bit information except
15176 * what we can pick up from var_off. Perhaps we can generalize this
15177 * later to shifts of any length.
15178 */
15179 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
15180 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
15181 else
15182 dst_reg->smax_value = S64_MAX;
15183
15184 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
15185 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
15186 else
15187 dst_reg->smin_value = S64_MIN;
15188
15189 /* If we might shift our top bit out, then we know nothing */
15190 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
15191 dst_reg->umin_value = 0;
15192 dst_reg->umax_value = U64_MAX;
15193 } else {
15194 dst_reg->umin_value <<= umin_val;
15195 dst_reg->umax_value <<= umax_val;
15196 }
15197 }
15198
scalar_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15199 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
15200 struct bpf_reg_state *src_reg)
15201 {
15202 u64 umax_val = src_reg->umax_value;
15203 u64 umin_val = src_reg->umin_value;
15204
15205 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
15206 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
15207 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
15208
15209 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
15210 /* We may learn something more from the var_off */
15211 __update_reg_bounds(dst_reg);
15212 }
15213
scalar32_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15214 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
15215 struct bpf_reg_state *src_reg)
15216 {
15217 struct tnum subreg = tnum_subreg(dst_reg->var_off);
15218 u32 umax_val = src_reg->u32_max_value;
15219 u32 umin_val = src_reg->u32_min_value;
15220
15221 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
15222 * be negative, then either:
15223 * 1) src_reg might be zero, so the sign bit of the result is
15224 * unknown, so we lose our signed bounds
15225 * 2) it's known negative, thus the unsigned bounds capture the
15226 * signed bounds
15227 * 3) the signed bounds cross zero, so they tell us nothing
15228 * about the result
15229 * If the value in dst_reg is known nonnegative, then again the
15230 * unsigned bounds capture the signed bounds.
15231 * Thus, in all cases it suffices to blow away our signed bounds
15232 * and rely on inferring new ones from the unsigned bounds and
15233 * var_off of the result.
15234 */
15235 dst_reg->s32_min_value = S32_MIN;
15236 dst_reg->s32_max_value = S32_MAX;
15237
15238 dst_reg->var_off = tnum_rshift(subreg, umin_val);
15239 dst_reg->u32_min_value >>= umax_val;
15240 dst_reg->u32_max_value >>= umin_val;
15241
15242 __mark_reg64_unbounded(dst_reg);
15243 __update_reg32_bounds(dst_reg);
15244 }
15245
scalar_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15246 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
15247 struct bpf_reg_state *src_reg)
15248 {
15249 u64 umax_val = src_reg->umax_value;
15250 u64 umin_val = src_reg->umin_value;
15251
15252 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
15253 * be negative, then either:
15254 * 1) src_reg might be zero, so the sign bit of the result is
15255 * unknown, so we lose our signed bounds
15256 * 2) it's known negative, thus the unsigned bounds capture the
15257 * signed bounds
15258 * 3) the signed bounds cross zero, so they tell us nothing
15259 * about the result
15260 * If the value in dst_reg is known nonnegative, then again the
15261 * unsigned bounds capture the signed bounds.
15262 * Thus, in all cases it suffices to blow away our signed bounds
15263 * and rely on inferring new ones from the unsigned bounds and
15264 * var_off of the result.
15265 */
15266 dst_reg->smin_value = S64_MIN;
15267 dst_reg->smax_value = S64_MAX;
15268 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
15269 dst_reg->umin_value >>= umax_val;
15270 dst_reg->umax_value >>= umin_val;
15271
15272 /* Its not easy to operate on alu32 bounds here because it depends
15273 * on bits being shifted in. Take easy way out and mark unbounded
15274 * so we can recalculate later from tnum.
15275 */
15276 __mark_reg32_unbounded(dst_reg);
15277 __update_reg_bounds(dst_reg);
15278 }
15279
scalar32_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15280 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
15281 struct bpf_reg_state *src_reg)
15282 {
15283 u64 umin_val = src_reg->u32_min_value;
15284
15285 /* Upon reaching here, src_known is true and
15286 * umax_val is equal to umin_val.
15287 */
15288 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
15289 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
15290
15291 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
15292
15293 /* blow away the dst_reg umin_value/umax_value and rely on
15294 * dst_reg var_off to refine the result.
15295 */
15296 dst_reg->u32_min_value = 0;
15297 dst_reg->u32_max_value = U32_MAX;
15298
15299 __mark_reg64_unbounded(dst_reg);
15300 __update_reg32_bounds(dst_reg);
15301 }
15302
scalar_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15303 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
15304 struct bpf_reg_state *src_reg)
15305 {
15306 u64 umin_val = src_reg->umin_value;
15307
15308 /* Upon reaching here, src_known is true and umax_val is equal
15309 * to umin_val.
15310 */
15311 dst_reg->smin_value >>= umin_val;
15312 dst_reg->smax_value >>= umin_val;
15313
15314 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
15315
15316 /* blow away the dst_reg umin_value/umax_value and rely on
15317 * dst_reg var_off to refine the result.
15318 */
15319 dst_reg->umin_value = 0;
15320 dst_reg->umax_value = U64_MAX;
15321
15322 /* Its not easy to operate on alu32 bounds here because it depends
15323 * on bits being shifted in from upper 32-bits. Take easy way out
15324 * and mark unbounded so we can recalculate later from tnum.
15325 */
15326 __mark_reg32_unbounded(dst_reg);
15327 __update_reg_bounds(dst_reg);
15328 }
15329
is_safe_to_compute_dst_reg_range(struct bpf_insn * insn,const struct bpf_reg_state * src_reg)15330 static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn,
15331 const struct bpf_reg_state *src_reg)
15332 {
15333 bool src_is_const = false;
15334 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
15335
15336 if (insn_bitness == 32) {
15337 if (tnum_subreg_is_const(src_reg->var_off)
15338 && src_reg->s32_min_value == src_reg->s32_max_value
15339 && src_reg->u32_min_value == src_reg->u32_max_value)
15340 src_is_const = true;
15341 } else {
15342 if (tnum_is_const(src_reg->var_off)
15343 && src_reg->smin_value == src_reg->smax_value
15344 && src_reg->umin_value == src_reg->umax_value)
15345 src_is_const = true;
15346 }
15347
15348 switch (BPF_OP(insn->code)) {
15349 case BPF_ADD:
15350 case BPF_SUB:
15351 case BPF_NEG:
15352 case BPF_AND:
15353 case BPF_XOR:
15354 case BPF_OR:
15355 case BPF_MUL:
15356 return true;
15357
15358 /* Shift operators range is only computable if shift dimension operand
15359 * is a constant. Shifts greater than 31 or 63 are undefined. This
15360 * includes shifts by a negative number.
15361 */
15362 case BPF_LSH:
15363 case BPF_RSH:
15364 case BPF_ARSH:
15365 return (src_is_const && src_reg->umax_value < insn_bitness);
15366 default:
15367 return false;
15368 }
15369 }
15370
15371 /* WARNING: This function does calculations on 64-bit values, but the actual
15372 * execution may occur on 32-bit values. Therefore, things like bitshifts
15373 * need extra checks in the 32-bit case.
15374 */
adjust_scalar_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state src_reg)15375 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
15376 struct bpf_insn *insn,
15377 struct bpf_reg_state *dst_reg,
15378 struct bpf_reg_state src_reg)
15379 {
15380 u8 opcode = BPF_OP(insn->code);
15381 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
15382 int ret;
15383
15384 if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) {
15385 __mark_reg_unknown(env, dst_reg);
15386 return 0;
15387 }
15388
15389 if (sanitize_needed(opcode)) {
15390 ret = sanitize_val_alu(env, insn);
15391 if (ret < 0)
15392 return sanitize_err(env, insn, ret, NULL, NULL);
15393 }
15394
15395 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
15396 * There are two classes of instructions: The first class we track both
15397 * alu32 and alu64 sign/unsigned bounds independently this provides the
15398 * greatest amount of precision when alu operations are mixed with jmp32
15399 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
15400 * and BPF_OR. This is possible because these ops have fairly easy to
15401 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
15402 * See alu32 verifier tests for examples. The second class of
15403 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
15404 * with regards to tracking sign/unsigned bounds because the bits may
15405 * cross subreg boundaries in the alu64 case. When this happens we mark
15406 * the reg unbounded in the subreg bound space and use the resulting
15407 * tnum to calculate an approximation of the sign/unsigned bounds.
15408 */
15409 switch (opcode) {
15410 case BPF_ADD:
15411 scalar32_min_max_add(dst_reg, &src_reg);
15412 scalar_min_max_add(dst_reg, &src_reg);
15413 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
15414 break;
15415 case BPF_SUB:
15416 scalar32_min_max_sub(dst_reg, &src_reg);
15417 scalar_min_max_sub(dst_reg, &src_reg);
15418 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
15419 break;
15420 case BPF_NEG:
15421 env->fake_reg[0] = *dst_reg;
15422 __mark_reg_known(dst_reg, 0);
15423 scalar32_min_max_sub(dst_reg, &env->fake_reg[0]);
15424 scalar_min_max_sub(dst_reg, &env->fake_reg[0]);
15425 dst_reg->var_off = tnum_neg(env->fake_reg[0].var_off);
15426 break;
15427 case BPF_MUL:
15428 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
15429 scalar32_min_max_mul(dst_reg, &src_reg);
15430 scalar_min_max_mul(dst_reg, &src_reg);
15431 break;
15432 case BPF_AND:
15433 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
15434 scalar32_min_max_and(dst_reg, &src_reg);
15435 scalar_min_max_and(dst_reg, &src_reg);
15436 break;
15437 case BPF_OR:
15438 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
15439 scalar32_min_max_or(dst_reg, &src_reg);
15440 scalar_min_max_or(dst_reg, &src_reg);
15441 break;
15442 case BPF_XOR:
15443 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
15444 scalar32_min_max_xor(dst_reg, &src_reg);
15445 scalar_min_max_xor(dst_reg, &src_reg);
15446 break;
15447 case BPF_LSH:
15448 if (alu32)
15449 scalar32_min_max_lsh(dst_reg, &src_reg);
15450 else
15451 scalar_min_max_lsh(dst_reg, &src_reg);
15452 break;
15453 case BPF_RSH:
15454 if (alu32)
15455 scalar32_min_max_rsh(dst_reg, &src_reg);
15456 else
15457 scalar_min_max_rsh(dst_reg, &src_reg);
15458 break;
15459 case BPF_ARSH:
15460 if (alu32)
15461 scalar32_min_max_arsh(dst_reg, &src_reg);
15462 else
15463 scalar_min_max_arsh(dst_reg, &src_reg);
15464 break;
15465 default:
15466 break;
15467 }
15468
15469 /* ALU32 ops are zero extended into 64bit register */
15470 if (alu32)
15471 zext_32_to_64(dst_reg);
15472 reg_bounds_sync(dst_reg);
15473 return 0;
15474 }
15475
15476 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
15477 * and var_off.
15478 */
adjust_reg_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn)15479 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
15480 struct bpf_insn *insn)
15481 {
15482 struct bpf_verifier_state *vstate = env->cur_state;
15483 struct bpf_func_state *state = vstate->frame[vstate->curframe];
15484 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
15485 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
15486 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
15487 u8 opcode = BPF_OP(insn->code);
15488 int err;
15489
15490 dst_reg = ®s[insn->dst_reg];
15491 src_reg = NULL;
15492
15493 if (dst_reg->type == PTR_TO_ARENA) {
15494 struct bpf_insn_aux_data *aux = cur_aux(env);
15495
15496 if (BPF_CLASS(insn->code) == BPF_ALU64)
15497 /*
15498 * 32-bit operations zero upper bits automatically.
15499 * 64-bit operations need to be converted to 32.
15500 */
15501 aux->needs_zext = true;
15502
15503 /* Any arithmetic operations are allowed on arena pointers */
15504 return 0;
15505 }
15506
15507 if (dst_reg->type != SCALAR_VALUE)
15508 ptr_reg = dst_reg;
15509
15510 if (BPF_SRC(insn->code) == BPF_X) {
15511 src_reg = ®s[insn->src_reg];
15512 if (src_reg->type != SCALAR_VALUE) {
15513 if (dst_reg->type != SCALAR_VALUE) {
15514 /* Combining two pointers by any ALU op yields
15515 * an arbitrary scalar. Disallow all math except
15516 * pointer subtraction
15517 */
15518 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
15519 mark_reg_unknown(env, regs, insn->dst_reg);
15520 return 0;
15521 }
15522 verbose(env, "R%d pointer %s pointer prohibited\n",
15523 insn->dst_reg,
15524 bpf_alu_string[opcode >> 4]);
15525 return -EACCES;
15526 } else {
15527 /* scalar += pointer
15528 * This is legal, but we have to reverse our
15529 * src/dest handling in computing the range
15530 */
15531 err = mark_chain_precision(env, insn->dst_reg);
15532 if (err)
15533 return err;
15534 return adjust_ptr_min_max_vals(env, insn,
15535 src_reg, dst_reg);
15536 }
15537 } else if (ptr_reg) {
15538 /* pointer += scalar */
15539 err = mark_chain_precision(env, insn->src_reg);
15540 if (err)
15541 return err;
15542 return adjust_ptr_min_max_vals(env, insn,
15543 dst_reg, src_reg);
15544 } else if (dst_reg->precise) {
15545 /* if dst_reg is precise, src_reg should be precise as well */
15546 err = mark_chain_precision(env, insn->src_reg);
15547 if (err)
15548 return err;
15549 }
15550 } else {
15551 /* Pretend the src is a reg with a known value, since we only
15552 * need to be able to read from this state.
15553 */
15554 off_reg.type = SCALAR_VALUE;
15555 __mark_reg_known(&off_reg, insn->imm);
15556 src_reg = &off_reg;
15557 if (ptr_reg) /* pointer += K */
15558 return adjust_ptr_min_max_vals(env, insn,
15559 ptr_reg, src_reg);
15560 }
15561
15562 /* Got here implies adding two SCALAR_VALUEs */
15563 if (WARN_ON_ONCE(ptr_reg)) {
15564 print_verifier_state(env, vstate, vstate->curframe, true);
15565 verbose(env, "verifier internal error: unexpected ptr_reg\n");
15566 return -EFAULT;
15567 }
15568 if (WARN_ON(!src_reg)) {
15569 print_verifier_state(env, vstate, vstate->curframe, true);
15570 verbose(env, "verifier internal error: no src_reg\n");
15571 return -EFAULT;
15572 }
15573 err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
15574 if (err)
15575 return err;
15576 /*
15577 * Compilers can generate the code
15578 * r1 = r2
15579 * r1 += 0x1
15580 * if r2 < 1000 goto ...
15581 * use r1 in memory access
15582 * So for 64-bit alu remember constant delta between r2 and r1 and
15583 * update r1 after 'if' condition.
15584 */
15585 if (env->bpf_capable &&
15586 BPF_OP(insn->code) == BPF_ADD && !alu32 &&
15587 dst_reg->id && is_reg_const(src_reg, false)) {
15588 u64 val = reg_const_value(src_reg, false);
15589
15590 if ((dst_reg->id & BPF_ADD_CONST) ||
15591 /* prevent overflow in sync_linked_regs() later */
15592 val > (u32)S32_MAX) {
15593 /*
15594 * If the register already went through rX += val
15595 * we cannot accumulate another val into rx->off.
15596 */
15597 dst_reg->off = 0;
15598 dst_reg->id = 0;
15599 } else {
15600 dst_reg->id |= BPF_ADD_CONST;
15601 dst_reg->off = val;
15602 }
15603 } else {
15604 /*
15605 * Make sure ID is cleared otherwise dst_reg min/max could be
15606 * incorrectly propagated into other registers by sync_linked_regs()
15607 */
15608 dst_reg->id = 0;
15609 }
15610 return 0;
15611 }
15612
15613 /* check validity of 32-bit and 64-bit arithmetic operations */
check_alu_op(struct bpf_verifier_env * env,struct bpf_insn * insn)15614 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
15615 {
15616 struct bpf_reg_state *regs = cur_regs(env);
15617 u8 opcode = BPF_OP(insn->code);
15618 int err;
15619
15620 if (opcode == BPF_END || opcode == BPF_NEG) {
15621 if (opcode == BPF_NEG) {
15622 if (BPF_SRC(insn->code) != BPF_K ||
15623 insn->src_reg != BPF_REG_0 ||
15624 insn->off != 0 || insn->imm != 0) {
15625 verbose(env, "BPF_NEG uses reserved fields\n");
15626 return -EINVAL;
15627 }
15628 } else {
15629 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
15630 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
15631 (BPF_CLASS(insn->code) == BPF_ALU64 &&
15632 BPF_SRC(insn->code) != BPF_TO_LE)) {
15633 verbose(env, "BPF_END uses reserved fields\n");
15634 return -EINVAL;
15635 }
15636 }
15637
15638 /* check src operand */
15639 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
15640 if (err)
15641 return err;
15642
15643 if (is_pointer_value(env, insn->dst_reg)) {
15644 verbose(env, "R%d pointer arithmetic prohibited\n",
15645 insn->dst_reg);
15646 return -EACCES;
15647 }
15648
15649 /* check dest operand */
15650 if (opcode == BPF_NEG &&
15651 regs[insn->dst_reg].type == SCALAR_VALUE) {
15652 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
15653 err = err ?: adjust_scalar_min_max_vals(env, insn,
15654 ®s[insn->dst_reg],
15655 regs[insn->dst_reg]);
15656 } else {
15657 err = check_reg_arg(env, insn->dst_reg, DST_OP);
15658 }
15659 if (err)
15660 return err;
15661
15662 } else if (opcode == BPF_MOV) {
15663
15664 if (BPF_SRC(insn->code) == BPF_X) {
15665 if (BPF_CLASS(insn->code) == BPF_ALU) {
15666 if ((insn->off != 0 && insn->off != 8 && insn->off != 16) ||
15667 insn->imm) {
15668 verbose(env, "BPF_MOV uses reserved fields\n");
15669 return -EINVAL;
15670 }
15671 } else if (insn->off == BPF_ADDR_SPACE_CAST) {
15672 if (insn->imm != 1 && insn->imm != 1u << 16) {
15673 verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n");
15674 return -EINVAL;
15675 }
15676 if (!env->prog->aux->arena) {
15677 verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n");
15678 return -EINVAL;
15679 }
15680 } else {
15681 if ((insn->off != 0 && insn->off != 8 && insn->off != 16 &&
15682 insn->off != 32) || insn->imm) {
15683 verbose(env, "BPF_MOV uses reserved fields\n");
15684 return -EINVAL;
15685 }
15686 }
15687
15688 /* check src operand */
15689 err = check_reg_arg(env, insn->src_reg, SRC_OP);
15690 if (err)
15691 return err;
15692 } else {
15693 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
15694 verbose(env, "BPF_MOV uses reserved fields\n");
15695 return -EINVAL;
15696 }
15697 }
15698
15699 /* check dest operand, mark as required later */
15700 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
15701 if (err)
15702 return err;
15703
15704 if (BPF_SRC(insn->code) == BPF_X) {
15705 struct bpf_reg_state *src_reg = regs + insn->src_reg;
15706 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
15707
15708 if (BPF_CLASS(insn->code) == BPF_ALU64) {
15709 if (insn->imm) {
15710 /* off == BPF_ADDR_SPACE_CAST */
15711 mark_reg_unknown(env, regs, insn->dst_reg);
15712 if (insn->imm == 1) { /* cast from as(1) to as(0) */
15713 dst_reg->type = PTR_TO_ARENA;
15714 /* PTR_TO_ARENA is 32-bit */
15715 dst_reg->subreg_def = env->insn_idx + 1;
15716 }
15717 } else if (insn->off == 0) {
15718 /* case: R1 = R2
15719 * copy register state to dest reg
15720 */
15721 assign_scalar_id_before_mov(env, src_reg);
15722 copy_register_state(dst_reg, src_reg);
15723 dst_reg->subreg_def = DEF_NOT_SUBREG;
15724 } else {
15725 /* case: R1 = (s8, s16 s32)R2 */
15726 if (is_pointer_value(env, insn->src_reg)) {
15727 verbose(env,
15728 "R%d sign-extension part of pointer\n",
15729 insn->src_reg);
15730 return -EACCES;
15731 } else if (src_reg->type == SCALAR_VALUE) {
15732 bool no_sext;
15733
15734 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
15735 if (no_sext)
15736 assign_scalar_id_before_mov(env, src_reg);
15737 copy_register_state(dst_reg, src_reg);
15738 if (!no_sext)
15739 dst_reg->id = 0;
15740 coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
15741 dst_reg->subreg_def = DEF_NOT_SUBREG;
15742 } else {
15743 mark_reg_unknown(env, regs, insn->dst_reg);
15744 }
15745 }
15746 } else {
15747 /* R1 = (u32) R2 */
15748 if (is_pointer_value(env, insn->src_reg)) {
15749 verbose(env,
15750 "R%d partial copy of pointer\n",
15751 insn->src_reg);
15752 return -EACCES;
15753 } else if (src_reg->type == SCALAR_VALUE) {
15754 if (insn->off == 0) {
15755 bool is_src_reg_u32 = get_reg_width(src_reg) <= 32;
15756
15757 if (is_src_reg_u32)
15758 assign_scalar_id_before_mov(env, src_reg);
15759 copy_register_state(dst_reg, src_reg);
15760 /* Make sure ID is cleared if src_reg is not in u32
15761 * range otherwise dst_reg min/max could be incorrectly
15762 * propagated into src_reg by sync_linked_regs()
15763 */
15764 if (!is_src_reg_u32)
15765 dst_reg->id = 0;
15766 dst_reg->subreg_def = env->insn_idx + 1;
15767 } else {
15768 /* case: W1 = (s8, s16)W2 */
15769 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
15770
15771 if (no_sext)
15772 assign_scalar_id_before_mov(env, src_reg);
15773 copy_register_state(dst_reg, src_reg);
15774 if (!no_sext)
15775 dst_reg->id = 0;
15776 dst_reg->subreg_def = env->insn_idx + 1;
15777 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
15778 }
15779 } else {
15780 mark_reg_unknown(env, regs,
15781 insn->dst_reg);
15782 }
15783 zext_32_to_64(dst_reg);
15784 reg_bounds_sync(dst_reg);
15785 }
15786 } else {
15787 /* case: R = imm
15788 * remember the value we stored into this reg
15789 */
15790 /* clear any state __mark_reg_known doesn't set */
15791 mark_reg_unknown(env, regs, insn->dst_reg);
15792 regs[insn->dst_reg].type = SCALAR_VALUE;
15793 if (BPF_CLASS(insn->code) == BPF_ALU64) {
15794 __mark_reg_known(regs + insn->dst_reg,
15795 insn->imm);
15796 } else {
15797 __mark_reg_known(regs + insn->dst_reg,
15798 (u32)insn->imm);
15799 }
15800 }
15801
15802 } else if (opcode > BPF_END) {
15803 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
15804 return -EINVAL;
15805
15806 } else { /* all other ALU ops: and, sub, xor, add, ... */
15807
15808 if (BPF_SRC(insn->code) == BPF_X) {
15809 if (insn->imm != 0 || (insn->off != 0 && insn->off != 1) ||
15810 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
15811 verbose(env, "BPF_ALU uses reserved fields\n");
15812 return -EINVAL;
15813 }
15814 /* check src1 operand */
15815 err = check_reg_arg(env, insn->src_reg, SRC_OP);
15816 if (err)
15817 return err;
15818 } else {
15819 if (insn->src_reg != BPF_REG_0 || (insn->off != 0 && insn->off != 1) ||
15820 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
15821 verbose(env, "BPF_ALU uses reserved fields\n");
15822 return -EINVAL;
15823 }
15824 }
15825
15826 /* check src2 operand */
15827 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
15828 if (err)
15829 return err;
15830
15831 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
15832 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
15833 verbose(env, "div by zero\n");
15834 return -EINVAL;
15835 }
15836
15837 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
15838 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
15839 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
15840
15841 if (insn->imm < 0 || insn->imm >= size) {
15842 verbose(env, "invalid shift %d\n", insn->imm);
15843 return -EINVAL;
15844 }
15845 }
15846
15847 /* check dest operand */
15848 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
15849 err = err ?: adjust_reg_min_max_vals(env, insn);
15850 if (err)
15851 return err;
15852 }
15853
15854 return reg_bounds_sanity_check(env, ®s[insn->dst_reg], "alu");
15855 }
15856
find_good_pkt_pointers(struct bpf_verifier_state * vstate,struct bpf_reg_state * dst_reg,enum bpf_reg_type type,bool range_right_open)15857 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
15858 struct bpf_reg_state *dst_reg,
15859 enum bpf_reg_type type,
15860 bool range_right_open)
15861 {
15862 struct bpf_func_state *state;
15863 struct bpf_reg_state *reg;
15864 int new_range;
15865
15866 if (dst_reg->off < 0 ||
15867 (dst_reg->off == 0 && range_right_open))
15868 /* This doesn't give us any range */
15869 return;
15870
15871 if (dst_reg->umax_value > MAX_PACKET_OFF ||
15872 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
15873 /* Risk of overflow. For instance, ptr + (1<<63) may be less
15874 * than pkt_end, but that's because it's also less than pkt.
15875 */
15876 return;
15877
15878 new_range = dst_reg->off;
15879 if (range_right_open)
15880 new_range++;
15881
15882 /* Examples for register markings:
15883 *
15884 * pkt_data in dst register:
15885 *
15886 * r2 = r3;
15887 * r2 += 8;
15888 * if (r2 > pkt_end) goto <handle exception>
15889 * <access okay>
15890 *
15891 * r2 = r3;
15892 * r2 += 8;
15893 * if (r2 < pkt_end) goto <access okay>
15894 * <handle exception>
15895 *
15896 * Where:
15897 * r2 == dst_reg, pkt_end == src_reg
15898 * r2=pkt(id=n,off=8,r=0)
15899 * r3=pkt(id=n,off=0,r=0)
15900 *
15901 * pkt_data in src register:
15902 *
15903 * r2 = r3;
15904 * r2 += 8;
15905 * if (pkt_end >= r2) goto <access okay>
15906 * <handle exception>
15907 *
15908 * r2 = r3;
15909 * r2 += 8;
15910 * if (pkt_end <= r2) goto <handle exception>
15911 * <access okay>
15912 *
15913 * Where:
15914 * pkt_end == dst_reg, r2 == src_reg
15915 * r2=pkt(id=n,off=8,r=0)
15916 * r3=pkt(id=n,off=0,r=0)
15917 *
15918 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
15919 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
15920 * and [r3, r3 + 8-1) respectively is safe to access depending on
15921 * the check.
15922 */
15923
15924 /* If our ids match, then we must have the same max_value. And we
15925 * don't care about the other reg's fixed offset, since if it's too big
15926 * the range won't allow anything.
15927 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
15928 */
15929 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
15930 if (reg->type == type && reg->id == dst_reg->id)
15931 /* keep the maximum range already checked */
15932 reg->range = max(reg->range, new_range);
15933 }));
15934 }
15935
15936 /*
15937 * <reg1> <op> <reg2>, currently assuming reg2 is a constant
15938 */
is_scalar_branch_taken(struct bpf_reg_state * reg1,struct bpf_reg_state * reg2,u8 opcode,bool is_jmp32)15939 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
15940 u8 opcode, bool is_jmp32)
15941 {
15942 struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off;
15943 struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off;
15944 u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value;
15945 u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value;
15946 s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value;
15947 s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value;
15948 u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value;
15949 u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value;
15950 s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value;
15951 s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value;
15952
15953 switch (opcode) {
15954 case BPF_JEQ:
15955 /* constants, umin/umax and smin/smax checks would be
15956 * redundant in this case because they all should match
15957 */
15958 if (tnum_is_const(t1) && tnum_is_const(t2))
15959 return t1.value == t2.value;
15960 if (!tnum_overlap(t1, t2))
15961 return 0;
15962 /* non-overlapping ranges */
15963 if (umin1 > umax2 || umax1 < umin2)
15964 return 0;
15965 if (smin1 > smax2 || smax1 < smin2)
15966 return 0;
15967 if (!is_jmp32) {
15968 /* if 64-bit ranges are inconclusive, see if we can
15969 * utilize 32-bit subrange knowledge to eliminate
15970 * branches that can't be taken a priori
15971 */
15972 if (reg1->u32_min_value > reg2->u32_max_value ||
15973 reg1->u32_max_value < reg2->u32_min_value)
15974 return 0;
15975 if (reg1->s32_min_value > reg2->s32_max_value ||
15976 reg1->s32_max_value < reg2->s32_min_value)
15977 return 0;
15978 }
15979 break;
15980 case BPF_JNE:
15981 /* constants, umin/umax and smin/smax checks would be
15982 * redundant in this case because they all should match
15983 */
15984 if (tnum_is_const(t1) && tnum_is_const(t2))
15985 return t1.value != t2.value;
15986 if (!tnum_overlap(t1, t2))
15987 return 1;
15988 /* non-overlapping ranges */
15989 if (umin1 > umax2 || umax1 < umin2)
15990 return 1;
15991 if (smin1 > smax2 || smax1 < smin2)
15992 return 1;
15993 if (!is_jmp32) {
15994 /* if 64-bit ranges are inconclusive, see if we can
15995 * utilize 32-bit subrange knowledge to eliminate
15996 * branches that can't be taken a priori
15997 */
15998 if (reg1->u32_min_value > reg2->u32_max_value ||
15999 reg1->u32_max_value < reg2->u32_min_value)
16000 return 1;
16001 if (reg1->s32_min_value > reg2->s32_max_value ||
16002 reg1->s32_max_value < reg2->s32_min_value)
16003 return 1;
16004 }
16005 break;
16006 case BPF_JSET:
16007 if (!is_reg_const(reg2, is_jmp32)) {
16008 swap(reg1, reg2);
16009 swap(t1, t2);
16010 }
16011 if (!is_reg_const(reg2, is_jmp32))
16012 return -1;
16013 if ((~t1.mask & t1.value) & t2.value)
16014 return 1;
16015 if (!((t1.mask | t1.value) & t2.value))
16016 return 0;
16017 break;
16018 case BPF_JGT:
16019 if (umin1 > umax2)
16020 return 1;
16021 else if (umax1 <= umin2)
16022 return 0;
16023 break;
16024 case BPF_JSGT:
16025 if (smin1 > smax2)
16026 return 1;
16027 else if (smax1 <= smin2)
16028 return 0;
16029 break;
16030 case BPF_JLT:
16031 if (umax1 < umin2)
16032 return 1;
16033 else if (umin1 >= umax2)
16034 return 0;
16035 break;
16036 case BPF_JSLT:
16037 if (smax1 < smin2)
16038 return 1;
16039 else if (smin1 >= smax2)
16040 return 0;
16041 break;
16042 case BPF_JGE:
16043 if (umin1 >= umax2)
16044 return 1;
16045 else if (umax1 < umin2)
16046 return 0;
16047 break;
16048 case BPF_JSGE:
16049 if (smin1 >= smax2)
16050 return 1;
16051 else if (smax1 < smin2)
16052 return 0;
16053 break;
16054 case BPF_JLE:
16055 if (umax1 <= umin2)
16056 return 1;
16057 else if (umin1 > umax2)
16058 return 0;
16059 break;
16060 case BPF_JSLE:
16061 if (smax1 <= smin2)
16062 return 1;
16063 else if (smin1 > smax2)
16064 return 0;
16065 break;
16066 }
16067
16068 return -1;
16069 }
16070
flip_opcode(u32 opcode)16071 static int flip_opcode(u32 opcode)
16072 {
16073 /* How can we transform "a <op> b" into "b <op> a"? */
16074 static const u8 opcode_flip[16] = {
16075 /* these stay the same */
16076 [BPF_JEQ >> 4] = BPF_JEQ,
16077 [BPF_JNE >> 4] = BPF_JNE,
16078 [BPF_JSET >> 4] = BPF_JSET,
16079 /* these swap "lesser" and "greater" (L and G in the opcodes) */
16080 [BPF_JGE >> 4] = BPF_JLE,
16081 [BPF_JGT >> 4] = BPF_JLT,
16082 [BPF_JLE >> 4] = BPF_JGE,
16083 [BPF_JLT >> 4] = BPF_JGT,
16084 [BPF_JSGE >> 4] = BPF_JSLE,
16085 [BPF_JSGT >> 4] = BPF_JSLT,
16086 [BPF_JSLE >> 4] = BPF_JSGE,
16087 [BPF_JSLT >> 4] = BPF_JSGT
16088 };
16089 return opcode_flip[opcode >> 4];
16090 }
16091
is_pkt_ptr_branch_taken(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,u8 opcode)16092 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
16093 struct bpf_reg_state *src_reg,
16094 u8 opcode)
16095 {
16096 struct bpf_reg_state *pkt;
16097
16098 if (src_reg->type == PTR_TO_PACKET_END) {
16099 pkt = dst_reg;
16100 } else if (dst_reg->type == PTR_TO_PACKET_END) {
16101 pkt = src_reg;
16102 opcode = flip_opcode(opcode);
16103 } else {
16104 return -1;
16105 }
16106
16107 if (pkt->range >= 0)
16108 return -1;
16109
16110 switch (opcode) {
16111 case BPF_JLE:
16112 /* pkt <= pkt_end */
16113 fallthrough;
16114 case BPF_JGT:
16115 /* pkt > pkt_end */
16116 if (pkt->range == BEYOND_PKT_END)
16117 /* pkt has at last one extra byte beyond pkt_end */
16118 return opcode == BPF_JGT;
16119 break;
16120 case BPF_JLT:
16121 /* pkt < pkt_end */
16122 fallthrough;
16123 case BPF_JGE:
16124 /* pkt >= pkt_end */
16125 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
16126 return opcode == BPF_JGE;
16127 break;
16128 }
16129 return -1;
16130 }
16131
16132 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;"
16133 * and return:
16134 * 1 - branch will be taken and "goto target" will be executed
16135 * 0 - branch will not be taken and fall-through to next insn
16136 * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value
16137 * range [0,10]
16138 */
is_branch_taken(struct bpf_reg_state * reg1,struct bpf_reg_state * reg2,u8 opcode,bool is_jmp32)16139 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
16140 u8 opcode, bool is_jmp32)
16141 {
16142 if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32)
16143 return is_pkt_ptr_branch_taken(reg1, reg2, opcode);
16144
16145 if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) {
16146 u64 val;
16147
16148 /* arrange that reg2 is a scalar, and reg1 is a pointer */
16149 if (!is_reg_const(reg2, is_jmp32)) {
16150 opcode = flip_opcode(opcode);
16151 swap(reg1, reg2);
16152 }
16153 /* and ensure that reg2 is a constant */
16154 if (!is_reg_const(reg2, is_jmp32))
16155 return -1;
16156
16157 if (!reg_not_null(reg1))
16158 return -1;
16159
16160 /* If pointer is valid tests against zero will fail so we can
16161 * use this to direct branch taken.
16162 */
16163 val = reg_const_value(reg2, is_jmp32);
16164 if (val != 0)
16165 return -1;
16166
16167 switch (opcode) {
16168 case BPF_JEQ:
16169 return 0;
16170 case BPF_JNE:
16171 return 1;
16172 default:
16173 return -1;
16174 }
16175 }
16176
16177 /* now deal with two scalars, but not necessarily constants */
16178 return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32);
16179 }
16180
16181 /* Opcode that corresponds to a *false* branch condition.
16182 * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2
16183 */
rev_opcode(u8 opcode)16184 static u8 rev_opcode(u8 opcode)
16185 {
16186 switch (opcode) {
16187 case BPF_JEQ: return BPF_JNE;
16188 case BPF_JNE: return BPF_JEQ;
16189 /* JSET doesn't have it's reverse opcode in BPF, so add
16190 * BPF_X flag to denote the reverse of that operation
16191 */
16192 case BPF_JSET: return BPF_JSET | BPF_X;
16193 case BPF_JSET | BPF_X: return BPF_JSET;
16194 case BPF_JGE: return BPF_JLT;
16195 case BPF_JGT: return BPF_JLE;
16196 case BPF_JLE: return BPF_JGT;
16197 case BPF_JLT: return BPF_JGE;
16198 case BPF_JSGE: return BPF_JSLT;
16199 case BPF_JSGT: return BPF_JSLE;
16200 case BPF_JSLE: return BPF_JSGT;
16201 case BPF_JSLT: return BPF_JSGE;
16202 default: return 0;
16203 }
16204 }
16205
16206 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */
regs_refine_cond_op(struct bpf_reg_state * reg1,struct bpf_reg_state * reg2,u8 opcode,bool is_jmp32)16207 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
16208 u8 opcode, bool is_jmp32)
16209 {
16210 struct tnum t;
16211 u64 val;
16212
16213 /* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */
16214 switch (opcode) {
16215 case BPF_JGE:
16216 case BPF_JGT:
16217 case BPF_JSGE:
16218 case BPF_JSGT:
16219 opcode = flip_opcode(opcode);
16220 swap(reg1, reg2);
16221 break;
16222 default:
16223 break;
16224 }
16225
16226 switch (opcode) {
16227 case BPF_JEQ:
16228 if (is_jmp32) {
16229 reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
16230 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
16231 reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
16232 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
16233 reg2->u32_min_value = reg1->u32_min_value;
16234 reg2->u32_max_value = reg1->u32_max_value;
16235 reg2->s32_min_value = reg1->s32_min_value;
16236 reg2->s32_max_value = reg1->s32_max_value;
16237
16238 t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off));
16239 reg1->var_off = tnum_with_subreg(reg1->var_off, t);
16240 reg2->var_off = tnum_with_subreg(reg2->var_off, t);
16241 } else {
16242 reg1->umin_value = max(reg1->umin_value, reg2->umin_value);
16243 reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
16244 reg1->smin_value = max(reg1->smin_value, reg2->smin_value);
16245 reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
16246 reg2->umin_value = reg1->umin_value;
16247 reg2->umax_value = reg1->umax_value;
16248 reg2->smin_value = reg1->smin_value;
16249 reg2->smax_value = reg1->smax_value;
16250
16251 reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off);
16252 reg2->var_off = reg1->var_off;
16253 }
16254 break;
16255 case BPF_JNE:
16256 if (!is_reg_const(reg2, is_jmp32))
16257 swap(reg1, reg2);
16258 if (!is_reg_const(reg2, is_jmp32))
16259 break;
16260
16261 /* try to recompute the bound of reg1 if reg2 is a const and
16262 * is exactly the edge of reg1.
16263 */
16264 val = reg_const_value(reg2, is_jmp32);
16265 if (is_jmp32) {
16266 /* u32_min_value is not equal to 0xffffffff at this point,
16267 * because otherwise u32_max_value is 0xffffffff as well,
16268 * in such a case both reg1 and reg2 would be constants,
16269 * jump would be predicted and reg_set_min_max() won't
16270 * be called.
16271 *
16272 * Same reasoning works for all {u,s}{min,max}{32,64} cases
16273 * below.
16274 */
16275 if (reg1->u32_min_value == (u32)val)
16276 reg1->u32_min_value++;
16277 if (reg1->u32_max_value == (u32)val)
16278 reg1->u32_max_value--;
16279 if (reg1->s32_min_value == (s32)val)
16280 reg1->s32_min_value++;
16281 if (reg1->s32_max_value == (s32)val)
16282 reg1->s32_max_value--;
16283 } else {
16284 if (reg1->umin_value == (u64)val)
16285 reg1->umin_value++;
16286 if (reg1->umax_value == (u64)val)
16287 reg1->umax_value--;
16288 if (reg1->smin_value == (s64)val)
16289 reg1->smin_value++;
16290 if (reg1->smax_value == (s64)val)
16291 reg1->smax_value--;
16292 }
16293 break;
16294 case BPF_JSET:
16295 if (!is_reg_const(reg2, is_jmp32))
16296 swap(reg1, reg2);
16297 if (!is_reg_const(reg2, is_jmp32))
16298 break;
16299 val = reg_const_value(reg2, is_jmp32);
16300 /* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X)
16301 * requires single bit to learn something useful. E.g., if we
16302 * know that `r1 & 0x3` is true, then which bits (0, 1, or both)
16303 * are actually set? We can learn something definite only if
16304 * it's a single-bit value to begin with.
16305 *
16306 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have
16307 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor
16308 * bit 1 is set, which we can readily use in adjustments.
16309 */
16310 if (!is_power_of_2(val))
16311 break;
16312 if (is_jmp32) {
16313 t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val));
16314 reg1->var_off = tnum_with_subreg(reg1->var_off, t);
16315 } else {
16316 reg1->var_off = tnum_or(reg1->var_off, tnum_const(val));
16317 }
16318 break;
16319 case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */
16320 if (!is_reg_const(reg2, is_jmp32))
16321 swap(reg1, reg2);
16322 if (!is_reg_const(reg2, is_jmp32))
16323 break;
16324 val = reg_const_value(reg2, is_jmp32);
16325 /* Forget the ranges before narrowing tnums, to avoid invariant
16326 * violations if we're on a dead branch.
16327 */
16328 __mark_reg_unbounded(reg1);
16329 if (is_jmp32) {
16330 t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val));
16331 reg1->var_off = tnum_with_subreg(reg1->var_off, t);
16332 } else {
16333 reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val));
16334 }
16335 break;
16336 case BPF_JLE:
16337 if (is_jmp32) {
16338 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
16339 reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
16340 } else {
16341 reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
16342 reg2->umin_value = max(reg1->umin_value, reg2->umin_value);
16343 }
16344 break;
16345 case BPF_JLT:
16346 if (is_jmp32) {
16347 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1);
16348 reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value);
16349 } else {
16350 reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1);
16351 reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value);
16352 }
16353 break;
16354 case BPF_JSLE:
16355 if (is_jmp32) {
16356 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
16357 reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
16358 } else {
16359 reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
16360 reg2->smin_value = max(reg1->smin_value, reg2->smin_value);
16361 }
16362 break;
16363 case BPF_JSLT:
16364 if (is_jmp32) {
16365 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1);
16366 reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value);
16367 } else {
16368 reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1);
16369 reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value);
16370 }
16371 break;
16372 default:
16373 return;
16374 }
16375 }
16376
16377 /* Adjusts the register min/max values in the case that the dst_reg and
16378 * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K
16379 * check, in which case we have a fake SCALAR_VALUE representing insn->imm).
16380 * Technically we can do similar adjustments for pointers to the same object,
16381 * but we don't support that right now.
16382 */
reg_set_min_max(struct bpf_verifier_env * env,struct bpf_reg_state * true_reg1,struct bpf_reg_state * true_reg2,struct bpf_reg_state * false_reg1,struct bpf_reg_state * false_reg2,u8 opcode,bool is_jmp32)16383 static int reg_set_min_max(struct bpf_verifier_env *env,
16384 struct bpf_reg_state *true_reg1,
16385 struct bpf_reg_state *true_reg2,
16386 struct bpf_reg_state *false_reg1,
16387 struct bpf_reg_state *false_reg2,
16388 u8 opcode, bool is_jmp32)
16389 {
16390 int err;
16391
16392 /* If either register is a pointer, we can't learn anything about its
16393 * variable offset from the compare (unless they were a pointer into
16394 * the same object, but we don't bother with that).
16395 */
16396 if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE)
16397 return 0;
16398
16399 /* fallthrough (FALSE) branch */
16400 regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32);
16401 reg_bounds_sync(false_reg1);
16402 reg_bounds_sync(false_reg2);
16403
16404 /* jump (TRUE) branch */
16405 regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32);
16406 reg_bounds_sync(true_reg1);
16407 reg_bounds_sync(true_reg2);
16408
16409 err = reg_bounds_sanity_check(env, true_reg1, "true_reg1");
16410 err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2");
16411 err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1");
16412 err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2");
16413 return err;
16414 }
16415
mark_ptr_or_null_reg(struct bpf_func_state * state,struct bpf_reg_state * reg,u32 id,bool is_null)16416 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
16417 struct bpf_reg_state *reg, u32 id,
16418 bool is_null)
16419 {
16420 if (type_may_be_null(reg->type) && reg->id == id &&
16421 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
16422 /* Old offset (both fixed and variable parts) should have been
16423 * known-zero, because we don't allow pointer arithmetic on
16424 * pointers that might be NULL. If we see this happening, don't
16425 * convert the register.
16426 *
16427 * But in some cases, some helpers that return local kptrs
16428 * advance offset for the returned pointer. In those cases, it
16429 * is fine to expect to see reg->off.
16430 */
16431 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
16432 return;
16433 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
16434 WARN_ON_ONCE(reg->off))
16435 return;
16436
16437 if (is_null) {
16438 reg->type = SCALAR_VALUE;
16439 /* We don't need id and ref_obj_id from this point
16440 * onwards anymore, thus we should better reset it,
16441 * so that state pruning has chances to take effect.
16442 */
16443 reg->id = 0;
16444 reg->ref_obj_id = 0;
16445
16446 return;
16447 }
16448
16449 mark_ptr_not_null_reg(reg);
16450
16451 if (!reg_may_point_to_spin_lock(reg)) {
16452 /* For not-NULL ptr, reg->ref_obj_id will be reset
16453 * in release_reference().
16454 *
16455 * reg->id is still used by spin_lock ptr. Other
16456 * than spin_lock ptr type, reg->id can be reset.
16457 */
16458 reg->id = 0;
16459 }
16460 }
16461 }
16462
16463 /* The logic is similar to find_good_pkt_pointers(), both could eventually
16464 * be folded together at some point.
16465 */
mark_ptr_or_null_regs(struct bpf_verifier_state * vstate,u32 regno,bool is_null)16466 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
16467 bool is_null)
16468 {
16469 struct bpf_func_state *state = vstate->frame[vstate->curframe];
16470 struct bpf_reg_state *regs = state->regs, *reg;
16471 u32 ref_obj_id = regs[regno].ref_obj_id;
16472 u32 id = regs[regno].id;
16473
16474 if (ref_obj_id && ref_obj_id == id && is_null)
16475 /* regs[regno] is in the " == NULL" branch.
16476 * No one could have freed the reference state before
16477 * doing the NULL check.
16478 */
16479 WARN_ON_ONCE(release_reference_nomark(vstate, id));
16480
16481 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
16482 mark_ptr_or_null_reg(state, reg, id, is_null);
16483 }));
16484 }
16485
try_match_pkt_pointers(const struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,struct bpf_verifier_state * this_branch,struct bpf_verifier_state * other_branch)16486 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
16487 struct bpf_reg_state *dst_reg,
16488 struct bpf_reg_state *src_reg,
16489 struct bpf_verifier_state *this_branch,
16490 struct bpf_verifier_state *other_branch)
16491 {
16492 if (BPF_SRC(insn->code) != BPF_X)
16493 return false;
16494
16495 /* Pointers are always 64-bit. */
16496 if (BPF_CLASS(insn->code) == BPF_JMP32)
16497 return false;
16498
16499 switch (BPF_OP(insn->code)) {
16500 case BPF_JGT:
16501 if ((dst_reg->type == PTR_TO_PACKET &&
16502 src_reg->type == PTR_TO_PACKET_END) ||
16503 (dst_reg->type == PTR_TO_PACKET_META &&
16504 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
16505 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
16506 find_good_pkt_pointers(this_branch, dst_reg,
16507 dst_reg->type, false);
16508 mark_pkt_end(other_branch, insn->dst_reg, true);
16509 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
16510 src_reg->type == PTR_TO_PACKET) ||
16511 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
16512 src_reg->type == PTR_TO_PACKET_META)) {
16513 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
16514 find_good_pkt_pointers(other_branch, src_reg,
16515 src_reg->type, true);
16516 mark_pkt_end(this_branch, insn->src_reg, false);
16517 } else {
16518 return false;
16519 }
16520 break;
16521 case BPF_JLT:
16522 if ((dst_reg->type == PTR_TO_PACKET &&
16523 src_reg->type == PTR_TO_PACKET_END) ||
16524 (dst_reg->type == PTR_TO_PACKET_META &&
16525 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
16526 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
16527 find_good_pkt_pointers(other_branch, dst_reg,
16528 dst_reg->type, true);
16529 mark_pkt_end(this_branch, insn->dst_reg, false);
16530 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
16531 src_reg->type == PTR_TO_PACKET) ||
16532 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
16533 src_reg->type == PTR_TO_PACKET_META)) {
16534 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
16535 find_good_pkt_pointers(this_branch, src_reg,
16536 src_reg->type, false);
16537 mark_pkt_end(other_branch, insn->src_reg, true);
16538 } else {
16539 return false;
16540 }
16541 break;
16542 case BPF_JGE:
16543 if ((dst_reg->type == PTR_TO_PACKET &&
16544 src_reg->type == PTR_TO_PACKET_END) ||
16545 (dst_reg->type == PTR_TO_PACKET_META &&
16546 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
16547 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
16548 find_good_pkt_pointers(this_branch, dst_reg,
16549 dst_reg->type, true);
16550 mark_pkt_end(other_branch, insn->dst_reg, false);
16551 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
16552 src_reg->type == PTR_TO_PACKET) ||
16553 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
16554 src_reg->type == PTR_TO_PACKET_META)) {
16555 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
16556 find_good_pkt_pointers(other_branch, src_reg,
16557 src_reg->type, false);
16558 mark_pkt_end(this_branch, insn->src_reg, true);
16559 } else {
16560 return false;
16561 }
16562 break;
16563 case BPF_JLE:
16564 if ((dst_reg->type == PTR_TO_PACKET &&
16565 src_reg->type == PTR_TO_PACKET_END) ||
16566 (dst_reg->type == PTR_TO_PACKET_META &&
16567 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
16568 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
16569 find_good_pkt_pointers(other_branch, dst_reg,
16570 dst_reg->type, false);
16571 mark_pkt_end(this_branch, insn->dst_reg, true);
16572 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
16573 src_reg->type == PTR_TO_PACKET) ||
16574 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
16575 src_reg->type == PTR_TO_PACKET_META)) {
16576 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
16577 find_good_pkt_pointers(this_branch, src_reg,
16578 src_reg->type, true);
16579 mark_pkt_end(other_branch, insn->src_reg, false);
16580 } else {
16581 return false;
16582 }
16583 break;
16584 default:
16585 return false;
16586 }
16587
16588 return true;
16589 }
16590
__collect_linked_regs(struct linked_regs * reg_set,struct bpf_reg_state * reg,u32 id,u32 frameno,u32 spi_or_reg,bool is_reg)16591 static void __collect_linked_regs(struct linked_regs *reg_set, struct bpf_reg_state *reg,
16592 u32 id, u32 frameno, u32 spi_or_reg, bool is_reg)
16593 {
16594 struct linked_reg *e;
16595
16596 if (reg->type != SCALAR_VALUE || (reg->id & ~BPF_ADD_CONST) != id)
16597 return;
16598
16599 e = linked_regs_push(reg_set);
16600 if (e) {
16601 e->frameno = frameno;
16602 e->is_reg = is_reg;
16603 e->regno = spi_or_reg;
16604 } else {
16605 reg->id = 0;
16606 }
16607 }
16608
16609 /* For all R being scalar registers or spilled scalar registers
16610 * in verifier state, save R in linked_regs if R->id == id.
16611 * If there are too many Rs sharing same id, reset id for leftover Rs.
16612 */
collect_linked_regs(struct bpf_verifier_state * vstate,u32 id,struct linked_regs * linked_regs)16613 static void collect_linked_regs(struct bpf_verifier_state *vstate, u32 id,
16614 struct linked_regs *linked_regs)
16615 {
16616 struct bpf_func_state *func;
16617 struct bpf_reg_state *reg;
16618 int i, j;
16619
16620 id = id & ~BPF_ADD_CONST;
16621 for (i = vstate->curframe; i >= 0; i--) {
16622 func = vstate->frame[i];
16623 for (j = 0; j < BPF_REG_FP; j++) {
16624 reg = &func->regs[j];
16625 __collect_linked_regs(linked_regs, reg, id, i, j, true);
16626 }
16627 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
16628 if (!is_spilled_reg(&func->stack[j]))
16629 continue;
16630 reg = &func->stack[j].spilled_ptr;
16631 __collect_linked_regs(linked_regs, reg, id, i, j, false);
16632 }
16633 }
16634 }
16635
16636 /* For all R in linked_regs, copy known_reg range into R
16637 * if R->id == known_reg->id.
16638 */
sync_linked_regs(struct bpf_verifier_state * vstate,struct bpf_reg_state * known_reg,struct linked_regs * linked_regs)16639 static void sync_linked_regs(struct bpf_verifier_state *vstate, struct bpf_reg_state *known_reg,
16640 struct linked_regs *linked_regs)
16641 {
16642 struct bpf_reg_state fake_reg;
16643 struct bpf_reg_state *reg;
16644 struct linked_reg *e;
16645 int i;
16646
16647 for (i = 0; i < linked_regs->cnt; ++i) {
16648 e = &linked_regs->entries[i];
16649 reg = e->is_reg ? &vstate->frame[e->frameno]->regs[e->regno]
16650 : &vstate->frame[e->frameno]->stack[e->spi].spilled_ptr;
16651 if (reg->type != SCALAR_VALUE || reg == known_reg)
16652 continue;
16653 if ((reg->id & ~BPF_ADD_CONST) != (known_reg->id & ~BPF_ADD_CONST))
16654 continue;
16655 if ((!(reg->id & BPF_ADD_CONST) && !(known_reg->id & BPF_ADD_CONST)) ||
16656 reg->off == known_reg->off) {
16657 s32 saved_subreg_def = reg->subreg_def;
16658
16659 copy_register_state(reg, known_reg);
16660 reg->subreg_def = saved_subreg_def;
16661 } else {
16662 s32 saved_subreg_def = reg->subreg_def;
16663 s32 saved_off = reg->off;
16664
16665 fake_reg.type = SCALAR_VALUE;
16666 __mark_reg_known(&fake_reg, (s32)reg->off - (s32)known_reg->off);
16667
16668 /* reg = known_reg; reg += delta */
16669 copy_register_state(reg, known_reg);
16670 /*
16671 * Must preserve off, id and add_const flag,
16672 * otherwise another sync_linked_regs() will be incorrect.
16673 */
16674 reg->off = saved_off;
16675 reg->subreg_def = saved_subreg_def;
16676
16677 scalar32_min_max_add(reg, &fake_reg);
16678 scalar_min_max_add(reg, &fake_reg);
16679 reg->var_off = tnum_add(reg->var_off, fake_reg.var_off);
16680 }
16681 }
16682 }
16683
check_cond_jmp_op(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)16684 static int check_cond_jmp_op(struct bpf_verifier_env *env,
16685 struct bpf_insn *insn, int *insn_idx)
16686 {
16687 struct bpf_verifier_state *this_branch = env->cur_state;
16688 struct bpf_verifier_state *other_branch;
16689 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
16690 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
16691 struct bpf_reg_state *eq_branch_regs;
16692 struct linked_regs linked_regs = {};
16693 u8 opcode = BPF_OP(insn->code);
16694 int insn_flags = 0;
16695 bool is_jmp32;
16696 int pred = -1;
16697 int err;
16698
16699 /* Only conditional jumps are expected to reach here. */
16700 if (opcode == BPF_JA || opcode > BPF_JCOND) {
16701 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
16702 return -EINVAL;
16703 }
16704
16705 if (opcode == BPF_JCOND) {
16706 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
16707 int idx = *insn_idx;
16708
16709 if (insn->code != (BPF_JMP | BPF_JCOND) ||
16710 insn->src_reg != BPF_MAY_GOTO ||
16711 insn->dst_reg || insn->imm) {
16712 verbose(env, "invalid may_goto imm %d\n", insn->imm);
16713 return -EINVAL;
16714 }
16715 prev_st = find_prev_entry(env, cur_st->parent, idx);
16716
16717 /* branch out 'fallthrough' insn as a new state to explore */
16718 queued_st = push_stack(env, idx + 1, idx, false);
16719 if (!queued_st)
16720 return -ENOMEM;
16721
16722 queued_st->may_goto_depth++;
16723 if (prev_st)
16724 widen_imprecise_scalars(env, prev_st, queued_st);
16725 *insn_idx += insn->off;
16726 return 0;
16727 }
16728
16729 /* check src2 operand */
16730 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
16731 if (err)
16732 return err;
16733
16734 dst_reg = ®s[insn->dst_reg];
16735 if (BPF_SRC(insn->code) == BPF_X) {
16736 if (insn->imm != 0) {
16737 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
16738 return -EINVAL;
16739 }
16740
16741 /* check src1 operand */
16742 err = check_reg_arg(env, insn->src_reg, SRC_OP);
16743 if (err)
16744 return err;
16745
16746 src_reg = ®s[insn->src_reg];
16747 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
16748 is_pointer_value(env, insn->src_reg)) {
16749 verbose(env, "R%d pointer comparison prohibited\n",
16750 insn->src_reg);
16751 return -EACCES;
16752 }
16753
16754 if (src_reg->type == PTR_TO_STACK)
16755 insn_flags |= INSN_F_SRC_REG_STACK;
16756 if (dst_reg->type == PTR_TO_STACK)
16757 insn_flags |= INSN_F_DST_REG_STACK;
16758 } else {
16759 if (insn->src_reg != BPF_REG_0) {
16760 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
16761 return -EINVAL;
16762 }
16763 src_reg = &env->fake_reg[0];
16764 memset(src_reg, 0, sizeof(*src_reg));
16765 src_reg->type = SCALAR_VALUE;
16766 __mark_reg_known(src_reg, insn->imm);
16767
16768 if (dst_reg->type == PTR_TO_STACK)
16769 insn_flags |= INSN_F_DST_REG_STACK;
16770 }
16771
16772 if (insn_flags) {
16773 err = push_jmp_history(env, this_branch, insn_flags, 0);
16774 if (err)
16775 return err;
16776 }
16777
16778 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
16779 pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32);
16780 if (pred >= 0) {
16781 /* If we get here with a dst_reg pointer type it is because
16782 * above is_branch_taken() special cased the 0 comparison.
16783 */
16784 if (!__is_pointer_value(false, dst_reg))
16785 err = mark_chain_precision(env, insn->dst_reg);
16786 if (BPF_SRC(insn->code) == BPF_X && !err &&
16787 !__is_pointer_value(false, src_reg))
16788 err = mark_chain_precision(env, insn->src_reg);
16789 if (err)
16790 return err;
16791 }
16792
16793 if (pred == 1) {
16794 /* Only follow the goto, ignore fall-through. If needed, push
16795 * the fall-through branch for simulation under speculative
16796 * execution.
16797 */
16798 if (!env->bypass_spec_v1 &&
16799 !sanitize_speculative_path(env, insn, *insn_idx + 1,
16800 *insn_idx))
16801 return -EFAULT;
16802 if (env->log.level & BPF_LOG_LEVEL)
16803 print_insn_state(env, this_branch, this_branch->curframe);
16804 *insn_idx += insn->off;
16805 return 0;
16806 } else if (pred == 0) {
16807 /* Only follow the fall-through branch, since that's where the
16808 * program will go. If needed, push the goto branch for
16809 * simulation under speculative execution.
16810 */
16811 if (!env->bypass_spec_v1 &&
16812 !sanitize_speculative_path(env, insn,
16813 *insn_idx + insn->off + 1,
16814 *insn_idx))
16815 return -EFAULT;
16816 if (env->log.level & BPF_LOG_LEVEL)
16817 print_insn_state(env, this_branch, this_branch->curframe);
16818 return 0;
16819 }
16820
16821 /* Push scalar registers sharing same ID to jump history,
16822 * do this before creating 'other_branch', so that both
16823 * 'this_branch' and 'other_branch' share this history
16824 * if parent state is created.
16825 */
16826 if (BPF_SRC(insn->code) == BPF_X && src_reg->type == SCALAR_VALUE && src_reg->id)
16827 collect_linked_regs(this_branch, src_reg->id, &linked_regs);
16828 if (dst_reg->type == SCALAR_VALUE && dst_reg->id)
16829 collect_linked_regs(this_branch, dst_reg->id, &linked_regs);
16830 if (linked_regs.cnt > 1) {
16831 err = push_jmp_history(env, this_branch, 0, linked_regs_pack(&linked_regs));
16832 if (err)
16833 return err;
16834 }
16835
16836 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
16837 false);
16838 if (!other_branch)
16839 return -EFAULT;
16840 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
16841
16842 if (BPF_SRC(insn->code) == BPF_X) {
16843 err = reg_set_min_max(env,
16844 &other_branch_regs[insn->dst_reg],
16845 &other_branch_regs[insn->src_reg],
16846 dst_reg, src_reg, opcode, is_jmp32);
16847 } else /* BPF_SRC(insn->code) == BPF_K */ {
16848 /* reg_set_min_max() can mangle the fake_reg. Make a copy
16849 * so that these are two different memory locations. The
16850 * src_reg is not used beyond here in context of K.
16851 */
16852 memcpy(&env->fake_reg[1], &env->fake_reg[0],
16853 sizeof(env->fake_reg[0]));
16854 err = reg_set_min_max(env,
16855 &other_branch_regs[insn->dst_reg],
16856 &env->fake_reg[0],
16857 dst_reg, &env->fake_reg[1],
16858 opcode, is_jmp32);
16859 }
16860 if (err)
16861 return err;
16862
16863 if (BPF_SRC(insn->code) == BPF_X &&
16864 src_reg->type == SCALAR_VALUE && src_reg->id &&
16865 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
16866 sync_linked_regs(this_branch, src_reg, &linked_regs);
16867 sync_linked_regs(other_branch, &other_branch_regs[insn->src_reg], &linked_regs);
16868 }
16869 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
16870 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
16871 sync_linked_regs(this_branch, dst_reg, &linked_regs);
16872 sync_linked_regs(other_branch, &other_branch_regs[insn->dst_reg], &linked_regs);
16873 }
16874
16875 /* if one pointer register is compared to another pointer
16876 * register check if PTR_MAYBE_NULL could be lifted.
16877 * E.g. register A - maybe null
16878 * register B - not null
16879 * for JNE A, B, ... - A is not null in the false branch;
16880 * for JEQ A, B, ... - A is not null in the true branch.
16881 *
16882 * Since PTR_TO_BTF_ID points to a kernel struct that does
16883 * not need to be null checked by the BPF program, i.e.,
16884 * could be null even without PTR_MAYBE_NULL marking, so
16885 * only propagate nullness when neither reg is that type.
16886 */
16887 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
16888 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
16889 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
16890 base_type(src_reg->type) != PTR_TO_BTF_ID &&
16891 base_type(dst_reg->type) != PTR_TO_BTF_ID) {
16892 eq_branch_regs = NULL;
16893 switch (opcode) {
16894 case BPF_JEQ:
16895 eq_branch_regs = other_branch_regs;
16896 break;
16897 case BPF_JNE:
16898 eq_branch_regs = regs;
16899 break;
16900 default:
16901 /* do nothing */
16902 break;
16903 }
16904 if (eq_branch_regs) {
16905 if (type_may_be_null(src_reg->type))
16906 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
16907 else
16908 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
16909 }
16910 }
16911
16912 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
16913 * NOTE: these optimizations below are related with pointer comparison
16914 * which will never be JMP32.
16915 */
16916 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
16917 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
16918 type_may_be_null(dst_reg->type)) {
16919 /* Mark all identical registers in each branch as either
16920 * safe or unknown depending R == 0 or R != 0 conditional.
16921 */
16922 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
16923 opcode == BPF_JNE);
16924 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
16925 opcode == BPF_JEQ);
16926 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg],
16927 this_branch, other_branch) &&
16928 is_pointer_value(env, insn->dst_reg)) {
16929 verbose(env, "R%d pointer comparison prohibited\n",
16930 insn->dst_reg);
16931 return -EACCES;
16932 }
16933 if (env->log.level & BPF_LOG_LEVEL)
16934 print_insn_state(env, this_branch, this_branch->curframe);
16935 return 0;
16936 }
16937
16938 /* verify BPF_LD_IMM64 instruction */
check_ld_imm(struct bpf_verifier_env * env,struct bpf_insn * insn)16939 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
16940 {
16941 struct bpf_insn_aux_data *aux = cur_aux(env);
16942 struct bpf_reg_state *regs = cur_regs(env);
16943 struct bpf_reg_state *dst_reg;
16944 struct bpf_map *map;
16945 int err;
16946
16947 if (BPF_SIZE(insn->code) != BPF_DW) {
16948 verbose(env, "invalid BPF_LD_IMM insn\n");
16949 return -EINVAL;
16950 }
16951 if (insn->off != 0) {
16952 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
16953 return -EINVAL;
16954 }
16955
16956 err = check_reg_arg(env, insn->dst_reg, DST_OP);
16957 if (err)
16958 return err;
16959
16960 dst_reg = ®s[insn->dst_reg];
16961 if (insn->src_reg == 0) {
16962 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
16963
16964 dst_reg->type = SCALAR_VALUE;
16965 __mark_reg_known(®s[insn->dst_reg], imm);
16966 return 0;
16967 }
16968
16969 /* All special src_reg cases are listed below. From this point onwards
16970 * we either succeed and assign a corresponding dst_reg->type after
16971 * zeroing the offset, or fail and reject the program.
16972 */
16973 mark_reg_known_zero(env, regs, insn->dst_reg);
16974
16975 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
16976 dst_reg->type = aux->btf_var.reg_type;
16977 switch (base_type(dst_reg->type)) {
16978 case PTR_TO_MEM:
16979 dst_reg->mem_size = aux->btf_var.mem_size;
16980 break;
16981 case PTR_TO_BTF_ID:
16982 dst_reg->btf = aux->btf_var.btf;
16983 dst_reg->btf_id = aux->btf_var.btf_id;
16984 break;
16985 default:
16986 verifier_bug(env, "pseudo btf id: unexpected dst reg type");
16987 return -EFAULT;
16988 }
16989 return 0;
16990 }
16991
16992 if (insn->src_reg == BPF_PSEUDO_FUNC) {
16993 struct bpf_prog_aux *aux = env->prog->aux;
16994 u32 subprogno = find_subprog(env,
16995 env->insn_idx + insn->imm + 1);
16996
16997 if (!aux->func_info) {
16998 verbose(env, "missing btf func_info\n");
16999 return -EINVAL;
17000 }
17001 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
17002 verbose(env, "callback function not static\n");
17003 return -EINVAL;
17004 }
17005
17006 dst_reg->type = PTR_TO_FUNC;
17007 dst_reg->subprogno = subprogno;
17008 return 0;
17009 }
17010
17011 map = env->used_maps[aux->map_index];
17012 dst_reg->map_ptr = map;
17013
17014 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
17015 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
17016 if (map->map_type == BPF_MAP_TYPE_ARENA) {
17017 __mark_reg_unknown(env, dst_reg);
17018 return 0;
17019 }
17020 dst_reg->type = PTR_TO_MAP_VALUE;
17021 dst_reg->off = aux->map_off;
17022 WARN_ON_ONCE(map->max_entries != 1);
17023 /* We want reg->id to be same (0) as map_value is not distinct */
17024 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
17025 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
17026 dst_reg->type = CONST_PTR_TO_MAP;
17027 } else {
17028 verifier_bug(env, "unexpected src reg value for ldimm64");
17029 return -EFAULT;
17030 }
17031
17032 return 0;
17033 }
17034
may_access_skb(enum bpf_prog_type type)17035 static bool may_access_skb(enum bpf_prog_type type)
17036 {
17037 switch (type) {
17038 case BPF_PROG_TYPE_SOCKET_FILTER:
17039 case BPF_PROG_TYPE_SCHED_CLS:
17040 case BPF_PROG_TYPE_SCHED_ACT:
17041 return true;
17042 default:
17043 return false;
17044 }
17045 }
17046
17047 /* verify safety of LD_ABS|LD_IND instructions:
17048 * - they can only appear in the programs where ctx == skb
17049 * - since they are wrappers of function calls, they scratch R1-R5 registers,
17050 * preserve R6-R9, and store return value into R0
17051 *
17052 * Implicit input:
17053 * ctx == skb == R6 == CTX
17054 *
17055 * Explicit input:
17056 * SRC == any register
17057 * IMM == 32-bit immediate
17058 *
17059 * Output:
17060 * R0 - 8/16/32-bit skb data converted to cpu endianness
17061 */
check_ld_abs(struct bpf_verifier_env * env,struct bpf_insn * insn)17062 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
17063 {
17064 struct bpf_reg_state *regs = cur_regs(env);
17065 static const int ctx_reg = BPF_REG_6;
17066 u8 mode = BPF_MODE(insn->code);
17067 int i, err;
17068
17069 if (!may_access_skb(resolve_prog_type(env->prog))) {
17070 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
17071 return -EINVAL;
17072 }
17073
17074 if (!env->ops->gen_ld_abs) {
17075 verifier_bug(env, "gen_ld_abs is null");
17076 return -EFAULT;
17077 }
17078
17079 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
17080 BPF_SIZE(insn->code) == BPF_DW ||
17081 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
17082 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
17083 return -EINVAL;
17084 }
17085
17086 /* check whether implicit source operand (register R6) is readable */
17087 err = check_reg_arg(env, ctx_reg, SRC_OP);
17088 if (err)
17089 return err;
17090
17091 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
17092 * gen_ld_abs() may terminate the program at runtime, leading to
17093 * reference leak.
17094 */
17095 err = check_resource_leak(env, false, true, "BPF_LD_[ABS|IND]");
17096 if (err)
17097 return err;
17098
17099 if (regs[ctx_reg].type != PTR_TO_CTX) {
17100 verbose(env,
17101 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
17102 return -EINVAL;
17103 }
17104
17105 if (mode == BPF_IND) {
17106 /* check explicit source operand */
17107 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17108 if (err)
17109 return err;
17110 }
17111
17112 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg);
17113 if (err < 0)
17114 return err;
17115
17116 /* reset caller saved regs to unreadable */
17117 for (i = 0; i < CALLER_SAVED_REGS; i++) {
17118 mark_reg_not_init(env, regs, caller_saved[i]);
17119 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
17120 }
17121
17122 /* mark destination R0 register as readable, since it contains
17123 * the value fetched from the packet.
17124 * Already marked as written above.
17125 */
17126 mark_reg_unknown(env, regs, BPF_REG_0);
17127 /* ld_abs load up to 32-bit skb data. */
17128 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
17129 return 0;
17130 }
17131
check_return_code(struct bpf_verifier_env * env,int regno,const char * reg_name)17132 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name)
17133 {
17134 const char *exit_ctx = "At program exit";
17135 struct tnum enforce_attach_type_range = tnum_unknown;
17136 const struct bpf_prog *prog = env->prog;
17137 struct bpf_reg_state *reg = reg_state(env, regno);
17138 struct bpf_retval_range range = retval_range(0, 1);
17139 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
17140 int err;
17141 struct bpf_func_state *frame = env->cur_state->frame[0];
17142 const bool is_subprog = frame->subprogno;
17143 bool return_32bit = false;
17144 const struct btf_type *reg_type, *ret_type = NULL;
17145
17146 /* LSM and struct_ops func-ptr's return type could be "void" */
17147 if (!is_subprog || frame->in_exception_callback_fn) {
17148 switch (prog_type) {
17149 case BPF_PROG_TYPE_LSM:
17150 if (prog->expected_attach_type == BPF_LSM_CGROUP)
17151 /* See below, can be 0 or 0-1 depending on hook. */
17152 break;
17153 if (!prog->aux->attach_func_proto->type)
17154 return 0;
17155 break;
17156 case BPF_PROG_TYPE_STRUCT_OPS:
17157 if (!prog->aux->attach_func_proto->type)
17158 return 0;
17159
17160 if (frame->in_exception_callback_fn)
17161 break;
17162
17163 /* Allow a struct_ops program to return a referenced kptr if it
17164 * matches the operator's return type and is in its unmodified
17165 * form. A scalar zero (i.e., a null pointer) is also allowed.
17166 */
17167 reg_type = reg->btf ? btf_type_by_id(reg->btf, reg->btf_id) : NULL;
17168 ret_type = btf_type_resolve_ptr(prog->aux->attach_btf,
17169 prog->aux->attach_func_proto->type,
17170 NULL);
17171 if (ret_type && ret_type == reg_type && reg->ref_obj_id)
17172 return __check_ptr_off_reg(env, reg, regno, false);
17173 break;
17174 default:
17175 break;
17176 }
17177 }
17178
17179 /* eBPF calling convention is such that R0 is used
17180 * to return the value from eBPF program.
17181 * Make sure that it's readable at this time
17182 * of bpf_exit, which means that program wrote
17183 * something into it earlier
17184 */
17185 err = check_reg_arg(env, regno, SRC_OP);
17186 if (err)
17187 return err;
17188
17189 if (is_pointer_value(env, regno)) {
17190 verbose(env, "R%d leaks addr as return value\n", regno);
17191 return -EACCES;
17192 }
17193
17194 if (frame->in_async_callback_fn) {
17195 exit_ctx = "At async callback return";
17196 range = frame->callback_ret_range;
17197 goto enforce_retval;
17198 }
17199
17200 if (is_subprog && !frame->in_exception_callback_fn) {
17201 if (reg->type != SCALAR_VALUE) {
17202 verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n",
17203 regno, reg_type_str(env, reg->type));
17204 return -EINVAL;
17205 }
17206 return 0;
17207 }
17208
17209 switch (prog_type) {
17210 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
17211 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
17212 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
17213 env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG ||
17214 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
17215 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
17216 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME ||
17217 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
17218 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME ||
17219 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME)
17220 range = retval_range(1, 1);
17221 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
17222 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
17223 range = retval_range(0, 3);
17224 break;
17225 case BPF_PROG_TYPE_CGROUP_SKB:
17226 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
17227 range = retval_range(0, 3);
17228 enforce_attach_type_range = tnum_range(2, 3);
17229 }
17230 break;
17231 case BPF_PROG_TYPE_CGROUP_SOCK:
17232 case BPF_PROG_TYPE_SOCK_OPS:
17233 case BPF_PROG_TYPE_CGROUP_DEVICE:
17234 case BPF_PROG_TYPE_CGROUP_SYSCTL:
17235 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
17236 break;
17237 case BPF_PROG_TYPE_RAW_TRACEPOINT:
17238 if (!env->prog->aux->attach_btf_id)
17239 return 0;
17240 range = retval_range(0, 0);
17241 break;
17242 case BPF_PROG_TYPE_TRACING:
17243 switch (env->prog->expected_attach_type) {
17244 case BPF_TRACE_FENTRY:
17245 case BPF_TRACE_FEXIT:
17246 range = retval_range(0, 0);
17247 break;
17248 case BPF_TRACE_RAW_TP:
17249 case BPF_MODIFY_RETURN:
17250 return 0;
17251 case BPF_TRACE_ITER:
17252 break;
17253 default:
17254 return -ENOTSUPP;
17255 }
17256 break;
17257 case BPF_PROG_TYPE_KPROBE:
17258 switch (env->prog->expected_attach_type) {
17259 case BPF_TRACE_KPROBE_SESSION:
17260 case BPF_TRACE_UPROBE_SESSION:
17261 range = retval_range(0, 1);
17262 break;
17263 default:
17264 return 0;
17265 }
17266 break;
17267 case BPF_PROG_TYPE_SK_LOOKUP:
17268 range = retval_range(SK_DROP, SK_PASS);
17269 break;
17270
17271 case BPF_PROG_TYPE_LSM:
17272 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
17273 /* no range found, any return value is allowed */
17274 if (!get_func_retval_range(env->prog, &range))
17275 return 0;
17276 /* no restricted range, any return value is allowed */
17277 if (range.minval == S32_MIN && range.maxval == S32_MAX)
17278 return 0;
17279 return_32bit = true;
17280 } else if (!env->prog->aux->attach_func_proto->type) {
17281 /* Make sure programs that attach to void
17282 * hooks don't try to modify return value.
17283 */
17284 range = retval_range(1, 1);
17285 }
17286 break;
17287
17288 case BPF_PROG_TYPE_NETFILTER:
17289 range = retval_range(NF_DROP, NF_ACCEPT);
17290 break;
17291 case BPF_PROG_TYPE_STRUCT_OPS:
17292 if (!ret_type)
17293 return 0;
17294 range = retval_range(0, 0);
17295 break;
17296 case BPF_PROG_TYPE_EXT:
17297 /* freplace program can return anything as its return value
17298 * depends on the to-be-replaced kernel func or bpf program.
17299 */
17300 default:
17301 return 0;
17302 }
17303
17304 enforce_retval:
17305 if (reg->type != SCALAR_VALUE) {
17306 verbose(env, "%s the register R%d is not a known value (%s)\n",
17307 exit_ctx, regno, reg_type_str(env, reg->type));
17308 return -EINVAL;
17309 }
17310
17311 err = mark_chain_precision(env, regno);
17312 if (err)
17313 return err;
17314
17315 if (!retval_range_within(range, reg, return_32bit)) {
17316 verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name);
17317 if (!is_subprog &&
17318 prog->expected_attach_type == BPF_LSM_CGROUP &&
17319 prog_type == BPF_PROG_TYPE_LSM &&
17320 !prog->aux->attach_func_proto->type)
17321 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
17322 return -EINVAL;
17323 }
17324
17325 if (!tnum_is_unknown(enforce_attach_type_range) &&
17326 tnum_in(enforce_attach_type_range, reg->var_off))
17327 env->prog->enforce_expected_attach_type = 1;
17328 return 0;
17329 }
17330
mark_subprog_changes_pkt_data(struct bpf_verifier_env * env,int off)17331 static void mark_subprog_changes_pkt_data(struct bpf_verifier_env *env, int off)
17332 {
17333 struct bpf_subprog_info *subprog;
17334
17335 subprog = bpf_find_containing_subprog(env, off);
17336 subprog->changes_pkt_data = true;
17337 }
17338
mark_subprog_might_sleep(struct bpf_verifier_env * env,int off)17339 static void mark_subprog_might_sleep(struct bpf_verifier_env *env, int off)
17340 {
17341 struct bpf_subprog_info *subprog;
17342
17343 subprog = bpf_find_containing_subprog(env, off);
17344 subprog->might_sleep = true;
17345 }
17346
17347 /* 't' is an index of a call-site.
17348 * 'w' is a callee entry point.
17349 * Eventually this function would be called when env->cfg.insn_state[w] == EXPLORED.
17350 * Rely on DFS traversal order and absence of recursive calls to guarantee that
17351 * callee's change_pkt_data marks would be correct at that moment.
17352 */
merge_callee_effects(struct bpf_verifier_env * env,int t,int w)17353 static void merge_callee_effects(struct bpf_verifier_env *env, int t, int w)
17354 {
17355 struct bpf_subprog_info *caller, *callee;
17356
17357 caller = bpf_find_containing_subprog(env, t);
17358 callee = bpf_find_containing_subprog(env, w);
17359 caller->changes_pkt_data |= callee->changes_pkt_data;
17360 caller->might_sleep |= callee->might_sleep;
17361 }
17362
17363 /* non-recursive DFS pseudo code
17364 * 1 procedure DFS-iterative(G,v):
17365 * 2 label v as discovered
17366 * 3 let S be a stack
17367 * 4 S.push(v)
17368 * 5 while S is not empty
17369 * 6 t <- S.peek()
17370 * 7 if t is what we're looking for:
17371 * 8 return t
17372 * 9 for all edges e in G.adjacentEdges(t) do
17373 * 10 if edge e is already labelled
17374 * 11 continue with the next edge
17375 * 12 w <- G.adjacentVertex(t,e)
17376 * 13 if vertex w is not discovered and not explored
17377 * 14 label e as tree-edge
17378 * 15 label w as discovered
17379 * 16 S.push(w)
17380 * 17 continue at 5
17381 * 18 else if vertex w is discovered
17382 * 19 label e as back-edge
17383 * 20 else
17384 * 21 // vertex w is explored
17385 * 22 label e as forward- or cross-edge
17386 * 23 label t as explored
17387 * 24 S.pop()
17388 *
17389 * convention:
17390 * 0x10 - discovered
17391 * 0x11 - discovered and fall-through edge labelled
17392 * 0x12 - discovered and fall-through and branch edges labelled
17393 * 0x20 - explored
17394 */
17395
17396 enum {
17397 DISCOVERED = 0x10,
17398 EXPLORED = 0x20,
17399 FALLTHROUGH = 1,
17400 BRANCH = 2,
17401 };
17402
mark_prune_point(struct bpf_verifier_env * env,int idx)17403 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
17404 {
17405 env->insn_aux_data[idx].prune_point = true;
17406 }
17407
is_prune_point(struct bpf_verifier_env * env,int insn_idx)17408 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
17409 {
17410 return env->insn_aux_data[insn_idx].prune_point;
17411 }
17412
mark_force_checkpoint(struct bpf_verifier_env * env,int idx)17413 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
17414 {
17415 env->insn_aux_data[idx].force_checkpoint = true;
17416 }
17417
is_force_checkpoint(struct bpf_verifier_env * env,int insn_idx)17418 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
17419 {
17420 return env->insn_aux_data[insn_idx].force_checkpoint;
17421 }
17422
mark_calls_callback(struct bpf_verifier_env * env,int idx)17423 static void mark_calls_callback(struct bpf_verifier_env *env, int idx)
17424 {
17425 env->insn_aux_data[idx].calls_callback = true;
17426 }
17427
bpf_calls_callback(struct bpf_verifier_env * env,int insn_idx)17428 bool bpf_calls_callback(struct bpf_verifier_env *env, int insn_idx)
17429 {
17430 return env->insn_aux_data[insn_idx].calls_callback;
17431 }
17432
17433 enum {
17434 DONE_EXPLORING = 0,
17435 KEEP_EXPLORING = 1,
17436 };
17437
17438 /* t, w, e - match pseudo-code above:
17439 * t - index of current instruction
17440 * w - next instruction
17441 * e - edge
17442 */
push_insn(int t,int w,int e,struct bpf_verifier_env * env)17443 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
17444 {
17445 int *insn_stack = env->cfg.insn_stack;
17446 int *insn_state = env->cfg.insn_state;
17447
17448 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
17449 return DONE_EXPLORING;
17450
17451 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
17452 return DONE_EXPLORING;
17453
17454 if (w < 0 || w >= env->prog->len) {
17455 verbose_linfo(env, t, "%d: ", t);
17456 verbose(env, "jump out of range from insn %d to %d\n", t, w);
17457 return -EINVAL;
17458 }
17459
17460 if (e == BRANCH) {
17461 /* mark branch target for state pruning */
17462 mark_prune_point(env, w);
17463 mark_jmp_point(env, w);
17464 }
17465
17466 if (insn_state[w] == 0) {
17467 /* tree-edge */
17468 insn_state[t] = DISCOVERED | e;
17469 insn_state[w] = DISCOVERED;
17470 if (env->cfg.cur_stack >= env->prog->len)
17471 return -E2BIG;
17472 insn_stack[env->cfg.cur_stack++] = w;
17473 return KEEP_EXPLORING;
17474 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
17475 if (env->bpf_capable)
17476 return DONE_EXPLORING;
17477 verbose_linfo(env, t, "%d: ", t);
17478 verbose_linfo(env, w, "%d: ", w);
17479 verbose(env, "back-edge from insn %d to %d\n", t, w);
17480 return -EINVAL;
17481 } else if (insn_state[w] == EXPLORED) {
17482 /* forward- or cross-edge */
17483 insn_state[t] = DISCOVERED | e;
17484 } else {
17485 verifier_bug(env, "insn state internal bug");
17486 return -EFAULT;
17487 }
17488 return DONE_EXPLORING;
17489 }
17490
visit_func_call_insn(int t,struct bpf_insn * insns,struct bpf_verifier_env * env,bool visit_callee)17491 static int visit_func_call_insn(int t, struct bpf_insn *insns,
17492 struct bpf_verifier_env *env,
17493 bool visit_callee)
17494 {
17495 int ret, insn_sz;
17496 int w;
17497
17498 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
17499 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
17500 if (ret)
17501 return ret;
17502
17503 mark_prune_point(env, t + insn_sz);
17504 /* when we exit from subprog, we need to record non-linear history */
17505 mark_jmp_point(env, t + insn_sz);
17506
17507 if (visit_callee) {
17508 w = t + insns[t].imm + 1;
17509 mark_prune_point(env, t);
17510 merge_callee_effects(env, t, w);
17511 ret = push_insn(t, w, BRANCH, env);
17512 }
17513 return ret;
17514 }
17515
17516 /* Bitmask with 1s for all caller saved registers */
17517 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1)
17518
17519 /* True if do_misc_fixups() replaces calls to helper number 'imm',
17520 * replacement patch is presumed to follow bpf_fastcall contract
17521 * (see mark_fastcall_pattern_for_call() below).
17522 */
verifier_inlines_helper_call(struct bpf_verifier_env * env,s32 imm)17523 static bool verifier_inlines_helper_call(struct bpf_verifier_env *env, s32 imm)
17524 {
17525 switch (imm) {
17526 #ifdef CONFIG_X86_64
17527 case BPF_FUNC_get_smp_processor_id:
17528 return env->prog->jit_requested && bpf_jit_supports_percpu_insn();
17529 #endif
17530 default:
17531 return false;
17532 }
17533 }
17534
17535 struct call_summary {
17536 u8 num_params;
17537 bool is_void;
17538 bool fastcall;
17539 };
17540
17541 /* If @call is a kfunc or helper call, fills @cs and returns true,
17542 * otherwise returns false.
17543 */
get_call_summary(struct bpf_verifier_env * env,struct bpf_insn * call,struct call_summary * cs)17544 static bool get_call_summary(struct bpf_verifier_env *env, struct bpf_insn *call,
17545 struct call_summary *cs)
17546 {
17547 struct bpf_kfunc_call_arg_meta meta;
17548 const struct bpf_func_proto *fn;
17549 int i;
17550
17551 if (bpf_helper_call(call)) {
17552
17553 if (get_helper_proto(env, call->imm, &fn) < 0)
17554 /* error would be reported later */
17555 return false;
17556 cs->fastcall = fn->allow_fastcall &&
17557 (verifier_inlines_helper_call(env, call->imm) ||
17558 bpf_jit_inlines_helper_call(call->imm));
17559 cs->is_void = fn->ret_type == RET_VOID;
17560 cs->num_params = 0;
17561 for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i) {
17562 if (fn->arg_type[i] == ARG_DONTCARE)
17563 break;
17564 cs->num_params++;
17565 }
17566 return true;
17567 }
17568
17569 if (bpf_pseudo_kfunc_call(call)) {
17570 int err;
17571
17572 err = fetch_kfunc_meta(env, call, &meta, NULL);
17573 if (err < 0)
17574 /* error would be reported later */
17575 return false;
17576 cs->num_params = btf_type_vlen(meta.func_proto);
17577 cs->fastcall = meta.kfunc_flags & KF_FASTCALL;
17578 cs->is_void = btf_type_is_void(btf_type_by_id(meta.btf, meta.func_proto->type));
17579 return true;
17580 }
17581
17582 return false;
17583 }
17584
17585 /* LLVM define a bpf_fastcall function attribute.
17586 * This attribute means that function scratches only some of
17587 * the caller saved registers defined by ABI.
17588 * For BPF the set of such registers could be defined as follows:
17589 * - R0 is scratched only if function is non-void;
17590 * - R1-R5 are scratched only if corresponding parameter type is defined
17591 * in the function prototype.
17592 *
17593 * The contract between kernel and clang allows to simultaneously use
17594 * such functions and maintain backwards compatibility with old
17595 * kernels that don't understand bpf_fastcall calls:
17596 *
17597 * - for bpf_fastcall calls clang allocates registers as-if relevant r0-r5
17598 * registers are not scratched by the call;
17599 *
17600 * - as a post-processing step, clang visits each bpf_fastcall call and adds
17601 * spill/fill for every live r0-r5;
17602 *
17603 * - stack offsets used for the spill/fill are allocated as lowest
17604 * stack offsets in whole function and are not used for any other
17605 * purposes;
17606 *
17607 * - when kernel loads a program, it looks for such patterns
17608 * (bpf_fastcall function surrounded by spills/fills) and checks if
17609 * spill/fill stack offsets are used exclusively in fastcall patterns;
17610 *
17611 * - if so, and if verifier or current JIT inlines the call to the
17612 * bpf_fastcall function (e.g. a helper call), kernel removes unnecessary
17613 * spill/fill pairs;
17614 *
17615 * - when old kernel loads a program, presence of spill/fill pairs
17616 * keeps BPF program valid, albeit slightly less efficient.
17617 *
17618 * For example:
17619 *
17620 * r1 = 1;
17621 * r2 = 2;
17622 * *(u64 *)(r10 - 8) = r1; r1 = 1;
17623 * *(u64 *)(r10 - 16) = r2; r2 = 2;
17624 * call %[to_be_inlined] --> call %[to_be_inlined]
17625 * r2 = *(u64 *)(r10 - 16); r0 = r1;
17626 * r1 = *(u64 *)(r10 - 8); r0 += r2;
17627 * r0 = r1; exit;
17628 * r0 += r2;
17629 * exit;
17630 *
17631 * The purpose of mark_fastcall_pattern_for_call is to:
17632 * - look for such patterns;
17633 * - mark spill and fill instructions in env->insn_aux_data[*].fastcall_pattern;
17634 * - mark set env->insn_aux_data[*].fastcall_spills_num for call instruction;
17635 * - update env->subprog_info[*]->fastcall_stack_off to find an offset
17636 * at which bpf_fastcall spill/fill stack slots start;
17637 * - update env->subprog_info[*]->keep_fastcall_stack.
17638 *
17639 * The .fastcall_pattern and .fastcall_stack_off are used by
17640 * check_fastcall_stack_contract() to check if every stack access to
17641 * fastcall spill/fill stack slot originates from spill/fill
17642 * instructions, members of fastcall patterns.
17643 *
17644 * If such condition holds true for a subprogram, fastcall patterns could
17645 * be rewritten by remove_fastcall_spills_fills().
17646 * Otherwise bpf_fastcall patterns are not changed in the subprogram
17647 * (code, presumably, generated by an older clang version).
17648 *
17649 * For example, it is *not* safe to remove spill/fill below:
17650 *
17651 * r1 = 1;
17652 * *(u64 *)(r10 - 8) = r1; r1 = 1;
17653 * call %[to_be_inlined] --> call %[to_be_inlined]
17654 * r1 = *(u64 *)(r10 - 8); r0 = *(u64 *)(r10 - 8); <---- wrong !!!
17655 * r0 = *(u64 *)(r10 - 8); r0 += r1;
17656 * r0 += r1; exit;
17657 * exit;
17658 */
mark_fastcall_pattern_for_call(struct bpf_verifier_env * env,struct bpf_subprog_info * subprog,int insn_idx,s16 lowest_off)17659 static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env,
17660 struct bpf_subprog_info *subprog,
17661 int insn_idx, s16 lowest_off)
17662 {
17663 struct bpf_insn *insns = env->prog->insnsi, *stx, *ldx;
17664 struct bpf_insn *call = &env->prog->insnsi[insn_idx];
17665 u32 clobbered_regs_mask;
17666 struct call_summary cs;
17667 u32 expected_regs_mask;
17668 s16 off;
17669 int i;
17670
17671 if (!get_call_summary(env, call, &cs))
17672 return;
17673
17674 /* A bitmask specifying which caller saved registers are clobbered
17675 * by a call to a helper/kfunc *as if* this helper/kfunc follows
17676 * bpf_fastcall contract:
17677 * - includes R0 if function is non-void;
17678 * - includes R1-R5 if corresponding parameter has is described
17679 * in the function prototype.
17680 */
17681 clobbered_regs_mask = GENMASK(cs.num_params, cs.is_void ? 1 : 0);
17682 /* e.g. if helper call clobbers r{0,1}, expect r{2,3,4,5} in the pattern */
17683 expected_regs_mask = ~clobbered_regs_mask & ALL_CALLER_SAVED_REGS;
17684
17685 /* match pairs of form:
17686 *
17687 * *(u64 *)(r10 - Y) = rX (where Y % 8 == 0)
17688 * ...
17689 * call %[to_be_inlined]
17690 * ...
17691 * rX = *(u64 *)(r10 - Y)
17692 */
17693 for (i = 1, off = lowest_off; i <= ARRAY_SIZE(caller_saved); ++i, off += BPF_REG_SIZE) {
17694 if (insn_idx - i < 0 || insn_idx + i >= env->prog->len)
17695 break;
17696 stx = &insns[insn_idx - i];
17697 ldx = &insns[insn_idx + i];
17698 /* must be a stack spill/fill pair */
17699 if (stx->code != (BPF_STX | BPF_MEM | BPF_DW) ||
17700 ldx->code != (BPF_LDX | BPF_MEM | BPF_DW) ||
17701 stx->dst_reg != BPF_REG_10 ||
17702 ldx->src_reg != BPF_REG_10)
17703 break;
17704 /* must be a spill/fill for the same reg */
17705 if (stx->src_reg != ldx->dst_reg)
17706 break;
17707 /* must be one of the previously unseen registers */
17708 if ((BIT(stx->src_reg) & expected_regs_mask) == 0)
17709 break;
17710 /* must be a spill/fill for the same expected offset,
17711 * no need to check offset alignment, BPF_DW stack access
17712 * is always 8-byte aligned.
17713 */
17714 if (stx->off != off || ldx->off != off)
17715 break;
17716 expected_regs_mask &= ~BIT(stx->src_reg);
17717 env->insn_aux_data[insn_idx - i].fastcall_pattern = 1;
17718 env->insn_aux_data[insn_idx + i].fastcall_pattern = 1;
17719 }
17720 if (i == 1)
17721 return;
17722
17723 /* Conditionally set 'fastcall_spills_num' to allow forward
17724 * compatibility when more helper functions are marked as
17725 * bpf_fastcall at compile time than current kernel supports, e.g:
17726 *
17727 * 1: *(u64 *)(r10 - 8) = r1
17728 * 2: call A ;; assume A is bpf_fastcall for current kernel
17729 * 3: r1 = *(u64 *)(r10 - 8)
17730 * 4: *(u64 *)(r10 - 8) = r1
17731 * 5: call B ;; assume B is not bpf_fastcall for current kernel
17732 * 6: r1 = *(u64 *)(r10 - 8)
17733 *
17734 * There is no need to block bpf_fastcall rewrite for such program.
17735 * Set 'fastcall_pattern' for both calls to keep check_fastcall_stack_contract() happy,
17736 * don't set 'fastcall_spills_num' for call B so that remove_fastcall_spills_fills()
17737 * does not remove spill/fill pair {4,6}.
17738 */
17739 if (cs.fastcall)
17740 env->insn_aux_data[insn_idx].fastcall_spills_num = i - 1;
17741 else
17742 subprog->keep_fastcall_stack = 1;
17743 subprog->fastcall_stack_off = min(subprog->fastcall_stack_off, off);
17744 }
17745
mark_fastcall_patterns(struct bpf_verifier_env * env)17746 static int mark_fastcall_patterns(struct bpf_verifier_env *env)
17747 {
17748 struct bpf_subprog_info *subprog = env->subprog_info;
17749 struct bpf_insn *insn;
17750 s16 lowest_off;
17751 int s, i;
17752
17753 for (s = 0; s < env->subprog_cnt; ++s, ++subprog) {
17754 /* find lowest stack spill offset used in this subprog */
17755 lowest_off = 0;
17756 for (i = subprog->start; i < (subprog + 1)->start; ++i) {
17757 insn = env->prog->insnsi + i;
17758 if (insn->code != (BPF_STX | BPF_MEM | BPF_DW) ||
17759 insn->dst_reg != BPF_REG_10)
17760 continue;
17761 lowest_off = min(lowest_off, insn->off);
17762 }
17763 /* use this offset to find fastcall patterns */
17764 for (i = subprog->start; i < (subprog + 1)->start; ++i) {
17765 insn = env->prog->insnsi + i;
17766 if (insn->code != (BPF_JMP | BPF_CALL))
17767 continue;
17768 mark_fastcall_pattern_for_call(env, subprog, i, lowest_off);
17769 }
17770 }
17771 return 0;
17772 }
17773
17774 /* Visits the instruction at index t and returns one of the following:
17775 * < 0 - an error occurred
17776 * DONE_EXPLORING - the instruction was fully explored
17777 * KEEP_EXPLORING - there is still work to be done before it is fully explored
17778 */
visit_insn(int t,struct bpf_verifier_env * env)17779 static int visit_insn(int t, struct bpf_verifier_env *env)
17780 {
17781 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
17782 int ret, off, insn_sz;
17783
17784 if (bpf_pseudo_func(insn))
17785 return visit_func_call_insn(t, insns, env, true);
17786
17787 /* All non-branch instructions have a single fall-through edge. */
17788 if (BPF_CLASS(insn->code) != BPF_JMP &&
17789 BPF_CLASS(insn->code) != BPF_JMP32) {
17790 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
17791 return push_insn(t, t + insn_sz, FALLTHROUGH, env);
17792 }
17793
17794 switch (BPF_OP(insn->code)) {
17795 case BPF_EXIT:
17796 return DONE_EXPLORING;
17797
17798 case BPF_CALL:
17799 if (is_async_callback_calling_insn(insn))
17800 /* Mark this call insn as a prune point to trigger
17801 * is_state_visited() check before call itself is
17802 * processed by __check_func_call(). Otherwise new
17803 * async state will be pushed for further exploration.
17804 */
17805 mark_prune_point(env, t);
17806 /* For functions that invoke callbacks it is not known how many times
17807 * callback would be called. Verifier models callback calling functions
17808 * by repeatedly visiting callback bodies and returning to origin call
17809 * instruction.
17810 * In order to stop such iteration verifier needs to identify when a
17811 * state identical some state from a previous iteration is reached.
17812 * Check below forces creation of checkpoint before callback calling
17813 * instruction to allow search for such identical states.
17814 */
17815 if (is_sync_callback_calling_insn(insn)) {
17816 mark_calls_callback(env, t);
17817 mark_force_checkpoint(env, t);
17818 mark_prune_point(env, t);
17819 mark_jmp_point(env, t);
17820 }
17821 if (bpf_helper_call(insn)) {
17822 const struct bpf_func_proto *fp;
17823
17824 ret = get_helper_proto(env, insn->imm, &fp);
17825 /* If called in a non-sleepable context program will be
17826 * rejected anyway, so we should end up with precise
17827 * sleepable marks on subprogs, except for dead code
17828 * elimination.
17829 */
17830 if (ret == 0 && fp->might_sleep)
17831 mark_subprog_might_sleep(env, t);
17832 if (bpf_helper_changes_pkt_data(insn->imm))
17833 mark_subprog_changes_pkt_data(env, t);
17834 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
17835 struct bpf_kfunc_call_arg_meta meta;
17836
17837 ret = fetch_kfunc_meta(env, insn, &meta, NULL);
17838 if (ret == 0 && is_iter_next_kfunc(&meta)) {
17839 mark_prune_point(env, t);
17840 /* Checking and saving state checkpoints at iter_next() call
17841 * is crucial for fast convergence of open-coded iterator loop
17842 * logic, so we need to force it. If we don't do that,
17843 * is_state_visited() might skip saving a checkpoint, causing
17844 * unnecessarily long sequence of not checkpointed
17845 * instructions and jumps, leading to exhaustion of jump
17846 * history buffer, and potentially other undesired outcomes.
17847 * It is expected that with correct open-coded iterators
17848 * convergence will happen quickly, so we don't run a risk of
17849 * exhausting memory.
17850 */
17851 mark_force_checkpoint(env, t);
17852 }
17853 /* Same as helpers, if called in a non-sleepable context
17854 * program will be rejected anyway, so we should end up
17855 * with precise sleepable marks on subprogs, except for
17856 * dead code elimination.
17857 */
17858 if (ret == 0 && is_kfunc_sleepable(&meta))
17859 mark_subprog_might_sleep(env, t);
17860 if (ret == 0 && is_kfunc_pkt_changing(&meta))
17861 mark_subprog_changes_pkt_data(env, t);
17862 }
17863 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
17864
17865 case BPF_JA:
17866 if (BPF_SRC(insn->code) != BPF_K)
17867 return -EINVAL;
17868
17869 if (BPF_CLASS(insn->code) == BPF_JMP)
17870 off = insn->off;
17871 else
17872 off = insn->imm;
17873
17874 /* unconditional jump with single edge */
17875 ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
17876 if (ret)
17877 return ret;
17878
17879 mark_prune_point(env, t + off + 1);
17880 mark_jmp_point(env, t + off + 1);
17881
17882 return ret;
17883
17884 default:
17885 /* conditional jump with two edges */
17886 mark_prune_point(env, t);
17887 if (is_may_goto_insn(insn))
17888 mark_force_checkpoint(env, t);
17889
17890 ret = push_insn(t, t + 1, FALLTHROUGH, env);
17891 if (ret)
17892 return ret;
17893
17894 return push_insn(t, t + insn->off + 1, BRANCH, env);
17895 }
17896 }
17897
17898 /* non-recursive depth-first-search to detect loops in BPF program
17899 * loop == back-edge in directed graph
17900 */
check_cfg(struct bpf_verifier_env * env)17901 static int check_cfg(struct bpf_verifier_env *env)
17902 {
17903 int insn_cnt = env->prog->len;
17904 int *insn_stack, *insn_state;
17905 int ex_insn_beg, i, ret = 0;
17906
17907 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
17908 if (!insn_state)
17909 return -ENOMEM;
17910
17911 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
17912 if (!insn_stack) {
17913 kvfree(insn_state);
17914 return -ENOMEM;
17915 }
17916
17917 ex_insn_beg = env->exception_callback_subprog
17918 ? env->subprog_info[env->exception_callback_subprog].start
17919 : 0;
17920
17921 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
17922 insn_stack[0] = 0; /* 0 is the first instruction */
17923 env->cfg.cur_stack = 1;
17924
17925 walk_cfg:
17926 while (env->cfg.cur_stack > 0) {
17927 int t = insn_stack[env->cfg.cur_stack - 1];
17928
17929 ret = visit_insn(t, env);
17930 switch (ret) {
17931 case DONE_EXPLORING:
17932 insn_state[t] = EXPLORED;
17933 env->cfg.cur_stack--;
17934 break;
17935 case KEEP_EXPLORING:
17936 break;
17937 default:
17938 if (ret > 0) {
17939 verifier_bug(env, "visit_insn internal bug");
17940 ret = -EFAULT;
17941 }
17942 goto err_free;
17943 }
17944 }
17945
17946 if (env->cfg.cur_stack < 0) {
17947 verifier_bug(env, "pop stack internal bug");
17948 ret = -EFAULT;
17949 goto err_free;
17950 }
17951
17952 if (ex_insn_beg && insn_state[ex_insn_beg] != EXPLORED) {
17953 insn_state[ex_insn_beg] = DISCOVERED;
17954 insn_stack[0] = ex_insn_beg;
17955 env->cfg.cur_stack = 1;
17956 goto walk_cfg;
17957 }
17958
17959 for (i = 0; i < insn_cnt; i++) {
17960 struct bpf_insn *insn = &env->prog->insnsi[i];
17961
17962 if (insn_state[i] != EXPLORED) {
17963 verbose(env, "unreachable insn %d\n", i);
17964 ret = -EINVAL;
17965 goto err_free;
17966 }
17967 if (bpf_is_ldimm64(insn)) {
17968 if (insn_state[i + 1] != 0) {
17969 verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
17970 ret = -EINVAL;
17971 goto err_free;
17972 }
17973 i++; /* skip second half of ldimm64 */
17974 }
17975 }
17976 ret = 0; /* cfg looks good */
17977 env->prog->aux->changes_pkt_data = env->subprog_info[0].changes_pkt_data;
17978 env->prog->aux->might_sleep = env->subprog_info[0].might_sleep;
17979
17980 err_free:
17981 kvfree(insn_state);
17982 kvfree(insn_stack);
17983 env->cfg.insn_state = env->cfg.insn_stack = NULL;
17984 return ret;
17985 }
17986
17987 /*
17988 * For each subprogram 'i' fill array env->cfg.insn_subprogram sub-range
17989 * [env->subprog_info[i].postorder_start, env->subprog_info[i+1].postorder_start)
17990 * with indices of 'i' instructions in postorder.
17991 */
compute_postorder(struct bpf_verifier_env * env)17992 static int compute_postorder(struct bpf_verifier_env *env)
17993 {
17994 u32 cur_postorder, i, top, stack_sz, s, succ_cnt, succ[2];
17995 int *stack = NULL, *postorder = NULL, *state = NULL;
17996
17997 postorder = kvcalloc(env->prog->len, sizeof(int), GFP_KERNEL_ACCOUNT);
17998 state = kvcalloc(env->prog->len, sizeof(int), GFP_KERNEL_ACCOUNT);
17999 stack = kvcalloc(env->prog->len, sizeof(int), GFP_KERNEL_ACCOUNT);
18000 if (!postorder || !state || !stack) {
18001 kvfree(postorder);
18002 kvfree(state);
18003 kvfree(stack);
18004 return -ENOMEM;
18005 }
18006 cur_postorder = 0;
18007 for (i = 0; i < env->subprog_cnt; i++) {
18008 env->subprog_info[i].postorder_start = cur_postorder;
18009 stack[0] = env->subprog_info[i].start;
18010 stack_sz = 1;
18011 do {
18012 top = stack[stack_sz - 1];
18013 state[top] |= DISCOVERED;
18014 if (state[top] & EXPLORED) {
18015 postorder[cur_postorder++] = top;
18016 stack_sz--;
18017 continue;
18018 }
18019 succ_cnt = bpf_insn_successors(env->prog, top, succ);
18020 for (s = 0; s < succ_cnt; ++s) {
18021 if (!state[succ[s]]) {
18022 stack[stack_sz++] = succ[s];
18023 state[succ[s]] |= DISCOVERED;
18024 }
18025 }
18026 state[top] |= EXPLORED;
18027 } while (stack_sz);
18028 }
18029 env->subprog_info[i].postorder_start = cur_postorder;
18030 env->cfg.insn_postorder = postorder;
18031 env->cfg.cur_postorder = cur_postorder;
18032 kvfree(stack);
18033 kvfree(state);
18034 return 0;
18035 }
18036
check_abnormal_return(struct bpf_verifier_env * env)18037 static int check_abnormal_return(struct bpf_verifier_env *env)
18038 {
18039 int i;
18040
18041 for (i = 1; i < env->subprog_cnt; i++) {
18042 if (env->subprog_info[i].has_ld_abs) {
18043 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
18044 return -EINVAL;
18045 }
18046 if (env->subprog_info[i].has_tail_call) {
18047 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
18048 return -EINVAL;
18049 }
18050 }
18051 return 0;
18052 }
18053
18054 /* The minimum supported BTF func info size */
18055 #define MIN_BPF_FUNCINFO_SIZE 8
18056 #define MAX_FUNCINFO_REC_SIZE 252
18057
check_btf_func_early(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)18058 static int check_btf_func_early(struct bpf_verifier_env *env,
18059 const union bpf_attr *attr,
18060 bpfptr_t uattr)
18061 {
18062 u32 krec_size = sizeof(struct bpf_func_info);
18063 const struct btf_type *type, *func_proto;
18064 u32 i, nfuncs, urec_size, min_size;
18065 struct bpf_func_info *krecord;
18066 struct bpf_prog *prog;
18067 const struct btf *btf;
18068 u32 prev_offset = 0;
18069 bpfptr_t urecord;
18070 int ret = -ENOMEM;
18071
18072 nfuncs = attr->func_info_cnt;
18073 if (!nfuncs) {
18074 if (check_abnormal_return(env))
18075 return -EINVAL;
18076 return 0;
18077 }
18078
18079 urec_size = attr->func_info_rec_size;
18080 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
18081 urec_size > MAX_FUNCINFO_REC_SIZE ||
18082 urec_size % sizeof(u32)) {
18083 verbose(env, "invalid func info rec size %u\n", urec_size);
18084 return -EINVAL;
18085 }
18086
18087 prog = env->prog;
18088 btf = prog->aux->btf;
18089
18090 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
18091 min_size = min_t(u32, krec_size, urec_size);
18092
18093 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
18094 if (!krecord)
18095 return -ENOMEM;
18096
18097 for (i = 0; i < nfuncs; i++) {
18098 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
18099 if (ret) {
18100 if (ret == -E2BIG) {
18101 verbose(env, "nonzero tailing record in func info");
18102 /* set the size kernel expects so loader can zero
18103 * out the rest of the record.
18104 */
18105 if (copy_to_bpfptr_offset(uattr,
18106 offsetof(union bpf_attr, func_info_rec_size),
18107 &min_size, sizeof(min_size)))
18108 ret = -EFAULT;
18109 }
18110 goto err_free;
18111 }
18112
18113 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
18114 ret = -EFAULT;
18115 goto err_free;
18116 }
18117
18118 /* check insn_off */
18119 ret = -EINVAL;
18120 if (i == 0) {
18121 if (krecord[i].insn_off) {
18122 verbose(env,
18123 "nonzero insn_off %u for the first func info record",
18124 krecord[i].insn_off);
18125 goto err_free;
18126 }
18127 } else if (krecord[i].insn_off <= prev_offset) {
18128 verbose(env,
18129 "same or smaller insn offset (%u) than previous func info record (%u)",
18130 krecord[i].insn_off, prev_offset);
18131 goto err_free;
18132 }
18133
18134 /* check type_id */
18135 type = btf_type_by_id(btf, krecord[i].type_id);
18136 if (!type || !btf_type_is_func(type)) {
18137 verbose(env, "invalid type id %d in func info",
18138 krecord[i].type_id);
18139 goto err_free;
18140 }
18141
18142 func_proto = btf_type_by_id(btf, type->type);
18143 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
18144 /* btf_func_check() already verified it during BTF load */
18145 goto err_free;
18146
18147 prev_offset = krecord[i].insn_off;
18148 bpfptr_add(&urecord, urec_size);
18149 }
18150
18151 prog->aux->func_info = krecord;
18152 prog->aux->func_info_cnt = nfuncs;
18153 return 0;
18154
18155 err_free:
18156 kvfree(krecord);
18157 return ret;
18158 }
18159
check_btf_func(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)18160 static int check_btf_func(struct bpf_verifier_env *env,
18161 const union bpf_attr *attr,
18162 bpfptr_t uattr)
18163 {
18164 const struct btf_type *type, *func_proto, *ret_type;
18165 u32 i, nfuncs, urec_size;
18166 struct bpf_func_info *krecord;
18167 struct bpf_func_info_aux *info_aux = NULL;
18168 struct bpf_prog *prog;
18169 const struct btf *btf;
18170 bpfptr_t urecord;
18171 bool scalar_return;
18172 int ret = -ENOMEM;
18173
18174 nfuncs = attr->func_info_cnt;
18175 if (!nfuncs) {
18176 if (check_abnormal_return(env))
18177 return -EINVAL;
18178 return 0;
18179 }
18180 if (nfuncs != env->subprog_cnt) {
18181 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
18182 return -EINVAL;
18183 }
18184
18185 urec_size = attr->func_info_rec_size;
18186
18187 prog = env->prog;
18188 btf = prog->aux->btf;
18189
18190 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
18191
18192 krecord = prog->aux->func_info;
18193 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
18194 if (!info_aux)
18195 return -ENOMEM;
18196
18197 for (i = 0; i < nfuncs; i++) {
18198 /* check insn_off */
18199 ret = -EINVAL;
18200
18201 if (env->subprog_info[i].start != krecord[i].insn_off) {
18202 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
18203 goto err_free;
18204 }
18205
18206 /* Already checked type_id */
18207 type = btf_type_by_id(btf, krecord[i].type_id);
18208 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
18209 /* Already checked func_proto */
18210 func_proto = btf_type_by_id(btf, type->type);
18211
18212 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
18213 scalar_return =
18214 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
18215 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
18216 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
18217 goto err_free;
18218 }
18219 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
18220 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
18221 goto err_free;
18222 }
18223
18224 bpfptr_add(&urecord, urec_size);
18225 }
18226
18227 prog->aux->func_info_aux = info_aux;
18228 return 0;
18229
18230 err_free:
18231 kfree(info_aux);
18232 return ret;
18233 }
18234
adjust_btf_func(struct bpf_verifier_env * env)18235 static void adjust_btf_func(struct bpf_verifier_env *env)
18236 {
18237 struct bpf_prog_aux *aux = env->prog->aux;
18238 int i;
18239
18240 if (!aux->func_info)
18241 return;
18242
18243 /* func_info is not available for hidden subprogs */
18244 for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++)
18245 aux->func_info[i].insn_off = env->subprog_info[i].start;
18246 }
18247
18248 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col)
18249 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
18250
check_btf_line(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)18251 static int check_btf_line(struct bpf_verifier_env *env,
18252 const union bpf_attr *attr,
18253 bpfptr_t uattr)
18254 {
18255 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
18256 struct bpf_subprog_info *sub;
18257 struct bpf_line_info *linfo;
18258 struct bpf_prog *prog;
18259 const struct btf *btf;
18260 bpfptr_t ulinfo;
18261 int err;
18262
18263 nr_linfo = attr->line_info_cnt;
18264 if (!nr_linfo)
18265 return 0;
18266 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
18267 return -EINVAL;
18268
18269 rec_size = attr->line_info_rec_size;
18270 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
18271 rec_size > MAX_LINEINFO_REC_SIZE ||
18272 rec_size & (sizeof(u32) - 1))
18273 return -EINVAL;
18274
18275 /* Need to zero it in case the userspace may
18276 * pass in a smaller bpf_line_info object.
18277 */
18278 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
18279 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
18280 if (!linfo)
18281 return -ENOMEM;
18282
18283 prog = env->prog;
18284 btf = prog->aux->btf;
18285
18286 s = 0;
18287 sub = env->subprog_info;
18288 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
18289 expected_size = sizeof(struct bpf_line_info);
18290 ncopy = min_t(u32, expected_size, rec_size);
18291 for (i = 0; i < nr_linfo; i++) {
18292 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
18293 if (err) {
18294 if (err == -E2BIG) {
18295 verbose(env, "nonzero tailing record in line_info");
18296 if (copy_to_bpfptr_offset(uattr,
18297 offsetof(union bpf_attr, line_info_rec_size),
18298 &expected_size, sizeof(expected_size)))
18299 err = -EFAULT;
18300 }
18301 goto err_free;
18302 }
18303
18304 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
18305 err = -EFAULT;
18306 goto err_free;
18307 }
18308
18309 /*
18310 * Check insn_off to ensure
18311 * 1) strictly increasing AND
18312 * 2) bounded by prog->len
18313 *
18314 * The linfo[0].insn_off == 0 check logically falls into
18315 * the later "missing bpf_line_info for func..." case
18316 * because the first linfo[0].insn_off must be the
18317 * first sub also and the first sub must have
18318 * subprog_info[0].start == 0.
18319 */
18320 if ((i && linfo[i].insn_off <= prev_offset) ||
18321 linfo[i].insn_off >= prog->len) {
18322 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
18323 i, linfo[i].insn_off, prev_offset,
18324 prog->len);
18325 err = -EINVAL;
18326 goto err_free;
18327 }
18328
18329 if (!prog->insnsi[linfo[i].insn_off].code) {
18330 verbose(env,
18331 "Invalid insn code at line_info[%u].insn_off\n",
18332 i);
18333 err = -EINVAL;
18334 goto err_free;
18335 }
18336
18337 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
18338 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
18339 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
18340 err = -EINVAL;
18341 goto err_free;
18342 }
18343
18344 if (s != env->subprog_cnt) {
18345 if (linfo[i].insn_off == sub[s].start) {
18346 sub[s].linfo_idx = i;
18347 s++;
18348 } else if (sub[s].start < linfo[i].insn_off) {
18349 verbose(env, "missing bpf_line_info for func#%u\n", s);
18350 err = -EINVAL;
18351 goto err_free;
18352 }
18353 }
18354
18355 prev_offset = linfo[i].insn_off;
18356 bpfptr_add(&ulinfo, rec_size);
18357 }
18358
18359 if (s != env->subprog_cnt) {
18360 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
18361 env->subprog_cnt - s, s);
18362 err = -EINVAL;
18363 goto err_free;
18364 }
18365
18366 prog->aux->linfo = linfo;
18367 prog->aux->nr_linfo = nr_linfo;
18368
18369 return 0;
18370
18371 err_free:
18372 kvfree(linfo);
18373 return err;
18374 }
18375
18376 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo)
18377 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE
18378
check_core_relo(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)18379 static int check_core_relo(struct bpf_verifier_env *env,
18380 const union bpf_attr *attr,
18381 bpfptr_t uattr)
18382 {
18383 u32 i, nr_core_relo, ncopy, expected_size, rec_size;
18384 struct bpf_core_relo core_relo = {};
18385 struct bpf_prog *prog = env->prog;
18386 const struct btf *btf = prog->aux->btf;
18387 struct bpf_core_ctx ctx = {
18388 .log = &env->log,
18389 .btf = btf,
18390 };
18391 bpfptr_t u_core_relo;
18392 int err;
18393
18394 nr_core_relo = attr->core_relo_cnt;
18395 if (!nr_core_relo)
18396 return 0;
18397 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
18398 return -EINVAL;
18399
18400 rec_size = attr->core_relo_rec_size;
18401 if (rec_size < MIN_CORE_RELO_SIZE ||
18402 rec_size > MAX_CORE_RELO_SIZE ||
18403 rec_size % sizeof(u32))
18404 return -EINVAL;
18405
18406 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
18407 expected_size = sizeof(struct bpf_core_relo);
18408 ncopy = min_t(u32, expected_size, rec_size);
18409
18410 /* Unlike func_info and line_info, copy and apply each CO-RE
18411 * relocation record one at a time.
18412 */
18413 for (i = 0; i < nr_core_relo; i++) {
18414 /* future proofing when sizeof(bpf_core_relo) changes */
18415 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
18416 if (err) {
18417 if (err == -E2BIG) {
18418 verbose(env, "nonzero tailing record in core_relo");
18419 if (copy_to_bpfptr_offset(uattr,
18420 offsetof(union bpf_attr, core_relo_rec_size),
18421 &expected_size, sizeof(expected_size)))
18422 err = -EFAULT;
18423 }
18424 break;
18425 }
18426
18427 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
18428 err = -EFAULT;
18429 break;
18430 }
18431
18432 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
18433 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
18434 i, core_relo.insn_off, prog->len);
18435 err = -EINVAL;
18436 break;
18437 }
18438
18439 err = bpf_core_apply(&ctx, &core_relo, i,
18440 &prog->insnsi[core_relo.insn_off / 8]);
18441 if (err)
18442 break;
18443 bpfptr_add(&u_core_relo, rec_size);
18444 }
18445 return err;
18446 }
18447
check_btf_info_early(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)18448 static int check_btf_info_early(struct bpf_verifier_env *env,
18449 const union bpf_attr *attr,
18450 bpfptr_t uattr)
18451 {
18452 struct btf *btf;
18453 int err;
18454
18455 if (!attr->func_info_cnt && !attr->line_info_cnt) {
18456 if (check_abnormal_return(env))
18457 return -EINVAL;
18458 return 0;
18459 }
18460
18461 btf = btf_get_by_fd(attr->prog_btf_fd);
18462 if (IS_ERR(btf))
18463 return PTR_ERR(btf);
18464 if (btf_is_kernel(btf)) {
18465 btf_put(btf);
18466 return -EACCES;
18467 }
18468 env->prog->aux->btf = btf;
18469
18470 err = check_btf_func_early(env, attr, uattr);
18471 if (err)
18472 return err;
18473 return 0;
18474 }
18475
check_btf_info(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)18476 static int check_btf_info(struct bpf_verifier_env *env,
18477 const union bpf_attr *attr,
18478 bpfptr_t uattr)
18479 {
18480 int err;
18481
18482 if (!attr->func_info_cnt && !attr->line_info_cnt) {
18483 if (check_abnormal_return(env))
18484 return -EINVAL;
18485 return 0;
18486 }
18487
18488 err = check_btf_func(env, attr, uattr);
18489 if (err)
18490 return err;
18491
18492 err = check_btf_line(env, attr, uattr);
18493 if (err)
18494 return err;
18495
18496 err = check_core_relo(env, attr, uattr);
18497 if (err)
18498 return err;
18499
18500 return 0;
18501 }
18502
18503 /* check %cur's range satisfies %old's */
range_within(const struct bpf_reg_state * old,const struct bpf_reg_state * cur)18504 static bool range_within(const struct bpf_reg_state *old,
18505 const struct bpf_reg_state *cur)
18506 {
18507 return old->umin_value <= cur->umin_value &&
18508 old->umax_value >= cur->umax_value &&
18509 old->smin_value <= cur->smin_value &&
18510 old->smax_value >= cur->smax_value &&
18511 old->u32_min_value <= cur->u32_min_value &&
18512 old->u32_max_value >= cur->u32_max_value &&
18513 old->s32_min_value <= cur->s32_min_value &&
18514 old->s32_max_value >= cur->s32_max_value;
18515 }
18516
18517 /* If in the old state two registers had the same id, then they need to have
18518 * the same id in the new state as well. But that id could be different from
18519 * the old state, so we need to track the mapping from old to new ids.
18520 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
18521 * regs with old id 5 must also have new id 9 for the new state to be safe. But
18522 * regs with a different old id could still have new id 9, we don't care about
18523 * that.
18524 * So we look through our idmap to see if this old id has been seen before. If
18525 * so, we require the new id to match; otherwise, we add the id pair to the map.
18526 */
check_ids(u32 old_id,u32 cur_id,struct bpf_idmap * idmap)18527 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
18528 {
18529 struct bpf_id_pair *map = idmap->map;
18530 unsigned int i;
18531
18532 /* either both IDs should be set or both should be zero */
18533 if (!!old_id != !!cur_id)
18534 return false;
18535
18536 if (old_id == 0) /* cur_id == 0 as well */
18537 return true;
18538
18539 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
18540 if (!map[i].old) {
18541 /* Reached an empty slot; haven't seen this id before */
18542 map[i].old = old_id;
18543 map[i].cur = cur_id;
18544 return true;
18545 }
18546 if (map[i].old == old_id)
18547 return map[i].cur == cur_id;
18548 if (map[i].cur == cur_id)
18549 return false;
18550 }
18551 /* We ran out of idmap slots, which should be impossible */
18552 WARN_ON_ONCE(1);
18553 return false;
18554 }
18555
18556 /* Similar to check_ids(), but allocate a unique temporary ID
18557 * for 'old_id' or 'cur_id' of zero.
18558 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
18559 */
check_scalar_ids(u32 old_id,u32 cur_id,struct bpf_idmap * idmap)18560 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
18561 {
18562 old_id = old_id ? old_id : ++idmap->tmp_id_gen;
18563 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
18564
18565 return check_ids(old_id, cur_id, idmap);
18566 }
18567
clean_func_state(struct bpf_verifier_env * env,struct bpf_func_state * st,u32 ip)18568 static void clean_func_state(struct bpf_verifier_env *env,
18569 struct bpf_func_state *st,
18570 u32 ip)
18571 {
18572 u16 live_regs = env->insn_aux_data[ip].live_regs_before;
18573 int i, j;
18574
18575 for (i = 0; i < BPF_REG_FP; i++) {
18576 /* liveness must not touch this register anymore */
18577 if (!(live_regs & BIT(i)))
18578 /* since the register is unused, clear its state
18579 * to make further comparison simpler
18580 */
18581 __mark_reg_not_init(env, &st->regs[i]);
18582 }
18583
18584 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
18585 if (!bpf_stack_slot_alive(env, st->frameno, i)) {
18586 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
18587 for (j = 0; j < BPF_REG_SIZE; j++)
18588 st->stack[i].slot_type[j] = STACK_INVALID;
18589 }
18590 }
18591 }
18592
clean_verifier_state(struct bpf_verifier_env * env,struct bpf_verifier_state * st)18593 static void clean_verifier_state(struct bpf_verifier_env *env,
18594 struct bpf_verifier_state *st)
18595 {
18596 int i, ip;
18597
18598 bpf_live_stack_query_init(env, st);
18599 st->cleaned = true;
18600 for (i = 0; i <= st->curframe; i++) {
18601 ip = frame_insn_idx(st, i);
18602 clean_func_state(env, st->frame[i], ip);
18603 }
18604 }
18605
18606 /* the parentage chains form a tree.
18607 * the verifier states are added to state lists at given insn and
18608 * pushed into state stack for future exploration.
18609 * when the verifier reaches bpf_exit insn some of the verifier states
18610 * stored in the state lists have their final liveness state already,
18611 * but a lot of states will get revised from liveness point of view when
18612 * the verifier explores other branches.
18613 * Example:
18614 * 1: *(u64)(r10 - 8) = 1
18615 * 2: if r1 == 100 goto pc+1
18616 * 3: *(u64)(r10 - 8) = 2
18617 * 4: r0 = *(u64)(r10 - 8)
18618 * 5: exit
18619 * when the verifier reaches exit insn the stack slot -8 in the state list of
18620 * insn 2 is not yet marked alive. Then the verifier pops the other_branch
18621 * of insn 2 and goes exploring further. After the insn 4 read, liveness
18622 * analysis would propagate read mark for -8 at insn 2.
18623 *
18624 * Since the verifier pushes the branch states as it sees them while exploring
18625 * the program the condition of walking the branch instruction for the second
18626 * time means that all states below this branch were already explored and
18627 * their final liveness marks are already propagated.
18628 * Hence when the verifier completes the search of state list in is_state_visited()
18629 * we can call this clean_live_states() function to clear dead the registers and stack
18630 * slots to simplify state merging.
18631 *
18632 * Important note here that walking the same branch instruction in the callee
18633 * doesn't meant that the states are DONE. The verifier has to compare
18634 * the callsites
18635 */
clean_live_states(struct bpf_verifier_env * env,int insn,struct bpf_verifier_state * cur)18636 static void clean_live_states(struct bpf_verifier_env *env, int insn,
18637 struct bpf_verifier_state *cur)
18638 {
18639 struct bpf_verifier_state_list *sl;
18640 struct list_head *pos, *head;
18641
18642 head = explored_state(env, insn);
18643 list_for_each(pos, head) {
18644 sl = container_of(pos, struct bpf_verifier_state_list, node);
18645 if (sl->state.branches)
18646 continue;
18647 if (sl->state.insn_idx != insn ||
18648 !same_callsites(&sl->state, cur))
18649 continue;
18650 if (sl->state.cleaned)
18651 /* all regs in this state in all frames were already marked */
18652 continue;
18653 if (incomplete_read_marks(env, &sl->state))
18654 continue;
18655 clean_verifier_state(env, &sl->state);
18656 }
18657 }
18658
regs_exact(const struct bpf_reg_state * rold,const struct bpf_reg_state * rcur,struct bpf_idmap * idmap)18659 static bool regs_exact(const struct bpf_reg_state *rold,
18660 const struct bpf_reg_state *rcur,
18661 struct bpf_idmap *idmap)
18662 {
18663 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
18664 check_ids(rold->id, rcur->id, idmap) &&
18665 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
18666 }
18667
18668 enum exact_level {
18669 NOT_EXACT,
18670 EXACT,
18671 RANGE_WITHIN
18672 };
18673
18674 /* Returns true if (rold safe implies rcur safe) */
regsafe(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_idmap * idmap,enum exact_level exact)18675 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
18676 struct bpf_reg_state *rcur, struct bpf_idmap *idmap,
18677 enum exact_level exact)
18678 {
18679 if (exact == EXACT)
18680 return regs_exact(rold, rcur, idmap);
18681
18682 if (rold->type == NOT_INIT) {
18683 if (exact == NOT_EXACT || rcur->type == NOT_INIT)
18684 /* explored state can't have used this */
18685 return true;
18686 }
18687
18688 /* Enforce that register types have to match exactly, including their
18689 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
18690 * rule.
18691 *
18692 * One can make a point that using a pointer register as unbounded
18693 * SCALAR would be technically acceptable, but this could lead to
18694 * pointer leaks because scalars are allowed to leak while pointers
18695 * are not. We could make this safe in special cases if root is
18696 * calling us, but it's probably not worth the hassle.
18697 *
18698 * Also, register types that are *not* MAYBE_NULL could technically be
18699 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
18700 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
18701 * to the same map).
18702 * However, if the old MAYBE_NULL register then got NULL checked,
18703 * doing so could have affected others with the same id, and we can't
18704 * check for that because we lost the id when we converted to
18705 * a non-MAYBE_NULL variant.
18706 * So, as a general rule we don't allow mixing MAYBE_NULL and
18707 * non-MAYBE_NULL registers as well.
18708 */
18709 if (rold->type != rcur->type)
18710 return false;
18711
18712 switch (base_type(rold->type)) {
18713 case SCALAR_VALUE:
18714 if (env->explore_alu_limits) {
18715 /* explore_alu_limits disables tnum_in() and range_within()
18716 * logic and requires everything to be strict
18717 */
18718 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
18719 check_scalar_ids(rold->id, rcur->id, idmap);
18720 }
18721 if (!rold->precise && exact == NOT_EXACT)
18722 return true;
18723 if ((rold->id & BPF_ADD_CONST) != (rcur->id & BPF_ADD_CONST))
18724 return false;
18725 if ((rold->id & BPF_ADD_CONST) && (rold->off != rcur->off))
18726 return false;
18727 /* Why check_ids() for scalar registers?
18728 *
18729 * Consider the following BPF code:
18730 * 1: r6 = ... unbound scalar, ID=a ...
18731 * 2: r7 = ... unbound scalar, ID=b ...
18732 * 3: if (r6 > r7) goto +1
18733 * 4: r6 = r7
18734 * 5: if (r6 > X) goto ...
18735 * 6: ... memory operation using r7 ...
18736 *
18737 * First verification path is [1-6]:
18738 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
18739 * - at (5) r6 would be marked <= X, sync_linked_regs() would also mark
18740 * r7 <= X, because r6 and r7 share same id.
18741 * Next verification path is [1-4, 6].
18742 *
18743 * Instruction (6) would be reached in two states:
18744 * I. r6{.id=b}, r7{.id=b} via path 1-6;
18745 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
18746 *
18747 * Use check_ids() to distinguish these states.
18748 * ---
18749 * Also verify that new value satisfies old value range knowledge.
18750 */
18751 return range_within(rold, rcur) &&
18752 tnum_in(rold->var_off, rcur->var_off) &&
18753 check_scalar_ids(rold->id, rcur->id, idmap);
18754 case PTR_TO_MAP_KEY:
18755 case PTR_TO_MAP_VALUE:
18756 case PTR_TO_MEM:
18757 case PTR_TO_BUF:
18758 case PTR_TO_TP_BUFFER:
18759 /* If the new min/max/var_off satisfy the old ones and
18760 * everything else matches, we are OK.
18761 */
18762 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
18763 range_within(rold, rcur) &&
18764 tnum_in(rold->var_off, rcur->var_off) &&
18765 check_ids(rold->id, rcur->id, idmap) &&
18766 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
18767 case PTR_TO_PACKET_META:
18768 case PTR_TO_PACKET:
18769 /* We must have at least as much range as the old ptr
18770 * did, so that any accesses which were safe before are
18771 * still safe. This is true even if old range < old off,
18772 * since someone could have accessed through (ptr - k), or
18773 * even done ptr -= k in a register, to get a safe access.
18774 */
18775 if (rold->range > rcur->range)
18776 return false;
18777 /* If the offsets don't match, we can't trust our alignment;
18778 * nor can we be sure that we won't fall out of range.
18779 */
18780 if (rold->off != rcur->off)
18781 return false;
18782 /* id relations must be preserved */
18783 if (!check_ids(rold->id, rcur->id, idmap))
18784 return false;
18785 /* new val must satisfy old val knowledge */
18786 return range_within(rold, rcur) &&
18787 tnum_in(rold->var_off, rcur->var_off);
18788 case PTR_TO_STACK:
18789 /* two stack pointers are equal only if they're pointing to
18790 * the same stack frame, since fp-8 in foo != fp-8 in bar
18791 */
18792 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
18793 case PTR_TO_ARENA:
18794 return true;
18795 default:
18796 return regs_exact(rold, rcur, idmap);
18797 }
18798 }
18799
18800 static struct bpf_reg_state unbound_reg;
18801
unbound_reg_init(void)18802 static __init int unbound_reg_init(void)
18803 {
18804 __mark_reg_unknown_imprecise(&unbound_reg);
18805 return 0;
18806 }
18807 late_initcall(unbound_reg_init);
18808
is_stack_all_misc(struct bpf_verifier_env * env,struct bpf_stack_state * stack)18809 static bool is_stack_all_misc(struct bpf_verifier_env *env,
18810 struct bpf_stack_state *stack)
18811 {
18812 u32 i;
18813
18814 for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) {
18815 if ((stack->slot_type[i] == STACK_MISC) ||
18816 (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack))
18817 continue;
18818 return false;
18819 }
18820
18821 return true;
18822 }
18823
scalar_reg_for_stack(struct bpf_verifier_env * env,struct bpf_stack_state * stack)18824 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env,
18825 struct bpf_stack_state *stack)
18826 {
18827 if (is_spilled_scalar_reg64(stack))
18828 return &stack->spilled_ptr;
18829
18830 if (is_stack_all_misc(env, stack))
18831 return &unbound_reg;
18832
18833 return NULL;
18834 }
18835
stacksafe(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_idmap * idmap,enum exact_level exact)18836 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
18837 struct bpf_func_state *cur, struct bpf_idmap *idmap,
18838 enum exact_level exact)
18839 {
18840 int i, spi;
18841
18842 /* walk slots of the explored stack and ignore any additional
18843 * slots in the current stack, since explored(safe) state
18844 * didn't use them
18845 */
18846 for (i = 0; i < old->allocated_stack; i++) {
18847 struct bpf_reg_state *old_reg, *cur_reg;
18848
18849 spi = i / BPF_REG_SIZE;
18850
18851 if (exact != NOT_EXACT &&
18852 (i >= cur->allocated_stack ||
18853 old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
18854 cur->stack[spi].slot_type[i % BPF_REG_SIZE]))
18855 return false;
18856
18857 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
18858 continue;
18859
18860 if (env->allow_uninit_stack &&
18861 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
18862 continue;
18863
18864 /* explored stack has more populated slots than current stack
18865 * and these slots were used
18866 */
18867 if (i >= cur->allocated_stack)
18868 return false;
18869
18870 /* 64-bit scalar spill vs all slots MISC and vice versa.
18871 * Load from all slots MISC produces unbound scalar.
18872 * Construct a fake register for such stack and call
18873 * regsafe() to ensure scalar ids are compared.
18874 */
18875 old_reg = scalar_reg_for_stack(env, &old->stack[spi]);
18876 cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]);
18877 if (old_reg && cur_reg) {
18878 if (!regsafe(env, old_reg, cur_reg, idmap, exact))
18879 return false;
18880 i += BPF_REG_SIZE - 1;
18881 continue;
18882 }
18883
18884 /* if old state was safe with misc data in the stack
18885 * it will be safe with zero-initialized stack.
18886 * The opposite is not true
18887 */
18888 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
18889 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
18890 continue;
18891 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
18892 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
18893 /* Ex: old explored (safe) state has STACK_SPILL in
18894 * this stack slot, but current has STACK_MISC ->
18895 * this verifier states are not equivalent,
18896 * return false to continue verification of this path
18897 */
18898 return false;
18899 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
18900 continue;
18901 /* Both old and cur are having same slot_type */
18902 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
18903 case STACK_SPILL:
18904 /* when explored and current stack slot are both storing
18905 * spilled registers, check that stored pointers types
18906 * are the same as well.
18907 * Ex: explored safe path could have stored
18908 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
18909 * but current path has stored:
18910 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
18911 * such verifier states are not equivalent.
18912 * return false to continue verification of this path
18913 */
18914 if (!regsafe(env, &old->stack[spi].spilled_ptr,
18915 &cur->stack[spi].spilled_ptr, idmap, exact))
18916 return false;
18917 break;
18918 case STACK_DYNPTR:
18919 old_reg = &old->stack[spi].spilled_ptr;
18920 cur_reg = &cur->stack[spi].spilled_ptr;
18921 if (old_reg->dynptr.type != cur_reg->dynptr.type ||
18922 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
18923 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
18924 return false;
18925 break;
18926 case STACK_ITER:
18927 old_reg = &old->stack[spi].spilled_ptr;
18928 cur_reg = &cur->stack[spi].spilled_ptr;
18929 /* iter.depth is not compared between states as it
18930 * doesn't matter for correctness and would otherwise
18931 * prevent convergence; we maintain it only to prevent
18932 * infinite loop check triggering, see
18933 * iter_active_depths_differ()
18934 */
18935 if (old_reg->iter.btf != cur_reg->iter.btf ||
18936 old_reg->iter.btf_id != cur_reg->iter.btf_id ||
18937 old_reg->iter.state != cur_reg->iter.state ||
18938 /* ignore {old_reg,cur_reg}->iter.depth, see above */
18939 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
18940 return false;
18941 break;
18942 case STACK_IRQ_FLAG:
18943 old_reg = &old->stack[spi].spilled_ptr;
18944 cur_reg = &cur->stack[spi].spilled_ptr;
18945 if (!check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap) ||
18946 old_reg->irq.kfunc_class != cur_reg->irq.kfunc_class)
18947 return false;
18948 break;
18949 case STACK_MISC:
18950 case STACK_ZERO:
18951 case STACK_INVALID:
18952 continue;
18953 /* Ensure that new unhandled slot types return false by default */
18954 default:
18955 return false;
18956 }
18957 }
18958 return true;
18959 }
18960
refsafe(struct bpf_verifier_state * old,struct bpf_verifier_state * cur,struct bpf_idmap * idmap)18961 static bool refsafe(struct bpf_verifier_state *old, struct bpf_verifier_state *cur,
18962 struct bpf_idmap *idmap)
18963 {
18964 int i;
18965
18966 if (old->acquired_refs != cur->acquired_refs)
18967 return false;
18968
18969 if (old->active_locks != cur->active_locks)
18970 return false;
18971
18972 if (old->active_preempt_locks != cur->active_preempt_locks)
18973 return false;
18974
18975 if (old->active_rcu_lock != cur->active_rcu_lock)
18976 return false;
18977
18978 if (!check_ids(old->active_irq_id, cur->active_irq_id, idmap))
18979 return false;
18980
18981 if (!check_ids(old->active_lock_id, cur->active_lock_id, idmap) ||
18982 old->active_lock_ptr != cur->active_lock_ptr)
18983 return false;
18984
18985 for (i = 0; i < old->acquired_refs; i++) {
18986 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap) ||
18987 old->refs[i].type != cur->refs[i].type)
18988 return false;
18989 switch (old->refs[i].type) {
18990 case REF_TYPE_PTR:
18991 case REF_TYPE_IRQ:
18992 break;
18993 case REF_TYPE_LOCK:
18994 case REF_TYPE_RES_LOCK:
18995 case REF_TYPE_RES_LOCK_IRQ:
18996 if (old->refs[i].ptr != cur->refs[i].ptr)
18997 return false;
18998 break;
18999 default:
19000 WARN_ONCE(1, "Unhandled enum type for reference state: %d\n", old->refs[i].type);
19001 return false;
19002 }
19003 }
19004
19005 return true;
19006 }
19007
19008 /* compare two verifier states
19009 *
19010 * all states stored in state_list are known to be valid, since
19011 * verifier reached 'bpf_exit' instruction through them
19012 *
19013 * this function is called when verifier exploring different branches of
19014 * execution popped from the state stack. If it sees an old state that has
19015 * more strict register state and more strict stack state then this execution
19016 * branch doesn't need to be explored further, since verifier already
19017 * concluded that more strict state leads to valid finish.
19018 *
19019 * Therefore two states are equivalent if register state is more conservative
19020 * and explored stack state is more conservative than the current one.
19021 * Example:
19022 * explored current
19023 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
19024 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
19025 *
19026 * In other words if current stack state (one being explored) has more
19027 * valid slots than old one that already passed validation, it means
19028 * the verifier can stop exploring and conclude that current state is valid too
19029 *
19030 * Similarly with registers. If explored state has register type as invalid
19031 * whereas register type in current state is meaningful, it means that
19032 * the current state will reach 'bpf_exit' instruction safely
19033 */
func_states_equal(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,u32 insn_idx,enum exact_level exact)19034 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
19035 struct bpf_func_state *cur, u32 insn_idx, enum exact_level exact)
19036 {
19037 u16 live_regs = env->insn_aux_data[insn_idx].live_regs_before;
19038 u16 i;
19039
19040 if (old->callback_depth > cur->callback_depth)
19041 return false;
19042
19043 for (i = 0; i < MAX_BPF_REG; i++)
19044 if (((1 << i) & live_regs) &&
19045 !regsafe(env, &old->regs[i], &cur->regs[i],
19046 &env->idmap_scratch, exact))
19047 return false;
19048
19049 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
19050 return false;
19051
19052 return true;
19053 }
19054
reset_idmap_scratch(struct bpf_verifier_env * env)19055 static void reset_idmap_scratch(struct bpf_verifier_env *env)
19056 {
19057 env->idmap_scratch.tmp_id_gen = env->id_gen;
19058 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
19059 }
19060
states_equal(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur,enum exact_level exact)19061 static bool states_equal(struct bpf_verifier_env *env,
19062 struct bpf_verifier_state *old,
19063 struct bpf_verifier_state *cur,
19064 enum exact_level exact)
19065 {
19066 u32 insn_idx;
19067 int i;
19068
19069 if (old->curframe != cur->curframe)
19070 return false;
19071
19072 reset_idmap_scratch(env);
19073
19074 /* Verification state from speculative execution simulation
19075 * must never prune a non-speculative execution one.
19076 */
19077 if (old->speculative && !cur->speculative)
19078 return false;
19079
19080 if (old->in_sleepable != cur->in_sleepable)
19081 return false;
19082
19083 if (!refsafe(old, cur, &env->idmap_scratch))
19084 return false;
19085
19086 /* for states to be equal callsites have to be the same
19087 * and all frame states need to be equivalent
19088 */
19089 for (i = 0; i <= old->curframe; i++) {
19090 insn_idx = frame_insn_idx(old, i);
19091 if (old->frame[i]->callsite != cur->frame[i]->callsite)
19092 return false;
19093 if (!func_states_equal(env, old->frame[i], cur->frame[i], insn_idx, exact))
19094 return false;
19095 }
19096 return true;
19097 }
19098
19099 /* find precise scalars in the previous equivalent state and
19100 * propagate them into the current state
19101 */
propagate_precision(struct bpf_verifier_env * env,const struct bpf_verifier_state * old,struct bpf_verifier_state * cur,bool * changed)19102 static int propagate_precision(struct bpf_verifier_env *env,
19103 const struct bpf_verifier_state *old,
19104 struct bpf_verifier_state *cur,
19105 bool *changed)
19106 {
19107 struct bpf_reg_state *state_reg;
19108 struct bpf_func_state *state;
19109 int i, err = 0, fr;
19110 bool first;
19111
19112 for (fr = old->curframe; fr >= 0; fr--) {
19113 state = old->frame[fr];
19114 state_reg = state->regs;
19115 first = true;
19116 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
19117 if (state_reg->type != SCALAR_VALUE ||
19118 !state_reg->precise)
19119 continue;
19120 if (env->log.level & BPF_LOG_LEVEL2) {
19121 if (first)
19122 verbose(env, "frame %d: propagating r%d", fr, i);
19123 else
19124 verbose(env, ",r%d", i);
19125 }
19126 bt_set_frame_reg(&env->bt, fr, i);
19127 first = false;
19128 }
19129
19130 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
19131 if (!is_spilled_reg(&state->stack[i]))
19132 continue;
19133 state_reg = &state->stack[i].spilled_ptr;
19134 if (state_reg->type != SCALAR_VALUE ||
19135 !state_reg->precise)
19136 continue;
19137 if (env->log.level & BPF_LOG_LEVEL2) {
19138 if (first)
19139 verbose(env, "frame %d: propagating fp%d",
19140 fr, (-i - 1) * BPF_REG_SIZE);
19141 else
19142 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
19143 }
19144 bt_set_frame_slot(&env->bt, fr, i);
19145 first = false;
19146 }
19147 if (!first)
19148 verbose(env, "\n");
19149 }
19150
19151 err = __mark_chain_precision(env, cur, -1, changed);
19152 if (err < 0)
19153 return err;
19154
19155 return 0;
19156 }
19157
19158 #define MAX_BACKEDGE_ITERS 64
19159
19160 /* Propagate read and precision marks from visit->backedges[*].state->equal_state
19161 * to corresponding parent states of visit->backedges[*].state until fixed point is reached,
19162 * then free visit->backedges.
19163 * After execution of this function incomplete_read_marks() will return false
19164 * for all states corresponding to @visit->callchain.
19165 */
propagate_backedges(struct bpf_verifier_env * env,struct bpf_scc_visit * visit)19166 static int propagate_backedges(struct bpf_verifier_env *env, struct bpf_scc_visit *visit)
19167 {
19168 struct bpf_scc_backedge *backedge;
19169 struct bpf_verifier_state *st;
19170 bool changed;
19171 int i, err;
19172
19173 i = 0;
19174 do {
19175 if (i++ > MAX_BACKEDGE_ITERS) {
19176 if (env->log.level & BPF_LOG_LEVEL2)
19177 verbose(env, "%s: too many iterations\n", __func__);
19178 for (backedge = visit->backedges; backedge; backedge = backedge->next)
19179 mark_all_scalars_precise(env, &backedge->state);
19180 break;
19181 }
19182 changed = false;
19183 for (backedge = visit->backedges; backedge; backedge = backedge->next) {
19184 st = &backedge->state;
19185 err = propagate_precision(env, st->equal_state, st, &changed);
19186 if (err)
19187 return err;
19188 }
19189 } while (changed);
19190
19191 free_backedges(visit);
19192 return 0;
19193 }
19194
states_maybe_looping(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)19195 static bool states_maybe_looping(struct bpf_verifier_state *old,
19196 struct bpf_verifier_state *cur)
19197 {
19198 struct bpf_func_state *fold, *fcur;
19199 int i, fr = cur->curframe;
19200
19201 if (old->curframe != fr)
19202 return false;
19203
19204 fold = old->frame[fr];
19205 fcur = cur->frame[fr];
19206 for (i = 0; i < MAX_BPF_REG; i++)
19207 if (memcmp(&fold->regs[i], &fcur->regs[i],
19208 offsetof(struct bpf_reg_state, frameno)))
19209 return false;
19210 return true;
19211 }
19212
is_iter_next_insn(struct bpf_verifier_env * env,int insn_idx)19213 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
19214 {
19215 return env->insn_aux_data[insn_idx].is_iter_next;
19216 }
19217
19218 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
19219 * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
19220 * states to match, which otherwise would look like an infinite loop. So while
19221 * iter_next() calls are taken care of, we still need to be careful and
19222 * prevent erroneous and too eager declaration of "infinite loop", when
19223 * iterators are involved.
19224 *
19225 * Here's a situation in pseudo-BPF assembly form:
19226 *
19227 * 0: again: ; set up iter_next() call args
19228 * 1: r1 = &it ; <CHECKPOINT HERE>
19229 * 2: call bpf_iter_num_next ; this is iter_next() call
19230 * 3: if r0 == 0 goto done
19231 * 4: ... something useful here ...
19232 * 5: goto again ; another iteration
19233 * 6: done:
19234 * 7: r1 = &it
19235 * 8: call bpf_iter_num_destroy ; clean up iter state
19236 * 9: exit
19237 *
19238 * This is a typical loop. Let's assume that we have a prune point at 1:,
19239 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
19240 * again`, assuming other heuristics don't get in a way).
19241 *
19242 * When we first time come to 1:, let's say we have some state X. We proceed
19243 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
19244 * Now we come back to validate that forked ACTIVE state. We proceed through
19245 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
19246 * are converging. But the problem is that we don't know that yet, as this
19247 * convergence has to happen at iter_next() call site only. So if nothing is
19248 * done, at 1: verifier will use bounded loop logic and declare infinite
19249 * looping (and would be *technically* correct, if not for iterator's
19250 * "eventual sticky NULL" contract, see process_iter_next_call()). But we
19251 * don't want that. So what we do in process_iter_next_call() when we go on
19252 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
19253 * a different iteration. So when we suspect an infinite loop, we additionally
19254 * check if any of the *ACTIVE* iterator states depths differ. If yes, we
19255 * pretend we are not looping and wait for next iter_next() call.
19256 *
19257 * This only applies to ACTIVE state. In DRAINED state we don't expect to
19258 * loop, because that would actually mean infinite loop, as DRAINED state is
19259 * "sticky", and so we'll keep returning into the same instruction with the
19260 * same state (at least in one of possible code paths).
19261 *
19262 * This approach allows to keep infinite loop heuristic even in the face of
19263 * active iterator. E.g., C snippet below is and will be detected as
19264 * infinitely looping:
19265 *
19266 * struct bpf_iter_num it;
19267 * int *p, x;
19268 *
19269 * bpf_iter_num_new(&it, 0, 10);
19270 * while ((p = bpf_iter_num_next(&t))) {
19271 * x = p;
19272 * while (x--) {} // <<-- infinite loop here
19273 * }
19274 *
19275 */
iter_active_depths_differ(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)19276 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
19277 {
19278 struct bpf_reg_state *slot, *cur_slot;
19279 struct bpf_func_state *state;
19280 int i, fr;
19281
19282 for (fr = old->curframe; fr >= 0; fr--) {
19283 state = old->frame[fr];
19284 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
19285 if (state->stack[i].slot_type[0] != STACK_ITER)
19286 continue;
19287
19288 slot = &state->stack[i].spilled_ptr;
19289 if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
19290 continue;
19291
19292 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
19293 if (cur_slot->iter.depth != slot->iter.depth)
19294 return true;
19295 }
19296 }
19297 return false;
19298 }
19299
is_state_visited(struct bpf_verifier_env * env,int insn_idx)19300 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
19301 {
19302 struct bpf_verifier_state_list *new_sl;
19303 struct bpf_verifier_state_list *sl;
19304 struct bpf_verifier_state *cur = env->cur_state, *new;
19305 bool force_new_state, add_new_state, loop;
19306 int n, err, states_cnt = 0;
19307 struct list_head *pos, *tmp, *head;
19308
19309 force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) ||
19310 /* Avoid accumulating infinitely long jmp history */
19311 cur->jmp_history_cnt > 40;
19312
19313 /* bpf progs typically have pruning point every 4 instructions
19314 * http://vger.kernel.org/bpfconf2019.html#session-1
19315 * Do not add new state for future pruning if the verifier hasn't seen
19316 * at least 2 jumps and at least 8 instructions.
19317 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
19318 * In tests that amounts to up to 50% reduction into total verifier
19319 * memory consumption and 20% verifier time speedup.
19320 */
19321 add_new_state = force_new_state;
19322 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
19323 env->insn_processed - env->prev_insn_processed >= 8)
19324 add_new_state = true;
19325
19326 clean_live_states(env, insn_idx, cur);
19327
19328 loop = false;
19329 head = explored_state(env, insn_idx);
19330 list_for_each_safe(pos, tmp, head) {
19331 sl = container_of(pos, struct bpf_verifier_state_list, node);
19332 states_cnt++;
19333 if (sl->state.insn_idx != insn_idx)
19334 continue;
19335
19336 if (sl->state.branches) {
19337 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
19338
19339 if (frame->in_async_callback_fn &&
19340 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
19341 /* Different async_entry_cnt means that the verifier is
19342 * processing another entry into async callback.
19343 * Seeing the same state is not an indication of infinite
19344 * loop or infinite recursion.
19345 * But finding the same state doesn't mean that it's safe
19346 * to stop processing the current state. The previous state
19347 * hasn't yet reached bpf_exit, since state.branches > 0.
19348 * Checking in_async_callback_fn alone is not enough either.
19349 * Since the verifier still needs to catch infinite loops
19350 * inside async callbacks.
19351 */
19352 goto skip_inf_loop_check;
19353 }
19354 /* BPF open-coded iterators loop detection is special.
19355 * states_maybe_looping() logic is too simplistic in detecting
19356 * states that *might* be equivalent, because it doesn't know
19357 * about ID remapping, so don't even perform it.
19358 * See process_iter_next_call() and iter_active_depths_differ()
19359 * for overview of the logic. When current and one of parent
19360 * states are detected as equivalent, it's a good thing: we prove
19361 * convergence and can stop simulating further iterations.
19362 * It's safe to assume that iterator loop will finish, taking into
19363 * account iter_next() contract of eventually returning
19364 * sticky NULL result.
19365 *
19366 * Note, that states have to be compared exactly in this case because
19367 * read and precision marks might not be finalized inside the loop.
19368 * E.g. as in the program below:
19369 *
19370 * 1. r7 = -16
19371 * 2. r6 = bpf_get_prandom_u32()
19372 * 3. while (bpf_iter_num_next(&fp[-8])) {
19373 * 4. if (r6 != 42) {
19374 * 5. r7 = -32
19375 * 6. r6 = bpf_get_prandom_u32()
19376 * 7. continue
19377 * 8. }
19378 * 9. r0 = r10
19379 * 10. r0 += r7
19380 * 11. r8 = *(u64 *)(r0 + 0)
19381 * 12. r6 = bpf_get_prandom_u32()
19382 * 13. }
19383 *
19384 * Here verifier would first visit path 1-3, create a checkpoint at 3
19385 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
19386 * not have read or precision mark for r7 yet, thus inexact states
19387 * comparison would discard current state with r7=-32
19388 * => unsafe memory access at 11 would not be caught.
19389 */
19390 if (is_iter_next_insn(env, insn_idx)) {
19391 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
19392 struct bpf_func_state *cur_frame;
19393 struct bpf_reg_state *iter_state, *iter_reg;
19394 int spi;
19395
19396 cur_frame = cur->frame[cur->curframe];
19397 /* btf_check_iter_kfuncs() enforces that
19398 * iter state pointer is always the first arg
19399 */
19400 iter_reg = &cur_frame->regs[BPF_REG_1];
19401 /* current state is valid due to states_equal(),
19402 * so we can assume valid iter and reg state,
19403 * no need for extra (re-)validations
19404 */
19405 spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
19406 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
19407 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
19408 loop = true;
19409 goto hit;
19410 }
19411 }
19412 goto skip_inf_loop_check;
19413 }
19414 if (is_may_goto_insn_at(env, insn_idx)) {
19415 if (sl->state.may_goto_depth != cur->may_goto_depth &&
19416 states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
19417 loop = true;
19418 goto hit;
19419 }
19420 }
19421 if (bpf_calls_callback(env, insn_idx)) {
19422 if (states_equal(env, &sl->state, cur, RANGE_WITHIN))
19423 goto hit;
19424 goto skip_inf_loop_check;
19425 }
19426 /* attempt to detect infinite loop to avoid unnecessary doomed work */
19427 if (states_maybe_looping(&sl->state, cur) &&
19428 states_equal(env, &sl->state, cur, EXACT) &&
19429 !iter_active_depths_differ(&sl->state, cur) &&
19430 sl->state.may_goto_depth == cur->may_goto_depth &&
19431 sl->state.callback_unroll_depth == cur->callback_unroll_depth) {
19432 verbose_linfo(env, insn_idx, "; ");
19433 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
19434 verbose(env, "cur state:");
19435 print_verifier_state(env, cur, cur->curframe, true);
19436 verbose(env, "old state:");
19437 print_verifier_state(env, &sl->state, cur->curframe, true);
19438 return -EINVAL;
19439 }
19440 /* if the verifier is processing a loop, avoid adding new state
19441 * too often, since different loop iterations have distinct
19442 * states and may not help future pruning.
19443 * This threshold shouldn't be too low to make sure that
19444 * a loop with large bound will be rejected quickly.
19445 * The most abusive loop will be:
19446 * r1 += 1
19447 * if r1 < 1000000 goto pc-2
19448 * 1M insn_procssed limit / 100 == 10k peak states.
19449 * This threshold shouldn't be too high either, since states
19450 * at the end of the loop are likely to be useful in pruning.
19451 */
19452 skip_inf_loop_check:
19453 if (!force_new_state &&
19454 env->jmps_processed - env->prev_jmps_processed < 20 &&
19455 env->insn_processed - env->prev_insn_processed < 100)
19456 add_new_state = false;
19457 goto miss;
19458 }
19459 /* See comments for mark_all_regs_read_and_precise() */
19460 loop = incomplete_read_marks(env, &sl->state);
19461 if (states_equal(env, &sl->state, cur, loop ? RANGE_WITHIN : NOT_EXACT)) {
19462 hit:
19463 sl->hit_cnt++;
19464
19465 /* if previous state reached the exit with precision and
19466 * current state is equivalent to it (except precision marks)
19467 * the precision needs to be propagated back in
19468 * the current state.
19469 */
19470 err = 0;
19471 if (is_jmp_point(env, env->insn_idx))
19472 err = push_jmp_history(env, cur, 0, 0);
19473 err = err ? : propagate_precision(env, &sl->state, cur, NULL);
19474 if (err)
19475 return err;
19476 /* When processing iterator based loops above propagate_liveness and
19477 * propagate_precision calls are not sufficient to transfer all relevant
19478 * read and precision marks. E.g. consider the following case:
19479 *
19480 * .-> A --. Assume the states are visited in the order A, B, C.
19481 * | | | Assume that state B reaches a state equivalent to state A.
19482 * | v v At this point, state C is not processed yet, so state A
19483 * '-- B C has not received any read or precision marks from C.
19484 * Thus, marks propagated from A to B are incomplete.
19485 *
19486 * The verifier mitigates this by performing the following steps:
19487 *
19488 * - Prior to the main verification pass, strongly connected components
19489 * (SCCs) are computed over the program's control flow graph,
19490 * intraprocedurally.
19491 *
19492 * - During the main verification pass, `maybe_enter_scc()` checks
19493 * whether the current verifier state is entering an SCC. If so, an
19494 * instance of a `bpf_scc_visit` object is created, and the state
19495 * entering the SCC is recorded as the entry state.
19496 *
19497 * - This instance is associated not with the SCC itself, but with a
19498 * `bpf_scc_callchain`: a tuple consisting of the call sites leading to
19499 * the SCC and the SCC id. See `compute_scc_callchain()`.
19500 *
19501 * - When a verification path encounters a `states_equal(...,
19502 * RANGE_WITHIN)` condition, there exists a call chain describing the
19503 * current state and a corresponding `bpf_scc_visit` instance. A copy
19504 * of the current state is created and added to
19505 * `bpf_scc_visit->backedges`.
19506 *
19507 * - When a verification path terminates, `maybe_exit_scc()` is called
19508 * from `update_branch_counts()`. For states with `branches == 0`, it
19509 * checks whether the state is the entry state of any `bpf_scc_visit`
19510 * instance. If it is, this indicates that all paths originating from
19511 * this SCC visit have been explored. `propagate_backedges()` is then
19512 * called, which propagates read and precision marks through the
19513 * backedges until a fixed point is reached.
19514 * (In the earlier example, this would propagate marks from A to B,
19515 * from C to A, and then again from A to B.)
19516 *
19517 * A note on callchains
19518 * --------------------
19519 *
19520 * Consider the following example:
19521 *
19522 * void foo() { loop { ... SCC#1 ... } }
19523 * void main() {
19524 * A: foo();
19525 * B: ...
19526 * C: foo();
19527 * }
19528 *
19529 * Here, there are two distinct callchains leading to SCC#1:
19530 * - (A, SCC#1)
19531 * - (C, SCC#1)
19532 *
19533 * Each callchain identifies a separate `bpf_scc_visit` instance that
19534 * accumulates backedge states. The `propagate_{liveness,precision}()`
19535 * functions traverse the parent state of each backedge state, which
19536 * means these parent states must remain valid (i.e., not freed) while
19537 * the corresponding `bpf_scc_visit` instance exists.
19538 *
19539 * Associating `bpf_scc_visit` instances directly with SCCs instead of
19540 * callchains would break this invariant:
19541 * - States explored during `C: foo()` would contribute backedges to
19542 * SCC#1, but SCC#1 would only be exited once the exploration of
19543 * `A: foo()` completes.
19544 * - By that time, the states explored between `A: foo()` and `C: foo()`
19545 * (i.e., `B: ...`) may have already been freed, causing the parent
19546 * links for states from `C: foo()` to become invalid.
19547 */
19548 if (loop) {
19549 struct bpf_scc_backedge *backedge;
19550
19551 backedge = kzalloc(sizeof(*backedge), GFP_KERNEL_ACCOUNT);
19552 if (!backedge)
19553 return -ENOMEM;
19554 err = copy_verifier_state(&backedge->state, cur);
19555 backedge->state.equal_state = &sl->state;
19556 backedge->state.insn_idx = insn_idx;
19557 err = err ?: add_scc_backedge(env, &sl->state, backedge);
19558 if (err) {
19559 free_verifier_state(&backedge->state, false);
19560 kfree(backedge);
19561 return err;
19562 }
19563 }
19564 return 1;
19565 }
19566 miss:
19567 /* when new state is not going to be added do not increase miss count.
19568 * Otherwise several loop iterations will remove the state
19569 * recorded earlier. The goal of these heuristics is to have
19570 * states from some iterations of the loop (some in the beginning
19571 * and some at the end) to help pruning.
19572 */
19573 if (add_new_state)
19574 sl->miss_cnt++;
19575 /* heuristic to determine whether this state is beneficial
19576 * to keep checking from state equivalence point of view.
19577 * Higher numbers increase max_states_per_insn and verification time,
19578 * but do not meaningfully decrease insn_processed.
19579 * 'n' controls how many times state could miss before eviction.
19580 * Use bigger 'n' for checkpoints because evicting checkpoint states
19581 * too early would hinder iterator convergence.
19582 */
19583 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
19584 if (sl->miss_cnt > sl->hit_cnt * n + n) {
19585 /* the state is unlikely to be useful. Remove it to
19586 * speed up verification
19587 */
19588 sl->in_free_list = true;
19589 list_del(&sl->node);
19590 list_add(&sl->node, &env->free_list);
19591 env->free_list_size++;
19592 env->explored_states_size--;
19593 maybe_free_verifier_state(env, sl);
19594 }
19595 }
19596
19597 if (env->max_states_per_insn < states_cnt)
19598 env->max_states_per_insn = states_cnt;
19599
19600 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
19601 return 0;
19602
19603 if (!add_new_state)
19604 return 0;
19605
19606 /* There were no equivalent states, remember the current one.
19607 * Technically the current state is not proven to be safe yet,
19608 * but it will either reach outer most bpf_exit (which means it's safe)
19609 * or it will be rejected. When there are no loops the verifier won't be
19610 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
19611 * again on the way to bpf_exit.
19612 * When looping the sl->state.branches will be > 0 and this state
19613 * will not be considered for equivalence until branches == 0.
19614 */
19615 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL_ACCOUNT);
19616 if (!new_sl)
19617 return -ENOMEM;
19618 env->total_states++;
19619 env->explored_states_size++;
19620 update_peak_states(env);
19621 env->prev_jmps_processed = env->jmps_processed;
19622 env->prev_insn_processed = env->insn_processed;
19623
19624 /* forget precise markings we inherited, see __mark_chain_precision */
19625 if (env->bpf_capable)
19626 mark_all_scalars_imprecise(env, cur);
19627
19628 /* add new state to the head of linked list */
19629 new = &new_sl->state;
19630 err = copy_verifier_state(new, cur);
19631 if (err) {
19632 free_verifier_state(new, false);
19633 kfree(new_sl);
19634 return err;
19635 }
19636 new->insn_idx = insn_idx;
19637 verifier_bug_if(new->branches != 1, env,
19638 "%s:branches_to_explore=%d insn %d",
19639 __func__, new->branches, insn_idx);
19640 err = maybe_enter_scc(env, new);
19641 if (err) {
19642 free_verifier_state(new, false);
19643 kfree(new_sl);
19644 return err;
19645 }
19646
19647 cur->parent = new;
19648 cur->first_insn_idx = insn_idx;
19649 cur->dfs_depth = new->dfs_depth + 1;
19650 clear_jmp_history(cur);
19651 list_add(&new_sl->node, head);
19652 return 0;
19653 }
19654
19655 /* Return true if it's OK to have the same insn return a different type. */
reg_type_mismatch_ok(enum bpf_reg_type type)19656 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
19657 {
19658 switch (base_type(type)) {
19659 case PTR_TO_CTX:
19660 case PTR_TO_SOCKET:
19661 case PTR_TO_SOCK_COMMON:
19662 case PTR_TO_TCP_SOCK:
19663 case PTR_TO_XDP_SOCK:
19664 case PTR_TO_BTF_ID:
19665 case PTR_TO_ARENA:
19666 return false;
19667 default:
19668 return true;
19669 }
19670 }
19671
19672 /* If an instruction was previously used with particular pointer types, then we
19673 * need to be careful to avoid cases such as the below, where it may be ok
19674 * for one branch accessing the pointer, but not ok for the other branch:
19675 *
19676 * R1 = sock_ptr
19677 * goto X;
19678 * ...
19679 * R1 = some_other_valid_ptr;
19680 * goto X;
19681 * ...
19682 * R2 = *(u32 *)(R1 + 0);
19683 */
reg_type_mismatch(enum bpf_reg_type src,enum bpf_reg_type prev)19684 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
19685 {
19686 return src != prev && (!reg_type_mismatch_ok(src) ||
19687 !reg_type_mismatch_ok(prev));
19688 }
19689
is_ptr_to_mem_or_btf_id(enum bpf_reg_type type)19690 static bool is_ptr_to_mem_or_btf_id(enum bpf_reg_type type)
19691 {
19692 switch (base_type(type)) {
19693 case PTR_TO_MEM:
19694 case PTR_TO_BTF_ID:
19695 return true;
19696 default:
19697 return false;
19698 }
19699 }
19700
is_ptr_to_mem(enum bpf_reg_type type)19701 static bool is_ptr_to_mem(enum bpf_reg_type type)
19702 {
19703 return base_type(type) == PTR_TO_MEM;
19704 }
19705
save_aux_ptr_type(struct bpf_verifier_env * env,enum bpf_reg_type type,bool allow_trust_mismatch)19706 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
19707 bool allow_trust_mismatch)
19708 {
19709 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
19710 enum bpf_reg_type merged_type;
19711
19712 if (*prev_type == NOT_INIT) {
19713 /* Saw a valid insn
19714 * dst_reg = *(u32 *)(src_reg + off)
19715 * save type to validate intersecting paths
19716 */
19717 *prev_type = type;
19718 } else if (reg_type_mismatch(type, *prev_type)) {
19719 /* Abuser program is trying to use the same insn
19720 * dst_reg = *(u32*) (src_reg + off)
19721 * with different pointer types:
19722 * src_reg == ctx in one branch and
19723 * src_reg == stack|map in some other branch.
19724 * Reject it.
19725 */
19726 if (allow_trust_mismatch &&
19727 is_ptr_to_mem_or_btf_id(type) &&
19728 is_ptr_to_mem_or_btf_id(*prev_type)) {
19729 /*
19730 * Have to support a use case when one path through
19731 * the program yields TRUSTED pointer while another
19732 * is UNTRUSTED. Fallback to UNTRUSTED to generate
19733 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
19734 * Same behavior of MEM_RDONLY flag.
19735 */
19736 if (is_ptr_to_mem(type) || is_ptr_to_mem(*prev_type))
19737 merged_type = PTR_TO_MEM;
19738 else
19739 merged_type = PTR_TO_BTF_ID;
19740 if ((type & PTR_UNTRUSTED) || (*prev_type & PTR_UNTRUSTED))
19741 merged_type |= PTR_UNTRUSTED;
19742 if ((type & MEM_RDONLY) || (*prev_type & MEM_RDONLY))
19743 merged_type |= MEM_RDONLY;
19744 *prev_type = merged_type;
19745 } else {
19746 verbose(env, "same insn cannot be used with different pointers\n");
19747 return -EINVAL;
19748 }
19749 }
19750
19751 return 0;
19752 }
19753
19754 enum {
19755 PROCESS_BPF_EXIT = 1
19756 };
19757
process_bpf_exit_full(struct bpf_verifier_env * env,bool * do_print_state,bool exception_exit)19758 static int process_bpf_exit_full(struct bpf_verifier_env *env,
19759 bool *do_print_state,
19760 bool exception_exit)
19761 {
19762 /* We must do check_reference_leak here before
19763 * prepare_func_exit to handle the case when
19764 * state->curframe > 0, it may be a callback function,
19765 * for which reference_state must match caller reference
19766 * state when it exits.
19767 */
19768 int err = check_resource_leak(env, exception_exit,
19769 !env->cur_state->curframe,
19770 "BPF_EXIT instruction in main prog");
19771 if (err)
19772 return err;
19773
19774 /* The side effect of the prepare_func_exit which is
19775 * being skipped is that it frees bpf_func_state.
19776 * Typically, process_bpf_exit will only be hit with
19777 * outermost exit. copy_verifier_state in pop_stack will
19778 * handle freeing of any extra bpf_func_state left over
19779 * from not processing all nested function exits. We
19780 * also skip return code checks as they are not needed
19781 * for exceptional exits.
19782 */
19783 if (exception_exit)
19784 return PROCESS_BPF_EXIT;
19785
19786 if (env->cur_state->curframe) {
19787 err = bpf_update_live_stack(env);
19788 if (err)
19789 return err;
19790 /* exit from nested function */
19791 err = prepare_func_exit(env, &env->insn_idx);
19792 if (err)
19793 return err;
19794 *do_print_state = true;
19795 return 0;
19796 }
19797
19798 err = check_return_code(env, BPF_REG_0, "R0");
19799 if (err)
19800 return err;
19801 return PROCESS_BPF_EXIT;
19802 }
19803
do_check_insn(struct bpf_verifier_env * env,bool * do_print_state)19804 static int do_check_insn(struct bpf_verifier_env *env, bool *do_print_state)
19805 {
19806 int err;
19807 struct bpf_insn *insn = &env->prog->insnsi[env->insn_idx];
19808 u8 class = BPF_CLASS(insn->code);
19809
19810 if (class == BPF_ALU || class == BPF_ALU64) {
19811 err = check_alu_op(env, insn);
19812 if (err)
19813 return err;
19814
19815 } else if (class == BPF_LDX) {
19816 bool is_ldsx = BPF_MODE(insn->code) == BPF_MEMSX;
19817
19818 /* Check for reserved fields is already done in
19819 * resolve_pseudo_ldimm64().
19820 */
19821 err = check_load_mem(env, insn, false, is_ldsx, true, "ldx");
19822 if (err)
19823 return err;
19824 } else if (class == BPF_STX) {
19825 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
19826 err = check_atomic(env, insn);
19827 if (err)
19828 return err;
19829 env->insn_idx++;
19830 return 0;
19831 }
19832
19833 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
19834 verbose(env, "BPF_STX uses reserved fields\n");
19835 return -EINVAL;
19836 }
19837
19838 err = check_store_reg(env, insn, false);
19839 if (err)
19840 return err;
19841 } else if (class == BPF_ST) {
19842 enum bpf_reg_type dst_reg_type;
19843
19844 if (BPF_MODE(insn->code) != BPF_MEM ||
19845 insn->src_reg != BPF_REG_0) {
19846 verbose(env, "BPF_ST uses reserved fields\n");
19847 return -EINVAL;
19848 }
19849 /* check src operand */
19850 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
19851 if (err)
19852 return err;
19853
19854 dst_reg_type = cur_regs(env)[insn->dst_reg].type;
19855
19856 /* check that memory (dst_reg + off) is writeable */
19857 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
19858 insn->off, BPF_SIZE(insn->code),
19859 BPF_WRITE, -1, false, false);
19860 if (err)
19861 return err;
19862
19863 err = save_aux_ptr_type(env, dst_reg_type, false);
19864 if (err)
19865 return err;
19866 } else if (class == BPF_JMP || class == BPF_JMP32) {
19867 u8 opcode = BPF_OP(insn->code);
19868
19869 env->jmps_processed++;
19870 if (opcode == BPF_CALL) {
19871 if (BPF_SRC(insn->code) != BPF_K ||
19872 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL &&
19873 insn->off != 0) ||
19874 (insn->src_reg != BPF_REG_0 &&
19875 insn->src_reg != BPF_PSEUDO_CALL &&
19876 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
19877 insn->dst_reg != BPF_REG_0 || class == BPF_JMP32) {
19878 verbose(env, "BPF_CALL uses reserved fields\n");
19879 return -EINVAL;
19880 }
19881
19882 if (env->cur_state->active_locks) {
19883 if ((insn->src_reg == BPF_REG_0 &&
19884 insn->imm != BPF_FUNC_spin_unlock) ||
19885 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
19886 (insn->off != 0 || !kfunc_spin_allowed(insn->imm)))) {
19887 verbose(env,
19888 "function calls are not allowed while holding a lock\n");
19889 return -EINVAL;
19890 }
19891 }
19892 if (insn->src_reg == BPF_PSEUDO_CALL) {
19893 err = check_func_call(env, insn, &env->insn_idx);
19894 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
19895 err = check_kfunc_call(env, insn, &env->insn_idx);
19896 if (!err && is_bpf_throw_kfunc(insn))
19897 return process_bpf_exit_full(env, do_print_state, true);
19898 } else {
19899 err = check_helper_call(env, insn, &env->insn_idx);
19900 }
19901 if (err)
19902 return err;
19903
19904 mark_reg_scratched(env, BPF_REG_0);
19905 } else if (opcode == BPF_JA) {
19906 if (BPF_SRC(insn->code) != BPF_K ||
19907 insn->src_reg != BPF_REG_0 ||
19908 insn->dst_reg != BPF_REG_0 ||
19909 (class == BPF_JMP && insn->imm != 0) ||
19910 (class == BPF_JMP32 && insn->off != 0)) {
19911 verbose(env, "BPF_JA uses reserved fields\n");
19912 return -EINVAL;
19913 }
19914
19915 if (class == BPF_JMP)
19916 env->insn_idx += insn->off + 1;
19917 else
19918 env->insn_idx += insn->imm + 1;
19919 return 0;
19920 } else if (opcode == BPF_EXIT) {
19921 if (BPF_SRC(insn->code) != BPF_K ||
19922 insn->imm != 0 ||
19923 insn->src_reg != BPF_REG_0 ||
19924 insn->dst_reg != BPF_REG_0 ||
19925 class == BPF_JMP32) {
19926 verbose(env, "BPF_EXIT uses reserved fields\n");
19927 return -EINVAL;
19928 }
19929 return process_bpf_exit_full(env, do_print_state, false);
19930 } else {
19931 err = check_cond_jmp_op(env, insn, &env->insn_idx);
19932 if (err)
19933 return err;
19934 }
19935 } else if (class == BPF_LD) {
19936 u8 mode = BPF_MODE(insn->code);
19937
19938 if (mode == BPF_ABS || mode == BPF_IND) {
19939 err = check_ld_abs(env, insn);
19940 if (err)
19941 return err;
19942
19943 } else if (mode == BPF_IMM) {
19944 err = check_ld_imm(env, insn);
19945 if (err)
19946 return err;
19947
19948 env->insn_idx++;
19949 sanitize_mark_insn_seen(env);
19950 } else {
19951 verbose(env, "invalid BPF_LD mode\n");
19952 return -EINVAL;
19953 }
19954 } else {
19955 verbose(env, "unknown insn class %d\n", class);
19956 return -EINVAL;
19957 }
19958
19959 env->insn_idx++;
19960 return 0;
19961 }
19962
do_check(struct bpf_verifier_env * env)19963 static int do_check(struct bpf_verifier_env *env)
19964 {
19965 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
19966 struct bpf_verifier_state *state = env->cur_state;
19967 struct bpf_insn *insns = env->prog->insnsi;
19968 int insn_cnt = env->prog->len;
19969 bool do_print_state = false;
19970 int prev_insn_idx = -1;
19971
19972 for (;;) {
19973 struct bpf_insn *insn;
19974 struct bpf_insn_aux_data *insn_aux;
19975 int err, marks_err;
19976
19977 /* reset current history entry on each new instruction */
19978 env->cur_hist_ent = NULL;
19979
19980 env->prev_insn_idx = prev_insn_idx;
19981 if (env->insn_idx >= insn_cnt) {
19982 verbose(env, "invalid insn idx %d insn_cnt %d\n",
19983 env->insn_idx, insn_cnt);
19984 return -EFAULT;
19985 }
19986
19987 insn = &insns[env->insn_idx];
19988 insn_aux = &env->insn_aux_data[env->insn_idx];
19989
19990 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
19991 verbose(env,
19992 "BPF program is too large. Processed %d insn\n",
19993 env->insn_processed);
19994 return -E2BIG;
19995 }
19996
19997 state->last_insn_idx = env->prev_insn_idx;
19998 state->insn_idx = env->insn_idx;
19999
20000 if (is_prune_point(env, env->insn_idx)) {
20001 err = is_state_visited(env, env->insn_idx);
20002 if (err < 0)
20003 return err;
20004 if (err == 1) {
20005 /* found equivalent state, can prune the search */
20006 if (env->log.level & BPF_LOG_LEVEL) {
20007 if (do_print_state)
20008 verbose(env, "\nfrom %d to %d%s: safe\n",
20009 env->prev_insn_idx, env->insn_idx,
20010 env->cur_state->speculative ?
20011 " (speculative execution)" : "");
20012 else
20013 verbose(env, "%d: safe\n", env->insn_idx);
20014 }
20015 goto process_bpf_exit;
20016 }
20017 }
20018
20019 if (is_jmp_point(env, env->insn_idx)) {
20020 err = push_jmp_history(env, state, 0, 0);
20021 if (err)
20022 return err;
20023 }
20024
20025 if (signal_pending(current))
20026 return -EAGAIN;
20027
20028 if (need_resched())
20029 cond_resched();
20030
20031 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
20032 verbose(env, "\nfrom %d to %d%s:",
20033 env->prev_insn_idx, env->insn_idx,
20034 env->cur_state->speculative ?
20035 " (speculative execution)" : "");
20036 print_verifier_state(env, state, state->curframe, true);
20037 do_print_state = false;
20038 }
20039
20040 if (env->log.level & BPF_LOG_LEVEL) {
20041 if (verifier_state_scratched(env))
20042 print_insn_state(env, state, state->curframe);
20043
20044 verbose_linfo(env, env->insn_idx, "; ");
20045 env->prev_log_pos = env->log.end_pos;
20046 verbose(env, "%d: ", env->insn_idx);
20047 verbose_insn(env, insn);
20048 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
20049 env->prev_log_pos = env->log.end_pos;
20050 }
20051
20052 if (bpf_prog_is_offloaded(env->prog->aux)) {
20053 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
20054 env->prev_insn_idx);
20055 if (err)
20056 return err;
20057 }
20058
20059 sanitize_mark_insn_seen(env);
20060 prev_insn_idx = env->insn_idx;
20061
20062 /* Reduce verification complexity by stopping speculative path
20063 * verification when a nospec is encountered.
20064 */
20065 if (state->speculative && insn_aux->nospec)
20066 goto process_bpf_exit;
20067
20068 err = bpf_reset_stack_write_marks(env, env->insn_idx);
20069 if (err)
20070 return err;
20071 err = do_check_insn(env, &do_print_state);
20072 if (err >= 0 || error_recoverable_with_nospec(err)) {
20073 marks_err = bpf_commit_stack_write_marks(env);
20074 if (marks_err)
20075 return marks_err;
20076 }
20077 if (error_recoverable_with_nospec(err) && state->speculative) {
20078 /* Prevent this speculative path from ever reaching the
20079 * insn that would have been unsafe to execute.
20080 */
20081 insn_aux->nospec = true;
20082 /* If it was an ADD/SUB insn, potentially remove any
20083 * markings for alu sanitization.
20084 */
20085 insn_aux->alu_state = 0;
20086 goto process_bpf_exit;
20087 } else if (err < 0) {
20088 return err;
20089 } else if (err == PROCESS_BPF_EXIT) {
20090 goto process_bpf_exit;
20091 }
20092 WARN_ON_ONCE(err);
20093
20094 if (state->speculative && insn_aux->nospec_result) {
20095 /* If we are on a path that performed a jump-op, this
20096 * may skip a nospec patched-in after the jump. This can
20097 * currently never happen because nospec_result is only
20098 * used for the write-ops
20099 * `*(size*)(dst_reg+off)=src_reg|imm32` which must
20100 * never skip the following insn. Still, add a warning
20101 * to document this in case nospec_result is used
20102 * elsewhere in the future.
20103 *
20104 * All non-branch instructions have a single
20105 * fall-through edge. For these, nospec_result should
20106 * already work.
20107 */
20108 if (verifier_bug_if(BPF_CLASS(insn->code) == BPF_JMP ||
20109 BPF_CLASS(insn->code) == BPF_JMP32, env,
20110 "speculation barrier after jump instruction may not have the desired effect"))
20111 return -EFAULT;
20112 process_bpf_exit:
20113 mark_verifier_state_scratched(env);
20114 err = update_branch_counts(env, env->cur_state);
20115 if (err)
20116 return err;
20117 err = bpf_update_live_stack(env);
20118 if (err)
20119 return err;
20120 err = pop_stack(env, &prev_insn_idx, &env->insn_idx,
20121 pop_log);
20122 if (err < 0) {
20123 if (err != -ENOENT)
20124 return err;
20125 break;
20126 } else {
20127 do_print_state = true;
20128 continue;
20129 }
20130 }
20131 }
20132
20133 return 0;
20134 }
20135
find_btf_percpu_datasec(struct btf * btf)20136 static int find_btf_percpu_datasec(struct btf *btf)
20137 {
20138 const struct btf_type *t;
20139 const char *tname;
20140 int i, n;
20141
20142 /*
20143 * Both vmlinux and module each have their own ".data..percpu"
20144 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
20145 * types to look at only module's own BTF types.
20146 */
20147 n = btf_nr_types(btf);
20148 if (btf_is_module(btf))
20149 i = btf_nr_types(btf_vmlinux);
20150 else
20151 i = 1;
20152
20153 for(; i < n; i++) {
20154 t = btf_type_by_id(btf, i);
20155 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
20156 continue;
20157
20158 tname = btf_name_by_offset(btf, t->name_off);
20159 if (!strcmp(tname, ".data..percpu"))
20160 return i;
20161 }
20162
20163 return -ENOENT;
20164 }
20165
20166 /*
20167 * Add btf to the used_btfs array and return the index. (If the btf was
20168 * already added, then just return the index.) Upon successful insertion
20169 * increase btf refcnt, and, if present, also refcount the corresponding
20170 * kernel module.
20171 */
__add_used_btf(struct bpf_verifier_env * env,struct btf * btf)20172 static int __add_used_btf(struct bpf_verifier_env *env, struct btf *btf)
20173 {
20174 struct btf_mod_pair *btf_mod;
20175 int i;
20176
20177 /* check whether we recorded this BTF (and maybe module) already */
20178 for (i = 0; i < env->used_btf_cnt; i++)
20179 if (env->used_btfs[i].btf == btf)
20180 return i;
20181
20182 if (env->used_btf_cnt >= MAX_USED_BTFS) {
20183 verbose(env, "The total number of btfs per program has reached the limit of %u\n",
20184 MAX_USED_BTFS);
20185 return -E2BIG;
20186 }
20187
20188 btf_get(btf);
20189
20190 btf_mod = &env->used_btfs[env->used_btf_cnt];
20191 btf_mod->btf = btf;
20192 btf_mod->module = NULL;
20193
20194 /* if we reference variables from kernel module, bump its refcount */
20195 if (btf_is_module(btf)) {
20196 btf_mod->module = btf_try_get_module(btf);
20197 if (!btf_mod->module) {
20198 btf_put(btf);
20199 return -ENXIO;
20200 }
20201 }
20202
20203 return env->used_btf_cnt++;
20204 }
20205
20206 /* replace pseudo btf_id with kernel symbol address */
__check_pseudo_btf_id(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn_aux_data * aux,struct btf * btf)20207 static int __check_pseudo_btf_id(struct bpf_verifier_env *env,
20208 struct bpf_insn *insn,
20209 struct bpf_insn_aux_data *aux,
20210 struct btf *btf)
20211 {
20212 const struct btf_var_secinfo *vsi;
20213 const struct btf_type *datasec;
20214 const struct btf_type *t;
20215 const char *sym_name;
20216 bool percpu = false;
20217 u32 type, id = insn->imm;
20218 s32 datasec_id;
20219 u64 addr;
20220 int i;
20221
20222 t = btf_type_by_id(btf, id);
20223 if (!t) {
20224 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
20225 return -ENOENT;
20226 }
20227
20228 if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
20229 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
20230 return -EINVAL;
20231 }
20232
20233 sym_name = btf_name_by_offset(btf, t->name_off);
20234 addr = kallsyms_lookup_name(sym_name);
20235 if (!addr) {
20236 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
20237 sym_name);
20238 return -ENOENT;
20239 }
20240 insn[0].imm = (u32)addr;
20241 insn[1].imm = addr >> 32;
20242
20243 if (btf_type_is_func(t)) {
20244 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
20245 aux->btf_var.mem_size = 0;
20246 return 0;
20247 }
20248
20249 datasec_id = find_btf_percpu_datasec(btf);
20250 if (datasec_id > 0) {
20251 datasec = btf_type_by_id(btf, datasec_id);
20252 for_each_vsi(i, datasec, vsi) {
20253 if (vsi->type == id) {
20254 percpu = true;
20255 break;
20256 }
20257 }
20258 }
20259
20260 type = t->type;
20261 t = btf_type_skip_modifiers(btf, type, NULL);
20262 if (percpu) {
20263 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
20264 aux->btf_var.btf = btf;
20265 aux->btf_var.btf_id = type;
20266 } else if (!btf_type_is_struct(t)) {
20267 const struct btf_type *ret;
20268 const char *tname;
20269 u32 tsize;
20270
20271 /* resolve the type size of ksym. */
20272 ret = btf_resolve_size(btf, t, &tsize);
20273 if (IS_ERR(ret)) {
20274 tname = btf_name_by_offset(btf, t->name_off);
20275 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
20276 tname, PTR_ERR(ret));
20277 return -EINVAL;
20278 }
20279 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
20280 aux->btf_var.mem_size = tsize;
20281 } else {
20282 aux->btf_var.reg_type = PTR_TO_BTF_ID;
20283 aux->btf_var.btf = btf;
20284 aux->btf_var.btf_id = type;
20285 }
20286
20287 return 0;
20288 }
20289
check_pseudo_btf_id(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn_aux_data * aux)20290 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
20291 struct bpf_insn *insn,
20292 struct bpf_insn_aux_data *aux)
20293 {
20294 struct btf *btf;
20295 int btf_fd;
20296 int err;
20297
20298 btf_fd = insn[1].imm;
20299 if (btf_fd) {
20300 CLASS(fd, f)(btf_fd);
20301
20302 btf = __btf_get_by_fd(f);
20303 if (IS_ERR(btf)) {
20304 verbose(env, "invalid module BTF object FD specified.\n");
20305 return -EINVAL;
20306 }
20307 } else {
20308 if (!btf_vmlinux) {
20309 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
20310 return -EINVAL;
20311 }
20312 btf = btf_vmlinux;
20313 }
20314
20315 err = __check_pseudo_btf_id(env, insn, aux, btf);
20316 if (err)
20317 return err;
20318
20319 err = __add_used_btf(env, btf);
20320 if (err < 0)
20321 return err;
20322 return 0;
20323 }
20324
is_tracing_prog_type(enum bpf_prog_type type)20325 static bool is_tracing_prog_type(enum bpf_prog_type type)
20326 {
20327 switch (type) {
20328 case BPF_PROG_TYPE_KPROBE:
20329 case BPF_PROG_TYPE_TRACEPOINT:
20330 case BPF_PROG_TYPE_PERF_EVENT:
20331 case BPF_PROG_TYPE_RAW_TRACEPOINT:
20332 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
20333 return true;
20334 default:
20335 return false;
20336 }
20337 }
20338
bpf_map_is_cgroup_storage(struct bpf_map * map)20339 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
20340 {
20341 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
20342 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
20343 }
20344
check_map_prog_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,struct bpf_prog * prog)20345 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
20346 struct bpf_map *map,
20347 struct bpf_prog *prog)
20348
20349 {
20350 enum bpf_prog_type prog_type = resolve_prog_type(prog);
20351
20352 if (map->excl_prog_sha &&
20353 memcmp(map->excl_prog_sha, prog->digest, SHA256_DIGEST_SIZE)) {
20354 verbose(env, "program's hash doesn't match map's excl_prog_hash\n");
20355 return -EACCES;
20356 }
20357
20358 if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
20359 btf_record_has_field(map->record, BPF_RB_ROOT)) {
20360 if (is_tracing_prog_type(prog_type)) {
20361 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
20362 return -EINVAL;
20363 }
20364 }
20365
20366 if (btf_record_has_field(map->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) {
20367 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
20368 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
20369 return -EINVAL;
20370 }
20371
20372 if (is_tracing_prog_type(prog_type)) {
20373 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
20374 return -EINVAL;
20375 }
20376 }
20377
20378 if (btf_record_has_field(map->record, BPF_TIMER)) {
20379 if (is_tracing_prog_type(prog_type)) {
20380 verbose(env, "tracing progs cannot use bpf_timer yet\n");
20381 return -EINVAL;
20382 }
20383 }
20384
20385 if (btf_record_has_field(map->record, BPF_WORKQUEUE)) {
20386 if (is_tracing_prog_type(prog_type)) {
20387 verbose(env, "tracing progs cannot use bpf_wq yet\n");
20388 return -EINVAL;
20389 }
20390 }
20391
20392 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
20393 !bpf_offload_prog_map_match(prog, map)) {
20394 verbose(env, "offload device mismatch between prog and map\n");
20395 return -EINVAL;
20396 }
20397
20398 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
20399 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
20400 return -EINVAL;
20401 }
20402
20403 if (prog->sleepable)
20404 switch (map->map_type) {
20405 case BPF_MAP_TYPE_HASH:
20406 case BPF_MAP_TYPE_LRU_HASH:
20407 case BPF_MAP_TYPE_ARRAY:
20408 case BPF_MAP_TYPE_PERCPU_HASH:
20409 case BPF_MAP_TYPE_PERCPU_ARRAY:
20410 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
20411 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
20412 case BPF_MAP_TYPE_HASH_OF_MAPS:
20413 case BPF_MAP_TYPE_RINGBUF:
20414 case BPF_MAP_TYPE_USER_RINGBUF:
20415 case BPF_MAP_TYPE_INODE_STORAGE:
20416 case BPF_MAP_TYPE_SK_STORAGE:
20417 case BPF_MAP_TYPE_TASK_STORAGE:
20418 case BPF_MAP_TYPE_CGRP_STORAGE:
20419 case BPF_MAP_TYPE_QUEUE:
20420 case BPF_MAP_TYPE_STACK:
20421 case BPF_MAP_TYPE_ARENA:
20422 break;
20423 default:
20424 verbose(env,
20425 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
20426 return -EINVAL;
20427 }
20428
20429 if (bpf_map_is_cgroup_storage(map) &&
20430 bpf_cgroup_storage_assign(env->prog->aux, map)) {
20431 verbose(env, "only one cgroup storage of each type is allowed\n");
20432 return -EBUSY;
20433 }
20434
20435 if (map->map_type == BPF_MAP_TYPE_ARENA) {
20436 if (env->prog->aux->arena) {
20437 verbose(env, "Only one arena per program\n");
20438 return -EBUSY;
20439 }
20440 if (!env->allow_ptr_leaks || !env->bpf_capable) {
20441 verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n");
20442 return -EPERM;
20443 }
20444 if (!env->prog->jit_requested) {
20445 verbose(env, "JIT is required to use arena\n");
20446 return -EOPNOTSUPP;
20447 }
20448 if (!bpf_jit_supports_arena()) {
20449 verbose(env, "JIT doesn't support arena\n");
20450 return -EOPNOTSUPP;
20451 }
20452 env->prog->aux->arena = (void *)map;
20453 if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) {
20454 verbose(env, "arena's user address must be set via map_extra or mmap()\n");
20455 return -EINVAL;
20456 }
20457 }
20458
20459 return 0;
20460 }
20461
__add_used_map(struct bpf_verifier_env * env,struct bpf_map * map)20462 static int __add_used_map(struct bpf_verifier_env *env, struct bpf_map *map)
20463 {
20464 int i, err;
20465
20466 /* check whether we recorded this map already */
20467 for (i = 0; i < env->used_map_cnt; i++)
20468 if (env->used_maps[i] == map)
20469 return i;
20470
20471 if (env->used_map_cnt >= MAX_USED_MAPS) {
20472 verbose(env, "The total number of maps per program has reached the limit of %u\n",
20473 MAX_USED_MAPS);
20474 return -E2BIG;
20475 }
20476
20477 err = check_map_prog_compatibility(env, map, env->prog);
20478 if (err)
20479 return err;
20480
20481 if (env->prog->sleepable)
20482 atomic64_inc(&map->sleepable_refcnt);
20483
20484 /* hold the map. If the program is rejected by verifier,
20485 * the map will be released by release_maps() or it
20486 * will be used by the valid program until it's unloaded
20487 * and all maps are released in bpf_free_used_maps()
20488 */
20489 bpf_map_inc(map);
20490
20491 env->used_maps[env->used_map_cnt++] = map;
20492
20493 return env->used_map_cnt - 1;
20494 }
20495
20496 /* Add map behind fd to used maps list, if it's not already there, and return
20497 * its index.
20498 * Returns <0 on error, or >= 0 index, on success.
20499 */
add_used_map(struct bpf_verifier_env * env,int fd)20500 static int add_used_map(struct bpf_verifier_env *env, int fd)
20501 {
20502 struct bpf_map *map;
20503 CLASS(fd, f)(fd);
20504
20505 map = __bpf_map_get(f);
20506 if (IS_ERR(map)) {
20507 verbose(env, "fd %d is not pointing to valid bpf_map\n", fd);
20508 return PTR_ERR(map);
20509 }
20510
20511 return __add_used_map(env, map);
20512 }
20513
20514 /* find and rewrite pseudo imm in ld_imm64 instructions:
20515 *
20516 * 1. if it accesses map FD, replace it with actual map pointer.
20517 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
20518 *
20519 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
20520 */
resolve_pseudo_ldimm64(struct bpf_verifier_env * env)20521 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
20522 {
20523 struct bpf_insn *insn = env->prog->insnsi;
20524 int insn_cnt = env->prog->len;
20525 int i, err;
20526
20527 err = bpf_prog_calc_tag(env->prog);
20528 if (err)
20529 return err;
20530
20531 for (i = 0; i < insn_cnt; i++, insn++) {
20532 if (BPF_CLASS(insn->code) == BPF_LDX &&
20533 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
20534 insn->imm != 0)) {
20535 verbose(env, "BPF_LDX uses reserved fields\n");
20536 return -EINVAL;
20537 }
20538
20539 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
20540 struct bpf_insn_aux_data *aux;
20541 struct bpf_map *map;
20542 int map_idx;
20543 u64 addr;
20544 u32 fd;
20545
20546 if (i == insn_cnt - 1 || insn[1].code != 0 ||
20547 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
20548 insn[1].off != 0) {
20549 verbose(env, "invalid bpf_ld_imm64 insn\n");
20550 return -EINVAL;
20551 }
20552
20553 if (insn[0].src_reg == 0)
20554 /* valid generic load 64-bit imm */
20555 goto next_insn;
20556
20557 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
20558 aux = &env->insn_aux_data[i];
20559 err = check_pseudo_btf_id(env, insn, aux);
20560 if (err)
20561 return err;
20562 goto next_insn;
20563 }
20564
20565 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
20566 aux = &env->insn_aux_data[i];
20567 aux->ptr_type = PTR_TO_FUNC;
20568 goto next_insn;
20569 }
20570
20571 /* In final convert_pseudo_ld_imm64() step, this is
20572 * converted into regular 64-bit imm load insn.
20573 */
20574 switch (insn[0].src_reg) {
20575 case BPF_PSEUDO_MAP_VALUE:
20576 case BPF_PSEUDO_MAP_IDX_VALUE:
20577 break;
20578 case BPF_PSEUDO_MAP_FD:
20579 case BPF_PSEUDO_MAP_IDX:
20580 if (insn[1].imm == 0)
20581 break;
20582 fallthrough;
20583 default:
20584 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
20585 return -EINVAL;
20586 }
20587
20588 switch (insn[0].src_reg) {
20589 case BPF_PSEUDO_MAP_IDX_VALUE:
20590 case BPF_PSEUDO_MAP_IDX:
20591 if (bpfptr_is_null(env->fd_array)) {
20592 verbose(env, "fd_idx without fd_array is invalid\n");
20593 return -EPROTO;
20594 }
20595 if (copy_from_bpfptr_offset(&fd, env->fd_array,
20596 insn[0].imm * sizeof(fd),
20597 sizeof(fd)))
20598 return -EFAULT;
20599 break;
20600 default:
20601 fd = insn[0].imm;
20602 break;
20603 }
20604
20605 map_idx = add_used_map(env, fd);
20606 if (map_idx < 0)
20607 return map_idx;
20608 map = env->used_maps[map_idx];
20609
20610 aux = &env->insn_aux_data[i];
20611 aux->map_index = map_idx;
20612
20613 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
20614 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
20615 addr = (unsigned long)map;
20616 } else {
20617 u32 off = insn[1].imm;
20618
20619 if (off >= BPF_MAX_VAR_OFF) {
20620 verbose(env, "direct value offset of %u is not allowed\n", off);
20621 return -EINVAL;
20622 }
20623
20624 if (!map->ops->map_direct_value_addr) {
20625 verbose(env, "no direct value access support for this map type\n");
20626 return -EINVAL;
20627 }
20628
20629 err = map->ops->map_direct_value_addr(map, &addr, off);
20630 if (err) {
20631 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
20632 map->value_size, off);
20633 return err;
20634 }
20635
20636 aux->map_off = off;
20637 addr += off;
20638 }
20639
20640 insn[0].imm = (u32)addr;
20641 insn[1].imm = addr >> 32;
20642
20643 next_insn:
20644 insn++;
20645 i++;
20646 continue;
20647 }
20648
20649 /* Basic sanity check before we invest more work here. */
20650 if (!bpf_opcode_in_insntable(insn->code)) {
20651 verbose(env, "unknown opcode %02x\n", insn->code);
20652 return -EINVAL;
20653 }
20654 }
20655
20656 /* now all pseudo BPF_LD_IMM64 instructions load valid
20657 * 'struct bpf_map *' into a register instead of user map_fd.
20658 * These pointers will be used later by verifier to validate map access.
20659 */
20660 return 0;
20661 }
20662
20663 /* drop refcnt of maps used by the rejected program */
release_maps(struct bpf_verifier_env * env)20664 static void release_maps(struct bpf_verifier_env *env)
20665 {
20666 __bpf_free_used_maps(env->prog->aux, env->used_maps,
20667 env->used_map_cnt);
20668 }
20669
20670 /* drop refcnt of maps used by the rejected program */
release_btfs(struct bpf_verifier_env * env)20671 static void release_btfs(struct bpf_verifier_env *env)
20672 {
20673 __bpf_free_used_btfs(env->used_btfs, env->used_btf_cnt);
20674 }
20675
20676 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
convert_pseudo_ld_imm64(struct bpf_verifier_env * env)20677 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
20678 {
20679 struct bpf_insn *insn = env->prog->insnsi;
20680 int insn_cnt = env->prog->len;
20681 int i;
20682
20683 for (i = 0; i < insn_cnt; i++, insn++) {
20684 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
20685 continue;
20686 if (insn->src_reg == BPF_PSEUDO_FUNC)
20687 continue;
20688 insn->src_reg = 0;
20689 }
20690 }
20691
20692 /* single env->prog->insni[off] instruction was replaced with the range
20693 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
20694 * [0, off) and [off, end) to new locations, so the patched range stays zero
20695 */
adjust_insn_aux_data(struct bpf_verifier_env * env,struct bpf_prog * new_prog,u32 off,u32 cnt)20696 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
20697 struct bpf_prog *new_prog, u32 off, u32 cnt)
20698 {
20699 struct bpf_insn_aux_data *data = env->insn_aux_data;
20700 struct bpf_insn *insn = new_prog->insnsi;
20701 u32 old_seen = data[off].seen;
20702 u32 prog_len;
20703 int i;
20704
20705 /* aux info at OFF always needs adjustment, no matter fast path
20706 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
20707 * original insn at old prog.
20708 */
20709 data[off].zext_dst = insn_has_def32(insn + off + cnt - 1);
20710
20711 if (cnt == 1)
20712 return;
20713 prog_len = new_prog->len;
20714
20715 memmove(data + off + cnt - 1, data + off,
20716 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
20717 memset(data + off, 0, sizeof(struct bpf_insn_aux_data) * (cnt - 1));
20718 for (i = off; i < off + cnt - 1; i++) {
20719 /* Expand insni[off]'s seen count to the patched range. */
20720 data[i].seen = old_seen;
20721 data[i].zext_dst = insn_has_def32(insn + i);
20722 }
20723 }
20724
adjust_subprog_starts(struct bpf_verifier_env * env,u32 off,u32 len)20725 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
20726 {
20727 int i;
20728
20729 if (len == 1)
20730 return;
20731 /* NOTE: fake 'exit' subprog should be updated as well. */
20732 for (i = 0; i <= env->subprog_cnt; i++) {
20733 if (env->subprog_info[i].start <= off)
20734 continue;
20735 env->subprog_info[i].start += len - 1;
20736 }
20737 }
20738
adjust_poke_descs(struct bpf_prog * prog,u32 off,u32 len)20739 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
20740 {
20741 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
20742 int i, sz = prog->aux->size_poke_tab;
20743 struct bpf_jit_poke_descriptor *desc;
20744
20745 for (i = 0; i < sz; i++) {
20746 desc = &tab[i];
20747 if (desc->insn_idx <= off)
20748 continue;
20749 desc->insn_idx += len - 1;
20750 }
20751 }
20752
bpf_patch_insn_data(struct bpf_verifier_env * env,u32 off,const struct bpf_insn * patch,u32 len)20753 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
20754 const struct bpf_insn *patch, u32 len)
20755 {
20756 struct bpf_prog *new_prog;
20757 struct bpf_insn_aux_data *new_data = NULL;
20758
20759 if (len > 1) {
20760 new_data = vrealloc(env->insn_aux_data,
20761 array_size(env->prog->len + len - 1,
20762 sizeof(struct bpf_insn_aux_data)),
20763 GFP_KERNEL_ACCOUNT | __GFP_ZERO);
20764 if (!new_data)
20765 return NULL;
20766
20767 env->insn_aux_data = new_data;
20768 }
20769
20770 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
20771 if (IS_ERR(new_prog)) {
20772 if (PTR_ERR(new_prog) == -ERANGE)
20773 verbose(env,
20774 "insn %d cannot be patched due to 16-bit range\n",
20775 env->insn_aux_data[off].orig_idx);
20776 return NULL;
20777 }
20778 adjust_insn_aux_data(env, new_prog, off, len);
20779 adjust_subprog_starts(env, off, len);
20780 adjust_poke_descs(new_prog, off, len);
20781 return new_prog;
20782 }
20783
20784 /*
20785 * For all jmp insns in a given 'prog' that point to 'tgt_idx' insn adjust the
20786 * jump offset by 'delta'.
20787 */
adjust_jmp_off(struct bpf_prog * prog,u32 tgt_idx,u32 delta)20788 static int adjust_jmp_off(struct bpf_prog *prog, u32 tgt_idx, u32 delta)
20789 {
20790 struct bpf_insn *insn = prog->insnsi;
20791 u32 insn_cnt = prog->len, i;
20792 s32 imm;
20793 s16 off;
20794
20795 for (i = 0; i < insn_cnt; i++, insn++) {
20796 u8 code = insn->code;
20797
20798 if (tgt_idx <= i && i < tgt_idx + delta)
20799 continue;
20800
20801 if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) ||
20802 BPF_OP(code) == BPF_CALL || BPF_OP(code) == BPF_EXIT)
20803 continue;
20804
20805 if (insn->code == (BPF_JMP32 | BPF_JA)) {
20806 if (i + 1 + insn->imm != tgt_idx)
20807 continue;
20808 if (check_add_overflow(insn->imm, delta, &imm))
20809 return -ERANGE;
20810 insn->imm = imm;
20811 } else {
20812 if (i + 1 + insn->off != tgt_idx)
20813 continue;
20814 if (check_add_overflow(insn->off, delta, &off))
20815 return -ERANGE;
20816 insn->off = off;
20817 }
20818 }
20819 return 0;
20820 }
20821
adjust_subprog_starts_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)20822 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
20823 u32 off, u32 cnt)
20824 {
20825 int i, j;
20826
20827 /* find first prog starting at or after off (first to remove) */
20828 for (i = 0; i < env->subprog_cnt; i++)
20829 if (env->subprog_info[i].start >= off)
20830 break;
20831 /* find first prog starting at or after off + cnt (first to stay) */
20832 for (j = i; j < env->subprog_cnt; j++)
20833 if (env->subprog_info[j].start >= off + cnt)
20834 break;
20835 /* if j doesn't start exactly at off + cnt, we are just removing
20836 * the front of previous prog
20837 */
20838 if (env->subprog_info[j].start != off + cnt)
20839 j--;
20840
20841 if (j > i) {
20842 struct bpf_prog_aux *aux = env->prog->aux;
20843 int move;
20844
20845 /* move fake 'exit' subprog as well */
20846 move = env->subprog_cnt + 1 - j;
20847
20848 memmove(env->subprog_info + i,
20849 env->subprog_info + j,
20850 sizeof(*env->subprog_info) * move);
20851 env->subprog_cnt -= j - i;
20852
20853 /* remove func_info */
20854 if (aux->func_info) {
20855 move = aux->func_info_cnt - j;
20856
20857 memmove(aux->func_info + i,
20858 aux->func_info + j,
20859 sizeof(*aux->func_info) * move);
20860 aux->func_info_cnt -= j - i;
20861 /* func_info->insn_off is set after all code rewrites,
20862 * in adjust_btf_func() - no need to adjust
20863 */
20864 }
20865 } else {
20866 /* convert i from "first prog to remove" to "first to adjust" */
20867 if (env->subprog_info[i].start == off)
20868 i++;
20869 }
20870
20871 /* update fake 'exit' subprog as well */
20872 for (; i <= env->subprog_cnt; i++)
20873 env->subprog_info[i].start -= cnt;
20874
20875 return 0;
20876 }
20877
bpf_adj_linfo_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)20878 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
20879 u32 cnt)
20880 {
20881 struct bpf_prog *prog = env->prog;
20882 u32 i, l_off, l_cnt, nr_linfo;
20883 struct bpf_line_info *linfo;
20884
20885 nr_linfo = prog->aux->nr_linfo;
20886 if (!nr_linfo)
20887 return 0;
20888
20889 linfo = prog->aux->linfo;
20890
20891 /* find first line info to remove, count lines to be removed */
20892 for (i = 0; i < nr_linfo; i++)
20893 if (linfo[i].insn_off >= off)
20894 break;
20895
20896 l_off = i;
20897 l_cnt = 0;
20898 for (; i < nr_linfo; i++)
20899 if (linfo[i].insn_off < off + cnt)
20900 l_cnt++;
20901 else
20902 break;
20903
20904 /* First live insn doesn't match first live linfo, it needs to "inherit"
20905 * last removed linfo. prog is already modified, so prog->len == off
20906 * means no live instructions after (tail of the program was removed).
20907 */
20908 if (prog->len != off && l_cnt &&
20909 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
20910 l_cnt--;
20911 linfo[--i].insn_off = off + cnt;
20912 }
20913
20914 /* remove the line info which refer to the removed instructions */
20915 if (l_cnt) {
20916 memmove(linfo + l_off, linfo + i,
20917 sizeof(*linfo) * (nr_linfo - i));
20918
20919 prog->aux->nr_linfo -= l_cnt;
20920 nr_linfo = prog->aux->nr_linfo;
20921 }
20922
20923 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
20924 for (i = l_off; i < nr_linfo; i++)
20925 linfo[i].insn_off -= cnt;
20926
20927 /* fix up all subprogs (incl. 'exit') which start >= off */
20928 for (i = 0; i <= env->subprog_cnt; i++)
20929 if (env->subprog_info[i].linfo_idx > l_off) {
20930 /* program may have started in the removed region but
20931 * may not be fully removed
20932 */
20933 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
20934 env->subprog_info[i].linfo_idx -= l_cnt;
20935 else
20936 env->subprog_info[i].linfo_idx = l_off;
20937 }
20938
20939 return 0;
20940 }
20941
verifier_remove_insns(struct bpf_verifier_env * env,u32 off,u32 cnt)20942 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
20943 {
20944 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
20945 unsigned int orig_prog_len = env->prog->len;
20946 int err;
20947
20948 if (bpf_prog_is_offloaded(env->prog->aux))
20949 bpf_prog_offload_remove_insns(env, off, cnt);
20950
20951 err = bpf_remove_insns(env->prog, off, cnt);
20952 if (err)
20953 return err;
20954
20955 err = adjust_subprog_starts_after_remove(env, off, cnt);
20956 if (err)
20957 return err;
20958
20959 err = bpf_adj_linfo_after_remove(env, off, cnt);
20960 if (err)
20961 return err;
20962
20963 memmove(aux_data + off, aux_data + off + cnt,
20964 sizeof(*aux_data) * (orig_prog_len - off - cnt));
20965
20966 return 0;
20967 }
20968
20969 /* The verifier does more data flow analysis than llvm and will not
20970 * explore branches that are dead at run time. Malicious programs can
20971 * have dead code too. Therefore replace all dead at-run-time code
20972 * with 'ja -1'.
20973 *
20974 * Just nops are not optimal, e.g. if they would sit at the end of the
20975 * program and through another bug we would manage to jump there, then
20976 * we'd execute beyond program memory otherwise. Returning exception
20977 * code also wouldn't work since we can have subprogs where the dead
20978 * code could be located.
20979 */
sanitize_dead_code(struct bpf_verifier_env * env)20980 static void sanitize_dead_code(struct bpf_verifier_env *env)
20981 {
20982 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
20983 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
20984 struct bpf_insn *insn = env->prog->insnsi;
20985 const int insn_cnt = env->prog->len;
20986 int i;
20987
20988 for (i = 0; i < insn_cnt; i++) {
20989 if (aux_data[i].seen)
20990 continue;
20991 memcpy(insn + i, &trap, sizeof(trap));
20992 aux_data[i].zext_dst = false;
20993 }
20994 }
20995
insn_is_cond_jump(u8 code)20996 static bool insn_is_cond_jump(u8 code)
20997 {
20998 u8 op;
20999
21000 op = BPF_OP(code);
21001 if (BPF_CLASS(code) == BPF_JMP32)
21002 return op != BPF_JA;
21003
21004 if (BPF_CLASS(code) != BPF_JMP)
21005 return false;
21006
21007 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
21008 }
21009
opt_hard_wire_dead_code_branches(struct bpf_verifier_env * env)21010 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
21011 {
21012 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
21013 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
21014 struct bpf_insn *insn = env->prog->insnsi;
21015 const int insn_cnt = env->prog->len;
21016 int i;
21017
21018 for (i = 0; i < insn_cnt; i++, insn++) {
21019 if (!insn_is_cond_jump(insn->code))
21020 continue;
21021
21022 if (!aux_data[i + 1].seen)
21023 ja.off = insn->off;
21024 else if (!aux_data[i + 1 + insn->off].seen)
21025 ja.off = 0;
21026 else
21027 continue;
21028
21029 if (bpf_prog_is_offloaded(env->prog->aux))
21030 bpf_prog_offload_replace_insn(env, i, &ja);
21031
21032 memcpy(insn, &ja, sizeof(ja));
21033 }
21034 }
21035
opt_remove_dead_code(struct bpf_verifier_env * env)21036 static int opt_remove_dead_code(struct bpf_verifier_env *env)
21037 {
21038 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
21039 int insn_cnt = env->prog->len;
21040 int i, err;
21041
21042 for (i = 0; i < insn_cnt; i++) {
21043 int j;
21044
21045 j = 0;
21046 while (i + j < insn_cnt && !aux_data[i + j].seen)
21047 j++;
21048 if (!j)
21049 continue;
21050
21051 err = verifier_remove_insns(env, i, j);
21052 if (err)
21053 return err;
21054 insn_cnt = env->prog->len;
21055 }
21056
21057 return 0;
21058 }
21059
21060 static const struct bpf_insn NOP = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
21061 static const struct bpf_insn MAY_GOTO_0 = BPF_RAW_INSN(BPF_JMP | BPF_JCOND, 0, 0, 0, 0);
21062
opt_remove_nops(struct bpf_verifier_env * env)21063 static int opt_remove_nops(struct bpf_verifier_env *env)
21064 {
21065 struct bpf_insn *insn = env->prog->insnsi;
21066 int insn_cnt = env->prog->len;
21067 bool is_may_goto_0, is_ja;
21068 int i, err;
21069
21070 for (i = 0; i < insn_cnt; i++) {
21071 is_may_goto_0 = !memcmp(&insn[i], &MAY_GOTO_0, sizeof(MAY_GOTO_0));
21072 is_ja = !memcmp(&insn[i], &NOP, sizeof(NOP));
21073
21074 if (!is_may_goto_0 && !is_ja)
21075 continue;
21076
21077 err = verifier_remove_insns(env, i, 1);
21078 if (err)
21079 return err;
21080 insn_cnt--;
21081 /* Go back one insn to catch may_goto +1; may_goto +0 sequence */
21082 i -= (is_may_goto_0 && i > 0) ? 2 : 1;
21083 }
21084
21085 return 0;
21086 }
21087
opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env * env,const union bpf_attr * attr)21088 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
21089 const union bpf_attr *attr)
21090 {
21091 struct bpf_insn *patch;
21092 /* use env->insn_buf as two independent buffers */
21093 struct bpf_insn *zext_patch = env->insn_buf;
21094 struct bpf_insn *rnd_hi32_patch = &env->insn_buf[2];
21095 struct bpf_insn_aux_data *aux = env->insn_aux_data;
21096 int i, patch_len, delta = 0, len = env->prog->len;
21097 struct bpf_insn *insns = env->prog->insnsi;
21098 struct bpf_prog *new_prog;
21099 bool rnd_hi32;
21100
21101 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
21102 zext_patch[1] = BPF_ZEXT_REG(0);
21103 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
21104 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
21105 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
21106 for (i = 0; i < len; i++) {
21107 int adj_idx = i + delta;
21108 struct bpf_insn insn;
21109 int load_reg;
21110
21111 insn = insns[adj_idx];
21112 load_reg = insn_def_regno(&insn);
21113 if (!aux[adj_idx].zext_dst) {
21114 u8 code, class;
21115 u32 imm_rnd;
21116
21117 if (!rnd_hi32)
21118 continue;
21119
21120 code = insn.code;
21121 class = BPF_CLASS(code);
21122 if (load_reg == -1)
21123 continue;
21124
21125 /* NOTE: arg "reg" (the fourth one) is only used for
21126 * BPF_STX + SRC_OP, so it is safe to pass NULL
21127 * here.
21128 */
21129 if (is_reg64(&insn, load_reg, NULL, DST_OP)) {
21130 if (class == BPF_LD &&
21131 BPF_MODE(code) == BPF_IMM)
21132 i++;
21133 continue;
21134 }
21135
21136 /* ctx load could be transformed into wider load. */
21137 if (class == BPF_LDX &&
21138 aux[adj_idx].ptr_type == PTR_TO_CTX)
21139 continue;
21140
21141 imm_rnd = get_random_u32();
21142 rnd_hi32_patch[0] = insn;
21143 rnd_hi32_patch[1].imm = imm_rnd;
21144 rnd_hi32_patch[3].dst_reg = load_reg;
21145 patch = rnd_hi32_patch;
21146 patch_len = 4;
21147 goto apply_patch_buffer;
21148 }
21149
21150 /* Add in an zero-extend instruction if a) the JIT has requested
21151 * it or b) it's a CMPXCHG.
21152 *
21153 * The latter is because: BPF_CMPXCHG always loads a value into
21154 * R0, therefore always zero-extends. However some archs'
21155 * equivalent instruction only does this load when the
21156 * comparison is successful. This detail of CMPXCHG is
21157 * orthogonal to the general zero-extension behaviour of the
21158 * CPU, so it's treated independently of bpf_jit_needs_zext.
21159 */
21160 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
21161 continue;
21162
21163 /* Zero-extension is done by the caller. */
21164 if (bpf_pseudo_kfunc_call(&insn))
21165 continue;
21166
21167 if (verifier_bug_if(load_reg == -1, env,
21168 "zext_dst is set, but no reg is defined"))
21169 return -EFAULT;
21170
21171 zext_patch[0] = insn;
21172 zext_patch[1].dst_reg = load_reg;
21173 zext_patch[1].src_reg = load_reg;
21174 patch = zext_patch;
21175 patch_len = 2;
21176 apply_patch_buffer:
21177 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
21178 if (!new_prog)
21179 return -ENOMEM;
21180 env->prog = new_prog;
21181 insns = new_prog->insnsi;
21182 aux = env->insn_aux_data;
21183 delta += patch_len - 1;
21184 }
21185
21186 return 0;
21187 }
21188
21189 /* convert load instructions that access fields of a context type into a
21190 * sequence of instructions that access fields of the underlying structure:
21191 * struct __sk_buff -> struct sk_buff
21192 * struct bpf_sock_ops -> struct sock
21193 */
convert_ctx_accesses(struct bpf_verifier_env * env)21194 static int convert_ctx_accesses(struct bpf_verifier_env *env)
21195 {
21196 struct bpf_subprog_info *subprogs = env->subprog_info;
21197 const struct bpf_verifier_ops *ops = env->ops;
21198 int i, cnt, size, ctx_field_size, ret, delta = 0, epilogue_cnt = 0;
21199 const int insn_cnt = env->prog->len;
21200 struct bpf_insn *epilogue_buf = env->epilogue_buf;
21201 struct bpf_insn *insn_buf = env->insn_buf;
21202 struct bpf_insn *insn;
21203 u32 target_size, size_default, off;
21204 struct bpf_prog *new_prog;
21205 enum bpf_access_type type;
21206 bool is_narrower_load;
21207 int epilogue_idx = 0;
21208
21209 if (ops->gen_epilogue) {
21210 epilogue_cnt = ops->gen_epilogue(epilogue_buf, env->prog,
21211 -(subprogs[0].stack_depth + 8));
21212 if (epilogue_cnt >= INSN_BUF_SIZE) {
21213 verifier_bug(env, "epilogue is too long");
21214 return -EFAULT;
21215 } else if (epilogue_cnt) {
21216 /* Save the ARG_PTR_TO_CTX for the epilogue to use */
21217 cnt = 0;
21218 subprogs[0].stack_depth += 8;
21219 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_1,
21220 -subprogs[0].stack_depth);
21221 insn_buf[cnt++] = env->prog->insnsi[0];
21222 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
21223 if (!new_prog)
21224 return -ENOMEM;
21225 env->prog = new_prog;
21226 delta += cnt - 1;
21227
21228 ret = add_kfunc_in_insns(env, epilogue_buf, epilogue_cnt - 1);
21229 if (ret < 0)
21230 return ret;
21231 }
21232 }
21233
21234 if (ops->gen_prologue || env->seen_direct_write) {
21235 if (!ops->gen_prologue) {
21236 verifier_bug(env, "gen_prologue is null");
21237 return -EFAULT;
21238 }
21239 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
21240 env->prog);
21241 if (cnt >= INSN_BUF_SIZE) {
21242 verifier_bug(env, "prologue is too long");
21243 return -EFAULT;
21244 } else if (cnt) {
21245 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
21246 if (!new_prog)
21247 return -ENOMEM;
21248
21249 env->prog = new_prog;
21250 delta += cnt - 1;
21251
21252 ret = add_kfunc_in_insns(env, insn_buf, cnt - 1);
21253 if (ret < 0)
21254 return ret;
21255 }
21256 }
21257
21258 if (delta)
21259 WARN_ON(adjust_jmp_off(env->prog, 0, delta));
21260
21261 if (bpf_prog_is_offloaded(env->prog->aux))
21262 return 0;
21263
21264 insn = env->prog->insnsi + delta;
21265
21266 for (i = 0; i < insn_cnt; i++, insn++) {
21267 bpf_convert_ctx_access_t convert_ctx_access;
21268 u8 mode;
21269
21270 if (env->insn_aux_data[i + delta].nospec) {
21271 WARN_ON_ONCE(env->insn_aux_data[i + delta].alu_state);
21272 struct bpf_insn *patch = insn_buf;
21273
21274 *patch++ = BPF_ST_NOSPEC();
21275 *patch++ = *insn;
21276 cnt = patch - insn_buf;
21277 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21278 if (!new_prog)
21279 return -ENOMEM;
21280
21281 delta += cnt - 1;
21282 env->prog = new_prog;
21283 insn = new_prog->insnsi + i + delta;
21284 /* This can not be easily merged with the
21285 * nospec_result-case, because an insn may require a
21286 * nospec before and after itself. Therefore also do not
21287 * 'continue' here but potentially apply further
21288 * patching to insn. *insn should equal patch[1] now.
21289 */
21290 }
21291
21292 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
21293 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
21294 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
21295 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
21296 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
21297 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
21298 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
21299 type = BPF_READ;
21300 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
21301 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
21302 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
21303 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
21304 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
21305 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
21306 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
21307 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
21308 type = BPF_WRITE;
21309 } else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_B) ||
21310 insn->code == (BPF_STX | BPF_ATOMIC | BPF_H) ||
21311 insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) ||
21312 insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) &&
21313 env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) {
21314 insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code);
21315 env->prog->aux->num_exentries++;
21316 continue;
21317 } else if (insn->code == (BPF_JMP | BPF_EXIT) &&
21318 epilogue_cnt &&
21319 i + delta < subprogs[1].start) {
21320 /* Generate epilogue for the main prog */
21321 if (epilogue_idx) {
21322 /* jump back to the earlier generated epilogue */
21323 insn_buf[0] = BPF_JMP32_A(epilogue_idx - i - delta - 1);
21324 cnt = 1;
21325 } else {
21326 memcpy(insn_buf, epilogue_buf,
21327 epilogue_cnt * sizeof(*epilogue_buf));
21328 cnt = epilogue_cnt;
21329 /* epilogue_idx cannot be 0. It must have at
21330 * least one ctx ptr saving insn before the
21331 * epilogue.
21332 */
21333 epilogue_idx = i + delta;
21334 }
21335 goto patch_insn_buf;
21336 } else {
21337 continue;
21338 }
21339
21340 if (type == BPF_WRITE &&
21341 env->insn_aux_data[i + delta].nospec_result) {
21342 /* nospec_result is only used to mitigate Spectre v4 and
21343 * to limit verification-time for Spectre v1.
21344 */
21345 struct bpf_insn *patch = insn_buf;
21346
21347 *patch++ = *insn;
21348 *patch++ = BPF_ST_NOSPEC();
21349 cnt = patch - insn_buf;
21350 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21351 if (!new_prog)
21352 return -ENOMEM;
21353
21354 delta += cnt - 1;
21355 env->prog = new_prog;
21356 insn = new_prog->insnsi + i + delta;
21357 continue;
21358 }
21359
21360 switch ((int)env->insn_aux_data[i + delta].ptr_type) {
21361 case PTR_TO_CTX:
21362 if (!ops->convert_ctx_access)
21363 continue;
21364 convert_ctx_access = ops->convert_ctx_access;
21365 break;
21366 case PTR_TO_SOCKET:
21367 case PTR_TO_SOCK_COMMON:
21368 convert_ctx_access = bpf_sock_convert_ctx_access;
21369 break;
21370 case PTR_TO_TCP_SOCK:
21371 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
21372 break;
21373 case PTR_TO_XDP_SOCK:
21374 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
21375 break;
21376 case PTR_TO_BTF_ID:
21377 case PTR_TO_BTF_ID | PTR_UNTRUSTED:
21378 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
21379 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
21380 * be said once it is marked PTR_UNTRUSTED, hence we must handle
21381 * any faults for loads into such types. BPF_WRITE is disallowed
21382 * for this case.
21383 */
21384 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
21385 case PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED:
21386 if (type == BPF_READ) {
21387 if (BPF_MODE(insn->code) == BPF_MEM)
21388 insn->code = BPF_LDX | BPF_PROBE_MEM |
21389 BPF_SIZE((insn)->code);
21390 else
21391 insn->code = BPF_LDX | BPF_PROBE_MEMSX |
21392 BPF_SIZE((insn)->code);
21393 env->prog->aux->num_exentries++;
21394 }
21395 continue;
21396 case PTR_TO_ARENA:
21397 if (BPF_MODE(insn->code) == BPF_MEMSX) {
21398 if (!bpf_jit_supports_insn(insn, true)) {
21399 verbose(env, "sign extending loads from arena are not supported yet\n");
21400 return -EOPNOTSUPP;
21401 }
21402 insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32SX | BPF_SIZE(insn->code);
21403 } else {
21404 insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code);
21405 }
21406 env->prog->aux->num_exentries++;
21407 continue;
21408 default:
21409 continue;
21410 }
21411
21412 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
21413 size = BPF_LDST_BYTES(insn);
21414 mode = BPF_MODE(insn->code);
21415
21416 /* If the read access is a narrower load of the field,
21417 * convert to a 4/8-byte load, to minimum program type specific
21418 * convert_ctx_access changes. If conversion is successful,
21419 * we will apply proper mask to the result.
21420 */
21421 is_narrower_load = size < ctx_field_size;
21422 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
21423 off = insn->off;
21424 if (is_narrower_load) {
21425 u8 size_code;
21426
21427 if (type == BPF_WRITE) {
21428 verifier_bug(env, "narrow ctx access misconfigured");
21429 return -EFAULT;
21430 }
21431
21432 size_code = BPF_H;
21433 if (ctx_field_size == 4)
21434 size_code = BPF_W;
21435 else if (ctx_field_size == 8)
21436 size_code = BPF_DW;
21437
21438 insn->off = off & ~(size_default - 1);
21439 insn->code = BPF_LDX | BPF_MEM | size_code;
21440 }
21441
21442 target_size = 0;
21443 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
21444 &target_size);
21445 if (cnt == 0 || cnt >= INSN_BUF_SIZE ||
21446 (ctx_field_size && !target_size)) {
21447 verifier_bug(env, "error during ctx access conversion (%d)", cnt);
21448 return -EFAULT;
21449 }
21450
21451 if (is_narrower_load && size < target_size) {
21452 u8 shift = bpf_ctx_narrow_access_offset(
21453 off, size, size_default) * 8;
21454 if (shift && cnt + 1 >= INSN_BUF_SIZE) {
21455 verifier_bug(env, "narrow ctx load misconfigured");
21456 return -EFAULT;
21457 }
21458 if (ctx_field_size <= 4) {
21459 if (shift)
21460 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
21461 insn->dst_reg,
21462 shift);
21463 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
21464 (1 << size * 8) - 1);
21465 } else {
21466 if (shift)
21467 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
21468 insn->dst_reg,
21469 shift);
21470 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
21471 (1ULL << size * 8) - 1);
21472 }
21473 }
21474 if (mode == BPF_MEMSX)
21475 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
21476 insn->dst_reg, insn->dst_reg,
21477 size * 8, 0);
21478
21479 patch_insn_buf:
21480 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21481 if (!new_prog)
21482 return -ENOMEM;
21483
21484 delta += cnt - 1;
21485
21486 /* keep walking new program and skip insns we just inserted */
21487 env->prog = new_prog;
21488 insn = new_prog->insnsi + i + delta;
21489 }
21490
21491 return 0;
21492 }
21493
jit_subprogs(struct bpf_verifier_env * env)21494 static int jit_subprogs(struct bpf_verifier_env *env)
21495 {
21496 struct bpf_prog *prog = env->prog, **func, *tmp;
21497 int i, j, subprog_start, subprog_end = 0, len, subprog;
21498 struct bpf_map *map_ptr;
21499 struct bpf_insn *insn;
21500 void *old_bpf_func;
21501 int err, num_exentries;
21502
21503 if (env->subprog_cnt <= 1)
21504 return 0;
21505
21506 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
21507 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
21508 continue;
21509
21510 /* Upon error here we cannot fall back to interpreter but
21511 * need a hard reject of the program. Thus -EFAULT is
21512 * propagated in any case.
21513 */
21514 subprog = find_subprog(env, i + insn->imm + 1);
21515 if (verifier_bug_if(subprog < 0, env, "No program to jit at insn %d",
21516 i + insn->imm + 1))
21517 return -EFAULT;
21518 /* temporarily remember subprog id inside insn instead of
21519 * aux_data, since next loop will split up all insns into funcs
21520 */
21521 insn->off = subprog;
21522 /* remember original imm in case JIT fails and fallback
21523 * to interpreter will be needed
21524 */
21525 env->insn_aux_data[i].call_imm = insn->imm;
21526 /* point imm to __bpf_call_base+1 from JITs point of view */
21527 insn->imm = 1;
21528 if (bpf_pseudo_func(insn)) {
21529 #if defined(MODULES_VADDR)
21530 u64 addr = MODULES_VADDR;
21531 #else
21532 u64 addr = VMALLOC_START;
21533 #endif
21534 /* jit (e.g. x86_64) may emit fewer instructions
21535 * if it learns a u32 imm is the same as a u64 imm.
21536 * Set close enough to possible prog address.
21537 */
21538 insn[0].imm = (u32)addr;
21539 insn[1].imm = addr >> 32;
21540 }
21541 }
21542
21543 err = bpf_prog_alloc_jited_linfo(prog);
21544 if (err)
21545 goto out_undo_insn;
21546
21547 err = -ENOMEM;
21548 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
21549 if (!func)
21550 goto out_undo_insn;
21551
21552 for (i = 0; i < env->subprog_cnt; i++) {
21553 subprog_start = subprog_end;
21554 subprog_end = env->subprog_info[i + 1].start;
21555
21556 len = subprog_end - subprog_start;
21557 /* bpf_prog_run() doesn't call subprogs directly,
21558 * hence main prog stats include the runtime of subprogs.
21559 * subprogs don't have IDs and not reachable via prog_get_next_id
21560 * func[i]->stats will never be accessed and stays NULL
21561 */
21562 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
21563 if (!func[i])
21564 goto out_free;
21565 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
21566 len * sizeof(struct bpf_insn));
21567 func[i]->type = prog->type;
21568 func[i]->len = len;
21569 if (bpf_prog_calc_tag(func[i]))
21570 goto out_free;
21571 func[i]->is_func = 1;
21572 func[i]->sleepable = prog->sleepable;
21573 func[i]->aux->func_idx = i;
21574 /* Below members will be freed only at prog->aux */
21575 func[i]->aux->btf = prog->aux->btf;
21576 func[i]->aux->func_info = prog->aux->func_info;
21577 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
21578 func[i]->aux->poke_tab = prog->aux->poke_tab;
21579 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
21580 func[i]->aux->main_prog_aux = prog->aux;
21581
21582 for (j = 0; j < prog->aux->size_poke_tab; j++) {
21583 struct bpf_jit_poke_descriptor *poke;
21584
21585 poke = &prog->aux->poke_tab[j];
21586 if (poke->insn_idx < subprog_end &&
21587 poke->insn_idx >= subprog_start)
21588 poke->aux = func[i]->aux;
21589 }
21590
21591 func[i]->aux->name[0] = 'F';
21592 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
21593 if (env->subprog_info[i].priv_stack_mode == PRIV_STACK_ADAPTIVE)
21594 func[i]->aux->jits_use_priv_stack = true;
21595
21596 func[i]->jit_requested = 1;
21597 func[i]->blinding_requested = prog->blinding_requested;
21598 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
21599 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
21600 func[i]->aux->linfo = prog->aux->linfo;
21601 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
21602 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
21603 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
21604 func[i]->aux->arena = prog->aux->arena;
21605 num_exentries = 0;
21606 insn = func[i]->insnsi;
21607 for (j = 0; j < func[i]->len; j++, insn++) {
21608 if (BPF_CLASS(insn->code) == BPF_LDX &&
21609 (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
21610 BPF_MODE(insn->code) == BPF_PROBE_MEM32 ||
21611 BPF_MODE(insn->code) == BPF_PROBE_MEM32SX ||
21612 BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
21613 num_exentries++;
21614 if ((BPF_CLASS(insn->code) == BPF_STX ||
21615 BPF_CLASS(insn->code) == BPF_ST) &&
21616 BPF_MODE(insn->code) == BPF_PROBE_MEM32)
21617 num_exentries++;
21618 if (BPF_CLASS(insn->code) == BPF_STX &&
21619 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC)
21620 num_exentries++;
21621 }
21622 func[i]->aux->num_exentries = num_exentries;
21623 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
21624 func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb;
21625 func[i]->aux->changes_pkt_data = env->subprog_info[i].changes_pkt_data;
21626 func[i]->aux->might_sleep = env->subprog_info[i].might_sleep;
21627 if (!i)
21628 func[i]->aux->exception_boundary = env->seen_exception;
21629 func[i] = bpf_int_jit_compile(func[i]);
21630 if (!func[i]->jited) {
21631 err = -ENOTSUPP;
21632 goto out_free;
21633 }
21634 cond_resched();
21635 }
21636
21637 /* at this point all bpf functions were successfully JITed
21638 * now populate all bpf_calls with correct addresses and
21639 * run last pass of JIT
21640 */
21641 for (i = 0; i < env->subprog_cnt; i++) {
21642 insn = func[i]->insnsi;
21643 for (j = 0; j < func[i]->len; j++, insn++) {
21644 if (bpf_pseudo_func(insn)) {
21645 subprog = insn->off;
21646 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
21647 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
21648 continue;
21649 }
21650 if (!bpf_pseudo_call(insn))
21651 continue;
21652 subprog = insn->off;
21653 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
21654 }
21655
21656 /* we use the aux data to keep a list of the start addresses
21657 * of the JITed images for each function in the program
21658 *
21659 * for some architectures, such as powerpc64, the imm field
21660 * might not be large enough to hold the offset of the start
21661 * address of the callee's JITed image from __bpf_call_base
21662 *
21663 * in such cases, we can lookup the start address of a callee
21664 * by using its subprog id, available from the off field of
21665 * the call instruction, as an index for this list
21666 */
21667 func[i]->aux->func = func;
21668 func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
21669 func[i]->aux->real_func_cnt = env->subprog_cnt;
21670 }
21671 for (i = 0; i < env->subprog_cnt; i++) {
21672 old_bpf_func = func[i]->bpf_func;
21673 tmp = bpf_int_jit_compile(func[i]);
21674 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
21675 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
21676 err = -ENOTSUPP;
21677 goto out_free;
21678 }
21679 cond_resched();
21680 }
21681
21682 /* finally lock prog and jit images for all functions and
21683 * populate kallsysm. Begin at the first subprogram, since
21684 * bpf_prog_load will add the kallsyms for the main program.
21685 */
21686 for (i = 1; i < env->subprog_cnt; i++) {
21687 err = bpf_prog_lock_ro(func[i]);
21688 if (err)
21689 goto out_free;
21690 }
21691
21692 for (i = 1; i < env->subprog_cnt; i++)
21693 bpf_prog_kallsyms_add(func[i]);
21694
21695 /* Last step: make now unused interpreter insns from main
21696 * prog consistent for later dump requests, so they can
21697 * later look the same as if they were interpreted only.
21698 */
21699 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
21700 if (bpf_pseudo_func(insn)) {
21701 insn[0].imm = env->insn_aux_data[i].call_imm;
21702 insn[1].imm = insn->off;
21703 insn->off = 0;
21704 continue;
21705 }
21706 if (!bpf_pseudo_call(insn))
21707 continue;
21708 insn->off = env->insn_aux_data[i].call_imm;
21709 subprog = find_subprog(env, i + insn->off + 1);
21710 insn->imm = subprog;
21711 }
21712
21713 prog->jited = 1;
21714 prog->bpf_func = func[0]->bpf_func;
21715 prog->jited_len = func[0]->jited_len;
21716 prog->aux->extable = func[0]->aux->extable;
21717 prog->aux->num_exentries = func[0]->aux->num_exentries;
21718 prog->aux->func = func;
21719 prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
21720 prog->aux->real_func_cnt = env->subprog_cnt;
21721 prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func;
21722 prog->aux->exception_boundary = func[0]->aux->exception_boundary;
21723 bpf_prog_jit_attempt_done(prog);
21724 return 0;
21725 out_free:
21726 /* We failed JIT'ing, so at this point we need to unregister poke
21727 * descriptors from subprogs, so that kernel is not attempting to
21728 * patch it anymore as we're freeing the subprog JIT memory.
21729 */
21730 for (i = 0; i < prog->aux->size_poke_tab; i++) {
21731 map_ptr = prog->aux->poke_tab[i].tail_call.map;
21732 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
21733 }
21734 /* At this point we're guaranteed that poke descriptors are not
21735 * live anymore. We can just unlink its descriptor table as it's
21736 * released with the main prog.
21737 */
21738 for (i = 0; i < env->subprog_cnt; i++) {
21739 if (!func[i])
21740 continue;
21741 func[i]->aux->poke_tab = NULL;
21742 bpf_jit_free(func[i]);
21743 }
21744 kfree(func);
21745 out_undo_insn:
21746 /* cleanup main prog to be interpreted */
21747 prog->jit_requested = 0;
21748 prog->blinding_requested = 0;
21749 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
21750 if (!bpf_pseudo_call(insn))
21751 continue;
21752 insn->off = 0;
21753 insn->imm = env->insn_aux_data[i].call_imm;
21754 }
21755 bpf_prog_jit_attempt_done(prog);
21756 return err;
21757 }
21758
fixup_call_args(struct bpf_verifier_env * env)21759 static int fixup_call_args(struct bpf_verifier_env *env)
21760 {
21761 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
21762 struct bpf_prog *prog = env->prog;
21763 struct bpf_insn *insn = prog->insnsi;
21764 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
21765 int i, depth;
21766 #endif
21767 int err = 0;
21768
21769 if (env->prog->jit_requested &&
21770 !bpf_prog_is_offloaded(env->prog->aux)) {
21771 err = jit_subprogs(env);
21772 if (err == 0)
21773 return 0;
21774 if (err == -EFAULT)
21775 return err;
21776 }
21777 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
21778 if (has_kfunc_call) {
21779 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
21780 return -EINVAL;
21781 }
21782 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
21783 /* When JIT fails the progs with bpf2bpf calls and tail_calls
21784 * have to be rejected, since interpreter doesn't support them yet.
21785 */
21786 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
21787 return -EINVAL;
21788 }
21789 for (i = 0; i < prog->len; i++, insn++) {
21790 if (bpf_pseudo_func(insn)) {
21791 /* When JIT fails the progs with callback calls
21792 * have to be rejected, since interpreter doesn't support them yet.
21793 */
21794 verbose(env, "callbacks are not allowed in non-JITed programs\n");
21795 return -EINVAL;
21796 }
21797
21798 if (!bpf_pseudo_call(insn))
21799 continue;
21800 depth = get_callee_stack_depth(env, insn, i);
21801 if (depth < 0)
21802 return depth;
21803 bpf_patch_call_args(insn, depth);
21804 }
21805 err = 0;
21806 #endif
21807 return err;
21808 }
21809
21810 /* replace a generic kfunc with a specialized version if necessary */
specialize_kfunc(struct bpf_verifier_env * env,u32 func_id,u16 offset,unsigned long * addr)21811 static void specialize_kfunc(struct bpf_verifier_env *env,
21812 u32 func_id, u16 offset, unsigned long *addr)
21813 {
21814 struct bpf_prog *prog = env->prog;
21815 bool seen_direct_write;
21816 void *xdp_kfunc;
21817 bool is_rdonly;
21818
21819 if (bpf_dev_bound_kfunc_id(func_id)) {
21820 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
21821 if (xdp_kfunc) {
21822 *addr = (unsigned long)xdp_kfunc;
21823 return;
21824 }
21825 /* fallback to default kfunc when not supported by netdev */
21826 }
21827
21828 if (offset)
21829 return;
21830
21831 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
21832 seen_direct_write = env->seen_direct_write;
21833 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
21834
21835 if (is_rdonly)
21836 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
21837
21838 /* restore env->seen_direct_write to its original value, since
21839 * may_access_direct_pkt_data mutates it
21840 */
21841 env->seen_direct_write = seen_direct_write;
21842 }
21843
21844 if (func_id == special_kfunc_list[KF_bpf_set_dentry_xattr] &&
21845 bpf_lsm_has_d_inode_locked(prog))
21846 *addr = (unsigned long)bpf_set_dentry_xattr_locked;
21847
21848 if (func_id == special_kfunc_list[KF_bpf_remove_dentry_xattr] &&
21849 bpf_lsm_has_d_inode_locked(prog))
21850 *addr = (unsigned long)bpf_remove_dentry_xattr_locked;
21851 }
21852
__fixup_collection_insert_kfunc(struct bpf_insn_aux_data * insn_aux,u16 struct_meta_reg,u16 node_offset_reg,struct bpf_insn * insn,struct bpf_insn * insn_buf,int * cnt)21853 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
21854 u16 struct_meta_reg,
21855 u16 node_offset_reg,
21856 struct bpf_insn *insn,
21857 struct bpf_insn *insn_buf,
21858 int *cnt)
21859 {
21860 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
21861 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
21862
21863 insn_buf[0] = addr[0];
21864 insn_buf[1] = addr[1];
21865 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
21866 insn_buf[3] = *insn;
21867 *cnt = 4;
21868 }
21869
fixup_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn * insn_buf,int insn_idx,int * cnt)21870 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
21871 struct bpf_insn *insn_buf, int insn_idx, int *cnt)
21872 {
21873 const struct bpf_kfunc_desc *desc;
21874
21875 if (!insn->imm) {
21876 verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
21877 return -EINVAL;
21878 }
21879
21880 *cnt = 0;
21881
21882 /* insn->imm has the btf func_id. Replace it with an offset relative to
21883 * __bpf_call_base, unless the JIT needs to call functions that are
21884 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
21885 */
21886 desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
21887 if (!desc) {
21888 verifier_bug(env, "kernel function descriptor not found for func_id %u",
21889 insn->imm);
21890 return -EFAULT;
21891 }
21892
21893 if (!bpf_jit_supports_far_kfunc_call())
21894 insn->imm = BPF_CALL_IMM(desc->addr);
21895 if (insn->off)
21896 return 0;
21897 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
21898 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
21899 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
21900 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
21901 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
21902
21903 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) {
21904 verifier_bug(env, "NULL kptr_struct_meta expected at insn_idx %d",
21905 insn_idx);
21906 return -EFAULT;
21907 }
21908
21909 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
21910 insn_buf[1] = addr[0];
21911 insn_buf[2] = addr[1];
21912 insn_buf[3] = *insn;
21913 *cnt = 4;
21914 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
21915 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] ||
21916 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
21917 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
21918 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
21919
21920 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) {
21921 verifier_bug(env, "NULL kptr_struct_meta expected at insn_idx %d",
21922 insn_idx);
21923 return -EFAULT;
21924 }
21925
21926 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
21927 !kptr_struct_meta) {
21928 verifier_bug(env, "kptr_struct_meta expected at insn_idx %d",
21929 insn_idx);
21930 return -EFAULT;
21931 }
21932
21933 insn_buf[0] = addr[0];
21934 insn_buf[1] = addr[1];
21935 insn_buf[2] = *insn;
21936 *cnt = 3;
21937 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
21938 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
21939 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
21940 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
21941 int struct_meta_reg = BPF_REG_3;
21942 int node_offset_reg = BPF_REG_4;
21943
21944 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
21945 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
21946 struct_meta_reg = BPF_REG_4;
21947 node_offset_reg = BPF_REG_5;
21948 }
21949
21950 if (!kptr_struct_meta) {
21951 verifier_bug(env, "kptr_struct_meta expected at insn_idx %d",
21952 insn_idx);
21953 return -EFAULT;
21954 }
21955
21956 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
21957 node_offset_reg, insn, insn_buf, cnt);
21958 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
21959 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
21960 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
21961 *cnt = 1;
21962 }
21963
21964 if (env->insn_aux_data[insn_idx].arg_prog) {
21965 u32 regno = env->insn_aux_data[insn_idx].arg_prog;
21966 struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(regno, (long)env->prog->aux) };
21967 int idx = *cnt;
21968
21969 insn_buf[idx++] = ld_addrs[0];
21970 insn_buf[idx++] = ld_addrs[1];
21971 insn_buf[idx++] = *insn;
21972 *cnt = idx;
21973 }
21974 return 0;
21975 }
21976
21977 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */
add_hidden_subprog(struct bpf_verifier_env * env,struct bpf_insn * patch,int len)21978 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len)
21979 {
21980 struct bpf_subprog_info *info = env->subprog_info;
21981 int cnt = env->subprog_cnt;
21982 struct bpf_prog *prog;
21983
21984 /* We only reserve one slot for hidden subprogs in subprog_info. */
21985 if (env->hidden_subprog_cnt) {
21986 verifier_bug(env, "only one hidden subprog supported");
21987 return -EFAULT;
21988 }
21989 /* We're not patching any existing instruction, just appending the new
21990 * ones for the hidden subprog. Hence all of the adjustment operations
21991 * in bpf_patch_insn_data are no-ops.
21992 */
21993 prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len);
21994 if (!prog)
21995 return -ENOMEM;
21996 env->prog = prog;
21997 info[cnt + 1].start = info[cnt].start;
21998 info[cnt].start = prog->len - len + 1;
21999 env->subprog_cnt++;
22000 env->hidden_subprog_cnt++;
22001 return 0;
22002 }
22003
22004 /* Do various post-verification rewrites in a single program pass.
22005 * These rewrites simplify JIT and interpreter implementations.
22006 */
do_misc_fixups(struct bpf_verifier_env * env)22007 static int do_misc_fixups(struct bpf_verifier_env *env)
22008 {
22009 struct bpf_prog *prog = env->prog;
22010 enum bpf_attach_type eatype = prog->expected_attach_type;
22011 enum bpf_prog_type prog_type = resolve_prog_type(prog);
22012 struct bpf_insn *insn = prog->insnsi;
22013 const struct bpf_func_proto *fn;
22014 const int insn_cnt = prog->len;
22015 const struct bpf_map_ops *ops;
22016 struct bpf_insn_aux_data *aux;
22017 struct bpf_insn *insn_buf = env->insn_buf;
22018 struct bpf_prog *new_prog;
22019 struct bpf_map *map_ptr;
22020 int i, ret, cnt, delta = 0, cur_subprog = 0;
22021 struct bpf_subprog_info *subprogs = env->subprog_info;
22022 u16 stack_depth = subprogs[cur_subprog].stack_depth;
22023 u16 stack_depth_extra = 0;
22024
22025 if (env->seen_exception && !env->exception_callback_subprog) {
22026 struct bpf_insn *patch = insn_buf;
22027
22028 *patch++ = env->prog->insnsi[insn_cnt - 1];
22029 *patch++ = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
22030 *patch++ = BPF_EXIT_INSN();
22031 ret = add_hidden_subprog(env, insn_buf, patch - insn_buf);
22032 if (ret < 0)
22033 return ret;
22034 prog = env->prog;
22035 insn = prog->insnsi;
22036
22037 env->exception_callback_subprog = env->subprog_cnt - 1;
22038 /* Don't update insn_cnt, as add_hidden_subprog always appends insns */
22039 mark_subprog_exc_cb(env, env->exception_callback_subprog);
22040 }
22041
22042 for (i = 0; i < insn_cnt;) {
22043 if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) {
22044 if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) ||
22045 (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) {
22046 /* convert to 32-bit mov that clears upper 32-bit */
22047 insn->code = BPF_ALU | BPF_MOV | BPF_X;
22048 /* clear off and imm, so it's a normal 'wX = wY' from JIT pov */
22049 insn->off = 0;
22050 insn->imm = 0;
22051 } /* cast from as(0) to as(1) should be handled by JIT */
22052 goto next_insn;
22053 }
22054
22055 if (env->insn_aux_data[i + delta].needs_zext)
22056 /* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */
22057 insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code);
22058
22059 /* Make sdiv/smod divide-by-minus-one exceptions impossible. */
22060 if ((insn->code == (BPF_ALU64 | BPF_MOD | BPF_K) ||
22061 insn->code == (BPF_ALU64 | BPF_DIV | BPF_K) ||
22062 insn->code == (BPF_ALU | BPF_MOD | BPF_K) ||
22063 insn->code == (BPF_ALU | BPF_DIV | BPF_K)) &&
22064 insn->off == 1 && insn->imm == -1) {
22065 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
22066 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
22067 struct bpf_insn *patch = insn_buf;
22068
22069 if (isdiv)
22070 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
22071 BPF_NEG | BPF_K, insn->dst_reg,
22072 0, 0, 0);
22073 else
22074 *patch++ = BPF_MOV32_IMM(insn->dst_reg, 0);
22075
22076 cnt = patch - insn_buf;
22077
22078 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22079 if (!new_prog)
22080 return -ENOMEM;
22081
22082 delta += cnt - 1;
22083 env->prog = prog = new_prog;
22084 insn = new_prog->insnsi + i + delta;
22085 goto next_insn;
22086 }
22087
22088 /* Make divide-by-zero and divide-by-minus-one exceptions impossible. */
22089 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
22090 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
22091 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
22092 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
22093 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
22094 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
22095 bool is_sdiv = isdiv && insn->off == 1;
22096 bool is_smod = !isdiv && insn->off == 1;
22097 struct bpf_insn *patch = insn_buf;
22098
22099 if (is_sdiv) {
22100 /* [R,W]x sdiv 0 -> 0
22101 * LLONG_MIN sdiv -1 -> LLONG_MIN
22102 * INT_MIN sdiv -1 -> INT_MIN
22103 */
22104 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg);
22105 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
22106 BPF_ADD | BPF_K, BPF_REG_AX,
22107 0, 0, 1);
22108 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
22109 BPF_JGT | BPF_K, BPF_REG_AX,
22110 0, 4, 1);
22111 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
22112 BPF_JEQ | BPF_K, BPF_REG_AX,
22113 0, 1, 0);
22114 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
22115 BPF_MOV | BPF_K, insn->dst_reg,
22116 0, 0, 0);
22117 /* BPF_NEG(LLONG_MIN) == -LLONG_MIN == LLONG_MIN */
22118 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
22119 BPF_NEG | BPF_K, insn->dst_reg,
22120 0, 0, 0);
22121 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
22122 *patch++ = *insn;
22123 cnt = patch - insn_buf;
22124 } else if (is_smod) {
22125 /* [R,W]x mod 0 -> [R,W]x */
22126 /* [R,W]x mod -1 -> 0 */
22127 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg);
22128 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
22129 BPF_ADD | BPF_K, BPF_REG_AX,
22130 0, 0, 1);
22131 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
22132 BPF_JGT | BPF_K, BPF_REG_AX,
22133 0, 3, 1);
22134 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
22135 BPF_JEQ | BPF_K, BPF_REG_AX,
22136 0, 3 + (is64 ? 0 : 1), 1);
22137 *patch++ = BPF_MOV32_IMM(insn->dst_reg, 0);
22138 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
22139 *patch++ = *insn;
22140
22141 if (!is64) {
22142 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
22143 *patch++ = BPF_MOV32_REG(insn->dst_reg, insn->dst_reg);
22144 }
22145 cnt = patch - insn_buf;
22146 } else if (isdiv) {
22147 /* [R,W]x div 0 -> 0 */
22148 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
22149 BPF_JNE | BPF_K, insn->src_reg,
22150 0, 2, 0);
22151 *patch++ = BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg);
22152 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
22153 *patch++ = *insn;
22154 cnt = patch - insn_buf;
22155 } else {
22156 /* [R,W]x mod 0 -> [R,W]x */
22157 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
22158 BPF_JEQ | BPF_K, insn->src_reg,
22159 0, 1 + (is64 ? 0 : 1), 0);
22160 *patch++ = *insn;
22161
22162 if (!is64) {
22163 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
22164 *patch++ = BPF_MOV32_REG(insn->dst_reg, insn->dst_reg);
22165 }
22166 cnt = patch - insn_buf;
22167 }
22168
22169 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22170 if (!new_prog)
22171 return -ENOMEM;
22172
22173 delta += cnt - 1;
22174 env->prog = prog = new_prog;
22175 insn = new_prog->insnsi + i + delta;
22176 goto next_insn;
22177 }
22178
22179 /* Make it impossible to de-reference a userspace address */
22180 if (BPF_CLASS(insn->code) == BPF_LDX &&
22181 (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
22182 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) {
22183 struct bpf_insn *patch = insn_buf;
22184 u64 uaddress_limit = bpf_arch_uaddress_limit();
22185
22186 if (!uaddress_limit)
22187 goto next_insn;
22188
22189 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg);
22190 if (insn->off)
22191 *patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off);
22192 *patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32);
22193 *patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2);
22194 *patch++ = *insn;
22195 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
22196 *patch++ = BPF_MOV64_IMM(insn->dst_reg, 0);
22197
22198 cnt = patch - insn_buf;
22199 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22200 if (!new_prog)
22201 return -ENOMEM;
22202
22203 delta += cnt - 1;
22204 env->prog = prog = new_prog;
22205 insn = new_prog->insnsi + i + delta;
22206 goto next_insn;
22207 }
22208
22209 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
22210 if (BPF_CLASS(insn->code) == BPF_LD &&
22211 (BPF_MODE(insn->code) == BPF_ABS ||
22212 BPF_MODE(insn->code) == BPF_IND)) {
22213 cnt = env->ops->gen_ld_abs(insn, insn_buf);
22214 if (cnt == 0 || cnt >= INSN_BUF_SIZE) {
22215 verifier_bug(env, "%d insns generated for ld_abs", cnt);
22216 return -EFAULT;
22217 }
22218
22219 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22220 if (!new_prog)
22221 return -ENOMEM;
22222
22223 delta += cnt - 1;
22224 env->prog = prog = new_prog;
22225 insn = new_prog->insnsi + i + delta;
22226 goto next_insn;
22227 }
22228
22229 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
22230 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
22231 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
22232 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
22233 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
22234 struct bpf_insn *patch = insn_buf;
22235 bool issrc, isneg, isimm;
22236 u32 off_reg;
22237
22238 aux = &env->insn_aux_data[i + delta];
22239 if (!aux->alu_state ||
22240 aux->alu_state == BPF_ALU_NON_POINTER)
22241 goto next_insn;
22242
22243 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
22244 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
22245 BPF_ALU_SANITIZE_SRC;
22246 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
22247
22248 off_reg = issrc ? insn->src_reg : insn->dst_reg;
22249 if (isimm) {
22250 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
22251 } else {
22252 if (isneg)
22253 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
22254 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
22255 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
22256 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
22257 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
22258 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
22259 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
22260 }
22261 if (!issrc)
22262 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
22263 insn->src_reg = BPF_REG_AX;
22264 if (isneg)
22265 insn->code = insn->code == code_add ?
22266 code_sub : code_add;
22267 *patch++ = *insn;
22268 if (issrc && isneg && !isimm)
22269 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
22270 cnt = patch - insn_buf;
22271
22272 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22273 if (!new_prog)
22274 return -ENOMEM;
22275
22276 delta += cnt - 1;
22277 env->prog = prog = new_prog;
22278 insn = new_prog->insnsi + i + delta;
22279 goto next_insn;
22280 }
22281
22282 if (is_may_goto_insn(insn) && bpf_jit_supports_timed_may_goto()) {
22283 int stack_off_cnt = -stack_depth - 16;
22284
22285 /*
22286 * Two 8 byte slots, depth-16 stores the count, and
22287 * depth-8 stores the start timestamp of the loop.
22288 *
22289 * The starting value of count is BPF_MAX_TIMED_LOOPS
22290 * (0xffff). Every iteration loads it and subs it by 1,
22291 * until the value becomes 0 in AX (thus, 1 in stack),
22292 * after which we call arch_bpf_timed_may_goto, which
22293 * either sets AX to 0xffff to keep looping, or to 0
22294 * upon timeout. AX is then stored into the stack. In
22295 * the next iteration, we either see 0 and break out, or
22296 * continue iterating until the next time value is 0
22297 * after subtraction, rinse and repeat.
22298 */
22299 stack_depth_extra = 16;
22300 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off_cnt);
22301 if (insn->off >= 0)
22302 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 5);
22303 else
22304 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1);
22305 insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1);
22306 insn_buf[3] = BPF_JMP_IMM(BPF_JNE, BPF_REG_AX, 0, 2);
22307 /*
22308 * AX is used as an argument to pass in stack_off_cnt
22309 * (to add to r10/fp), and also as the return value of
22310 * the call to arch_bpf_timed_may_goto.
22311 */
22312 insn_buf[4] = BPF_MOV64_IMM(BPF_REG_AX, stack_off_cnt);
22313 insn_buf[5] = BPF_EMIT_CALL(arch_bpf_timed_may_goto);
22314 insn_buf[6] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off_cnt);
22315 cnt = 7;
22316
22317 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22318 if (!new_prog)
22319 return -ENOMEM;
22320
22321 delta += cnt - 1;
22322 env->prog = prog = new_prog;
22323 insn = new_prog->insnsi + i + delta;
22324 goto next_insn;
22325 } else if (is_may_goto_insn(insn)) {
22326 int stack_off = -stack_depth - 8;
22327
22328 stack_depth_extra = 8;
22329 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off);
22330 if (insn->off >= 0)
22331 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2);
22332 else
22333 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1);
22334 insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1);
22335 insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off);
22336 cnt = 4;
22337
22338 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22339 if (!new_prog)
22340 return -ENOMEM;
22341
22342 delta += cnt - 1;
22343 env->prog = prog = new_prog;
22344 insn = new_prog->insnsi + i + delta;
22345 goto next_insn;
22346 }
22347
22348 if (insn->code != (BPF_JMP | BPF_CALL))
22349 goto next_insn;
22350 if (insn->src_reg == BPF_PSEUDO_CALL)
22351 goto next_insn;
22352 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
22353 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
22354 if (ret)
22355 return ret;
22356 if (cnt == 0)
22357 goto next_insn;
22358
22359 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22360 if (!new_prog)
22361 return -ENOMEM;
22362
22363 delta += cnt - 1;
22364 env->prog = prog = new_prog;
22365 insn = new_prog->insnsi + i + delta;
22366 goto next_insn;
22367 }
22368
22369 /* Skip inlining the helper call if the JIT does it. */
22370 if (bpf_jit_inlines_helper_call(insn->imm))
22371 goto next_insn;
22372
22373 if (insn->imm == BPF_FUNC_get_route_realm)
22374 prog->dst_needed = 1;
22375 if (insn->imm == BPF_FUNC_get_prandom_u32)
22376 bpf_user_rnd_init_once();
22377 if (insn->imm == BPF_FUNC_override_return)
22378 prog->kprobe_override = 1;
22379 if (insn->imm == BPF_FUNC_tail_call) {
22380 /* If we tail call into other programs, we
22381 * cannot make any assumptions since they can
22382 * be replaced dynamically during runtime in
22383 * the program array.
22384 */
22385 prog->cb_access = 1;
22386 if (!allow_tail_call_in_subprogs(env))
22387 prog->aux->stack_depth = MAX_BPF_STACK;
22388 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
22389
22390 /* mark bpf_tail_call as different opcode to avoid
22391 * conditional branch in the interpreter for every normal
22392 * call and to prevent accidental JITing by JIT compiler
22393 * that doesn't support bpf_tail_call yet
22394 */
22395 insn->imm = 0;
22396 insn->code = BPF_JMP | BPF_TAIL_CALL;
22397
22398 aux = &env->insn_aux_data[i + delta];
22399 if (env->bpf_capable && !prog->blinding_requested &&
22400 prog->jit_requested &&
22401 !bpf_map_key_poisoned(aux) &&
22402 !bpf_map_ptr_poisoned(aux) &&
22403 !bpf_map_ptr_unpriv(aux)) {
22404 struct bpf_jit_poke_descriptor desc = {
22405 .reason = BPF_POKE_REASON_TAIL_CALL,
22406 .tail_call.map = aux->map_ptr_state.map_ptr,
22407 .tail_call.key = bpf_map_key_immediate(aux),
22408 .insn_idx = i + delta,
22409 };
22410
22411 ret = bpf_jit_add_poke_descriptor(prog, &desc);
22412 if (ret < 0) {
22413 verbose(env, "adding tail call poke descriptor failed\n");
22414 return ret;
22415 }
22416
22417 insn->imm = ret + 1;
22418 goto next_insn;
22419 }
22420
22421 if (!bpf_map_ptr_unpriv(aux))
22422 goto next_insn;
22423
22424 /* instead of changing every JIT dealing with tail_call
22425 * emit two extra insns:
22426 * if (index >= max_entries) goto out;
22427 * index &= array->index_mask;
22428 * to avoid out-of-bounds cpu speculation
22429 */
22430 if (bpf_map_ptr_poisoned(aux)) {
22431 verbose(env, "tail_call abusing map_ptr\n");
22432 return -EINVAL;
22433 }
22434
22435 map_ptr = aux->map_ptr_state.map_ptr;
22436 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
22437 map_ptr->max_entries, 2);
22438 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
22439 container_of(map_ptr,
22440 struct bpf_array,
22441 map)->index_mask);
22442 insn_buf[2] = *insn;
22443 cnt = 3;
22444 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22445 if (!new_prog)
22446 return -ENOMEM;
22447
22448 delta += cnt - 1;
22449 env->prog = prog = new_prog;
22450 insn = new_prog->insnsi + i + delta;
22451 goto next_insn;
22452 }
22453
22454 if (insn->imm == BPF_FUNC_timer_set_callback) {
22455 /* The verifier will process callback_fn as many times as necessary
22456 * with different maps and the register states prepared by
22457 * set_timer_callback_state will be accurate.
22458 *
22459 * The following use case is valid:
22460 * map1 is shared by prog1, prog2, prog3.
22461 * prog1 calls bpf_timer_init for some map1 elements
22462 * prog2 calls bpf_timer_set_callback for some map1 elements.
22463 * Those that were not bpf_timer_init-ed will return -EINVAL.
22464 * prog3 calls bpf_timer_start for some map1 elements.
22465 * Those that were not both bpf_timer_init-ed and
22466 * bpf_timer_set_callback-ed will return -EINVAL.
22467 */
22468 struct bpf_insn ld_addrs[2] = {
22469 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
22470 };
22471
22472 insn_buf[0] = ld_addrs[0];
22473 insn_buf[1] = ld_addrs[1];
22474 insn_buf[2] = *insn;
22475 cnt = 3;
22476
22477 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22478 if (!new_prog)
22479 return -ENOMEM;
22480
22481 delta += cnt - 1;
22482 env->prog = prog = new_prog;
22483 insn = new_prog->insnsi + i + delta;
22484 goto patch_call_imm;
22485 }
22486
22487 if (is_storage_get_function(insn->imm)) {
22488 if (!in_sleepable(env) ||
22489 env->insn_aux_data[i + delta].storage_get_func_atomic)
22490 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
22491 else
22492 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
22493 insn_buf[1] = *insn;
22494 cnt = 2;
22495
22496 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22497 if (!new_prog)
22498 return -ENOMEM;
22499
22500 delta += cnt - 1;
22501 env->prog = prog = new_prog;
22502 insn = new_prog->insnsi + i + delta;
22503 goto patch_call_imm;
22504 }
22505
22506 /* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */
22507 if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) {
22508 /* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data,
22509 * bpf_mem_alloc() returns a ptr to the percpu data ptr.
22510 */
22511 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0);
22512 insn_buf[1] = *insn;
22513 cnt = 2;
22514
22515 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22516 if (!new_prog)
22517 return -ENOMEM;
22518
22519 delta += cnt - 1;
22520 env->prog = prog = new_prog;
22521 insn = new_prog->insnsi + i + delta;
22522 goto patch_call_imm;
22523 }
22524
22525 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
22526 * and other inlining handlers are currently limited to 64 bit
22527 * only.
22528 */
22529 if (prog->jit_requested && BITS_PER_LONG == 64 &&
22530 (insn->imm == BPF_FUNC_map_lookup_elem ||
22531 insn->imm == BPF_FUNC_map_update_elem ||
22532 insn->imm == BPF_FUNC_map_delete_elem ||
22533 insn->imm == BPF_FUNC_map_push_elem ||
22534 insn->imm == BPF_FUNC_map_pop_elem ||
22535 insn->imm == BPF_FUNC_map_peek_elem ||
22536 insn->imm == BPF_FUNC_redirect_map ||
22537 insn->imm == BPF_FUNC_for_each_map_elem ||
22538 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
22539 aux = &env->insn_aux_data[i + delta];
22540 if (bpf_map_ptr_poisoned(aux))
22541 goto patch_call_imm;
22542
22543 map_ptr = aux->map_ptr_state.map_ptr;
22544 ops = map_ptr->ops;
22545 if (insn->imm == BPF_FUNC_map_lookup_elem &&
22546 ops->map_gen_lookup) {
22547 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
22548 if (cnt == -EOPNOTSUPP)
22549 goto patch_map_ops_generic;
22550 if (cnt <= 0 || cnt >= INSN_BUF_SIZE) {
22551 verifier_bug(env, "%d insns generated for map lookup", cnt);
22552 return -EFAULT;
22553 }
22554
22555 new_prog = bpf_patch_insn_data(env, i + delta,
22556 insn_buf, cnt);
22557 if (!new_prog)
22558 return -ENOMEM;
22559
22560 delta += cnt - 1;
22561 env->prog = prog = new_prog;
22562 insn = new_prog->insnsi + i + delta;
22563 goto next_insn;
22564 }
22565
22566 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
22567 (void *(*)(struct bpf_map *map, void *key))NULL));
22568 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
22569 (long (*)(struct bpf_map *map, void *key))NULL));
22570 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
22571 (long (*)(struct bpf_map *map, void *key, void *value,
22572 u64 flags))NULL));
22573 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
22574 (long (*)(struct bpf_map *map, void *value,
22575 u64 flags))NULL));
22576 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
22577 (long (*)(struct bpf_map *map, void *value))NULL));
22578 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
22579 (long (*)(struct bpf_map *map, void *value))NULL));
22580 BUILD_BUG_ON(!__same_type(ops->map_redirect,
22581 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
22582 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
22583 (long (*)(struct bpf_map *map,
22584 bpf_callback_t callback_fn,
22585 void *callback_ctx,
22586 u64 flags))NULL));
22587 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
22588 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
22589
22590 patch_map_ops_generic:
22591 switch (insn->imm) {
22592 case BPF_FUNC_map_lookup_elem:
22593 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
22594 goto next_insn;
22595 case BPF_FUNC_map_update_elem:
22596 insn->imm = BPF_CALL_IMM(ops->map_update_elem);
22597 goto next_insn;
22598 case BPF_FUNC_map_delete_elem:
22599 insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
22600 goto next_insn;
22601 case BPF_FUNC_map_push_elem:
22602 insn->imm = BPF_CALL_IMM(ops->map_push_elem);
22603 goto next_insn;
22604 case BPF_FUNC_map_pop_elem:
22605 insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
22606 goto next_insn;
22607 case BPF_FUNC_map_peek_elem:
22608 insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
22609 goto next_insn;
22610 case BPF_FUNC_redirect_map:
22611 insn->imm = BPF_CALL_IMM(ops->map_redirect);
22612 goto next_insn;
22613 case BPF_FUNC_for_each_map_elem:
22614 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
22615 goto next_insn;
22616 case BPF_FUNC_map_lookup_percpu_elem:
22617 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
22618 goto next_insn;
22619 }
22620
22621 goto patch_call_imm;
22622 }
22623
22624 /* Implement bpf_jiffies64 inline. */
22625 if (prog->jit_requested && BITS_PER_LONG == 64 &&
22626 insn->imm == BPF_FUNC_jiffies64) {
22627 struct bpf_insn ld_jiffies_addr[2] = {
22628 BPF_LD_IMM64(BPF_REG_0,
22629 (unsigned long)&jiffies),
22630 };
22631
22632 insn_buf[0] = ld_jiffies_addr[0];
22633 insn_buf[1] = ld_jiffies_addr[1];
22634 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
22635 BPF_REG_0, 0);
22636 cnt = 3;
22637
22638 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
22639 cnt);
22640 if (!new_prog)
22641 return -ENOMEM;
22642
22643 delta += cnt - 1;
22644 env->prog = prog = new_prog;
22645 insn = new_prog->insnsi + i + delta;
22646 goto next_insn;
22647 }
22648
22649 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML)
22650 /* Implement bpf_get_smp_processor_id() inline. */
22651 if (insn->imm == BPF_FUNC_get_smp_processor_id &&
22652 verifier_inlines_helper_call(env, insn->imm)) {
22653 /* BPF_FUNC_get_smp_processor_id inlining is an
22654 * optimization, so if cpu_number is ever
22655 * changed in some incompatible and hard to support
22656 * way, it's fine to back out this inlining logic
22657 */
22658 #ifdef CONFIG_SMP
22659 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, (u32)(unsigned long)&cpu_number);
22660 insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0);
22661 insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0);
22662 cnt = 3;
22663 #else
22664 insn_buf[0] = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
22665 cnt = 1;
22666 #endif
22667 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22668 if (!new_prog)
22669 return -ENOMEM;
22670
22671 delta += cnt - 1;
22672 env->prog = prog = new_prog;
22673 insn = new_prog->insnsi + i + delta;
22674 goto next_insn;
22675 }
22676 #endif
22677 /* Implement bpf_get_func_arg inline. */
22678 if (prog_type == BPF_PROG_TYPE_TRACING &&
22679 insn->imm == BPF_FUNC_get_func_arg) {
22680 /* Load nr_args from ctx - 8 */
22681 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
22682 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
22683 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
22684 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
22685 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
22686 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
22687 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
22688 insn_buf[7] = BPF_JMP_A(1);
22689 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
22690 cnt = 9;
22691
22692 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22693 if (!new_prog)
22694 return -ENOMEM;
22695
22696 delta += cnt - 1;
22697 env->prog = prog = new_prog;
22698 insn = new_prog->insnsi + i + delta;
22699 goto next_insn;
22700 }
22701
22702 /* Implement bpf_get_func_ret inline. */
22703 if (prog_type == BPF_PROG_TYPE_TRACING &&
22704 insn->imm == BPF_FUNC_get_func_ret) {
22705 if (eatype == BPF_TRACE_FEXIT ||
22706 eatype == BPF_MODIFY_RETURN) {
22707 /* Load nr_args from ctx - 8 */
22708 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
22709 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
22710 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
22711 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
22712 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
22713 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
22714 cnt = 6;
22715 } else {
22716 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
22717 cnt = 1;
22718 }
22719
22720 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22721 if (!new_prog)
22722 return -ENOMEM;
22723
22724 delta += cnt - 1;
22725 env->prog = prog = new_prog;
22726 insn = new_prog->insnsi + i + delta;
22727 goto next_insn;
22728 }
22729
22730 /* Implement get_func_arg_cnt inline. */
22731 if (prog_type == BPF_PROG_TYPE_TRACING &&
22732 insn->imm == BPF_FUNC_get_func_arg_cnt) {
22733 /* Load nr_args from ctx - 8 */
22734 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
22735
22736 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
22737 if (!new_prog)
22738 return -ENOMEM;
22739
22740 env->prog = prog = new_prog;
22741 insn = new_prog->insnsi + i + delta;
22742 goto next_insn;
22743 }
22744
22745 /* Implement bpf_get_func_ip inline. */
22746 if (prog_type == BPF_PROG_TYPE_TRACING &&
22747 insn->imm == BPF_FUNC_get_func_ip) {
22748 /* Load IP address from ctx - 16 */
22749 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
22750
22751 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
22752 if (!new_prog)
22753 return -ENOMEM;
22754
22755 env->prog = prog = new_prog;
22756 insn = new_prog->insnsi + i + delta;
22757 goto next_insn;
22758 }
22759
22760 /* Implement bpf_get_branch_snapshot inline. */
22761 if (IS_ENABLED(CONFIG_PERF_EVENTS) &&
22762 prog->jit_requested && BITS_PER_LONG == 64 &&
22763 insn->imm == BPF_FUNC_get_branch_snapshot) {
22764 /* We are dealing with the following func protos:
22765 * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags);
22766 * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt);
22767 */
22768 const u32 br_entry_size = sizeof(struct perf_branch_entry);
22769
22770 /* struct perf_branch_entry is part of UAPI and is
22771 * used as an array element, so extremely unlikely to
22772 * ever grow or shrink
22773 */
22774 BUILD_BUG_ON(br_entry_size != 24);
22775
22776 /* if (unlikely(flags)) return -EINVAL */
22777 insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7);
22778
22779 /* Transform size (bytes) into number of entries (cnt = size / 24).
22780 * But to avoid expensive division instruction, we implement
22781 * divide-by-3 through multiplication, followed by further
22782 * division by 8 through 3-bit right shift.
22783 * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr.,
22784 * p. 227, chapter "Unsigned Division by 3" for details and proofs.
22785 *
22786 * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab.
22787 */
22788 insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab);
22789 insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0);
22790 insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36);
22791
22792 /* call perf_snapshot_branch_stack implementation */
22793 insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack));
22794 /* if (entry_cnt == 0) return -ENOENT */
22795 insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4);
22796 /* return entry_cnt * sizeof(struct perf_branch_entry) */
22797 insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size);
22798 insn_buf[7] = BPF_JMP_A(3);
22799 /* return -EINVAL; */
22800 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
22801 insn_buf[9] = BPF_JMP_A(1);
22802 /* return -ENOENT; */
22803 insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT);
22804 cnt = 11;
22805
22806 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22807 if (!new_prog)
22808 return -ENOMEM;
22809
22810 delta += cnt - 1;
22811 env->prog = prog = new_prog;
22812 insn = new_prog->insnsi + i + delta;
22813 goto next_insn;
22814 }
22815
22816 /* Implement bpf_kptr_xchg inline */
22817 if (prog->jit_requested && BITS_PER_LONG == 64 &&
22818 insn->imm == BPF_FUNC_kptr_xchg &&
22819 bpf_jit_supports_ptr_xchg()) {
22820 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2);
22821 insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0);
22822 cnt = 2;
22823
22824 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22825 if (!new_prog)
22826 return -ENOMEM;
22827
22828 delta += cnt - 1;
22829 env->prog = prog = new_prog;
22830 insn = new_prog->insnsi + i + delta;
22831 goto next_insn;
22832 }
22833 patch_call_imm:
22834 fn = env->ops->get_func_proto(insn->imm, env->prog);
22835 /* all functions that have prototype and verifier allowed
22836 * programs to call them, must be real in-kernel functions
22837 */
22838 if (!fn->func) {
22839 verifier_bug(env,
22840 "not inlined functions %s#%d is missing func",
22841 func_id_name(insn->imm), insn->imm);
22842 return -EFAULT;
22843 }
22844 insn->imm = fn->func - __bpf_call_base;
22845 next_insn:
22846 if (subprogs[cur_subprog + 1].start == i + delta + 1) {
22847 subprogs[cur_subprog].stack_depth += stack_depth_extra;
22848 subprogs[cur_subprog].stack_extra = stack_depth_extra;
22849
22850 stack_depth = subprogs[cur_subprog].stack_depth;
22851 if (stack_depth > MAX_BPF_STACK && !prog->jit_requested) {
22852 verbose(env, "stack size %d(extra %d) is too large\n",
22853 stack_depth, stack_depth_extra);
22854 return -EINVAL;
22855 }
22856 cur_subprog++;
22857 stack_depth = subprogs[cur_subprog].stack_depth;
22858 stack_depth_extra = 0;
22859 }
22860 i++;
22861 insn++;
22862 }
22863
22864 env->prog->aux->stack_depth = subprogs[0].stack_depth;
22865 for (i = 0; i < env->subprog_cnt; i++) {
22866 int delta = bpf_jit_supports_timed_may_goto() ? 2 : 1;
22867 int subprog_start = subprogs[i].start;
22868 int stack_slots = subprogs[i].stack_extra / 8;
22869 int slots = delta, cnt = 0;
22870
22871 if (!stack_slots)
22872 continue;
22873 /* We need two slots in case timed may_goto is supported. */
22874 if (stack_slots > slots) {
22875 verifier_bug(env, "stack_slots supports may_goto only");
22876 return -EFAULT;
22877 }
22878
22879 stack_depth = subprogs[i].stack_depth;
22880 if (bpf_jit_supports_timed_may_goto()) {
22881 insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth,
22882 BPF_MAX_TIMED_LOOPS);
22883 insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth + 8, 0);
22884 } else {
22885 /* Add ST insn to subprog prologue to init extra stack */
22886 insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth,
22887 BPF_MAX_LOOPS);
22888 }
22889 /* Copy first actual insn to preserve it */
22890 insn_buf[cnt++] = env->prog->insnsi[subprog_start];
22891
22892 new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, cnt);
22893 if (!new_prog)
22894 return -ENOMEM;
22895 env->prog = prog = new_prog;
22896 /*
22897 * If may_goto is a first insn of a prog there could be a jmp
22898 * insn that points to it, hence adjust all such jmps to point
22899 * to insn after BPF_ST that inits may_goto count.
22900 * Adjustment will succeed because bpf_patch_insn_data() didn't fail.
22901 */
22902 WARN_ON(adjust_jmp_off(env->prog, subprog_start, delta));
22903 }
22904
22905 /* Since poke tab is now finalized, publish aux to tracker. */
22906 for (i = 0; i < prog->aux->size_poke_tab; i++) {
22907 map_ptr = prog->aux->poke_tab[i].tail_call.map;
22908 if (!map_ptr->ops->map_poke_track ||
22909 !map_ptr->ops->map_poke_untrack ||
22910 !map_ptr->ops->map_poke_run) {
22911 verifier_bug(env, "poke tab is misconfigured");
22912 return -EFAULT;
22913 }
22914
22915 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
22916 if (ret < 0) {
22917 verbose(env, "tracking tail call prog failed\n");
22918 return ret;
22919 }
22920 }
22921
22922 sort_kfunc_descs_by_imm_off(env->prog);
22923
22924 return 0;
22925 }
22926
inline_bpf_loop(struct bpf_verifier_env * env,int position,s32 stack_base,u32 callback_subprogno,u32 * total_cnt)22927 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
22928 int position,
22929 s32 stack_base,
22930 u32 callback_subprogno,
22931 u32 *total_cnt)
22932 {
22933 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
22934 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
22935 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
22936 int reg_loop_max = BPF_REG_6;
22937 int reg_loop_cnt = BPF_REG_7;
22938 int reg_loop_ctx = BPF_REG_8;
22939
22940 struct bpf_insn *insn_buf = env->insn_buf;
22941 struct bpf_prog *new_prog;
22942 u32 callback_start;
22943 u32 call_insn_offset;
22944 s32 callback_offset;
22945 u32 cnt = 0;
22946
22947 /* This represents an inlined version of bpf_iter.c:bpf_loop,
22948 * be careful to modify this code in sync.
22949 */
22950
22951 /* Return error and jump to the end of the patch if
22952 * expected number of iterations is too big.
22953 */
22954 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2);
22955 insn_buf[cnt++] = BPF_MOV32_IMM(BPF_REG_0, -E2BIG);
22956 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JA, 0, 0, 16);
22957 /* spill R6, R7, R8 to use these as loop vars */
22958 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset);
22959 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset);
22960 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset);
22961 /* initialize loop vars */
22962 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_max, BPF_REG_1);
22963 insn_buf[cnt++] = BPF_MOV32_IMM(reg_loop_cnt, 0);
22964 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3);
22965 /* loop header,
22966 * if reg_loop_cnt >= reg_loop_max skip the loop body
22967 */
22968 insn_buf[cnt++] = BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5);
22969 /* callback call,
22970 * correct callback offset would be set after patching
22971 */
22972 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt);
22973 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx);
22974 insn_buf[cnt++] = BPF_CALL_REL(0);
22975 /* increment loop counter */
22976 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1);
22977 /* jump to loop header if callback returned 0 */
22978 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6);
22979 /* return value of bpf_loop,
22980 * set R0 to the number of iterations
22981 */
22982 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt);
22983 /* restore original values of R6, R7, R8 */
22984 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset);
22985 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset);
22986 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset);
22987
22988 *total_cnt = cnt;
22989 new_prog = bpf_patch_insn_data(env, position, insn_buf, cnt);
22990 if (!new_prog)
22991 return new_prog;
22992
22993 /* callback start is known only after patching */
22994 callback_start = env->subprog_info[callback_subprogno].start;
22995 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
22996 call_insn_offset = position + 12;
22997 callback_offset = callback_start - call_insn_offset - 1;
22998 new_prog->insnsi[call_insn_offset].imm = callback_offset;
22999
23000 return new_prog;
23001 }
23002
is_bpf_loop_call(struct bpf_insn * insn)23003 static bool is_bpf_loop_call(struct bpf_insn *insn)
23004 {
23005 return insn->code == (BPF_JMP | BPF_CALL) &&
23006 insn->src_reg == 0 &&
23007 insn->imm == BPF_FUNC_loop;
23008 }
23009
23010 /* For all sub-programs in the program (including main) check
23011 * insn_aux_data to see if there are bpf_loop calls that require
23012 * inlining. If such calls are found the calls are replaced with a
23013 * sequence of instructions produced by `inline_bpf_loop` function and
23014 * subprog stack_depth is increased by the size of 3 registers.
23015 * This stack space is used to spill values of the R6, R7, R8. These
23016 * registers are used to store the loop bound, counter and context
23017 * variables.
23018 */
optimize_bpf_loop(struct bpf_verifier_env * env)23019 static int optimize_bpf_loop(struct bpf_verifier_env *env)
23020 {
23021 struct bpf_subprog_info *subprogs = env->subprog_info;
23022 int i, cur_subprog = 0, cnt, delta = 0;
23023 struct bpf_insn *insn = env->prog->insnsi;
23024 int insn_cnt = env->prog->len;
23025 u16 stack_depth = subprogs[cur_subprog].stack_depth;
23026 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
23027 u16 stack_depth_extra = 0;
23028
23029 for (i = 0; i < insn_cnt; i++, insn++) {
23030 struct bpf_loop_inline_state *inline_state =
23031 &env->insn_aux_data[i + delta].loop_inline_state;
23032
23033 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
23034 struct bpf_prog *new_prog;
23035
23036 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
23037 new_prog = inline_bpf_loop(env,
23038 i + delta,
23039 -(stack_depth + stack_depth_extra),
23040 inline_state->callback_subprogno,
23041 &cnt);
23042 if (!new_prog)
23043 return -ENOMEM;
23044
23045 delta += cnt - 1;
23046 env->prog = new_prog;
23047 insn = new_prog->insnsi + i + delta;
23048 }
23049
23050 if (subprogs[cur_subprog + 1].start == i + delta + 1) {
23051 subprogs[cur_subprog].stack_depth += stack_depth_extra;
23052 cur_subprog++;
23053 stack_depth = subprogs[cur_subprog].stack_depth;
23054 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
23055 stack_depth_extra = 0;
23056 }
23057 }
23058
23059 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
23060
23061 return 0;
23062 }
23063
23064 /* Remove unnecessary spill/fill pairs, members of fastcall pattern,
23065 * adjust subprograms stack depth when possible.
23066 */
remove_fastcall_spills_fills(struct bpf_verifier_env * env)23067 static int remove_fastcall_spills_fills(struct bpf_verifier_env *env)
23068 {
23069 struct bpf_subprog_info *subprog = env->subprog_info;
23070 struct bpf_insn_aux_data *aux = env->insn_aux_data;
23071 struct bpf_insn *insn = env->prog->insnsi;
23072 int insn_cnt = env->prog->len;
23073 u32 spills_num;
23074 bool modified = false;
23075 int i, j;
23076
23077 for (i = 0; i < insn_cnt; i++, insn++) {
23078 if (aux[i].fastcall_spills_num > 0) {
23079 spills_num = aux[i].fastcall_spills_num;
23080 /* NOPs would be removed by opt_remove_nops() */
23081 for (j = 1; j <= spills_num; ++j) {
23082 *(insn - j) = NOP;
23083 *(insn + j) = NOP;
23084 }
23085 modified = true;
23086 }
23087 if ((subprog + 1)->start == i + 1) {
23088 if (modified && !subprog->keep_fastcall_stack)
23089 subprog->stack_depth = -subprog->fastcall_stack_off;
23090 subprog++;
23091 modified = false;
23092 }
23093 }
23094
23095 return 0;
23096 }
23097
free_states(struct bpf_verifier_env * env)23098 static void free_states(struct bpf_verifier_env *env)
23099 {
23100 struct bpf_verifier_state_list *sl;
23101 struct list_head *head, *pos, *tmp;
23102 struct bpf_scc_info *info;
23103 int i, j;
23104
23105 free_verifier_state(env->cur_state, true);
23106 env->cur_state = NULL;
23107 while (!pop_stack(env, NULL, NULL, false));
23108
23109 list_for_each_safe(pos, tmp, &env->free_list) {
23110 sl = container_of(pos, struct bpf_verifier_state_list, node);
23111 free_verifier_state(&sl->state, false);
23112 kfree(sl);
23113 }
23114 INIT_LIST_HEAD(&env->free_list);
23115
23116 for (i = 0; i < env->scc_cnt; ++i) {
23117 info = env->scc_info[i];
23118 if (!info)
23119 continue;
23120 for (j = 0; j < info->num_visits; j++)
23121 free_backedges(&info->visits[j]);
23122 kvfree(info);
23123 env->scc_info[i] = NULL;
23124 }
23125
23126 if (!env->explored_states)
23127 return;
23128
23129 for (i = 0; i < state_htab_size(env); i++) {
23130 head = &env->explored_states[i];
23131
23132 list_for_each_safe(pos, tmp, head) {
23133 sl = container_of(pos, struct bpf_verifier_state_list, node);
23134 free_verifier_state(&sl->state, false);
23135 kfree(sl);
23136 }
23137 INIT_LIST_HEAD(&env->explored_states[i]);
23138 }
23139 }
23140
do_check_common(struct bpf_verifier_env * env,int subprog)23141 static int do_check_common(struct bpf_verifier_env *env, int subprog)
23142 {
23143 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
23144 struct bpf_subprog_info *sub = subprog_info(env, subprog);
23145 struct bpf_prog_aux *aux = env->prog->aux;
23146 struct bpf_verifier_state *state;
23147 struct bpf_reg_state *regs;
23148 int ret, i;
23149
23150 env->prev_linfo = NULL;
23151 env->pass_cnt++;
23152
23153 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL_ACCOUNT);
23154 if (!state)
23155 return -ENOMEM;
23156 state->curframe = 0;
23157 state->speculative = false;
23158 state->branches = 1;
23159 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL_ACCOUNT);
23160 if (!state->frame[0]) {
23161 kfree(state);
23162 return -ENOMEM;
23163 }
23164 env->cur_state = state;
23165 init_func_state(env, state->frame[0],
23166 BPF_MAIN_FUNC /* callsite */,
23167 0 /* frameno */,
23168 subprog);
23169 state->first_insn_idx = env->subprog_info[subprog].start;
23170 state->last_insn_idx = -1;
23171
23172 regs = state->frame[state->curframe]->regs;
23173 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
23174 const char *sub_name = subprog_name(env, subprog);
23175 struct bpf_subprog_arg_info *arg;
23176 struct bpf_reg_state *reg;
23177
23178 verbose(env, "Validating %s() func#%d...\n", sub_name, subprog);
23179 ret = btf_prepare_func_args(env, subprog);
23180 if (ret)
23181 goto out;
23182
23183 if (subprog_is_exc_cb(env, subprog)) {
23184 state->frame[0]->in_exception_callback_fn = true;
23185 /* We have already ensured that the callback returns an integer, just
23186 * like all global subprogs. We need to determine it only has a single
23187 * scalar argument.
23188 */
23189 if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) {
23190 verbose(env, "exception cb only supports single integer argument\n");
23191 ret = -EINVAL;
23192 goto out;
23193 }
23194 }
23195 for (i = BPF_REG_1; i <= sub->arg_cnt; i++) {
23196 arg = &sub->args[i - BPF_REG_1];
23197 reg = ®s[i];
23198
23199 if (arg->arg_type == ARG_PTR_TO_CTX) {
23200 reg->type = PTR_TO_CTX;
23201 mark_reg_known_zero(env, regs, i);
23202 } else if (arg->arg_type == ARG_ANYTHING) {
23203 reg->type = SCALAR_VALUE;
23204 mark_reg_unknown(env, regs, i);
23205 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
23206 /* assume unspecial LOCAL dynptr type */
23207 __mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen);
23208 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
23209 reg->type = PTR_TO_MEM;
23210 reg->type |= arg->arg_type &
23211 (PTR_MAYBE_NULL | PTR_UNTRUSTED | MEM_RDONLY);
23212 mark_reg_known_zero(env, regs, i);
23213 reg->mem_size = arg->mem_size;
23214 if (arg->arg_type & PTR_MAYBE_NULL)
23215 reg->id = ++env->id_gen;
23216 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
23217 reg->type = PTR_TO_BTF_ID;
23218 if (arg->arg_type & PTR_MAYBE_NULL)
23219 reg->type |= PTR_MAYBE_NULL;
23220 if (arg->arg_type & PTR_UNTRUSTED)
23221 reg->type |= PTR_UNTRUSTED;
23222 if (arg->arg_type & PTR_TRUSTED)
23223 reg->type |= PTR_TRUSTED;
23224 mark_reg_known_zero(env, regs, i);
23225 reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */
23226 reg->btf_id = arg->btf_id;
23227 reg->id = ++env->id_gen;
23228 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
23229 /* caller can pass either PTR_TO_ARENA or SCALAR */
23230 mark_reg_unknown(env, regs, i);
23231 } else {
23232 verifier_bug(env, "unhandled arg#%d type %d",
23233 i - BPF_REG_1, arg->arg_type);
23234 ret = -EFAULT;
23235 goto out;
23236 }
23237 }
23238 } else {
23239 /* if main BPF program has associated BTF info, validate that
23240 * it's matching expected signature, and otherwise mark BTF
23241 * info for main program as unreliable
23242 */
23243 if (env->prog->aux->func_info_aux) {
23244 ret = btf_prepare_func_args(env, 0);
23245 if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX)
23246 env->prog->aux->func_info_aux[0].unreliable = true;
23247 }
23248
23249 /* 1st arg to a function */
23250 regs[BPF_REG_1].type = PTR_TO_CTX;
23251 mark_reg_known_zero(env, regs, BPF_REG_1);
23252 }
23253
23254 /* Acquire references for struct_ops program arguments tagged with "__ref" */
23255 if (!subprog && env->prog->type == BPF_PROG_TYPE_STRUCT_OPS) {
23256 for (i = 0; i < aux->ctx_arg_info_size; i++)
23257 aux->ctx_arg_info[i].ref_obj_id = aux->ctx_arg_info[i].refcounted ?
23258 acquire_reference(env, 0) : 0;
23259 }
23260
23261 ret = do_check(env);
23262 out:
23263 if (!ret && pop_log)
23264 bpf_vlog_reset(&env->log, 0);
23265 free_states(env);
23266 return ret;
23267 }
23268
23269 /* Lazily verify all global functions based on their BTF, if they are called
23270 * from main BPF program or any of subprograms transitively.
23271 * BPF global subprogs called from dead code are not validated.
23272 * All callable global functions must pass verification.
23273 * Otherwise the whole program is rejected.
23274 * Consider:
23275 * int bar(int);
23276 * int foo(int f)
23277 * {
23278 * return bar(f);
23279 * }
23280 * int bar(int b)
23281 * {
23282 * ...
23283 * }
23284 * foo() will be verified first for R1=any_scalar_value. During verification it
23285 * will be assumed that bar() already verified successfully and call to bar()
23286 * from foo() will be checked for type match only. Later bar() will be verified
23287 * independently to check that it's safe for R1=any_scalar_value.
23288 */
do_check_subprogs(struct bpf_verifier_env * env)23289 static int do_check_subprogs(struct bpf_verifier_env *env)
23290 {
23291 struct bpf_prog_aux *aux = env->prog->aux;
23292 struct bpf_func_info_aux *sub_aux;
23293 int i, ret, new_cnt;
23294
23295 if (!aux->func_info)
23296 return 0;
23297
23298 /* exception callback is presumed to be always called */
23299 if (env->exception_callback_subprog)
23300 subprog_aux(env, env->exception_callback_subprog)->called = true;
23301
23302 again:
23303 new_cnt = 0;
23304 for (i = 1; i < env->subprog_cnt; i++) {
23305 if (!subprog_is_global(env, i))
23306 continue;
23307
23308 sub_aux = subprog_aux(env, i);
23309 if (!sub_aux->called || sub_aux->verified)
23310 continue;
23311
23312 env->insn_idx = env->subprog_info[i].start;
23313 WARN_ON_ONCE(env->insn_idx == 0);
23314 ret = do_check_common(env, i);
23315 if (ret) {
23316 return ret;
23317 } else if (env->log.level & BPF_LOG_LEVEL) {
23318 verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n",
23319 i, subprog_name(env, i));
23320 }
23321
23322 /* We verified new global subprog, it might have called some
23323 * more global subprogs that we haven't verified yet, so we
23324 * need to do another pass over subprogs to verify those.
23325 */
23326 sub_aux->verified = true;
23327 new_cnt++;
23328 }
23329
23330 /* We can't loop forever as we verify at least one global subprog on
23331 * each pass.
23332 */
23333 if (new_cnt)
23334 goto again;
23335
23336 return 0;
23337 }
23338
do_check_main(struct bpf_verifier_env * env)23339 static int do_check_main(struct bpf_verifier_env *env)
23340 {
23341 int ret;
23342
23343 env->insn_idx = 0;
23344 ret = do_check_common(env, 0);
23345 if (!ret)
23346 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
23347 return ret;
23348 }
23349
23350
print_verification_stats(struct bpf_verifier_env * env)23351 static void print_verification_stats(struct bpf_verifier_env *env)
23352 {
23353 int i;
23354
23355 if (env->log.level & BPF_LOG_STATS) {
23356 verbose(env, "verification time %lld usec\n",
23357 div_u64(env->verification_time, 1000));
23358 verbose(env, "stack depth ");
23359 for (i = 0; i < env->subprog_cnt; i++) {
23360 u32 depth = env->subprog_info[i].stack_depth;
23361
23362 verbose(env, "%d", depth);
23363 if (i + 1 < env->subprog_cnt)
23364 verbose(env, "+");
23365 }
23366 verbose(env, "\n");
23367 }
23368 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
23369 "total_states %d peak_states %d mark_read %d\n",
23370 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
23371 env->max_states_per_insn, env->total_states,
23372 env->peak_states, env->longest_mark_read_walk);
23373 }
23374
bpf_prog_ctx_arg_info_init(struct bpf_prog * prog,const struct bpf_ctx_arg_aux * info,u32 cnt)23375 int bpf_prog_ctx_arg_info_init(struct bpf_prog *prog,
23376 const struct bpf_ctx_arg_aux *info, u32 cnt)
23377 {
23378 prog->aux->ctx_arg_info = kmemdup_array(info, cnt, sizeof(*info), GFP_KERNEL_ACCOUNT);
23379 prog->aux->ctx_arg_info_size = cnt;
23380
23381 return prog->aux->ctx_arg_info ? 0 : -ENOMEM;
23382 }
23383
check_struct_ops_btf_id(struct bpf_verifier_env * env)23384 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
23385 {
23386 const struct btf_type *t, *func_proto;
23387 const struct bpf_struct_ops_desc *st_ops_desc;
23388 const struct bpf_struct_ops *st_ops;
23389 const struct btf_member *member;
23390 struct bpf_prog *prog = env->prog;
23391 bool has_refcounted_arg = false;
23392 u32 btf_id, member_idx, member_off;
23393 struct btf *btf;
23394 const char *mname;
23395 int i, err;
23396
23397 if (!prog->gpl_compatible) {
23398 verbose(env, "struct ops programs must have a GPL compatible license\n");
23399 return -EINVAL;
23400 }
23401
23402 if (!prog->aux->attach_btf_id)
23403 return -ENOTSUPP;
23404
23405 btf = prog->aux->attach_btf;
23406 if (btf_is_module(btf)) {
23407 /* Make sure st_ops is valid through the lifetime of env */
23408 env->attach_btf_mod = btf_try_get_module(btf);
23409 if (!env->attach_btf_mod) {
23410 verbose(env, "struct_ops module %s is not found\n",
23411 btf_get_name(btf));
23412 return -ENOTSUPP;
23413 }
23414 }
23415
23416 btf_id = prog->aux->attach_btf_id;
23417 st_ops_desc = bpf_struct_ops_find(btf, btf_id);
23418 if (!st_ops_desc) {
23419 verbose(env, "attach_btf_id %u is not a supported struct\n",
23420 btf_id);
23421 return -ENOTSUPP;
23422 }
23423 st_ops = st_ops_desc->st_ops;
23424
23425 t = st_ops_desc->type;
23426 member_idx = prog->expected_attach_type;
23427 if (member_idx >= btf_type_vlen(t)) {
23428 verbose(env, "attach to invalid member idx %u of struct %s\n",
23429 member_idx, st_ops->name);
23430 return -EINVAL;
23431 }
23432
23433 member = &btf_type_member(t)[member_idx];
23434 mname = btf_name_by_offset(btf, member->name_off);
23435 func_proto = btf_type_resolve_func_ptr(btf, member->type,
23436 NULL);
23437 if (!func_proto) {
23438 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
23439 mname, member_idx, st_ops->name);
23440 return -EINVAL;
23441 }
23442
23443 member_off = __btf_member_bit_offset(t, member) / 8;
23444 err = bpf_struct_ops_supported(st_ops, member_off);
23445 if (err) {
23446 verbose(env, "attach to unsupported member %s of struct %s\n",
23447 mname, st_ops->name);
23448 return err;
23449 }
23450
23451 if (st_ops->check_member) {
23452 err = st_ops->check_member(t, member, prog);
23453
23454 if (err) {
23455 verbose(env, "attach to unsupported member %s of struct %s\n",
23456 mname, st_ops->name);
23457 return err;
23458 }
23459 }
23460
23461 if (prog->aux->priv_stack_requested && !bpf_jit_supports_private_stack()) {
23462 verbose(env, "Private stack not supported by jit\n");
23463 return -EACCES;
23464 }
23465
23466 for (i = 0; i < st_ops_desc->arg_info[member_idx].cnt; i++) {
23467 if (st_ops_desc->arg_info[member_idx].info->refcounted) {
23468 has_refcounted_arg = true;
23469 break;
23470 }
23471 }
23472
23473 /* Tail call is not allowed for programs with refcounted arguments since we
23474 * cannot guarantee that valid refcounted kptrs will be passed to the callee.
23475 */
23476 for (i = 0; i < env->subprog_cnt; i++) {
23477 if (has_refcounted_arg && env->subprog_info[i].has_tail_call) {
23478 verbose(env, "program with __ref argument cannot tail call\n");
23479 return -EINVAL;
23480 }
23481 }
23482
23483 prog->aux->st_ops = st_ops;
23484 prog->aux->attach_st_ops_member_off = member_off;
23485
23486 prog->aux->attach_func_proto = func_proto;
23487 prog->aux->attach_func_name = mname;
23488 env->ops = st_ops->verifier_ops;
23489
23490 return bpf_prog_ctx_arg_info_init(prog, st_ops_desc->arg_info[member_idx].info,
23491 st_ops_desc->arg_info[member_idx].cnt);
23492 }
23493 #define SECURITY_PREFIX "security_"
23494
check_attach_modify_return(unsigned long addr,const char * func_name)23495 static int check_attach_modify_return(unsigned long addr, const char *func_name)
23496 {
23497 if (within_error_injection_list(addr) ||
23498 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
23499 return 0;
23500
23501 return -EINVAL;
23502 }
23503
23504 /* list of non-sleepable functions that are otherwise on
23505 * ALLOW_ERROR_INJECTION list
23506 */
23507 BTF_SET_START(btf_non_sleepable_error_inject)
23508 /* Three functions below can be called from sleepable and non-sleepable context.
23509 * Assume non-sleepable from bpf safety point of view.
23510 */
BTF_ID(func,__filemap_add_folio)23511 BTF_ID(func, __filemap_add_folio)
23512 #ifdef CONFIG_FAIL_PAGE_ALLOC
23513 BTF_ID(func, should_fail_alloc_page)
23514 #endif
23515 #ifdef CONFIG_FAILSLAB
23516 BTF_ID(func, should_failslab)
23517 #endif
23518 BTF_SET_END(btf_non_sleepable_error_inject)
23519
23520 static int check_non_sleepable_error_inject(u32 btf_id)
23521 {
23522 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
23523 }
23524
bpf_check_attach_target(struct bpf_verifier_log * log,const struct bpf_prog * prog,const struct bpf_prog * tgt_prog,u32 btf_id,struct bpf_attach_target_info * tgt_info)23525 int bpf_check_attach_target(struct bpf_verifier_log *log,
23526 const struct bpf_prog *prog,
23527 const struct bpf_prog *tgt_prog,
23528 u32 btf_id,
23529 struct bpf_attach_target_info *tgt_info)
23530 {
23531 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
23532 bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING;
23533 char trace_symbol[KSYM_SYMBOL_LEN];
23534 const char prefix[] = "btf_trace_";
23535 struct bpf_raw_event_map *btp;
23536 int ret = 0, subprog = -1, i;
23537 const struct btf_type *t;
23538 bool conservative = true;
23539 const char *tname, *fname;
23540 struct btf *btf;
23541 long addr = 0;
23542 struct module *mod = NULL;
23543
23544 if (!btf_id) {
23545 bpf_log(log, "Tracing programs must provide btf_id\n");
23546 return -EINVAL;
23547 }
23548 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
23549 if (!btf) {
23550 bpf_log(log,
23551 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
23552 return -EINVAL;
23553 }
23554 t = btf_type_by_id(btf, btf_id);
23555 if (!t) {
23556 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
23557 return -EINVAL;
23558 }
23559 tname = btf_name_by_offset(btf, t->name_off);
23560 if (!tname) {
23561 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
23562 return -EINVAL;
23563 }
23564 if (tgt_prog) {
23565 struct bpf_prog_aux *aux = tgt_prog->aux;
23566 bool tgt_changes_pkt_data;
23567 bool tgt_might_sleep;
23568
23569 if (bpf_prog_is_dev_bound(prog->aux) &&
23570 !bpf_prog_dev_bound_match(prog, tgt_prog)) {
23571 bpf_log(log, "Target program bound device mismatch");
23572 return -EINVAL;
23573 }
23574
23575 for (i = 0; i < aux->func_info_cnt; i++)
23576 if (aux->func_info[i].type_id == btf_id) {
23577 subprog = i;
23578 break;
23579 }
23580 if (subprog == -1) {
23581 bpf_log(log, "Subprog %s doesn't exist\n", tname);
23582 return -EINVAL;
23583 }
23584 if (aux->func && aux->func[subprog]->aux->exception_cb) {
23585 bpf_log(log,
23586 "%s programs cannot attach to exception callback\n",
23587 prog_extension ? "Extension" : "FENTRY/FEXIT");
23588 return -EINVAL;
23589 }
23590 conservative = aux->func_info_aux[subprog].unreliable;
23591 if (prog_extension) {
23592 if (conservative) {
23593 bpf_log(log,
23594 "Cannot replace static functions\n");
23595 return -EINVAL;
23596 }
23597 if (!prog->jit_requested) {
23598 bpf_log(log,
23599 "Extension programs should be JITed\n");
23600 return -EINVAL;
23601 }
23602 tgt_changes_pkt_data = aux->func
23603 ? aux->func[subprog]->aux->changes_pkt_data
23604 : aux->changes_pkt_data;
23605 if (prog->aux->changes_pkt_data && !tgt_changes_pkt_data) {
23606 bpf_log(log,
23607 "Extension program changes packet data, while original does not\n");
23608 return -EINVAL;
23609 }
23610
23611 tgt_might_sleep = aux->func
23612 ? aux->func[subprog]->aux->might_sleep
23613 : aux->might_sleep;
23614 if (prog->aux->might_sleep && !tgt_might_sleep) {
23615 bpf_log(log,
23616 "Extension program may sleep, while original does not\n");
23617 return -EINVAL;
23618 }
23619 }
23620 if (!tgt_prog->jited) {
23621 bpf_log(log, "Can attach to only JITed progs\n");
23622 return -EINVAL;
23623 }
23624 if (prog_tracing) {
23625 if (aux->attach_tracing_prog) {
23626 /*
23627 * Target program is an fentry/fexit which is already attached
23628 * to another tracing program. More levels of nesting
23629 * attachment are not allowed.
23630 */
23631 bpf_log(log, "Cannot nest tracing program attach more than once\n");
23632 return -EINVAL;
23633 }
23634 } else if (tgt_prog->type == prog->type) {
23635 /*
23636 * To avoid potential call chain cycles, prevent attaching of a
23637 * program extension to another extension. It's ok to attach
23638 * fentry/fexit to extension program.
23639 */
23640 bpf_log(log, "Cannot recursively attach\n");
23641 return -EINVAL;
23642 }
23643 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
23644 prog_extension &&
23645 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
23646 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
23647 /* Program extensions can extend all program types
23648 * except fentry/fexit. The reason is the following.
23649 * The fentry/fexit programs are used for performance
23650 * analysis, stats and can be attached to any program
23651 * type. When extension program is replacing XDP function
23652 * it is necessary to allow performance analysis of all
23653 * functions. Both original XDP program and its program
23654 * extension. Hence attaching fentry/fexit to
23655 * BPF_PROG_TYPE_EXT is allowed. If extending of
23656 * fentry/fexit was allowed it would be possible to create
23657 * long call chain fentry->extension->fentry->extension
23658 * beyond reasonable stack size. Hence extending fentry
23659 * is not allowed.
23660 */
23661 bpf_log(log, "Cannot extend fentry/fexit\n");
23662 return -EINVAL;
23663 }
23664 } else {
23665 if (prog_extension) {
23666 bpf_log(log, "Cannot replace kernel functions\n");
23667 return -EINVAL;
23668 }
23669 }
23670
23671 switch (prog->expected_attach_type) {
23672 case BPF_TRACE_RAW_TP:
23673 if (tgt_prog) {
23674 bpf_log(log,
23675 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
23676 return -EINVAL;
23677 }
23678 if (!btf_type_is_typedef(t)) {
23679 bpf_log(log, "attach_btf_id %u is not a typedef\n",
23680 btf_id);
23681 return -EINVAL;
23682 }
23683 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
23684 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
23685 btf_id, tname);
23686 return -EINVAL;
23687 }
23688 tname += sizeof(prefix) - 1;
23689
23690 /* The func_proto of "btf_trace_##tname" is generated from typedef without argument
23691 * names. Thus using bpf_raw_event_map to get argument names.
23692 */
23693 btp = bpf_get_raw_tracepoint(tname);
23694 if (!btp)
23695 return -EINVAL;
23696 fname = kallsyms_lookup((unsigned long)btp->bpf_func, NULL, NULL, NULL,
23697 trace_symbol);
23698 bpf_put_raw_tracepoint(btp);
23699
23700 if (fname)
23701 ret = btf_find_by_name_kind(btf, fname, BTF_KIND_FUNC);
23702
23703 if (!fname || ret < 0) {
23704 bpf_log(log, "Cannot find btf of tracepoint template, fall back to %s%s.\n",
23705 prefix, tname);
23706 t = btf_type_by_id(btf, t->type);
23707 if (!btf_type_is_ptr(t))
23708 /* should never happen in valid vmlinux build */
23709 return -EINVAL;
23710 } else {
23711 t = btf_type_by_id(btf, ret);
23712 if (!btf_type_is_func(t))
23713 /* should never happen in valid vmlinux build */
23714 return -EINVAL;
23715 }
23716
23717 t = btf_type_by_id(btf, t->type);
23718 if (!btf_type_is_func_proto(t))
23719 /* should never happen in valid vmlinux build */
23720 return -EINVAL;
23721
23722 break;
23723 case BPF_TRACE_ITER:
23724 if (!btf_type_is_func(t)) {
23725 bpf_log(log, "attach_btf_id %u is not a function\n",
23726 btf_id);
23727 return -EINVAL;
23728 }
23729 t = btf_type_by_id(btf, t->type);
23730 if (!btf_type_is_func_proto(t))
23731 return -EINVAL;
23732 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
23733 if (ret)
23734 return ret;
23735 break;
23736 default:
23737 if (!prog_extension)
23738 return -EINVAL;
23739 fallthrough;
23740 case BPF_MODIFY_RETURN:
23741 case BPF_LSM_MAC:
23742 case BPF_LSM_CGROUP:
23743 case BPF_TRACE_FENTRY:
23744 case BPF_TRACE_FEXIT:
23745 if (!btf_type_is_func(t)) {
23746 bpf_log(log, "attach_btf_id %u is not a function\n",
23747 btf_id);
23748 return -EINVAL;
23749 }
23750 if (prog_extension &&
23751 btf_check_type_match(log, prog, btf, t))
23752 return -EINVAL;
23753 t = btf_type_by_id(btf, t->type);
23754 if (!btf_type_is_func_proto(t))
23755 return -EINVAL;
23756
23757 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
23758 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
23759 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
23760 return -EINVAL;
23761
23762 if (tgt_prog && conservative)
23763 t = NULL;
23764
23765 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
23766 if (ret < 0)
23767 return ret;
23768
23769 if (tgt_prog) {
23770 if (subprog == 0)
23771 addr = (long) tgt_prog->bpf_func;
23772 else
23773 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
23774 } else {
23775 if (btf_is_module(btf)) {
23776 mod = btf_try_get_module(btf);
23777 if (mod)
23778 addr = find_kallsyms_symbol_value(mod, tname);
23779 else
23780 addr = 0;
23781 } else {
23782 addr = kallsyms_lookup_name(tname);
23783 }
23784 if (!addr) {
23785 module_put(mod);
23786 bpf_log(log,
23787 "The address of function %s cannot be found\n",
23788 tname);
23789 return -ENOENT;
23790 }
23791 }
23792
23793 if (prog->sleepable) {
23794 ret = -EINVAL;
23795 switch (prog->type) {
23796 case BPF_PROG_TYPE_TRACING:
23797
23798 /* fentry/fexit/fmod_ret progs can be sleepable if they are
23799 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
23800 */
23801 if (!check_non_sleepable_error_inject(btf_id) &&
23802 within_error_injection_list(addr))
23803 ret = 0;
23804 /* fentry/fexit/fmod_ret progs can also be sleepable if they are
23805 * in the fmodret id set with the KF_SLEEPABLE flag.
23806 */
23807 else {
23808 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
23809 prog);
23810
23811 if (flags && (*flags & KF_SLEEPABLE))
23812 ret = 0;
23813 }
23814 break;
23815 case BPF_PROG_TYPE_LSM:
23816 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
23817 * Only some of them are sleepable.
23818 */
23819 if (bpf_lsm_is_sleepable_hook(btf_id))
23820 ret = 0;
23821 break;
23822 default:
23823 break;
23824 }
23825 if (ret) {
23826 module_put(mod);
23827 bpf_log(log, "%s is not sleepable\n", tname);
23828 return ret;
23829 }
23830 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
23831 if (tgt_prog) {
23832 module_put(mod);
23833 bpf_log(log, "can't modify return codes of BPF programs\n");
23834 return -EINVAL;
23835 }
23836 ret = -EINVAL;
23837 if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
23838 !check_attach_modify_return(addr, tname))
23839 ret = 0;
23840 if (ret) {
23841 module_put(mod);
23842 bpf_log(log, "%s() is not modifiable\n", tname);
23843 return ret;
23844 }
23845 }
23846
23847 break;
23848 }
23849 tgt_info->tgt_addr = addr;
23850 tgt_info->tgt_name = tname;
23851 tgt_info->tgt_type = t;
23852 tgt_info->tgt_mod = mod;
23853 return 0;
23854 }
23855
BTF_SET_START(btf_id_deny)23856 BTF_SET_START(btf_id_deny)
23857 BTF_ID_UNUSED
23858 #ifdef CONFIG_SMP
23859 BTF_ID(func, ___migrate_enable)
23860 BTF_ID(func, migrate_disable)
23861 BTF_ID(func, migrate_enable)
23862 #endif
23863 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
23864 BTF_ID(func, rcu_read_unlock_strict)
23865 #endif
23866 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
23867 BTF_ID(func, preempt_count_add)
23868 BTF_ID(func, preempt_count_sub)
23869 #endif
23870 #ifdef CONFIG_PREEMPT_RCU
23871 BTF_ID(func, __rcu_read_lock)
23872 BTF_ID(func, __rcu_read_unlock)
23873 #endif
23874 BTF_SET_END(btf_id_deny)
23875
23876 /* fexit and fmod_ret can't be used to attach to __noreturn functions.
23877 * Currently, we must manually list all __noreturn functions here. Once a more
23878 * robust solution is implemented, this workaround can be removed.
23879 */
23880 BTF_SET_START(noreturn_deny)
23881 #ifdef CONFIG_IA32_EMULATION
23882 BTF_ID(func, __ia32_sys_exit)
23883 BTF_ID(func, __ia32_sys_exit_group)
23884 #endif
23885 #ifdef CONFIG_KUNIT
23886 BTF_ID(func, __kunit_abort)
23887 BTF_ID(func, kunit_try_catch_throw)
23888 #endif
23889 #ifdef CONFIG_MODULES
23890 BTF_ID(func, __module_put_and_kthread_exit)
23891 #endif
23892 #ifdef CONFIG_X86_64
23893 BTF_ID(func, __x64_sys_exit)
23894 BTF_ID(func, __x64_sys_exit_group)
23895 #endif
23896 BTF_ID(func, do_exit)
23897 BTF_ID(func, do_group_exit)
23898 BTF_ID(func, kthread_complete_and_exit)
23899 BTF_ID(func, kthread_exit)
23900 BTF_ID(func, make_task_dead)
23901 BTF_SET_END(noreturn_deny)
23902
23903 static bool can_be_sleepable(struct bpf_prog *prog)
23904 {
23905 if (prog->type == BPF_PROG_TYPE_TRACING) {
23906 switch (prog->expected_attach_type) {
23907 case BPF_TRACE_FENTRY:
23908 case BPF_TRACE_FEXIT:
23909 case BPF_MODIFY_RETURN:
23910 case BPF_TRACE_ITER:
23911 return true;
23912 default:
23913 return false;
23914 }
23915 }
23916 return prog->type == BPF_PROG_TYPE_LSM ||
23917 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
23918 prog->type == BPF_PROG_TYPE_STRUCT_OPS;
23919 }
23920
check_attach_btf_id(struct bpf_verifier_env * env)23921 static int check_attach_btf_id(struct bpf_verifier_env *env)
23922 {
23923 struct bpf_prog *prog = env->prog;
23924 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
23925 struct bpf_attach_target_info tgt_info = {};
23926 u32 btf_id = prog->aux->attach_btf_id;
23927 struct bpf_trampoline *tr;
23928 int ret;
23929 u64 key;
23930
23931 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
23932 if (prog->sleepable)
23933 /* attach_btf_id checked to be zero already */
23934 return 0;
23935 verbose(env, "Syscall programs can only be sleepable\n");
23936 return -EINVAL;
23937 }
23938
23939 if (prog->sleepable && !can_be_sleepable(prog)) {
23940 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
23941 return -EINVAL;
23942 }
23943
23944 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
23945 return check_struct_ops_btf_id(env);
23946
23947 if (prog->type != BPF_PROG_TYPE_TRACING &&
23948 prog->type != BPF_PROG_TYPE_LSM &&
23949 prog->type != BPF_PROG_TYPE_EXT)
23950 return 0;
23951
23952 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
23953 if (ret)
23954 return ret;
23955
23956 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
23957 /* to make freplace equivalent to their targets, they need to
23958 * inherit env->ops and expected_attach_type for the rest of the
23959 * verification
23960 */
23961 env->ops = bpf_verifier_ops[tgt_prog->type];
23962 prog->expected_attach_type = tgt_prog->expected_attach_type;
23963 }
23964
23965 /* store info about the attachment target that will be used later */
23966 prog->aux->attach_func_proto = tgt_info.tgt_type;
23967 prog->aux->attach_func_name = tgt_info.tgt_name;
23968 prog->aux->mod = tgt_info.tgt_mod;
23969
23970 if (tgt_prog) {
23971 prog->aux->saved_dst_prog_type = tgt_prog->type;
23972 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
23973 }
23974
23975 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
23976 prog->aux->attach_btf_trace = true;
23977 return 0;
23978 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
23979 return bpf_iter_prog_supported(prog);
23980 }
23981
23982 if (prog->type == BPF_PROG_TYPE_LSM) {
23983 ret = bpf_lsm_verify_prog(&env->log, prog);
23984 if (ret < 0)
23985 return ret;
23986 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
23987 btf_id_set_contains(&btf_id_deny, btf_id)) {
23988 verbose(env, "Attaching tracing programs to function '%s' is rejected.\n",
23989 tgt_info.tgt_name);
23990 return -EINVAL;
23991 } else if ((prog->expected_attach_type == BPF_TRACE_FEXIT ||
23992 prog->expected_attach_type == BPF_MODIFY_RETURN) &&
23993 btf_id_set_contains(&noreturn_deny, btf_id)) {
23994 verbose(env, "Attaching fexit/fmod_ret to __noreturn function '%s' is rejected.\n",
23995 tgt_info.tgt_name);
23996 return -EINVAL;
23997 }
23998
23999 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
24000 tr = bpf_trampoline_get(key, &tgt_info);
24001 if (!tr)
24002 return -ENOMEM;
24003
24004 if (tgt_prog && tgt_prog->aux->tail_call_reachable)
24005 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
24006
24007 prog->aux->dst_trampoline = tr;
24008 return 0;
24009 }
24010
bpf_get_btf_vmlinux(void)24011 struct btf *bpf_get_btf_vmlinux(void)
24012 {
24013 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
24014 mutex_lock(&bpf_verifier_lock);
24015 if (!btf_vmlinux)
24016 btf_vmlinux = btf_parse_vmlinux();
24017 mutex_unlock(&bpf_verifier_lock);
24018 }
24019 return btf_vmlinux;
24020 }
24021
24022 /*
24023 * The add_fd_from_fd_array() is executed only if fd_array_cnt is non-zero. In
24024 * this case expect that every file descriptor in the array is either a map or
24025 * a BTF. Everything else is considered to be trash.
24026 */
add_fd_from_fd_array(struct bpf_verifier_env * env,int fd)24027 static int add_fd_from_fd_array(struct bpf_verifier_env *env, int fd)
24028 {
24029 struct bpf_map *map;
24030 struct btf *btf;
24031 CLASS(fd, f)(fd);
24032 int err;
24033
24034 map = __bpf_map_get(f);
24035 if (!IS_ERR(map)) {
24036 err = __add_used_map(env, map);
24037 if (err < 0)
24038 return err;
24039 return 0;
24040 }
24041
24042 btf = __btf_get_by_fd(f);
24043 if (!IS_ERR(btf)) {
24044 err = __add_used_btf(env, btf);
24045 if (err < 0)
24046 return err;
24047 return 0;
24048 }
24049
24050 verbose(env, "fd %d is not pointing to valid bpf_map or btf\n", fd);
24051 return PTR_ERR(map);
24052 }
24053
process_fd_array(struct bpf_verifier_env * env,union bpf_attr * attr,bpfptr_t uattr)24054 static int process_fd_array(struct bpf_verifier_env *env, union bpf_attr *attr, bpfptr_t uattr)
24055 {
24056 size_t size = sizeof(int);
24057 int ret;
24058 int fd;
24059 u32 i;
24060
24061 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
24062
24063 /*
24064 * The only difference between old (no fd_array_cnt is given) and new
24065 * APIs is that in the latter case the fd_array is expected to be
24066 * continuous and is scanned for map fds right away
24067 */
24068 if (!attr->fd_array_cnt)
24069 return 0;
24070
24071 /* Check for integer overflow */
24072 if (attr->fd_array_cnt >= (U32_MAX / size)) {
24073 verbose(env, "fd_array_cnt is too big (%u)\n", attr->fd_array_cnt);
24074 return -EINVAL;
24075 }
24076
24077 for (i = 0; i < attr->fd_array_cnt; i++) {
24078 if (copy_from_bpfptr_offset(&fd, env->fd_array, i * size, size))
24079 return -EFAULT;
24080
24081 ret = add_fd_from_fd_array(env, fd);
24082 if (ret)
24083 return ret;
24084 }
24085
24086 return 0;
24087 }
24088
24089 /* Each field is a register bitmask */
24090 struct insn_live_regs {
24091 u16 use; /* registers read by instruction */
24092 u16 def; /* registers written by instruction */
24093 u16 in; /* registers that may be alive before instruction */
24094 u16 out; /* registers that may be alive after instruction */
24095 };
24096
24097 /* Bitmask with 1s for all caller saved registers */
24098 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1)
24099
24100 /* Compute info->{use,def} fields for the instruction */
compute_insn_live_regs(struct bpf_verifier_env * env,struct bpf_insn * insn,struct insn_live_regs * info)24101 static void compute_insn_live_regs(struct bpf_verifier_env *env,
24102 struct bpf_insn *insn,
24103 struct insn_live_regs *info)
24104 {
24105 struct call_summary cs;
24106 u8 class = BPF_CLASS(insn->code);
24107 u8 code = BPF_OP(insn->code);
24108 u8 mode = BPF_MODE(insn->code);
24109 u16 src = BIT(insn->src_reg);
24110 u16 dst = BIT(insn->dst_reg);
24111 u16 r0 = BIT(0);
24112 u16 def = 0;
24113 u16 use = 0xffff;
24114
24115 switch (class) {
24116 case BPF_LD:
24117 switch (mode) {
24118 case BPF_IMM:
24119 if (BPF_SIZE(insn->code) == BPF_DW) {
24120 def = dst;
24121 use = 0;
24122 }
24123 break;
24124 case BPF_LD | BPF_ABS:
24125 case BPF_LD | BPF_IND:
24126 /* stick with defaults */
24127 break;
24128 }
24129 break;
24130 case BPF_LDX:
24131 switch (mode) {
24132 case BPF_MEM:
24133 case BPF_MEMSX:
24134 def = dst;
24135 use = src;
24136 break;
24137 }
24138 break;
24139 case BPF_ST:
24140 switch (mode) {
24141 case BPF_MEM:
24142 def = 0;
24143 use = dst;
24144 break;
24145 }
24146 break;
24147 case BPF_STX:
24148 switch (mode) {
24149 case BPF_MEM:
24150 def = 0;
24151 use = dst | src;
24152 break;
24153 case BPF_ATOMIC:
24154 switch (insn->imm) {
24155 case BPF_CMPXCHG:
24156 use = r0 | dst | src;
24157 def = r0;
24158 break;
24159 case BPF_LOAD_ACQ:
24160 def = dst;
24161 use = src;
24162 break;
24163 case BPF_STORE_REL:
24164 def = 0;
24165 use = dst | src;
24166 break;
24167 default:
24168 use = dst | src;
24169 if (insn->imm & BPF_FETCH)
24170 def = src;
24171 else
24172 def = 0;
24173 }
24174 break;
24175 }
24176 break;
24177 case BPF_ALU:
24178 case BPF_ALU64:
24179 switch (code) {
24180 case BPF_END:
24181 use = dst;
24182 def = dst;
24183 break;
24184 case BPF_MOV:
24185 def = dst;
24186 if (BPF_SRC(insn->code) == BPF_K)
24187 use = 0;
24188 else
24189 use = src;
24190 break;
24191 default:
24192 def = dst;
24193 if (BPF_SRC(insn->code) == BPF_K)
24194 use = dst;
24195 else
24196 use = dst | src;
24197 }
24198 break;
24199 case BPF_JMP:
24200 case BPF_JMP32:
24201 switch (code) {
24202 case BPF_JA:
24203 case BPF_JCOND:
24204 def = 0;
24205 use = 0;
24206 break;
24207 case BPF_EXIT:
24208 def = 0;
24209 use = r0;
24210 break;
24211 case BPF_CALL:
24212 def = ALL_CALLER_SAVED_REGS;
24213 use = def & ~BIT(BPF_REG_0);
24214 if (get_call_summary(env, insn, &cs))
24215 use = GENMASK(cs.num_params, 1);
24216 break;
24217 default:
24218 def = 0;
24219 if (BPF_SRC(insn->code) == BPF_K)
24220 use = dst;
24221 else
24222 use = dst | src;
24223 }
24224 break;
24225 }
24226
24227 info->def = def;
24228 info->use = use;
24229 }
24230
24231 /* Compute may-live registers after each instruction in the program.
24232 * The register is live after the instruction I if it is read by some
24233 * instruction S following I during program execution and is not
24234 * overwritten between I and S.
24235 *
24236 * Store result in env->insn_aux_data[i].live_regs.
24237 */
compute_live_registers(struct bpf_verifier_env * env)24238 static int compute_live_registers(struct bpf_verifier_env *env)
24239 {
24240 struct bpf_insn_aux_data *insn_aux = env->insn_aux_data;
24241 struct bpf_insn *insns = env->prog->insnsi;
24242 struct insn_live_regs *state;
24243 int insn_cnt = env->prog->len;
24244 int err = 0, i, j;
24245 bool changed;
24246
24247 /* Use the following algorithm:
24248 * - define the following:
24249 * - I.use : a set of all registers read by instruction I;
24250 * - I.def : a set of all registers written by instruction I;
24251 * - I.in : a set of all registers that may be alive before I execution;
24252 * - I.out : a set of all registers that may be alive after I execution;
24253 * - insn_successors(I): a set of instructions S that might immediately
24254 * follow I for some program execution;
24255 * - associate separate empty sets 'I.in' and 'I.out' with each instruction;
24256 * - visit each instruction in a postorder and update
24257 * state[i].in, state[i].out as follows:
24258 *
24259 * state[i].out = U [state[s].in for S in insn_successors(i)]
24260 * state[i].in = (state[i].out / state[i].def) U state[i].use
24261 *
24262 * (where U stands for set union, / stands for set difference)
24263 * - repeat the computation while {in,out} fields changes for
24264 * any instruction.
24265 */
24266 state = kvcalloc(insn_cnt, sizeof(*state), GFP_KERNEL_ACCOUNT);
24267 if (!state) {
24268 err = -ENOMEM;
24269 goto out;
24270 }
24271
24272 for (i = 0; i < insn_cnt; ++i)
24273 compute_insn_live_regs(env, &insns[i], &state[i]);
24274
24275 changed = true;
24276 while (changed) {
24277 changed = false;
24278 for (i = 0; i < env->cfg.cur_postorder; ++i) {
24279 int insn_idx = env->cfg.insn_postorder[i];
24280 struct insn_live_regs *live = &state[insn_idx];
24281 int succ_num;
24282 u32 succ[2];
24283 u16 new_out = 0;
24284 u16 new_in = 0;
24285
24286 succ_num = bpf_insn_successors(env->prog, insn_idx, succ);
24287 for (int s = 0; s < succ_num; ++s)
24288 new_out |= state[succ[s]].in;
24289 new_in = (new_out & ~live->def) | live->use;
24290 if (new_out != live->out || new_in != live->in) {
24291 live->in = new_in;
24292 live->out = new_out;
24293 changed = true;
24294 }
24295 }
24296 }
24297
24298 for (i = 0; i < insn_cnt; ++i)
24299 insn_aux[i].live_regs_before = state[i].in;
24300
24301 if (env->log.level & BPF_LOG_LEVEL2) {
24302 verbose(env, "Live regs before insn:\n");
24303 for (i = 0; i < insn_cnt; ++i) {
24304 if (env->insn_aux_data[i].scc)
24305 verbose(env, "%3d ", env->insn_aux_data[i].scc);
24306 else
24307 verbose(env, " ");
24308 verbose(env, "%3d: ", i);
24309 for (j = BPF_REG_0; j < BPF_REG_10; ++j)
24310 if (insn_aux[i].live_regs_before & BIT(j))
24311 verbose(env, "%d", j);
24312 else
24313 verbose(env, ".");
24314 verbose(env, " ");
24315 verbose_insn(env, &insns[i]);
24316 if (bpf_is_ldimm64(&insns[i]))
24317 i++;
24318 }
24319 }
24320
24321 out:
24322 kvfree(state);
24323 return err;
24324 }
24325
24326 /*
24327 * Compute strongly connected components (SCCs) on the CFG.
24328 * Assign an SCC number to each instruction, recorded in env->insn_aux[*].scc.
24329 * If instruction is a sole member of its SCC and there are no self edges,
24330 * assign it SCC number of zero.
24331 * Uses a non-recursive adaptation of Tarjan's algorithm for SCC computation.
24332 */
compute_scc(struct bpf_verifier_env * env)24333 static int compute_scc(struct bpf_verifier_env *env)
24334 {
24335 const u32 NOT_ON_STACK = U32_MAX;
24336
24337 struct bpf_insn_aux_data *aux = env->insn_aux_data;
24338 const u32 insn_cnt = env->prog->len;
24339 int stack_sz, dfs_sz, err = 0;
24340 u32 *stack, *pre, *low, *dfs;
24341 u32 succ_cnt, i, j, t, w;
24342 u32 next_preorder_num;
24343 u32 next_scc_id;
24344 bool assign_scc;
24345 u32 succ[2];
24346
24347 next_preorder_num = 1;
24348 next_scc_id = 1;
24349 /*
24350 * - 'stack' accumulates vertices in DFS order, see invariant comment below;
24351 * - 'pre[t] == p' => preorder number of vertex 't' is 'p';
24352 * - 'low[t] == n' => smallest preorder number of the vertex reachable from 't' is 'n';
24353 * - 'dfs' DFS traversal stack, used to emulate explicit recursion.
24354 */
24355 stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
24356 pre = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
24357 low = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
24358 dfs = kvcalloc(insn_cnt, sizeof(*dfs), GFP_KERNEL_ACCOUNT);
24359 if (!stack || !pre || !low || !dfs) {
24360 err = -ENOMEM;
24361 goto exit;
24362 }
24363 /*
24364 * References:
24365 * [1] R. Tarjan "Depth-First Search and Linear Graph Algorithms"
24366 * [2] D. J. Pearce "A Space-Efficient Algorithm for Finding Strongly Connected Components"
24367 *
24368 * The algorithm maintains the following invariant:
24369 * - suppose there is a path 'u' ~> 'v', such that 'pre[v] < pre[u]';
24370 * - then, vertex 'u' remains on stack while vertex 'v' is on stack.
24371 *
24372 * Consequently:
24373 * - If 'low[v] < pre[v]', there is a path from 'v' to some vertex 'u',
24374 * such that 'pre[u] == low[v]'; vertex 'u' is currently on the stack,
24375 * and thus there is an SCC (loop) containing both 'u' and 'v'.
24376 * - If 'low[v] == pre[v]', loops containing 'v' have been explored,
24377 * and 'v' can be considered the root of some SCC.
24378 *
24379 * Here is a pseudo-code for an explicitly recursive version of the algorithm:
24380 *
24381 * NOT_ON_STACK = insn_cnt + 1
24382 * pre = [0] * insn_cnt
24383 * low = [0] * insn_cnt
24384 * scc = [0] * insn_cnt
24385 * stack = []
24386 *
24387 * next_preorder_num = 1
24388 * next_scc_id = 1
24389 *
24390 * def recur(w):
24391 * nonlocal next_preorder_num
24392 * nonlocal next_scc_id
24393 *
24394 * pre[w] = next_preorder_num
24395 * low[w] = next_preorder_num
24396 * next_preorder_num += 1
24397 * stack.append(w)
24398 * for s in successors(w):
24399 * # Note: for classic algorithm the block below should look as:
24400 * #
24401 * # if pre[s] == 0:
24402 * # recur(s)
24403 * # low[w] = min(low[w], low[s])
24404 * # elif low[s] != NOT_ON_STACK:
24405 * # low[w] = min(low[w], pre[s])
24406 * #
24407 * # But replacing both 'min' instructions with 'low[w] = min(low[w], low[s])'
24408 * # does not break the invariant and makes itartive version of the algorithm
24409 * # simpler. See 'Algorithm #3' from [2].
24410 *
24411 * # 's' not yet visited
24412 * if pre[s] == 0:
24413 * recur(s)
24414 * # if 's' is on stack, pick lowest reachable preorder number from it;
24415 * # if 's' is not on stack 'low[s] == NOT_ON_STACK > low[w]',
24416 * # so 'min' would be a noop.
24417 * low[w] = min(low[w], low[s])
24418 *
24419 * if low[w] == pre[w]:
24420 * # 'w' is the root of an SCC, pop all vertices
24421 * # below 'w' on stack and assign same SCC to them.
24422 * while True:
24423 * t = stack.pop()
24424 * low[t] = NOT_ON_STACK
24425 * scc[t] = next_scc_id
24426 * if t == w:
24427 * break
24428 * next_scc_id += 1
24429 *
24430 * for i in range(0, insn_cnt):
24431 * if pre[i] == 0:
24432 * recur(i)
24433 *
24434 * Below implementation replaces explicit recursion with array 'dfs'.
24435 */
24436 for (i = 0; i < insn_cnt; i++) {
24437 if (pre[i])
24438 continue;
24439 stack_sz = 0;
24440 dfs_sz = 1;
24441 dfs[0] = i;
24442 dfs_continue:
24443 while (dfs_sz) {
24444 w = dfs[dfs_sz - 1];
24445 if (pre[w] == 0) {
24446 low[w] = next_preorder_num;
24447 pre[w] = next_preorder_num;
24448 next_preorder_num++;
24449 stack[stack_sz++] = w;
24450 }
24451 /* Visit 'w' successors */
24452 succ_cnt = bpf_insn_successors(env->prog, w, succ);
24453 for (j = 0; j < succ_cnt; ++j) {
24454 if (pre[succ[j]]) {
24455 low[w] = min(low[w], low[succ[j]]);
24456 } else {
24457 dfs[dfs_sz++] = succ[j];
24458 goto dfs_continue;
24459 }
24460 }
24461 /*
24462 * Preserve the invariant: if some vertex above in the stack
24463 * is reachable from 'w', keep 'w' on the stack.
24464 */
24465 if (low[w] < pre[w]) {
24466 dfs_sz--;
24467 goto dfs_continue;
24468 }
24469 /*
24470 * Assign SCC number only if component has two or more elements,
24471 * or if component has a self reference.
24472 */
24473 assign_scc = stack[stack_sz - 1] != w;
24474 for (j = 0; j < succ_cnt; ++j) {
24475 if (succ[j] == w) {
24476 assign_scc = true;
24477 break;
24478 }
24479 }
24480 /* Pop component elements from stack */
24481 do {
24482 t = stack[--stack_sz];
24483 low[t] = NOT_ON_STACK;
24484 if (assign_scc)
24485 aux[t].scc = next_scc_id;
24486 } while (t != w);
24487 if (assign_scc)
24488 next_scc_id++;
24489 dfs_sz--;
24490 }
24491 }
24492 env->scc_info = kvcalloc(next_scc_id, sizeof(*env->scc_info), GFP_KERNEL_ACCOUNT);
24493 if (!env->scc_info) {
24494 err = -ENOMEM;
24495 goto exit;
24496 }
24497 env->scc_cnt = next_scc_id;
24498 exit:
24499 kvfree(stack);
24500 kvfree(pre);
24501 kvfree(low);
24502 kvfree(dfs);
24503 return err;
24504 }
24505
bpf_check(struct bpf_prog ** prog,union bpf_attr * attr,bpfptr_t uattr,__u32 uattr_size)24506 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
24507 {
24508 u64 start_time = ktime_get_ns();
24509 struct bpf_verifier_env *env;
24510 int i, len, ret = -EINVAL, err;
24511 u32 log_true_size;
24512 bool is_priv;
24513
24514 BTF_TYPE_EMIT(enum bpf_features);
24515
24516 /* no program is valid */
24517 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
24518 return -EINVAL;
24519
24520 /* 'struct bpf_verifier_env' can be global, but since it's not small,
24521 * allocate/free it every time bpf_check() is called
24522 */
24523 env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL_ACCOUNT);
24524 if (!env)
24525 return -ENOMEM;
24526
24527 env->bt.env = env;
24528
24529 len = (*prog)->len;
24530 env->insn_aux_data =
24531 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
24532 ret = -ENOMEM;
24533 if (!env->insn_aux_data)
24534 goto err_free_env;
24535 for (i = 0; i < len; i++)
24536 env->insn_aux_data[i].orig_idx = i;
24537 env->prog = *prog;
24538 env->ops = bpf_verifier_ops[env->prog->type];
24539
24540 env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token);
24541 env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token);
24542 env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token);
24543 env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token);
24544 env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF);
24545
24546 bpf_get_btf_vmlinux();
24547
24548 /* grab the mutex to protect few globals used by verifier */
24549 if (!is_priv)
24550 mutex_lock(&bpf_verifier_lock);
24551
24552 /* user could have requested verbose verifier output
24553 * and supplied buffer to store the verification trace
24554 */
24555 ret = bpf_vlog_init(&env->log, attr->log_level,
24556 (char __user *) (unsigned long) attr->log_buf,
24557 attr->log_size);
24558 if (ret)
24559 goto err_unlock;
24560
24561 ret = process_fd_array(env, attr, uattr);
24562 if (ret)
24563 goto skip_full_check;
24564
24565 mark_verifier_state_clean(env);
24566
24567 if (IS_ERR(btf_vmlinux)) {
24568 /* Either gcc or pahole or kernel are broken. */
24569 verbose(env, "in-kernel BTF is malformed\n");
24570 ret = PTR_ERR(btf_vmlinux);
24571 goto skip_full_check;
24572 }
24573
24574 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
24575 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
24576 env->strict_alignment = true;
24577 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
24578 env->strict_alignment = false;
24579
24580 if (is_priv)
24581 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
24582 env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS;
24583
24584 env->explored_states = kvcalloc(state_htab_size(env),
24585 sizeof(struct list_head),
24586 GFP_KERNEL_ACCOUNT);
24587 ret = -ENOMEM;
24588 if (!env->explored_states)
24589 goto skip_full_check;
24590
24591 for (i = 0; i < state_htab_size(env); i++)
24592 INIT_LIST_HEAD(&env->explored_states[i]);
24593 INIT_LIST_HEAD(&env->free_list);
24594
24595 ret = check_btf_info_early(env, attr, uattr);
24596 if (ret < 0)
24597 goto skip_full_check;
24598
24599 ret = add_subprog_and_kfunc(env);
24600 if (ret < 0)
24601 goto skip_full_check;
24602
24603 ret = check_subprogs(env);
24604 if (ret < 0)
24605 goto skip_full_check;
24606
24607 ret = check_btf_info(env, attr, uattr);
24608 if (ret < 0)
24609 goto skip_full_check;
24610
24611 ret = resolve_pseudo_ldimm64(env);
24612 if (ret < 0)
24613 goto skip_full_check;
24614
24615 if (bpf_prog_is_offloaded(env->prog->aux)) {
24616 ret = bpf_prog_offload_verifier_prep(env->prog);
24617 if (ret)
24618 goto skip_full_check;
24619 }
24620
24621 ret = check_cfg(env);
24622 if (ret < 0)
24623 goto skip_full_check;
24624
24625 ret = compute_postorder(env);
24626 if (ret < 0)
24627 goto skip_full_check;
24628
24629 ret = bpf_stack_liveness_init(env);
24630 if (ret)
24631 goto skip_full_check;
24632
24633 ret = check_attach_btf_id(env);
24634 if (ret)
24635 goto skip_full_check;
24636
24637 ret = compute_scc(env);
24638 if (ret < 0)
24639 goto skip_full_check;
24640
24641 ret = compute_live_registers(env);
24642 if (ret < 0)
24643 goto skip_full_check;
24644
24645 ret = mark_fastcall_patterns(env);
24646 if (ret < 0)
24647 goto skip_full_check;
24648
24649 ret = do_check_main(env);
24650 ret = ret ?: do_check_subprogs(env);
24651
24652 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
24653 ret = bpf_prog_offload_finalize(env);
24654
24655 skip_full_check:
24656 kvfree(env->explored_states);
24657
24658 /* might decrease stack depth, keep it before passes that
24659 * allocate additional slots.
24660 */
24661 if (ret == 0)
24662 ret = remove_fastcall_spills_fills(env);
24663
24664 if (ret == 0)
24665 ret = check_max_stack_depth(env);
24666
24667 /* instruction rewrites happen after this point */
24668 if (ret == 0)
24669 ret = optimize_bpf_loop(env);
24670
24671 if (is_priv) {
24672 if (ret == 0)
24673 opt_hard_wire_dead_code_branches(env);
24674 if (ret == 0)
24675 ret = opt_remove_dead_code(env);
24676 if (ret == 0)
24677 ret = opt_remove_nops(env);
24678 } else {
24679 if (ret == 0)
24680 sanitize_dead_code(env);
24681 }
24682
24683 if (ret == 0)
24684 /* program is valid, convert *(u32*)(ctx + off) accesses */
24685 ret = convert_ctx_accesses(env);
24686
24687 if (ret == 0)
24688 ret = do_misc_fixups(env);
24689
24690 /* do 32-bit optimization after insn patching has done so those patched
24691 * insns could be handled correctly.
24692 */
24693 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
24694 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
24695 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
24696 : false;
24697 }
24698
24699 if (ret == 0)
24700 ret = fixup_call_args(env);
24701
24702 env->verification_time = ktime_get_ns() - start_time;
24703 print_verification_stats(env);
24704 env->prog->aux->verified_insns = env->insn_processed;
24705
24706 /* preserve original error even if log finalization is successful */
24707 err = bpf_vlog_finalize(&env->log, &log_true_size);
24708 if (err)
24709 ret = err;
24710
24711 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
24712 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
24713 &log_true_size, sizeof(log_true_size))) {
24714 ret = -EFAULT;
24715 goto err_release_maps;
24716 }
24717
24718 if (ret)
24719 goto err_release_maps;
24720
24721 if (env->used_map_cnt) {
24722 /* if program passed verifier, update used_maps in bpf_prog_info */
24723 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
24724 sizeof(env->used_maps[0]),
24725 GFP_KERNEL_ACCOUNT);
24726
24727 if (!env->prog->aux->used_maps) {
24728 ret = -ENOMEM;
24729 goto err_release_maps;
24730 }
24731
24732 memcpy(env->prog->aux->used_maps, env->used_maps,
24733 sizeof(env->used_maps[0]) * env->used_map_cnt);
24734 env->prog->aux->used_map_cnt = env->used_map_cnt;
24735 }
24736 if (env->used_btf_cnt) {
24737 /* if program passed verifier, update used_btfs in bpf_prog_aux */
24738 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
24739 sizeof(env->used_btfs[0]),
24740 GFP_KERNEL_ACCOUNT);
24741 if (!env->prog->aux->used_btfs) {
24742 ret = -ENOMEM;
24743 goto err_release_maps;
24744 }
24745
24746 memcpy(env->prog->aux->used_btfs, env->used_btfs,
24747 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
24748 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
24749 }
24750 if (env->used_map_cnt || env->used_btf_cnt) {
24751 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
24752 * bpf_ld_imm64 instructions
24753 */
24754 convert_pseudo_ld_imm64(env);
24755 }
24756
24757 adjust_btf_func(env);
24758
24759 err_release_maps:
24760 if (!env->prog->aux->used_maps)
24761 /* if we didn't copy map pointers into bpf_prog_info, release
24762 * them now. Otherwise free_used_maps() will release them.
24763 */
24764 release_maps(env);
24765 if (!env->prog->aux->used_btfs)
24766 release_btfs(env);
24767
24768 /* extension progs temporarily inherit the attach_type of their targets
24769 for verification purposes, so set it back to zero before returning
24770 */
24771 if (env->prog->type == BPF_PROG_TYPE_EXT)
24772 env->prog->expected_attach_type = 0;
24773
24774 *prog = env->prog;
24775
24776 module_put(env->attach_btf_mod);
24777 err_unlock:
24778 if (!is_priv)
24779 mutex_unlock(&bpf_verifier_lock);
24780 vfree(env->insn_aux_data);
24781 err_free_env:
24782 bpf_stack_liveness_free(env);
24783 kvfree(env->cfg.insn_postorder);
24784 kvfree(env->scc_info);
24785 kvfree(env);
24786 return ret;
24787 }
24788