1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/mm/mmu.c
4 *
5 * Copyright (C) 1995-2005 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9 #include <linux/cache.h>
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/kexec.h>
16 #include <linux/libfdt.h>
17 #include <linux/mman.h>
18 #include <linux/nodemask.h>
19 #include <linux/memblock.h>
20 #include <linux/memremap.h>
21 #include <linux/memory.h>
22 #include <linux/fs.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/vmalloc.h>
26 #include <linux/set_memory.h>
27 #include <linux/kfence.h>
28 #include <linux/pkeys.h>
29 #include <linux/mm_inline.h>
30 #include <linux/pagewalk.h>
31 #include <linux/stop_machine.h>
32
33 #include <asm/barrier.h>
34 #include <asm/cputype.h>
35 #include <asm/fixmap.h>
36 #include <asm/kasan.h>
37 #include <asm/kernel-pgtable.h>
38 #include <asm/sections.h>
39 #include <asm/setup.h>
40 #include <linux/sizes.h>
41 #include <asm/tlb.h>
42 #include <asm/mmu_context.h>
43 #include <asm/ptdump.h>
44 #include <asm/tlbflush.h>
45 #include <asm/pgalloc.h>
46 #include <asm/kfence.h>
47
48 #define NO_BLOCK_MAPPINGS BIT(0)
49 #define NO_CONT_MAPPINGS BIT(1)
50 #define NO_EXEC_MAPPINGS BIT(2) /* assumes FEAT_HPDS is not used */
51
52 DEFINE_STATIC_KEY_FALSE(arm64_ptdump_lock_key);
53
54 u64 kimage_voffset __ro_after_init;
55 EXPORT_SYMBOL(kimage_voffset);
56
57 u32 __boot_cpu_mode[] = { BOOT_CPU_MODE_EL2, BOOT_CPU_MODE_EL1 };
58
59 static bool rodata_is_rw __ro_after_init = true;
60
61 /*
62 * The booting CPU updates the failed status @__early_cpu_boot_status,
63 * with MMU turned off.
64 */
65 long __section(".mmuoff.data.write") __early_cpu_boot_status;
66
67 /*
68 * Empty_zero_page is a special page that is used for zero-initialized data
69 * and COW.
70 */
71 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __page_aligned_bss;
72 EXPORT_SYMBOL(empty_zero_page);
73
74 static DEFINE_SPINLOCK(swapper_pgdir_lock);
75 static DEFINE_MUTEX(fixmap_lock);
76
set_swapper_pgd(pgd_t * pgdp,pgd_t pgd)77 void noinstr set_swapper_pgd(pgd_t *pgdp, pgd_t pgd)
78 {
79 pgd_t *fixmap_pgdp;
80
81 /*
82 * Don't bother with the fixmap if swapper_pg_dir is still mapped
83 * writable in the kernel mapping.
84 */
85 if (rodata_is_rw) {
86 WRITE_ONCE(*pgdp, pgd);
87 dsb(ishst);
88 isb();
89 return;
90 }
91
92 spin_lock(&swapper_pgdir_lock);
93 fixmap_pgdp = pgd_set_fixmap(__pa_symbol(pgdp));
94 WRITE_ONCE(*fixmap_pgdp, pgd);
95 /*
96 * We need dsb(ishst) here to ensure the page-table-walker sees
97 * our new entry before set_p?d() returns. The fixmap's
98 * flush_tlb_kernel_range() via clear_fixmap() does this for us.
99 */
100 pgd_clear_fixmap();
101 spin_unlock(&swapper_pgdir_lock);
102 }
103
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)104 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
105 unsigned long size, pgprot_t vma_prot)
106 {
107 if (!pfn_is_map_memory(pfn))
108 return pgprot_noncached(vma_prot);
109 else if (file->f_flags & O_SYNC)
110 return pgprot_writecombine(vma_prot);
111 return vma_prot;
112 }
113 EXPORT_SYMBOL(phys_mem_access_prot);
114
early_pgtable_alloc(enum pgtable_type pgtable_type)115 static phys_addr_t __init early_pgtable_alloc(enum pgtable_type pgtable_type)
116 {
117 phys_addr_t phys;
118
119 phys = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0,
120 MEMBLOCK_ALLOC_NOLEAKTRACE);
121 if (!phys)
122 panic("Failed to allocate page table page\n");
123
124 return phys;
125 }
126
pgattr_change_is_safe(pteval_t old,pteval_t new)127 bool pgattr_change_is_safe(pteval_t old, pteval_t new)
128 {
129 /*
130 * The following mapping attributes may be updated in live
131 * kernel mappings without the need for break-before-make.
132 */
133 pteval_t mask = PTE_PXN | PTE_RDONLY | PTE_WRITE | PTE_NG |
134 PTE_SWBITS_MASK;
135
136 /* creating or taking down mappings is always safe */
137 if (!pte_valid(__pte(old)) || !pte_valid(__pte(new)))
138 return true;
139
140 /* A live entry's pfn should not change */
141 if (pte_pfn(__pte(old)) != pte_pfn(__pte(new)))
142 return false;
143
144 /* live contiguous mappings may not be manipulated at all */
145 if ((old | new) & PTE_CONT)
146 return false;
147
148 /* Transitioning from Non-Global to Global is unsafe */
149 if (old & ~new & PTE_NG)
150 return false;
151
152 /*
153 * Changing the memory type between Normal and Normal-Tagged is safe
154 * since Tagged is considered a permission attribute from the
155 * mismatched attribute aliases perspective.
156 */
157 if (((old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
158 (old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)) &&
159 ((new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
160 (new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)))
161 mask |= PTE_ATTRINDX_MASK;
162
163 return ((old ^ new) & ~mask) == 0;
164 }
165
init_clear_pgtable(void * table)166 static void init_clear_pgtable(void *table)
167 {
168 clear_page(table);
169
170 /* Ensure the zeroing is observed by page table walks. */
171 dsb(ishst);
172 }
173
init_pte(pte_t * ptep,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot)174 static void init_pte(pte_t *ptep, unsigned long addr, unsigned long end,
175 phys_addr_t phys, pgprot_t prot)
176 {
177 do {
178 pte_t old_pte = __ptep_get(ptep);
179
180 /*
181 * Required barriers to make this visible to the table walker
182 * are deferred to the end of alloc_init_cont_pte().
183 */
184 __set_pte_nosync(ptep, pfn_pte(__phys_to_pfn(phys), prot));
185
186 /*
187 * After the PTE entry has been populated once, we
188 * only allow updates to the permission attributes.
189 */
190 BUG_ON(!pgattr_change_is_safe(pte_val(old_pte),
191 pte_val(__ptep_get(ptep))));
192
193 phys += PAGE_SIZE;
194 } while (ptep++, addr += PAGE_SIZE, addr != end);
195 }
196
alloc_init_cont_pte(pmd_t * pmdp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(enum pgtable_type),int flags)197 static void alloc_init_cont_pte(pmd_t *pmdp, unsigned long addr,
198 unsigned long end, phys_addr_t phys,
199 pgprot_t prot,
200 phys_addr_t (*pgtable_alloc)(enum pgtable_type),
201 int flags)
202 {
203 unsigned long next;
204 pmd_t pmd = READ_ONCE(*pmdp);
205 pte_t *ptep;
206
207 BUG_ON(pmd_sect(pmd));
208 if (pmd_none(pmd)) {
209 pmdval_t pmdval = PMD_TYPE_TABLE | PMD_TABLE_UXN | PMD_TABLE_AF;
210 phys_addr_t pte_phys;
211
212 if (flags & NO_EXEC_MAPPINGS)
213 pmdval |= PMD_TABLE_PXN;
214 BUG_ON(!pgtable_alloc);
215 pte_phys = pgtable_alloc(TABLE_PTE);
216 ptep = pte_set_fixmap(pte_phys);
217 init_clear_pgtable(ptep);
218 ptep += pte_index(addr);
219 __pmd_populate(pmdp, pte_phys, pmdval);
220 } else {
221 BUG_ON(pmd_bad(pmd));
222 ptep = pte_set_fixmap_offset(pmdp, addr);
223 }
224
225 do {
226 pgprot_t __prot = prot;
227
228 next = pte_cont_addr_end(addr, end);
229
230 /* use a contiguous mapping if the range is suitably aligned */
231 if ((((addr | next | phys) & ~CONT_PTE_MASK) == 0) &&
232 (flags & NO_CONT_MAPPINGS) == 0)
233 __prot = __pgprot(pgprot_val(prot) | PTE_CONT);
234
235 init_pte(ptep, addr, next, phys, __prot);
236
237 ptep += pte_index(next) - pte_index(addr);
238 phys += next - addr;
239 } while (addr = next, addr != end);
240
241 /*
242 * Note: barriers and maintenance necessary to clear the fixmap slot
243 * ensure that all previous pgtable writes are visible to the table
244 * walker.
245 */
246 pte_clear_fixmap();
247 }
248
init_pmd(pmd_t * pmdp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(enum pgtable_type),int flags)249 static void init_pmd(pmd_t *pmdp, unsigned long addr, unsigned long end,
250 phys_addr_t phys, pgprot_t prot,
251 phys_addr_t (*pgtable_alloc)(enum pgtable_type), int flags)
252 {
253 unsigned long next;
254
255 do {
256 pmd_t old_pmd = READ_ONCE(*pmdp);
257
258 next = pmd_addr_end(addr, end);
259
260 /* try section mapping first */
261 if (((addr | next | phys) & ~PMD_MASK) == 0 &&
262 (flags & NO_BLOCK_MAPPINGS) == 0) {
263 pmd_set_huge(pmdp, phys, prot);
264
265 /*
266 * After the PMD entry has been populated once, we
267 * only allow updates to the permission attributes.
268 */
269 BUG_ON(!pgattr_change_is_safe(pmd_val(old_pmd),
270 READ_ONCE(pmd_val(*pmdp))));
271 } else {
272 alloc_init_cont_pte(pmdp, addr, next, phys, prot,
273 pgtable_alloc, flags);
274
275 BUG_ON(pmd_val(old_pmd) != 0 &&
276 pmd_val(old_pmd) != READ_ONCE(pmd_val(*pmdp)));
277 }
278 phys += next - addr;
279 } while (pmdp++, addr = next, addr != end);
280 }
281
alloc_init_cont_pmd(pud_t * pudp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(enum pgtable_type),int flags)282 static void alloc_init_cont_pmd(pud_t *pudp, unsigned long addr,
283 unsigned long end, phys_addr_t phys,
284 pgprot_t prot,
285 phys_addr_t (*pgtable_alloc)(enum pgtable_type),
286 int flags)
287 {
288 unsigned long next;
289 pud_t pud = READ_ONCE(*pudp);
290 pmd_t *pmdp;
291
292 /*
293 * Check for initial section mappings in the pgd/pud.
294 */
295 BUG_ON(pud_sect(pud));
296 if (pud_none(pud)) {
297 pudval_t pudval = PUD_TYPE_TABLE | PUD_TABLE_UXN | PUD_TABLE_AF;
298 phys_addr_t pmd_phys;
299
300 if (flags & NO_EXEC_MAPPINGS)
301 pudval |= PUD_TABLE_PXN;
302 BUG_ON(!pgtable_alloc);
303 pmd_phys = pgtable_alloc(TABLE_PMD);
304 pmdp = pmd_set_fixmap(pmd_phys);
305 init_clear_pgtable(pmdp);
306 pmdp += pmd_index(addr);
307 __pud_populate(pudp, pmd_phys, pudval);
308 } else {
309 BUG_ON(pud_bad(pud));
310 pmdp = pmd_set_fixmap_offset(pudp, addr);
311 }
312
313 do {
314 pgprot_t __prot = prot;
315
316 next = pmd_cont_addr_end(addr, end);
317
318 /* use a contiguous mapping if the range is suitably aligned */
319 if ((((addr | next | phys) & ~CONT_PMD_MASK) == 0) &&
320 (flags & NO_CONT_MAPPINGS) == 0)
321 __prot = __pgprot(pgprot_val(prot) | PTE_CONT);
322
323 init_pmd(pmdp, addr, next, phys, __prot, pgtable_alloc, flags);
324
325 pmdp += pmd_index(next) - pmd_index(addr);
326 phys += next - addr;
327 } while (addr = next, addr != end);
328
329 pmd_clear_fixmap();
330 }
331
alloc_init_pud(p4d_t * p4dp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(enum pgtable_type),int flags)332 static void alloc_init_pud(p4d_t *p4dp, unsigned long addr, unsigned long end,
333 phys_addr_t phys, pgprot_t prot,
334 phys_addr_t (*pgtable_alloc)(enum pgtable_type),
335 int flags)
336 {
337 unsigned long next;
338 p4d_t p4d = READ_ONCE(*p4dp);
339 pud_t *pudp;
340
341 if (p4d_none(p4d)) {
342 p4dval_t p4dval = P4D_TYPE_TABLE | P4D_TABLE_UXN | P4D_TABLE_AF;
343 phys_addr_t pud_phys;
344
345 if (flags & NO_EXEC_MAPPINGS)
346 p4dval |= P4D_TABLE_PXN;
347 BUG_ON(!pgtable_alloc);
348 pud_phys = pgtable_alloc(TABLE_PUD);
349 pudp = pud_set_fixmap(pud_phys);
350 init_clear_pgtable(pudp);
351 pudp += pud_index(addr);
352 __p4d_populate(p4dp, pud_phys, p4dval);
353 } else {
354 BUG_ON(p4d_bad(p4d));
355 pudp = pud_set_fixmap_offset(p4dp, addr);
356 }
357
358 do {
359 pud_t old_pud = READ_ONCE(*pudp);
360
361 next = pud_addr_end(addr, end);
362
363 /*
364 * For 4K granule only, attempt to put down a 1GB block
365 */
366 if (pud_sect_supported() &&
367 ((addr | next | phys) & ~PUD_MASK) == 0 &&
368 (flags & NO_BLOCK_MAPPINGS) == 0) {
369 pud_set_huge(pudp, phys, prot);
370
371 /*
372 * After the PUD entry has been populated once, we
373 * only allow updates to the permission attributes.
374 */
375 BUG_ON(!pgattr_change_is_safe(pud_val(old_pud),
376 READ_ONCE(pud_val(*pudp))));
377 } else {
378 alloc_init_cont_pmd(pudp, addr, next, phys, prot,
379 pgtable_alloc, flags);
380
381 BUG_ON(pud_val(old_pud) != 0 &&
382 pud_val(old_pud) != READ_ONCE(pud_val(*pudp)));
383 }
384 phys += next - addr;
385 } while (pudp++, addr = next, addr != end);
386
387 pud_clear_fixmap();
388 }
389
alloc_init_p4d(pgd_t * pgdp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(enum pgtable_type),int flags)390 static void alloc_init_p4d(pgd_t *pgdp, unsigned long addr, unsigned long end,
391 phys_addr_t phys, pgprot_t prot,
392 phys_addr_t (*pgtable_alloc)(enum pgtable_type),
393 int flags)
394 {
395 unsigned long next;
396 pgd_t pgd = READ_ONCE(*pgdp);
397 p4d_t *p4dp;
398
399 if (pgd_none(pgd)) {
400 pgdval_t pgdval = PGD_TYPE_TABLE | PGD_TABLE_UXN | PGD_TABLE_AF;
401 phys_addr_t p4d_phys;
402
403 if (flags & NO_EXEC_MAPPINGS)
404 pgdval |= PGD_TABLE_PXN;
405 BUG_ON(!pgtable_alloc);
406 p4d_phys = pgtable_alloc(TABLE_P4D);
407 p4dp = p4d_set_fixmap(p4d_phys);
408 init_clear_pgtable(p4dp);
409 p4dp += p4d_index(addr);
410 __pgd_populate(pgdp, p4d_phys, pgdval);
411 } else {
412 BUG_ON(pgd_bad(pgd));
413 p4dp = p4d_set_fixmap_offset(pgdp, addr);
414 }
415
416 do {
417 p4d_t old_p4d = READ_ONCE(*p4dp);
418
419 next = p4d_addr_end(addr, end);
420
421 alloc_init_pud(p4dp, addr, next, phys, prot,
422 pgtable_alloc, flags);
423
424 BUG_ON(p4d_val(old_p4d) != 0 &&
425 p4d_val(old_p4d) != READ_ONCE(p4d_val(*p4dp)));
426
427 phys += next - addr;
428 } while (p4dp++, addr = next, addr != end);
429
430 p4d_clear_fixmap();
431 }
432
__create_pgd_mapping_locked(pgd_t * pgdir,phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot,phys_addr_t (* pgtable_alloc)(enum pgtable_type),int flags)433 static void __create_pgd_mapping_locked(pgd_t *pgdir, phys_addr_t phys,
434 unsigned long virt, phys_addr_t size,
435 pgprot_t prot,
436 phys_addr_t (*pgtable_alloc)(enum pgtable_type),
437 int flags)
438 {
439 unsigned long addr, end, next;
440 pgd_t *pgdp = pgd_offset_pgd(pgdir, virt);
441
442 /*
443 * If the virtual and physical address don't have the same offset
444 * within a page, we cannot map the region as the caller expects.
445 */
446 if (WARN_ON((phys ^ virt) & ~PAGE_MASK))
447 return;
448
449 phys &= PAGE_MASK;
450 addr = virt & PAGE_MASK;
451 end = PAGE_ALIGN(virt + size);
452
453 do {
454 next = pgd_addr_end(addr, end);
455 alloc_init_p4d(pgdp, addr, next, phys, prot, pgtable_alloc,
456 flags);
457 phys += next - addr;
458 } while (pgdp++, addr = next, addr != end);
459 }
460
__create_pgd_mapping(pgd_t * pgdir,phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot,phys_addr_t (* pgtable_alloc)(enum pgtable_type),int flags)461 static void __create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
462 unsigned long virt, phys_addr_t size,
463 pgprot_t prot,
464 phys_addr_t (*pgtable_alloc)(enum pgtable_type),
465 int flags)
466 {
467 mutex_lock(&fixmap_lock);
468 __create_pgd_mapping_locked(pgdir, phys, virt, size, prot,
469 pgtable_alloc, flags);
470 mutex_unlock(&fixmap_lock);
471 }
472
473 #define INVALID_PHYS_ADDR (-1ULL)
474
__pgd_pgtable_alloc(struct mm_struct * mm,gfp_t gfp,enum pgtable_type pgtable_type)475 static phys_addr_t __pgd_pgtable_alloc(struct mm_struct *mm, gfp_t gfp,
476 enum pgtable_type pgtable_type)
477 {
478 /* Page is zeroed by init_clear_pgtable() so don't duplicate effort. */
479 struct ptdesc *ptdesc = pagetable_alloc(gfp & ~__GFP_ZERO, 0);
480 phys_addr_t pa;
481
482 if (!ptdesc)
483 return INVALID_PHYS_ADDR;
484
485 pa = page_to_phys(ptdesc_page(ptdesc));
486
487 switch (pgtable_type) {
488 case TABLE_PTE:
489 BUG_ON(!pagetable_pte_ctor(mm, ptdesc));
490 break;
491 case TABLE_PMD:
492 BUG_ON(!pagetable_pmd_ctor(mm, ptdesc));
493 break;
494 case TABLE_PUD:
495 pagetable_pud_ctor(ptdesc);
496 break;
497 case TABLE_P4D:
498 pagetable_p4d_ctor(ptdesc);
499 break;
500 }
501
502 return pa;
503 }
504
505 static phys_addr_t
try_pgd_pgtable_alloc_init_mm(enum pgtable_type pgtable_type,gfp_t gfp)506 try_pgd_pgtable_alloc_init_mm(enum pgtable_type pgtable_type, gfp_t gfp)
507 {
508 return __pgd_pgtable_alloc(&init_mm, gfp, pgtable_type);
509 }
510
511 static phys_addr_t __maybe_unused
pgd_pgtable_alloc_init_mm(enum pgtable_type pgtable_type)512 pgd_pgtable_alloc_init_mm(enum pgtable_type pgtable_type)
513 {
514 phys_addr_t pa;
515
516 pa = __pgd_pgtable_alloc(&init_mm, GFP_PGTABLE_KERNEL, pgtable_type);
517 BUG_ON(pa == INVALID_PHYS_ADDR);
518 return pa;
519 }
520
521 static phys_addr_t
pgd_pgtable_alloc_special_mm(enum pgtable_type pgtable_type)522 pgd_pgtable_alloc_special_mm(enum pgtable_type pgtable_type)
523 {
524 phys_addr_t pa;
525
526 pa = __pgd_pgtable_alloc(NULL, GFP_PGTABLE_KERNEL, pgtable_type);
527 BUG_ON(pa == INVALID_PHYS_ADDR);
528 return pa;
529 }
530
split_contpte(pte_t * ptep)531 static void split_contpte(pte_t *ptep)
532 {
533 int i;
534
535 ptep = PTR_ALIGN_DOWN(ptep, sizeof(*ptep) * CONT_PTES);
536 for (i = 0; i < CONT_PTES; i++, ptep++)
537 __set_pte(ptep, pte_mknoncont(__ptep_get(ptep)));
538 }
539
split_pmd(pmd_t * pmdp,pmd_t pmd,gfp_t gfp,bool to_cont)540 static int split_pmd(pmd_t *pmdp, pmd_t pmd, gfp_t gfp, bool to_cont)
541 {
542 pmdval_t tableprot = PMD_TYPE_TABLE | PMD_TABLE_UXN | PMD_TABLE_AF;
543 unsigned long pfn = pmd_pfn(pmd);
544 pgprot_t prot = pmd_pgprot(pmd);
545 phys_addr_t pte_phys;
546 pte_t *ptep;
547 int i;
548
549 pte_phys = try_pgd_pgtable_alloc_init_mm(TABLE_PTE, gfp);
550 if (pte_phys == INVALID_PHYS_ADDR)
551 return -ENOMEM;
552 ptep = (pte_t *)phys_to_virt(pte_phys);
553
554 if (pgprot_val(prot) & PMD_SECT_PXN)
555 tableprot |= PMD_TABLE_PXN;
556
557 prot = __pgprot((pgprot_val(prot) & ~PTE_TYPE_MASK) | PTE_TYPE_PAGE);
558 prot = __pgprot(pgprot_val(prot) & ~PTE_CONT);
559 if (to_cont)
560 prot = __pgprot(pgprot_val(prot) | PTE_CONT);
561
562 for (i = 0; i < PTRS_PER_PTE; i++, ptep++, pfn++)
563 __set_pte(ptep, pfn_pte(pfn, prot));
564
565 /*
566 * Ensure the pte entries are visible to the table walker by the time
567 * the pmd entry that points to the ptes is visible.
568 */
569 dsb(ishst);
570 __pmd_populate(pmdp, pte_phys, tableprot);
571
572 return 0;
573 }
574
split_contpmd(pmd_t * pmdp)575 static void split_contpmd(pmd_t *pmdp)
576 {
577 int i;
578
579 pmdp = PTR_ALIGN_DOWN(pmdp, sizeof(*pmdp) * CONT_PMDS);
580 for (i = 0; i < CONT_PMDS; i++, pmdp++)
581 set_pmd(pmdp, pmd_mknoncont(pmdp_get(pmdp)));
582 }
583
split_pud(pud_t * pudp,pud_t pud,gfp_t gfp,bool to_cont)584 static int split_pud(pud_t *pudp, pud_t pud, gfp_t gfp, bool to_cont)
585 {
586 pudval_t tableprot = PUD_TYPE_TABLE | PUD_TABLE_UXN | PUD_TABLE_AF;
587 unsigned int step = PMD_SIZE >> PAGE_SHIFT;
588 unsigned long pfn = pud_pfn(pud);
589 pgprot_t prot = pud_pgprot(pud);
590 phys_addr_t pmd_phys;
591 pmd_t *pmdp;
592 int i;
593
594 pmd_phys = try_pgd_pgtable_alloc_init_mm(TABLE_PMD, gfp);
595 if (pmd_phys == INVALID_PHYS_ADDR)
596 return -ENOMEM;
597 pmdp = (pmd_t *)phys_to_virt(pmd_phys);
598
599 if (pgprot_val(prot) & PMD_SECT_PXN)
600 tableprot |= PUD_TABLE_PXN;
601
602 prot = __pgprot((pgprot_val(prot) & ~PMD_TYPE_MASK) | PMD_TYPE_SECT);
603 prot = __pgprot(pgprot_val(prot) & ~PTE_CONT);
604 if (to_cont)
605 prot = __pgprot(pgprot_val(prot) | PTE_CONT);
606
607 for (i = 0; i < PTRS_PER_PMD; i++, pmdp++, pfn += step)
608 set_pmd(pmdp, pfn_pmd(pfn, prot));
609
610 /*
611 * Ensure the pmd entries are visible to the table walker by the time
612 * the pud entry that points to the pmds is visible.
613 */
614 dsb(ishst);
615 __pud_populate(pudp, pmd_phys, tableprot);
616
617 return 0;
618 }
619
split_kernel_leaf_mapping_locked(unsigned long addr)620 static int split_kernel_leaf_mapping_locked(unsigned long addr)
621 {
622 pgd_t *pgdp, pgd;
623 p4d_t *p4dp, p4d;
624 pud_t *pudp, pud;
625 pmd_t *pmdp, pmd;
626 pte_t *ptep, pte;
627 int ret = 0;
628
629 /*
630 * PGD: If addr is PGD aligned then addr already describes a leaf
631 * boundary. If not present then there is nothing to split.
632 */
633 if (ALIGN_DOWN(addr, PGDIR_SIZE) == addr)
634 goto out;
635 pgdp = pgd_offset_k(addr);
636 pgd = pgdp_get(pgdp);
637 if (!pgd_present(pgd))
638 goto out;
639
640 /*
641 * P4D: If addr is P4D aligned then addr already describes a leaf
642 * boundary. If not present then there is nothing to split.
643 */
644 if (ALIGN_DOWN(addr, P4D_SIZE) == addr)
645 goto out;
646 p4dp = p4d_offset(pgdp, addr);
647 p4d = p4dp_get(p4dp);
648 if (!p4d_present(p4d))
649 goto out;
650
651 /*
652 * PUD: If addr is PUD aligned then addr already describes a leaf
653 * boundary. If not present then there is nothing to split. Otherwise,
654 * if we have a pud leaf, split to contpmd.
655 */
656 if (ALIGN_DOWN(addr, PUD_SIZE) == addr)
657 goto out;
658 pudp = pud_offset(p4dp, addr);
659 pud = pudp_get(pudp);
660 if (!pud_present(pud))
661 goto out;
662 if (pud_leaf(pud)) {
663 ret = split_pud(pudp, pud, GFP_PGTABLE_KERNEL, true);
664 if (ret)
665 goto out;
666 }
667
668 /*
669 * CONTPMD: If addr is CONTPMD aligned then addr already describes a
670 * leaf boundary. If not present then there is nothing to split.
671 * Otherwise, if we have a contpmd leaf, split to pmd.
672 */
673 if (ALIGN_DOWN(addr, CONT_PMD_SIZE) == addr)
674 goto out;
675 pmdp = pmd_offset(pudp, addr);
676 pmd = pmdp_get(pmdp);
677 if (!pmd_present(pmd))
678 goto out;
679 if (pmd_leaf(pmd)) {
680 if (pmd_cont(pmd))
681 split_contpmd(pmdp);
682 /*
683 * PMD: If addr is PMD aligned then addr already describes a
684 * leaf boundary. Otherwise, split to contpte.
685 */
686 if (ALIGN_DOWN(addr, PMD_SIZE) == addr)
687 goto out;
688 ret = split_pmd(pmdp, pmd, GFP_PGTABLE_KERNEL, true);
689 if (ret)
690 goto out;
691 }
692
693 /*
694 * CONTPTE: If addr is CONTPTE aligned then addr already describes a
695 * leaf boundary. If not present then there is nothing to split.
696 * Otherwise, if we have a contpte leaf, split to pte.
697 */
698 if (ALIGN_DOWN(addr, CONT_PTE_SIZE) == addr)
699 goto out;
700 ptep = pte_offset_kernel(pmdp, addr);
701 pte = __ptep_get(ptep);
702 if (!pte_present(pte))
703 goto out;
704 if (pte_cont(pte))
705 split_contpte(ptep);
706
707 out:
708 return ret;
709 }
710
force_pte_mapping(void)711 static inline bool force_pte_mapping(void)
712 {
713 const bool bbml2 = system_capabilities_finalized() ?
714 system_supports_bbml2_noabort() : cpu_supports_bbml2_noabort();
715
716 if (debug_pagealloc_enabled())
717 return true;
718 if (bbml2)
719 return false;
720 return rodata_full || arm64_kfence_can_set_direct_map() || is_realm_world();
721 }
722
split_leaf_mapping_possible(void)723 static inline bool split_leaf_mapping_possible(void)
724 {
725 /*
726 * !BBML2_NOABORT systems should never run into scenarios where we would
727 * have to split. So exit early and let calling code detect it and raise
728 * a warning.
729 */
730 if (!system_supports_bbml2_noabort())
731 return false;
732 return !force_pte_mapping();
733 }
734
735 static DEFINE_MUTEX(pgtable_split_lock);
736
split_kernel_leaf_mapping(unsigned long start,unsigned long end)737 int split_kernel_leaf_mapping(unsigned long start, unsigned long end)
738 {
739 int ret;
740
741 /*
742 * Exit early if the region is within a pte-mapped area or if we can't
743 * split. For the latter case, the permission change code will raise a
744 * warning if not already pte-mapped.
745 */
746 if (!split_leaf_mapping_possible() || is_kfence_address((void *)start))
747 return 0;
748
749 /*
750 * Ensure start and end are at least page-aligned since this is the
751 * finest granularity we can split to.
752 */
753 if (start != PAGE_ALIGN(start) || end != PAGE_ALIGN(end))
754 return -EINVAL;
755
756 mutex_lock(&pgtable_split_lock);
757 arch_enter_lazy_mmu_mode();
758
759 /*
760 * The split_kernel_leaf_mapping_locked() may sleep, it is not a
761 * problem for ARM64 since ARM64's lazy MMU implementation allows
762 * sleeping.
763 *
764 * Optimize for the common case of splitting out a single page from a
765 * larger mapping. Here we can just split on the "least aligned" of
766 * start and end and this will guarantee that there must also be a split
767 * on the more aligned address since the both addresses must be in the
768 * same contpte block and it must have been split to ptes.
769 */
770 if (end - start == PAGE_SIZE) {
771 start = __ffs(start) < __ffs(end) ? start : end;
772 ret = split_kernel_leaf_mapping_locked(start);
773 } else {
774 ret = split_kernel_leaf_mapping_locked(start);
775 if (!ret)
776 ret = split_kernel_leaf_mapping_locked(end);
777 }
778
779 arch_leave_lazy_mmu_mode();
780 mutex_unlock(&pgtable_split_lock);
781 return ret;
782 }
783
split_to_ptes_pud_entry(pud_t * pudp,unsigned long addr,unsigned long next,struct mm_walk * walk)784 static int split_to_ptes_pud_entry(pud_t *pudp, unsigned long addr,
785 unsigned long next, struct mm_walk *walk)
786 {
787 gfp_t gfp = *(gfp_t *)walk->private;
788 pud_t pud = pudp_get(pudp);
789 int ret = 0;
790
791 if (pud_leaf(pud))
792 ret = split_pud(pudp, pud, gfp, false);
793
794 return ret;
795 }
796
split_to_ptes_pmd_entry(pmd_t * pmdp,unsigned long addr,unsigned long next,struct mm_walk * walk)797 static int split_to_ptes_pmd_entry(pmd_t *pmdp, unsigned long addr,
798 unsigned long next, struct mm_walk *walk)
799 {
800 gfp_t gfp = *(gfp_t *)walk->private;
801 pmd_t pmd = pmdp_get(pmdp);
802 int ret = 0;
803
804 if (pmd_leaf(pmd)) {
805 if (pmd_cont(pmd))
806 split_contpmd(pmdp);
807 ret = split_pmd(pmdp, pmd, gfp, false);
808
809 /*
810 * We have split the pmd directly to ptes so there is no need to
811 * visit each pte to check if they are contpte.
812 */
813 walk->action = ACTION_CONTINUE;
814 }
815
816 return ret;
817 }
818
split_to_ptes_pte_entry(pte_t * ptep,unsigned long addr,unsigned long next,struct mm_walk * walk)819 static int split_to_ptes_pte_entry(pte_t *ptep, unsigned long addr,
820 unsigned long next, struct mm_walk *walk)
821 {
822 pte_t pte = __ptep_get(ptep);
823
824 if (pte_cont(pte))
825 split_contpte(ptep);
826
827 return 0;
828 }
829
830 static const struct mm_walk_ops split_to_ptes_ops = {
831 .pud_entry = split_to_ptes_pud_entry,
832 .pmd_entry = split_to_ptes_pmd_entry,
833 .pte_entry = split_to_ptes_pte_entry,
834 };
835
range_split_to_ptes(unsigned long start,unsigned long end,gfp_t gfp)836 static int range_split_to_ptes(unsigned long start, unsigned long end, gfp_t gfp)
837 {
838 int ret;
839
840 arch_enter_lazy_mmu_mode();
841 ret = walk_kernel_page_table_range_lockless(start, end,
842 &split_to_ptes_ops, NULL, &gfp);
843 arch_leave_lazy_mmu_mode();
844
845 return ret;
846 }
847
848 static bool linear_map_requires_bbml2 __initdata;
849
850 u32 idmap_kpti_bbml2_flag;
851
init_idmap_kpti_bbml2_flag(void)852 static void __init init_idmap_kpti_bbml2_flag(void)
853 {
854 WRITE_ONCE(idmap_kpti_bbml2_flag, 1);
855 /* Must be visible to other CPUs before stop_machine() is called. */
856 smp_mb();
857 }
858
linear_map_split_to_ptes(void * __unused)859 static int __init linear_map_split_to_ptes(void *__unused)
860 {
861 /*
862 * Repainting the linear map must be done by CPU0 (the boot CPU) because
863 * that's the only CPU that we know supports BBML2. The other CPUs will
864 * be held in a waiting area with the idmap active.
865 */
866 if (!smp_processor_id()) {
867 unsigned long lstart = _PAGE_OFFSET(vabits_actual);
868 unsigned long lend = PAGE_END;
869 unsigned long kstart = (unsigned long)lm_alias(_stext);
870 unsigned long kend = (unsigned long)lm_alias(__init_begin);
871 int ret;
872
873 /*
874 * Wait for all secondary CPUs to be put into the waiting area.
875 */
876 smp_cond_load_acquire(&idmap_kpti_bbml2_flag, VAL == num_online_cpus());
877
878 /*
879 * Walk all of the linear map [lstart, lend), except the kernel
880 * linear map alias [kstart, kend), and split all mappings to
881 * PTE. The kernel alias remains static throughout runtime so
882 * can continue to be safely mapped with large mappings.
883 */
884 ret = range_split_to_ptes(lstart, kstart, GFP_ATOMIC);
885 if (!ret)
886 ret = range_split_to_ptes(kend, lend, GFP_ATOMIC);
887 if (ret)
888 panic("Failed to split linear map\n");
889 flush_tlb_kernel_range(lstart, lend);
890
891 /*
892 * Relies on dsb in flush_tlb_kernel_range() to avoid reordering
893 * before any page table split operations.
894 */
895 WRITE_ONCE(idmap_kpti_bbml2_flag, 0);
896 } else {
897 typedef void (wait_split_fn)(void);
898 extern wait_split_fn wait_linear_map_split_to_ptes;
899 wait_split_fn *wait_fn;
900
901 wait_fn = (void *)__pa_symbol(wait_linear_map_split_to_ptes);
902
903 /*
904 * At least one secondary CPU doesn't support BBML2 so cannot
905 * tolerate the size of the live mappings changing. So have the
906 * secondary CPUs wait for the boot CPU to make the changes
907 * with the idmap active and init_mm inactive.
908 */
909 cpu_install_idmap();
910 wait_fn();
911 cpu_uninstall_idmap();
912 }
913
914 return 0;
915 }
916
linear_map_maybe_split_to_ptes(void)917 void __init linear_map_maybe_split_to_ptes(void)
918 {
919 if (linear_map_requires_bbml2 && !system_supports_bbml2_noabort()) {
920 init_idmap_kpti_bbml2_flag();
921 stop_machine(linear_map_split_to_ptes, NULL, cpu_online_mask);
922 }
923 }
924
925 /*
926 * This function can only be used to modify existing table entries,
927 * without allocating new levels of table. Note that this permits the
928 * creation of new section or page entries.
929 */
create_mapping_noalloc(phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot)930 void __init create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
931 phys_addr_t size, pgprot_t prot)
932 {
933 if (virt < PAGE_OFFSET) {
934 pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
935 &phys, virt);
936 return;
937 }
938 __create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
939 NO_CONT_MAPPINGS);
940 }
941
create_pgd_mapping(struct mm_struct * mm,phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot,bool page_mappings_only)942 void __init create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
943 unsigned long virt, phys_addr_t size,
944 pgprot_t prot, bool page_mappings_only)
945 {
946 int flags = 0;
947
948 BUG_ON(mm == &init_mm);
949
950 if (page_mappings_only)
951 flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
952
953 __create_pgd_mapping(mm->pgd, phys, virt, size, prot,
954 pgd_pgtable_alloc_special_mm, flags);
955 }
956
update_mapping_prot(phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot)957 static void update_mapping_prot(phys_addr_t phys, unsigned long virt,
958 phys_addr_t size, pgprot_t prot)
959 {
960 if (virt < PAGE_OFFSET) {
961 pr_warn("BUG: not updating mapping for %pa at 0x%016lx - outside kernel range\n",
962 &phys, virt);
963 return;
964 }
965
966 __create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
967 NO_CONT_MAPPINGS);
968
969 /* flush the TLBs after updating live kernel mappings */
970 flush_tlb_kernel_range(virt, virt + size);
971 }
972
__map_memblock(pgd_t * pgdp,phys_addr_t start,phys_addr_t end,pgprot_t prot,int flags)973 static void __init __map_memblock(pgd_t *pgdp, phys_addr_t start,
974 phys_addr_t end, pgprot_t prot, int flags)
975 {
976 __create_pgd_mapping(pgdp, start, __phys_to_virt(start), end - start,
977 prot, early_pgtable_alloc, flags);
978 }
979
mark_linear_text_alias_ro(void)980 void __init mark_linear_text_alias_ro(void)
981 {
982 /*
983 * Remove the write permissions from the linear alias of .text/.rodata
984 */
985 update_mapping_prot(__pa_symbol(_text), (unsigned long)lm_alias(_text),
986 (unsigned long)__init_begin - (unsigned long)_text,
987 PAGE_KERNEL_RO);
988 }
989
990 #ifdef CONFIG_KFENCE
991
992 bool __ro_after_init kfence_early_init = !!CONFIG_KFENCE_SAMPLE_INTERVAL;
993
994 /* early_param() will be parsed before map_mem() below. */
parse_kfence_early_init(char * arg)995 static int __init parse_kfence_early_init(char *arg)
996 {
997 int val;
998
999 if (get_option(&arg, &val))
1000 kfence_early_init = !!val;
1001 return 0;
1002 }
1003 early_param("kfence.sample_interval", parse_kfence_early_init);
1004
arm64_kfence_alloc_pool(void)1005 static phys_addr_t __init arm64_kfence_alloc_pool(void)
1006 {
1007 phys_addr_t kfence_pool;
1008
1009 if (!kfence_early_init)
1010 return 0;
1011
1012 kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
1013 if (!kfence_pool) {
1014 pr_err("failed to allocate kfence pool\n");
1015 kfence_early_init = false;
1016 return 0;
1017 }
1018
1019 /* Temporarily mark as NOMAP. */
1020 memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE);
1021
1022 return kfence_pool;
1023 }
1024
arm64_kfence_map_pool(phys_addr_t kfence_pool,pgd_t * pgdp)1025 static void __init arm64_kfence_map_pool(phys_addr_t kfence_pool, pgd_t *pgdp)
1026 {
1027 if (!kfence_pool)
1028 return;
1029
1030 /* KFENCE pool needs page-level mapping. */
1031 __map_memblock(pgdp, kfence_pool, kfence_pool + KFENCE_POOL_SIZE,
1032 pgprot_tagged(PAGE_KERNEL),
1033 NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS);
1034 memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE);
1035 __kfence_pool = phys_to_virt(kfence_pool);
1036 }
1037
arch_kfence_init_pool(void)1038 bool arch_kfence_init_pool(void)
1039 {
1040 unsigned long start = (unsigned long)__kfence_pool;
1041 unsigned long end = start + KFENCE_POOL_SIZE;
1042 int ret;
1043
1044 /* Exit early if we know the linear map is already pte-mapped. */
1045 if (!split_leaf_mapping_possible())
1046 return true;
1047
1048 /* Kfence pool is already pte-mapped for the early init case. */
1049 if (kfence_early_init)
1050 return true;
1051
1052 mutex_lock(&pgtable_split_lock);
1053 ret = range_split_to_ptes(start, end, GFP_PGTABLE_KERNEL);
1054 mutex_unlock(&pgtable_split_lock);
1055
1056 /*
1057 * Since the system supports bbml2_noabort, tlb invalidation is not
1058 * required here; the pgtable mappings have been split to pte but larger
1059 * entries may safely linger in the TLB.
1060 */
1061
1062 return !ret;
1063 }
1064 #else /* CONFIG_KFENCE */
1065
arm64_kfence_alloc_pool(void)1066 static inline phys_addr_t arm64_kfence_alloc_pool(void) { return 0; }
arm64_kfence_map_pool(phys_addr_t kfence_pool,pgd_t * pgdp)1067 static inline void arm64_kfence_map_pool(phys_addr_t kfence_pool, pgd_t *pgdp) { }
1068
1069 #endif /* CONFIG_KFENCE */
1070
map_mem(pgd_t * pgdp)1071 static void __init map_mem(pgd_t *pgdp)
1072 {
1073 static const u64 direct_map_end = _PAGE_END(VA_BITS_MIN);
1074 phys_addr_t kernel_start = __pa_symbol(_text);
1075 phys_addr_t kernel_end = __pa_symbol(__init_begin);
1076 phys_addr_t start, end;
1077 phys_addr_t early_kfence_pool;
1078 int flags = NO_EXEC_MAPPINGS;
1079 u64 i;
1080
1081 /*
1082 * Setting hierarchical PXNTable attributes on table entries covering
1083 * the linear region is only possible if it is guaranteed that no table
1084 * entries at any level are being shared between the linear region and
1085 * the vmalloc region. Check whether this is true for the PGD level, in
1086 * which case it is guaranteed to be true for all other levels as well.
1087 * (Unless we are running with support for LPA2, in which case the
1088 * entire reduced VA space is covered by a single pgd_t which will have
1089 * been populated without the PXNTable attribute by the time we get here.)
1090 */
1091 BUILD_BUG_ON(pgd_index(direct_map_end - 1) == pgd_index(direct_map_end) &&
1092 pgd_index(_PAGE_OFFSET(VA_BITS_MIN)) != PTRS_PER_PGD - 1);
1093
1094 early_kfence_pool = arm64_kfence_alloc_pool();
1095
1096 linear_map_requires_bbml2 = !force_pte_mapping() && can_set_direct_map();
1097
1098 if (force_pte_mapping())
1099 flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
1100
1101 /*
1102 * Take care not to create a writable alias for the
1103 * read-only text and rodata sections of the kernel image.
1104 * So temporarily mark them as NOMAP to skip mappings in
1105 * the following for-loop
1106 */
1107 memblock_mark_nomap(kernel_start, kernel_end - kernel_start);
1108
1109 /* map all the memory banks */
1110 for_each_mem_range(i, &start, &end) {
1111 if (start >= end)
1112 break;
1113 /*
1114 * The linear map must allow allocation tags reading/writing
1115 * if MTE is present. Otherwise, it has the same attributes as
1116 * PAGE_KERNEL.
1117 */
1118 __map_memblock(pgdp, start, end, pgprot_tagged(PAGE_KERNEL),
1119 flags);
1120 }
1121
1122 /*
1123 * Map the linear alias of the [_text, __init_begin) interval
1124 * as non-executable now, and remove the write permission in
1125 * mark_linear_text_alias_ro() below (which will be called after
1126 * alternative patching has completed). This makes the contents
1127 * of the region accessible to subsystems such as hibernate,
1128 * but protects it from inadvertent modification or execution.
1129 * Note that contiguous mappings cannot be remapped in this way,
1130 * so we should avoid them here.
1131 */
1132 __map_memblock(pgdp, kernel_start, kernel_end,
1133 PAGE_KERNEL, NO_CONT_MAPPINGS);
1134 memblock_clear_nomap(kernel_start, kernel_end - kernel_start);
1135 arm64_kfence_map_pool(early_kfence_pool, pgdp);
1136 }
1137
mark_rodata_ro(void)1138 void mark_rodata_ro(void)
1139 {
1140 unsigned long section_size;
1141
1142 /*
1143 * mark .rodata as read only. Use __init_begin rather than __end_rodata
1144 * to cover NOTES and EXCEPTION_TABLE.
1145 */
1146 section_size = (unsigned long)__init_begin - (unsigned long)__start_rodata;
1147 WRITE_ONCE(rodata_is_rw, false);
1148 update_mapping_prot(__pa_symbol(__start_rodata), (unsigned long)__start_rodata,
1149 section_size, PAGE_KERNEL_RO);
1150 /* mark the range between _text and _stext as read only. */
1151 update_mapping_prot(__pa_symbol(_text), (unsigned long)_text,
1152 (unsigned long)_stext - (unsigned long)_text,
1153 PAGE_KERNEL_RO);
1154 }
1155
declare_vma(struct vm_struct * vma,void * va_start,void * va_end,unsigned long vm_flags)1156 static void __init declare_vma(struct vm_struct *vma,
1157 void *va_start, void *va_end,
1158 unsigned long vm_flags)
1159 {
1160 phys_addr_t pa_start = __pa_symbol(va_start);
1161 unsigned long size = va_end - va_start;
1162
1163 BUG_ON(!PAGE_ALIGNED(pa_start));
1164 BUG_ON(!PAGE_ALIGNED(size));
1165
1166 if (!(vm_flags & VM_NO_GUARD))
1167 size += PAGE_SIZE;
1168
1169 vma->addr = va_start;
1170 vma->phys_addr = pa_start;
1171 vma->size = size;
1172 vma->flags = VM_MAP | vm_flags;
1173 vma->caller = __builtin_return_address(0);
1174
1175 vm_area_add_early(vma);
1176 }
1177
1178 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1179 #define KPTI_NG_TEMP_VA (-(1UL << PMD_SHIFT))
1180
1181 static phys_addr_t kpti_ng_temp_alloc __initdata;
1182
kpti_ng_pgd_alloc(enum pgtable_type type)1183 static phys_addr_t __init kpti_ng_pgd_alloc(enum pgtable_type type)
1184 {
1185 kpti_ng_temp_alloc -= PAGE_SIZE;
1186 return kpti_ng_temp_alloc;
1187 }
1188
__kpti_install_ng_mappings(void * __unused)1189 static int __init __kpti_install_ng_mappings(void *__unused)
1190 {
1191 typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1192 extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1193 kpti_remap_fn *remap_fn;
1194
1195 int cpu = smp_processor_id();
1196 int levels = CONFIG_PGTABLE_LEVELS;
1197 int order = order_base_2(levels);
1198 u64 kpti_ng_temp_pgd_pa = 0;
1199 pgd_t *kpti_ng_temp_pgd;
1200 u64 alloc = 0;
1201
1202 if (levels == 5 && !pgtable_l5_enabled())
1203 levels = 4;
1204 else if (levels == 4 && !pgtable_l4_enabled())
1205 levels = 3;
1206
1207 remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1208
1209 if (!cpu) {
1210 alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1211 kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1212 kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1213
1214 //
1215 // Create a minimal page table hierarchy that permits us to map
1216 // the swapper page tables temporarily as we traverse them.
1217 //
1218 // The physical pages are laid out as follows:
1219 //
1220 // +--------+-/-------+-/------ +-/------ +-\\\--------+
1221 // : PTE[] : | PMD[] : | PUD[] : | P4D[] : ||| PGD[] :
1222 // +--------+-\-------+-\------ +-\------ +-///--------+
1223 // ^
1224 // The first page is mapped into this hierarchy at a PMD_SHIFT
1225 // aligned virtual address, so that we can manipulate the PTE
1226 // level entries while the mapping is active. The first entry
1227 // covers the PTE[] page itself, the remaining entries are free
1228 // to be used as a ad-hoc fixmap.
1229 //
1230 __create_pgd_mapping_locked(kpti_ng_temp_pgd, __pa(alloc),
1231 KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
1232 kpti_ng_pgd_alloc, 0);
1233 }
1234
1235 cpu_install_idmap();
1236 remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
1237 cpu_uninstall_idmap();
1238
1239 if (!cpu) {
1240 free_pages(alloc, order);
1241 arm64_use_ng_mappings = true;
1242 }
1243
1244 return 0;
1245 }
1246
kpti_install_ng_mappings(void)1247 void __init kpti_install_ng_mappings(void)
1248 {
1249 /* Check whether KPTI is going to be used */
1250 if (!arm64_kernel_unmapped_at_el0())
1251 return;
1252
1253 /*
1254 * We don't need to rewrite the page-tables if either we've done
1255 * it already or we have KASLR enabled and therefore have not
1256 * created any global mappings at all.
1257 */
1258 if (arm64_use_ng_mappings)
1259 return;
1260
1261 init_idmap_kpti_bbml2_flag();
1262 stop_machine(__kpti_install_ng_mappings, NULL, cpu_online_mask);
1263 }
1264
kernel_exec_prot(void)1265 static pgprot_t __init kernel_exec_prot(void)
1266 {
1267 return rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
1268 }
1269
map_entry_trampoline(void)1270 static int __init map_entry_trampoline(void)
1271 {
1272 int i;
1273
1274 if (!arm64_kernel_unmapped_at_el0())
1275 return 0;
1276
1277 pgprot_t prot = kernel_exec_prot();
1278 phys_addr_t pa_start = __pa_symbol(__entry_tramp_text_start);
1279
1280 /* The trampoline is always mapped and can therefore be global */
1281 pgprot_val(prot) &= ~PTE_NG;
1282
1283 /* Map only the text into the trampoline page table */
1284 memset(tramp_pg_dir, 0, PGD_SIZE);
1285 __create_pgd_mapping(tramp_pg_dir, pa_start, TRAMP_VALIAS,
1286 entry_tramp_text_size(), prot,
1287 pgd_pgtable_alloc_init_mm, NO_BLOCK_MAPPINGS);
1288
1289 /* Map both the text and data into the kernel page table */
1290 for (i = 0; i < DIV_ROUND_UP(entry_tramp_text_size(), PAGE_SIZE); i++)
1291 __set_fixmap(FIX_ENTRY_TRAMP_TEXT1 - i,
1292 pa_start + i * PAGE_SIZE, prot);
1293
1294 if (IS_ENABLED(CONFIG_RELOCATABLE))
1295 __set_fixmap(FIX_ENTRY_TRAMP_TEXT1 - i,
1296 pa_start + i * PAGE_SIZE, PAGE_KERNEL_RO);
1297
1298 return 0;
1299 }
1300 core_initcall(map_entry_trampoline);
1301 #endif
1302
1303 /*
1304 * Declare the VMA areas for the kernel
1305 */
declare_kernel_vmas(void)1306 static void __init declare_kernel_vmas(void)
1307 {
1308 static struct vm_struct vmlinux_seg[KERNEL_SEGMENT_COUNT];
1309
1310 declare_vma(&vmlinux_seg[0], _text, _etext, VM_NO_GUARD);
1311 declare_vma(&vmlinux_seg[1], __start_rodata, __inittext_begin, VM_NO_GUARD);
1312 declare_vma(&vmlinux_seg[2], __inittext_begin, __inittext_end, VM_NO_GUARD);
1313 declare_vma(&vmlinux_seg[3], __initdata_begin, __initdata_end, VM_NO_GUARD);
1314 declare_vma(&vmlinux_seg[4], _data, _end, 0);
1315 }
1316
1317 void __pi_map_range(phys_addr_t *pte, u64 start, u64 end, phys_addr_t pa,
1318 pgprot_t prot, int level, pte_t *tbl, bool may_use_cont,
1319 u64 va_offset);
1320
1321 static u8 idmap_ptes[IDMAP_LEVELS - 1][PAGE_SIZE] __aligned(PAGE_SIZE) __ro_after_init,
1322 kpti_bbml2_ptes[IDMAP_LEVELS - 1][PAGE_SIZE] __aligned(PAGE_SIZE) __ro_after_init;
1323
create_idmap(void)1324 static void __init create_idmap(void)
1325 {
1326 phys_addr_t start = __pa_symbol(__idmap_text_start);
1327 phys_addr_t end = __pa_symbol(__idmap_text_end);
1328 phys_addr_t ptep = __pa_symbol(idmap_ptes);
1329
1330 __pi_map_range(&ptep, start, end, start, PAGE_KERNEL_ROX,
1331 IDMAP_ROOT_LEVEL, (pte_t *)idmap_pg_dir, false,
1332 __phys_to_virt(ptep) - ptep);
1333
1334 if (linear_map_requires_bbml2 ||
1335 (IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0) && !arm64_use_ng_mappings)) {
1336 phys_addr_t pa = __pa_symbol(&idmap_kpti_bbml2_flag);
1337
1338 /*
1339 * The KPTI G-to-nG conversion code needs a read-write mapping
1340 * of its synchronization flag in the ID map. This is also used
1341 * when splitting the linear map to ptes if a secondary CPU
1342 * doesn't support bbml2.
1343 */
1344 ptep = __pa_symbol(kpti_bbml2_ptes);
1345 __pi_map_range(&ptep, pa, pa + sizeof(u32), pa, PAGE_KERNEL,
1346 IDMAP_ROOT_LEVEL, (pte_t *)idmap_pg_dir, false,
1347 __phys_to_virt(ptep) - ptep);
1348 }
1349 }
1350
paging_init(void)1351 void __init paging_init(void)
1352 {
1353 map_mem(swapper_pg_dir);
1354
1355 memblock_allow_resize();
1356
1357 create_idmap();
1358 declare_kernel_vmas();
1359 }
1360
1361 #ifdef CONFIG_MEMORY_HOTPLUG
free_hotplug_page_range(struct page * page,size_t size,struct vmem_altmap * altmap)1362 static void free_hotplug_page_range(struct page *page, size_t size,
1363 struct vmem_altmap *altmap)
1364 {
1365 if (altmap) {
1366 vmem_altmap_free(altmap, size >> PAGE_SHIFT);
1367 } else {
1368 WARN_ON(PageReserved(page));
1369 __free_pages(page, get_order(size));
1370 }
1371 }
1372
free_hotplug_pgtable_page(struct page * page)1373 static void free_hotplug_pgtable_page(struct page *page)
1374 {
1375 free_hotplug_page_range(page, PAGE_SIZE, NULL);
1376 }
1377
pgtable_range_aligned(unsigned long start,unsigned long end,unsigned long floor,unsigned long ceiling,unsigned long mask)1378 static bool pgtable_range_aligned(unsigned long start, unsigned long end,
1379 unsigned long floor, unsigned long ceiling,
1380 unsigned long mask)
1381 {
1382 start &= mask;
1383 if (start < floor)
1384 return false;
1385
1386 if (ceiling) {
1387 ceiling &= mask;
1388 if (!ceiling)
1389 return false;
1390 }
1391
1392 if (end - 1 > ceiling - 1)
1393 return false;
1394 return true;
1395 }
1396
unmap_hotplug_pte_range(pmd_t * pmdp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)1397 static void unmap_hotplug_pte_range(pmd_t *pmdp, unsigned long addr,
1398 unsigned long end, bool free_mapped,
1399 struct vmem_altmap *altmap)
1400 {
1401 pte_t *ptep, pte;
1402
1403 do {
1404 ptep = pte_offset_kernel(pmdp, addr);
1405 pte = __ptep_get(ptep);
1406 if (pte_none(pte))
1407 continue;
1408
1409 WARN_ON(!pte_present(pte));
1410 __pte_clear(&init_mm, addr, ptep);
1411 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
1412 if (free_mapped)
1413 free_hotplug_page_range(pte_page(pte),
1414 PAGE_SIZE, altmap);
1415 } while (addr += PAGE_SIZE, addr < end);
1416 }
1417
unmap_hotplug_pmd_range(pud_t * pudp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)1418 static void unmap_hotplug_pmd_range(pud_t *pudp, unsigned long addr,
1419 unsigned long end, bool free_mapped,
1420 struct vmem_altmap *altmap)
1421 {
1422 unsigned long next;
1423 pmd_t *pmdp, pmd;
1424
1425 do {
1426 next = pmd_addr_end(addr, end);
1427 pmdp = pmd_offset(pudp, addr);
1428 pmd = READ_ONCE(*pmdp);
1429 if (pmd_none(pmd))
1430 continue;
1431
1432 WARN_ON(!pmd_present(pmd));
1433 if (pmd_sect(pmd)) {
1434 pmd_clear(pmdp);
1435
1436 /*
1437 * One TLBI should be sufficient here as the PMD_SIZE
1438 * range is mapped with a single block entry.
1439 */
1440 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
1441 if (free_mapped)
1442 free_hotplug_page_range(pmd_page(pmd),
1443 PMD_SIZE, altmap);
1444 continue;
1445 }
1446 WARN_ON(!pmd_table(pmd));
1447 unmap_hotplug_pte_range(pmdp, addr, next, free_mapped, altmap);
1448 } while (addr = next, addr < end);
1449 }
1450
unmap_hotplug_pud_range(p4d_t * p4dp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)1451 static void unmap_hotplug_pud_range(p4d_t *p4dp, unsigned long addr,
1452 unsigned long end, bool free_mapped,
1453 struct vmem_altmap *altmap)
1454 {
1455 unsigned long next;
1456 pud_t *pudp, pud;
1457
1458 do {
1459 next = pud_addr_end(addr, end);
1460 pudp = pud_offset(p4dp, addr);
1461 pud = READ_ONCE(*pudp);
1462 if (pud_none(pud))
1463 continue;
1464
1465 WARN_ON(!pud_present(pud));
1466 if (pud_sect(pud)) {
1467 pud_clear(pudp);
1468
1469 /*
1470 * One TLBI should be sufficient here as the PUD_SIZE
1471 * range is mapped with a single block entry.
1472 */
1473 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
1474 if (free_mapped)
1475 free_hotplug_page_range(pud_page(pud),
1476 PUD_SIZE, altmap);
1477 continue;
1478 }
1479 WARN_ON(!pud_table(pud));
1480 unmap_hotplug_pmd_range(pudp, addr, next, free_mapped, altmap);
1481 } while (addr = next, addr < end);
1482 }
1483
unmap_hotplug_p4d_range(pgd_t * pgdp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)1484 static void unmap_hotplug_p4d_range(pgd_t *pgdp, unsigned long addr,
1485 unsigned long end, bool free_mapped,
1486 struct vmem_altmap *altmap)
1487 {
1488 unsigned long next;
1489 p4d_t *p4dp, p4d;
1490
1491 do {
1492 next = p4d_addr_end(addr, end);
1493 p4dp = p4d_offset(pgdp, addr);
1494 p4d = READ_ONCE(*p4dp);
1495 if (p4d_none(p4d))
1496 continue;
1497
1498 WARN_ON(!p4d_present(p4d));
1499 unmap_hotplug_pud_range(p4dp, addr, next, free_mapped, altmap);
1500 } while (addr = next, addr < end);
1501 }
1502
unmap_hotplug_range(unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)1503 static void unmap_hotplug_range(unsigned long addr, unsigned long end,
1504 bool free_mapped, struct vmem_altmap *altmap)
1505 {
1506 unsigned long next;
1507 pgd_t *pgdp, pgd;
1508
1509 /*
1510 * altmap can only be used as vmemmap mapping backing memory.
1511 * In case the backing memory itself is not being freed, then
1512 * altmap is irrelevant. Warn about this inconsistency when
1513 * encountered.
1514 */
1515 WARN_ON(!free_mapped && altmap);
1516
1517 do {
1518 next = pgd_addr_end(addr, end);
1519 pgdp = pgd_offset_k(addr);
1520 pgd = READ_ONCE(*pgdp);
1521 if (pgd_none(pgd))
1522 continue;
1523
1524 WARN_ON(!pgd_present(pgd));
1525 unmap_hotplug_p4d_range(pgdp, addr, next, free_mapped, altmap);
1526 } while (addr = next, addr < end);
1527 }
1528
free_empty_pte_table(pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1529 static void free_empty_pte_table(pmd_t *pmdp, unsigned long addr,
1530 unsigned long end, unsigned long floor,
1531 unsigned long ceiling)
1532 {
1533 pte_t *ptep, pte;
1534 unsigned long i, start = addr;
1535
1536 do {
1537 ptep = pte_offset_kernel(pmdp, addr);
1538 pte = __ptep_get(ptep);
1539
1540 /*
1541 * This is just a sanity check here which verifies that
1542 * pte clearing has been done by earlier unmap loops.
1543 */
1544 WARN_ON(!pte_none(pte));
1545 } while (addr += PAGE_SIZE, addr < end);
1546
1547 if (!pgtable_range_aligned(start, end, floor, ceiling, PMD_MASK))
1548 return;
1549
1550 /*
1551 * Check whether we can free the pte page if the rest of the
1552 * entries are empty. Overlap with other regions have been
1553 * handled by the floor/ceiling check.
1554 */
1555 ptep = pte_offset_kernel(pmdp, 0UL);
1556 for (i = 0; i < PTRS_PER_PTE; i++) {
1557 if (!pte_none(__ptep_get(&ptep[i])))
1558 return;
1559 }
1560
1561 pmd_clear(pmdp);
1562 __flush_tlb_kernel_pgtable(start);
1563 free_hotplug_pgtable_page(virt_to_page(ptep));
1564 }
1565
free_empty_pmd_table(pud_t * pudp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1566 static void free_empty_pmd_table(pud_t *pudp, unsigned long addr,
1567 unsigned long end, unsigned long floor,
1568 unsigned long ceiling)
1569 {
1570 pmd_t *pmdp, pmd;
1571 unsigned long i, next, start = addr;
1572
1573 do {
1574 next = pmd_addr_end(addr, end);
1575 pmdp = pmd_offset(pudp, addr);
1576 pmd = READ_ONCE(*pmdp);
1577 if (pmd_none(pmd))
1578 continue;
1579
1580 WARN_ON(!pmd_present(pmd) || !pmd_table(pmd) || pmd_sect(pmd));
1581 free_empty_pte_table(pmdp, addr, next, floor, ceiling);
1582 } while (addr = next, addr < end);
1583
1584 if (CONFIG_PGTABLE_LEVELS <= 2)
1585 return;
1586
1587 if (!pgtable_range_aligned(start, end, floor, ceiling, PUD_MASK))
1588 return;
1589
1590 /*
1591 * Check whether we can free the pmd page if the rest of the
1592 * entries are empty. Overlap with other regions have been
1593 * handled by the floor/ceiling check.
1594 */
1595 pmdp = pmd_offset(pudp, 0UL);
1596 for (i = 0; i < PTRS_PER_PMD; i++) {
1597 if (!pmd_none(READ_ONCE(pmdp[i])))
1598 return;
1599 }
1600
1601 pud_clear(pudp);
1602 __flush_tlb_kernel_pgtable(start);
1603 free_hotplug_pgtable_page(virt_to_page(pmdp));
1604 }
1605
free_empty_pud_table(p4d_t * p4dp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1606 static void free_empty_pud_table(p4d_t *p4dp, unsigned long addr,
1607 unsigned long end, unsigned long floor,
1608 unsigned long ceiling)
1609 {
1610 pud_t *pudp, pud;
1611 unsigned long i, next, start = addr;
1612
1613 do {
1614 next = pud_addr_end(addr, end);
1615 pudp = pud_offset(p4dp, addr);
1616 pud = READ_ONCE(*pudp);
1617 if (pud_none(pud))
1618 continue;
1619
1620 WARN_ON(!pud_present(pud) || !pud_table(pud) || pud_sect(pud));
1621 free_empty_pmd_table(pudp, addr, next, floor, ceiling);
1622 } while (addr = next, addr < end);
1623
1624 if (!pgtable_l4_enabled())
1625 return;
1626
1627 if (!pgtable_range_aligned(start, end, floor, ceiling, P4D_MASK))
1628 return;
1629
1630 /*
1631 * Check whether we can free the pud page if the rest of the
1632 * entries are empty. Overlap with other regions have been
1633 * handled by the floor/ceiling check.
1634 */
1635 pudp = pud_offset(p4dp, 0UL);
1636 for (i = 0; i < PTRS_PER_PUD; i++) {
1637 if (!pud_none(READ_ONCE(pudp[i])))
1638 return;
1639 }
1640
1641 p4d_clear(p4dp);
1642 __flush_tlb_kernel_pgtable(start);
1643 free_hotplug_pgtable_page(virt_to_page(pudp));
1644 }
1645
free_empty_p4d_table(pgd_t * pgdp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1646 static void free_empty_p4d_table(pgd_t *pgdp, unsigned long addr,
1647 unsigned long end, unsigned long floor,
1648 unsigned long ceiling)
1649 {
1650 p4d_t *p4dp, p4d;
1651 unsigned long i, next, start = addr;
1652
1653 do {
1654 next = p4d_addr_end(addr, end);
1655 p4dp = p4d_offset(pgdp, addr);
1656 p4d = READ_ONCE(*p4dp);
1657 if (p4d_none(p4d))
1658 continue;
1659
1660 WARN_ON(!p4d_present(p4d));
1661 free_empty_pud_table(p4dp, addr, next, floor, ceiling);
1662 } while (addr = next, addr < end);
1663
1664 if (!pgtable_l5_enabled())
1665 return;
1666
1667 if (!pgtable_range_aligned(start, end, floor, ceiling, PGDIR_MASK))
1668 return;
1669
1670 /*
1671 * Check whether we can free the p4d page if the rest of the
1672 * entries are empty. Overlap with other regions have been
1673 * handled by the floor/ceiling check.
1674 */
1675 p4dp = p4d_offset(pgdp, 0UL);
1676 for (i = 0; i < PTRS_PER_P4D; i++) {
1677 if (!p4d_none(READ_ONCE(p4dp[i])))
1678 return;
1679 }
1680
1681 pgd_clear(pgdp);
1682 __flush_tlb_kernel_pgtable(start);
1683 free_hotplug_pgtable_page(virt_to_page(p4dp));
1684 }
1685
free_empty_tables(unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1686 static void free_empty_tables(unsigned long addr, unsigned long end,
1687 unsigned long floor, unsigned long ceiling)
1688 {
1689 unsigned long next;
1690 pgd_t *pgdp, pgd;
1691
1692 do {
1693 next = pgd_addr_end(addr, end);
1694 pgdp = pgd_offset_k(addr);
1695 pgd = READ_ONCE(*pgdp);
1696 if (pgd_none(pgd))
1697 continue;
1698
1699 WARN_ON(!pgd_present(pgd));
1700 free_empty_p4d_table(pgdp, addr, next, floor, ceiling);
1701 } while (addr = next, addr < end);
1702 }
1703 #endif
1704
vmemmap_set_pmd(pmd_t * pmdp,void * p,int node,unsigned long addr,unsigned long next)1705 void __meminit vmemmap_set_pmd(pmd_t *pmdp, void *p, int node,
1706 unsigned long addr, unsigned long next)
1707 {
1708 pmd_set_huge(pmdp, __pa(p), __pgprot(PROT_SECT_NORMAL));
1709 }
1710
vmemmap_check_pmd(pmd_t * pmdp,int node,unsigned long addr,unsigned long next)1711 int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node,
1712 unsigned long addr, unsigned long next)
1713 {
1714 vmemmap_verify((pte_t *)pmdp, node, addr, next);
1715
1716 return pmd_sect(READ_ONCE(*pmdp));
1717 }
1718
vmemmap_populate(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)1719 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1720 struct vmem_altmap *altmap)
1721 {
1722 WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1723 /* [start, end] should be within one section */
1724 WARN_ON_ONCE(end - start > PAGES_PER_SECTION * sizeof(struct page));
1725
1726 if (!IS_ENABLED(CONFIG_ARM64_4K_PAGES) ||
1727 (end - start < PAGES_PER_SECTION * sizeof(struct page)))
1728 return vmemmap_populate_basepages(start, end, node, altmap);
1729 else
1730 return vmemmap_populate_hugepages(start, end, node, altmap);
1731 }
1732
1733 #ifdef CONFIG_MEMORY_HOTPLUG
vmemmap_free(unsigned long start,unsigned long end,struct vmem_altmap * altmap)1734 void vmemmap_free(unsigned long start, unsigned long end,
1735 struct vmem_altmap *altmap)
1736 {
1737 WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1738
1739 unmap_hotplug_range(start, end, true, altmap);
1740 free_empty_tables(start, end, VMEMMAP_START, VMEMMAP_END);
1741 }
1742 #endif /* CONFIG_MEMORY_HOTPLUG */
1743
pud_set_huge(pud_t * pudp,phys_addr_t phys,pgprot_t prot)1744 int pud_set_huge(pud_t *pudp, phys_addr_t phys, pgprot_t prot)
1745 {
1746 pud_t new_pud = pfn_pud(__phys_to_pfn(phys), mk_pud_sect_prot(prot));
1747
1748 /* Only allow permission changes for now */
1749 if (!pgattr_change_is_safe(READ_ONCE(pud_val(*pudp)),
1750 pud_val(new_pud)))
1751 return 0;
1752
1753 VM_BUG_ON(phys & ~PUD_MASK);
1754 set_pud(pudp, new_pud);
1755 return 1;
1756 }
1757
pmd_set_huge(pmd_t * pmdp,phys_addr_t phys,pgprot_t prot)1758 int pmd_set_huge(pmd_t *pmdp, phys_addr_t phys, pgprot_t prot)
1759 {
1760 pmd_t new_pmd = pfn_pmd(__phys_to_pfn(phys), mk_pmd_sect_prot(prot));
1761
1762 /* Only allow permission changes for now */
1763 if (!pgattr_change_is_safe(READ_ONCE(pmd_val(*pmdp)),
1764 pmd_val(new_pmd)))
1765 return 0;
1766
1767 VM_BUG_ON(phys & ~PMD_MASK);
1768 set_pmd(pmdp, new_pmd);
1769 return 1;
1770 }
1771
1772 #ifndef __PAGETABLE_P4D_FOLDED
p4d_clear_huge(p4d_t * p4dp)1773 void p4d_clear_huge(p4d_t *p4dp)
1774 {
1775 }
1776 #endif
1777
pud_clear_huge(pud_t * pudp)1778 int pud_clear_huge(pud_t *pudp)
1779 {
1780 if (!pud_sect(READ_ONCE(*pudp)))
1781 return 0;
1782 pud_clear(pudp);
1783 return 1;
1784 }
1785
pmd_clear_huge(pmd_t * pmdp)1786 int pmd_clear_huge(pmd_t *pmdp)
1787 {
1788 if (!pmd_sect(READ_ONCE(*pmdp)))
1789 return 0;
1790 pmd_clear(pmdp);
1791 return 1;
1792 }
1793
__pmd_free_pte_page(pmd_t * pmdp,unsigned long addr,bool acquire_mmap_lock)1794 static int __pmd_free_pte_page(pmd_t *pmdp, unsigned long addr,
1795 bool acquire_mmap_lock)
1796 {
1797 pte_t *table;
1798 pmd_t pmd;
1799
1800 pmd = READ_ONCE(*pmdp);
1801
1802 if (!pmd_table(pmd)) {
1803 VM_WARN_ON(1);
1804 return 1;
1805 }
1806
1807 /* See comment in pud_free_pmd_page for static key logic */
1808 table = pte_offset_kernel(pmdp, addr);
1809 pmd_clear(pmdp);
1810 __flush_tlb_kernel_pgtable(addr);
1811 if (static_branch_unlikely(&arm64_ptdump_lock_key) && acquire_mmap_lock) {
1812 mmap_read_lock(&init_mm);
1813 mmap_read_unlock(&init_mm);
1814 }
1815
1816 pte_free_kernel(NULL, table);
1817 return 1;
1818 }
1819
pmd_free_pte_page(pmd_t * pmdp,unsigned long addr)1820 int pmd_free_pte_page(pmd_t *pmdp, unsigned long addr)
1821 {
1822 /* If ptdump is walking the pagetables, acquire init_mm.mmap_lock */
1823 return __pmd_free_pte_page(pmdp, addr, /* acquire_mmap_lock = */ true);
1824 }
1825
pud_free_pmd_page(pud_t * pudp,unsigned long addr)1826 int pud_free_pmd_page(pud_t *pudp, unsigned long addr)
1827 {
1828 pmd_t *table;
1829 pmd_t *pmdp;
1830 pud_t pud;
1831 unsigned long next, end;
1832
1833 pud = READ_ONCE(*pudp);
1834
1835 if (!pud_table(pud)) {
1836 VM_WARN_ON(1);
1837 return 1;
1838 }
1839
1840 table = pmd_offset(pudp, addr);
1841
1842 /*
1843 * Our objective is to prevent ptdump from reading a PMD table which has
1844 * been freed. In this race, if pud_free_pmd_page observes the key on
1845 * (which got flipped by ptdump) then the mmap lock sequence here will,
1846 * as a result of the mmap write lock/unlock sequence in ptdump, give
1847 * us the correct synchronization. If not, this means that ptdump has
1848 * yet not started walking the pagetables - the sequence of barriers
1849 * issued by __flush_tlb_kernel_pgtable() guarantees that ptdump will
1850 * observe an empty PUD.
1851 */
1852 pud_clear(pudp);
1853 __flush_tlb_kernel_pgtable(addr);
1854 if (static_branch_unlikely(&arm64_ptdump_lock_key)) {
1855 mmap_read_lock(&init_mm);
1856 mmap_read_unlock(&init_mm);
1857 }
1858
1859 pmdp = table;
1860 next = addr;
1861 end = addr + PUD_SIZE;
1862 do {
1863 if (pmd_present(pmdp_get(pmdp)))
1864 /*
1865 * PMD has been isolated, so ptdump won't see it. No
1866 * need to acquire init_mm.mmap_lock.
1867 */
1868 __pmd_free_pte_page(pmdp, next, /* acquire_mmap_lock = */ false);
1869 } while (pmdp++, next += PMD_SIZE, next != end);
1870
1871 pmd_free(NULL, table);
1872 return 1;
1873 }
1874
1875 #ifdef CONFIG_MEMORY_HOTPLUG
__remove_pgd_mapping(pgd_t * pgdir,unsigned long start,u64 size)1876 static void __remove_pgd_mapping(pgd_t *pgdir, unsigned long start, u64 size)
1877 {
1878 unsigned long end = start + size;
1879
1880 WARN_ON(pgdir != init_mm.pgd);
1881 WARN_ON((start < PAGE_OFFSET) || (end > PAGE_END));
1882
1883 unmap_hotplug_range(start, end, false, NULL);
1884 free_empty_tables(start, end, PAGE_OFFSET, PAGE_END);
1885 }
1886
arch_get_mappable_range(void)1887 struct range arch_get_mappable_range(void)
1888 {
1889 struct range mhp_range;
1890 phys_addr_t start_linear_pa = __pa(_PAGE_OFFSET(vabits_actual));
1891 phys_addr_t end_linear_pa = __pa(PAGE_END - 1);
1892
1893 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
1894 /*
1895 * Check for a wrap, it is possible because of randomized linear
1896 * mapping the start physical address is actually bigger than
1897 * the end physical address. In this case set start to zero
1898 * because [0, end_linear_pa] range must still be able to cover
1899 * all addressable physical addresses.
1900 */
1901 if (start_linear_pa > end_linear_pa)
1902 start_linear_pa = 0;
1903 }
1904
1905 WARN_ON(start_linear_pa > end_linear_pa);
1906
1907 /*
1908 * Linear mapping region is the range [PAGE_OFFSET..(PAGE_END - 1)]
1909 * accommodating both its ends but excluding PAGE_END. Max physical
1910 * range which can be mapped inside this linear mapping range, must
1911 * also be derived from its end points.
1912 */
1913 mhp_range.start = start_linear_pa;
1914 mhp_range.end = end_linear_pa;
1915
1916 return mhp_range;
1917 }
1918
arch_add_memory(int nid,u64 start,u64 size,struct mhp_params * params)1919 int arch_add_memory(int nid, u64 start, u64 size,
1920 struct mhp_params *params)
1921 {
1922 int ret, flags = NO_EXEC_MAPPINGS;
1923
1924 VM_BUG_ON(!mhp_range_allowed(start, size, true));
1925
1926 if (force_pte_mapping())
1927 flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
1928
1929 __create_pgd_mapping(swapper_pg_dir, start, __phys_to_virt(start),
1930 size, params->pgprot, pgd_pgtable_alloc_init_mm,
1931 flags);
1932
1933 memblock_clear_nomap(start, size);
1934
1935 ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT,
1936 params);
1937 if (ret)
1938 __remove_pgd_mapping(swapper_pg_dir,
1939 __phys_to_virt(start), size);
1940 else {
1941 /* Address of hotplugged memory can be smaller */
1942 max_pfn = max(max_pfn, PFN_UP(start + size));
1943 max_low_pfn = max_pfn;
1944 }
1945
1946 return ret;
1947 }
1948
arch_remove_memory(u64 start,u64 size,struct vmem_altmap * altmap)1949 void arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1950 {
1951 unsigned long start_pfn = start >> PAGE_SHIFT;
1952 unsigned long nr_pages = size >> PAGE_SHIFT;
1953
1954 __remove_pages(start_pfn, nr_pages, altmap);
1955 __remove_pgd_mapping(swapper_pg_dir, __phys_to_virt(start), size);
1956 }
1957
1958 /*
1959 * This memory hotplug notifier helps prevent boot memory from being
1960 * inadvertently removed as it blocks pfn range offlining process in
1961 * __offline_pages(). Hence this prevents both offlining as well as
1962 * removal process for boot memory which is initially always online.
1963 * In future if and when boot memory could be removed, this notifier
1964 * should be dropped and free_hotplug_page_range() should handle any
1965 * reserved pages allocated during boot.
1966 */
prevent_bootmem_remove_notifier(struct notifier_block * nb,unsigned long action,void * data)1967 static int prevent_bootmem_remove_notifier(struct notifier_block *nb,
1968 unsigned long action, void *data)
1969 {
1970 struct mem_section *ms;
1971 struct memory_notify *arg = data;
1972 unsigned long end_pfn = arg->start_pfn + arg->nr_pages;
1973 unsigned long pfn = arg->start_pfn;
1974
1975 if ((action != MEM_GOING_OFFLINE) && (action != MEM_OFFLINE))
1976 return NOTIFY_OK;
1977
1978 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1979 unsigned long start = PFN_PHYS(pfn);
1980 unsigned long end = start + (1UL << PA_SECTION_SHIFT);
1981
1982 ms = __pfn_to_section(pfn);
1983 if (!early_section(ms))
1984 continue;
1985
1986 if (action == MEM_GOING_OFFLINE) {
1987 /*
1988 * Boot memory removal is not supported. Prevent
1989 * it via blocking any attempted offline request
1990 * for the boot memory and just report it.
1991 */
1992 pr_warn("Boot memory [%lx %lx] offlining attempted\n", start, end);
1993 return NOTIFY_BAD;
1994 } else if (action == MEM_OFFLINE) {
1995 /*
1996 * This should have never happened. Boot memory
1997 * offlining should have been prevented by this
1998 * very notifier. Probably some memory removal
1999 * procedure might have changed which would then
2000 * require further debug.
2001 */
2002 pr_err("Boot memory [%lx %lx] offlined\n", start, end);
2003
2004 /*
2005 * Core memory hotplug does not process a return
2006 * code from the notifier for MEM_OFFLINE events.
2007 * The error condition has been reported. Return
2008 * from here as if ignored.
2009 */
2010 return NOTIFY_DONE;
2011 }
2012 }
2013 return NOTIFY_OK;
2014 }
2015
2016 static struct notifier_block prevent_bootmem_remove_nb = {
2017 .notifier_call = prevent_bootmem_remove_notifier,
2018 };
2019
2020 /*
2021 * This ensures that boot memory sections on the platform are online
2022 * from early boot. Memory sections could not be prevented from being
2023 * offlined, unless for some reason they are not online to begin with.
2024 * This helps validate the basic assumption on which the above memory
2025 * event notifier works to prevent boot memory section offlining and
2026 * its possible removal.
2027 */
validate_bootmem_online(void)2028 static void validate_bootmem_online(void)
2029 {
2030 phys_addr_t start, end, addr;
2031 struct mem_section *ms;
2032 u64 i;
2033
2034 /*
2035 * Scanning across all memblock might be expensive
2036 * on some big memory systems. Hence enable this
2037 * validation only with DEBUG_VM.
2038 */
2039 if (!IS_ENABLED(CONFIG_DEBUG_VM))
2040 return;
2041
2042 for_each_mem_range(i, &start, &end) {
2043 for (addr = start; addr < end; addr += (1UL << PA_SECTION_SHIFT)) {
2044 ms = __pfn_to_section(PHYS_PFN(addr));
2045
2046 /*
2047 * All memory ranges in the system at this point
2048 * should have been marked as early sections.
2049 */
2050 WARN_ON(!early_section(ms));
2051
2052 /*
2053 * Memory notifier mechanism here to prevent boot
2054 * memory offlining depends on the fact that each
2055 * early section memory on the system is initially
2056 * online. Otherwise a given memory section which
2057 * is already offline will be overlooked and can
2058 * be removed completely. Call out such sections.
2059 */
2060 if (!online_section(ms))
2061 pr_err("Boot memory [%llx %llx] is offline, can be removed\n",
2062 addr, addr + (1UL << PA_SECTION_SHIFT));
2063 }
2064 }
2065 }
2066
prevent_bootmem_remove_init(void)2067 static int __init prevent_bootmem_remove_init(void)
2068 {
2069 int ret = 0;
2070
2071 if (!IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
2072 return ret;
2073
2074 validate_bootmem_online();
2075 ret = register_memory_notifier(&prevent_bootmem_remove_nb);
2076 if (ret)
2077 pr_err("%s: Notifier registration failed %d\n", __func__, ret);
2078
2079 return ret;
2080 }
2081 early_initcall(prevent_bootmem_remove_init);
2082 #endif
2083
modify_prot_start_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr)2084 pte_t modify_prot_start_ptes(struct vm_area_struct *vma, unsigned long addr,
2085 pte_t *ptep, unsigned int nr)
2086 {
2087 pte_t pte = get_and_clear_ptes(vma->vm_mm, addr, ptep, nr);
2088
2089 if (alternative_has_cap_unlikely(ARM64_WORKAROUND_2645198)) {
2090 /*
2091 * Break-before-make (BBM) is required for all user space mappings
2092 * when the permission changes from executable to non-executable
2093 * in cases where cpu is affected with errata #2645198.
2094 */
2095 if (pte_accessible(vma->vm_mm, pte) && pte_user_exec(pte))
2096 __flush_tlb_range(vma, addr, nr * PAGE_SIZE,
2097 PAGE_SIZE, true, 3);
2098 }
2099
2100 return pte;
2101 }
2102
ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)2103 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
2104 {
2105 return modify_prot_start_ptes(vma, addr, ptep, 1);
2106 }
2107
modify_prot_commit_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte,unsigned int nr)2108 void modify_prot_commit_ptes(struct vm_area_struct *vma, unsigned long addr,
2109 pte_t *ptep, pte_t old_pte, pte_t pte,
2110 unsigned int nr)
2111 {
2112 set_ptes(vma->vm_mm, addr, ptep, pte, nr);
2113 }
2114
ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)2115 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
2116 pte_t old_pte, pte_t pte)
2117 {
2118 modify_prot_commit_ptes(vma, addr, ptep, old_pte, pte, 1);
2119 }
2120
2121 /*
2122 * Atomically replaces the active TTBR1_EL1 PGD with a new VA-compatible PGD,
2123 * avoiding the possibility of conflicting TLB entries being allocated.
2124 */
__cpu_replace_ttbr1(pgd_t * pgdp,bool cnp)2125 void __cpu_replace_ttbr1(pgd_t *pgdp, bool cnp)
2126 {
2127 typedef void (ttbr_replace_func)(phys_addr_t);
2128 extern ttbr_replace_func idmap_cpu_replace_ttbr1;
2129 ttbr_replace_func *replace_phys;
2130 unsigned long daif;
2131
2132 /* phys_to_ttbr() zeros lower 2 bits of ttbr with 52-bit PA */
2133 phys_addr_t ttbr1 = phys_to_ttbr(virt_to_phys(pgdp));
2134
2135 if (cnp)
2136 ttbr1 |= TTBR_CNP_BIT;
2137
2138 replace_phys = (void *)__pa_symbol(idmap_cpu_replace_ttbr1);
2139
2140 cpu_install_idmap();
2141
2142 /*
2143 * We really don't want to take *any* exceptions while TTBR1 is
2144 * in the process of being replaced so mask everything.
2145 */
2146 daif = local_daif_save();
2147 replace_phys(ttbr1);
2148 local_daif_restore(daif);
2149
2150 cpu_uninstall_idmap();
2151 }
2152
2153 #ifdef CONFIG_ARCH_HAS_PKEYS
arch_set_user_pkey_access(struct task_struct * tsk,int pkey,unsigned long init_val)2154 int arch_set_user_pkey_access(struct task_struct *tsk, int pkey, unsigned long init_val)
2155 {
2156 u64 new_por;
2157 u64 old_por;
2158
2159 if (!system_supports_poe())
2160 return -ENOSPC;
2161
2162 /*
2163 * This code should only be called with valid 'pkey'
2164 * values originating from in-kernel users. Complain
2165 * if a bad value is observed.
2166 */
2167 if (WARN_ON_ONCE(pkey >= arch_max_pkey()))
2168 return -EINVAL;
2169
2170 /* Set the bits we need in POR: */
2171 new_por = POE_RWX;
2172 if (init_val & PKEY_DISABLE_WRITE)
2173 new_por &= ~POE_W;
2174 if (init_val & PKEY_DISABLE_ACCESS)
2175 new_por &= ~POE_RW;
2176 if (init_val & PKEY_DISABLE_READ)
2177 new_por &= ~POE_R;
2178 if (init_val & PKEY_DISABLE_EXECUTE)
2179 new_por &= ~POE_X;
2180
2181 /* Shift the bits in to the correct place in POR for pkey: */
2182 new_por = POR_ELx_PERM_PREP(pkey, new_por);
2183
2184 /* Get old POR and mask off any old bits in place: */
2185 old_por = read_sysreg_s(SYS_POR_EL0);
2186 old_por &= ~(POE_MASK << POR_ELx_PERM_SHIFT(pkey));
2187
2188 /* Write old part along with new part: */
2189 write_sysreg_s(old_por | new_por, SYS_POR_EL0);
2190
2191 return 0;
2192 }
2193 #endif
2194