1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 */
5
6 #include <linux/bsearch.h>
7 #include <linux/falloc.h>
8 #include <linux/fs.h>
9 #include <linux/file.h>
10 #include <linux/sort.h>
11 #include <linux/mount.h>
12 #include <linux/xattr.h>
13 #include <linux/posix_acl_xattr.h>
14 #include <linux/radix-tree.h>
15 #include <linux/vmalloc.h>
16 #include <linux/string.h>
17 #include <linux/compat.h>
18 #include <linux/crc32c.h>
19 #include <linux/fsverity.h>
20 #include "send.h"
21 #include "ctree.h"
22 #include "backref.h"
23 #include "locking.h"
24 #include "disk-io.h"
25 #include "btrfs_inode.h"
26 #include "transaction.h"
27 #include "compression.h"
28 #include "print-tree.h"
29 #include "accessors.h"
30 #include "dir-item.h"
31 #include "file-item.h"
32 #include "ioctl.h"
33 #include "verity.h"
34 #include "lru_cache.h"
35
36 /*
37 * Maximum number of references an extent can have in order for us to attempt to
38 * issue clone operations instead of write operations. This currently exists to
39 * avoid hitting limitations of the backreference walking code (taking a lot of
40 * time and using too much memory for extents with large number of references).
41 */
42 #define SEND_MAX_EXTENT_REFS 1024
43
44 /*
45 * A fs_path is a helper to dynamically build path names with unknown size.
46 * It reallocates the internal buffer on demand.
47 * It allows fast adding of path elements on the right side (normal path) and
48 * fast adding to the left side (reversed path). A reversed path can also be
49 * unreversed if needed.
50 */
51 struct fs_path {
52 union {
53 struct {
54 char *start;
55 char *end;
56
57 char *buf;
58 unsigned short buf_len:15;
59 unsigned short reversed:1;
60 char inline_buf[];
61 };
62 /*
63 * Average path length does not exceed 200 bytes, we'll have
64 * better packing in the slab and higher chance to satisfy
65 * an allocation later during send.
66 */
67 char pad[256];
68 };
69 };
70 #define FS_PATH_INLINE_SIZE \
71 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
72
73
74 /* reused for each extent */
75 struct clone_root {
76 struct btrfs_root *root;
77 u64 ino;
78 u64 offset;
79 u64 num_bytes;
80 bool found_ref;
81 };
82
83 #define SEND_MAX_NAME_CACHE_SIZE 256
84
85 /*
86 * Limit the root_ids array of struct backref_cache_entry to 17 elements.
87 * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which
88 * can be satisfied from the kmalloc-192 slab, without wasting any space.
89 * The most common case is to have a single root for cloning, which corresponds
90 * to the send root. Having the user specify more than 16 clone roots is not
91 * common, and in such rare cases we simply don't use caching if the number of
92 * cloning roots that lead down to a leaf is more than 17.
93 */
94 #define SEND_MAX_BACKREF_CACHE_ROOTS 17
95
96 /*
97 * Max number of entries in the cache.
98 * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding
99 * maple tree's internal nodes, is 24K.
100 */
101 #define SEND_MAX_BACKREF_CACHE_SIZE 128
102
103 /*
104 * A backref cache entry maps a leaf to a list of IDs of roots from which the
105 * leaf is accessible and we can use for clone operations.
106 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
107 * x86_64).
108 */
109 struct backref_cache_entry {
110 struct btrfs_lru_cache_entry entry;
111 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
112 /* Number of valid elements in the root_ids array. */
113 int num_roots;
114 };
115
116 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
117 static_assert(offsetof(struct backref_cache_entry, entry) == 0);
118
119 /*
120 * Max number of entries in the cache that stores directories that were already
121 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
122 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
123 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
124 */
125 #define SEND_MAX_DIR_CREATED_CACHE_SIZE 64
126
127 /*
128 * Max number of entries in the cache that stores directories that were already
129 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
130 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
131 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
132 */
133 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE 64
134
135 struct send_ctx {
136 struct file *send_filp;
137 loff_t send_off;
138 char *send_buf;
139 u32 send_size;
140 u32 send_max_size;
141 /*
142 * Whether BTRFS_SEND_A_DATA attribute was already added to current
143 * command (since protocol v2, data must be the last attribute).
144 */
145 bool put_data;
146 struct page **send_buf_pages;
147 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
148 /* Protocol version compatibility requested */
149 u32 proto;
150
151 struct btrfs_root *send_root;
152 struct btrfs_root *parent_root;
153 struct clone_root *clone_roots;
154 int clone_roots_cnt;
155
156 /* current state of the compare_tree call */
157 struct btrfs_path *left_path;
158 struct btrfs_path *right_path;
159 struct btrfs_key *cmp_key;
160
161 /*
162 * Keep track of the generation of the last transaction that was used
163 * for relocating a block group. This is periodically checked in order
164 * to detect if a relocation happened since the last check, so that we
165 * don't operate on stale extent buffers for nodes (level >= 1) or on
166 * stale disk_bytenr values of file extent items.
167 */
168 u64 last_reloc_trans;
169
170 /*
171 * infos of the currently processed inode. In case of deleted inodes,
172 * these are the values from the deleted inode.
173 */
174 u64 cur_ino;
175 u64 cur_inode_gen;
176 u64 cur_inode_size;
177 u64 cur_inode_mode;
178 u64 cur_inode_rdev;
179 u64 cur_inode_last_extent;
180 u64 cur_inode_next_write_offset;
181 bool cur_inode_new;
182 bool cur_inode_new_gen;
183 bool cur_inode_deleted;
184 bool ignore_cur_inode;
185 bool cur_inode_needs_verity;
186 void *verity_descriptor;
187
188 u64 send_progress;
189
190 struct list_head new_refs;
191 struct list_head deleted_refs;
192
193 struct btrfs_lru_cache name_cache;
194
195 /*
196 * The inode we are currently processing. It's not NULL only when we
197 * need to issue write commands for data extents from this inode.
198 */
199 struct inode *cur_inode;
200 struct file_ra_state ra;
201 u64 page_cache_clear_start;
202 bool clean_page_cache;
203
204 /*
205 * We process inodes by their increasing order, so if before an
206 * incremental send we reverse the parent/child relationship of
207 * directories such that a directory with a lower inode number was
208 * the parent of a directory with a higher inode number, and the one
209 * becoming the new parent got renamed too, we can't rename/move the
210 * directory with lower inode number when we finish processing it - we
211 * must process the directory with higher inode number first, then
212 * rename/move it and then rename/move the directory with lower inode
213 * number. Example follows.
214 *
215 * Tree state when the first send was performed:
216 *
217 * .
218 * |-- a (ino 257)
219 * |-- b (ino 258)
220 * |
221 * |
222 * |-- c (ino 259)
223 * | |-- d (ino 260)
224 * |
225 * |-- c2 (ino 261)
226 *
227 * Tree state when the second (incremental) send is performed:
228 *
229 * .
230 * |-- a (ino 257)
231 * |-- b (ino 258)
232 * |-- c2 (ino 261)
233 * |-- d2 (ino 260)
234 * |-- cc (ino 259)
235 *
236 * The sequence of steps that lead to the second state was:
237 *
238 * mv /a/b/c/d /a/b/c2/d2
239 * mv /a/b/c /a/b/c2/d2/cc
240 *
241 * "c" has lower inode number, but we can't move it (2nd mv operation)
242 * before we move "d", which has higher inode number.
243 *
244 * So we just memorize which move/rename operations must be performed
245 * later when their respective parent is processed and moved/renamed.
246 */
247
248 /* Indexed by parent directory inode number. */
249 struct rb_root pending_dir_moves;
250
251 /*
252 * Reverse index, indexed by the inode number of a directory that
253 * is waiting for the move/rename of its immediate parent before its
254 * own move/rename can be performed.
255 */
256 struct rb_root waiting_dir_moves;
257
258 /*
259 * A directory that is going to be rm'ed might have a child directory
260 * which is in the pending directory moves index above. In this case,
261 * the directory can only be removed after the move/rename of its child
262 * is performed. Example:
263 *
264 * Parent snapshot:
265 *
266 * . (ino 256)
267 * |-- a/ (ino 257)
268 * |-- b/ (ino 258)
269 * |-- c/ (ino 259)
270 * | |-- x/ (ino 260)
271 * |
272 * |-- y/ (ino 261)
273 *
274 * Send snapshot:
275 *
276 * . (ino 256)
277 * |-- a/ (ino 257)
278 * |-- b/ (ino 258)
279 * |-- YY/ (ino 261)
280 * |-- x/ (ino 260)
281 *
282 * Sequence of steps that lead to the send snapshot:
283 * rm -f /a/b/c/foo.txt
284 * mv /a/b/y /a/b/YY
285 * mv /a/b/c/x /a/b/YY
286 * rmdir /a/b/c
287 *
288 * When the child is processed, its move/rename is delayed until its
289 * parent is processed (as explained above), but all other operations
290 * like update utimes, chown, chgrp, etc, are performed and the paths
291 * that it uses for those operations must use the orphanized name of
292 * its parent (the directory we're going to rm later), so we need to
293 * memorize that name.
294 *
295 * Indexed by the inode number of the directory to be deleted.
296 */
297 struct rb_root orphan_dirs;
298
299 struct rb_root rbtree_new_refs;
300 struct rb_root rbtree_deleted_refs;
301
302 struct btrfs_lru_cache backref_cache;
303 u64 backref_cache_last_reloc_trans;
304
305 struct btrfs_lru_cache dir_created_cache;
306 struct btrfs_lru_cache dir_utimes_cache;
307
308 /* Must be last as it ends in a flexible-array member. */
309 struct fs_path cur_inode_path;
310 };
311
312 struct pending_dir_move {
313 struct rb_node node;
314 struct list_head list;
315 u64 parent_ino;
316 u64 ino;
317 u64 gen;
318 struct list_head update_refs;
319 };
320
321 struct waiting_dir_move {
322 struct rb_node node;
323 u64 ino;
324 /*
325 * There might be some directory that could not be removed because it
326 * was waiting for this directory inode to be moved first. Therefore
327 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
328 */
329 u64 rmdir_ino;
330 u64 rmdir_gen;
331 bool orphanized;
332 };
333
334 struct orphan_dir_info {
335 struct rb_node node;
336 u64 ino;
337 u64 gen;
338 u64 last_dir_index_offset;
339 u64 dir_high_seq_ino;
340 };
341
342 struct name_cache_entry {
343 /*
344 * The key in the entry is an inode number, and the generation matches
345 * the inode's generation.
346 */
347 struct btrfs_lru_cache_entry entry;
348 u64 parent_ino;
349 u64 parent_gen;
350 int ret;
351 int need_later_update;
352 /* Name length without NUL terminator. */
353 int name_len;
354 /* Not NUL terminated. */
355 char name[] __counted_by(name_len) __nonstring;
356 };
357
358 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
359 static_assert(offsetof(struct name_cache_entry, entry) == 0);
360
361 #define ADVANCE 1
362 #define ADVANCE_ONLY_NEXT -1
363
364 enum btrfs_compare_tree_result {
365 BTRFS_COMPARE_TREE_NEW,
366 BTRFS_COMPARE_TREE_DELETED,
367 BTRFS_COMPARE_TREE_CHANGED,
368 BTRFS_COMPARE_TREE_SAME,
369 };
370
371 __cold
inconsistent_snapshot_error(struct send_ctx * sctx,enum btrfs_compare_tree_result result,const char * what)372 static void inconsistent_snapshot_error(struct send_ctx *sctx,
373 enum btrfs_compare_tree_result result,
374 const char *what)
375 {
376 const char *result_string;
377
378 switch (result) {
379 case BTRFS_COMPARE_TREE_NEW:
380 result_string = "new";
381 break;
382 case BTRFS_COMPARE_TREE_DELETED:
383 result_string = "deleted";
384 break;
385 case BTRFS_COMPARE_TREE_CHANGED:
386 result_string = "updated";
387 break;
388 case BTRFS_COMPARE_TREE_SAME:
389 DEBUG_WARN("no change between trees");
390 result_string = "unchanged";
391 break;
392 default:
393 DEBUG_WARN("unexpected comparison result %d", result);
394 result_string = "unexpected";
395 }
396
397 btrfs_err(sctx->send_root->fs_info,
398 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
399 result_string, what, sctx->cmp_key->objectid,
400 btrfs_root_id(sctx->send_root),
401 (sctx->parent_root ? btrfs_root_id(sctx->parent_root) : 0));
402 }
403
404 __maybe_unused
proto_cmd_ok(const struct send_ctx * sctx,int cmd)405 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
406 {
407 switch (sctx->proto) {
408 case 1: return cmd <= BTRFS_SEND_C_MAX_V1;
409 case 2: return cmd <= BTRFS_SEND_C_MAX_V2;
410 case 3: return cmd <= BTRFS_SEND_C_MAX_V3;
411 default: return false;
412 }
413 }
414
415 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
416
417 static struct waiting_dir_move *
418 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
419
420 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
421
need_send_hole(struct send_ctx * sctx)422 static int need_send_hole(struct send_ctx *sctx)
423 {
424 return (sctx->parent_root && !sctx->cur_inode_new &&
425 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
426 S_ISREG(sctx->cur_inode_mode));
427 }
428
fs_path_reset(struct fs_path * p)429 static void fs_path_reset(struct fs_path *p)
430 {
431 if (p->reversed)
432 p->start = p->buf + p->buf_len - 1;
433 else
434 p->start = p->buf;
435
436 p->end = p->start;
437 *p->start = 0;
438 }
439
init_path(struct fs_path * p)440 static void init_path(struct fs_path *p)
441 {
442 p->reversed = 0;
443 p->buf = p->inline_buf;
444 p->buf_len = FS_PATH_INLINE_SIZE;
445 fs_path_reset(p);
446 }
447
fs_path_alloc(void)448 static struct fs_path *fs_path_alloc(void)
449 {
450 struct fs_path *p;
451
452 p = kmalloc(sizeof(*p), GFP_KERNEL);
453 if (!p)
454 return NULL;
455 init_path(p);
456 return p;
457 }
458
fs_path_alloc_reversed(void)459 static struct fs_path *fs_path_alloc_reversed(void)
460 {
461 struct fs_path *p;
462
463 p = fs_path_alloc();
464 if (!p)
465 return NULL;
466 p->reversed = 1;
467 fs_path_reset(p);
468 return p;
469 }
470
fs_path_free(struct fs_path * p)471 static void fs_path_free(struct fs_path *p)
472 {
473 if (!p)
474 return;
475 if (p->buf != p->inline_buf)
476 kfree(p->buf);
477 kfree(p);
478 }
479
fs_path_len(const struct fs_path * p)480 static inline int fs_path_len(const struct fs_path *p)
481 {
482 return p->end - p->start;
483 }
484
fs_path_ensure_buf(struct fs_path * p,int len)485 static int fs_path_ensure_buf(struct fs_path *p, int len)
486 {
487 char *tmp_buf;
488 int path_len;
489 int old_buf_len;
490
491 len++;
492
493 if (p->buf_len >= len)
494 return 0;
495
496 if (WARN_ON(len > PATH_MAX))
497 return -ENAMETOOLONG;
498
499 path_len = fs_path_len(p);
500 old_buf_len = p->buf_len;
501
502 /*
503 * Allocate to the next largest kmalloc bucket size, to let
504 * the fast path happen most of the time.
505 */
506 len = kmalloc_size_roundup(len);
507 /*
508 * First time the inline_buf does not suffice
509 */
510 if (p->buf == p->inline_buf) {
511 tmp_buf = kmalloc(len, GFP_KERNEL);
512 if (tmp_buf)
513 memcpy(tmp_buf, p->buf, old_buf_len);
514 } else {
515 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
516 }
517 if (!tmp_buf)
518 return -ENOMEM;
519 p->buf = tmp_buf;
520 p->buf_len = len;
521
522 if (p->reversed) {
523 tmp_buf = p->buf + old_buf_len - path_len - 1;
524 p->end = p->buf + p->buf_len - 1;
525 p->start = p->end - path_len;
526 memmove(p->start, tmp_buf, path_len + 1);
527 } else {
528 p->start = p->buf;
529 p->end = p->start + path_len;
530 }
531 return 0;
532 }
533
fs_path_prepare_for_add(struct fs_path * p,int name_len,char ** prepared)534 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
535 char **prepared)
536 {
537 int ret;
538 int new_len;
539
540 new_len = fs_path_len(p) + name_len;
541 if (p->start != p->end)
542 new_len++;
543 ret = fs_path_ensure_buf(p, new_len);
544 if (ret < 0)
545 return ret;
546
547 if (p->reversed) {
548 if (p->start != p->end)
549 *--p->start = '/';
550 p->start -= name_len;
551 *prepared = p->start;
552 } else {
553 if (p->start != p->end)
554 *p->end++ = '/';
555 *prepared = p->end;
556 p->end += name_len;
557 *p->end = 0;
558 }
559
560 return 0;
561 }
562
fs_path_add(struct fs_path * p,const char * name,int name_len)563 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
564 {
565 int ret;
566 char *prepared;
567
568 ret = fs_path_prepare_for_add(p, name_len, &prepared);
569 if (ret < 0)
570 return ret;
571 memcpy(prepared, name, name_len);
572
573 return 0;
574 }
575
fs_path_add_path(struct fs_path * p,const struct fs_path * p2)576 static inline int fs_path_add_path(struct fs_path *p, const struct fs_path *p2)
577 {
578 return fs_path_add(p, p2->start, fs_path_len(p2));
579 }
580
fs_path_add_from_extent_buffer(struct fs_path * p,struct extent_buffer * eb,unsigned long off,int len)581 static int fs_path_add_from_extent_buffer(struct fs_path *p,
582 struct extent_buffer *eb,
583 unsigned long off, int len)
584 {
585 int ret;
586 char *prepared;
587
588 ret = fs_path_prepare_for_add(p, len, &prepared);
589 if (ret < 0)
590 return ret;
591
592 read_extent_buffer(eb, prepared, off, len);
593
594 return 0;
595 }
596
fs_path_copy(struct fs_path * p,struct fs_path * from)597 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
598 {
599 p->reversed = from->reversed;
600 fs_path_reset(p);
601
602 return fs_path_add_path(p, from);
603 }
604
fs_path_unreverse(struct fs_path * p)605 static void fs_path_unreverse(struct fs_path *p)
606 {
607 char *tmp;
608 int len;
609
610 if (!p->reversed)
611 return;
612
613 tmp = p->start;
614 len = fs_path_len(p);
615 p->start = p->buf;
616 p->end = p->start + len;
617 memmove(p->start, tmp, len + 1);
618 p->reversed = 0;
619 }
620
is_current_inode_path(const struct send_ctx * sctx,const struct fs_path * path)621 static inline bool is_current_inode_path(const struct send_ctx *sctx,
622 const struct fs_path *path)
623 {
624 const struct fs_path *cur = &sctx->cur_inode_path;
625
626 return (strncmp(path->start, cur->start, fs_path_len(cur)) == 0);
627 }
628
alloc_path_for_send(void)629 static struct btrfs_path *alloc_path_for_send(void)
630 {
631 struct btrfs_path *path;
632
633 path = btrfs_alloc_path();
634 if (!path)
635 return NULL;
636 path->search_commit_root = 1;
637 path->skip_locking = 1;
638 path->need_commit_sem = 1;
639 return path;
640 }
641
write_buf(struct file * filp,const void * buf,u32 len,loff_t * off)642 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
643 {
644 int ret;
645 u32 pos = 0;
646
647 while (pos < len) {
648 ret = kernel_write(filp, buf + pos, len - pos, off);
649 if (ret < 0)
650 return ret;
651 if (unlikely(ret == 0))
652 return -EIO;
653 pos += ret;
654 }
655
656 return 0;
657 }
658
tlv_put(struct send_ctx * sctx,u16 attr,const void * data,int len)659 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
660 {
661 struct btrfs_tlv_header *hdr;
662 int total_len = sizeof(*hdr) + len;
663 int left = sctx->send_max_size - sctx->send_size;
664
665 if (WARN_ON_ONCE(sctx->put_data))
666 return -EINVAL;
667
668 if (unlikely(left < total_len))
669 return -EOVERFLOW;
670
671 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
672 put_unaligned_le16(attr, &hdr->tlv_type);
673 put_unaligned_le16(len, &hdr->tlv_len);
674 memcpy(hdr + 1, data, len);
675 sctx->send_size += total_len;
676
677 return 0;
678 }
679
680 #define TLV_PUT_DEFINE_INT(bits) \
681 static int tlv_put_u##bits(struct send_ctx *sctx, \
682 u##bits attr, u##bits value) \
683 { \
684 __le##bits __tmp = cpu_to_le##bits(value); \
685 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
686 }
687
688 TLV_PUT_DEFINE_INT(8)
689 TLV_PUT_DEFINE_INT(32)
690 TLV_PUT_DEFINE_INT(64)
691
tlv_put_string(struct send_ctx * sctx,u16 attr,const char * str,int len)692 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
693 const char *str, int len)
694 {
695 if (len == -1)
696 len = strlen(str);
697 return tlv_put(sctx, attr, str, len);
698 }
699
tlv_put_uuid(struct send_ctx * sctx,u16 attr,const u8 * uuid)700 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
701 const u8 *uuid)
702 {
703 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
704 }
705
tlv_put_btrfs_timespec(struct send_ctx * sctx,u16 attr,struct extent_buffer * eb,struct btrfs_timespec * ts)706 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
707 struct extent_buffer *eb,
708 struct btrfs_timespec *ts)
709 {
710 struct btrfs_timespec bts;
711 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
712 return tlv_put(sctx, attr, &bts, sizeof(bts));
713 }
714
715
716 #define TLV_PUT(sctx, attrtype, data, attrlen) \
717 do { \
718 ret = tlv_put(sctx, attrtype, data, attrlen); \
719 if (ret < 0) \
720 goto tlv_put_failure; \
721 } while (0)
722
723 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
724 do { \
725 ret = tlv_put_u##bits(sctx, attrtype, value); \
726 if (ret < 0) \
727 goto tlv_put_failure; \
728 } while (0)
729
730 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
731 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
732 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
733 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
734 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
735 do { \
736 ret = tlv_put_string(sctx, attrtype, str, len); \
737 if (ret < 0) \
738 goto tlv_put_failure; \
739 } while (0)
740 #define TLV_PUT_PATH(sctx, attrtype, p) \
741 do { \
742 ret = tlv_put_string(sctx, attrtype, p->start, \
743 fs_path_len((p))); \
744 if (ret < 0) \
745 goto tlv_put_failure; \
746 } while(0)
747 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
748 do { \
749 ret = tlv_put_uuid(sctx, attrtype, uuid); \
750 if (ret < 0) \
751 goto tlv_put_failure; \
752 } while (0)
753 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
754 do { \
755 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
756 if (ret < 0) \
757 goto tlv_put_failure; \
758 } while (0)
759
send_header(struct send_ctx * sctx)760 static int send_header(struct send_ctx *sctx)
761 {
762 struct btrfs_stream_header hdr;
763
764 strscpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
765 hdr.version = cpu_to_le32(sctx->proto);
766 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
767 &sctx->send_off);
768 }
769
770 /*
771 * For each command/item we want to send to userspace, we call this function.
772 */
begin_cmd(struct send_ctx * sctx,int cmd)773 static int begin_cmd(struct send_ctx *sctx, int cmd)
774 {
775 struct btrfs_cmd_header *hdr;
776
777 if (WARN_ON(!sctx->send_buf))
778 return -EINVAL;
779
780 if (unlikely(sctx->send_size != 0)) {
781 btrfs_err(sctx->send_root->fs_info,
782 "send: command header buffer not empty cmd %d offset %llu",
783 cmd, sctx->send_off);
784 return -EINVAL;
785 }
786
787 sctx->send_size += sizeof(*hdr);
788 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
789 put_unaligned_le16(cmd, &hdr->cmd);
790
791 return 0;
792 }
793
send_cmd(struct send_ctx * sctx)794 static int send_cmd(struct send_ctx *sctx)
795 {
796 int ret;
797 struct btrfs_cmd_header *hdr;
798 u32 crc;
799
800 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
801 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
802 put_unaligned_le32(0, &hdr->crc);
803
804 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
805 put_unaligned_le32(crc, &hdr->crc);
806
807 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
808 &sctx->send_off);
809
810 sctx->send_size = 0;
811 sctx->put_data = false;
812
813 return ret;
814 }
815
816 /*
817 * Sends a move instruction to user space
818 */
send_rename(struct send_ctx * sctx,struct fs_path * from,struct fs_path * to)819 static int send_rename(struct send_ctx *sctx,
820 struct fs_path *from, struct fs_path *to)
821 {
822 int ret;
823
824 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
825 if (ret < 0)
826 return ret;
827
828 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
829 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
830
831 ret = send_cmd(sctx);
832
833 tlv_put_failure:
834 return ret;
835 }
836
837 /*
838 * Sends a link instruction to user space
839 */
send_link(struct send_ctx * sctx,struct fs_path * path,struct fs_path * lnk)840 static int send_link(struct send_ctx *sctx,
841 struct fs_path *path, struct fs_path *lnk)
842 {
843 int ret;
844
845 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
846 if (ret < 0)
847 return ret;
848
849 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
850 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
851
852 ret = send_cmd(sctx);
853
854 tlv_put_failure:
855 return ret;
856 }
857
858 /*
859 * Sends an unlink instruction to user space
860 */
send_unlink(struct send_ctx * sctx,struct fs_path * path)861 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
862 {
863 int ret;
864
865 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
866 if (ret < 0)
867 return ret;
868
869 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
870
871 ret = send_cmd(sctx);
872
873 tlv_put_failure:
874 return ret;
875 }
876
877 /*
878 * Sends a rmdir instruction to user space
879 */
send_rmdir(struct send_ctx * sctx,struct fs_path * path)880 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
881 {
882 int ret;
883
884 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
885 if (ret < 0)
886 return ret;
887
888 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
889
890 ret = send_cmd(sctx);
891
892 tlv_put_failure:
893 return ret;
894 }
895
896 struct btrfs_inode_info {
897 u64 size;
898 u64 gen;
899 u64 mode;
900 u64 uid;
901 u64 gid;
902 u64 rdev;
903 u64 fileattr;
904 u64 nlink;
905 };
906
907 /*
908 * Helper function to retrieve some fields from an inode item.
909 */
get_inode_info(struct btrfs_root * root,u64 ino,struct btrfs_inode_info * info)910 static int get_inode_info(struct btrfs_root *root, u64 ino,
911 struct btrfs_inode_info *info)
912 {
913 int ret;
914 BTRFS_PATH_AUTO_FREE(path);
915 struct btrfs_inode_item *ii;
916 struct btrfs_key key;
917
918 path = alloc_path_for_send();
919 if (!path)
920 return -ENOMEM;
921
922 key.objectid = ino;
923 key.type = BTRFS_INODE_ITEM_KEY;
924 key.offset = 0;
925 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
926 if (ret) {
927 if (ret > 0)
928 ret = -ENOENT;
929 return ret;
930 }
931
932 if (!info)
933 return 0;
934
935 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
936 struct btrfs_inode_item);
937 info->size = btrfs_inode_size(path->nodes[0], ii);
938 info->gen = btrfs_inode_generation(path->nodes[0], ii);
939 info->mode = btrfs_inode_mode(path->nodes[0], ii);
940 info->uid = btrfs_inode_uid(path->nodes[0], ii);
941 info->gid = btrfs_inode_gid(path->nodes[0], ii);
942 info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
943 info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
944 /*
945 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
946 * otherwise logically split to 32/32 parts.
947 */
948 info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
949
950 return 0;
951 }
952
get_inode_gen(struct btrfs_root * root,u64 ino,u64 * gen)953 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
954 {
955 int ret;
956 struct btrfs_inode_info info = { 0 };
957
958 ASSERT(gen);
959
960 ret = get_inode_info(root, ino, &info);
961 *gen = info.gen;
962 return ret;
963 }
964
965 typedef int (*iterate_inode_ref_t)(u64 dir, struct fs_path *p, void *ctx);
966
967 /*
968 * Helper function to iterate the entries in ONE btrfs_inode_ref or
969 * btrfs_inode_extref.
970 * The iterate callback may return a non zero value to stop iteration. This can
971 * be a negative value for error codes or 1 to simply stop it.
972 *
973 * path must point to the INODE_REF or INODE_EXTREF when called.
974 */
iterate_inode_ref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * found_key,bool resolve,iterate_inode_ref_t iterate,void * ctx)975 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
976 struct btrfs_key *found_key, bool resolve,
977 iterate_inode_ref_t iterate, void *ctx)
978 {
979 struct extent_buffer *eb = path->nodes[0];
980 struct btrfs_inode_ref *iref;
981 struct btrfs_inode_extref *extref;
982 BTRFS_PATH_AUTO_FREE(tmp_path);
983 struct fs_path *p;
984 u32 cur = 0;
985 u32 total;
986 int slot = path->slots[0];
987 u32 name_len;
988 char *start;
989 int ret = 0;
990 u64 dir;
991 unsigned long name_off;
992 unsigned long elem_size;
993 unsigned long ptr;
994
995 p = fs_path_alloc_reversed();
996 if (!p)
997 return -ENOMEM;
998
999 tmp_path = alloc_path_for_send();
1000 if (!tmp_path) {
1001 fs_path_free(p);
1002 return -ENOMEM;
1003 }
1004
1005
1006 if (found_key->type == BTRFS_INODE_REF_KEY) {
1007 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1008 struct btrfs_inode_ref);
1009 total = btrfs_item_size(eb, slot);
1010 elem_size = sizeof(*iref);
1011 } else {
1012 ptr = btrfs_item_ptr_offset(eb, slot);
1013 total = btrfs_item_size(eb, slot);
1014 elem_size = sizeof(*extref);
1015 }
1016
1017 while (cur < total) {
1018 fs_path_reset(p);
1019
1020 if (found_key->type == BTRFS_INODE_REF_KEY) {
1021 iref = (struct btrfs_inode_ref *)(ptr + cur);
1022 name_len = btrfs_inode_ref_name_len(eb, iref);
1023 name_off = (unsigned long)(iref + 1);
1024 dir = found_key->offset;
1025 } else {
1026 extref = (struct btrfs_inode_extref *)(ptr + cur);
1027 name_len = btrfs_inode_extref_name_len(eb, extref);
1028 name_off = (unsigned long)&extref->name;
1029 dir = btrfs_inode_extref_parent(eb, extref);
1030 }
1031
1032 if (resolve) {
1033 start = btrfs_ref_to_path(root, tmp_path, name_len,
1034 name_off, eb, dir,
1035 p->buf, p->buf_len);
1036 if (IS_ERR(start)) {
1037 ret = PTR_ERR(start);
1038 goto out;
1039 }
1040 if (start < p->buf) {
1041 /* overflow , try again with larger buffer */
1042 ret = fs_path_ensure_buf(p,
1043 p->buf_len + p->buf - start);
1044 if (ret < 0)
1045 goto out;
1046 start = btrfs_ref_to_path(root, tmp_path,
1047 name_len, name_off,
1048 eb, dir,
1049 p->buf, p->buf_len);
1050 if (IS_ERR(start)) {
1051 ret = PTR_ERR(start);
1052 goto out;
1053 }
1054 if (unlikely(start < p->buf)) {
1055 btrfs_err(root->fs_info,
1056 "send: path ref buffer underflow for key (%llu %u %llu)",
1057 found_key->objectid,
1058 found_key->type,
1059 found_key->offset);
1060 ret = -EINVAL;
1061 goto out;
1062 }
1063 }
1064 p->start = start;
1065 } else {
1066 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1067 name_len);
1068 if (ret < 0)
1069 goto out;
1070 }
1071
1072 cur += elem_size + name_len;
1073 ret = iterate(dir, p, ctx);
1074 if (ret)
1075 goto out;
1076 }
1077
1078 out:
1079 fs_path_free(p);
1080 return ret;
1081 }
1082
1083 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1084 const char *name, int name_len,
1085 const char *data, int data_len,
1086 void *ctx);
1087
1088 /*
1089 * Helper function to iterate the entries in ONE btrfs_dir_item.
1090 * The iterate callback may return a non zero value to stop iteration. This can
1091 * be a negative value for error codes or 1 to simply stop it.
1092 *
1093 * path must point to the dir item when called.
1094 */
iterate_dir_item(struct btrfs_root * root,struct btrfs_path * path,iterate_dir_item_t iterate,void * ctx)1095 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1096 iterate_dir_item_t iterate, void *ctx)
1097 {
1098 int ret = 0;
1099 struct extent_buffer *eb;
1100 struct btrfs_dir_item *di;
1101 struct btrfs_key di_key;
1102 char *buf = NULL;
1103 int buf_len;
1104 u32 name_len;
1105 u32 data_len;
1106 u32 cur;
1107 u32 len;
1108 u32 total;
1109 int slot;
1110 int num;
1111
1112 /*
1113 * Start with a small buffer (1 page). If later we end up needing more
1114 * space, which can happen for xattrs on a fs with a leaf size greater
1115 * than the page size, attempt to increase the buffer. Typically xattr
1116 * values are small.
1117 */
1118 buf_len = PATH_MAX;
1119 buf = kmalloc(buf_len, GFP_KERNEL);
1120 if (!buf) {
1121 ret = -ENOMEM;
1122 goto out;
1123 }
1124
1125 eb = path->nodes[0];
1126 slot = path->slots[0];
1127 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1128 cur = 0;
1129 len = 0;
1130 total = btrfs_item_size(eb, slot);
1131
1132 num = 0;
1133 while (cur < total) {
1134 name_len = btrfs_dir_name_len(eb, di);
1135 data_len = btrfs_dir_data_len(eb, di);
1136 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1137
1138 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
1139 if (name_len > XATTR_NAME_MAX) {
1140 ret = -ENAMETOOLONG;
1141 goto out;
1142 }
1143 if (name_len + data_len >
1144 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1145 ret = -E2BIG;
1146 goto out;
1147 }
1148 } else {
1149 /*
1150 * Path too long
1151 */
1152 if (name_len + data_len > PATH_MAX) {
1153 ret = -ENAMETOOLONG;
1154 goto out;
1155 }
1156 }
1157
1158 if (name_len + data_len > buf_len) {
1159 buf_len = name_len + data_len;
1160 if (is_vmalloc_addr(buf)) {
1161 vfree(buf);
1162 buf = NULL;
1163 } else {
1164 char *tmp = krealloc(buf, buf_len,
1165 GFP_KERNEL | __GFP_NOWARN);
1166
1167 if (!tmp)
1168 kfree(buf);
1169 buf = tmp;
1170 }
1171 if (!buf) {
1172 buf = kvmalloc(buf_len, GFP_KERNEL);
1173 if (!buf) {
1174 ret = -ENOMEM;
1175 goto out;
1176 }
1177 }
1178 }
1179
1180 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1181 name_len + data_len);
1182
1183 len = sizeof(*di) + name_len + data_len;
1184 di = (struct btrfs_dir_item *)((char *)di + len);
1185 cur += len;
1186
1187 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1188 data_len, ctx);
1189 if (ret < 0)
1190 goto out;
1191 if (ret) {
1192 ret = 0;
1193 goto out;
1194 }
1195
1196 num++;
1197 }
1198
1199 out:
1200 kvfree(buf);
1201 return ret;
1202 }
1203
__copy_first_ref(u64 dir,struct fs_path * p,void * ctx)1204 static int __copy_first_ref(u64 dir, struct fs_path *p, void *ctx)
1205 {
1206 int ret;
1207 struct fs_path *pt = ctx;
1208
1209 ret = fs_path_copy(pt, p);
1210 if (ret < 0)
1211 return ret;
1212
1213 /* we want the first only */
1214 return 1;
1215 }
1216
1217 /*
1218 * Retrieve the first path of an inode. If an inode has more then one
1219 * ref/hardlink, this is ignored.
1220 */
get_inode_path(struct btrfs_root * root,u64 ino,struct fs_path * path)1221 static int get_inode_path(struct btrfs_root *root,
1222 u64 ino, struct fs_path *path)
1223 {
1224 int ret;
1225 struct btrfs_key key, found_key;
1226 BTRFS_PATH_AUTO_FREE(p);
1227
1228 p = alloc_path_for_send();
1229 if (!p)
1230 return -ENOMEM;
1231
1232 fs_path_reset(path);
1233
1234 key.objectid = ino;
1235 key.type = BTRFS_INODE_REF_KEY;
1236 key.offset = 0;
1237
1238 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1239 if (ret < 0)
1240 return ret;
1241 if (ret)
1242 return 1;
1243
1244 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1245 if (found_key.objectid != ino ||
1246 (found_key.type != BTRFS_INODE_REF_KEY &&
1247 found_key.type != BTRFS_INODE_EXTREF_KEY))
1248 return -ENOENT;
1249
1250 ret = iterate_inode_ref(root, p, &found_key, true, __copy_first_ref, path);
1251 if (ret < 0)
1252 return ret;
1253 return 0;
1254 }
1255
1256 struct backref_ctx {
1257 struct send_ctx *sctx;
1258
1259 /* number of total found references */
1260 u64 found;
1261
1262 /*
1263 * used for clones found in send_root. clones found behind cur_objectid
1264 * and cur_offset are not considered as allowed clones.
1265 */
1266 u64 cur_objectid;
1267 u64 cur_offset;
1268
1269 /* may be truncated in case it's the last extent in a file */
1270 u64 extent_len;
1271
1272 /* The bytenr the file extent item we are processing refers to. */
1273 u64 bytenr;
1274 /* The owner (root id) of the data backref for the current extent. */
1275 u64 backref_owner;
1276 /* The offset of the data backref for the current extent. */
1277 u64 backref_offset;
1278 };
1279
__clone_root_cmp_bsearch(const void * key,const void * elt)1280 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1281 {
1282 u64 root = (u64)(uintptr_t)key;
1283 const struct clone_root *cr = elt;
1284
1285 if (root < btrfs_root_id(cr->root))
1286 return -1;
1287 if (root > btrfs_root_id(cr->root))
1288 return 1;
1289 return 0;
1290 }
1291
__clone_root_cmp_sort(const void * e1,const void * e2)1292 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1293 {
1294 const struct clone_root *cr1 = e1;
1295 const struct clone_root *cr2 = e2;
1296
1297 if (btrfs_root_id(cr1->root) < btrfs_root_id(cr2->root))
1298 return -1;
1299 if (btrfs_root_id(cr1->root) > btrfs_root_id(cr2->root))
1300 return 1;
1301 return 0;
1302 }
1303
1304 /*
1305 * Called for every backref that is found for the current extent.
1306 * Results are collected in sctx->clone_roots->ino/offset.
1307 */
iterate_backrefs(u64 ino,u64 offset,u64 num_bytes,u64 root_id,void * ctx_)1308 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1309 void *ctx_)
1310 {
1311 struct backref_ctx *bctx = ctx_;
1312 struct clone_root *clone_root;
1313
1314 /* First check if the root is in the list of accepted clone sources */
1315 clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1316 bctx->sctx->clone_roots_cnt,
1317 sizeof(struct clone_root),
1318 __clone_root_cmp_bsearch);
1319 if (!clone_root)
1320 return 0;
1321
1322 /* This is our own reference, bail out as we can't clone from it. */
1323 if (clone_root->root == bctx->sctx->send_root &&
1324 ino == bctx->cur_objectid &&
1325 offset == bctx->cur_offset)
1326 return 0;
1327
1328 /*
1329 * Make sure we don't consider clones from send_root that are
1330 * behind the current inode/offset.
1331 */
1332 if (clone_root->root == bctx->sctx->send_root) {
1333 /*
1334 * If the source inode was not yet processed we can't issue a
1335 * clone operation, as the source extent does not exist yet at
1336 * the destination of the stream.
1337 */
1338 if (ino > bctx->cur_objectid)
1339 return 0;
1340 /*
1341 * We clone from the inode currently being sent as long as the
1342 * source extent is already processed, otherwise we could try
1343 * to clone from an extent that does not exist yet at the
1344 * destination of the stream.
1345 */
1346 if (ino == bctx->cur_objectid &&
1347 offset + bctx->extent_len >
1348 bctx->sctx->cur_inode_next_write_offset)
1349 return 0;
1350 }
1351
1352 bctx->found++;
1353 clone_root->found_ref = true;
1354
1355 /*
1356 * If the given backref refers to a file extent item with a larger
1357 * number of bytes than what we found before, use the new one so that
1358 * we clone more optimally and end up doing less writes and getting
1359 * less exclusive, non-shared extents at the destination.
1360 */
1361 if (num_bytes > clone_root->num_bytes) {
1362 clone_root->ino = ino;
1363 clone_root->offset = offset;
1364 clone_root->num_bytes = num_bytes;
1365
1366 /*
1367 * Found a perfect candidate, so there's no need to continue
1368 * backref walking.
1369 */
1370 if (num_bytes >= bctx->extent_len)
1371 return BTRFS_ITERATE_EXTENT_INODES_STOP;
1372 }
1373
1374 return 0;
1375 }
1376
lookup_backref_cache(u64 leaf_bytenr,void * ctx,const u64 ** root_ids_ret,int * root_count_ret)1377 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1378 const u64 **root_ids_ret, int *root_count_ret)
1379 {
1380 struct backref_ctx *bctx = ctx;
1381 struct send_ctx *sctx = bctx->sctx;
1382 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1383 const u64 key = leaf_bytenr >> fs_info->nodesize_bits;
1384 struct btrfs_lru_cache_entry *raw_entry;
1385 struct backref_cache_entry *entry;
1386
1387 if (sctx->backref_cache.size == 0)
1388 return false;
1389
1390 /*
1391 * If relocation happened since we first filled the cache, then we must
1392 * empty the cache and can not use it, because even though we operate on
1393 * read-only roots, their leaves and nodes may have been reallocated and
1394 * now be used for different nodes/leaves of the same tree or some other
1395 * tree.
1396 *
1397 * We are called from iterate_extent_inodes() while either holding a
1398 * transaction handle or holding fs_info->commit_root_sem, so no need
1399 * to take any lock here.
1400 */
1401 if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) {
1402 btrfs_lru_cache_clear(&sctx->backref_cache);
1403 return false;
1404 }
1405
1406 raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0);
1407 if (!raw_entry)
1408 return false;
1409
1410 entry = container_of(raw_entry, struct backref_cache_entry, entry);
1411 *root_ids_ret = entry->root_ids;
1412 *root_count_ret = entry->num_roots;
1413
1414 return true;
1415 }
1416
store_backref_cache(u64 leaf_bytenr,const struct ulist * root_ids,void * ctx)1417 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1418 void *ctx)
1419 {
1420 struct backref_ctx *bctx = ctx;
1421 struct send_ctx *sctx = bctx->sctx;
1422 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1423 struct backref_cache_entry *new_entry;
1424 struct ulist_iterator uiter;
1425 struct ulist_node *node;
1426 int ret;
1427
1428 /*
1429 * We're called while holding a transaction handle or while holding
1430 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1431 * NOFS allocation.
1432 */
1433 new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1434 /* No worries, cache is optional. */
1435 if (!new_entry)
1436 return;
1437
1438 new_entry->entry.key = leaf_bytenr >> fs_info->nodesize_bits;
1439 new_entry->entry.gen = 0;
1440 new_entry->num_roots = 0;
1441 ULIST_ITER_INIT(&uiter);
1442 while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1443 const u64 root_id = node->val;
1444 struct clone_root *root;
1445
1446 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1447 sctx->clone_roots_cnt, sizeof(struct clone_root),
1448 __clone_root_cmp_bsearch);
1449 if (!root)
1450 continue;
1451
1452 /* Too many roots, just exit, no worries as caching is optional. */
1453 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1454 kfree(new_entry);
1455 return;
1456 }
1457
1458 new_entry->root_ids[new_entry->num_roots] = root_id;
1459 new_entry->num_roots++;
1460 }
1461
1462 /*
1463 * We may have not added any roots to the new cache entry, which means
1464 * none of the roots is part of the list of roots from which we are
1465 * allowed to clone. Cache the new entry as it's still useful to avoid
1466 * backref walking to determine which roots have a path to the leaf.
1467 *
1468 * Also use GFP_NOFS because we're called while holding a transaction
1469 * handle or while holding fs_info->commit_root_sem.
1470 */
1471 ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry,
1472 GFP_NOFS);
1473 ASSERT(ret == 0 || ret == -ENOMEM);
1474 if (ret) {
1475 /* Caching is optional, no worries. */
1476 kfree(new_entry);
1477 return;
1478 }
1479
1480 /*
1481 * We are called from iterate_extent_inodes() while either holding a
1482 * transaction handle or holding fs_info->commit_root_sem, so no need
1483 * to take any lock here.
1484 */
1485 if (sctx->backref_cache.size == 1)
1486 sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans;
1487 }
1488
check_extent_item(u64 bytenr,const struct btrfs_extent_item * ei,const struct extent_buffer * leaf,void * ctx)1489 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1490 const struct extent_buffer *leaf, void *ctx)
1491 {
1492 const u64 refs = btrfs_extent_refs(leaf, ei);
1493 const struct backref_ctx *bctx = ctx;
1494 const struct send_ctx *sctx = bctx->sctx;
1495
1496 if (bytenr == bctx->bytenr) {
1497 const u64 flags = btrfs_extent_flags(leaf, ei);
1498
1499 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1500 return -EUCLEAN;
1501
1502 /*
1503 * If we have only one reference and only the send root as a
1504 * clone source - meaning no clone roots were given in the
1505 * struct btrfs_ioctl_send_args passed to the send ioctl - then
1506 * it's our reference and there's no point in doing backref
1507 * walking which is expensive, so exit early.
1508 */
1509 if (refs == 1 && sctx->clone_roots_cnt == 1)
1510 return -ENOENT;
1511 }
1512
1513 /*
1514 * Backreference walking (iterate_extent_inodes() below) is currently
1515 * too expensive when an extent has a large number of references, both
1516 * in time spent and used memory. So for now just fallback to write
1517 * operations instead of clone operations when an extent has more than
1518 * a certain amount of references.
1519 */
1520 if (refs > SEND_MAX_EXTENT_REFS)
1521 return -ENOENT;
1522
1523 return 0;
1524 }
1525
skip_self_data_ref(u64 root,u64 ino,u64 offset,void * ctx)1526 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1527 {
1528 const struct backref_ctx *bctx = ctx;
1529
1530 if (ino == bctx->cur_objectid &&
1531 root == bctx->backref_owner &&
1532 offset == bctx->backref_offset)
1533 return true;
1534
1535 return false;
1536 }
1537
1538 /*
1539 * Given an inode, offset and extent item, it finds a good clone for a clone
1540 * instruction. Returns -ENOENT when none could be found. The function makes
1541 * sure that the returned clone is usable at the point where sending is at the
1542 * moment. This means, that no clones are accepted which lie behind the current
1543 * inode+offset.
1544 *
1545 * path must point to the extent item when called.
1546 */
find_extent_clone(struct send_ctx * sctx,struct btrfs_path * path,u64 ino,u64 data_offset,u64 ino_size,struct clone_root ** found)1547 static int find_extent_clone(struct send_ctx *sctx,
1548 struct btrfs_path *path,
1549 u64 ino, u64 data_offset,
1550 u64 ino_size,
1551 struct clone_root **found)
1552 {
1553 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1554 int ret;
1555 int extent_type;
1556 u64 disk_byte;
1557 u64 num_bytes;
1558 struct btrfs_file_extent_item *fi;
1559 struct extent_buffer *eb = path->nodes[0];
1560 struct backref_ctx backref_ctx = { 0 };
1561 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1562 struct clone_root *cur_clone_root;
1563 int compressed;
1564 u32 i;
1565
1566 /*
1567 * With fallocate we can get prealloc extents beyond the inode's i_size,
1568 * so we don't do anything here because clone operations can not clone
1569 * to a range beyond i_size without increasing the i_size of the
1570 * destination inode.
1571 */
1572 if (data_offset >= ino_size)
1573 return 0;
1574
1575 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1576 extent_type = btrfs_file_extent_type(eb, fi);
1577 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1578 return -ENOENT;
1579
1580 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1581 if (disk_byte == 0)
1582 return -ENOENT;
1583
1584 compressed = btrfs_file_extent_compression(eb, fi);
1585 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1586
1587 /*
1588 * Setup the clone roots.
1589 */
1590 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1591 cur_clone_root = sctx->clone_roots + i;
1592 cur_clone_root->ino = (u64)-1;
1593 cur_clone_root->offset = 0;
1594 cur_clone_root->num_bytes = 0;
1595 cur_clone_root->found_ref = false;
1596 }
1597
1598 backref_ctx.sctx = sctx;
1599 backref_ctx.cur_objectid = ino;
1600 backref_ctx.cur_offset = data_offset;
1601 backref_ctx.bytenr = disk_byte;
1602 /*
1603 * Use the header owner and not the send root's id, because in case of a
1604 * snapshot we can have shared subtrees.
1605 */
1606 backref_ctx.backref_owner = btrfs_header_owner(eb);
1607 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
1608
1609 /*
1610 * The last extent of a file may be too large due to page alignment.
1611 * We need to adjust extent_len in this case so that the checks in
1612 * iterate_backrefs() work.
1613 */
1614 if (data_offset + num_bytes >= ino_size)
1615 backref_ctx.extent_len = ino_size - data_offset;
1616 else
1617 backref_ctx.extent_len = num_bytes;
1618
1619 /*
1620 * Now collect all backrefs.
1621 */
1622 backref_walk_ctx.bytenr = disk_byte;
1623 if (compressed == BTRFS_COMPRESS_NONE)
1624 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
1625 backref_walk_ctx.fs_info = fs_info;
1626 backref_walk_ctx.cache_lookup = lookup_backref_cache;
1627 backref_walk_ctx.cache_store = store_backref_cache;
1628 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1629 backref_walk_ctx.check_extent_item = check_extent_item;
1630 backref_walk_ctx.user_ctx = &backref_ctx;
1631
1632 /*
1633 * If have a single clone root, then it's the send root and we can tell
1634 * the backref walking code to skip our own backref and not resolve it,
1635 * since we can not use it for cloning - the source and destination
1636 * ranges can't overlap and in case the leaf is shared through a subtree
1637 * due to snapshots, we can't use those other roots since they are not
1638 * in the list of clone roots.
1639 */
1640 if (sctx->clone_roots_cnt == 1)
1641 backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1642
1643 ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
1644 &backref_ctx);
1645 if (ret < 0)
1646 return ret;
1647
1648 down_read(&fs_info->commit_root_sem);
1649 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1650 /*
1651 * A transaction commit for a transaction in which block group
1652 * relocation was done just happened.
1653 * The disk_bytenr of the file extent item we processed is
1654 * possibly stale, referring to the extent's location before
1655 * relocation. So act as if we haven't found any clone sources
1656 * and fallback to write commands, which will read the correct
1657 * data from the new extent location. Otherwise we will fail
1658 * below because we haven't found our own back reference or we
1659 * could be getting incorrect sources in case the old extent
1660 * was already reallocated after the relocation.
1661 */
1662 up_read(&fs_info->commit_root_sem);
1663 return -ENOENT;
1664 }
1665 up_read(&fs_info->commit_root_sem);
1666
1667 if (!backref_ctx.found)
1668 return -ENOENT;
1669
1670 cur_clone_root = NULL;
1671 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1672 struct clone_root *clone_root = &sctx->clone_roots[i];
1673
1674 if (!clone_root->found_ref)
1675 continue;
1676
1677 /*
1678 * Choose the root from which we can clone more bytes, to
1679 * minimize write operations and therefore have more extent
1680 * sharing at the destination (the same as in the source).
1681 */
1682 if (!cur_clone_root ||
1683 clone_root->num_bytes > cur_clone_root->num_bytes) {
1684 cur_clone_root = clone_root;
1685
1686 /*
1687 * We found an optimal clone candidate (any inode from
1688 * any root is fine), so we're done.
1689 */
1690 if (clone_root->num_bytes >= backref_ctx.extent_len)
1691 break;
1692 }
1693 }
1694
1695 if (cur_clone_root) {
1696 *found = cur_clone_root;
1697 ret = 0;
1698 } else {
1699 ret = -ENOENT;
1700 }
1701
1702 return ret;
1703 }
1704
read_symlink(struct btrfs_root * root,u64 ino,struct fs_path * dest)1705 static int read_symlink(struct btrfs_root *root,
1706 u64 ino,
1707 struct fs_path *dest)
1708 {
1709 int ret;
1710 BTRFS_PATH_AUTO_FREE(path);
1711 struct btrfs_key key;
1712 struct btrfs_file_extent_item *ei;
1713 u8 type;
1714 u8 compression;
1715 unsigned long off;
1716 int len;
1717
1718 path = alloc_path_for_send();
1719 if (!path)
1720 return -ENOMEM;
1721
1722 key.objectid = ino;
1723 key.type = BTRFS_EXTENT_DATA_KEY;
1724 key.offset = 0;
1725 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1726 if (ret < 0)
1727 return ret;
1728 if (unlikely(ret)) {
1729 /*
1730 * An empty symlink inode. Can happen in rare error paths when
1731 * creating a symlink (transaction committed before the inode
1732 * eviction handler removed the symlink inode items and a crash
1733 * happened in between or the subvol was snapshotted in between).
1734 * Print an informative message to dmesg/syslog so that the user
1735 * can delete the symlink.
1736 */
1737 btrfs_err(root->fs_info,
1738 "Found empty symlink inode %llu at root %llu",
1739 ino, btrfs_root_id(root));
1740 return -EIO;
1741 }
1742
1743 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1744 struct btrfs_file_extent_item);
1745 type = btrfs_file_extent_type(path->nodes[0], ei);
1746 if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) {
1747 ret = -EUCLEAN;
1748 btrfs_crit(root->fs_info,
1749 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d",
1750 ino, btrfs_root_id(root), type);
1751 return ret;
1752 }
1753 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1754 if (unlikely(compression != BTRFS_COMPRESS_NONE)) {
1755 ret = -EUCLEAN;
1756 btrfs_crit(root->fs_info,
1757 "send: found symlink extent with compression, ino %llu root %llu compression type %d",
1758 ino, btrfs_root_id(root), compression);
1759 return ret;
1760 }
1761
1762 off = btrfs_file_extent_inline_start(ei);
1763 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1764
1765 return fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1766 }
1767
1768 /*
1769 * Helper function to generate a file name that is unique in the root of
1770 * send_root and parent_root. This is used to generate names for orphan inodes.
1771 */
gen_unique_name(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)1772 static int gen_unique_name(struct send_ctx *sctx,
1773 u64 ino, u64 gen,
1774 struct fs_path *dest)
1775 {
1776 BTRFS_PATH_AUTO_FREE(path);
1777 struct btrfs_dir_item *di;
1778 char tmp[64];
1779 int len;
1780 u64 idx = 0;
1781
1782 path = alloc_path_for_send();
1783 if (!path)
1784 return -ENOMEM;
1785
1786 while (1) {
1787 struct fscrypt_str tmp_name;
1788
1789 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1790 ino, gen, idx);
1791 ASSERT(len < sizeof(tmp));
1792 tmp_name.name = tmp;
1793 tmp_name.len = len;
1794
1795 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1796 path, BTRFS_FIRST_FREE_OBJECTID,
1797 &tmp_name, 0);
1798 btrfs_release_path(path);
1799 if (IS_ERR(di))
1800 return PTR_ERR(di);
1801
1802 if (di) {
1803 /* not unique, try again */
1804 idx++;
1805 continue;
1806 }
1807
1808 if (!sctx->parent_root) {
1809 /* unique */
1810 break;
1811 }
1812
1813 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1814 path, BTRFS_FIRST_FREE_OBJECTID,
1815 &tmp_name, 0);
1816 btrfs_release_path(path);
1817 if (IS_ERR(di))
1818 return PTR_ERR(di);
1819
1820 if (di) {
1821 /* not unique, try again */
1822 idx++;
1823 continue;
1824 }
1825 /* unique */
1826 break;
1827 }
1828
1829 return fs_path_add(dest, tmp, len);
1830 }
1831
1832 enum inode_state {
1833 inode_state_no_change,
1834 inode_state_will_create,
1835 inode_state_did_create,
1836 inode_state_will_delete,
1837 inode_state_did_delete,
1838 };
1839
get_cur_inode_state(struct send_ctx * sctx,u64 ino,u64 gen,u64 * send_gen,u64 * parent_gen)1840 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen,
1841 u64 *send_gen, u64 *parent_gen)
1842 {
1843 int ret;
1844 int left_ret;
1845 int right_ret;
1846 u64 left_gen;
1847 u64 right_gen = 0;
1848 struct btrfs_inode_info info;
1849
1850 ret = get_inode_info(sctx->send_root, ino, &info);
1851 if (ret < 0 && ret != -ENOENT)
1852 return ret;
1853 left_ret = (info.nlink == 0) ? -ENOENT : ret;
1854 left_gen = info.gen;
1855 if (send_gen)
1856 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen);
1857
1858 if (!sctx->parent_root) {
1859 right_ret = -ENOENT;
1860 } else {
1861 ret = get_inode_info(sctx->parent_root, ino, &info);
1862 if (ret < 0 && ret != -ENOENT)
1863 return ret;
1864 right_ret = (info.nlink == 0) ? -ENOENT : ret;
1865 right_gen = info.gen;
1866 if (parent_gen)
1867 *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen);
1868 }
1869
1870 if (!left_ret && !right_ret) {
1871 if (left_gen == gen && right_gen == gen) {
1872 ret = inode_state_no_change;
1873 } else if (left_gen == gen) {
1874 if (ino < sctx->send_progress)
1875 ret = inode_state_did_create;
1876 else
1877 ret = inode_state_will_create;
1878 } else if (right_gen == gen) {
1879 if (ino < sctx->send_progress)
1880 ret = inode_state_did_delete;
1881 else
1882 ret = inode_state_will_delete;
1883 } else {
1884 ret = -ENOENT;
1885 }
1886 } else if (!left_ret) {
1887 if (left_gen == gen) {
1888 if (ino < sctx->send_progress)
1889 ret = inode_state_did_create;
1890 else
1891 ret = inode_state_will_create;
1892 } else {
1893 ret = -ENOENT;
1894 }
1895 } else if (!right_ret) {
1896 if (right_gen == gen) {
1897 if (ino < sctx->send_progress)
1898 ret = inode_state_did_delete;
1899 else
1900 ret = inode_state_will_delete;
1901 } else {
1902 ret = -ENOENT;
1903 }
1904 } else {
1905 ret = -ENOENT;
1906 }
1907
1908 return ret;
1909 }
1910
is_inode_existent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * send_gen,u64 * parent_gen)1911 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen,
1912 u64 *send_gen, u64 *parent_gen)
1913 {
1914 int ret;
1915
1916 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1917 return 1;
1918
1919 ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen);
1920 if (ret < 0)
1921 return ret;
1922
1923 if (ret == inode_state_no_change ||
1924 ret == inode_state_did_create ||
1925 ret == inode_state_will_delete)
1926 return 1;
1927
1928 return 0;
1929 }
1930
1931 /*
1932 * Helper function to lookup a dir item in a dir.
1933 */
lookup_dir_item_inode(struct btrfs_root * root,u64 dir,const char * name,int name_len,u64 * found_inode)1934 static int lookup_dir_item_inode(struct btrfs_root *root,
1935 u64 dir, const char *name, int name_len,
1936 u64 *found_inode)
1937 {
1938 int ret = 0;
1939 struct btrfs_dir_item *di;
1940 struct btrfs_key key;
1941 BTRFS_PATH_AUTO_FREE(path);
1942 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
1943
1944 path = alloc_path_for_send();
1945 if (!path)
1946 return -ENOMEM;
1947
1948 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
1949 if (IS_ERR_OR_NULL(di))
1950 return di ? PTR_ERR(di) : -ENOENT;
1951
1952 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1953 if (key.type == BTRFS_ROOT_ITEM_KEY)
1954 return -ENOENT;
1955
1956 *found_inode = key.objectid;
1957
1958 return ret;
1959 }
1960
1961 /*
1962 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1963 * generation of the parent dir and the name of the dir entry.
1964 */
get_first_ref(struct btrfs_root * root,u64 ino,u64 * dir,u64 * dir_gen,struct fs_path * name)1965 static int get_first_ref(struct btrfs_root *root, u64 ino,
1966 u64 *dir, u64 *dir_gen, struct fs_path *name)
1967 {
1968 int ret;
1969 struct btrfs_key key;
1970 struct btrfs_key found_key;
1971 BTRFS_PATH_AUTO_FREE(path);
1972 int len;
1973 u64 parent_dir;
1974
1975 path = alloc_path_for_send();
1976 if (!path)
1977 return -ENOMEM;
1978
1979 key.objectid = ino;
1980 key.type = BTRFS_INODE_REF_KEY;
1981 key.offset = 0;
1982
1983 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1984 if (ret < 0)
1985 return ret;
1986 if (!ret)
1987 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1988 path->slots[0]);
1989 if (ret || found_key.objectid != ino ||
1990 (found_key.type != BTRFS_INODE_REF_KEY &&
1991 found_key.type != BTRFS_INODE_EXTREF_KEY))
1992 return -ENOENT;
1993
1994 if (found_key.type == BTRFS_INODE_REF_KEY) {
1995 struct btrfs_inode_ref *iref;
1996 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1997 struct btrfs_inode_ref);
1998 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1999 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2000 (unsigned long)(iref + 1),
2001 len);
2002 parent_dir = found_key.offset;
2003 } else {
2004 struct btrfs_inode_extref *extref;
2005 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2006 struct btrfs_inode_extref);
2007 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2008 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2009 (unsigned long)&extref->name, len);
2010 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2011 }
2012 if (ret < 0)
2013 return ret;
2014 btrfs_release_path(path);
2015
2016 if (dir_gen) {
2017 ret = get_inode_gen(root, parent_dir, dir_gen);
2018 if (ret < 0)
2019 return ret;
2020 }
2021
2022 *dir = parent_dir;
2023
2024 return ret;
2025 }
2026
is_first_ref(struct btrfs_root * root,u64 ino,u64 dir,const char * name,int name_len)2027 static int is_first_ref(struct btrfs_root *root,
2028 u64 ino, u64 dir,
2029 const char *name, int name_len)
2030 {
2031 int ret;
2032 struct fs_path *tmp_name;
2033 u64 tmp_dir;
2034
2035 tmp_name = fs_path_alloc();
2036 if (!tmp_name)
2037 return -ENOMEM;
2038
2039 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
2040 if (ret < 0)
2041 goto out;
2042
2043 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
2044 ret = 0;
2045 goto out;
2046 }
2047
2048 ret = !memcmp(tmp_name->start, name, name_len);
2049
2050 out:
2051 fs_path_free(tmp_name);
2052 return ret;
2053 }
2054
2055 /*
2056 * Used by process_recorded_refs to determine if a new ref would overwrite an
2057 * already existing ref. In case it detects an overwrite, it returns the
2058 * inode/gen in who_ino/who_gen.
2059 * When an overwrite is detected, process_recorded_refs does proper orphanizing
2060 * to make sure later references to the overwritten inode are possible.
2061 * Orphanizing is however only required for the first ref of an inode.
2062 * process_recorded_refs does an additional is_first_ref check to see if
2063 * orphanizing is really required.
2064 */
will_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,const char * name,int name_len,u64 * who_ino,u64 * who_gen,u64 * who_mode)2065 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2066 const char *name, int name_len,
2067 u64 *who_ino, u64 *who_gen, u64 *who_mode)
2068 {
2069 int ret;
2070 u64 parent_root_dir_gen;
2071 u64 other_inode = 0;
2072 struct btrfs_inode_info info;
2073
2074 if (!sctx->parent_root)
2075 return 0;
2076
2077 ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen);
2078 if (ret <= 0)
2079 return 0;
2080
2081 /*
2082 * If we have a parent root we need to verify that the parent dir was
2083 * not deleted and then re-created, if it was then we have no overwrite
2084 * and we can just unlink this entry.
2085 *
2086 * @parent_root_dir_gen was set to 0 if the inode does not exist in the
2087 * parent root.
2088 */
2089 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID &&
2090 parent_root_dir_gen != dir_gen)
2091 return 0;
2092
2093 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
2094 &other_inode);
2095 if (ret == -ENOENT)
2096 return 0;
2097 else if (ret < 0)
2098 return ret;
2099
2100 /*
2101 * Check if the overwritten ref was already processed. If yes, the ref
2102 * was already unlinked/moved, so we can safely assume that we will not
2103 * overwrite anything at this point in time.
2104 */
2105 if (other_inode > sctx->send_progress ||
2106 is_waiting_for_move(sctx, other_inode)) {
2107 ret = get_inode_info(sctx->parent_root, other_inode, &info);
2108 if (ret < 0)
2109 return ret;
2110
2111 *who_ino = other_inode;
2112 *who_gen = info.gen;
2113 *who_mode = info.mode;
2114 return 1;
2115 }
2116
2117 return 0;
2118 }
2119
2120 /*
2121 * Checks if the ref was overwritten by an already processed inode. This is
2122 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2123 * thus the orphan name needs be used.
2124 * process_recorded_refs also uses it to avoid unlinking of refs that were
2125 * overwritten.
2126 */
did_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,u64 ino,u64 ino_gen,const char * name,int name_len)2127 static int did_overwrite_ref(struct send_ctx *sctx,
2128 u64 dir, u64 dir_gen,
2129 u64 ino, u64 ino_gen,
2130 const char *name, int name_len)
2131 {
2132 int ret;
2133 u64 ow_inode;
2134 u64 ow_gen = 0;
2135 u64 send_root_dir_gen;
2136
2137 if (!sctx->parent_root)
2138 return 0;
2139
2140 ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL);
2141 if (ret <= 0)
2142 return ret;
2143
2144 /*
2145 * @send_root_dir_gen was set to 0 if the inode does not exist in the
2146 * send root.
2147 */
2148 if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen)
2149 return 0;
2150
2151 /* check if the ref was overwritten by another ref */
2152 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
2153 &ow_inode);
2154 if (ret == -ENOENT) {
2155 /* was never and will never be overwritten */
2156 return 0;
2157 } else if (ret < 0) {
2158 return ret;
2159 }
2160
2161 if (ow_inode == ino) {
2162 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2163 if (ret < 0)
2164 return ret;
2165
2166 /* It's the same inode, so no overwrite happened. */
2167 if (ow_gen == ino_gen)
2168 return 0;
2169 }
2170
2171 /*
2172 * We know that it is or will be overwritten. Check this now.
2173 * The current inode being processed might have been the one that caused
2174 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2175 * the current inode being processed.
2176 */
2177 if (ow_inode < sctx->send_progress)
2178 return 1;
2179
2180 if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) {
2181 if (ow_gen == 0) {
2182 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2183 if (ret < 0)
2184 return ret;
2185 }
2186 if (ow_gen == sctx->cur_inode_gen)
2187 return 1;
2188 }
2189
2190 return 0;
2191 }
2192
2193 /*
2194 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2195 * that got overwritten. This is used by process_recorded_refs to determine
2196 * if it has to use the path as returned by get_cur_path or the orphan name.
2197 */
did_overwrite_first_ref(struct send_ctx * sctx,u64 ino,u64 gen)2198 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2199 {
2200 int ret = 0;
2201 struct fs_path *name = NULL;
2202 u64 dir;
2203 u64 dir_gen;
2204
2205 if (!sctx->parent_root)
2206 goto out;
2207
2208 name = fs_path_alloc();
2209 if (!name)
2210 return -ENOMEM;
2211
2212 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2213 if (ret < 0)
2214 goto out;
2215
2216 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2217 name->start, fs_path_len(name));
2218
2219 out:
2220 fs_path_free(name);
2221 return ret;
2222 }
2223
name_cache_search(struct send_ctx * sctx,u64 ino,u64 gen)2224 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2225 u64 ino, u64 gen)
2226 {
2227 struct btrfs_lru_cache_entry *entry;
2228
2229 entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen);
2230 if (!entry)
2231 return NULL;
2232
2233 return container_of(entry, struct name_cache_entry, entry);
2234 }
2235
2236 /*
2237 * Used by get_cur_path for each ref up to the root.
2238 * Returns 0 if it succeeded.
2239 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2240 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2241 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2242 * Returns <0 in case of error.
2243 */
__get_cur_name_and_parent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * parent_ino,u64 * parent_gen,struct fs_path * dest)2244 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2245 u64 ino, u64 gen,
2246 u64 *parent_ino,
2247 u64 *parent_gen,
2248 struct fs_path *dest)
2249 {
2250 int ret;
2251 int nce_ret;
2252 struct name_cache_entry *nce;
2253
2254 /*
2255 * First check if we already did a call to this function with the same
2256 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2257 * return the cached result.
2258 */
2259 nce = name_cache_search(sctx, ino, gen);
2260 if (nce) {
2261 if (ino < sctx->send_progress && nce->need_later_update) {
2262 btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry);
2263 nce = NULL;
2264 } else {
2265 *parent_ino = nce->parent_ino;
2266 *parent_gen = nce->parent_gen;
2267 ret = fs_path_add(dest, nce->name, nce->name_len);
2268 if (ret < 0)
2269 return ret;
2270 return nce->ret;
2271 }
2272 }
2273
2274 /*
2275 * If the inode is not existent yet, add the orphan name and return 1.
2276 * This should only happen for the parent dir that we determine in
2277 * record_new_ref_if_needed().
2278 */
2279 ret = is_inode_existent(sctx, ino, gen, NULL, NULL);
2280 if (ret < 0)
2281 return ret;
2282
2283 if (!ret) {
2284 ret = gen_unique_name(sctx, ino, gen, dest);
2285 if (ret < 0)
2286 return ret;
2287 ret = 1;
2288 goto out_cache;
2289 }
2290
2291 /*
2292 * Depending on whether the inode was already processed or not, use
2293 * send_root or parent_root for ref lookup.
2294 */
2295 if (ino < sctx->send_progress)
2296 ret = get_first_ref(sctx->send_root, ino,
2297 parent_ino, parent_gen, dest);
2298 else
2299 ret = get_first_ref(sctx->parent_root, ino,
2300 parent_ino, parent_gen, dest);
2301 if (ret < 0)
2302 return ret;
2303
2304 /*
2305 * Check if the ref was overwritten by an inode's ref that was processed
2306 * earlier. If yes, treat as orphan and return 1.
2307 */
2308 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2309 dest->start, fs_path_len(dest));
2310 if (ret < 0)
2311 return ret;
2312 if (ret) {
2313 fs_path_reset(dest);
2314 ret = gen_unique_name(sctx, ino, gen, dest);
2315 if (ret < 0)
2316 return ret;
2317 ret = 1;
2318 }
2319
2320 out_cache:
2321 /*
2322 * Store the result of the lookup in the name cache.
2323 */
2324 nce = kmalloc(sizeof(*nce) + fs_path_len(dest), GFP_KERNEL);
2325 if (!nce)
2326 return -ENOMEM;
2327
2328 nce->entry.key = ino;
2329 nce->entry.gen = gen;
2330 nce->parent_ino = *parent_ino;
2331 nce->parent_gen = *parent_gen;
2332 nce->name_len = fs_path_len(dest);
2333 nce->ret = ret;
2334 memcpy(nce->name, dest->start, nce->name_len);
2335
2336 if (ino < sctx->send_progress)
2337 nce->need_later_update = 0;
2338 else
2339 nce->need_later_update = 1;
2340
2341 nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL);
2342 if (nce_ret < 0) {
2343 kfree(nce);
2344 return nce_ret;
2345 }
2346
2347 return ret;
2348 }
2349
2350 /*
2351 * Magic happens here. This function returns the first ref to an inode as it
2352 * would look like while receiving the stream at this point in time.
2353 * We walk the path up to the root. For every inode in between, we check if it
2354 * was already processed/sent. If yes, we continue with the parent as found
2355 * in send_root. If not, we continue with the parent as found in parent_root.
2356 * If we encounter an inode that was deleted at this point in time, we use the
2357 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2358 * that were not created yet and overwritten inodes/refs.
2359 *
2360 * When do we have orphan inodes:
2361 * 1. When an inode is freshly created and thus no valid refs are available yet
2362 * 2. When a directory lost all it's refs (deleted) but still has dir items
2363 * inside which were not processed yet (pending for move/delete). If anyone
2364 * tried to get the path to the dir items, it would get a path inside that
2365 * orphan directory.
2366 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2367 * of an unprocessed inode. If in that case the first ref would be
2368 * overwritten, the overwritten inode gets "orphanized". Later when we
2369 * process this overwritten inode, it is restored at a new place by moving
2370 * the orphan inode.
2371 *
2372 * sctx->send_progress tells this function at which point in time receiving
2373 * would be.
2374 */
get_cur_path(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)2375 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2376 struct fs_path *dest)
2377 {
2378 int ret = 0;
2379 struct fs_path *name = NULL;
2380 u64 parent_inode = 0;
2381 u64 parent_gen = 0;
2382 int stop = 0;
2383 const bool is_cur_inode = (ino == sctx->cur_ino && gen == sctx->cur_inode_gen);
2384
2385 if (is_cur_inode && fs_path_len(&sctx->cur_inode_path) > 0) {
2386 if (dest != &sctx->cur_inode_path)
2387 return fs_path_copy(dest, &sctx->cur_inode_path);
2388
2389 return 0;
2390 }
2391
2392 name = fs_path_alloc();
2393 if (!name) {
2394 ret = -ENOMEM;
2395 goto out;
2396 }
2397
2398 dest->reversed = 1;
2399 fs_path_reset(dest);
2400
2401 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2402 struct waiting_dir_move *wdm;
2403
2404 fs_path_reset(name);
2405
2406 if (is_waiting_for_rm(sctx, ino, gen)) {
2407 ret = gen_unique_name(sctx, ino, gen, name);
2408 if (ret < 0)
2409 goto out;
2410 ret = fs_path_add_path(dest, name);
2411 break;
2412 }
2413
2414 wdm = get_waiting_dir_move(sctx, ino);
2415 if (wdm && wdm->orphanized) {
2416 ret = gen_unique_name(sctx, ino, gen, name);
2417 stop = 1;
2418 } else if (wdm) {
2419 ret = get_first_ref(sctx->parent_root, ino,
2420 &parent_inode, &parent_gen, name);
2421 } else {
2422 ret = __get_cur_name_and_parent(sctx, ino, gen,
2423 &parent_inode,
2424 &parent_gen, name);
2425 if (ret)
2426 stop = 1;
2427 }
2428
2429 if (ret < 0)
2430 goto out;
2431
2432 ret = fs_path_add_path(dest, name);
2433 if (ret < 0)
2434 goto out;
2435
2436 ino = parent_inode;
2437 gen = parent_gen;
2438 }
2439
2440 out:
2441 fs_path_free(name);
2442 if (!ret) {
2443 fs_path_unreverse(dest);
2444 if (is_cur_inode && dest != &sctx->cur_inode_path)
2445 ret = fs_path_copy(&sctx->cur_inode_path, dest);
2446 }
2447
2448 return ret;
2449 }
2450
2451 /*
2452 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2453 */
send_subvol_begin(struct send_ctx * sctx)2454 static int send_subvol_begin(struct send_ctx *sctx)
2455 {
2456 int ret;
2457 struct btrfs_root *send_root = sctx->send_root;
2458 struct btrfs_root *parent_root = sctx->parent_root;
2459 BTRFS_PATH_AUTO_FREE(path);
2460 struct btrfs_key key;
2461 struct btrfs_root_ref *ref;
2462 struct extent_buffer *leaf;
2463 char *name = NULL;
2464 int namelen;
2465
2466 path = btrfs_alloc_path();
2467 if (!path)
2468 return -ENOMEM;
2469
2470 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2471 if (!name)
2472 return -ENOMEM;
2473
2474 key.objectid = btrfs_root_id(send_root);
2475 key.type = BTRFS_ROOT_BACKREF_KEY;
2476 key.offset = 0;
2477
2478 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2479 &key, path, 1, 0);
2480 if (ret < 0)
2481 goto out;
2482 if (ret) {
2483 ret = -ENOENT;
2484 goto out;
2485 }
2486
2487 leaf = path->nodes[0];
2488 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2489 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2490 key.objectid != btrfs_root_id(send_root)) {
2491 ret = -ENOENT;
2492 goto out;
2493 }
2494 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2495 namelen = btrfs_root_ref_name_len(leaf, ref);
2496 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2497 btrfs_release_path(path);
2498
2499 if (parent_root) {
2500 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2501 if (ret < 0)
2502 goto out;
2503 } else {
2504 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2505 if (ret < 0)
2506 goto out;
2507 }
2508
2509 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2510
2511 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2512 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2513 sctx->send_root->root_item.received_uuid);
2514 else
2515 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2516 sctx->send_root->root_item.uuid);
2517
2518 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2519 btrfs_root_ctransid(&sctx->send_root->root_item));
2520 if (parent_root) {
2521 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2522 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2523 parent_root->root_item.received_uuid);
2524 else
2525 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2526 parent_root->root_item.uuid);
2527 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2528 btrfs_root_ctransid(&sctx->parent_root->root_item));
2529 }
2530
2531 ret = send_cmd(sctx);
2532
2533 tlv_put_failure:
2534 out:
2535 kfree(name);
2536 return ret;
2537 }
2538
get_cur_inode_path(struct send_ctx * sctx)2539 static struct fs_path *get_cur_inode_path(struct send_ctx *sctx)
2540 {
2541 if (fs_path_len(&sctx->cur_inode_path) == 0) {
2542 int ret;
2543
2544 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
2545 &sctx->cur_inode_path);
2546 if (ret < 0)
2547 return ERR_PTR(ret);
2548 }
2549
2550 return &sctx->cur_inode_path;
2551 }
2552
get_path_for_command(struct send_ctx * sctx,u64 ino,u64 gen)2553 static struct fs_path *get_path_for_command(struct send_ctx *sctx, u64 ino, u64 gen)
2554 {
2555 struct fs_path *path;
2556 int ret;
2557
2558 if (ino == sctx->cur_ino && gen == sctx->cur_inode_gen)
2559 return get_cur_inode_path(sctx);
2560
2561 path = fs_path_alloc();
2562 if (!path)
2563 return ERR_PTR(-ENOMEM);
2564
2565 ret = get_cur_path(sctx, ino, gen, path);
2566 if (ret < 0) {
2567 fs_path_free(path);
2568 return ERR_PTR(ret);
2569 }
2570
2571 return path;
2572 }
2573
free_path_for_command(const struct send_ctx * sctx,struct fs_path * path)2574 static void free_path_for_command(const struct send_ctx *sctx, struct fs_path *path)
2575 {
2576 if (path != &sctx->cur_inode_path)
2577 fs_path_free(path);
2578 }
2579
send_truncate(struct send_ctx * sctx,u64 ino,u64 gen,u64 size)2580 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2581 {
2582 int ret = 0;
2583 struct fs_path *p;
2584
2585 p = get_path_for_command(sctx, ino, gen);
2586 if (IS_ERR(p))
2587 return PTR_ERR(p);
2588
2589 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2590 if (ret < 0)
2591 goto out;
2592
2593 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2594 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2595
2596 ret = send_cmd(sctx);
2597
2598 tlv_put_failure:
2599 out:
2600 free_path_for_command(sctx, p);
2601 return ret;
2602 }
2603
send_chmod(struct send_ctx * sctx,u64 ino,u64 gen,u64 mode)2604 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2605 {
2606 int ret = 0;
2607 struct fs_path *p;
2608
2609 p = get_path_for_command(sctx, ino, gen);
2610 if (IS_ERR(p))
2611 return PTR_ERR(p);
2612
2613 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2614 if (ret < 0)
2615 goto out;
2616
2617 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2618 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2619
2620 ret = send_cmd(sctx);
2621
2622 tlv_put_failure:
2623 out:
2624 free_path_for_command(sctx, p);
2625 return ret;
2626 }
2627
send_fileattr(struct send_ctx * sctx,u64 ino,u64 gen,u64 fileattr)2628 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2629 {
2630 int ret = 0;
2631 struct fs_path *p;
2632
2633 if (sctx->proto < 2)
2634 return 0;
2635
2636 p = get_path_for_command(sctx, ino, gen);
2637 if (IS_ERR(p))
2638 return PTR_ERR(p);
2639
2640 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2641 if (ret < 0)
2642 goto out;
2643
2644 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2645 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2646
2647 ret = send_cmd(sctx);
2648
2649 tlv_put_failure:
2650 out:
2651 free_path_for_command(sctx, p);
2652 return ret;
2653 }
2654
send_chown(struct send_ctx * sctx,u64 ino,u64 gen,u64 uid,u64 gid)2655 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2656 {
2657 int ret = 0;
2658 struct fs_path *p;
2659
2660 p = get_path_for_command(sctx, ino, gen);
2661 if (IS_ERR(p))
2662 return PTR_ERR(p);
2663
2664 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2665 if (ret < 0)
2666 goto out;
2667
2668 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2669 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2670 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2671
2672 ret = send_cmd(sctx);
2673
2674 tlv_put_failure:
2675 out:
2676 free_path_for_command(sctx, p);
2677 return ret;
2678 }
2679
send_utimes(struct send_ctx * sctx,u64 ino,u64 gen)2680 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2681 {
2682 int ret = 0;
2683 struct fs_path *p = NULL;
2684 struct btrfs_inode_item *ii;
2685 BTRFS_PATH_AUTO_FREE(path);
2686 struct extent_buffer *eb;
2687 struct btrfs_key key;
2688 int slot;
2689
2690 p = get_path_for_command(sctx, ino, gen);
2691 if (IS_ERR(p))
2692 return PTR_ERR(p);
2693
2694 path = alloc_path_for_send();
2695 if (!path) {
2696 ret = -ENOMEM;
2697 goto out;
2698 }
2699
2700 key.objectid = ino;
2701 key.type = BTRFS_INODE_ITEM_KEY;
2702 key.offset = 0;
2703 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2704 if (ret > 0)
2705 ret = -ENOENT;
2706 if (ret < 0)
2707 goto out;
2708
2709 eb = path->nodes[0];
2710 slot = path->slots[0];
2711 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2712
2713 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2714 if (ret < 0)
2715 goto out;
2716
2717 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2718 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2719 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2720 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2721 if (sctx->proto >= 2)
2722 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2723
2724 ret = send_cmd(sctx);
2725
2726 tlv_put_failure:
2727 out:
2728 free_path_for_command(sctx, p);
2729 return ret;
2730 }
2731
2732 /*
2733 * If the cache is full, we can't remove entries from it and do a call to
2734 * send_utimes() for each respective inode, because we might be finishing
2735 * processing an inode that is a directory and it just got renamed, and existing
2736 * entries in the cache may refer to inodes that have the directory in their
2737 * full path - in which case we would generate outdated paths (pre-rename)
2738 * for the inodes that the cache entries point to. Instead of pruning the
2739 * cache when inserting, do it after we finish processing each inode at
2740 * finish_inode_if_needed().
2741 */
cache_dir_utimes(struct send_ctx * sctx,u64 dir,u64 gen)2742 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen)
2743 {
2744 struct btrfs_lru_cache_entry *entry;
2745 int ret;
2746
2747 entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen);
2748 if (entry != NULL)
2749 return 0;
2750
2751 /* Caching is optional, don't fail if we can't allocate memory. */
2752 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2753 if (!entry)
2754 return send_utimes(sctx, dir, gen);
2755
2756 entry->key = dir;
2757 entry->gen = gen;
2758
2759 ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL);
2760 ASSERT(ret != -EEXIST);
2761 if (ret) {
2762 kfree(entry);
2763 return send_utimes(sctx, dir, gen);
2764 }
2765
2766 return 0;
2767 }
2768
trim_dir_utimes_cache(struct send_ctx * sctx)2769 static int trim_dir_utimes_cache(struct send_ctx *sctx)
2770 {
2771 while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) {
2772 struct btrfs_lru_cache_entry *lru;
2773 int ret;
2774
2775 lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache);
2776 ASSERT(lru != NULL);
2777
2778 ret = send_utimes(sctx, lru->key, lru->gen);
2779 if (ret)
2780 return ret;
2781
2782 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru);
2783 }
2784
2785 return 0;
2786 }
2787
2788 /*
2789 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2790 * a valid path yet because we did not process the refs yet. So, the inode
2791 * is created as orphan.
2792 */
send_create_inode(struct send_ctx * sctx,u64 ino)2793 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2794 {
2795 int ret = 0;
2796 struct fs_path *p;
2797 int cmd;
2798 struct btrfs_inode_info info;
2799 u64 gen;
2800 u64 mode;
2801 u64 rdev;
2802
2803 p = fs_path_alloc();
2804 if (!p)
2805 return -ENOMEM;
2806
2807 if (ino != sctx->cur_ino) {
2808 ret = get_inode_info(sctx->send_root, ino, &info);
2809 if (ret < 0)
2810 goto out;
2811 gen = info.gen;
2812 mode = info.mode;
2813 rdev = info.rdev;
2814 } else {
2815 gen = sctx->cur_inode_gen;
2816 mode = sctx->cur_inode_mode;
2817 rdev = sctx->cur_inode_rdev;
2818 }
2819
2820 if (S_ISREG(mode)) {
2821 cmd = BTRFS_SEND_C_MKFILE;
2822 } else if (S_ISDIR(mode)) {
2823 cmd = BTRFS_SEND_C_MKDIR;
2824 } else if (S_ISLNK(mode)) {
2825 cmd = BTRFS_SEND_C_SYMLINK;
2826 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2827 cmd = BTRFS_SEND_C_MKNOD;
2828 } else if (S_ISFIFO(mode)) {
2829 cmd = BTRFS_SEND_C_MKFIFO;
2830 } else if (S_ISSOCK(mode)) {
2831 cmd = BTRFS_SEND_C_MKSOCK;
2832 } else {
2833 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2834 (int)(mode & S_IFMT));
2835 ret = -EOPNOTSUPP;
2836 goto out;
2837 }
2838
2839 ret = begin_cmd(sctx, cmd);
2840 if (ret < 0)
2841 goto out;
2842
2843 ret = gen_unique_name(sctx, ino, gen, p);
2844 if (ret < 0)
2845 goto out;
2846
2847 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2848 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2849
2850 if (S_ISLNK(mode)) {
2851 fs_path_reset(p);
2852 ret = read_symlink(sctx->send_root, ino, p);
2853 if (ret < 0)
2854 goto out;
2855 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2856 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2857 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2858 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2859 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2860 }
2861
2862 ret = send_cmd(sctx);
2863 if (ret < 0)
2864 goto out;
2865
2866
2867 tlv_put_failure:
2868 out:
2869 fs_path_free(p);
2870 return ret;
2871 }
2872
cache_dir_created(struct send_ctx * sctx,u64 dir)2873 static void cache_dir_created(struct send_ctx *sctx, u64 dir)
2874 {
2875 struct btrfs_lru_cache_entry *entry;
2876 int ret;
2877
2878 /* Caching is optional, ignore any failures. */
2879 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2880 if (!entry)
2881 return;
2882
2883 entry->key = dir;
2884 entry->gen = 0;
2885 ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL);
2886 if (ret < 0)
2887 kfree(entry);
2888 }
2889
2890 /*
2891 * We need some special handling for inodes that get processed before the parent
2892 * directory got created. See process_recorded_refs for details.
2893 * This function does the check if we already created the dir out of order.
2894 */
did_create_dir(struct send_ctx * sctx,u64 dir)2895 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2896 {
2897 int ret = 0;
2898 int iter_ret = 0;
2899 BTRFS_PATH_AUTO_FREE(path);
2900 struct btrfs_key key;
2901 struct btrfs_key found_key;
2902 struct btrfs_key di_key;
2903 struct btrfs_dir_item *di;
2904
2905 if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0))
2906 return 1;
2907
2908 path = alloc_path_for_send();
2909 if (!path)
2910 return -ENOMEM;
2911
2912 key.objectid = dir;
2913 key.type = BTRFS_DIR_INDEX_KEY;
2914 key.offset = 0;
2915
2916 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2917 struct extent_buffer *eb = path->nodes[0];
2918
2919 if (found_key.objectid != key.objectid ||
2920 found_key.type != key.type) {
2921 ret = 0;
2922 break;
2923 }
2924
2925 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
2926 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2927
2928 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2929 di_key.objectid < sctx->send_progress) {
2930 ret = 1;
2931 cache_dir_created(sctx, dir);
2932 break;
2933 }
2934 }
2935 /* Catch error found during iteration */
2936 if (iter_ret < 0)
2937 ret = iter_ret;
2938
2939 return ret;
2940 }
2941
2942 /*
2943 * Only creates the inode if it is:
2944 * 1. Not a directory
2945 * 2. Or a directory which was not created already due to out of order
2946 * directories. See did_create_dir and process_recorded_refs for details.
2947 */
send_create_inode_if_needed(struct send_ctx * sctx)2948 static int send_create_inode_if_needed(struct send_ctx *sctx)
2949 {
2950 int ret;
2951
2952 if (S_ISDIR(sctx->cur_inode_mode)) {
2953 ret = did_create_dir(sctx, sctx->cur_ino);
2954 if (ret < 0)
2955 return ret;
2956 else if (ret > 0)
2957 return 0;
2958 }
2959
2960 ret = send_create_inode(sctx, sctx->cur_ino);
2961
2962 if (ret == 0 && S_ISDIR(sctx->cur_inode_mode))
2963 cache_dir_created(sctx, sctx->cur_ino);
2964
2965 return ret;
2966 }
2967
2968 struct recorded_ref {
2969 struct list_head list;
2970 char *name;
2971 struct fs_path *full_path;
2972 u64 dir;
2973 u64 dir_gen;
2974 int name_len;
2975 struct rb_node node;
2976 struct rb_root *root;
2977 };
2978
recorded_ref_alloc(void)2979 static struct recorded_ref *recorded_ref_alloc(void)
2980 {
2981 struct recorded_ref *ref;
2982
2983 ref = kzalloc(sizeof(*ref), GFP_KERNEL);
2984 if (!ref)
2985 return NULL;
2986 RB_CLEAR_NODE(&ref->node);
2987 INIT_LIST_HEAD(&ref->list);
2988 return ref;
2989 }
2990
recorded_ref_free(struct recorded_ref * ref)2991 static void recorded_ref_free(struct recorded_ref *ref)
2992 {
2993 if (!ref)
2994 return;
2995 if (!RB_EMPTY_NODE(&ref->node))
2996 rb_erase(&ref->node, ref->root);
2997 list_del(&ref->list);
2998 fs_path_free(ref->full_path);
2999 kfree(ref);
3000 }
3001
set_ref_path(struct recorded_ref * ref,struct fs_path * path)3002 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3003 {
3004 ref->full_path = path;
3005 ref->name = (char *)kbasename(ref->full_path->start);
3006 ref->name_len = ref->full_path->end - ref->name;
3007 }
3008
dup_ref(struct recorded_ref * ref,struct list_head * list)3009 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3010 {
3011 struct recorded_ref *new;
3012
3013 new = recorded_ref_alloc();
3014 if (!new)
3015 return -ENOMEM;
3016
3017 new->dir = ref->dir;
3018 new->dir_gen = ref->dir_gen;
3019 list_add_tail(&new->list, list);
3020 return 0;
3021 }
3022
__free_recorded_refs(struct list_head * head)3023 static void __free_recorded_refs(struct list_head *head)
3024 {
3025 struct recorded_ref *cur;
3026
3027 while (!list_empty(head)) {
3028 cur = list_first_entry(head, struct recorded_ref, list);
3029 recorded_ref_free(cur);
3030 }
3031 }
3032
free_recorded_refs(struct send_ctx * sctx)3033 static void free_recorded_refs(struct send_ctx *sctx)
3034 {
3035 __free_recorded_refs(&sctx->new_refs);
3036 __free_recorded_refs(&sctx->deleted_refs);
3037 }
3038
3039 /*
3040 * Renames/moves a file/dir to its orphan name. Used when the first
3041 * ref of an unprocessed inode gets overwritten and for all non empty
3042 * directories.
3043 */
orphanize_inode(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * path)3044 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3045 struct fs_path *path)
3046 {
3047 int ret;
3048 struct fs_path *orphan;
3049
3050 orphan = fs_path_alloc();
3051 if (!orphan)
3052 return -ENOMEM;
3053
3054 ret = gen_unique_name(sctx, ino, gen, orphan);
3055 if (ret < 0)
3056 goto out;
3057
3058 ret = send_rename(sctx, path, orphan);
3059 if (ret < 0)
3060 goto out;
3061
3062 if (ino == sctx->cur_ino && gen == sctx->cur_inode_gen)
3063 ret = fs_path_copy(&sctx->cur_inode_path, orphan);
3064
3065 out:
3066 fs_path_free(orphan);
3067 return ret;
3068 }
3069
add_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino,u64 dir_gen)3070 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3071 u64 dir_ino, u64 dir_gen)
3072 {
3073 struct rb_node **p = &sctx->orphan_dirs.rb_node;
3074 struct rb_node *parent = NULL;
3075 struct orphan_dir_info *entry, *odi;
3076
3077 while (*p) {
3078 parent = *p;
3079 entry = rb_entry(parent, struct orphan_dir_info, node);
3080 if (dir_ino < entry->ino)
3081 p = &(*p)->rb_left;
3082 else if (dir_ino > entry->ino)
3083 p = &(*p)->rb_right;
3084 else if (dir_gen < entry->gen)
3085 p = &(*p)->rb_left;
3086 else if (dir_gen > entry->gen)
3087 p = &(*p)->rb_right;
3088 else
3089 return entry;
3090 }
3091
3092 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3093 if (!odi)
3094 return ERR_PTR(-ENOMEM);
3095 odi->ino = dir_ino;
3096 odi->gen = dir_gen;
3097 odi->last_dir_index_offset = 0;
3098 odi->dir_high_seq_ino = 0;
3099
3100 rb_link_node(&odi->node, parent, p);
3101 rb_insert_color(&odi->node, &sctx->orphan_dirs);
3102 return odi;
3103 }
3104
get_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino,u64 gen)3105 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3106 u64 dir_ino, u64 gen)
3107 {
3108 struct rb_node *n = sctx->orphan_dirs.rb_node;
3109 struct orphan_dir_info *entry;
3110
3111 while (n) {
3112 entry = rb_entry(n, struct orphan_dir_info, node);
3113 if (dir_ino < entry->ino)
3114 n = n->rb_left;
3115 else if (dir_ino > entry->ino)
3116 n = n->rb_right;
3117 else if (gen < entry->gen)
3118 n = n->rb_left;
3119 else if (gen > entry->gen)
3120 n = n->rb_right;
3121 else
3122 return entry;
3123 }
3124 return NULL;
3125 }
3126
is_waiting_for_rm(struct send_ctx * sctx,u64 dir_ino,u64 gen)3127 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3128 {
3129 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3130
3131 return odi != NULL;
3132 }
3133
free_orphan_dir_info(struct send_ctx * sctx,struct orphan_dir_info * odi)3134 static void free_orphan_dir_info(struct send_ctx *sctx,
3135 struct orphan_dir_info *odi)
3136 {
3137 if (!odi)
3138 return;
3139 rb_erase(&odi->node, &sctx->orphan_dirs);
3140 kfree(odi);
3141 }
3142
3143 /*
3144 * Returns 1 if a directory can be removed at this point in time.
3145 * We check this by iterating all dir items and checking if the inode behind
3146 * the dir item was already processed.
3147 */
can_rmdir(struct send_ctx * sctx,u64 dir,u64 dir_gen)3148 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen)
3149 {
3150 int ret = 0;
3151 int iter_ret = 0;
3152 struct btrfs_root *root = sctx->parent_root;
3153 struct btrfs_path *path;
3154 struct btrfs_key key;
3155 struct btrfs_key found_key;
3156 struct btrfs_key loc;
3157 struct btrfs_dir_item *di;
3158 struct orphan_dir_info *odi = NULL;
3159 u64 dir_high_seq_ino = 0;
3160 u64 last_dir_index_offset = 0;
3161
3162 /*
3163 * Don't try to rmdir the top/root subvolume dir.
3164 */
3165 if (dir == BTRFS_FIRST_FREE_OBJECTID)
3166 return 0;
3167
3168 odi = get_orphan_dir_info(sctx, dir, dir_gen);
3169 if (odi && sctx->cur_ino < odi->dir_high_seq_ino)
3170 return 0;
3171
3172 path = alloc_path_for_send();
3173 if (!path)
3174 return -ENOMEM;
3175
3176 if (!odi) {
3177 /*
3178 * Find the inode number associated with the last dir index
3179 * entry. This is very likely the inode with the highest number
3180 * of all inodes that have an entry in the directory. We can
3181 * then use it to avoid future calls to can_rmdir(), when
3182 * processing inodes with a lower number, from having to search
3183 * the parent root b+tree for dir index keys.
3184 */
3185 key.objectid = dir;
3186 key.type = BTRFS_DIR_INDEX_KEY;
3187 key.offset = (u64)-1;
3188
3189 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3190 if (ret < 0) {
3191 goto out;
3192 } else if (ret > 0) {
3193 /* Can't happen, the root is never empty. */
3194 ASSERT(path->slots[0] > 0);
3195 if (WARN_ON(path->slots[0] == 0)) {
3196 ret = -EUCLEAN;
3197 goto out;
3198 }
3199 path->slots[0]--;
3200 }
3201
3202 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3203 if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) {
3204 /* No index keys, dir can be removed. */
3205 ret = 1;
3206 goto out;
3207 }
3208
3209 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3210 struct btrfs_dir_item);
3211 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3212 dir_high_seq_ino = loc.objectid;
3213 if (sctx->cur_ino < dir_high_seq_ino) {
3214 ret = 0;
3215 goto out;
3216 }
3217
3218 btrfs_release_path(path);
3219 }
3220
3221 key.objectid = dir;
3222 key.type = BTRFS_DIR_INDEX_KEY;
3223 key.offset = (odi ? odi->last_dir_index_offset : 0);
3224
3225 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3226 struct waiting_dir_move *dm;
3227
3228 if (found_key.objectid != key.objectid ||
3229 found_key.type != key.type)
3230 break;
3231
3232 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3233 struct btrfs_dir_item);
3234 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3235
3236 dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid);
3237 last_dir_index_offset = found_key.offset;
3238
3239 dm = get_waiting_dir_move(sctx, loc.objectid);
3240 if (dm) {
3241 dm->rmdir_ino = dir;
3242 dm->rmdir_gen = dir_gen;
3243 ret = 0;
3244 goto out;
3245 }
3246
3247 if (loc.objectid > sctx->cur_ino) {
3248 ret = 0;
3249 goto out;
3250 }
3251 }
3252 if (iter_ret < 0) {
3253 ret = iter_ret;
3254 goto out;
3255 }
3256 free_orphan_dir_info(sctx, odi);
3257
3258 ret = 1;
3259
3260 out:
3261 btrfs_free_path(path);
3262
3263 if (ret)
3264 return ret;
3265
3266 if (!odi) {
3267 odi = add_orphan_dir_info(sctx, dir, dir_gen);
3268 if (IS_ERR(odi))
3269 return PTR_ERR(odi);
3270
3271 odi->gen = dir_gen;
3272 }
3273
3274 odi->last_dir_index_offset = last_dir_index_offset;
3275 odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino);
3276
3277 return 0;
3278 }
3279
is_waiting_for_move(struct send_ctx * sctx,u64 ino)3280 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3281 {
3282 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3283
3284 return entry != NULL;
3285 }
3286
add_waiting_dir_move(struct send_ctx * sctx,u64 ino,bool orphanized)3287 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3288 {
3289 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3290 struct rb_node *parent = NULL;
3291 struct waiting_dir_move *entry, *dm;
3292
3293 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3294 if (!dm)
3295 return -ENOMEM;
3296 dm->ino = ino;
3297 dm->rmdir_ino = 0;
3298 dm->rmdir_gen = 0;
3299 dm->orphanized = orphanized;
3300
3301 while (*p) {
3302 parent = *p;
3303 entry = rb_entry(parent, struct waiting_dir_move, node);
3304 if (ino < entry->ino) {
3305 p = &(*p)->rb_left;
3306 } else if (ino > entry->ino) {
3307 p = &(*p)->rb_right;
3308 } else {
3309 kfree(dm);
3310 return -EEXIST;
3311 }
3312 }
3313
3314 rb_link_node(&dm->node, parent, p);
3315 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3316 return 0;
3317 }
3318
3319 static struct waiting_dir_move *
get_waiting_dir_move(struct send_ctx * sctx,u64 ino)3320 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3321 {
3322 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3323 struct waiting_dir_move *entry;
3324
3325 while (n) {
3326 entry = rb_entry(n, struct waiting_dir_move, node);
3327 if (ino < entry->ino)
3328 n = n->rb_left;
3329 else if (ino > entry->ino)
3330 n = n->rb_right;
3331 else
3332 return entry;
3333 }
3334 return NULL;
3335 }
3336
free_waiting_dir_move(struct send_ctx * sctx,struct waiting_dir_move * dm)3337 static void free_waiting_dir_move(struct send_ctx *sctx,
3338 struct waiting_dir_move *dm)
3339 {
3340 if (!dm)
3341 return;
3342 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3343 kfree(dm);
3344 }
3345
add_pending_dir_move(struct send_ctx * sctx,u64 ino,u64 ino_gen,u64 parent_ino,struct list_head * new_refs,struct list_head * deleted_refs,const bool is_orphan)3346 static int add_pending_dir_move(struct send_ctx *sctx,
3347 u64 ino,
3348 u64 ino_gen,
3349 u64 parent_ino,
3350 struct list_head *new_refs,
3351 struct list_head *deleted_refs,
3352 const bool is_orphan)
3353 {
3354 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3355 struct rb_node *parent = NULL;
3356 struct pending_dir_move *entry = NULL, *pm;
3357 struct recorded_ref *cur;
3358 int exists = 0;
3359 int ret;
3360
3361 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3362 if (!pm)
3363 return -ENOMEM;
3364 pm->parent_ino = parent_ino;
3365 pm->ino = ino;
3366 pm->gen = ino_gen;
3367 INIT_LIST_HEAD(&pm->list);
3368 INIT_LIST_HEAD(&pm->update_refs);
3369 RB_CLEAR_NODE(&pm->node);
3370
3371 while (*p) {
3372 parent = *p;
3373 entry = rb_entry(parent, struct pending_dir_move, node);
3374 if (parent_ino < entry->parent_ino) {
3375 p = &(*p)->rb_left;
3376 } else if (parent_ino > entry->parent_ino) {
3377 p = &(*p)->rb_right;
3378 } else {
3379 exists = 1;
3380 break;
3381 }
3382 }
3383
3384 list_for_each_entry(cur, deleted_refs, list) {
3385 ret = dup_ref(cur, &pm->update_refs);
3386 if (ret < 0)
3387 goto out;
3388 }
3389 list_for_each_entry(cur, new_refs, list) {
3390 ret = dup_ref(cur, &pm->update_refs);
3391 if (ret < 0)
3392 goto out;
3393 }
3394
3395 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3396 if (ret)
3397 goto out;
3398
3399 if (exists) {
3400 list_add_tail(&pm->list, &entry->list);
3401 } else {
3402 rb_link_node(&pm->node, parent, p);
3403 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3404 }
3405 ret = 0;
3406 out:
3407 if (ret) {
3408 __free_recorded_refs(&pm->update_refs);
3409 kfree(pm);
3410 }
3411 return ret;
3412 }
3413
get_pending_dir_moves(struct send_ctx * sctx,u64 parent_ino)3414 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3415 u64 parent_ino)
3416 {
3417 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3418 struct pending_dir_move *entry;
3419
3420 while (n) {
3421 entry = rb_entry(n, struct pending_dir_move, node);
3422 if (parent_ino < entry->parent_ino)
3423 n = n->rb_left;
3424 else if (parent_ino > entry->parent_ino)
3425 n = n->rb_right;
3426 else
3427 return entry;
3428 }
3429 return NULL;
3430 }
3431
path_loop(struct send_ctx * sctx,struct fs_path * name,u64 ino,u64 gen,u64 * ancestor_ino)3432 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3433 u64 ino, u64 gen, u64 *ancestor_ino)
3434 {
3435 int ret = 0;
3436 u64 parent_inode = 0;
3437 u64 parent_gen = 0;
3438 u64 start_ino = ino;
3439
3440 *ancestor_ino = 0;
3441 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3442 fs_path_reset(name);
3443
3444 if (is_waiting_for_rm(sctx, ino, gen))
3445 break;
3446 if (is_waiting_for_move(sctx, ino)) {
3447 if (*ancestor_ino == 0)
3448 *ancestor_ino = ino;
3449 ret = get_first_ref(sctx->parent_root, ino,
3450 &parent_inode, &parent_gen, name);
3451 } else {
3452 ret = __get_cur_name_and_parent(sctx, ino, gen,
3453 &parent_inode,
3454 &parent_gen, name);
3455 if (ret > 0) {
3456 ret = 0;
3457 break;
3458 }
3459 }
3460 if (ret < 0)
3461 break;
3462 if (parent_inode == start_ino) {
3463 ret = 1;
3464 if (*ancestor_ino == 0)
3465 *ancestor_ino = ino;
3466 break;
3467 }
3468 ino = parent_inode;
3469 gen = parent_gen;
3470 }
3471 return ret;
3472 }
3473
apply_dir_move(struct send_ctx * sctx,struct pending_dir_move * pm)3474 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3475 {
3476 struct fs_path *from_path = NULL;
3477 struct fs_path *to_path = NULL;
3478 struct fs_path *name = NULL;
3479 u64 orig_progress = sctx->send_progress;
3480 struct recorded_ref *cur;
3481 u64 parent_ino, parent_gen;
3482 struct waiting_dir_move *dm = NULL;
3483 u64 rmdir_ino = 0;
3484 u64 rmdir_gen;
3485 u64 ancestor;
3486 bool is_orphan;
3487 int ret;
3488
3489 name = fs_path_alloc();
3490 from_path = fs_path_alloc();
3491 if (!name || !from_path) {
3492 ret = -ENOMEM;
3493 goto out;
3494 }
3495
3496 dm = get_waiting_dir_move(sctx, pm->ino);
3497 ASSERT(dm);
3498 rmdir_ino = dm->rmdir_ino;
3499 rmdir_gen = dm->rmdir_gen;
3500 is_orphan = dm->orphanized;
3501 free_waiting_dir_move(sctx, dm);
3502
3503 if (is_orphan) {
3504 ret = gen_unique_name(sctx, pm->ino,
3505 pm->gen, from_path);
3506 } else {
3507 ret = get_first_ref(sctx->parent_root, pm->ino,
3508 &parent_ino, &parent_gen, name);
3509 if (ret < 0)
3510 goto out;
3511 ret = get_cur_path(sctx, parent_ino, parent_gen,
3512 from_path);
3513 if (ret < 0)
3514 goto out;
3515 ret = fs_path_add_path(from_path, name);
3516 }
3517 if (ret < 0)
3518 goto out;
3519
3520 sctx->send_progress = sctx->cur_ino + 1;
3521 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3522 if (ret < 0)
3523 goto out;
3524 if (ret) {
3525 LIST_HEAD(deleted_refs);
3526 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3527 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3528 &pm->update_refs, &deleted_refs,
3529 is_orphan);
3530 if (ret < 0)
3531 goto out;
3532 if (rmdir_ino) {
3533 dm = get_waiting_dir_move(sctx, pm->ino);
3534 ASSERT(dm);
3535 dm->rmdir_ino = rmdir_ino;
3536 dm->rmdir_gen = rmdir_gen;
3537 }
3538 goto out;
3539 }
3540 fs_path_reset(name);
3541 to_path = name;
3542 name = NULL;
3543 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3544 if (ret < 0)
3545 goto out;
3546
3547 ret = send_rename(sctx, from_path, to_path);
3548 if (ret < 0)
3549 goto out;
3550
3551 if (rmdir_ino) {
3552 struct orphan_dir_info *odi;
3553 u64 gen;
3554
3555 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3556 if (!odi) {
3557 /* already deleted */
3558 goto finish;
3559 }
3560 gen = odi->gen;
3561
3562 ret = can_rmdir(sctx, rmdir_ino, gen);
3563 if (ret < 0)
3564 goto out;
3565 if (!ret)
3566 goto finish;
3567
3568 name = fs_path_alloc();
3569 if (!name) {
3570 ret = -ENOMEM;
3571 goto out;
3572 }
3573 ret = get_cur_path(sctx, rmdir_ino, gen, name);
3574 if (ret < 0)
3575 goto out;
3576 ret = send_rmdir(sctx, name);
3577 if (ret < 0)
3578 goto out;
3579 }
3580
3581 finish:
3582 ret = cache_dir_utimes(sctx, pm->ino, pm->gen);
3583 if (ret < 0)
3584 goto out;
3585
3586 /*
3587 * After rename/move, need to update the utimes of both new parent(s)
3588 * and old parent(s).
3589 */
3590 list_for_each_entry(cur, &pm->update_refs, list) {
3591 /*
3592 * The parent inode might have been deleted in the send snapshot
3593 */
3594 ret = get_inode_info(sctx->send_root, cur->dir, NULL);
3595 if (ret == -ENOENT) {
3596 ret = 0;
3597 continue;
3598 }
3599 if (ret < 0)
3600 goto out;
3601
3602 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
3603 if (ret < 0)
3604 goto out;
3605 }
3606
3607 out:
3608 fs_path_free(name);
3609 fs_path_free(from_path);
3610 fs_path_free(to_path);
3611 sctx->send_progress = orig_progress;
3612
3613 return ret;
3614 }
3615
free_pending_move(struct send_ctx * sctx,struct pending_dir_move * m)3616 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3617 {
3618 if (!list_empty(&m->list))
3619 list_del(&m->list);
3620 if (!RB_EMPTY_NODE(&m->node))
3621 rb_erase(&m->node, &sctx->pending_dir_moves);
3622 __free_recorded_refs(&m->update_refs);
3623 kfree(m);
3624 }
3625
tail_append_pending_moves(struct send_ctx * sctx,struct pending_dir_move * moves,struct list_head * stack)3626 static void tail_append_pending_moves(struct send_ctx *sctx,
3627 struct pending_dir_move *moves,
3628 struct list_head *stack)
3629 {
3630 if (list_empty(&moves->list)) {
3631 list_add_tail(&moves->list, stack);
3632 } else {
3633 LIST_HEAD(list);
3634 list_splice_init(&moves->list, &list);
3635 list_add_tail(&moves->list, stack);
3636 list_splice_tail(&list, stack);
3637 }
3638 if (!RB_EMPTY_NODE(&moves->node)) {
3639 rb_erase(&moves->node, &sctx->pending_dir_moves);
3640 RB_CLEAR_NODE(&moves->node);
3641 }
3642 }
3643
apply_children_dir_moves(struct send_ctx * sctx)3644 static int apply_children_dir_moves(struct send_ctx *sctx)
3645 {
3646 struct pending_dir_move *pm;
3647 LIST_HEAD(stack);
3648 u64 parent_ino = sctx->cur_ino;
3649 int ret = 0;
3650
3651 pm = get_pending_dir_moves(sctx, parent_ino);
3652 if (!pm)
3653 return 0;
3654
3655 tail_append_pending_moves(sctx, pm, &stack);
3656
3657 while (!list_empty(&stack)) {
3658 pm = list_first_entry(&stack, struct pending_dir_move, list);
3659 parent_ino = pm->ino;
3660 ret = apply_dir_move(sctx, pm);
3661 free_pending_move(sctx, pm);
3662 if (ret)
3663 goto out;
3664 pm = get_pending_dir_moves(sctx, parent_ino);
3665 if (pm)
3666 tail_append_pending_moves(sctx, pm, &stack);
3667 }
3668 return 0;
3669
3670 out:
3671 while (!list_empty(&stack)) {
3672 pm = list_first_entry(&stack, struct pending_dir_move, list);
3673 free_pending_move(sctx, pm);
3674 }
3675 return ret;
3676 }
3677
3678 /*
3679 * We might need to delay a directory rename even when no ancestor directory
3680 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3681 * renamed. This happens when we rename a directory to the old name (the name
3682 * in the parent root) of some other unrelated directory that got its rename
3683 * delayed due to some ancestor with higher number that got renamed.
3684 *
3685 * Example:
3686 *
3687 * Parent snapshot:
3688 * . (ino 256)
3689 * |---- a/ (ino 257)
3690 * | |---- file (ino 260)
3691 * |
3692 * |---- b/ (ino 258)
3693 * |---- c/ (ino 259)
3694 *
3695 * Send snapshot:
3696 * . (ino 256)
3697 * |---- a/ (ino 258)
3698 * |---- x/ (ino 259)
3699 * |---- y/ (ino 257)
3700 * |----- file (ino 260)
3701 *
3702 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3703 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3704 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3705 * must issue is:
3706 *
3707 * 1 - rename 259 from 'c' to 'x'
3708 * 2 - rename 257 from 'a' to 'x/y'
3709 * 3 - rename 258 from 'b' to 'a'
3710 *
3711 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3712 * be done right away and < 0 on error.
3713 */
wait_for_dest_dir_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3714 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3715 struct recorded_ref *parent_ref,
3716 const bool is_orphan)
3717 {
3718 BTRFS_PATH_AUTO_FREE(path);
3719 struct btrfs_key key;
3720 struct btrfs_key di_key;
3721 struct btrfs_dir_item *di;
3722 u64 left_gen;
3723 u64 right_gen;
3724 int ret = 0;
3725 struct waiting_dir_move *wdm;
3726
3727 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3728 return 0;
3729
3730 path = alloc_path_for_send();
3731 if (!path)
3732 return -ENOMEM;
3733
3734 key.objectid = parent_ref->dir;
3735 key.type = BTRFS_DIR_ITEM_KEY;
3736 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3737
3738 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3739 if (ret < 0)
3740 return ret;
3741 if (ret > 0)
3742 return 0;
3743
3744 di = btrfs_match_dir_item_name(path, parent_ref->name,
3745 parent_ref->name_len);
3746 if (!di)
3747 return 0;
3748 /*
3749 * di_key.objectid has the number of the inode that has a dentry in the
3750 * parent directory with the same name that sctx->cur_ino is being
3751 * renamed to. We need to check if that inode is in the send root as
3752 * well and if it is currently marked as an inode with a pending rename,
3753 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3754 * that it happens after that other inode is renamed.
3755 */
3756 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3757 if (di_key.type != BTRFS_INODE_ITEM_KEY)
3758 return 0;
3759
3760 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
3761 if (ret < 0)
3762 return ret;
3763 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
3764 if (ret < 0) {
3765 if (ret == -ENOENT)
3766 ret = 0;
3767 return ret;
3768 }
3769
3770 /* Different inode, no need to delay the rename of sctx->cur_ino */
3771 if (right_gen != left_gen)
3772 return 0;
3773
3774 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3775 if (wdm && !wdm->orphanized) {
3776 ret = add_pending_dir_move(sctx,
3777 sctx->cur_ino,
3778 sctx->cur_inode_gen,
3779 di_key.objectid,
3780 &sctx->new_refs,
3781 &sctx->deleted_refs,
3782 is_orphan);
3783 if (!ret)
3784 ret = 1;
3785 }
3786 return ret;
3787 }
3788
3789 /*
3790 * Check if inode ino2, or any of its ancestors, is inode ino1.
3791 * Return 1 if true, 0 if false and < 0 on error.
3792 */
check_ino_in_path(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,const u64 ino2_gen,struct fs_path * fs_path)3793 static int check_ino_in_path(struct btrfs_root *root,
3794 const u64 ino1,
3795 const u64 ino1_gen,
3796 const u64 ino2,
3797 const u64 ino2_gen,
3798 struct fs_path *fs_path)
3799 {
3800 u64 ino = ino2;
3801
3802 if (ino1 == ino2)
3803 return ino1_gen == ino2_gen;
3804
3805 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3806 u64 parent;
3807 u64 parent_gen;
3808 int ret;
3809
3810 fs_path_reset(fs_path);
3811 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3812 if (ret < 0)
3813 return ret;
3814 if (parent == ino1)
3815 return parent_gen == ino1_gen;
3816 ino = parent;
3817 }
3818 return 0;
3819 }
3820
3821 /*
3822 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3823 * possible path (in case ino2 is not a directory and has multiple hard links).
3824 * Return 1 if true, 0 if false and < 0 on error.
3825 */
is_ancestor(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,struct fs_path * fs_path)3826 static int is_ancestor(struct btrfs_root *root,
3827 const u64 ino1,
3828 const u64 ino1_gen,
3829 const u64 ino2,
3830 struct fs_path *fs_path)
3831 {
3832 bool free_fs_path = false;
3833 int ret = 0;
3834 int iter_ret = 0;
3835 BTRFS_PATH_AUTO_FREE(path);
3836 struct btrfs_key key;
3837
3838 if (!fs_path) {
3839 fs_path = fs_path_alloc();
3840 if (!fs_path)
3841 return -ENOMEM;
3842 free_fs_path = true;
3843 }
3844
3845 path = alloc_path_for_send();
3846 if (!path) {
3847 ret = -ENOMEM;
3848 goto out;
3849 }
3850
3851 key.objectid = ino2;
3852 key.type = BTRFS_INODE_REF_KEY;
3853 key.offset = 0;
3854
3855 btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3856 struct extent_buffer *leaf = path->nodes[0];
3857 int slot = path->slots[0];
3858 u32 cur_offset = 0;
3859 u32 item_size;
3860
3861 if (key.objectid != ino2)
3862 break;
3863 if (key.type != BTRFS_INODE_REF_KEY &&
3864 key.type != BTRFS_INODE_EXTREF_KEY)
3865 break;
3866
3867 item_size = btrfs_item_size(leaf, slot);
3868 while (cur_offset < item_size) {
3869 u64 parent;
3870 u64 parent_gen;
3871
3872 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3873 unsigned long ptr;
3874 struct btrfs_inode_extref *extref;
3875
3876 ptr = btrfs_item_ptr_offset(leaf, slot);
3877 extref = (struct btrfs_inode_extref *)
3878 (ptr + cur_offset);
3879 parent = btrfs_inode_extref_parent(leaf,
3880 extref);
3881 cur_offset += sizeof(*extref);
3882 cur_offset += btrfs_inode_extref_name_len(leaf,
3883 extref);
3884 } else {
3885 parent = key.offset;
3886 cur_offset = item_size;
3887 }
3888
3889 ret = get_inode_gen(root, parent, &parent_gen);
3890 if (ret < 0)
3891 goto out;
3892 ret = check_ino_in_path(root, ino1, ino1_gen,
3893 parent, parent_gen, fs_path);
3894 if (ret)
3895 goto out;
3896 }
3897 }
3898 ret = 0;
3899 if (iter_ret < 0)
3900 ret = iter_ret;
3901
3902 out:
3903 if (free_fs_path)
3904 fs_path_free(fs_path);
3905 return ret;
3906 }
3907
wait_for_parent_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3908 static int wait_for_parent_move(struct send_ctx *sctx,
3909 struct recorded_ref *parent_ref,
3910 const bool is_orphan)
3911 {
3912 int ret = 0;
3913 u64 ino = parent_ref->dir;
3914 u64 ino_gen = parent_ref->dir_gen;
3915 u64 parent_ino_before, parent_ino_after;
3916 struct fs_path *path_before = NULL;
3917 struct fs_path *path_after = NULL;
3918 int len1, len2;
3919
3920 path_after = fs_path_alloc();
3921 path_before = fs_path_alloc();
3922 if (!path_after || !path_before) {
3923 ret = -ENOMEM;
3924 goto out;
3925 }
3926
3927 /*
3928 * Our current directory inode may not yet be renamed/moved because some
3929 * ancestor (immediate or not) has to be renamed/moved first. So find if
3930 * such ancestor exists and make sure our own rename/move happens after
3931 * that ancestor is processed to avoid path build infinite loops (done
3932 * at get_cur_path()).
3933 */
3934 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3935 u64 parent_ino_after_gen;
3936
3937 if (is_waiting_for_move(sctx, ino)) {
3938 /*
3939 * If the current inode is an ancestor of ino in the
3940 * parent root, we need to delay the rename of the
3941 * current inode, otherwise don't delayed the rename
3942 * because we can end up with a circular dependency
3943 * of renames, resulting in some directories never
3944 * getting the respective rename operations issued in
3945 * the send stream or getting into infinite path build
3946 * loops.
3947 */
3948 ret = is_ancestor(sctx->parent_root,
3949 sctx->cur_ino, sctx->cur_inode_gen,
3950 ino, path_before);
3951 if (ret)
3952 break;
3953 }
3954
3955 fs_path_reset(path_before);
3956 fs_path_reset(path_after);
3957
3958 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3959 &parent_ino_after_gen, path_after);
3960 if (ret < 0)
3961 goto out;
3962 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3963 NULL, path_before);
3964 if (ret < 0 && ret != -ENOENT) {
3965 goto out;
3966 } else if (ret == -ENOENT) {
3967 ret = 0;
3968 break;
3969 }
3970
3971 len1 = fs_path_len(path_before);
3972 len2 = fs_path_len(path_after);
3973 if (ino > sctx->cur_ino &&
3974 (parent_ino_before != parent_ino_after || len1 != len2 ||
3975 memcmp(path_before->start, path_after->start, len1))) {
3976 u64 parent_ino_gen;
3977
3978 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
3979 if (ret < 0)
3980 goto out;
3981 if (ino_gen == parent_ino_gen) {
3982 ret = 1;
3983 break;
3984 }
3985 }
3986 ino = parent_ino_after;
3987 ino_gen = parent_ino_after_gen;
3988 }
3989
3990 out:
3991 fs_path_free(path_before);
3992 fs_path_free(path_after);
3993
3994 if (ret == 1) {
3995 ret = add_pending_dir_move(sctx,
3996 sctx->cur_ino,
3997 sctx->cur_inode_gen,
3998 ino,
3999 &sctx->new_refs,
4000 &sctx->deleted_refs,
4001 is_orphan);
4002 if (!ret)
4003 ret = 1;
4004 }
4005
4006 return ret;
4007 }
4008
update_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)4009 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4010 {
4011 int ret;
4012 struct fs_path *new_path;
4013
4014 /*
4015 * Our reference's name member points to its full_path member string, so
4016 * we use here a new path.
4017 */
4018 new_path = fs_path_alloc();
4019 if (!new_path)
4020 return -ENOMEM;
4021
4022 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4023 if (ret < 0) {
4024 fs_path_free(new_path);
4025 return ret;
4026 }
4027 ret = fs_path_add(new_path, ref->name, ref->name_len);
4028 if (ret < 0) {
4029 fs_path_free(new_path);
4030 return ret;
4031 }
4032
4033 fs_path_free(ref->full_path);
4034 set_ref_path(ref, new_path);
4035
4036 return 0;
4037 }
4038
4039 /*
4040 * When processing the new references for an inode we may orphanize an existing
4041 * directory inode because its old name conflicts with one of the new references
4042 * of the current inode. Later, when processing another new reference of our
4043 * inode, we might need to orphanize another inode, but the path we have in the
4044 * reference reflects the pre-orphanization name of the directory we previously
4045 * orphanized. For example:
4046 *
4047 * parent snapshot looks like:
4048 *
4049 * . (ino 256)
4050 * |----- f1 (ino 257)
4051 * |----- f2 (ino 258)
4052 * |----- d1/ (ino 259)
4053 * |----- d2/ (ino 260)
4054 *
4055 * send snapshot looks like:
4056 *
4057 * . (ino 256)
4058 * |----- d1 (ino 258)
4059 * |----- f2/ (ino 259)
4060 * |----- f2_link/ (ino 260)
4061 * | |----- f1 (ino 257)
4062 * |
4063 * |----- d2 (ino 258)
4064 *
4065 * When processing inode 257 we compute the name for inode 259 as "d1", and we
4066 * cache it in the name cache. Later when we start processing inode 258, when
4067 * collecting all its new references we set a full path of "d1/d2" for its new
4068 * reference with name "d2". When we start processing the new references we
4069 * start by processing the new reference with name "d1", and this results in
4070 * orphanizing inode 259, since its old reference causes a conflict. Then we
4071 * move on the next new reference, with name "d2", and we find out we must
4072 * orphanize inode 260, as its old reference conflicts with ours - but for the
4073 * orphanization we use a source path corresponding to the path we stored in the
4074 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4075 * receiver fail since the path component "d1/" no longer exists, it was renamed
4076 * to "o259-6-0/" when processing the previous new reference. So in this case we
4077 * must recompute the path in the new reference and use it for the new
4078 * orphanization operation.
4079 */
refresh_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)4080 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4081 {
4082 char *name;
4083 int ret;
4084
4085 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4086 if (!name)
4087 return -ENOMEM;
4088
4089 fs_path_reset(ref->full_path);
4090 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4091 if (ret < 0)
4092 goto out;
4093
4094 ret = fs_path_add(ref->full_path, name, ref->name_len);
4095 if (ret < 0)
4096 goto out;
4097
4098 /* Update the reference's base name pointer. */
4099 set_ref_path(ref, ref->full_path);
4100 out:
4101 kfree(name);
4102 return ret;
4103 }
4104
rbtree_check_dir_ref_comp(const void * k,const struct rb_node * node)4105 static int rbtree_check_dir_ref_comp(const void *k, const struct rb_node *node)
4106 {
4107 const struct recorded_ref *data = k;
4108 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4109
4110 if (data->dir > ref->dir)
4111 return 1;
4112 if (data->dir < ref->dir)
4113 return -1;
4114 if (data->dir_gen > ref->dir_gen)
4115 return 1;
4116 if (data->dir_gen < ref->dir_gen)
4117 return -1;
4118 return 0;
4119 }
4120
rbtree_check_dir_ref_less(struct rb_node * node,const struct rb_node * parent)4121 static bool rbtree_check_dir_ref_less(struct rb_node *node, const struct rb_node *parent)
4122 {
4123 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4124
4125 return rbtree_check_dir_ref_comp(entry, parent) < 0;
4126 }
4127
record_check_dir_ref_in_tree(struct rb_root * root,struct recorded_ref * ref,struct list_head * list)4128 static int record_check_dir_ref_in_tree(struct rb_root *root,
4129 struct recorded_ref *ref, struct list_head *list)
4130 {
4131 struct recorded_ref *tmp_ref;
4132 int ret;
4133
4134 if (rb_find(ref, root, rbtree_check_dir_ref_comp))
4135 return 0;
4136
4137 ret = dup_ref(ref, list);
4138 if (ret < 0)
4139 return ret;
4140
4141 tmp_ref = list_last_entry(list, struct recorded_ref, list);
4142 rb_add(&tmp_ref->node, root, rbtree_check_dir_ref_less);
4143 tmp_ref->root = root;
4144 return 0;
4145 }
4146
rename_current_inode(struct send_ctx * sctx,struct fs_path * current_path,struct fs_path * new_path)4147 static int rename_current_inode(struct send_ctx *sctx,
4148 struct fs_path *current_path,
4149 struct fs_path *new_path)
4150 {
4151 int ret;
4152
4153 ret = send_rename(sctx, current_path, new_path);
4154 if (ret < 0)
4155 return ret;
4156
4157 ret = fs_path_copy(&sctx->cur_inode_path, new_path);
4158 if (ret < 0)
4159 return ret;
4160
4161 return fs_path_copy(current_path, new_path);
4162 }
4163
4164 /*
4165 * This does all the move/link/unlink/rmdir magic.
4166 */
process_recorded_refs(struct send_ctx * sctx,int * pending_move)4167 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4168 {
4169 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4170 int ret = 0;
4171 struct recorded_ref *cur;
4172 struct recorded_ref *cur2;
4173 LIST_HEAD(check_dirs);
4174 struct rb_root rbtree_check_dirs = RB_ROOT;
4175 struct fs_path *valid_path = NULL;
4176 u64 ow_inode = 0;
4177 u64 ow_gen;
4178 u64 ow_mode;
4179 bool did_overwrite = false;
4180 bool is_orphan = false;
4181 bool can_rename = true;
4182 bool orphanized_dir = false;
4183 bool orphanized_ancestor = false;
4184
4185 /*
4186 * This should never happen as the root dir always has the same ref
4187 * which is always '..'
4188 */
4189 if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) {
4190 btrfs_err(fs_info,
4191 "send: unexpected inode %llu in process_recorded_refs()",
4192 sctx->cur_ino);
4193 ret = -EINVAL;
4194 goto out;
4195 }
4196
4197 valid_path = fs_path_alloc();
4198 if (!valid_path) {
4199 ret = -ENOMEM;
4200 goto out;
4201 }
4202
4203 /*
4204 * First, check if the first ref of the current inode was overwritten
4205 * before. If yes, we know that the current inode was already orphanized
4206 * and thus use the orphan name. If not, we can use get_cur_path to
4207 * get the path of the first ref as it would like while receiving at
4208 * this point in time.
4209 * New inodes are always orphan at the beginning, so force to use the
4210 * orphan name in this case.
4211 * The first ref is stored in valid_path and will be updated if it
4212 * gets moved around.
4213 */
4214 if (!sctx->cur_inode_new) {
4215 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4216 sctx->cur_inode_gen);
4217 if (ret < 0)
4218 goto out;
4219 if (ret)
4220 did_overwrite = true;
4221 }
4222 if (sctx->cur_inode_new || did_overwrite) {
4223 ret = gen_unique_name(sctx, sctx->cur_ino,
4224 sctx->cur_inode_gen, valid_path);
4225 if (ret < 0)
4226 goto out;
4227 is_orphan = true;
4228 } else {
4229 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4230 valid_path);
4231 if (ret < 0)
4232 goto out;
4233 }
4234
4235 /*
4236 * Before doing any rename and link operations, do a first pass on the
4237 * new references to orphanize any unprocessed inodes that may have a
4238 * reference that conflicts with one of the new references of the current
4239 * inode. This needs to happen first because a new reference may conflict
4240 * with the old reference of a parent directory, so we must make sure
4241 * that the path used for link and rename commands don't use an
4242 * orphanized name when an ancestor was not yet orphanized.
4243 *
4244 * Example:
4245 *
4246 * Parent snapshot:
4247 *
4248 * . (ino 256)
4249 * |----- testdir/ (ino 259)
4250 * | |----- a (ino 257)
4251 * |
4252 * |----- b (ino 258)
4253 *
4254 * Send snapshot:
4255 *
4256 * . (ino 256)
4257 * |----- testdir_2/ (ino 259)
4258 * | |----- a (ino 260)
4259 * |
4260 * |----- testdir (ino 257)
4261 * |----- b (ino 257)
4262 * |----- b2 (ino 258)
4263 *
4264 * Processing the new reference for inode 257 with name "b" may happen
4265 * before processing the new reference with name "testdir". If so, we
4266 * must make sure that by the time we send a link command to create the
4267 * hard link "b", inode 259 was already orphanized, since the generated
4268 * path in "valid_path" already contains the orphanized name for 259.
4269 * We are processing inode 257, so only later when processing 259 we do
4270 * the rename operation to change its temporary (orphanized) name to
4271 * "testdir_2".
4272 */
4273 list_for_each_entry(cur, &sctx->new_refs, list) {
4274 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4275 if (ret < 0)
4276 goto out;
4277 if (ret == inode_state_will_create)
4278 continue;
4279
4280 /*
4281 * Check if this new ref would overwrite the first ref of another
4282 * unprocessed inode. If yes, orphanize the overwritten inode.
4283 * If we find an overwritten ref that is not the first ref,
4284 * simply unlink it.
4285 */
4286 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4287 cur->name, cur->name_len,
4288 &ow_inode, &ow_gen, &ow_mode);
4289 if (ret < 0)
4290 goto out;
4291 if (ret) {
4292 ret = is_first_ref(sctx->parent_root,
4293 ow_inode, cur->dir, cur->name,
4294 cur->name_len);
4295 if (ret < 0)
4296 goto out;
4297 if (ret) {
4298 struct name_cache_entry *nce;
4299 struct waiting_dir_move *wdm;
4300
4301 if (orphanized_dir) {
4302 ret = refresh_ref_path(sctx, cur);
4303 if (ret < 0)
4304 goto out;
4305 }
4306
4307 ret = orphanize_inode(sctx, ow_inode, ow_gen,
4308 cur->full_path);
4309 if (ret < 0)
4310 goto out;
4311 if (S_ISDIR(ow_mode))
4312 orphanized_dir = true;
4313
4314 /*
4315 * If ow_inode has its rename operation delayed
4316 * make sure that its orphanized name is used in
4317 * the source path when performing its rename
4318 * operation.
4319 */
4320 wdm = get_waiting_dir_move(sctx, ow_inode);
4321 if (wdm)
4322 wdm->orphanized = true;
4323
4324 /*
4325 * Make sure we clear our orphanized inode's
4326 * name from the name cache. This is because the
4327 * inode ow_inode might be an ancestor of some
4328 * other inode that will be orphanized as well
4329 * later and has an inode number greater than
4330 * sctx->send_progress. We need to prevent
4331 * future name lookups from using the old name
4332 * and get instead the orphan name.
4333 */
4334 nce = name_cache_search(sctx, ow_inode, ow_gen);
4335 if (nce)
4336 btrfs_lru_cache_remove(&sctx->name_cache,
4337 &nce->entry);
4338
4339 /*
4340 * ow_inode might currently be an ancestor of
4341 * cur_ino, therefore compute valid_path (the
4342 * current path of cur_ino) again because it
4343 * might contain the pre-orphanization name of
4344 * ow_inode, which is no longer valid.
4345 */
4346 ret = is_ancestor(sctx->parent_root,
4347 ow_inode, ow_gen,
4348 sctx->cur_ino, NULL);
4349 if (ret > 0) {
4350 orphanized_ancestor = true;
4351 fs_path_reset(valid_path);
4352 fs_path_reset(&sctx->cur_inode_path);
4353 ret = get_cur_path(sctx, sctx->cur_ino,
4354 sctx->cur_inode_gen,
4355 valid_path);
4356 }
4357 if (ret < 0)
4358 goto out;
4359 } else {
4360 /*
4361 * If we previously orphanized a directory that
4362 * collided with a new reference that we already
4363 * processed, recompute the current path because
4364 * that directory may be part of the path.
4365 */
4366 if (orphanized_dir) {
4367 ret = refresh_ref_path(sctx, cur);
4368 if (ret < 0)
4369 goto out;
4370 }
4371 ret = send_unlink(sctx, cur->full_path);
4372 if (ret < 0)
4373 goto out;
4374 }
4375 }
4376
4377 }
4378
4379 list_for_each_entry(cur, &sctx->new_refs, list) {
4380 /*
4381 * We may have refs where the parent directory does not exist
4382 * yet. This happens if the parent directories inum is higher
4383 * than the current inum. To handle this case, we create the
4384 * parent directory out of order. But we need to check if this
4385 * did already happen before due to other refs in the same dir.
4386 */
4387 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4388 if (ret < 0)
4389 goto out;
4390 if (ret == inode_state_will_create) {
4391 ret = 0;
4392 /*
4393 * First check if any of the current inodes refs did
4394 * already create the dir.
4395 */
4396 list_for_each_entry(cur2, &sctx->new_refs, list) {
4397 if (cur == cur2)
4398 break;
4399 if (cur2->dir == cur->dir) {
4400 ret = 1;
4401 break;
4402 }
4403 }
4404
4405 /*
4406 * If that did not happen, check if a previous inode
4407 * did already create the dir.
4408 */
4409 if (!ret)
4410 ret = did_create_dir(sctx, cur->dir);
4411 if (ret < 0)
4412 goto out;
4413 if (!ret) {
4414 ret = send_create_inode(sctx, cur->dir);
4415 if (ret < 0)
4416 goto out;
4417 cache_dir_created(sctx, cur->dir);
4418 }
4419 }
4420
4421 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4422 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4423 if (ret < 0)
4424 goto out;
4425 if (ret == 1) {
4426 can_rename = false;
4427 *pending_move = 1;
4428 }
4429 }
4430
4431 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4432 can_rename) {
4433 ret = wait_for_parent_move(sctx, cur, is_orphan);
4434 if (ret < 0)
4435 goto out;
4436 if (ret == 1) {
4437 can_rename = false;
4438 *pending_move = 1;
4439 }
4440 }
4441
4442 /*
4443 * link/move the ref to the new place. If we have an orphan
4444 * inode, move it and update valid_path. If not, link or move
4445 * it depending on the inode mode.
4446 */
4447 if (is_orphan && can_rename) {
4448 ret = rename_current_inode(sctx, valid_path, cur->full_path);
4449 if (ret < 0)
4450 goto out;
4451 is_orphan = false;
4452 } else if (can_rename) {
4453 if (S_ISDIR(sctx->cur_inode_mode)) {
4454 /*
4455 * Dirs can't be linked, so move it. For moved
4456 * dirs, we always have one new and one deleted
4457 * ref. The deleted ref is ignored later.
4458 */
4459 ret = rename_current_inode(sctx, valid_path,
4460 cur->full_path);
4461 if (ret < 0)
4462 goto out;
4463 } else {
4464 /*
4465 * We might have previously orphanized an inode
4466 * which is an ancestor of our current inode,
4467 * so our reference's full path, which was
4468 * computed before any such orphanizations, must
4469 * be updated.
4470 */
4471 if (orphanized_dir) {
4472 ret = update_ref_path(sctx, cur);
4473 if (ret < 0)
4474 goto out;
4475 }
4476 ret = send_link(sctx, cur->full_path,
4477 valid_path);
4478 if (ret < 0)
4479 goto out;
4480 }
4481 }
4482 ret = record_check_dir_ref_in_tree(&rbtree_check_dirs, cur, &check_dirs);
4483 if (ret < 0)
4484 goto out;
4485 }
4486
4487 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4488 /*
4489 * Check if we can already rmdir the directory. If not,
4490 * orphanize it. For every dir item inside that gets deleted
4491 * later, we do this check again and rmdir it then if possible.
4492 * See the use of check_dirs for more details.
4493 */
4494 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4495 if (ret < 0)
4496 goto out;
4497 if (ret) {
4498 ret = send_rmdir(sctx, valid_path);
4499 if (ret < 0)
4500 goto out;
4501 } else if (!is_orphan) {
4502 ret = orphanize_inode(sctx, sctx->cur_ino,
4503 sctx->cur_inode_gen, valid_path);
4504 if (ret < 0)
4505 goto out;
4506 is_orphan = true;
4507 }
4508
4509 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4510 ret = record_check_dir_ref_in_tree(&rbtree_check_dirs, cur, &check_dirs);
4511 if (ret < 0)
4512 goto out;
4513 }
4514 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4515 !list_empty(&sctx->deleted_refs)) {
4516 /*
4517 * We have a moved dir. Add the old parent to check_dirs
4518 */
4519 cur = list_first_entry(&sctx->deleted_refs, struct recorded_ref, list);
4520 ret = record_check_dir_ref_in_tree(&rbtree_check_dirs, cur, &check_dirs);
4521 if (ret < 0)
4522 goto out;
4523 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4524 /*
4525 * We have a non dir inode. Go through all deleted refs and
4526 * unlink them if they were not already overwritten by other
4527 * inodes.
4528 */
4529 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4530 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4531 sctx->cur_ino, sctx->cur_inode_gen,
4532 cur->name, cur->name_len);
4533 if (ret < 0)
4534 goto out;
4535 if (!ret) {
4536 /*
4537 * If we orphanized any ancestor before, we need
4538 * to recompute the full path for deleted names,
4539 * since any such path was computed before we
4540 * processed any references and orphanized any
4541 * ancestor inode.
4542 */
4543 if (orphanized_ancestor) {
4544 ret = update_ref_path(sctx, cur);
4545 if (ret < 0)
4546 goto out;
4547 }
4548 ret = send_unlink(sctx, cur->full_path);
4549 if (ret < 0)
4550 goto out;
4551 if (is_current_inode_path(sctx, cur->full_path))
4552 fs_path_reset(&sctx->cur_inode_path);
4553 }
4554 ret = record_check_dir_ref_in_tree(&rbtree_check_dirs, cur, &check_dirs);
4555 if (ret < 0)
4556 goto out;
4557 }
4558 /*
4559 * If the inode is still orphan, unlink the orphan. This may
4560 * happen when a previous inode did overwrite the first ref
4561 * of this inode and no new refs were added for the current
4562 * inode. Unlinking does not mean that the inode is deleted in
4563 * all cases. There may still be links to this inode in other
4564 * places.
4565 */
4566 if (is_orphan) {
4567 ret = send_unlink(sctx, valid_path);
4568 if (ret < 0)
4569 goto out;
4570 }
4571 }
4572
4573 /*
4574 * We did collect all parent dirs where cur_inode was once located. We
4575 * now go through all these dirs and check if they are pending for
4576 * deletion and if it's finally possible to perform the rmdir now.
4577 * We also update the inode stats of the parent dirs here.
4578 */
4579 list_for_each_entry(cur, &check_dirs, list) {
4580 /*
4581 * In case we had refs into dirs that were not processed yet,
4582 * we don't need to do the utime and rmdir logic for these dirs.
4583 * The dir will be processed later.
4584 */
4585 if (cur->dir > sctx->cur_ino)
4586 continue;
4587
4588 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4589 if (ret < 0)
4590 goto out;
4591
4592 if (ret == inode_state_did_create ||
4593 ret == inode_state_no_change) {
4594 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
4595 if (ret < 0)
4596 goto out;
4597 } else if (ret == inode_state_did_delete) {
4598 ret = can_rmdir(sctx, cur->dir, cur->dir_gen);
4599 if (ret < 0)
4600 goto out;
4601 if (ret) {
4602 ret = get_cur_path(sctx, cur->dir,
4603 cur->dir_gen, valid_path);
4604 if (ret < 0)
4605 goto out;
4606 ret = send_rmdir(sctx, valid_path);
4607 if (ret < 0)
4608 goto out;
4609 }
4610 }
4611 }
4612
4613 ret = 0;
4614
4615 out:
4616 __free_recorded_refs(&check_dirs);
4617 free_recorded_refs(sctx);
4618 fs_path_free(valid_path);
4619 return ret;
4620 }
4621
rbtree_ref_comp(const void * k,const struct rb_node * node)4622 static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4623 {
4624 const struct recorded_ref *data = k;
4625 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4626
4627 if (data->dir > ref->dir)
4628 return 1;
4629 if (data->dir < ref->dir)
4630 return -1;
4631 if (data->dir_gen > ref->dir_gen)
4632 return 1;
4633 if (data->dir_gen < ref->dir_gen)
4634 return -1;
4635 if (data->name_len > ref->name_len)
4636 return 1;
4637 if (data->name_len < ref->name_len)
4638 return -1;
4639 return strcmp(data->name, ref->name);
4640 }
4641
rbtree_ref_less(struct rb_node * node,const struct rb_node * parent)4642 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4643 {
4644 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4645
4646 return rbtree_ref_comp(entry, parent) < 0;
4647 }
4648
record_ref_in_tree(struct rb_root * root,struct list_head * refs,struct fs_path * name,u64 dir,u64 dir_gen,struct send_ctx * sctx)4649 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4650 struct fs_path *name, u64 dir, u64 dir_gen,
4651 struct send_ctx *sctx)
4652 {
4653 int ret = 0;
4654 struct fs_path *path = NULL;
4655 struct recorded_ref *ref = NULL;
4656
4657 path = fs_path_alloc();
4658 if (!path) {
4659 ret = -ENOMEM;
4660 goto out;
4661 }
4662
4663 ref = recorded_ref_alloc();
4664 if (!ref) {
4665 ret = -ENOMEM;
4666 goto out;
4667 }
4668
4669 ret = get_cur_path(sctx, dir, dir_gen, path);
4670 if (ret < 0)
4671 goto out;
4672 ret = fs_path_add_path(path, name);
4673 if (ret < 0)
4674 goto out;
4675
4676 ref->dir = dir;
4677 ref->dir_gen = dir_gen;
4678 set_ref_path(ref, path);
4679 list_add_tail(&ref->list, refs);
4680 rb_add(&ref->node, root, rbtree_ref_less);
4681 ref->root = root;
4682 out:
4683 if (ret) {
4684 if (path && (!ref || !ref->full_path))
4685 fs_path_free(path);
4686 recorded_ref_free(ref);
4687 }
4688 return ret;
4689 }
4690
record_new_ref_if_needed(u64 dir,struct fs_path * name,void * ctx)4691 static int record_new_ref_if_needed(u64 dir, struct fs_path *name, void *ctx)
4692 {
4693 int ret;
4694 struct send_ctx *sctx = ctx;
4695 struct rb_node *node = NULL;
4696 struct recorded_ref data;
4697 struct recorded_ref *ref;
4698 u64 dir_gen;
4699
4700 ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4701 if (ret < 0)
4702 return ret;
4703
4704 data.dir = dir;
4705 data.dir_gen = dir_gen;
4706 set_ref_path(&data, name);
4707 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4708 if (node) {
4709 ref = rb_entry(node, struct recorded_ref, node);
4710 recorded_ref_free(ref);
4711 } else {
4712 ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4713 &sctx->new_refs, name, dir, dir_gen,
4714 sctx);
4715 }
4716
4717 return ret;
4718 }
4719
record_deleted_ref_if_needed(u64 dir,struct fs_path * name,void * ctx)4720 static int record_deleted_ref_if_needed(u64 dir, struct fs_path *name, void *ctx)
4721 {
4722 int ret;
4723 struct send_ctx *sctx = ctx;
4724 struct rb_node *node = NULL;
4725 struct recorded_ref data;
4726 struct recorded_ref *ref;
4727 u64 dir_gen;
4728
4729 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4730 if (ret < 0)
4731 return ret;
4732
4733 data.dir = dir;
4734 data.dir_gen = dir_gen;
4735 set_ref_path(&data, name);
4736 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4737 if (node) {
4738 ref = rb_entry(node, struct recorded_ref, node);
4739 recorded_ref_free(ref);
4740 } else {
4741 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4742 &sctx->deleted_refs, name, dir,
4743 dir_gen, sctx);
4744 }
4745
4746 return ret;
4747 }
4748
record_new_ref(struct send_ctx * sctx)4749 static int record_new_ref(struct send_ctx *sctx)
4750 {
4751 int ret;
4752
4753 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4754 false, record_new_ref_if_needed, sctx);
4755 if (ret < 0)
4756 return ret;
4757
4758 return 0;
4759 }
4760
record_deleted_ref(struct send_ctx * sctx)4761 static int record_deleted_ref(struct send_ctx *sctx)
4762 {
4763 int ret;
4764
4765 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, sctx->cmp_key,
4766 false, record_deleted_ref_if_needed, sctx);
4767 if (ret < 0)
4768 return ret;
4769
4770 return 0;
4771 }
4772
record_changed_ref(struct send_ctx * sctx)4773 static int record_changed_ref(struct send_ctx *sctx)
4774 {
4775 int ret;
4776
4777 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4778 false, record_new_ref_if_needed, sctx);
4779 if (ret < 0)
4780 return ret;
4781 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, sctx->cmp_key,
4782 false, record_deleted_ref_if_needed, sctx);
4783 if (ret < 0)
4784 return ret;
4785
4786 return 0;
4787 }
4788
4789 /*
4790 * Record and process all refs at once. Needed when an inode changes the
4791 * generation number, which means that it was deleted and recreated.
4792 */
process_all_refs(struct send_ctx * sctx,enum btrfs_compare_tree_result cmd)4793 static int process_all_refs(struct send_ctx *sctx,
4794 enum btrfs_compare_tree_result cmd)
4795 {
4796 int ret = 0;
4797 int iter_ret = 0;
4798 struct btrfs_root *root;
4799 BTRFS_PATH_AUTO_FREE(path);
4800 struct btrfs_key key;
4801 struct btrfs_key found_key;
4802 iterate_inode_ref_t cb;
4803 int pending_move = 0;
4804
4805 path = alloc_path_for_send();
4806 if (!path)
4807 return -ENOMEM;
4808
4809 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4810 root = sctx->send_root;
4811 cb = record_new_ref_if_needed;
4812 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4813 root = sctx->parent_root;
4814 cb = record_deleted_ref_if_needed;
4815 } else {
4816 btrfs_err(sctx->send_root->fs_info,
4817 "Wrong command %d in process_all_refs", cmd);
4818 return -EINVAL;
4819 }
4820
4821 key.objectid = sctx->cmp_key->objectid;
4822 key.type = BTRFS_INODE_REF_KEY;
4823 key.offset = 0;
4824 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4825 if (found_key.objectid != key.objectid ||
4826 (found_key.type != BTRFS_INODE_REF_KEY &&
4827 found_key.type != BTRFS_INODE_EXTREF_KEY))
4828 break;
4829
4830 ret = iterate_inode_ref(root, path, &found_key, false, cb, sctx);
4831 if (ret < 0)
4832 return ret;
4833 }
4834 /* Catch error found during iteration */
4835 if (iter_ret < 0)
4836 return iter_ret;
4837
4838 btrfs_release_path(path);
4839
4840 /*
4841 * We don't actually care about pending_move as we are simply
4842 * re-creating this inode and will be rename'ing it into place once we
4843 * rename the parent directory.
4844 */
4845 return process_recorded_refs(sctx, &pending_move);
4846 }
4847
send_set_xattr(struct send_ctx * sctx,const char * name,int name_len,const char * data,int data_len)4848 static int send_set_xattr(struct send_ctx *sctx,
4849 const char *name, int name_len,
4850 const char *data, int data_len)
4851 {
4852 struct fs_path *path;
4853 int ret;
4854
4855 path = get_cur_inode_path(sctx);
4856 if (IS_ERR(path))
4857 return PTR_ERR(path);
4858
4859 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4860 if (ret < 0)
4861 return ret;
4862
4863 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4864 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4865 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4866
4867 ret = send_cmd(sctx);
4868
4869 tlv_put_failure:
4870 return ret;
4871 }
4872
send_remove_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len)4873 static int send_remove_xattr(struct send_ctx *sctx,
4874 struct fs_path *path,
4875 const char *name, int name_len)
4876 {
4877 int ret;
4878
4879 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4880 if (ret < 0)
4881 return ret;
4882
4883 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4884 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4885
4886 ret = send_cmd(sctx);
4887
4888 tlv_put_failure:
4889 return ret;
4890 }
4891
__process_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)4892 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4893 const char *name, int name_len, const char *data,
4894 int data_len, void *ctx)
4895 {
4896 struct send_ctx *sctx = ctx;
4897 struct posix_acl_xattr_header dummy_acl;
4898
4899 /* Capabilities are emitted by finish_inode_if_needed */
4900 if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4901 return 0;
4902
4903 /*
4904 * This hack is needed because empty acls are stored as zero byte
4905 * data in xattrs. Problem with that is, that receiving these zero byte
4906 * acls will fail later. To fix this, we send a dummy acl list that
4907 * only contains the version number and no entries.
4908 */
4909 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4910 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4911 if (data_len == 0) {
4912 dummy_acl.a_version =
4913 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4914 data = (char *)&dummy_acl;
4915 data_len = sizeof(dummy_acl);
4916 }
4917 }
4918
4919 return send_set_xattr(sctx, name, name_len, data, data_len);
4920 }
4921
__process_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)4922 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4923 const char *name, int name_len,
4924 const char *data, int data_len, void *ctx)
4925 {
4926 struct send_ctx *sctx = ctx;
4927 struct fs_path *p;
4928
4929 p = get_cur_inode_path(sctx);
4930 if (IS_ERR(p))
4931 return PTR_ERR(p);
4932
4933 return send_remove_xattr(sctx, p, name, name_len);
4934 }
4935
process_new_xattr(struct send_ctx * sctx)4936 static int process_new_xattr(struct send_ctx *sctx)
4937 {
4938 return iterate_dir_item(sctx->send_root, sctx->left_path,
4939 __process_new_xattr, sctx);
4940 }
4941
process_deleted_xattr(struct send_ctx * sctx)4942 static int process_deleted_xattr(struct send_ctx *sctx)
4943 {
4944 return iterate_dir_item(sctx->parent_root, sctx->right_path,
4945 __process_deleted_xattr, sctx);
4946 }
4947
4948 struct find_xattr_ctx {
4949 const char *name;
4950 int name_len;
4951 int found_idx;
4952 char *found_data;
4953 int found_data_len;
4954 };
4955
__find_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * vctx)4956 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
4957 int name_len, const char *data, int data_len, void *vctx)
4958 {
4959 struct find_xattr_ctx *ctx = vctx;
4960
4961 if (name_len == ctx->name_len &&
4962 strncmp(name, ctx->name, name_len) == 0) {
4963 ctx->found_idx = num;
4964 ctx->found_data_len = data_len;
4965 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4966 if (!ctx->found_data)
4967 return -ENOMEM;
4968 return 1;
4969 }
4970 return 0;
4971 }
4972
find_xattr(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,const char * name,int name_len,char ** data,int * data_len)4973 static int find_xattr(struct btrfs_root *root,
4974 struct btrfs_path *path,
4975 struct btrfs_key *key,
4976 const char *name, int name_len,
4977 char **data, int *data_len)
4978 {
4979 int ret;
4980 struct find_xattr_ctx ctx;
4981
4982 ctx.name = name;
4983 ctx.name_len = name_len;
4984 ctx.found_idx = -1;
4985 ctx.found_data = NULL;
4986 ctx.found_data_len = 0;
4987
4988 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4989 if (ret < 0)
4990 return ret;
4991
4992 if (ctx.found_idx == -1)
4993 return -ENOENT;
4994 if (data) {
4995 *data = ctx.found_data;
4996 *data_len = ctx.found_data_len;
4997 } else {
4998 kfree(ctx.found_data);
4999 }
5000 return ctx.found_idx;
5001 }
5002
5003
__process_changed_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)5004 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5005 const char *name, int name_len,
5006 const char *data, int data_len,
5007 void *ctx)
5008 {
5009 int ret;
5010 struct send_ctx *sctx = ctx;
5011 char *found_data = NULL;
5012 int found_data_len = 0;
5013
5014 ret = find_xattr(sctx->parent_root, sctx->right_path,
5015 sctx->cmp_key, name, name_len, &found_data,
5016 &found_data_len);
5017 if (ret == -ENOENT) {
5018 ret = __process_new_xattr(num, di_key, name, name_len, data,
5019 data_len, ctx);
5020 } else if (ret >= 0) {
5021 if (data_len != found_data_len ||
5022 memcmp(data, found_data, data_len)) {
5023 ret = __process_new_xattr(num, di_key, name, name_len,
5024 data, data_len, ctx);
5025 } else {
5026 ret = 0;
5027 }
5028 }
5029
5030 kfree(found_data);
5031 return ret;
5032 }
5033
__process_changed_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)5034 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5035 const char *name, int name_len,
5036 const char *data, int data_len,
5037 void *ctx)
5038 {
5039 int ret;
5040 struct send_ctx *sctx = ctx;
5041
5042 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5043 name, name_len, NULL, NULL);
5044 if (ret == -ENOENT)
5045 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5046 data_len, ctx);
5047 else if (ret >= 0)
5048 ret = 0;
5049
5050 return ret;
5051 }
5052
process_changed_xattr(struct send_ctx * sctx)5053 static int process_changed_xattr(struct send_ctx *sctx)
5054 {
5055 int ret;
5056
5057 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5058 __process_changed_new_xattr, sctx);
5059 if (ret < 0)
5060 return ret;
5061
5062 return iterate_dir_item(sctx->parent_root, sctx->right_path,
5063 __process_changed_deleted_xattr, sctx);
5064 }
5065
process_all_new_xattrs(struct send_ctx * sctx)5066 static int process_all_new_xattrs(struct send_ctx *sctx)
5067 {
5068 int ret = 0;
5069 int iter_ret = 0;
5070 struct btrfs_root *root;
5071 BTRFS_PATH_AUTO_FREE(path);
5072 struct btrfs_key key;
5073 struct btrfs_key found_key;
5074
5075 path = alloc_path_for_send();
5076 if (!path)
5077 return -ENOMEM;
5078
5079 root = sctx->send_root;
5080
5081 key.objectid = sctx->cmp_key->objectid;
5082 key.type = BTRFS_XATTR_ITEM_KEY;
5083 key.offset = 0;
5084 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5085 if (found_key.objectid != key.objectid ||
5086 found_key.type != key.type) {
5087 ret = 0;
5088 break;
5089 }
5090
5091 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
5092 if (ret < 0)
5093 break;
5094 }
5095 /* Catch error found during iteration */
5096 if (iter_ret < 0)
5097 ret = iter_ret;
5098
5099 return ret;
5100 }
5101
send_verity(struct send_ctx * sctx,struct fs_path * path,struct fsverity_descriptor * desc)5102 static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5103 struct fsverity_descriptor *desc)
5104 {
5105 int ret;
5106
5107 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5108 if (ret < 0)
5109 return ret;
5110
5111 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5112 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5113 le8_to_cpu(desc->hash_algorithm));
5114 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5115 1U << le8_to_cpu(desc->log_blocksize));
5116 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5117 le8_to_cpu(desc->salt_size));
5118 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5119 le32_to_cpu(desc->sig_size));
5120
5121 ret = send_cmd(sctx);
5122
5123 tlv_put_failure:
5124 return ret;
5125 }
5126
process_verity(struct send_ctx * sctx)5127 static int process_verity(struct send_ctx *sctx)
5128 {
5129 int ret = 0;
5130 struct btrfs_inode *inode;
5131 struct fs_path *p;
5132
5133 inode = btrfs_iget(sctx->cur_ino, sctx->send_root);
5134 if (IS_ERR(inode))
5135 return PTR_ERR(inode);
5136
5137 ret = btrfs_get_verity_descriptor(&inode->vfs_inode, NULL, 0);
5138 if (ret < 0)
5139 goto iput;
5140
5141 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5142 ret = -EMSGSIZE;
5143 goto iput;
5144 }
5145 if (!sctx->verity_descriptor) {
5146 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5147 GFP_KERNEL);
5148 if (!sctx->verity_descriptor) {
5149 ret = -ENOMEM;
5150 goto iput;
5151 }
5152 }
5153
5154 ret = btrfs_get_verity_descriptor(&inode->vfs_inode, sctx->verity_descriptor, ret);
5155 if (ret < 0)
5156 goto iput;
5157
5158 p = get_cur_inode_path(sctx);
5159 if (IS_ERR(p)) {
5160 ret = PTR_ERR(p);
5161 goto iput;
5162 }
5163
5164 ret = send_verity(sctx, p, sctx->verity_descriptor);
5165 iput:
5166 iput(&inode->vfs_inode);
5167 return ret;
5168 }
5169
max_send_read_size(const struct send_ctx * sctx)5170 static inline u64 max_send_read_size(const struct send_ctx *sctx)
5171 {
5172 return sctx->send_max_size - SZ_16K;
5173 }
5174
put_data_header(struct send_ctx * sctx,u32 len)5175 static int put_data_header(struct send_ctx *sctx, u32 len)
5176 {
5177 if (WARN_ON_ONCE(sctx->put_data))
5178 return -EINVAL;
5179 sctx->put_data = true;
5180 if (sctx->proto >= 2) {
5181 /*
5182 * Since v2, the data attribute header doesn't include a length,
5183 * it is implicitly to the end of the command.
5184 */
5185 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5186 return -EOVERFLOW;
5187 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5188 sctx->send_size += sizeof(__le16);
5189 } else {
5190 struct btrfs_tlv_header *hdr;
5191
5192 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5193 return -EOVERFLOW;
5194 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5195 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5196 put_unaligned_le16(len, &hdr->tlv_len);
5197 sctx->send_size += sizeof(*hdr);
5198 }
5199 return 0;
5200 }
5201
put_file_data(struct send_ctx * sctx,u64 offset,u32 len)5202 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5203 {
5204 struct btrfs_root *root = sctx->send_root;
5205 struct btrfs_fs_info *fs_info = root->fs_info;
5206 u64 cur = offset;
5207 const u64 end = offset + len;
5208 const pgoff_t last_index = ((end - 1) >> PAGE_SHIFT);
5209 struct address_space *mapping = sctx->cur_inode->i_mapping;
5210 int ret;
5211
5212 ret = put_data_header(sctx, len);
5213 if (ret)
5214 return ret;
5215
5216 while (cur < end) {
5217 pgoff_t index = (cur >> PAGE_SHIFT);
5218 unsigned int cur_len;
5219 unsigned int pg_offset;
5220 struct folio *folio;
5221
5222 folio = filemap_lock_folio(mapping, index);
5223 if (IS_ERR(folio)) {
5224 page_cache_sync_readahead(mapping,
5225 &sctx->ra, NULL, index,
5226 last_index + 1 - index);
5227
5228 folio = filemap_grab_folio(mapping, index);
5229 if (IS_ERR(folio)) {
5230 ret = PTR_ERR(folio);
5231 break;
5232 }
5233 }
5234 pg_offset = offset_in_folio(folio, cur);
5235 cur_len = min_t(unsigned int, end - cur, folio_size(folio) - pg_offset);
5236
5237 if (folio_test_readahead(folio))
5238 page_cache_async_readahead(mapping, &sctx->ra, NULL, folio,
5239 last_index + 1 - index);
5240
5241 if (!folio_test_uptodate(folio)) {
5242 btrfs_read_folio(NULL, folio);
5243 folio_lock(folio);
5244 if (unlikely(!folio_test_uptodate(folio))) {
5245 folio_unlock(folio);
5246 btrfs_err(fs_info,
5247 "send: IO error at offset %llu for inode %llu root %llu",
5248 folio_pos(folio), sctx->cur_ino,
5249 btrfs_root_id(sctx->send_root));
5250 folio_put(folio);
5251 ret = -EIO;
5252 break;
5253 }
5254 if (folio->mapping != mapping) {
5255 folio_unlock(folio);
5256 folio_put(folio);
5257 continue;
5258 }
5259 }
5260
5261 memcpy_from_folio(sctx->send_buf + sctx->send_size, folio,
5262 pg_offset, cur_len);
5263 folio_unlock(folio);
5264 folio_put(folio);
5265 cur += cur_len;
5266 sctx->send_size += cur_len;
5267 }
5268
5269 return ret;
5270 }
5271
5272 /*
5273 * Read some bytes from the current inode/file and send a write command to
5274 * user space.
5275 */
send_write(struct send_ctx * sctx,u64 offset,u32 len)5276 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5277 {
5278 int ret = 0;
5279 struct fs_path *p;
5280
5281 p = get_cur_inode_path(sctx);
5282 if (IS_ERR(p))
5283 return PTR_ERR(p);
5284
5285 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5286 if (ret < 0)
5287 return ret;
5288
5289 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5290 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5291 ret = put_file_data(sctx, offset, len);
5292 if (ret < 0)
5293 return ret;
5294
5295 ret = send_cmd(sctx);
5296
5297 tlv_put_failure:
5298 return ret;
5299 }
5300
5301 /*
5302 * Send a clone command to user space.
5303 */
send_clone(struct send_ctx * sctx,u64 offset,u32 len,struct clone_root * clone_root)5304 static int send_clone(struct send_ctx *sctx,
5305 u64 offset, u32 len,
5306 struct clone_root *clone_root)
5307 {
5308 int ret = 0;
5309 struct fs_path *p;
5310 struct fs_path *cur_inode_path;
5311 u64 gen;
5312
5313 cur_inode_path = get_cur_inode_path(sctx);
5314 if (IS_ERR(cur_inode_path))
5315 return PTR_ERR(cur_inode_path);
5316
5317 p = fs_path_alloc();
5318 if (!p)
5319 return -ENOMEM;
5320
5321 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5322 if (ret < 0)
5323 goto out;
5324
5325 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5326 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5327 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, cur_inode_path);
5328
5329 if (clone_root->root == sctx->send_root) {
5330 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
5331 if (ret < 0)
5332 goto out;
5333 ret = get_cur_path(sctx, clone_root->ino, gen, p);
5334 } else {
5335 ret = get_inode_path(clone_root->root, clone_root->ino, p);
5336 }
5337 if (ret < 0)
5338 goto out;
5339
5340 /*
5341 * If the parent we're using has a received_uuid set then use that as
5342 * our clone source as that is what we will look for when doing a
5343 * receive.
5344 *
5345 * This covers the case that we create a snapshot off of a received
5346 * subvolume and then use that as the parent and try to receive on a
5347 * different host.
5348 */
5349 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5350 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5351 clone_root->root->root_item.received_uuid);
5352 else
5353 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5354 clone_root->root->root_item.uuid);
5355 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5356 btrfs_root_ctransid(&clone_root->root->root_item));
5357 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5358 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5359 clone_root->offset);
5360
5361 ret = send_cmd(sctx);
5362
5363 tlv_put_failure:
5364 out:
5365 fs_path_free(p);
5366 return ret;
5367 }
5368
5369 /*
5370 * Send an update extent command to user space.
5371 */
send_update_extent(struct send_ctx * sctx,u64 offset,u32 len)5372 static int send_update_extent(struct send_ctx *sctx,
5373 u64 offset, u32 len)
5374 {
5375 int ret = 0;
5376 struct fs_path *p;
5377
5378 p = get_cur_inode_path(sctx);
5379 if (IS_ERR(p))
5380 return PTR_ERR(p);
5381
5382 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5383 if (ret < 0)
5384 return ret;
5385
5386 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5387 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5388 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5389
5390 ret = send_cmd(sctx);
5391
5392 tlv_put_failure:
5393 return ret;
5394 }
5395
send_fallocate(struct send_ctx * sctx,u32 mode,u64 offset,u64 len)5396 static int send_fallocate(struct send_ctx *sctx, u32 mode, u64 offset, u64 len)
5397 {
5398 struct fs_path *path;
5399 int ret;
5400
5401 path = get_cur_inode_path(sctx);
5402 if (IS_ERR(path))
5403 return PTR_ERR(path);
5404
5405 ret = begin_cmd(sctx, BTRFS_SEND_C_FALLOCATE);
5406 if (ret < 0)
5407 return ret;
5408
5409 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5410 TLV_PUT_U32(sctx, BTRFS_SEND_A_FALLOCATE_MODE, mode);
5411 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5412 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5413
5414 ret = send_cmd(sctx);
5415
5416 tlv_put_failure:
5417 return ret;
5418 }
5419
send_hole(struct send_ctx * sctx,u64 end)5420 static int send_hole(struct send_ctx *sctx, u64 end)
5421 {
5422 struct fs_path *p = NULL;
5423 u64 read_size = max_send_read_size(sctx);
5424 u64 offset = sctx->cur_inode_last_extent;
5425 int ret = 0;
5426
5427 /*
5428 * Starting with send stream v2 we have fallocate and can use it to
5429 * punch holes instead of sending writes full of zeroes.
5430 */
5431 if (proto_cmd_ok(sctx, BTRFS_SEND_C_FALLOCATE))
5432 return send_fallocate(sctx, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
5433 offset, end - offset);
5434
5435 /*
5436 * A hole that starts at EOF or beyond it. Since we do not yet support
5437 * fallocate (for extent preallocation and hole punching), sending a
5438 * write of zeroes starting at EOF or beyond would later require issuing
5439 * a truncate operation which would undo the write and achieve nothing.
5440 */
5441 if (offset >= sctx->cur_inode_size)
5442 return 0;
5443
5444 /*
5445 * Don't go beyond the inode's i_size due to prealloc extents that start
5446 * after the i_size.
5447 */
5448 end = min_t(u64, end, sctx->cur_inode_size);
5449
5450 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5451 return send_update_extent(sctx, offset, end - offset);
5452
5453 p = get_cur_inode_path(sctx);
5454 if (IS_ERR(p))
5455 return PTR_ERR(p);
5456
5457 while (offset < end) {
5458 u64 len = min(end - offset, read_size);
5459
5460 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5461 if (ret < 0)
5462 break;
5463 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5464 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5465 ret = put_data_header(sctx, len);
5466 if (ret < 0)
5467 break;
5468 memset(sctx->send_buf + sctx->send_size, 0, len);
5469 sctx->send_size += len;
5470 ret = send_cmd(sctx);
5471 if (ret < 0)
5472 break;
5473 offset += len;
5474 }
5475 sctx->cur_inode_next_write_offset = offset;
5476 tlv_put_failure:
5477 return ret;
5478 }
5479
send_encoded_inline_extent(struct send_ctx * sctx,struct btrfs_path * path,u64 offset,u64 len)5480 static int send_encoded_inline_extent(struct send_ctx *sctx,
5481 struct btrfs_path *path, u64 offset,
5482 u64 len)
5483 {
5484 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5485 struct fs_path *fspath;
5486 struct extent_buffer *leaf = path->nodes[0];
5487 struct btrfs_key key;
5488 struct btrfs_file_extent_item *ei;
5489 u64 ram_bytes;
5490 size_t inline_size;
5491 int ret;
5492
5493 fspath = get_cur_inode_path(sctx);
5494 if (IS_ERR(fspath))
5495 return PTR_ERR(fspath);
5496
5497 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5498 if (ret < 0)
5499 return ret;
5500
5501 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5502 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5503 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5504 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5505
5506 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5507 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5508 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5509 min(key.offset + ram_bytes - offset, len));
5510 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5511 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5512 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5513 btrfs_file_extent_compression(leaf, ei));
5514 if (ret < 0)
5515 return ret;
5516 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5517
5518 ret = put_data_header(sctx, inline_size);
5519 if (ret < 0)
5520 return ret;
5521 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5522 btrfs_file_extent_inline_start(ei), inline_size);
5523 sctx->send_size += inline_size;
5524
5525 ret = send_cmd(sctx);
5526
5527 tlv_put_failure:
5528 return ret;
5529 }
5530
send_encoded_extent(struct send_ctx * sctx,struct btrfs_path * path,u64 offset,u64 len)5531 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5532 u64 offset, u64 len)
5533 {
5534 struct btrfs_root *root = sctx->send_root;
5535 struct btrfs_fs_info *fs_info = root->fs_info;
5536 struct btrfs_inode *inode;
5537 struct fs_path *fspath;
5538 struct extent_buffer *leaf = path->nodes[0];
5539 struct btrfs_key key;
5540 struct btrfs_file_extent_item *ei;
5541 u64 disk_bytenr, disk_num_bytes;
5542 u32 data_offset;
5543 struct btrfs_cmd_header *hdr;
5544 u32 crc;
5545 int ret;
5546
5547 inode = btrfs_iget(sctx->cur_ino, root);
5548 if (IS_ERR(inode))
5549 return PTR_ERR(inode);
5550
5551 fspath = get_cur_inode_path(sctx);
5552 if (IS_ERR(fspath)) {
5553 ret = PTR_ERR(fspath);
5554 goto out;
5555 }
5556
5557 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5558 if (ret < 0)
5559 goto out;
5560
5561 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5562 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5563 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5564 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5565
5566 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5567 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5568 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5569 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5570 len));
5571 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5572 btrfs_file_extent_ram_bytes(leaf, ei));
5573 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5574 offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5575 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5576 btrfs_file_extent_compression(leaf, ei));
5577 if (ret < 0)
5578 goto out;
5579 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5580 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5581
5582 ret = put_data_header(sctx, disk_num_bytes);
5583 if (ret < 0)
5584 goto out;
5585
5586 /*
5587 * We want to do I/O directly into the send buffer, so get the next page
5588 * boundary in the send buffer. This means that there may be a gap
5589 * between the beginning of the command and the file data.
5590 */
5591 data_offset = PAGE_ALIGN(sctx->send_size);
5592 if (data_offset > sctx->send_max_size ||
5593 sctx->send_max_size - data_offset < disk_num_bytes) {
5594 ret = -EOVERFLOW;
5595 goto out;
5596 }
5597
5598 /*
5599 * Note that send_buf is a mapping of send_buf_pages, so this is really
5600 * reading into send_buf.
5601 */
5602 ret = btrfs_encoded_read_regular_fill_pages(inode,
5603 disk_bytenr, disk_num_bytes,
5604 sctx->send_buf_pages +
5605 (data_offset >> PAGE_SHIFT),
5606 NULL);
5607 if (ret)
5608 goto out;
5609
5610 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5611 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5612 hdr->crc = 0;
5613 crc = crc32c(0, sctx->send_buf, sctx->send_size);
5614 crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5615 hdr->crc = cpu_to_le32(crc);
5616
5617 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5618 &sctx->send_off);
5619 if (!ret) {
5620 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5621 disk_num_bytes, &sctx->send_off);
5622 }
5623 sctx->send_size = 0;
5624 sctx->put_data = false;
5625
5626 tlv_put_failure:
5627 out:
5628 iput(&inode->vfs_inode);
5629 return ret;
5630 }
5631
send_extent_data(struct send_ctx * sctx,struct btrfs_path * path,const u64 offset,const u64 len)5632 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5633 const u64 offset, const u64 len)
5634 {
5635 const u64 end = offset + len;
5636 struct extent_buffer *leaf = path->nodes[0];
5637 struct btrfs_file_extent_item *ei;
5638 u64 read_size = max_send_read_size(sctx);
5639 u64 sent = 0;
5640
5641 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5642 return send_update_extent(sctx, offset, len);
5643
5644 ei = btrfs_item_ptr(leaf, path->slots[0],
5645 struct btrfs_file_extent_item);
5646 /*
5647 * Do not go through encoded read for bs > ps cases.
5648 *
5649 * Encoded send is using vmallocated pages as buffer, which we can
5650 * not ensure every folio is large enough to contain a block.
5651 */
5652 if (sctx->send_root->fs_info->sectorsize <= PAGE_SIZE &&
5653 (sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5654 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5655 bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5656 BTRFS_FILE_EXTENT_INLINE);
5657
5658 /*
5659 * Send the compressed extent unless the compressed data is
5660 * larger than the decompressed data. This can happen if we're
5661 * not sending the entire extent, either because it has been
5662 * partially overwritten/truncated or because this is a part of
5663 * the extent that we couldn't clone in clone_range().
5664 */
5665 if (is_inline &&
5666 btrfs_file_extent_inline_item_len(leaf,
5667 path->slots[0]) <= len) {
5668 return send_encoded_inline_extent(sctx, path, offset,
5669 len);
5670 } else if (!is_inline &&
5671 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5672 return send_encoded_extent(sctx, path, offset, len);
5673 }
5674 }
5675
5676 if (sctx->cur_inode == NULL) {
5677 struct btrfs_inode *btrfs_inode;
5678 struct btrfs_root *root = sctx->send_root;
5679
5680 btrfs_inode = btrfs_iget(sctx->cur_ino, root);
5681 if (IS_ERR(btrfs_inode))
5682 return PTR_ERR(btrfs_inode);
5683
5684 sctx->cur_inode = &btrfs_inode->vfs_inode;
5685 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5686 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5687
5688 /*
5689 * It's very likely there are no pages from this inode in the page
5690 * cache, so after reading extents and sending their data, we clean
5691 * the page cache to avoid trashing the page cache (adding pressure
5692 * to the page cache and forcing eviction of other data more useful
5693 * for applications).
5694 *
5695 * We decide if we should clean the page cache simply by checking
5696 * if the inode's mapping nrpages is 0 when we first open it, and
5697 * not by using something like filemap_range_has_page() before
5698 * reading an extent because when we ask the readahead code to
5699 * read a given file range, it may (and almost always does) read
5700 * pages from beyond that range (see the documentation for
5701 * page_cache_sync_readahead()), so it would not be reliable,
5702 * because after reading the first extent future calls to
5703 * filemap_range_has_page() would return true because the readahead
5704 * on the previous extent resulted in reading pages of the current
5705 * extent as well.
5706 */
5707 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5708 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5709 }
5710
5711 while (sent < len) {
5712 u64 size = min(len - sent, read_size);
5713 int ret;
5714
5715 ret = send_write(sctx, offset + sent, size);
5716 if (ret < 0)
5717 return ret;
5718 sent += size;
5719 }
5720
5721 if (sctx->clean_page_cache && PAGE_ALIGNED(end)) {
5722 /*
5723 * Always operate only on ranges that are a multiple of the page
5724 * size. This is not only to prevent zeroing parts of a page in
5725 * the case of subpage sector size, but also to guarantee we evict
5726 * pages, as passing a range that is smaller than page size does
5727 * not evict the respective page (only zeroes part of its content).
5728 *
5729 * Always start from the end offset of the last range cleared.
5730 * This is because the readahead code may (and very often does)
5731 * reads pages beyond the range we request for readahead. So if
5732 * we have an extent layout like this:
5733 *
5734 * [ extent A ] [ extent B ] [ extent C ]
5735 *
5736 * When we ask page_cache_sync_readahead() to read extent A, it
5737 * may also trigger reads for pages of extent B. If we are doing
5738 * an incremental send and extent B has not changed between the
5739 * parent and send snapshots, some or all of its pages may end
5740 * up being read and placed in the page cache. So when truncating
5741 * the page cache we always start from the end offset of the
5742 * previously processed extent up to the end of the current
5743 * extent.
5744 */
5745 truncate_inode_pages_range(&sctx->cur_inode->i_data,
5746 sctx->page_cache_clear_start,
5747 end - 1);
5748 sctx->page_cache_clear_start = end;
5749 }
5750
5751 return 0;
5752 }
5753
5754 /*
5755 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5756 * found, call send_set_xattr function to emit it.
5757 *
5758 * Return 0 if there isn't a capability, or when the capability was emitted
5759 * successfully, or < 0 if an error occurred.
5760 */
send_capabilities(struct send_ctx * sctx)5761 static int send_capabilities(struct send_ctx *sctx)
5762 {
5763 BTRFS_PATH_AUTO_FREE(path);
5764 struct btrfs_dir_item *di;
5765 struct extent_buffer *leaf;
5766 unsigned long data_ptr;
5767 char *buf = NULL;
5768 int buf_len;
5769 int ret = 0;
5770
5771 path = alloc_path_for_send();
5772 if (!path)
5773 return -ENOMEM;
5774
5775 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5776 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5777 if (!di) {
5778 /* There is no xattr for this inode */
5779 goto out;
5780 } else if (IS_ERR(di)) {
5781 ret = PTR_ERR(di);
5782 goto out;
5783 }
5784
5785 leaf = path->nodes[0];
5786 buf_len = btrfs_dir_data_len(leaf, di);
5787
5788 buf = kmalloc(buf_len, GFP_KERNEL);
5789 if (!buf) {
5790 ret = -ENOMEM;
5791 goto out;
5792 }
5793
5794 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5795 read_extent_buffer(leaf, buf, data_ptr, buf_len);
5796
5797 ret = send_set_xattr(sctx, XATTR_NAME_CAPS,
5798 strlen(XATTR_NAME_CAPS), buf, buf_len);
5799 out:
5800 kfree(buf);
5801 return ret;
5802 }
5803
clone_range(struct send_ctx * sctx,struct btrfs_path * dst_path,struct clone_root * clone_root,const u64 disk_byte,u64 data_offset,u64 offset,u64 len)5804 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5805 struct clone_root *clone_root, const u64 disk_byte,
5806 u64 data_offset, u64 offset, u64 len)
5807 {
5808 BTRFS_PATH_AUTO_FREE(path);
5809 struct btrfs_key key;
5810 int ret;
5811 struct btrfs_inode_info info;
5812 u64 clone_src_i_size = 0;
5813
5814 /*
5815 * Prevent cloning from a zero offset with a length matching the sector
5816 * size because in some scenarios this will make the receiver fail.
5817 *
5818 * For example, if in the source filesystem the extent at offset 0
5819 * has a length of sectorsize and it was written using direct IO, then
5820 * it can never be an inline extent (even if compression is enabled).
5821 * Then this extent can be cloned in the original filesystem to a non
5822 * zero file offset, but it may not be possible to clone in the
5823 * destination filesystem because it can be inlined due to compression
5824 * on the destination filesystem (as the receiver's write operations are
5825 * always done using buffered IO). The same happens when the original
5826 * filesystem does not have compression enabled but the destination
5827 * filesystem has.
5828 */
5829 if (clone_root->offset == 0 &&
5830 len == sctx->send_root->fs_info->sectorsize)
5831 return send_extent_data(sctx, dst_path, offset, len);
5832
5833 path = alloc_path_for_send();
5834 if (!path)
5835 return -ENOMEM;
5836
5837 /*
5838 * There are inodes that have extents that lie behind its i_size. Don't
5839 * accept clones from these extents.
5840 */
5841 ret = get_inode_info(clone_root->root, clone_root->ino, &info);
5842 btrfs_release_path(path);
5843 if (ret < 0)
5844 return ret;
5845 clone_src_i_size = info.size;
5846
5847 /*
5848 * We can't send a clone operation for the entire range if we find
5849 * extent items in the respective range in the source file that
5850 * refer to different extents or if we find holes.
5851 * So check for that and do a mix of clone and regular write/copy
5852 * operations if needed.
5853 *
5854 * Example:
5855 *
5856 * mkfs.btrfs -f /dev/sda
5857 * mount /dev/sda /mnt
5858 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5859 * cp --reflink=always /mnt/foo /mnt/bar
5860 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5861 * btrfs subvolume snapshot -r /mnt /mnt/snap
5862 *
5863 * If when we send the snapshot and we are processing file bar (which
5864 * has a higher inode number than foo) we blindly send a clone operation
5865 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5866 * a file bar that matches the content of file foo - iow, doesn't match
5867 * the content from bar in the original filesystem.
5868 */
5869 key.objectid = clone_root->ino;
5870 key.type = BTRFS_EXTENT_DATA_KEY;
5871 key.offset = clone_root->offset;
5872 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5873 if (ret < 0)
5874 return ret;
5875 if (ret > 0 && path->slots[0] > 0) {
5876 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5877 if (key.objectid == clone_root->ino &&
5878 key.type == BTRFS_EXTENT_DATA_KEY)
5879 path->slots[0]--;
5880 }
5881
5882 while (true) {
5883 struct extent_buffer *leaf = path->nodes[0];
5884 int slot = path->slots[0];
5885 struct btrfs_file_extent_item *ei;
5886 u8 type;
5887 u64 ext_len;
5888 u64 clone_len;
5889 u64 clone_data_offset;
5890 bool crossed_src_i_size = false;
5891
5892 if (slot >= btrfs_header_nritems(leaf)) {
5893 ret = btrfs_next_leaf(clone_root->root, path);
5894 if (ret < 0)
5895 return ret;
5896 else if (ret > 0)
5897 break;
5898 continue;
5899 }
5900
5901 btrfs_item_key_to_cpu(leaf, &key, slot);
5902
5903 /*
5904 * We might have an implicit trailing hole (NO_HOLES feature
5905 * enabled). We deal with it after leaving this loop.
5906 */
5907 if (key.objectid != clone_root->ino ||
5908 key.type != BTRFS_EXTENT_DATA_KEY)
5909 break;
5910
5911 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5912 type = btrfs_file_extent_type(leaf, ei);
5913 if (type == BTRFS_FILE_EXTENT_INLINE) {
5914 ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5915 ext_len = PAGE_ALIGN(ext_len);
5916 } else {
5917 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5918 }
5919
5920 if (key.offset + ext_len <= clone_root->offset)
5921 goto next;
5922
5923 if (key.offset > clone_root->offset) {
5924 /* Implicit hole, NO_HOLES feature enabled. */
5925 u64 hole_len = key.offset - clone_root->offset;
5926
5927 if (hole_len > len)
5928 hole_len = len;
5929 ret = send_extent_data(sctx, dst_path, offset,
5930 hole_len);
5931 if (ret < 0)
5932 return ret;
5933
5934 len -= hole_len;
5935 if (len == 0)
5936 break;
5937 offset += hole_len;
5938 clone_root->offset += hole_len;
5939 data_offset += hole_len;
5940 }
5941
5942 if (key.offset >= clone_root->offset + len)
5943 break;
5944
5945 if (key.offset >= clone_src_i_size)
5946 break;
5947
5948 if (key.offset + ext_len > clone_src_i_size) {
5949 ext_len = clone_src_i_size - key.offset;
5950 crossed_src_i_size = true;
5951 }
5952
5953 clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5954 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5955 clone_root->offset = key.offset;
5956 if (clone_data_offset < data_offset &&
5957 clone_data_offset + ext_len > data_offset) {
5958 u64 extent_offset;
5959
5960 extent_offset = data_offset - clone_data_offset;
5961 ext_len -= extent_offset;
5962 clone_data_offset += extent_offset;
5963 clone_root->offset += extent_offset;
5964 }
5965 }
5966
5967 clone_len = min_t(u64, ext_len, len);
5968
5969 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5970 clone_data_offset == data_offset) {
5971 const u64 src_end = clone_root->offset + clone_len;
5972 const u64 sectorsize = SZ_64K;
5973
5974 /*
5975 * We can't clone the last block, when its size is not
5976 * sector size aligned, into the middle of a file. If we
5977 * do so, the receiver will get a failure (-EINVAL) when
5978 * trying to clone or will silently corrupt the data in
5979 * the destination file if it's on a kernel without the
5980 * fix introduced by commit ac765f83f1397646
5981 * ("Btrfs: fix data corruption due to cloning of eof
5982 * block).
5983 *
5984 * So issue a clone of the aligned down range plus a
5985 * regular write for the eof block, if we hit that case.
5986 *
5987 * Also, we use the maximum possible sector size, 64K,
5988 * because we don't know what's the sector size of the
5989 * filesystem that receives the stream, so we have to
5990 * assume the largest possible sector size.
5991 */
5992 if (src_end == clone_src_i_size &&
5993 !IS_ALIGNED(src_end, sectorsize) &&
5994 offset + clone_len < sctx->cur_inode_size) {
5995 u64 slen;
5996
5997 slen = ALIGN_DOWN(src_end - clone_root->offset,
5998 sectorsize);
5999 if (slen > 0) {
6000 ret = send_clone(sctx, offset, slen,
6001 clone_root);
6002 if (ret < 0)
6003 return ret;
6004 }
6005 ret = send_extent_data(sctx, dst_path,
6006 offset + slen,
6007 clone_len - slen);
6008 } else {
6009 ret = send_clone(sctx, offset, clone_len,
6010 clone_root);
6011 }
6012 } else if (crossed_src_i_size && clone_len < len) {
6013 /*
6014 * If we are at i_size of the clone source inode and we
6015 * can not clone from it, terminate the loop. This is
6016 * to avoid sending two write operations, one with a
6017 * length matching clone_len and the final one after
6018 * this loop with a length of len - clone_len.
6019 *
6020 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6021 * was passed to the send ioctl), this helps avoid
6022 * sending an encoded write for an offset that is not
6023 * sector size aligned, in case the i_size of the source
6024 * inode is not sector size aligned. That will make the
6025 * receiver fallback to decompression of the data and
6026 * writing it using regular buffered IO, therefore while
6027 * not incorrect, it's not optimal due decompression and
6028 * possible re-compression at the receiver.
6029 */
6030 break;
6031 } else {
6032 ret = send_extent_data(sctx, dst_path, offset,
6033 clone_len);
6034 }
6035
6036 if (ret < 0)
6037 return ret;
6038
6039 len -= clone_len;
6040 if (len == 0)
6041 break;
6042 offset += clone_len;
6043 clone_root->offset += clone_len;
6044
6045 /*
6046 * If we are cloning from the file we are currently processing,
6047 * and using the send root as the clone root, we must stop once
6048 * the current clone offset reaches the current eof of the file
6049 * at the receiver, otherwise we would issue an invalid clone
6050 * operation (source range going beyond eof) and cause the
6051 * receiver to fail. So if we reach the current eof, bail out
6052 * and fallback to a regular write.
6053 */
6054 if (clone_root->root == sctx->send_root &&
6055 clone_root->ino == sctx->cur_ino &&
6056 clone_root->offset >= sctx->cur_inode_next_write_offset)
6057 break;
6058
6059 data_offset += clone_len;
6060 next:
6061 path->slots[0]++;
6062 }
6063
6064 if (len > 0)
6065 ret = send_extent_data(sctx, dst_path, offset, len);
6066 else
6067 ret = 0;
6068 return ret;
6069 }
6070
send_write_or_clone(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key,struct clone_root * clone_root)6071 static int send_write_or_clone(struct send_ctx *sctx,
6072 struct btrfs_path *path,
6073 struct btrfs_key *key,
6074 struct clone_root *clone_root)
6075 {
6076 int ret = 0;
6077 u64 offset = key->offset;
6078 u64 end;
6079 u64 bs = sctx->send_root->fs_info->sectorsize;
6080 struct btrfs_file_extent_item *ei;
6081 u64 disk_byte;
6082 u64 data_offset;
6083 u64 num_bytes;
6084 struct btrfs_inode_info info = { 0 };
6085
6086 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6087 if (offset >= end)
6088 return 0;
6089
6090 num_bytes = end - offset;
6091
6092 if (!clone_root)
6093 goto write_data;
6094
6095 if (IS_ALIGNED(end, bs))
6096 goto clone_data;
6097
6098 /*
6099 * If the extent end is not aligned, we can clone if the extent ends at
6100 * the i_size of the inode and the clone range ends at the i_size of the
6101 * source inode, otherwise the clone operation fails with -EINVAL.
6102 */
6103 if (end != sctx->cur_inode_size)
6104 goto write_data;
6105
6106 ret = get_inode_info(clone_root->root, clone_root->ino, &info);
6107 if (ret < 0)
6108 return ret;
6109
6110 if (clone_root->offset + num_bytes == info.size) {
6111 /*
6112 * The final size of our file matches the end offset, but it may
6113 * be that its current size is larger, so we have to truncate it
6114 * to any value between the start offset of the range and the
6115 * final i_size, otherwise the clone operation is invalid
6116 * because it's unaligned and it ends before the current EOF.
6117 * We do this truncate to the final i_size when we finish
6118 * processing the inode, but it's too late by then. And here we
6119 * truncate to the start offset of the range because it's always
6120 * sector size aligned while if it were the final i_size it
6121 * would result in dirtying part of a page, filling part of a
6122 * page with zeroes and then having the clone operation at the
6123 * receiver trigger IO and wait for it due to the dirty page.
6124 */
6125 if (sctx->parent_root != NULL) {
6126 ret = send_truncate(sctx, sctx->cur_ino,
6127 sctx->cur_inode_gen, offset);
6128 if (ret < 0)
6129 return ret;
6130 }
6131 goto clone_data;
6132 }
6133
6134 write_data:
6135 ret = send_extent_data(sctx, path, offset, num_bytes);
6136 sctx->cur_inode_next_write_offset = end;
6137 return ret;
6138
6139 clone_data:
6140 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6141 struct btrfs_file_extent_item);
6142 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6143 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
6144 ret = clone_range(sctx, path, clone_root, disk_byte, data_offset, offset,
6145 num_bytes);
6146 sctx->cur_inode_next_write_offset = end;
6147 return ret;
6148 }
6149
is_extent_unchanged(struct send_ctx * sctx,struct btrfs_path * left_path,struct btrfs_key * ekey)6150 static int is_extent_unchanged(struct send_ctx *sctx,
6151 struct btrfs_path *left_path,
6152 struct btrfs_key *ekey)
6153 {
6154 int ret = 0;
6155 struct btrfs_key key;
6156 BTRFS_PATH_AUTO_FREE(path);
6157 struct extent_buffer *eb;
6158 int slot;
6159 struct btrfs_key found_key;
6160 struct btrfs_file_extent_item *ei;
6161 u64 left_disknr;
6162 u64 right_disknr;
6163 u64 left_offset;
6164 u64 right_offset;
6165 u64 left_offset_fixed;
6166 u64 left_len;
6167 u64 right_len;
6168 u64 left_gen;
6169 u64 right_gen;
6170 u8 left_type;
6171 u8 right_type;
6172
6173 path = alloc_path_for_send();
6174 if (!path)
6175 return -ENOMEM;
6176
6177 eb = left_path->nodes[0];
6178 slot = left_path->slots[0];
6179 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6180 left_type = btrfs_file_extent_type(eb, ei);
6181
6182 if (left_type != BTRFS_FILE_EXTENT_REG)
6183 return 0;
6184
6185 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6186 left_len = btrfs_file_extent_num_bytes(eb, ei);
6187 left_offset = btrfs_file_extent_offset(eb, ei);
6188 left_gen = btrfs_file_extent_generation(eb, ei);
6189
6190 /*
6191 * Following comments will refer to these graphics. L is the left
6192 * extents which we are checking at the moment. 1-8 are the right
6193 * extents that we iterate.
6194 *
6195 * |-----L-----|
6196 * |-1-|-2a-|-3-|-4-|-5-|-6-|
6197 *
6198 * |-----L-----|
6199 * |--1--|-2b-|...(same as above)
6200 *
6201 * Alternative situation. Happens on files where extents got split.
6202 * |-----L-----|
6203 * |-----------7-----------|-6-|
6204 *
6205 * Alternative situation. Happens on files which got larger.
6206 * |-----L-----|
6207 * |-8-|
6208 * Nothing follows after 8.
6209 */
6210
6211 key.objectid = ekey->objectid;
6212 key.type = BTRFS_EXTENT_DATA_KEY;
6213 key.offset = ekey->offset;
6214 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6215 if (ret < 0)
6216 return ret;
6217 if (ret)
6218 return 0;
6219
6220 /*
6221 * Handle special case where the right side has no extents at all.
6222 */
6223 eb = path->nodes[0];
6224 slot = path->slots[0];
6225 btrfs_item_key_to_cpu(eb, &found_key, slot);
6226 if (found_key.objectid != key.objectid ||
6227 found_key.type != key.type)
6228 /* If we're a hole then just pretend nothing changed */
6229 return (left_disknr ? 0 : 1);
6230
6231 /*
6232 * We're now on 2a, 2b or 7.
6233 */
6234 key = found_key;
6235 while (key.offset < ekey->offset + left_len) {
6236 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6237 right_type = btrfs_file_extent_type(eb, ei);
6238 if (right_type != BTRFS_FILE_EXTENT_REG &&
6239 right_type != BTRFS_FILE_EXTENT_INLINE)
6240 return 0;
6241
6242 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6243 right_len = btrfs_file_extent_ram_bytes(eb, ei);
6244 right_len = PAGE_ALIGN(right_len);
6245 } else {
6246 right_len = btrfs_file_extent_num_bytes(eb, ei);
6247 }
6248
6249 /*
6250 * Are we at extent 8? If yes, we know the extent is changed.
6251 * This may only happen on the first iteration.
6252 */
6253 if (found_key.offset + right_len <= ekey->offset)
6254 /* If we're a hole just pretend nothing changed */
6255 return (left_disknr ? 0 : 1);
6256
6257 /*
6258 * We just wanted to see if when we have an inline extent, what
6259 * follows it is a regular extent (wanted to check the above
6260 * condition for inline extents too). This should normally not
6261 * happen but it's possible for example when we have an inline
6262 * compressed extent representing data with a size matching
6263 * the page size (currently the same as sector size).
6264 */
6265 if (right_type == BTRFS_FILE_EXTENT_INLINE)
6266 return 0;
6267
6268 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6269 right_offset = btrfs_file_extent_offset(eb, ei);
6270 right_gen = btrfs_file_extent_generation(eb, ei);
6271
6272 left_offset_fixed = left_offset;
6273 if (key.offset < ekey->offset) {
6274 /* Fix the right offset for 2a and 7. */
6275 right_offset += ekey->offset - key.offset;
6276 } else {
6277 /* Fix the left offset for all behind 2a and 2b */
6278 left_offset_fixed += key.offset - ekey->offset;
6279 }
6280
6281 /*
6282 * Check if we have the same extent.
6283 */
6284 if (left_disknr != right_disknr ||
6285 left_offset_fixed != right_offset ||
6286 left_gen != right_gen)
6287 return 0;
6288
6289 /*
6290 * Go to the next extent.
6291 */
6292 ret = btrfs_next_item(sctx->parent_root, path);
6293 if (ret < 0)
6294 return ret;
6295 if (!ret) {
6296 eb = path->nodes[0];
6297 slot = path->slots[0];
6298 btrfs_item_key_to_cpu(eb, &found_key, slot);
6299 }
6300 if (ret || found_key.objectid != key.objectid ||
6301 found_key.type != key.type) {
6302 key.offset += right_len;
6303 break;
6304 }
6305 if (found_key.offset != key.offset + right_len)
6306 return 0;
6307
6308 key = found_key;
6309 }
6310
6311 /*
6312 * We're now behind the left extent (treat as unchanged) or at the end
6313 * of the right side (treat as changed).
6314 */
6315 if (key.offset >= ekey->offset + left_len)
6316 ret = 1;
6317 else
6318 ret = 0;
6319
6320 return ret;
6321 }
6322
get_last_extent(struct send_ctx * sctx,u64 offset)6323 static int get_last_extent(struct send_ctx *sctx, u64 offset)
6324 {
6325 BTRFS_PATH_AUTO_FREE(path);
6326 struct btrfs_root *root = sctx->send_root;
6327 struct btrfs_key key;
6328 int ret;
6329
6330 path = alloc_path_for_send();
6331 if (!path)
6332 return -ENOMEM;
6333
6334 sctx->cur_inode_last_extent = 0;
6335
6336 key.objectid = sctx->cur_ino;
6337 key.type = BTRFS_EXTENT_DATA_KEY;
6338 key.offset = offset;
6339 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6340 if (ret < 0)
6341 return ret;
6342 ret = 0;
6343 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6344 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6345 return ret;
6346
6347 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6348 return ret;
6349 }
6350
range_is_hole_in_parent(struct send_ctx * sctx,const u64 start,const u64 end)6351 static int range_is_hole_in_parent(struct send_ctx *sctx,
6352 const u64 start,
6353 const u64 end)
6354 {
6355 BTRFS_PATH_AUTO_FREE(path);
6356 struct btrfs_key key;
6357 struct btrfs_root *root = sctx->parent_root;
6358 u64 search_start = start;
6359 int ret;
6360
6361 path = alloc_path_for_send();
6362 if (!path)
6363 return -ENOMEM;
6364
6365 key.objectid = sctx->cur_ino;
6366 key.type = BTRFS_EXTENT_DATA_KEY;
6367 key.offset = search_start;
6368 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6369 if (ret < 0)
6370 return ret;
6371 if (ret > 0 && path->slots[0] > 0)
6372 path->slots[0]--;
6373
6374 while (search_start < end) {
6375 struct extent_buffer *leaf = path->nodes[0];
6376 int slot = path->slots[0];
6377 struct btrfs_file_extent_item *fi;
6378 u64 extent_end;
6379
6380 if (slot >= btrfs_header_nritems(leaf)) {
6381 ret = btrfs_next_leaf(root, path);
6382 if (ret < 0)
6383 return ret;
6384 if (ret > 0)
6385 break;
6386 continue;
6387 }
6388
6389 btrfs_item_key_to_cpu(leaf, &key, slot);
6390 if (key.objectid < sctx->cur_ino ||
6391 key.type < BTRFS_EXTENT_DATA_KEY)
6392 goto next;
6393 if (key.objectid > sctx->cur_ino ||
6394 key.type > BTRFS_EXTENT_DATA_KEY ||
6395 key.offset >= end)
6396 break;
6397
6398 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6399 extent_end = btrfs_file_extent_end(path);
6400 if (extent_end <= start)
6401 goto next;
6402 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6403 search_start = extent_end;
6404 goto next;
6405 }
6406 return 0;
6407 next:
6408 path->slots[0]++;
6409 }
6410 return 1;
6411 }
6412
maybe_send_hole(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6413 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6414 struct btrfs_key *key)
6415 {
6416 int ret = 0;
6417
6418 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6419 return 0;
6420
6421 /*
6422 * Get last extent's end offset (exclusive) if we haven't determined it
6423 * yet (we're processing the first file extent item that is new), or if
6424 * we're at the first slot of a leaf and the last extent's end is less
6425 * than the current extent's offset, because we might have skipped
6426 * entire leaves that contained only file extent items for our current
6427 * inode. These leaves have a generation number smaller (older) than the
6428 * one in the current leaf and the leaf our last extent came from, and
6429 * are located between these 2 leaves.
6430 */
6431 if ((sctx->cur_inode_last_extent == (u64)-1) ||
6432 (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) {
6433 ret = get_last_extent(sctx, key->offset - 1);
6434 if (ret)
6435 return ret;
6436 }
6437
6438 if (sctx->cur_inode_last_extent < key->offset) {
6439 ret = range_is_hole_in_parent(sctx,
6440 sctx->cur_inode_last_extent,
6441 key->offset);
6442 if (ret < 0)
6443 return ret;
6444 else if (ret == 0)
6445 ret = send_hole(sctx, key->offset);
6446 else
6447 ret = 0;
6448 }
6449 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6450 return ret;
6451 }
6452
process_extent(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6453 static int process_extent(struct send_ctx *sctx,
6454 struct btrfs_path *path,
6455 struct btrfs_key *key)
6456 {
6457 struct clone_root *found_clone = NULL;
6458 int ret = 0;
6459
6460 if (S_ISLNK(sctx->cur_inode_mode))
6461 return 0;
6462
6463 if (sctx->parent_root && !sctx->cur_inode_new) {
6464 ret = is_extent_unchanged(sctx, path, key);
6465 if (ret < 0)
6466 goto out;
6467 if (ret) {
6468 ret = 0;
6469 goto out_hole;
6470 }
6471 } else {
6472 struct btrfs_file_extent_item *ei;
6473 u8 type;
6474
6475 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6476 struct btrfs_file_extent_item);
6477 type = btrfs_file_extent_type(path->nodes[0], ei);
6478 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6479 type == BTRFS_FILE_EXTENT_REG) {
6480 /*
6481 * The send spec does not have a prealloc command yet,
6482 * so just leave a hole for prealloc'ed extents until
6483 * we have enough commands queued up to justify rev'ing
6484 * the send spec.
6485 */
6486 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6487 ret = 0;
6488 goto out;
6489 }
6490
6491 /* Have a hole, just skip it. */
6492 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6493 ret = 0;
6494 goto out;
6495 }
6496 }
6497 }
6498
6499 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6500 sctx->cur_inode_size, &found_clone);
6501 if (ret != -ENOENT && ret < 0)
6502 goto out;
6503
6504 ret = send_write_or_clone(sctx, path, key, found_clone);
6505 if (ret)
6506 goto out;
6507 out_hole:
6508 ret = maybe_send_hole(sctx, path, key);
6509 out:
6510 return ret;
6511 }
6512
process_all_extents(struct send_ctx * sctx)6513 static int process_all_extents(struct send_ctx *sctx)
6514 {
6515 int ret = 0;
6516 int iter_ret = 0;
6517 struct btrfs_root *root;
6518 BTRFS_PATH_AUTO_FREE(path);
6519 struct btrfs_key key;
6520 struct btrfs_key found_key;
6521
6522 root = sctx->send_root;
6523 path = alloc_path_for_send();
6524 if (!path)
6525 return -ENOMEM;
6526
6527 key.objectid = sctx->cmp_key->objectid;
6528 key.type = BTRFS_EXTENT_DATA_KEY;
6529 key.offset = 0;
6530 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6531 if (found_key.objectid != key.objectid ||
6532 found_key.type != key.type) {
6533 ret = 0;
6534 break;
6535 }
6536
6537 ret = process_extent(sctx, path, &found_key);
6538 if (ret < 0)
6539 break;
6540 }
6541 /* Catch error found during iteration */
6542 if (iter_ret < 0)
6543 ret = iter_ret;
6544
6545 return ret;
6546 }
6547
process_recorded_refs_if_needed(struct send_ctx * sctx,bool at_end,int * pending_move,int * refs_processed)6548 static int process_recorded_refs_if_needed(struct send_ctx *sctx, bool at_end,
6549 int *pending_move,
6550 int *refs_processed)
6551 {
6552 int ret = 0;
6553
6554 if (sctx->cur_ino == 0)
6555 goto out;
6556 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6557 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6558 goto out;
6559 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6560 goto out;
6561
6562 ret = process_recorded_refs(sctx, pending_move);
6563 if (ret < 0)
6564 goto out;
6565
6566 *refs_processed = 1;
6567 out:
6568 return ret;
6569 }
6570
finish_inode_if_needed(struct send_ctx * sctx,bool at_end)6571 static int finish_inode_if_needed(struct send_ctx *sctx, bool at_end)
6572 {
6573 int ret = 0;
6574 struct btrfs_inode_info info;
6575 u64 left_mode;
6576 u64 left_uid;
6577 u64 left_gid;
6578 u64 left_fileattr;
6579 u64 right_mode;
6580 u64 right_uid;
6581 u64 right_gid;
6582 u64 right_fileattr;
6583 int need_chmod = 0;
6584 int need_chown = 0;
6585 bool need_fileattr = false;
6586 int need_truncate = 1;
6587 int pending_move = 0;
6588 int refs_processed = 0;
6589
6590 if (sctx->ignore_cur_inode)
6591 return 0;
6592
6593 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6594 &refs_processed);
6595 if (ret < 0)
6596 goto out;
6597
6598 /*
6599 * We have processed the refs and thus need to advance send_progress.
6600 * Now, calls to get_cur_xxx will take the updated refs of the current
6601 * inode into account.
6602 *
6603 * On the other hand, if our current inode is a directory and couldn't
6604 * be moved/renamed because its parent was renamed/moved too and it has
6605 * a higher inode number, we can only move/rename our current inode
6606 * after we moved/renamed its parent. Therefore in this case operate on
6607 * the old path (pre move/rename) of our current inode, and the
6608 * move/rename will be performed later.
6609 */
6610 if (refs_processed && !pending_move)
6611 sctx->send_progress = sctx->cur_ino + 1;
6612
6613 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6614 goto out;
6615 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6616 goto out;
6617 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
6618 if (ret < 0)
6619 goto out;
6620 left_mode = info.mode;
6621 left_uid = info.uid;
6622 left_gid = info.gid;
6623 left_fileattr = info.fileattr;
6624
6625 if (!sctx->parent_root || sctx->cur_inode_new) {
6626 need_chown = 1;
6627 if (!S_ISLNK(sctx->cur_inode_mode))
6628 need_chmod = 1;
6629 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6630 need_truncate = 0;
6631 } else {
6632 u64 old_size;
6633
6634 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
6635 if (ret < 0)
6636 goto out;
6637 old_size = info.size;
6638 right_mode = info.mode;
6639 right_uid = info.uid;
6640 right_gid = info.gid;
6641 right_fileattr = info.fileattr;
6642
6643 if (left_uid != right_uid || left_gid != right_gid)
6644 need_chown = 1;
6645 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6646 need_chmod = 1;
6647 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6648 need_fileattr = true;
6649 if ((old_size == sctx->cur_inode_size) ||
6650 (sctx->cur_inode_size > old_size &&
6651 sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6652 need_truncate = 0;
6653 }
6654
6655 if (S_ISREG(sctx->cur_inode_mode)) {
6656 if (need_send_hole(sctx)) {
6657 if (sctx->cur_inode_last_extent == (u64)-1 ||
6658 sctx->cur_inode_last_extent <
6659 sctx->cur_inode_size) {
6660 ret = get_last_extent(sctx, (u64)-1);
6661 if (ret)
6662 goto out;
6663 }
6664 if (sctx->cur_inode_last_extent < sctx->cur_inode_size) {
6665 ret = range_is_hole_in_parent(sctx,
6666 sctx->cur_inode_last_extent,
6667 sctx->cur_inode_size);
6668 if (ret < 0) {
6669 goto out;
6670 } else if (ret == 0) {
6671 ret = send_hole(sctx, sctx->cur_inode_size);
6672 if (ret < 0)
6673 goto out;
6674 } else {
6675 /* Range is already a hole, skip. */
6676 ret = 0;
6677 }
6678 }
6679 }
6680 if (need_truncate) {
6681 ret = send_truncate(sctx, sctx->cur_ino,
6682 sctx->cur_inode_gen,
6683 sctx->cur_inode_size);
6684 if (ret < 0)
6685 goto out;
6686 }
6687 }
6688
6689 if (need_chown) {
6690 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6691 left_uid, left_gid);
6692 if (ret < 0)
6693 goto out;
6694 }
6695 if (need_chmod) {
6696 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6697 left_mode);
6698 if (ret < 0)
6699 goto out;
6700 }
6701 if (need_fileattr) {
6702 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6703 left_fileattr);
6704 if (ret < 0)
6705 goto out;
6706 }
6707
6708 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6709 && sctx->cur_inode_needs_verity) {
6710 ret = process_verity(sctx);
6711 if (ret < 0)
6712 goto out;
6713 }
6714
6715 ret = send_capabilities(sctx);
6716 if (ret < 0)
6717 goto out;
6718
6719 /*
6720 * If other directory inodes depended on our current directory
6721 * inode's move/rename, now do their move/rename operations.
6722 */
6723 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6724 ret = apply_children_dir_moves(sctx);
6725 if (ret)
6726 goto out;
6727 /*
6728 * Need to send that every time, no matter if it actually
6729 * changed between the two trees as we have done changes to
6730 * the inode before. If our inode is a directory and it's
6731 * waiting to be moved/renamed, we will send its utimes when
6732 * it's moved/renamed, therefore we don't need to do it here.
6733 */
6734 sctx->send_progress = sctx->cur_ino + 1;
6735
6736 /*
6737 * If the current inode is a non-empty directory, delay issuing
6738 * the utimes command for it, as it's very likely we have inodes
6739 * with an higher number inside it. We want to issue the utimes
6740 * command only after adding all dentries to it.
6741 */
6742 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0)
6743 ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6744 else
6745 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6746
6747 if (ret < 0)
6748 goto out;
6749 }
6750
6751 out:
6752 if (!ret)
6753 ret = trim_dir_utimes_cache(sctx);
6754
6755 return ret;
6756 }
6757
close_current_inode(struct send_ctx * sctx)6758 static void close_current_inode(struct send_ctx *sctx)
6759 {
6760 u64 i_size;
6761
6762 if (sctx->cur_inode == NULL)
6763 return;
6764
6765 i_size = i_size_read(sctx->cur_inode);
6766
6767 /*
6768 * If we are doing an incremental send, we may have extents between the
6769 * last processed extent and the i_size that have not been processed
6770 * because they haven't changed but we may have read some of their pages
6771 * through readahead, see the comments at send_extent_data().
6772 */
6773 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6774 truncate_inode_pages_range(&sctx->cur_inode->i_data,
6775 sctx->page_cache_clear_start,
6776 round_up(i_size, PAGE_SIZE) - 1);
6777
6778 iput(sctx->cur_inode);
6779 sctx->cur_inode = NULL;
6780 }
6781
changed_inode(struct send_ctx * sctx,enum btrfs_compare_tree_result result)6782 static int changed_inode(struct send_ctx *sctx,
6783 enum btrfs_compare_tree_result result)
6784 {
6785 int ret = 0;
6786 struct btrfs_key *key = sctx->cmp_key;
6787 struct btrfs_inode_item *left_ii = NULL;
6788 struct btrfs_inode_item *right_ii = NULL;
6789 u64 left_gen = 0;
6790 u64 right_gen = 0;
6791
6792 close_current_inode(sctx);
6793
6794 sctx->cur_ino = key->objectid;
6795 sctx->cur_inode_new_gen = false;
6796 sctx->cur_inode_last_extent = (u64)-1;
6797 sctx->cur_inode_next_write_offset = 0;
6798 sctx->ignore_cur_inode = false;
6799 fs_path_reset(&sctx->cur_inode_path);
6800
6801 /*
6802 * Set send_progress to current inode. This will tell all get_cur_xxx
6803 * functions that the current inode's refs are not updated yet. Later,
6804 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6805 */
6806 sctx->send_progress = sctx->cur_ino;
6807
6808 if (result == BTRFS_COMPARE_TREE_NEW ||
6809 result == BTRFS_COMPARE_TREE_CHANGED) {
6810 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6811 sctx->left_path->slots[0],
6812 struct btrfs_inode_item);
6813 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6814 left_ii);
6815 } else {
6816 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6817 sctx->right_path->slots[0],
6818 struct btrfs_inode_item);
6819 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6820 right_ii);
6821 }
6822 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6823 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6824 sctx->right_path->slots[0],
6825 struct btrfs_inode_item);
6826
6827 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6828 right_ii);
6829
6830 /*
6831 * The cur_ino = root dir case is special here. We can't treat
6832 * the inode as deleted+reused because it would generate a
6833 * stream that tries to delete/mkdir the root dir.
6834 */
6835 if (left_gen != right_gen &&
6836 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6837 sctx->cur_inode_new_gen = true;
6838 }
6839
6840 /*
6841 * Normally we do not find inodes with a link count of zero (orphans)
6842 * because the most common case is to create a snapshot and use it
6843 * for a send operation. However other less common use cases involve
6844 * using a subvolume and send it after turning it to RO mode just
6845 * after deleting all hard links of a file while holding an open
6846 * file descriptor against it or turning a RO snapshot into RW mode,
6847 * keep an open file descriptor against a file, delete it and then
6848 * turn the snapshot back to RO mode before using it for a send
6849 * operation. The former is what the receiver operation does.
6850 * Therefore, if we want to send these snapshots soon after they're
6851 * received, we need to handle orphan inodes as well. Moreover, orphans
6852 * can appear not only in the send snapshot but also in the parent
6853 * snapshot. Here are several cases:
6854 *
6855 * Case 1: BTRFS_COMPARE_TREE_NEW
6856 * | send snapshot | action
6857 * --------------------------------
6858 * nlink | 0 | ignore
6859 *
6860 * Case 2: BTRFS_COMPARE_TREE_DELETED
6861 * | parent snapshot | action
6862 * ----------------------------------
6863 * nlink | 0 | as usual
6864 * Note: No unlinks will be sent because there're no paths for it.
6865 *
6866 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6867 * | | parent snapshot | send snapshot | action
6868 * -----------------------------------------------------------------------
6869 * subcase 1 | nlink | 0 | 0 | ignore
6870 * subcase 2 | nlink | >0 | 0 | new_gen(deletion)
6871 * subcase 3 | nlink | 0 | >0 | new_gen(creation)
6872 *
6873 */
6874 if (result == BTRFS_COMPARE_TREE_NEW) {
6875 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
6876 sctx->ignore_cur_inode = true;
6877 goto out;
6878 }
6879 sctx->cur_inode_gen = left_gen;
6880 sctx->cur_inode_new = true;
6881 sctx->cur_inode_deleted = false;
6882 sctx->cur_inode_size = btrfs_inode_size(
6883 sctx->left_path->nodes[0], left_ii);
6884 sctx->cur_inode_mode = btrfs_inode_mode(
6885 sctx->left_path->nodes[0], left_ii);
6886 sctx->cur_inode_rdev = btrfs_inode_rdev(
6887 sctx->left_path->nodes[0], left_ii);
6888 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6889 ret = send_create_inode_if_needed(sctx);
6890 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6891 sctx->cur_inode_gen = right_gen;
6892 sctx->cur_inode_new = false;
6893 sctx->cur_inode_deleted = true;
6894 sctx->cur_inode_size = btrfs_inode_size(
6895 sctx->right_path->nodes[0], right_ii);
6896 sctx->cur_inode_mode = btrfs_inode_mode(
6897 sctx->right_path->nodes[0], right_ii);
6898 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6899 u32 new_nlinks, old_nlinks;
6900
6901 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6902 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
6903 if (new_nlinks == 0 && old_nlinks == 0) {
6904 sctx->ignore_cur_inode = true;
6905 goto out;
6906 } else if (new_nlinks == 0 || old_nlinks == 0) {
6907 sctx->cur_inode_new_gen = 1;
6908 }
6909 /*
6910 * We need to do some special handling in case the inode was
6911 * reported as changed with a changed generation number. This
6912 * means that the original inode was deleted and new inode
6913 * reused the same inum. So we have to treat the old inode as
6914 * deleted and the new one as new.
6915 */
6916 if (sctx->cur_inode_new_gen) {
6917 /*
6918 * First, process the inode as if it was deleted.
6919 */
6920 if (old_nlinks > 0) {
6921 sctx->cur_inode_gen = right_gen;
6922 sctx->cur_inode_new = false;
6923 sctx->cur_inode_deleted = true;
6924 sctx->cur_inode_size = btrfs_inode_size(
6925 sctx->right_path->nodes[0], right_ii);
6926 sctx->cur_inode_mode = btrfs_inode_mode(
6927 sctx->right_path->nodes[0], right_ii);
6928 ret = process_all_refs(sctx,
6929 BTRFS_COMPARE_TREE_DELETED);
6930 if (ret < 0)
6931 goto out;
6932 }
6933
6934 /*
6935 * Now process the inode as if it was new.
6936 */
6937 if (new_nlinks > 0) {
6938 sctx->cur_inode_gen = left_gen;
6939 sctx->cur_inode_new = true;
6940 sctx->cur_inode_deleted = false;
6941 sctx->cur_inode_size = btrfs_inode_size(
6942 sctx->left_path->nodes[0],
6943 left_ii);
6944 sctx->cur_inode_mode = btrfs_inode_mode(
6945 sctx->left_path->nodes[0],
6946 left_ii);
6947 sctx->cur_inode_rdev = btrfs_inode_rdev(
6948 sctx->left_path->nodes[0],
6949 left_ii);
6950 ret = send_create_inode_if_needed(sctx);
6951 if (ret < 0)
6952 goto out;
6953
6954 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6955 if (ret < 0)
6956 goto out;
6957 /*
6958 * Advance send_progress now as we did not get
6959 * into process_recorded_refs_if_needed in the
6960 * new_gen case.
6961 */
6962 sctx->send_progress = sctx->cur_ino + 1;
6963
6964 /*
6965 * Now process all extents and xattrs of the
6966 * inode as if they were all new.
6967 */
6968 ret = process_all_extents(sctx);
6969 if (ret < 0)
6970 goto out;
6971 ret = process_all_new_xattrs(sctx);
6972 if (ret < 0)
6973 goto out;
6974 }
6975 } else {
6976 sctx->cur_inode_gen = left_gen;
6977 sctx->cur_inode_new = false;
6978 sctx->cur_inode_new_gen = false;
6979 sctx->cur_inode_deleted = false;
6980 sctx->cur_inode_size = btrfs_inode_size(
6981 sctx->left_path->nodes[0], left_ii);
6982 sctx->cur_inode_mode = btrfs_inode_mode(
6983 sctx->left_path->nodes[0], left_ii);
6984 }
6985 }
6986
6987 out:
6988 return ret;
6989 }
6990
6991 /*
6992 * We have to process new refs before deleted refs, but compare_trees gives us
6993 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6994 * first and later process them in process_recorded_refs.
6995 * For the cur_inode_new_gen case, we skip recording completely because
6996 * changed_inode did already initiate processing of refs. The reason for this is
6997 * that in this case, compare_tree actually compares the refs of 2 different
6998 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6999 * refs of the right tree as deleted and all refs of the left tree as new.
7000 */
changed_ref(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7001 static int changed_ref(struct send_ctx *sctx,
7002 enum btrfs_compare_tree_result result)
7003 {
7004 int ret = 0;
7005
7006 if (unlikely(sctx->cur_ino != sctx->cmp_key->objectid)) {
7007 inconsistent_snapshot_error(sctx, result, "reference");
7008 return -EIO;
7009 }
7010
7011 if (!sctx->cur_inode_new_gen &&
7012 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7013 if (result == BTRFS_COMPARE_TREE_NEW)
7014 ret = record_new_ref(sctx);
7015 else if (result == BTRFS_COMPARE_TREE_DELETED)
7016 ret = record_deleted_ref(sctx);
7017 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7018 ret = record_changed_ref(sctx);
7019 }
7020
7021 return ret;
7022 }
7023
7024 /*
7025 * Process new/deleted/changed xattrs. We skip processing in the
7026 * cur_inode_new_gen case because changed_inode did already initiate processing
7027 * of xattrs. The reason is the same as in changed_ref
7028 */
changed_xattr(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7029 static int changed_xattr(struct send_ctx *sctx,
7030 enum btrfs_compare_tree_result result)
7031 {
7032 int ret = 0;
7033
7034 if (unlikely(sctx->cur_ino != sctx->cmp_key->objectid)) {
7035 inconsistent_snapshot_error(sctx, result, "xattr");
7036 return -EIO;
7037 }
7038
7039 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7040 if (result == BTRFS_COMPARE_TREE_NEW)
7041 ret = process_new_xattr(sctx);
7042 else if (result == BTRFS_COMPARE_TREE_DELETED)
7043 ret = process_deleted_xattr(sctx);
7044 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7045 ret = process_changed_xattr(sctx);
7046 }
7047
7048 return ret;
7049 }
7050
7051 /*
7052 * Process new/deleted/changed extents. We skip processing in the
7053 * cur_inode_new_gen case because changed_inode did already initiate processing
7054 * of extents. The reason is the same as in changed_ref
7055 */
changed_extent(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7056 static int changed_extent(struct send_ctx *sctx,
7057 enum btrfs_compare_tree_result result)
7058 {
7059 int ret = 0;
7060
7061 /*
7062 * We have found an extent item that changed without the inode item
7063 * having changed. This can happen either after relocation (where the
7064 * disk_bytenr of an extent item is replaced at
7065 * relocation.c:replace_file_extents()) or after deduplication into a
7066 * file in both the parent and send snapshots (where an extent item can
7067 * get modified or replaced with a new one). Note that deduplication
7068 * updates the inode item, but it only changes the iversion (sequence
7069 * field in the inode item) of the inode, so if a file is deduplicated
7070 * the same amount of times in both the parent and send snapshots, its
7071 * iversion becomes the same in both snapshots, whence the inode item is
7072 * the same on both snapshots.
7073 */
7074 if (sctx->cur_ino != sctx->cmp_key->objectid)
7075 return 0;
7076
7077 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7078 if (result != BTRFS_COMPARE_TREE_DELETED)
7079 ret = process_extent(sctx, sctx->left_path,
7080 sctx->cmp_key);
7081 }
7082
7083 return ret;
7084 }
7085
changed_verity(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7086 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7087 {
7088 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7089 if (result == BTRFS_COMPARE_TREE_NEW)
7090 sctx->cur_inode_needs_verity = true;
7091 }
7092 return 0;
7093 }
7094
dir_changed(struct send_ctx * sctx,u64 dir)7095 static int dir_changed(struct send_ctx *sctx, u64 dir)
7096 {
7097 u64 orig_gen, new_gen;
7098 int ret;
7099
7100 ret = get_inode_gen(sctx->send_root, dir, &new_gen);
7101 if (ret)
7102 return ret;
7103
7104 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
7105 if (ret)
7106 return ret;
7107
7108 return (orig_gen != new_gen) ? 1 : 0;
7109 }
7110
compare_refs(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)7111 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7112 struct btrfs_key *key)
7113 {
7114 struct btrfs_inode_extref *extref;
7115 struct extent_buffer *leaf;
7116 u64 dirid = 0, last_dirid = 0;
7117 unsigned long ptr;
7118 u32 item_size;
7119 u32 cur_offset = 0;
7120 int ref_name_len;
7121 int ret = 0;
7122
7123 /* Easy case, just check this one dirid */
7124 if (key->type == BTRFS_INODE_REF_KEY) {
7125 dirid = key->offset;
7126
7127 ret = dir_changed(sctx, dirid);
7128 goto out;
7129 }
7130
7131 leaf = path->nodes[0];
7132 item_size = btrfs_item_size(leaf, path->slots[0]);
7133 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7134 while (cur_offset < item_size) {
7135 extref = (struct btrfs_inode_extref *)(ptr +
7136 cur_offset);
7137 dirid = btrfs_inode_extref_parent(leaf, extref);
7138 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7139 cur_offset += ref_name_len + sizeof(*extref);
7140 if (dirid == last_dirid)
7141 continue;
7142 ret = dir_changed(sctx, dirid);
7143 if (ret)
7144 break;
7145 last_dirid = dirid;
7146 }
7147 out:
7148 return ret;
7149 }
7150
7151 /*
7152 * Updates compare related fields in sctx and simply forwards to the actual
7153 * changed_xxx functions.
7154 */
changed_cb(struct btrfs_path * left_path,struct btrfs_path * right_path,struct btrfs_key * key,enum btrfs_compare_tree_result result,struct send_ctx * sctx)7155 static int changed_cb(struct btrfs_path *left_path,
7156 struct btrfs_path *right_path,
7157 struct btrfs_key *key,
7158 enum btrfs_compare_tree_result result,
7159 struct send_ctx *sctx)
7160 {
7161 int ret;
7162
7163 /*
7164 * We can not hold the commit root semaphore here. This is because in
7165 * the case of sending and receiving to the same filesystem, using a
7166 * pipe, could result in a deadlock:
7167 *
7168 * 1) The task running send blocks on the pipe because it's full;
7169 *
7170 * 2) The task running receive, which is the only consumer of the pipe,
7171 * is waiting for a transaction commit (for example due to a space
7172 * reservation when doing a write or triggering a transaction commit
7173 * when creating a subvolume);
7174 *
7175 * 3) The transaction is waiting to write lock the commit root semaphore,
7176 * but can not acquire it since it's being held at 1).
7177 *
7178 * Down this call chain we write to the pipe through kernel_write().
7179 * The same type of problem can also happen when sending to a file that
7180 * is stored in the same filesystem - when reserving space for a write
7181 * into the file, we can trigger a transaction commit.
7182 *
7183 * Our caller has supplied us with clones of leaves from the send and
7184 * parent roots, so we're safe here from a concurrent relocation and
7185 * further reallocation of metadata extents while we are here. Below we
7186 * also assert that the leaves are clones.
7187 */
7188 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7189
7190 /*
7191 * We always have a send root, so left_path is never NULL. We will not
7192 * have a leaf when we have reached the end of the send root but have
7193 * not yet reached the end of the parent root.
7194 */
7195 if (left_path->nodes[0])
7196 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7197 &left_path->nodes[0]->bflags));
7198 /*
7199 * When doing a full send we don't have a parent root, so right_path is
7200 * NULL. When doing an incremental send, we may have reached the end of
7201 * the parent root already, so we don't have a leaf at right_path.
7202 */
7203 if (right_path && right_path->nodes[0])
7204 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7205 &right_path->nodes[0]->bflags));
7206
7207 if (result == BTRFS_COMPARE_TREE_SAME) {
7208 if (key->type == BTRFS_INODE_REF_KEY ||
7209 key->type == BTRFS_INODE_EXTREF_KEY) {
7210 ret = compare_refs(sctx, left_path, key);
7211 if (!ret)
7212 return 0;
7213 if (ret < 0)
7214 return ret;
7215 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7216 return maybe_send_hole(sctx, left_path, key);
7217 } else {
7218 return 0;
7219 }
7220 result = BTRFS_COMPARE_TREE_CHANGED;
7221 }
7222
7223 sctx->left_path = left_path;
7224 sctx->right_path = right_path;
7225 sctx->cmp_key = key;
7226
7227 ret = finish_inode_if_needed(sctx, 0);
7228 if (ret < 0)
7229 goto out;
7230
7231 /* Ignore non-FS objects */
7232 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7233 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7234 goto out;
7235
7236 if (key->type == BTRFS_INODE_ITEM_KEY) {
7237 ret = changed_inode(sctx, result);
7238 } else if (!sctx->ignore_cur_inode) {
7239 if (key->type == BTRFS_INODE_REF_KEY ||
7240 key->type == BTRFS_INODE_EXTREF_KEY)
7241 ret = changed_ref(sctx, result);
7242 else if (key->type == BTRFS_XATTR_ITEM_KEY)
7243 ret = changed_xattr(sctx, result);
7244 else if (key->type == BTRFS_EXTENT_DATA_KEY)
7245 ret = changed_extent(sctx, result);
7246 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7247 key->offset == 0)
7248 ret = changed_verity(sctx, result);
7249 }
7250
7251 out:
7252 return ret;
7253 }
7254
search_key_again(const struct send_ctx * sctx,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key)7255 static int search_key_again(const struct send_ctx *sctx,
7256 struct btrfs_root *root,
7257 struct btrfs_path *path,
7258 const struct btrfs_key *key)
7259 {
7260 int ret;
7261
7262 if (!path->need_commit_sem)
7263 lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7264
7265 /*
7266 * Roots used for send operations are readonly and no one can add,
7267 * update or remove keys from them, so we should be able to find our
7268 * key again. The only exception is deduplication, which can operate on
7269 * readonly roots and add, update or remove keys to/from them - but at
7270 * the moment we don't allow it to run in parallel with send.
7271 */
7272 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7273 ASSERT(ret <= 0);
7274 if (unlikely(ret > 0)) {
7275 btrfs_print_tree(path->nodes[path->lowest_level], false);
7276 btrfs_err(root->fs_info,
7277 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7278 key->objectid, key->type, key->offset,
7279 (root == sctx->parent_root ? "parent" : "send"),
7280 btrfs_root_id(root), path->lowest_level,
7281 path->slots[path->lowest_level]);
7282 return -EUCLEAN;
7283 }
7284
7285 return ret;
7286 }
7287
full_send_tree(struct send_ctx * sctx)7288 static int full_send_tree(struct send_ctx *sctx)
7289 {
7290 int ret;
7291 struct btrfs_root *send_root = sctx->send_root;
7292 struct btrfs_key key;
7293 struct btrfs_fs_info *fs_info = send_root->fs_info;
7294 BTRFS_PATH_AUTO_FREE(path);
7295
7296 path = alloc_path_for_send();
7297 if (!path)
7298 return -ENOMEM;
7299 path->reada = READA_FORWARD_ALWAYS;
7300
7301 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7302 key.type = BTRFS_INODE_ITEM_KEY;
7303 key.offset = 0;
7304
7305 down_read(&fs_info->commit_root_sem);
7306 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7307 up_read(&fs_info->commit_root_sem);
7308
7309 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7310 if (ret < 0)
7311 return ret;
7312 if (ret)
7313 goto out_finish;
7314
7315 while (1) {
7316 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7317
7318 ret = changed_cb(path, NULL, &key,
7319 BTRFS_COMPARE_TREE_NEW, sctx);
7320 if (ret < 0)
7321 return ret;
7322
7323 down_read(&fs_info->commit_root_sem);
7324 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7325 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7326 up_read(&fs_info->commit_root_sem);
7327 /*
7328 * A transaction used for relocating a block group was
7329 * committed or is about to finish its commit. Release
7330 * our path (leaf) and restart the search, so that we
7331 * avoid operating on any file extent items that are
7332 * stale, with a disk_bytenr that reflects a pre
7333 * relocation value. This way we avoid as much as
7334 * possible to fallback to regular writes when checking
7335 * if we can clone file ranges.
7336 */
7337 btrfs_release_path(path);
7338 ret = search_key_again(sctx, send_root, path, &key);
7339 if (ret < 0)
7340 return ret;
7341 } else {
7342 up_read(&fs_info->commit_root_sem);
7343 }
7344
7345 ret = btrfs_next_item(send_root, path);
7346 if (ret < 0)
7347 return ret;
7348 if (ret) {
7349 ret = 0;
7350 break;
7351 }
7352 }
7353
7354 out_finish:
7355 return finish_inode_if_needed(sctx, 1);
7356 }
7357
replace_node_with_clone(struct btrfs_path * path,int level)7358 static int replace_node_with_clone(struct btrfs_path *path, int level)
7359 {
7360 struct extent_buffer *clone;
7361
7362 clone = btrfs_clone_extent_buffer(path->nodes[level]);
7363 if (!clone)
7364 return -ENOMEM;
7365
7366 free_extent_buffer(path->nodes[level]);
7367 path->nodes[level] = clone;
7368
7369 return 0;
7370 }
7371
tree_move_down(struct btrfs_path * path,int * level,u64 reada_min_gen)7372 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7373 {
7374 struct extent_buffer *eb;
7375 struct extent_buffer *parent = path->nodes[*level];
7376 int slot = path->slots[*level];
7377 const int nritems = btrfs_header_nritems(parent);
7378 u64 reada_max;
7379 u64 reada_done = 0;
7380
7381 lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7382 ASSERT(*level != 0);
7383
7384 eb = btrfs_read_node_slot(parent, slot);
7385 if (IS_ERR(eb))
7386 return PTR_ERR(eb);
7387
7388 /*
7389 * Trigger readahead for the next leaves we will process, so that it is
7390 * very likely that when we need them they are already in memory and we
7391 * will not block on disk IO. For nodes we only do readahead for one,
7392 * since the time window between processing nodes is typically larger.
7393 */
7394 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7395
7396 for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7397 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7398 btrfs_readahead_node_child(parent, slot);
7399 reada_done += eb->fs_info->nodesize;
7400 }
7401 }
7402
7403 path->nodes[*level - 1] = eb;
7404 path->slots[*level - 1] = 0;
7405 (*level)--;
7406
7407 if (*level == 0)
7408 return replace_node_with_clone(path, 0);
7409
7410 return 0;
7411 }
7412
tree_move_next_or_upnext(struct btrfs_path * path,int * level,int root_level)7413 static int tree_move_next_or_upnext(struct btrfs_path *path,
7414 int *level, int root_level)
7415 {
7416 int ret = 0;
7417 int nritems;
7418 nritems = btrfs_header_nritems(path->nodes[*level]);
7419
7420 path->slots[*level]++;
7421
7422 while (path->slots[*level] >= nritems) {
7423 if (*level == root_level) {
7424 path->slots[*level] = nritems - 1;
7425 return -1;
7426 }
7427
7428 /* move upnext */
7429 path->slots[*level] = 0;
7430 free_extent_buffer(path->nodes[*level]);
7431 path->nodes[*level] = NULL;
7432 (*level)++;
7433 path->slots[*level]++;
7434
7435 nritems = btrfs_header_nritems(path->nodes[*level]);
7436 ret = 1;
7437 }
7438 return ret;
7439 }
7440
7441 /*
7442 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7443 * or down.
7444 */
tree_advance(struct btrfs_path * path,int * level,int root_level,int allow_down,struct btrfs_key * key,u64 reada_min_gen)7445 static int tree_advance(struct btrfs_path *path,
7446 int *level, int root_level,
7447 int allow_down,
7448 struct btrfs_key *key,
7449 u64 reada_min_gen)
7450 {
7451 int ret;
7452
7453 if (*level == 0 || !allow_down) {
7454 ret = tree_move_next_or_upnext(path, level, root_level);
7455 } else {
7456 ret = tree_move_down(path, level, reada_min_gen);
7457 }
7458
7459 /*
7460 * Even if we have reached the end of a tree, ret is -1, update the key
7461 * anyway, so that in case we need to restart due to a block group
7462 * relocation, we can assert that the last key of the root node still
7463 * exists in the tree.
7464 */
7465 if (*level == 0)
7466 btrfs_item_key_to_cpu(path->nodes[*level], key,
7467 path->slots[*level]);
7468 else
7469 btrfs_node_key_to_cpu(path->nodes[*level], key,
7470 path->slots[*level]);
7471
7472 return ret;
7473 }
7474
tree_compare_item(struct btrfs_path * left_path,struct btrfs_path * right_path,char * tmp_buf)7475 static int tree_compare_item(struct btrfs_path *left_path,
7476 struct btrfs_path *right_path,
7477 char *tmp_buf)
7478 {
7479 int cmp;
7480 int len1, len2;
7481 unsigned long off1, off2;
7482
7483 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7484 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7485 if (len1 != len2)
7486 return 1;
7487
7488 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7489 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7490 right_path->slots[0]);
7491
7492 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7493
7494 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7495 if (cmp)
7496 return 1;
7497 return 0;
7498 }
7499
7500 /*
7501 * A transaction used for relocating a block group was committed or is about to
7502 * finish its commit. Release our paths and restart the search, so that we are
7503 * not using stale extent buffers:
7504 *
7505 * 1) For levels > 0, we are only holding references of extent buffers, without
7506 * any locks on them, which does not prevent them from having been relocated
7507 * and reallocated after the last time we released the commit root semaphore.
7508 * The exception are the root nodes, for which we always have a clone, see
7509 * the comment at btrfs_compare_trees();
7510 *
7511 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7512 * we are safe from the concurrent relocation and reallocation. However they
7513 * can have file extent items with a pre relocation disk_bytenr value, so we
7514 * restart the start from the current commit roots and clone the new leaves so
7515 * that we get the post relocation disk_bytenr values. Not doing so, could
7516 * make us clone the wrong data in case there are new extents using the old
7517 * disk_bytenr that happen to be shared.
7518 */
restart_after_relocation(struct btrfs_path * left_path,struct btrfs_path * right_path,const struct btrfs_key * left_key,const struct btrfs_key * right_key,int left_level,int right_level,const struct send_ctx * sctx)7519 static int restart_after_relocation(struct btrfs_path *left_path,
7520 struct btrfs_path *right_path,
7521 const struct btrfs_key *left_key,
7522 const struct btrfs_key *right_key,
7523 int left_level,
7524 int right_level,
7525 const struct send_ctx *sctx)
7526 {
7527 int root_level;
7528 int ret;
7529
7530 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7531
7532 btrfs_release_path(left_path);
7533 btrfs_release_path(right_path);
7534
7535 /*
7536 * Since keys can not be added or removed to/from our roots because they
7537 * are readonly and we do not allow deduplication to run in parallel
7538 * (which can add, remove or change keys), the layout of the trees should
7539 * not change.
7540 */
7541 left_path->lowest_level = left_level;
7542 ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7543 if (ret < 0)
7544 return ret;
7545
7546 right_path->lowest_level = right_level;
7547 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7548 if (ret < 0)
7549 return ret;
7550
7551 /*
7552 * If the lowest level nodes are leaves, clone them so that they can be
7553 * safely used by changed_cb() while not under the protection of the
7554 * commit root semaphore, even if relocation and reallocation happens in
7555 * parallel.
7556 */
7557 if (left_level == 0) {
7558 ret = replace_node_with_clone(left_path, 0);
7559 if (ret < 0)
7560 return ret;
7561 }
7562
7563 if (right_level == 0) {
7564 ret = replace_node_with_clone(right_path, 0);
7565 if (ret < 0)
7566 return ret;
7567 }
7568
7569 /*
7570 * Now clone the root nodes (unless they happen to be the leaves we have
7571 * already cloned). This is to protect against concurrent snapshotting of
7572 * the send and parent roots (see the comment at btrfs_compare_trees()).
7573 */
7574 root_level = btrfs_header_level(sctx->send_root->commit_root);
7575 if (root_level > 0) {
7576 ret = replace_node_with_clone(left_path, root_level);
7577 if (ret < 0)
7578 return ret;
7579 }
7580
7581 root_level = btrfs_header_level(sctx->parent_root->commit_root);
7582 if (root_level > 0) {
7583 ret = replace_node_with_clone(right_path, root_level);
7584 if (ret < 0)
7585 return ret;
7586 }
7587
7588 return 0;
7589 }
7590
7591 /*
7592 * This function compares two trees and calls the provided callback for
7593 * every changed/new/deleted item it finds.
7594 * If shared tree blocks are encountered, whole subtrees are skipped, making
7595 * the compare pretty fast on snapshotted subvolumes.
7596 *
7597 * This currently works on commit roots only. As commit roots are read only,
7598 * we don't do any locking. The commit roots are protected with transactions.
7599 * Transactions are ended and rejoined when a commit is tried in between.
7600 *
7601 * This function checks for modifications done to the trees while comparing.
7602 * If it detects a change, it aborts immediately.
7603 */
btrfs_compare_trees(struct btrfs_root * left_root,struct btrfs_root * right_root,struct send_ctx * sctx)7604 static int btrfs_compare_trees(struct btrfs_root *left_root,
7605 struct btrfs_root *right_root, struct send_ctx *sctx)
7606 {
7607 struct btrfs_fs_info *fs_info = left_root->fs_info;
7608 int ret;
7609 int cmp;
7610 BTRFS_PATH_AUTO_FREE(left_path);
7611 BTRFS_PATH_AUTO_FREE(right_path);
7612 struct btrfs_key left_key;
7613 struct btrfs_key right_key;
7614 char *tmp_buf = NULL;
7615 int left_root_level;
7616 int right_root_level;
7617 int left_level;
7618 int right_level;
7619 int left_end_reached = 0;
7620 int right_end_reached = 0;
7621 int advance_left = 0;
7622 int advance_right = 0;
7623 u64 left_blockptr;
7624 u64 right_blockptr;
7625 u64 left_gen;
7626 u64 right_gen;
7627 u64 reada_min_gen;
7628
7629 left_path = btrfs_alloc_path();
7630 if (!left_path) {
7631 ret = -ENOMEM;
7632 goto out;
7633 }
7634 right_path = btrfs_alloc_path();
7635 if (!right_path) {
7636 ret = -ENOMEM;
7637 goto out;
7638 }
7639
7640 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7641 if (!tmp_buf) {
7642 ret = -ENOMEM;
7643 goto out;
7644 }
7645
7646 left_path->search_commit_root = 1;
7647 left_path->skip_locking = 1;
7648 right_path->search_commit_root = 1;
7649 right_path->skip_locking = 1;
7650
7651 /*
7652 * Strategy: Go to the first items of both trees. Then do
7653 *
7654 * If both trees are at level 0
7655 * Compare keys of current items
7656 * If left < right treat left item as new, advance left tree
7657 * and repeat
7658 * If left > right treat right item as deleted, advance right tree
7659 * and repeat
7660 * If left == right do deep compare of items, treat as changed if
7661 * needed, advance both trees and repeat
7662 * If both trees are at the same level but not at level 0
7663 * Compare keys of current nodes/leafs
7664 * If left < right advance left tree and repeat
7665 * If left > right advance right tree and repeat
7666 * If left == right compare blockptrs of the next nodes/leafs
7667 * If they match advance both trees but stay at the same level
7668 * and repeat
7669 * If they don't match advance both trees while allowing to go
7670 * deeper and repeat
7671 * If tree levels are different
7672 * Advance the tree that needs it and repeat
7673 *
7674 * Advancing a tree means:
7675 * If we are at level 0, try to go to the next slot. If that's not
7676 * possible, go one level up and repeat. Stop when we found a level
7677 * where we could go to the next slot. We may at this point be on a
7678 * node or a leaf.
7679 *
7680 * If we are not at level 0 and not on shared tree blocks, go one
7681 * level deeper.
7682 *
7683 * If we are not at level 0 and on shared tree blocks, go one slot to
7684 * the right if possible or go up and right.
7685 */
7686
7687 down_read(&fs_info->commit_root_sem);
7688 left_level = btrfs_header_level(left_root->commit_root);
7689 left_root_level = left_level;
7690 /*
7691 * We clone the root node of the send and parent roots to prevent races
7692 * with snapshot creation of these roots. Snapshot creation COWs the
7693 * root node of a tree, so after the transaction is committed the old
7694 * extent can be reallocated while this send operation is still ongoing.
7695 * So we clone them, under the commit root semaphore, to be race free.
7696 */
7697 left_path->nodes[left_level] =
7698 btrfs_clone_extent_buffer(left_root->commit_root);
7699 if (!left_path->nodes[left_level]) {
7700 ret = -ENOMEM;
7701 goto out_unlock;
7702 }
7703
7704 right_level = btrfs_header_level(right_root->commit_root);
7705 right_root_level = right_level;
7706 right_path->nodes[right_level] =
7707 btrfs_clone_extent_buffer(right_root->commit_root);
7708 if (!right_path->nodes[right_level]) {
7709 ret = -ENOMEM;
7710 goto out_unlock;
7711 }
7712 /*
7713 * Our right root is the parent root, while the left root is the "send"
7714 * root. We know that all new nodes/leaves in the left root must have
7715 * a generation greater than the right root's generation, so we trigger
7716 * readahead for those nodes and leaves of the left root, as we know we
7717 * will need to read them at some point.
7718 */
7719 reada_min_gen = btrfs_header_generation(right_root->commit_root);
7720
7721 if (left_level == 0)
7722 btrfs_item_key_to_cpu(left_path->nodes[left_level],
7723 &left_key, left_path->slots[left_level]);
7724 else
7725 btrfs_node_key_to_cpu(left_path->nodes[left_level],
7726 &left_key, left_path->slots[left_level]);
7727 if (right_level == 0)
7728 btrfs_item_key_to_cpu(right_path->nodes[right_level],
7729 &right_key, right_path->slots[right_level]);
7730 else
7731 btrfs_node_key_to_cpu(right_path->nodes[right_level],
7732 &right_key, right_path->slots[right_level]);
7733
7734 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7735
7736 while (1) {
7737 if (need_resched() ||
7738 rwsem_is_contended(&fs_info->commit_root_sem)) {
7739 up_read(&fs_info->commit_root_sem);
7740 cond_resched();
7741 down_read(&fs_info->commit_root_sem);
7742 }
7743
7744 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7745 ret = restart_after_relocation(left_path, right_path,
7746 &left_key, &right_key,
7747 left_level, right_level,
7748 sctx);
7749 if (ret < 0)
7750 goto out_unlock;
7751 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7752 }
7753
7754 if (advance_left && !left_end_reached) {
7755 ret = tree_advance(left_path, &left_level,
7756 left_root_level,
7757 advance_left != ADVANCE_ONLY_NEXT,
7758 &left_key, reada_min_gen);
7759 if (ret == -1)
7760 left_end_reached = ADVANCE;
7761 else if (ret < 0)
7762 goto out_unlock;
7763 advance_left = 0;
7764 }
7765 if (advance_right && !right_end_reached) {
7766 ret = tree_advance(right_path, &right_level,
7767 right_root_level,
7768 advance_right != ADVANCE_ONLY_NEXT,
7769 &right_key, reada_min_gen);
7770 if (ret == -1)
7771 right_end_reached = ADVANCE;
7772 else if (ret < 0)
7773 goto out_unlock;
7774 advance_right = 0;
7775 }
7776
7777 if (left_end_reached && right_end_reached) {
7778 ret = 0;
7779 goto out_unlock;
7780 } else if (left_end_reached) {
7781 if (right_level == 0) {
7782 up_read(&fs_info->commit_root_sem);
7783 ret = changed_cb(left_path, right_path,
7784 &right_key,
7785 BTRFS_COMPARE_TREE_DELETED,
7786 sctx);
7787 if (ret < 0)
7788 goto out;
7789 down_read(&fs_info->commit_root_sem);
7790 }
7791 advance_right = ADVANCE;
7792 continue;
7793 } else if (right_end_reached) {
7794 if (left_level == 0) {
7795 up_read(&fs_info->commit_root_sem);
7796 ret = changed_cb(left_path, right_path,
7797 &left_key,
7798 BTRFS_COMPARE_TREE_NEW,
7799 sctx);
7800 if (ret < 0)
7801 goto out;
7802 down_read(&fs_info->commit_root_sem);
7803 }
7804 advance_left = ADVANCE;
7805 continue;
7806 }
7807
7808 if (left_level == 0 && right_level == 0) {
7809 up_read(&fs_info->commit_root_sem);
7810 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7811 if (cmp < 0) {
7812 ret = changed_cb(left_path, right_path,
7813 &left_key,
7814 BTRFS_COMPARE_TREE_NEW,
7815 sctx);
7816 advance_left = ADVANCE;
7817 } else if (cmp > 0) {
7818 ret = changed_cb(left_path, right_path,
7819 &right_key,
7820 BTRFS_COMPARE_TREE_DELETED,
7821 sctx);
7822 advance_right = ADVANCE;
7823 } else {
7824 enum btrfs_compare_tree_result result;
7825
7826 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7827 ret = tree_compare_item(left_path, right_path,
7828 tmp_buf);
7829 if (ret)
7830 result = BTRFS_COMPARE_TREE_CHANGED;
7831 else
7832 result = BTRFS_COMPARE_TREE_SAME;
7833 ret = changed_cb(left_path, right_path,
7834 &left_key, result, sctx);
7835 advance_left = ADVANCE;
7836 advance_right = ADVANCE;
7837 }
7838
7839 if (ret < 0)
7840 goto out;
7841 down_read(&fs_info->commit_root_sem);
7842 } else if (left_level == right_level) {
7843 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7844 if (cmp < 0) {
7845 advance_left = ADVANCE;
7846 } else if (cmp > 0) {
7847 advance_right = ADVANCE;
7848 } else {
7849 left_blockptr = btrfs_node_blockptr(
7850 left_path->nodes[left_level],
7851 left_path->slots[left_level]);
7852 right_blockptr = btrfs_node_blockptr(
7853 right_path->nodes[right_level],
7854 right_path->slots[right_level]);
7855 left_gen = btrfs_node_ptr_generation(
7856 left_path->nodes[left_level],
7857 left_path->slots[left_level]);
7858 right_gen = btrfs_node_ptr_generation(
7859 right_path->nodes[right_level],
7860 right_path->slots[right_level]);
7861 if (left_blockptr == right_blockptr &&
7862 left_gen == right_gen) {
7863 /*
7864 * As we're on a shared block, don't
7865 * allow to go deeper.
7866 */
7867 advance_left = ADVANCE_ONLY_NEXT;
7868 advance_right = ADVANCE_ONLY_NEXT;
7869 } else {
7870 advance_left = ADVANCE;
7871 advance_right = ADVANCE;
7872 }
7873 }
7874 } else if (left_level < right_level) {
7875 advance_right = ADVANCE;
7876 } else {
7877 advance_left = ADVANCE;
7878 }
7879 }
7880
7881 out_unlock:
7882 up_read(&fs_info->commit_root_sem);
7883 out:
7884 kvfree(tmp_buf);
7885 return ret;
7886 }
7887
send_subvol(struct send_ctx * sctx)7888 static int send_subvol(struct send_ctx *sctx)
7889 {
7890 int ret;
7891
7892 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7893 ret = send_header(sctx);
7894 if (ret < 0)
7895 goto out;
7896 }
7897
7898 ret = send_subvol_begin(sctx);
7899 if (ret < 0)
7900 goto out;
7901
7902 if (sctx->parent_root) {
7903 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7904 if (ret < 0)
7905 goto out;
7906 ret = finish_inode_if_needed(sctx, 1);
7907 if (ret < 0)
7908 goto out;
7909 } else {
7910 ret = full_send_tree(sctx);
7911 if (ret < 0)
7912 goto out;
7913 }
7914
7915 out:
7916 free_recorded_refs(sctx);
7917 return ret;
7918 }
7919
7920 /*
7921 * If orphan cleanup did remove any orphans from a root, it means the tree
7922 * was modified and therefore the commit root is not the same as the current
7923 * root anymore. This is a problem, because send uses the commit root and
7924 * therefore can see inode items that don't exist in the current root anymore,
7925 * and for example make calls to btrfs_iget, which will do tree lookups based
7926 * on the current root and not on the commit root. Those lookups will fail,
7927 * returning a -ESTALE error, and making send fail with that error. So make
7928 * sure a send does not see any orphans we have just removed, and that it will
7929 * see the same inodes regardless of whether a transaction commit happened
7930 * before it started (meaning that the commit root will be the same as the
7931 * current root) or not.
7932 */
ensure_commit_roots_uptodate(struct send_ctx * sctx)7933 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7934 {
7935 struct btrfs_root *root = sctx->parent_root;
7936
7937 if (root && root->node != root->commit_root)
7938 return btrfs_commit_current_transaction(root);
7939
7940 for (int i = 0; i < sctx->clone_roots_cnt; i++) {
7941 root = sctx->clone_roots[i].root;
7942 if (root->node != root->commit_root)
7943 return btrfs_commit_current_transaction(root);
7944 }
7945
7946 return 0;
7947 }
7948
7949 /*
7950 * Make sure any existing delalloc is flushed for any root used by a send
7951 * operation so that we do not miss any data and we do not race with writeback
7952 * finishing and changing a tree while send is using the tree. This could
7953 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7954 * a send operation then uses the subvolume.
7955 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7956 */
flush_delalloc_roots(struct send_ctx * sctx)7957 static int flush_delalloc_roots(struct send_ctx *sctx)
7958 {
7959 struct btrfs_root *root = sctx->parent_root;
7960 int ret;
7961 int i;
7962
7963 if (root) {
7964 ret = btrfs_start_delalloc_snapshot(root, false);
7965 if (ret)
7966 return ret;
7967 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
7968 }
7969
7970 for (i = 0; i < sctx->clone_roots_cnt; i++) {
7971 root = sctx->clone_roots[i].root;
7972 ret = btrfs_start_delalloc_snapshot(root, false);
7973 if (ret)
7974 return ret;
7975 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
7976 }
7977
7978 return 0;
7979 }
7980
btrfs_root_dec_send_in_progress(struct btrfs_root * root)7981 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7982 {
7983 spin_lock(&root->root_item_lock);
7984 root->send_in_progress--;
7985 /*
7986 * Not much left to do, we don't know why it's unbalanced and
7987 * can't blindly reset it to 0.
7988 */
7989 if (root->send_in_progress < 0)
7990 btrfs_err(root->fs_info,
7991 "send_in_progress unbalanced %d root %llu",
7992 root->send_in_progress, btrfs_root_id(root));
7993 spin_unlock(&root->root_item_lock);
7994 }
7995
dedupe_in_progress_warn(const struct btrfs_root * root)7996 static void dedupe_in_progress_warn(const struct btrfs_root *root)
7997 {
7998 btrfs_warn_rl(root->fs_info,
7999 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8000 btrfs_root_id(root), root->dedupe_in_progress);
8001 }
8002
btrfs_ioctl_send(struct btrfs_root * send_root,const struct btrfs_ioctl_send_args * arg)8003 long btrfs_ioctl_send(struct btrfs_root *send_root, const struct btrfs_ioctl_send_args *arg)
8004 {
8005 int ret = 0;
8006 struct btrfs_fs_info *fs_info = send_root->fs_info;
8007 struct btrfs_root *clone_root;
8008 struct send_ctx *sctx = NULL;
8009 u32 i;
8010 u64 *clone_sources_tmp = NULL;
8011 int clone_sources_to_rollback = 0;
8012 size_t alloc_size;
8013 int sort_clone_roots = 0;
8014 struct btrfs_lru_cache_entry *entry;
8015 struct btrfs_lru_cache_entry *tmp;
8016
8017 if (!capable(CAP_SYS_ADMIN))
8018 return -EPERM;
8019
8020 /*
8021 * The subvolume must remain read-only during send, protect against
8022 * making it RW. This also protects against deletion.
8023 */
8024 spin_lock(&send_root->root_item_lock);
8025 /*
8026 * Unlikely but possible, if the subvolume is marked for deletion but
8027 * is slow to remove the directory entry, send can still be started.
8028 */
8029 if (btrfs_root_dead(send_root)) {
8030 spin_unlock(&send_root->root_item_lock);
8031 return -EPERM;
8032 }
8033 /* Userspace tools do the checks and warn the user if it's not RO. */
8034 if (!btrfs_root_readonly(send_root)) {
8035 spin_unlock(&send_root->root_item_lock);
8036 return -EPERM;
8037 }
8038 if (send_root->dedupe_in_progress) {
8039 dedupe_in_progress_warn(send_root);
8040 spin_unlock(&send_root->root_item_lock);
8041 return -EAGAIN;
8042 }
8043 send_root->send_in_progress++;
8044 spin_unlock(&send_root->root_item_lock);
8045
8046 /*
8047 * Check that we don't overflow at later allocations, we request
8048 * clone_sources_count + 1 items, and compare to unsigned long inside
8049 * access_ok. Also set an upper limit for allocation size so this can't
8050 * easily exhaust memory. Max number of clone sources is about 200K.
8051 */
8052 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
8053 ret = -EINVAL;
8054 goto out;
8055 }
8056
8057 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8058 ret = -EOPNOTSUPP;
8059 goto out;
8060 }
8061
8062 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
8063 if (!sctx) {
8064 ret = -ENOMEM;
8065 goto out;
8066 }
8067
8068 init_path(&sctx->cur_inode_path);
8069 INIT_LIST_HEAD(&sctx->new_refs);
8070 INIT_LIST_HEAD(&sctx->deleted_refs);
8071
8072 btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE);
8073 btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE);
8074 btrfs_lru_cache_init(&sctx->dir_created_cache,
8075 SEND_MAX_DIR_CREATED_CACHE_SIZE);
8076 /*
8077 * This cache is periodically trimmed to a fixed size elsewhere, see
8078 * cache_dir_utimes() and trim_dir_utimes_cache().
8079 */
8080 btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0);
8081
8082 sctx->pending_dir_moves = RB_ROOT;
8083 sctx->waiting_dir_moves = RB_ROOT;
8084 sctx->orphan_dirs = RB_ROOT;
8085 sctx->rbtree_new_refs = RB_ROOT;
8086 sctx->rbtree_deleted_refs = RB_ROOT;
8087
8088 sctx->flags = arg->flags;
8089
8090 if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8091 if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8092 ret = -EPROTO;
8093 goto out;
8094 }
8095 /* Zero means "use the highest version" */
8096 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8097 } else {
8098 sctx->proto = 1;
8099 }
8100 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8101 ret = -EINVAL;
8102 goto out;
8103 }
8104
8105 sctx->send_filp = fget(arg->send_fd);
8106 if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) {
8107 ret = -EBADF;
8108 goto out;
8109 }
8110
8111 sctx->send_root = send_root;
8112 sctx->clone_roots_cnt = arg->clone_sources_count;
8113
8114 if (sctx->proto >= 2) {
8115 u32 send_buf_num_pages;
8116
8117 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8118 sctx->send_buf = vmalloc(sctx->send_max_size);
8119 if (!sctx->send_buf) {
8120 ret = -ENOMEM;
8121 goto out;
8122 }
8123 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8124 sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8125 sizeof(*sctx->send_buf_pages),
8126 GFP_KERNEL);
8127 if (!sctx->send_buf_pages) {
8128 ret = -ENOMEM;
8129 goto out;
8130 }
8131 for (i = 0; i < send_buf_num_pages; i++) {
8132 sctx->send_buf_pages[i] =
8133 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8134 }
8135 } else {
8136 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8137 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8138 }
8139 if (!sctx->send_buf) {
8140 ret = -ENOMEM;
8141 goto out;
8142 }
8143
8144 sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1,
8145 sizeof(*sctx->clone_roots),
8146 GFP_KERNEL);
8147 if (!sctx->clone_roots) {
8148 ret = -ENOMEM;
8149 goto out;
8150 }
8151
8152 alloc_size = array_size(sizeof(*arg->clone_sources),
8153 arg->clone_sources_count);
8154
8155 if (arg->clone_sources_count) {
8156 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
8157 if (!clone_sources_tmp) {
8158 ret = -ENOMEM;
8159 goto out;
8160 }
8161
8162 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
8163 alloc_size);
8164 if (ret) {
8165 ret = -EFAULT;
8166 goto out;
8167 }
8168
8169 for (i = 0; i < arg->clone_sources_count; i++) {
8170 clone_root = btrfs_get_fs_root(fs_info,
8171 clone_sources_tmp[i], true);
8172 if (IS_ERR(clone_root)) {
8173 ret = PTR_ERR(clone_root);
8174 goto out;
8175 }
8176 spin_lock(&clone_root->root_item_lock);
8177 if (!btrfs_root_readonly(clone_root) ||
8178 btrfs_root_dead(clone_root)) {
8179 spin_unlock(&clone_root->root_item_lock);
8180 btrfs_put_root(clone_root);
8181 ret = -EPERM;
8182 goto out;
8183 }
8184 if (clone_root->dedupe_in_progress) {
8185 dedupe_in_progress_warn(clone_root);
8186 spin_unlock(&clone_root->root_item_lock);
8187 btrfs_put_root(clone_root);
8188 ret = -EAGAIN;
8189 goto out;
8190 }
8191 clone_root->send_in_progress++;
8192 spin_unlock(&clone_root->root_item_lock);
8193
8194 sctx->clone_roots[i].root = clone_root;
8195 clone_sources_to_rollback = i + 1;
8196 }
8197 kvfree(clone_sources_tmp);
8198 clone_sources_tmp = NULL;
8199 }
8200
8201 if (arg->parent_root) {
8202 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8203 true);
8204 if (IS_ERR(sctx->parent_root)) {
8205 ret = PTR_ERR(sctx->parent_root);
8206 goto out;
8207 }
8208
8209 spin_lock(&sctx->parent_root->root_item_lock);
8210 sctx->parent_root->send_in_progress++;
8211 if (!btrfs_root_readonly(sctx->parent_root) ||
8212 btrfs_root_dead(sctx->parent_root)) {
8213 spin_unlock(&sctx->parent_root->root_item_lock);
8214 ret = -EPERM;
8215 goto out;
8216 }
8217 if (sctx->parent_root->dedupe_in_progress) {
8218 dedupe_in_progress_warn(sctx->parent_root);
8219 spin_unlock(&sctx->parent_root->root_item_lock);
8220 ret = -EAGAIN;
8221 goto out;
8222 }
8223 spin_unlock(&sctx->parent_root->root_item_lock);
8224 }
8225
8226 /*
8227 * Clones from send_root are allowed, but only if the clone source
8228 * is behind the current send position. This is checked while searching
8229 * for possible clone sources.
8230 */
8231 sctx->clone_roots[sctx->clone_roots_cnt++].root =
8232 btrfs_grab_root(sctx->send_root);
8233
8234 /* We do a bsearch later */
8235 sort(sctx->clone_roots, sctx->clone_roots_cnt,
8236 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8237 NULL);
8238 sort_clone_roots = 1;
8239
8240 ret = flush_delalloc_roots(sctx);
8241 if (ret)
8242 goto out;
8243
8244 ret = ensure_commit_roots_uptodate(sctx);
8245 if (ret)
8246 goto out;
8247
8248 ret = send_subvol(sctx);
8249 if (ret < 0)
8250 goto out;
8251
8252 btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) {
8253 ret = send_utimes(sctx, entry->key, entry->gen);
8254 if (ret < 0)
8255 goto out;
8256 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry);
8257 }
8258
8259 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8260 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8261 if (ret < 0)
8262 goto out;
8263 ret = send_cmd(sctx);
8264 if (ret < 0)
8265 goto out;
8266 }
8267
8268 out:
8269 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8270 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8271 struct rb_node *n;
8272 struct pending_dir_move *pm;
8273
8274 n = rb_first(&sctx->pending_dir_moves);
8275 pm = rb_entry(n, struct pending_dir_move, node);
8276 while (!list_empty(&pm->list)) {
8277 struct pending_dir_move *pm2;
8278
8279 pm2 = list_first_entry(&pm->list,
8280 struct pending_dir_move, list);
8281 free_pending_move(sctx, pm2);
8282 }
8283 free_pending_move(sctx, pm);
8284 }
8285
8286 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8287 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8288 struct rb_node *n;
8289 struct waiting_dir_move *dm;
8290
8291 n = rb_first(&sctx->waiting_dir_moves);
8292 dm = rb_entry(n, struct waiting_dir_move, node);
8293 rb_erase(&dm->node, &sctx->waiting_dir_moves);
8294 kfree(dm);
8295 }
8296
8297 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8298 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8299 struct rb_node *n;
8300 struct orphan_dir_info *odi;
8301
8302 n = rb_first(&sctx->orphan_dirs);
8303 odi = rb_entry(n, struct orphan_dir_info, node);
8304 free_orphan_dir_info(sctx, odi);
8305 }
8306
8307 if (sort_clone_roots) {
8308 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8309 btrfs_root_dec_send_in_progress(
8310 sctx->clone_roots[i].root);
8311 btrfs_put_root(sctx->clone_roots[i].root);
8312 }
8313 } else {
8314 for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8315 btrfs_root_dec_send_in_progress(
8316 sctx->clone_roots[i].root);
8317 btrfs_put_root(sctx->clone_roots[i].root);
8318 }
8319
8320 btrfs_root_dec_send_in_progress(send_root);
8321 }
8322 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8323 btrfs_root_dec_send_in_progress(sctx->parent_root);
8324 btrfs_put_root(sctx->parent_root);
8325 }
8326
8327 kvfree(clone_sources_tmp);
8328
8329 if (sctx) {
8330 if (sctx->send_filp)
8331 fput(sctx->send_filp);
8332
8333 kvfree(sctx->clone_roots);
8334 kfree(sctx->send_buf_pages);
8335 kvfree(sctx->send_buf);
8336 kvfree(sctx->verity_descriptor);
8337
8338 close_current_inode(sctx);
8339
8340 btrfs_lru_cache_clear(&sctx->name_cache);
8341 btrfs_lru_cache_clear(&sctx->backref_cache);
8342 btrfs_lru_cache_clear(&sctx->dir_created_cache);
8343 btrfs_lru_cache_clear(&sctx->dir_utimes_cache);
8344
8345 if (sctx->cur_inode_path.buf != sctx->cur_inode_path.inline_buf)
8346 kfree(sctx->cur_inode_path.buf);
8347
8348 kfree(sctx);
8349 }
8350
8351 return ret;
8352 }
8353