xref: /linux/drivers/gpu/drm/panthor/panthor_mmu.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 // SPDX-License-Identifier: GPL-2.0 or MIT
2 /* Copyright 2019 Linaro, Ltd, Rob Herring <robh@kernel.org> */
3 /* Copyright 2023 Collabora ltd. */
4 
5 #include <drm/drm_debugfs.h>
6 #include <drm/drm_drv.h>
7 #include <drm/drm_exec.h>
8 #include <drm/drm_gpuvm.h>
9 #include <drm/drm_managed.h>
10 #include <drm/drm_print.h>
11 #include <drm/gpu_scheduler.h>
12 #include <drm/panthor_drm.h>
13 
14 #include <linux/atomic.h>
15 #include <linux/bitfield.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/iopoll.h>
21 #include <linux/io-pgtable.h>
22 #include <linux/iommu.h>
23 #include <linux/kmemleak.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/rwsem.h>
27 #include <linux/sched.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/sizes.h>
30 
31 #include "panthor_device.h"
32 #include "panthor_gem.h"
33 #include "panthor_gpu.h"
34 #include "panthor_heap.h"
35 #include "panthor_mmu.h"
36 #include "panthor_regs.h"
37 #include "panthor_sched.h"
38 
39 #define MAX_AS_SLOTS			32
40 
41 struct panthor_vm;
42 
43 /**
44  * struct panthor_as_slot - Address space slot
45  */
46 struct panthor_as_slot {
47 	/** @vm: VM bound to this slot. NULL is no VM is bound. */
48 	struct panthor_vm *vm;
49 };
50 
51 /**
52  * struct panthor_mmu - MMU related data
53  */
54 struct panthor_mmu {
55 	/** @irq: The MMU irq. */
56 	struct panthor_irq irq;
57 
58 	/**
59 	 * @as: Address space related fields.
60 	 *
61 	 * The GPU has a limited number of address spaces (AS) slots, forcing
62 	 * us to re-assign them to re-assign slots on-demand.
63 	 */
64 	struct {
65 		/** @as.slots_lock: Lock protecting access to all other AS fields. */
66 		struct mutex slots_lock;
67 
68 		/** @as.alloc_mask: Bitmask encoding the allocated slots. */
69 		unsigned long alloc_mask;
70 
71 		/** @as.faulty_mask: Bitmask encoding the faulty slots. */
72 		unsigned long faulty_mask;
73 
74 		/** @as.slots: VMs currently bound to the AS slots. */
75 		struct panthor_as_slot slots[MAX_AS_SLOTS];
76 
77 		/**
78 		 * @as.lru_list: List of least recently used VMs.
79 		 *
80 		 * We use this list to pick a VM to evict when all slots are
81 		 * used.
82 		 *
83 		 * There should be no more active VMs than there are AS slots,
84 		 * so this LRU is just here to keep VMs bound until there's
85 		 * a need to release a slot, thus avoid unnecessary TLB/cache
86 		 * flushes.
87 		 */
88 		struct list_head lru_list;
89 	} as;
90 
91 	/** @vm: VMs management fields */
92 	struct {
93 		/** @vm.lock: Lock protecting access to list. */
94 		struct mutex lock;
95 
96 		/** @vm.list: List containing all VMs. */
97 		struct list_head list;
98 
99 		/** @vm.reset_in_progress: True if a reset is in progress. */
100 		bool reset_in_progress;
101 
102 		/** @vm.wq: Workqueue used for the VM_BIND queues. */
103 		struct workqueue_struct *wq;
104 	} vm;
105 };
106 
107 /**
108  * struct panthor_vm_pool - VM pool object
109  */
110 struct panthor_vm_pool {
111 	/** @xa: Array used for VM handle tracking. */
112 	struct xarray xa;
113 };
114 
115 /**
116  * struct panthor_vma - GPU mapping object
117  *
118  * This is used to track GEM mappings in GPU space.
119  */
120 struct panthor_vma {
121 	/** @base: Inherits from drm_gpuva. */
122 	struct drm_gpuva base;
123 
124 	/** @node: Used to implement deferred release of VMAs. */
125 	struct list_head node;
126 
127 	/**
128 	 * @flags: Combination of drm_panthor_vm_bind_op_flags.
129 	 *
130 	 * Only map related flags are accepted.
131 	 */
132 	u32 flags;
133 };
134 
135 /**
136  * struct panthor_vm_op_ctx - VM operation context
137  *
138  * With VM operations potentially taking place in a dma-signaling path, we
139  * need to make sure everything that might require resource allocation is
140  * pre-allocated upfront. This is what this operation context is far.
141  *
142  * We also collect resources that have been freed, so we can release them
143  * asynchronously, and let the VM_BIND scheduler process the next VM_BIND
144  * request.
145  */
146 struct panthor_vm_op_ctx {
147 	/** @rsvd_page_tables: Pages reserved for the MMU page table update. */
148 	struct {
149 		/** @rsvd_page_tables.count: Number of pages reserved. */
150 		u32 count;
151 
152 		/** @rsvd_page_tables.ptr: Point to the first unused page in the @pages table. */
153 		u32 ptr;
154 
155 		/**
156 		 * @rsvd_page_tables.pages: Array of pages to be used for an MMU page table update.
157 		 *
158 		 * After an VM operation, there might be free pages left in this array.
159 		 * They should be returned to the pt_cache as part of the op_ctx cleanup.
160 		 */
161 		void **pages;
162 	} rsvd_page_tables;
163 
164 	/**
165 	 * @preallocated_vmas: Pre-allocated VMAs to handle the remap case.
166 	 *
167 	 * Partial unmap requests or map requests overlapping existing mappings will
168 	 * trigger a remap call, which need to register up to three panthor_vma objects
169 	 * (one for the new mapping, and two for the previous and next mappings).
170 	 */
171 	struct panthor_vma *preallocated_vmas[3];
172 
173 	/** @flags: Combination of drm_panthor_vm_bind_op_flags. */
174 	u32 flags;
175 
176 	/** @va: Virtual range targeted by the VM operation. */
177 	struct {
178 		/** @va.addr: Start address. */
179 		u64 addr;
180 
181 		/** @va.range: Range size. */
182 		u64 range;
183 	} va;
184 
185 	/** @map: Fields specific to a map operation. */
186 	struct {
187 		/** @map.vm_bo: Buffer object to map. */
188 		struct drm_gpuvm_bo *vm_bo;
189 
190 		/** @map.bo_offset: Offset in the buffer object. */
191 		u64 bo_offset;
192 
193 		/**
194 		 * @map.sgt: sg-table pointing to pages backing the GEM object.
195 		 *
196 		 * This is gathered at job creation time, such that we don't have
197 		 * to allocate in ::run_job().
198 		 */
199 		struct sg_table *sgt;
200 
201 		/**
202 		 * @map.new_vma: The new VMA object that will be inserted to the VA tree.
203 		 */
204 		struct panthor_vma *new_vma;
205 	} map;
206 };
207 
208 /**
209  * struct panthor_vm - VM object
210  *
211  * A VM is an object representing a GPU (or MCU) virtual address space.
212  * It embeds the MMU page table for this address space, a tree containing
213  * all the virtual mappings of GEM objects, and other things needed to manage
214  * the VM.
215  *
216  * Except for the MCU VM, which is managed by the kernel, all other VMs are
217  * created by userspace and mostly managed by userspace, using the
218  * %DRM_IOCTL_PANTHOR_VM_BIND ioctl.
219  *
220  * A portion of the virtual address space is reserved for kernel objects,
221  * like heap chunks, and userspace gets to decide how much of the virtual
222  * address space is left to the kernel (half of the virtual address space
223  * by default).
224  */
225 struct panthor_vm {
226 	/**
227 	 * @base: Inherit from drm_gpuvm.
228 	 *
229 	 * We delegate all the VA management to the common drm_gpuvm framework
230 	 * and only implement hooks to update the MMU page table.
231 	 */
232 	struct drm_gpuvm base;
233 
234 	/**
235 	 * @sched: Scheduler used for asynchronous VM_BIND request.
236 	 *
237 	 * We use a 1:1 scheduler here.
238 	 */
239 	struct drm_gpu_scheduler sched;
240 
241 	/**
242 	 * @entity: Scheduling entity representing the VM_BIND queue.
243 	 *
244 	 * There's currently one bind queue per VM. It doesn't make sense to
245 	 * allow more given the VM operations are serialized anyway.
246 	 */
247 	struct drm_sched_entity entity;
248 
249 	/** @ptdev: Device. */
250 	struct panthor_device *ptdev;
251 
252 	/** @memattr: Value to program to the AS_MEMATTR register. */
253 	u64 memattr;
254 
255 	/** @pgtbl_ops: Page table operations. */
256 	struct io_pgtable_ops *pgtbl_ops;
257 
258 	/** @root_page_table: Stores the root page table pointer. */
259 	void *root_page_table;
260 
261 	/**
262 	 * @op_lock: Lock used to serialize operations on a VM.
263 	 *
264 	 * The serialization of jobs queued to the VM_BIND queue is already
265 	 * taken care of by drm_sched, but we need to serialize synchronous
266 	 * and asynchronous VM_BIND request. This is what this lock is for.
267 	 */
268 	struct mutex op_lock;
269 
270 	/**
271 	 * @op_ctx: The context attached to the currently executing VM operation.
272 	 *
273 	 * NULL when no operation is in progress.
274 	 */
275 	struct panthor_vm_op_ctx *op_ctx;
276 
277 	/**
278 	 * @mm: Memory management object representing the auto-VA/kernel-VA.
279 	 *
280 	 * Used to auto-allocate VA space for kernel-managed objects (tiler
281 	 * heaps, ...).
282 	 *
283 	 * For the MCU VM, this is managing the VA range that's used to map
284 	 * all shared interfaces.
285 	 *
286 	 * For user VMs, the range is specified by userspace, and must not
287 	 * exceed half of the VA space addressable.
288 	 */
289 	struct drm_mm mm;
290 
291 	/** @mm_lock: Lock protecting the @mm field. */
292 	struct mutex mm_lock;
293 
294 	/** @kernel_auto_va: Automatic VA-range for kernel BOs. */
295 	struct {
296 		/** @kernel_auto_va.start: Start of the automatic VA-range for kernel BOs. */
297 		u64 start;
298 
299 		/** @kernel_auto_va.size: Size of the automatic VA-range for kernel BOs. */
300 		u64 end;
301 	} kernel_auto_va;
302 
303 	/** @as: Address space related fields. */
304 	struct {
305 		/**
306 		 * @as.id: ID of the address space this VM is bound to.
307 		 *
308 		 * A value of -1 means the VM is inactive/not bound.
309 		 */
310 		int id;
311 
312 		/** @as.active_cnt: Number of active users of this VM. */
313 		refcount_t active_cnt;
314 
315 		/**
316 		 * @as.lru_node: Used to instead the VM in the panthor_mmu::as::lru_list.
317 		 *
318 		 * Active VMs should not be inserted in the LRU list.
319 		 */
320 		struct list_head lru_node;
321 	} as;
322 
323 	/**
324 	 * @heaps: Tiler heap related fields.
325 	 */
326 	struct {
327 		/**
328 		 * @heaps.pool: The heap pool attached to this VM.
329 		 *
330 		 * Will stay NULL until someone creates a heap context on this VM.
331 		 */
332 		struct panthor_heap_pool *pool;
333 
334 		/** @heaps.lock: Lock used to protect access to @pool. */
335 		struct mutex lock;
336 	} heaps;
337 
338 	/** @node: Used to insert the VM in the panthor_mmu::vm::list. */
339 	struct list_head node;
340 
341 	/** @for_mcu: True if this is the MCU VM. */
342 	bool for_mcu;
343 
344 	/**
345 	 * @destroyed: True if the VM was destroyed.
346 	 *
347 	 * No further bind requests should be queued to a destroyed VM.
348 	 */
349 	bool destroyed;
350 
351 	/**
352 	 * @unusable: True if the VM has turned unusable because something
353 	 * bad happened during an asynchronous request.
354 	 *
355 	 * We don't try to recover from such failures, because this implies
356 	 * informing userspace about the specific operation that failed, and
357 	 * hoping the userspace driver can replay things from there. This all
358 	 * sounds very complicated for little gain.
359 	 *
360 	 * Instead, we should just flag the VM as unusable, and fail any
361 	 * further request targeting this VM.
362 	 *
363 	 * We also provide a way to query a VM state, so userspace can destroy
364 	 * it and create a new one.
365 	 *
366 	 * As an analogy, this would be mapped to a VK_ERROR_DEVICE_LOST
367 	 * situation, where the logical device needs to be re-created.
368 	 */
369 	bool unusable;
370 
371 	/**
372 	 * @unhandled_fault: Unhandled fault happened.
373 	 *
374 	 * This should be reported to the scheduler, and the queue/group be
375 	 * flagged as faulty as a result.
376 	 */
377 	bool unhandled_fault;
378 };
379 
380 /**
381  * struct panthor_vm_bind_job - VM bind job
382  */
383 struct panthor_vm_bind_job {
384 	/** @base: Inherit from drm_sched_job. */
385 	struct drm_sched_job base;
386 
387 	/** @refcount: Reference count. */
388 	struct kref refcount;
389 
390 	/** @cleanup_op_ctx_work: Work used to cleanup the VM operation context. */
391 	struct work_struct cleanup_op_ctx_work;
392 
393 	/** @vm: VM targeted by the VM operation. */
394 	struct panthor_vm *vm;
395 
396 	/** @ctx: Operation context. */
397 	struct panthor_vm_op_ctx ctx;
398 };
399 
400 /*
401  * @pt_cache: Cache used to allocate MMU page tables.
402  *
403  * The pre-allocation pattern forces us to over-allocate to plan for
404  * the worst case scenario, and return the pages we didn't use.
405  *
406  * Having a kmem_cache allows us to speed allocations.
407  */
408 static struct kmem_cache *pt_cache;
409 
410 /**
411  * alloc_pt() - Custom page table allocator
412  * @cookie: Cookie passed at page table allocation time.
413  * @size: Size of the page table. This size should be fixed,
414  * and determined at creation time based on the granule size.
415  * @gfp: GFP flags.
416  *
417  * We want a custom allocator so we can use a cache for page table
418  * allocations and amortize the cost of the over-reservation that's
419  * done to allow asynchronous VM operations.
420  *
421  * Return: non-NULL on success, NULL if the allocation failed for any
422  * reason.
423  */
alloc_pt(void * cookie,size_t size,gfp_t gfp)424 static void *alloc_pt(void *cookie, size_t size, gfp_t gfp)
425 {
426 	struct panthor_vm *vm = cookie;
427 	void *page;
428 
429 	/* Allocation of the root page table happening during init. */
430 	if (unlikely(!vm->root_page_table)) {
431 		struct page *p;
432 
433 		drm_WARN_ON(&vm->ptdev->base, vm->op_ctx);
434 		p = alloc_pages_node(dev_to_node(vm->ptdev->base.dev),
435 				     gfp | __GFP_ZERO, get_order(size));
436 		page = p ? page_address(p) : NULL;
437 		vm->root_page_table = page;
438 		return page;
439 	}
440 
441 	/* We're not supposed to have anything bigger than 4k here, because we picked a
442 	 * 4k granule size at init time.
443 	 */
444 	if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K))
445 		return NULL;
446 
447 	/* We must have some op_ctx attached to the VM and it must have at least one
448 	 * free page.
449 	 */
450 	if (drm_WARN_ON(&vm->ptdev->base, !vm->op_ctx) ||
451 	    drm_WARN_ON(&vm->ptdev->base,
452 			vm->op_ctx->rsvd_page_tables.ptr >= vm->op_ctx->rsvd_page_tables.count))
453 		return NULL;
454 
455 	page = vm->op_ctx->rsvd_page_tables.pages[vm->op_ctx->rsvd_page_tables.ptr++];
456 	memset(page, 0, SZ_4K);
457 
458 	/* Page table entries don't use virtual addresses, which trips out
459 	 * kmemleak. kmemleak_alloc_phys() might work, but physical addresses
460 	 * are mixed with other fields, and I fear kmemleak won't detect that
461 	 * either.
462 	 *
463 	 * Let's just ignore memory passed to the page-table driver for now.
464 	 */
465 	kmemleak_ignore(page);
466 	return page;
467 }
468 
469 /**
470  * free_pt() - Custom page table free function
471  * @cookie: Cookie passed at page table allocation time.
472  * @data: Page table to free.
473  * @size: Size of the page table. This size should be fixed,
474  * and determined at creation time based on the granule size.
475  */
free_pt(void * cookie,void * data,size_t size)476 static void free_pt(void *cookie, void *data, size_t size)
477 {
478 	struct panthor_vm *vm = cookie;
479 
480 	if (unlikely(vm->root_page_table == data)) {
481 		free_pages((unsigned long)data, get_order(size));
482 		vm->root_page_table = NULL;
483 		return;
484 	}
485 
486 	if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K))
487 		return;
488 
489 	/* Return the page to the pt_cache. */
490 	kmem_cache_free(pt_cache, data);
491 }
492 
wait_ready(struct panthor_device * ptdev,u32 as_nr)493 static int wait_ready(struct panthor_device *ptdev, u32 as_nr)
494 {
495 	int ret;
496 	u32 val;
497 
498 	/* Wait for the MMU status to indicate there is no active command, in
499 	 * case one is pending.
500 	 */
501 	ret = gpu_read_relaxed_poll_timeout_atomic(ptdev, AS_STATUS(as_nr), val,
502 						   !(val & AS_STATUS_AS_ACTIVE),
503 						   10, 100000);
504 
505 	if (ret) {
506 		panthor_device_schedule_reset(ptdev);
507 		drm_err(&ptdev->base, "AS_ACTIVE bit stuck\n");
508 	}
509 
510 	return ret;
511 }
512 
write_cmd(struct panthor_device * ptdev,u32 as_nr,u32 cmd)513 static int write_cmd(struct panthor_device *ptdev, u32 as_nr, u32 cmd)
514 {
515 	int status;
516 
517 	/* write AS_COMMAND when MMU is ready to accept another command */
518 	status = wait_ready(ptdev, as_nr);
519 	if (!status)
520 		gpu_write(ptdev, AS_COMMAND(as_nr), cmd);
521 
522 	return status;
523 }
524 
lock_region(struct panthor_device * ptdev,u32 as_nr,u64 region_start,u64 size)525 static void lock_region(struct panthor_device *ptdev, u32 as_nr,
526 			u64 region_start, u64 size)
527 {
528 	u8 region_width;
529 	u64 region;
530 	u64 region_end = region_start + size;
531 
532 	if (!size)
533 		return;
534 
535 	/*
536 	 * The locked region is a naturally aligned power of 2 block encoded as
537 	 * log2 minus(1).
538 	 * Calculate the desired start/end and look for the highest bit which
539 	 * differs. The smallest naturally aligned block must include this bit
540 	 * change, the desired region starts with this bit (and subsequent bits)
541 	 * zeroed and ends with the bit (and subsequent bits) set to one.
542 	 */
543 	region_width = max(fls64(region_start ^ (region_end - 1)),
544 			   const_ilog2(AS_LOCK_REGION_MIN_SIZE)) - 1;
545 
546 	/*
547 	 * Mask off the low bits of region_start (which would be ignored by
548 	 * the hardware anyway)
549 	 */
550 	region_start &= GENMASK_ULL(63, region_width);
551 
552 	region = region_width | region_start;
553 
554 	/* Lock the region that needs to be updated */
555 	gpu_write64(ptdev, AS_LOCKADDR(as_nr), region);
556 	write_cmd(ptdev, as_nr, AS_COMMAND_LOCK);
557 }
558 
mmu_hw_do_operation_locked(struct panthor_device * ptdev,int as_nr,u64 iova,u64 size,u32 op)559 static int mmu_hw_do_operation_locked(struct panthor_device *ptdev, int as_nr,
560 				      u64 iova, u64 size, u32 op)
561 {
562 	const u32 l2_flush_op = CACHE_CLEAN | CACHE_INV;
563 	u32 lsc_flush_op;
564 	int ret;
565 
566 	lockdep_assert_held(&ptdev->mmu->as.slots_lock);
567 
568 	switch (op) {
569 	case AS_COMMAND_FLUSH_MEM:
570 		lsc_flush_op = CACHE_CLEAN | CACHE_INV;
571 		break;
572 	case AS_COMMAND_FLUSH_PT:
573 		lsc_flush_op = 0;
574 		break;
575 	default:
576 		drm_WARN(&ptdev->base, 1, "Unexpected AS_COMMAND: %d", op);
577 		return -EINVAL;
578 	}
579 
580 	if (as_nr < 0)
581 		return 0;
582 
583 	/*
584 	 * If the AS number is greater than zero, then we can be sure
585 	 * the device is up and running, so we don't need to explicitly
586 	 * power it up
587 	 */
588 
589 	lock_region(ptdev, as_nr, iova, size);
590 
591 	ret = wait_ready(ptdev, as_nr);
592 	if (ret)
593 		return ret;
594 
595 	ret = panthor_gpu_flush_caches(ptdev, l2_flush_op, lsc_flush_op, 0);
596 	if (ret)
597 		return ret;
598 
599 	/*
600 	 * Explicitly unlock the region as the AS is not unlocked automatically
601 	 * at the end of the GPU_CONTROL cache flush command, unlike
602 	 * AS_COMMAND_FLUSH_MEM or AS_COMMAND_FLUSH_PT.
603 	 */
604 	write_cmd(ptdev, as_nr, AS_COMMAND_UNLOCK);
605 
606 	/* Wait for the unlock command to complete */
607 	return wait_ready(ptdev, as_nr);
608 }
609 
mmu_hw_do_operation(struct panthor_vm * vm,u64 iova,u64 size,u32 op)610 static int mmu_hw_do_operation(struct panthor_vm *vm,
611 			       u64 iova, u64 size, u32 op)
612 {
613 	struct panthor_device *ptdev = vm->ptdev;
614 	int ret;
615 
616 	mutex_lock(&ptdev->mmu->as.slots_lock);
617 	ret = mmu_hw_do_operation_locked(ptdev, vm->as.id, iova, size, op);
618 	mutex_unlock(&ptdev->mmu->as.slots_lock);
619 
620 	return ret;
621 }
622 
panthor_mmu_as_enable(struct panthor_device * ptdev,u32 as_nr,u64 transtab,u64 transcfg,u64 memattr)623 static int panthor_mmu_as_enable(struct panthor_device *ptdev, u32 as_nr,
624 				 u64 transtab, u64 transcfg, u64 memattr)
625 {
626 	int ret;
627 
628 	ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
629 	if (ret)
630 		return ret;
631 
632 	gpu_write64(ptdev, AS_TRANSTAB(as_nr), transtab);
633 	gpu_write64(ptdev, AS_MEMATTR(as_nr), memattr);
634 	gpu_write64(ptdev, AS_TRANSCFG(as_nr), transcfg);
635 
636 	return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE);
637 }
638 
panthor_mmu_as_disable(struct panthor_device * ptdev,u32 as_nr)639 static int panthor_mmu_as_disable(struct panthor_device *ptdev, u32 as_nr)
640 {
641 	int ret;
642 
643 	ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
644 	if (ret)
645 		return ret;
646 
647 	gpu_write64(ptdev, AS_TRANSTAB(as_nr), 0);
648 	gpu_write64(ptdev, AS_MEMATTR(as_nr), 0);
649 	gpu_write64(ptdev, AS_TRANSCFG(as_nr), AS_TRANSCFG_ADRMODE_UNMAPPED);
650 
651 	return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE);
652 }
653 
panthor_mmu_fault_mask(struct panthor_device * ptdev,u32 value)654 static u32 panthor_mmu_fault_mask(struct panthor_device *ptdev, u32 value)
655 {
656 	/* Bits 16 to 31 mean REQ_COMPLETE. */
657 	return value & GENMASK(15, 0);
658 }
659 
panthor_mmu_as_fault_mask(struct panthor_device * ptdev,u32 as)660 static u32 panthor_mmu_as_fault_mask(struct panthor_device *ptdev, u32 as)
661 {
662 	return BIT(as);
663 }
664 
665 /**
666  * panthor_vm_has_unhandled_faults() - Check if a VM has unhandled faults
667  * @vm: VM to check.
668  *
669  * Return: true if the VM has unhandled faults, false otherwise.
670  */
panthor_vm_has_unhandled_faults(struct panthor_vm * vm)671 bool panthor_vm_has_unhandled_faults(struct panthor_vm *vm)
672 {
673 	return vm->unhandled_fault;
674 }
675 
676 /**
677  * panthor_vm_is_unusable() - Check if the VM is still usable
678  * @vm: VM to check.
679  *
680  * Return: true if the VM is unusable, false otherwise.
681  */
panthor_vm_is_unusable(struct panthor_vm * vm)682 bool panthor_vm_is_unusable(struct panthor_vm *vm)
683 {
684 	return vm->unusable;
685 }
686 
panthor_vm_release_as_locked(struct panthor_vm * vm)687 static void panthor_vm_release_as_locked(struct panthor_vm *vm)
688 {
689 	struct panthor_device *ptdev = vm->ptdev;
690 
691 	lockdep_assert_held(&ptdev->mmu->as.slots_lock);
692 
693 	if (drm_WARN_ON(&ptdev->base, vm->as.id < 0))
694 		return;
695 
696 	ptdev->mmu->as.slots[vm->as.id].vm = NULL;
697 	clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask);
698 	refcount_set(&vm->as.active_cnt, 0);
699 	list_del_init(&vm->as.lru_node);
700 	vm->as.id = -1;
701 }
702 
703 /**
704  * panthor_vm_active() - Flag a VM as active
705  * @vm: VM to flag as active.
706  *
707  * Assigns an address space to a VM so it can be used by the GPU/MCU.
708  *
709  * Return: 0 on success, a negative error code otherwise.
710  */
panthor_vm_active(struct panthor_vm * vm)711 int panthor_vm_active(struct panthor_vm *vm)
712 {
713 	struct panthor_device *ptdev = vm->ptdev;
714 	u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
715 	struct io_pgtable_cfg *cfg = &io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg;
716 	int ret = 0, as, cookie;
717 	u64 transtab, transcfg;
718 
719 	if (!drm_dev_enter(&ptdev->base, &cookie))
720 		return -ENODEV;
721 
722 	if (refcount_inc_not_zero(&vm->as.active_cnt))
723 		goto out_dev_exit;
724 
725 	mutex_lock(&ptdev->mmu->as.slots_lock);
726 
727 	if (refcount_inc_not_zero(&vm->as.active_cnt))
728 		goto out_unlock;
729 
730 	as = vm->as.id;
731 	if (as >= 0) {
732 		/* Unhandled pagefault on this AS, the MMU was disabled. We need to
733 		 * re-enable the MMU after clearing+unmasking the AS interrupts.
734 		 */
735 		if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as))
736 			goto out_enable_as;
737 
738 		goto out_make_active;
739 	}
740 
741 	/* Check for a free AS */
742 	if (vm->for_mcu) {
743 		drm_WARN_ON(&ptdev->base, ptdev->mmu->as.alloc_mask & BIT(0));
744 		as = 0;
745 	} else {
746 		as = ffz(ptdev->mmu->as.alloc_mask | BIT(0));
747 	}
748 
749 	if (!(BIT(as) & ptdev->gpu_info.as_present)) {
750 		struct panthor_vm *lru_vm;
751 
752 		lru_vm = list_first_entry_or_null(&ptdev->mmu->as.lru_list,
753 						  struct panthor_vm,
754 						  as.lru_node);
755 		if (drm_WARN_ON(&ptdev->base, !lru_vm)) {
756 			ret = -EBUSY;
757 			goto out_unlock;
758 		}
759 
760 		drm_WARN_ON(&ptdev->base, refcount_read(&lru_vm->as.active_cnt));
761 		as = lru_vm->as.id;
762 		panthor_vm_release_as_locked(lru_vm);
763 	}
764 
765 	/* Assign the free or reclaimed AS to the FD */
766 	vm->as.id = as;
767 	set_bit(as, &ptdev->mmu->as.alloc_mask);
768 	ptdev->mmu->as.slots[as].vm = vm;
769 
770 out_enable_as:
771 	transtab = cfg->arm_lpae_s1_cfg.ttbr;
772 	transcfg = AS_TRANSCFG_PTW_MEMATTR_WB |
773 		   AS_TRANSCFG_PTW_RA |
774 		   AS_TRANSCFG_ADRMODE_AARCH64_4K |
775 		   AS_TRANSCFG_INA_BITS(55 - va_bits);
776 	if (ptdev->coherent)
777 		transcfg |= AS_TRANSCFG_PTW_SH_OS;
778 
779 	/* If the VM is re-activated, we clear the fault. */
780 	vm->unhandled_fault = false;
781 
782 	/* Unhandled pagefault on this AS, clear the fault and re-enable interrupts
783 	 * before enabling the AS.
784 	 */
785 	if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) {
786 		gpu_write(ptdev, MMU_INT_CLEAR, panthor_mmu_as_fault_mask(ptdev, as));
787 		ptdev->mmu->as.faulty_mask &= ~panthor_mmu_as_fault_mask(ptdev, as);
788 		ptdev->mmu->irq.mask |= panthor_mmu_as_fault_mask(ptdev, as);
789 		gpu_write(ptdev, MMU_INT_MASK, ~ptdev->mmu->as.faulty_mask);
790 	}
791 
792 	ret = panthor_mmu_as_enable(vm->ptdev, vm->as.id, transtab, transcfg, vm->memattr);
793 
794 out_make_active:
795 	if (!ret) {
796 		refcount_set(&vm->as.active_cnt, 1);
797 		list_del_init(&vm->as.lru_node);
798 	}
799 
800 out_unlock:
801 	mutex_unlock(&ptdev->mmu->as.slots_lock);
802 
803 out_dev_exit:
804 	drm_dev_exit(cookie);
805 	return ret;
806 }
807 
808 /**
809  * panthor_vm_idle() - Flag a VM idle
810  * @vm: VM to flag as idle.
811  *
812  * When we know the GPU is done with the VM (no more jobs to process),
813  * we can relinquish the AS slot attached to this VM, if any.
814  *
815  * We don't release the slot immediately, but instead place the VM in
816  * the LRU list, so it can be evicted if another VM needs an AS slot.
817  * This way, VMs keep attached to the AS they were given until we run
818  * out of free slot, limiting the number of MMU operations (TLB flush
819  * and other AS updates).
820  */
panthor_vm_idle(struct panthor_vm * vm)821 void panthor_vm_idle(struct panthor_vm *vm)
822 {
823 	struct panthor_device *ptdev = vm->ptdev;
824 
825 	if (!refcount_dec_and_mutex_lock(&vm->as.active_cnt, &ptdev->mmu->as.slots_lock))
826 		return;
827 
828 	if (!drm_WARN_ON(&ptdev->base, vm->as.id == -1 || !list_empty(&vm->as.lru_node)))
829 		list_add_tail(&vm->as.lru_node, &ptdev->mmu->as.lru_list);
830 
831 	refcount_set(&vm->as.active_cnt, 0);
832 	mutex_unlock(&ptdev->mmu->as.slots_lock);
833 }
834 
panthor_vm_page_size(struct panthor_vm * vm)835 u32 panthor_vm_page_size(struct panthor_vm *vm)
836 {
837 	const struct io_pgtable *pgt = io_pgtable_ops_to_pgtable(vm->pgtbl_ops);
838 	u32 pg_shift = ffs(pgt->cfg.pgsize_bitmap) - 1;
839 
840 	return 1u << pg_shift;
841 }
842 
panthor_vm_stop(struct panthor_vm * vm)843 static void panthor_vm_stop(struct panthor_vm *vm)
844 {
845 	drm_sched_stop(&vm->sched, NULL);
846 }
847 
panthor_vm_start(struct panthor_vm * vm)848 static void panthor_vm_start(struct panthor_vm *vm)
849 {
850 	drm_sched_start(&vm->sched, 0);
851 }
852 
853 /**
854  * panthor_vm_as() - Get the AS slot attached to a VM
855  * @vm: VM to get the AS slot of.
856  *
857  * Return: -1 if the VM is not assigned an AS slot yet, >= 0 otherwise.
858  */
panthor_vm_as(struct panthor_vm * vm)859 int panthor_vm_as(struct panthor_vm *vm)
860 {
861 	return vm->as.id;
862 }
863 
get_pgsize(u64 addr,size_t size,size_t * count)864 static size_t get_pgsize(u64 addr, size_t size, size_t *count)
865 {
866 	/*
867 	 * io-pgtable only operates on multiple pages within a single table
868 	 * entry, so we need to split at boundaries of the table size, i.e.
869 	 * the next block size up. The distance from address A to the next
870 	 * boundary of block size B is logically B - A % B, but in unsigned
871 	 * two's complement where B is a power of two we get the equivalence
872 	 * B - A % B == (B - A) % B == (n * B - A) % B, and choose n = 0 :)
873 	 */
874 	size_t blk_offset = -addr % SZ_2M;
875 
876 	if (blk_offset || size < SZ_2M) {
877 		*count = min_not_zero(blk_offset, size) / SZ_4K;
878 		return SZ_4K;
879 	}
880 	blk_offset = -addr % SZ_1G ?: SZ_1G;
881 	*count = min(blk_offset, size) / SZ_2M;
882 	return SZ_2M;
883 }
884 
panthor_vm_flush_range(struct panthor_vm * vm,u64 iova,u64 size)885 static int panthor_vm_flush_range(struct panthor_vm *vm, u64 iova, u64 size)
886 {
887 	struct panthor_device *ptdev = vm->ptdev;
888 	int ret = 0, cookie;
889 
890 	if (vm->as.id < 0)
891 		return 0;
892 
893 	/* If the device is unplugged, we just silently skip the flush. */
894 	if (!drm_dev_enter(&ptdev->base, &cookie))
895 		return 0;
896 
897 	ret = mmu_hw_do_operation(vm, iova, size, AS_COMMAND_FLUSH_PT);
898 
899 	drm_dev_exit(cookie);
900 	return ret;
901 }
902 
panthor_vm_unmap_pages(struct panthor_vm * vm,u64 iova,u64 size)903 static int panthor_vm_unmap_pages(struct panthor_vm *vm, u64 iova, u64 size)
904 {
905 	struct panthor_device *ptdev = vm->ptdev;
906 	struct io_pgtable_ops *ops = vm->pgtbl_ops;
907 	u64 start_iova = iova;
908 	u64 offset = 0;
909 
910 	while (offset < size) {
911 		size_t unmapped_sz = 0, pgcount;
912 		size_t pgsize = get_pgsize(iova + offset, size - offset, &pgcount);
913 
914 		unmapped_sz = ops->unmap_pages(ops, iova + offset, pgsize, pgcount, NULL);
915 
916 		if (drm_WARN_ON(&ptdev->base, unmapped_sz != pgsize * pgcount)) {
917 			drm_err(&ptdev->base, "failed to unmap range %llx-%llx (requested range %llx-%llx)\n",
918 				iova + offset + unmapped_sz,
919 				iova + offset + pgsize * pgcount,
920 				iova, iova + size);
921 			panthor_vm_flush_range(vm, iova, offset + unmapped_sz);
922 			return  -EINVAL;
923 		}
924 
925 		drm_dbg(&ptdev->base,
926 			"unmap: as=%d, iova=0x%llx, sz=%llu, va=0x%llx, pgcnt=%zu, pgsz=%zu",
927 			vm->as.id, start_iova, size, iova + offset,
928 			unmapped_sz / pgsize, pgsize);
929 
930 		offset += unmapped_sz;
931 	}
932 
933 	return panthor_vm_flush_range(vm, iova, size);
934 }
935 
936 static int
panthor_vm_map_pages(struct panthor_vm * vm,u64 iova,int prot,struct sg_table * sgt,u64 offset,u64 size)937 panthor_vm_map_pages(struct panthor_vm *vm, u64 iova, int prot,
938 		     struct sg_table *sgt, u64 offset, u64 size)
939 {
940 	struct panthor_device *ptdev = vm->ptdev;
941 	unsigned int count;
942 	struct scatterlist *sgl;
943 	struct io_pgtable_ops *ops = vm->pgtbl_ops;
944 	u64 start_iova = iova;
945 	u64 start_size = size;
946 	int ret;
947 
948 	if (!size)
949 		return 0;
950 
951 	for_each_sgtable_dma_sg(sgt, sgl, count) {
952 		dma_addr_t paddr = sg_dma_address(sgl);
953 		size_t len = sg_dma_len(sgl);
954 
955 		if (len <= offset) {
956 			offset -= len;
957 			continue;
958 		}
959 
960 		paddr += offset;
961 		len -= offset;
962 		len = min_t(size_t, len, size);
963 		size -= len;
964 
965 		while (len) {
966 			size_t pgcount, mapped = 0;
967 			size_t pgsize = get_pgsize(iova | paddr, len, &pgcount);
968 
969 			ret = ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot,
970 					     GFP_KERNEL, &mapped);
971 
972 			drm_dbg(&ptdev->base,
973 				"map: as=%d, iova=0x%llx, sz=%llu, va=0x%llx, pa=%pad, pgcnt=%zu, pgsz=%zu",
974 				vm->as.id, start_iova, start_size, iova, &paddr,
975 				mapped / pgsize, pgsize);
976 
977 			iova += mapped;
978 			paddr += mapped;
979 			len -= mapped;
980 
981 			if (drm_WARN_ON(&ptdev->base, !ret && !mapped))
982 				ret = -ENOMEM;
983 
984 			if (ret) {
985 				/* If something failed, unmap what we've already mapped before
986 				 * returning. The unmap call is not supposed to fail.
987 				 */
988 				drm_WARN_ON(&ptdev->base,
989 					    panthor_vm_unmap_pages(vm, start_iova,
990 								   iova - start_iova));
991 				return ret;
992 			}
993 		}
994 
995 		if (!size)
996 			break;
997 
998 		offset = 0;
999 	}
1000 
1001 	return panthor_vm_flush_range(vm, start_iova, iova - start_iova);
1002 }
1003 
flags_to_prot(u32 flags)1004 static int flags_to_prot(u32 flags)
1005 {
1006 	int prot = 0;
1007 
1008 	if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC)
1009 		prot |= IOMMU_NOEXEC;
1010 
1011 	if (!(flags & DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED))
1012 		prot |= IOMMU_CACHE;
1013 
1014 	if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_READONLY)
1015 		prot |= IOMMU_READ;
1016 	else
1017 		prot |= IOMMU_READ | IOMMU_WRITE;
1018 
1019 	return prot;
1020 }
1021 
1022 /**
1023  * panthor_vm_alloc_va() - Allocate a region in the auto-va space
1024  * @vm: VM to allocate a region on.
1025  * @va: start of the VA range. Can be PANTHOR_VM_KERNEL_AUTO_VA if the user
1026  * wants the VA to be automatically allocated from the auto-VA range.
1027  * @size: size of the VA range.
1028  * @va_node: drm_mm_node to initialize. Must be zero-initialized.
1029  *
1030  * Some GPU objects, like heap chunks, are fully managed by the kernel and
1031  * need to be mapped to the userspace VM, in the region reserved for kernel
1032  * objects.
1033  *
1034  * This function takes care of allocating a region in the kernel auto-VA space.
1035  *
1036  * Return: 0 on success, an error code otherwise.
1037  */
1038 int
panthor_vm_alloc_va(struct panthor_vm * vm,u64 va,u64 size,struct drm_mm_node * va_node)1039 panthor_vm_alloc_va(struct panthor_vm *vm, u64 va, u64 size,
1040 		    struct drm_mm_node *va_node)
1041 {
1042 	ssize_t vm_pgsz = panthor_vm_page_size(vm);
1043 	int ret;
1044 
1045 	if (!size || !IS_ALIGNED(size, vm_pgsz))
1046 		return -EINVAL;
1047 
1048 	if (va != PANTHOR_VM_KERNEL_AUTO_VA && !IS_ALIGNED(va, vm_pgsz))
1049 		return -EINVAL;
1050 
1051 	mutex_lock(&vm->mm_lock);
1052 	if (va != PANTHOR_VM_KERNEL_AUTO_VA) {
1053 		va_node->start = va;
1054 		va_node->size = size;
1055 		ret = drm_mm_reserve_node(&vm->mm, va_node);
1056 	} else {
1057 		ret = drm_mm_insert_node_in_range(&vm->mm, va_node, size,
1058 						  size >= SZ_2M ? SZ_2M : SZ_4K,
1059 						  0, vm->kernel_auto_va.start,
1060 						  vm->kernel_auto_va.end,
1061 						  DRM_MM_INSERT_BEST);
1062 	}
1063 	mutex_unlock(&vm->mm_lock);
1064 
1065 	return ret;
1066 }
1067 
1068 /**
1069  * panthor_vm_free_va() - Free a region allocated with panthor_vm_alloc_va()
1070  * @vm: VM to free the region on.
1071  * @va_node: Memory node representing the region to free.
1072  */
panthor_vm_free_va(struct panthor_vm * vm,struct drm_mm_node * va_node)1073 void panthor_vm_free_va(struct panthor_vm *vm, struct drm_mm_node *va_node)
1074 {
1075 	mutex_lock(&vm->mm_lock);
1076 	drm_mm_remove_node(va_node);
1077 	mutex_unlock(&vm->mm_lock);
1078 }
1079 
panthor_vm_bo_free(struct drm_gpuvm_bo * vm_bo)1080 static void panthor_vm_bo_free(struct drm_gpuvm_bo *vm_bo)
1081 {
1082 	struct panthor_gem_object *bo = to_panthor_bo(vm_bo->obj);
1083 
1084 	if (!drm_gem_is_imported(&bo->base.base))
1085 		drm_gem_shmem_unpin(&bo->base);
1086 	kfree(vm_bo);
1087 }
1088 
panthor_vm_cleanup_op_ctx(struct panthor_vm_op_ctx * op_ctx,struct panthor_vm * vm)1089 static void panthor_vm_cleanup_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1090 				      struct panthor_vm *vm)
1091 {
1092 	u32 remaining_pt_count = op_ctx->rsvd_page_tables.count -
1093 				 op_ctx->rsvd_page_tables.ptr;
1094 
1095 	if (remaining_pt_count) {
1096 		kmem_cache_free_bulk(pt_cache, remaining_pt_count,
1097 				     op_ctx->rsvd_page_tables.pages +
1098 				     op_ctx->rsvd_page_tables.ptr);
1099 	}
1100 
1101 	kfree(op_ctx->rsvd_page_tables.pages);
1102 
1103 	if (op_ctx->map.vm_bo)
1104 		drm_gpuvm_bo_put_deferred(op_ctx->map.vm_bo);
1105 
1106 	for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++)
1107 		kfree(op_ctx->preallocated_vmas[i]);
1108 
1109 	drm_gpuvm_bo_deferred_cleanup(&vm->base);
1110 }
1111 
1112 static void
panthor_vm_op_ctx_return_vma(struct panthor_vm_op_ctx * op_ctx,struct panthor_vma * vma)1113 panthor_vm_op_ctx_return_vma(struct panthor_vm_op_ctx *op_ctx,
1114 			     struct panthor_vma *vma)
1115 {
1116 	for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) {
1117 		if (!op_ctx->preallocated_vmas[i]) {
1118 			op_ctx->preallocated_vmas[i] = vma;
1119 			return;
1120 		}
1121 	}
1122 
1123 	WARN_ON_ONCE(1);
1124 }
1125 
1126 static struct panthor_vma *
panthor_vm_op_ctx_get_vma(struct panthor_vm_op_ctx * op_ctx)1127 panthor_vm_op_ctx_get_vma(struct panthor_vm_op_ctx *op_ctx)
1128 {
1129 	for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) {
1130 		struct panthor_vma *vma = op_ctx->preallocated_vmas[i];
1131 
1132 		if (vma) {
1133 			op_ctx->preallocated_vmas[i] = NULL;
1134 			return vma;
1135 		}
1136 	}
1137 
1138 	return NULL;
1139 }
1140 
1141 static int
panthor_vm_op_ctx_prealloc_vmas(struct panthor_vm_op_ctx * op_ctx)1142 panthor_vm_op_ctx_prealloc_vmas(struct panthor_vm_op_ctx *op_ctx)
1143 {
1144 	u32 vma_count;
1145 
1146 	switch (op_ctx->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) {
1147 	case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
1148 		/* One VMA for the new mapping, and two more VMAs for the remap case
1149 		 * which might contain both a prev and next VA.
1150 		 */
1151 		vma_count = 3;
1152 		break;
1153 
1154 	case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
1155 		/* Two VMAs can be needed for an unmap, as an unmap can happen
1156 		 * in the middle of a drm_gpuva, requiring a remap with both
1157 		 * prev & next VA. Or an unmap can span more than one drm_gpuva
1158 		 * where the first and last ones are covered partially, requring
1159 		 * a remap for the first with a prev VA and remap for the last
1160 		 * with a next VA.
1161 		 */
1162 		vma_count = 2;
1163 		break;
1164 
1165 	default:
1166 		return 0;
1167 	}
1168 
1169 	for (u32 i = 0; i < vma_count; i++) {
1170 		struct panthor_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
1171 
1172 		if (!vma)
1173 			return -ENOMEM;
1174 
1175 		op_ctx->preallocated_vmas[i] = vma;
1176 	}
1177 
1178 	return 0;
1179 }
1180 
1181 #define PANTHOR_VM_BIND_OP_MAP_FLAGS \
1182 	(DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \
1183 	 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \
1184 	 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED | \
1185 	 DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
1186 
panthor_vm_prepare_map_op_ctx(struct panthor_vm_op_ctx * op_ctx,struct panthor_vm * vm,struct panthor_gem_object * bo,u64 offset,u64 size,u64 va,u32 flags)1187 static int panthor_vm_prepare_map_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1188 					 struct panthor_vm *vm,
1189 					 struct panthor_gem_object *bo,
1190 					 u64 offset,
1191 					 u64 size, u64 va,
1192 					 u32 flags)
1193 {
1194 	struct drm_gpuvm_bo *preallocated_vm_bo;
1195 	struct sg_table *sgt = NULL;
1196 	u64 pt_count;
1197 	int ret;
1198 
1199 	if (!bo)
1200 		return -EINVAL;
1201 
1202 	if ((flags & ~PANTHOR_VM_BIND_OP_MAP_FLAGS) ||
1203 	    (flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) != DRM_PANTHOR_VM_BIND_OP_TYPE_MAP)
1204 		return -EINVAL;
1205 
1206 	/* Make sure the VA and size are in-bounds. */
1207 	if (size > bo->base.base.size || offset > bo->base.base.size - size)
1208 		return -EINVAL;
1209 
1210 	/* If the BO has an exclusive VM attached, it can't be mapped to other VMs. */
1211 	if (bo->exclusive_vm_root_gem &&
1212 	    bo->exclusive_vm_root_gem != panthor_vm_root_gem(vm))
1213 		return -EINVAL;
1214 
1215 	memset(op_ctx, 0, sizeof(*op_ctx));
1216 	op_ctx->flags = flags;
1217 	op_ctx->va.range = size;
1218 	op_ctx->va.addr = va;
1219 
1220 	ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx);
1221 	if (ret)
1222 		goto err_cleanup;
1223 
1224 	if (!drm_gem_is_imported(&bo->base.base)) {
1225 		/* Pre-reserve the BO pages, so the map operation doesn't have to
1226 		 * allocate. This pin is dropped in panthor_vm_bo_free(), so
1227 		 * once we have successfully called drm_gpuvm_bo_create(),
1228 		 * GPUVM will take care of dropping the pin for us.
1229 		 */
1230 		ret = drm_gem_shmem_pin(&bo->base);
1231 		if (ret)
1232 			goto err_cleanup;
1233 	}
1234 
1235 	sgt = drm_gem_shmem_get_pages_sgt(&bo->base);
1236 	if (IS_ERR(sgt)) {
1237 		if (!drm_gem_is_imported(&bo->base.base))
1238 			drm_gem_shmem_unpin(&bo->base);
1239 
1240 		ret = PTR_ERR(sgt);
1241 		goto err_cleanup;
1242 	}
1243 
1244 	op_ctx->map.sgt = sgt;
1245 
1246 	preallocated_vm_bo = drm_gpuvm_bo_create(&vm->base, &bo->base.base);
1247 	if (!preallocated_vm_bo) {
1248 		if (!drm_gem_is_imported(&bo->base.base))
1249 			drm_gem_shmem_unpin(&bo->base);
1250 
1251 		ret = -ENOMEM;
1252 		goto err_cleanup;
1253 	}
1254 
1255 	/* drm_gpuvm_bo_obtain_prealloc() will call drm_gpuvm_bo_put() on our
1256 	 * pre-allocated BO if the <BO,VM> association exists. Given we
1257 	 * only have one ref on preallocated_vm_bo, drm_gpuvm_bo_destroy() will
1258 	 * be called immediately, and we have to hold the VM resv lock when
1259 	 * calling this function.
1260 	 */
1261 	dma_resv_lock(panthor_vm_resv(vm), NULL);
1262 	mutex_lock(&bo->base.base.gpuva.lock);
1263 	op_ctx->map.vm_bo = drm_gpuvm_bo_obtain_prealloc(preallocated_vm_bo);
1264 	mutex_unlock(&bo->base.base.gpuva.lock);
1265 	dma_resv_unlock(panthor_vm_resv(vm));
1266 
1267 	op_ctx->map.bo_offset = offset;
1268 
1269 	/* L1, L2 and L3 page tables.
1270 	 * We could optimize L3 allocation by iterating over the sgt and merging
1271 	 * 2M contiguous blocks, but it's simpler to over-provision and return
1272 	 * the pages if they're not used.
1273 	 */
1274 	pt_count = ((ALIGN(va + size, 1ull << 39) - ALIGN_DOWN(va, 1ull << 39)) >> 39) +
1275 		   ((ALIGN(va + size, 1ull << 30) - ALIGN_DOWN(va, 1ull << 30)) >> 30) +
1276 		   ((ALIGN(va + size, 1ull << 21) - ALIGN_DOWN(va, 1ull << 21)) >> 21);
1277 
1278 	op_ctx->rsvd_page_tables.pages = kcalloc(pt_count,
1279 						 sizeof(*op_ctx->rsvd_page_tables.pages),
1280 						 GFP_KERNEL);
1281 	if (!op_ctx->rsvd_page_tables.pages) {
1282 		ret = -ENOMEM;
1283 		goto err_cleanup;
1284 	}
1285 
1286 	ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count,
1287 				    op_ctx->rsvd_page_tables.pages);
1288 	op_ctx->rsvd_page_tables.count = ret;
1289 	if (ret != pt_count) {
1290 		ret = -ENOMEM;
1291 		goto err_cleanup;
1292 	}
1293 
1294 	/* Insert BO into the extobj list last, when we know nothing can fail. */
1295 	dma_resv_lock(panthor_vm_resv(vm), NULL);
1296 	drm_gpuvm_bo_extobj_add(op_ctx->map.vm_bo);
1297 	dma_resv_unlock(panthor_vm_resv(vm));
1298 
1299 	return 0;
1300 
1301 err_cleanup:
1302 	panthor_vm_cleanup_op_ctx(op_ctx, vm);
1303 	return ret;
1304 }
1305 
panthor_vm_prepare_unmap_op_ctx(struct panthor_vm_op_ctx * op_ctx,struct panthor_vm * vm,u64 va,u64 size)1306 static int panthor_vm_prepare_unmap_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1307 					   struct panthor_vm *vm,
1308 					   u64 va, u64 size)
1309 {
1310 	u32 pt_count = 0;
1311 	int ret;
1312 
1313 	memset(op_ctx, 0, sizeof(*op_ctx));
1314 	op_ctx->va.range = size;
1315 	op_ctx->va.addr = va;
1316 	op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP;
1317 
1318 	/* Pre-allocate L3 page tables to account for the split-2M-block
1319 	 * situation on unmap.
1320 	 */
1321 	if (va != ALIGN(va, SZ_2M))
1322 		pt_count++;
1323 
1324 	if (va + size != ALIGN(va + size, SZ_2M) &&
1325 	    ALIGN(va + size, SZ_2M) != ALIGN(va, SZ_2M))
1326 		pt_count++;
1327 
1328 	ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx);
1329 	if (ret)
1330 		goto err_cleanup;
1331 
1332 	if (pt_count) {
1333 		op_ctx->rsvd_page_tables.pages = kcalloc(pt_count,
1334 							 sizeof(*op_ctx->rsvd_page_tables.pages),
1335 							 GFP_KERNEL);
1336 		if (!op_ctx->rsvd_page_tables.pages) {
1337 			ret = -ENOMEM;
1338 			goto err_cleanup;
1339 		}
1340 
1341 		ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count,
1342 					    op_ctx->rsvd_page_tables.pages);
1343 		if (ret != pt_count) {
1344 			ret = -ENOMEM;
1345 			goto err_cleanup;
1346 		}
1347 		op_ctx->rsvd_page_tables.count = pt_count;
1348 	}
1349 
1350 	return 0;
1351 
1352 err_cleanup:
1353 	panthor_vm_cleanup_op_ctx(op_ctx, vm);
1354 	return ret;
1355 }
1356 
panthor_vm_prepare_sync_only_op_ctx(struct panthor_vm_op_ctx * op_ctx,struct panthor_vm * vm)1357 static void panthor_vm_prepare_sync_only_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1358 						struct panthor_vm *vm)
1359 {
1360 	memset(op_ctx, 0, sizeof(*op_ctx));
1361 	op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY;
1362 }
1363 
1364 /**
1365  * panthor_vm_get_bo_for_va() - Get the GEM object mapped at a virtual address
1366  * @vm: VM to look into.
1367  * @va: Virtual address to search for.
1368  * @bo_offset: Offset of the GEM object mapped at this virtual address.
1369  * Only valid on success.
1370  *
1371  * The object returned by this function might no longer be mapped when the
1372  * function returns. It's the caller responsibility to ensure there's no
1373  * concurrent map/unmap operations making the returned value invalid, or
1374  * make sure it doesn't matter if the object is no longer mapped.
1375  *
1376  * Return: A valid pointer on success, an ERR_PTR() otherwise.
1377  */
1378 struct panthor_gem_object *
panthor_vm_get_bo_for_va(struct panthor_vm * vm,u64 va,u64 * bo_offset)1379 panthor_vm_get_bo_for_va(struct panthor_vm *vm, u64 va, u64 *bo_offset)
1380 {
1381 	struct panthor_gem_object *bo = ERR_PTR(-ENOENT);
1382 	struct drm_gpuva *gpuva;
1383 	struct panthor_vma *vma;
1384 
1385 	/* Take the VM lock to prevent concurrent map/unmap operations. */
1386 	mutex_lock(&vm->op_lock);
1387 	gpuva = drm_gpuva_find_first(&vm->base, va, 1);
1388 	vma = gpuva ? container_of(gpuva, struct panthor_vma, base) : NULL;
1389 	if (vma && vma->base.gem.obj) {
1390 		drm_gem_object_get(vma->base.gem.obj);
1391 		bo = to_panthor_bo(vma->base.gem.obj);
1392 		*bo_offset = vma->base.gem.offset + (va - vma->base.va.addr);
1393 	}
1394 	mutex_unlock(&vm->op_lock);
1395 
1396 	return bo;
1397 }
1398 
1399 #define PANTHOR_VM_MIN_KERNEL_VA_SIZE	SZ_256M
1400 
1401 static u64
panthor_vm_create_get_user_va_range(const struct drm_panthor_vm_create * args,u64 full_va_range)1402 panthor_vm_create_get_user_va_range(const struct drm_panthor_vm_create *args,
1403 				    u64 full_va_range)
1404 {
1405 	u64 user_va_range;
1406 
1407 	/* Make sure we have a minimum amount of VA space for kernel objects. */
1408 	if (full_va_range < PANTHOR_VM_MIN_KERNEL_VA_SIZE)
1409 		return 0;
1410 
1411 	if (args->user_va_range) {
1412 		/* Use the user provided value if != 0. */
1413 		user_va_range = args->user_va_range;
1414 	} else if (TASK_SIZE_OF(current) < full_va_range) {
1415 		/* If the task VM size is smaller than the GPU VA range, pick this
1416 		 * as our default user VA range, so userspace can CPU/GPU map buffers
1417 		 * at the same address.
1418 		 */
1419 		user_va_range = TASK_SIZE_OF(current);
1420 	} else {
1421 		/* If the GPU VA range is smaller than the task VM size, we
1422 		 * just have to live with the fact we won't be able to map
1423 		 * all buffers at the same GPU/CPU address.
1424 		 *
1425 		 * If the GPU VA range is bigger than 4G (more than 32-bit of
1426 		 * VA), we split the range in two, and assign half of it to
1427 		 * the user and the other half to the kernel, if it's not, we
1428 		 * keep the kernel VA space as small as possible.
1429 		 */
1430 		user_va_range = full_va_range > SZ_4G ?
1431 				full_va_range / 2 :
1432 				full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE;
1433 	}
1434 
1435 	if (full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE < user_va_range)
1436 		user_va_range = full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE;
1437 
1438 	return user_va_range;
1439 }
1440 
1441 #define PANTHOR_VM_CREATE_FLAGS		0
1442 
1443 static int
panthor_vm_create_check_args(const struct panthor_device * ptdev,const struct drm_panthor_vm_create * args,u64 * kernel_va_start,u64 * kernel_va_range)1444 panthor_vm_create_check_args(const struct panthor_device *ptdev,
1445 			     const struct drm_panthor_vm_create *args,
1446 			     u64 *kernel_va_start, u64 *kernel_va_range)
1447 {
1448 	u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
1449 	u64 full_va_range = 1ull << va_bits;
1450 	u64 user_va_range;
1451 
1452 	if (args->flags & ~PANTHOR_VM_CREATE_FLAGS)
1453 		return -EINVAL;
1454 
1455 	user_va_range = panthor_vm_create_get_user_va_range(args, full_va_range);
1456 	if (!user_va_range || (args->user_va_range && args->user_va_range > user_va_range))
1457 		return -EINVAL;
1458 
1459 	/* Pick a kernel VA range that's a power of two, to have a clear split. */
1460 	*kernel_va_range = rounddown_pow_of_two(full_va_range - user_va_range);
1461 	*kernel_va_start = full_va_range - *kernel_va_range;
1462 	return 0;
1463 }
1464 
1465 /*
1466  * Only 32 VMs per open file. If that becomes a limiting factor, we can
1467  * increase this number.
1468  */
1469 #define PANTHOR_MAX_VMS_PER_FILE	32
1470 
1471 /**
1472  * panthor_vm_pool_create_vm() - Create a VM
1473  * @ptdev: The panthor device
1474  * @pool: The VM to create this VM on.
1475  * @args: VM creation args.
1476  *
1477  * Return: a positive VM ID on success, a negative error code otherwise.
1478  */
panthor_vm_pool_create_vm(struct panthor_device * ptdev,struct panthor_vm_pool * pool,struct drm_panthor_vm_create * args)1479 int panthor_vm_pool_create_vm(struct panthor_device *ptdev,
1480 			      struct panthor_vm_pool *pool,
1481 			      struct drm_panthor_vm_create *args)
1482 {
1483 	u64 kernel_va_start, kernel_va_range;
1484 	struct panthor_vm *vm;
1485 	int ret;
1486 	u32 id;
1487 
1488 	ret = panthor_vm_create_check_args(ptdev, args, &kernel_va_start, &kernel_va_range);
1489 	if (ret)
1490 		return ret;
1491 
1492 	vm = panthor_vm_create(ptdev, false, kernel_va_start, kernel_va_range,
1493 			       kernel_va_start, kernel_va_range);
1494 	if (IS_ERR(vm))
1495 		return PTR_ERR(vm);
1496 
1497 	ret = xa_alloc(&pool->xa, &id, vm,
1498 		       XA_LIMIT(1, PANTHOR_MAX_VMS_PER_FILE), GFP_KERNEL);
1499 
1500 	if (ret) {
1501 		panthor_vm_put(vm);
1502 		return ret;
1503 	}
1504 
1505 	args->user_va_range = kernel_va_start;
1506 	return id;
1507 }
1508 
panthor_vm_destroy(struct panthor_vm * vm)1509 static void panthor_vm_destroy(struct panthor_vm *vm)
1510 {
1511 	if (!vm)
1512 		return;
1513 
1514 	vm->destroyed = true;
1515 
1516 	mutex_lock(&vm->heaps.lock);
1517 	panthor_heap_pool_destroy(vm->heaps.pool);
1518 	vm->heaps.pool = NULL;
1519 	mutex_unlock(&vm->heaps.lock);
1520 
1521 	drm_WARN_ON(&vm->ptdev->base,
1522 		    panthor_vm_unmap_range(vm, vm->base.mm_start, vm->base.mm_range));
1523 	panthor_vm_put(vm);
1524 }
1525 
1526 /**
1527  * panthor_vm_pool_destroy_vm() - Destroy a VM.
1528  * @pool: VM pool.
1529  * @handle: VM handle.
1530  *
1531  * This function doesn't free the VM object or its resources, it just kills
1532  * all mappings, and makes sure nothing can be mapped after that point.
1533  *
1534  * If there was any active jobs at the time this function is called, these
1535  * jobs should experience page faults and be killed as a result.
1536  *
1537  * The VM resources are freed when the last reference on the VM object is
1538  * dropped.
1539  *
1540  * Return: %0 for success, negative errno value for failure
1541  */
panthor_vm_pool_destroy_vm(struct panthor_vm_pool * pool,u32 handle)1542 int panthor_vm_pool_destroy_vm(struct panthor_vm_pool *pool, u32 handle)
1543 {
1544 	struct panthor_vm *vm;
1545 
1546 	vm = xa_erase(&pool->xa, handle);
1547 
1548 	panthor_vm_destroy(vm);
1549 
1550 	return vm ? 0 : -EINVAL;
1551 }
1552 
1553 /**
1554  * panthor_vm_pool_get_vm() - Retrieve VM object bound to a VM handle
1555  * @pool: VM pool to check.
1556  * @handle: Handle of the VM to retrieve.
1557  *
1558  * Return: A valid pointer if the VM exists, NULL otherwise.
1559  */
1560 struct panthor_vm *
panthor_vm_pool_get_vm(struct panthor_vm_pool * pool,u32 handle)1561 panthor_vm_pool_get_vm(struct panthor_vm_pool *pool, u32 handle)
1562 {
1563 	struct panthor_vm *vm;
1564 
1565 	xa_lock(&pool->xa);
1566 	vm = panthor_vm_get(xa_load(&pool->xa, handle));
1567 	xa_unlock(&pool->xa);
1568 
1569 	return vm;
1570 }
1571 
1572 /**
1573  * panthor_vm_pool_destroy() - Destroy a VM pool.
1574  * @pfile: File.
1575  *
1576  * Destroy all VMs in the pool, and release the pool resources.
1577  *
1578  * Note that VMs can outlive the pool they were created from if other
1579  * objects hold a reference to there VMs.
1580  */
panthor_vm_pool_destroy(struct panthor_file * pfile)1581 void panthor_vm_pool_destroy(struct panthor_file *pfile)
1582 {
1583 	struct panthor_vm *vm;
1584 	unsigned long i;
1585 
1586 	if (!pfile->vms)
1587 		return;
1588 
1589 	xa_for_each(&pfile->vms->xa, i, vm)
1590 		panthor_vm_destroy(vm);
1591 
1592 	xa_destroy(&pfile->vms->xa);
1593 	kfree(pfile->vms);
1594 }
1595 
1596 /**
1597  * panthor_vm_pool_create() - Create a VM pool
1598  * @pfile: File.
1599  *
1600  * Return: 0 on success, a negative error code otherwise.
1601  */
panthor_vm_pool_create(struct panthor_file * pfile)1602 int panthor_vm_pool_create(struct panthor_file *pfile)
1603 {
1604 	pfile->vms = kzalloc(sizeof(*pfile->vms), GFP_KERNEL);
1605 	if (!pfile->vms)
1606 		return -ENOMEM;
1607 
1608 	xa_init_flags(&pfile->vms->xa, XA_FLAGS_ALLOC1);
1609 	return 0;
1610 }
1611 
1612 /* dummy TLB ops, the real TLB flush happens in panthor_vm_flush_range() */
mmu_tlb_flush_all(void * cookie)1613 static void mmu_tlb_flush_all(void *cookie)
1614 {
1615 }
1616 
mmu_tlb_flush_walk(unsigned long iova,size_t size,size_t granule,void * cookie)1617 static void mmu_tlb_flush_walk(unsigned long iova, size_t size, size_t granule, void *cookie)
1618 {
1619 }
1620 
1621 static const struct iommu_flush_ops mmu_tlb_ops = {
1622 	.tlb_flush_all = mmu_tlb_flush_all,
1623 	.tlb_flush_walk = mmu_tlb_flush_walk,
1624 };
1625 
access_type_name(struct panthor_device * ptdev,u32 fault_status)1626 static const char *access_type_name(struct panthor_device *ptdev,
1627 				    u32 fault_status)
1628 {
1629 	switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) {
1630 	case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC:
1631 		return "ATOMIC";
1632 	case AS_FAULTSTATUS_ACCESS_TYPE_READ:
1633 		return "READ";
1634 	case AS_FAULTSTATUS_ACCESS_TYPE_WRITE:
1635 		return "WRITE";
1636 	case AS_FAULTSTATUS_ACCESS_TYPE_EX:
1637 		return "EXECUTE";
1638 	default:
1639 		drm_WARN_ON(&ptdev->base, 1);
1640 		return NULL;
1641 	}
1642 }
1643 
panthor_mmu_irq_handler(struct panthor_device * ptdev,u32 status)1644 static void panthor_mmu_irq_handler(struct panthor_device *ptdev, u32 status)
1645 {
1646 	bool has_unhandled_faults = false;
1647 
1648 	status = panthor_mmu_fault_mask(ptdev, status);
1649 	while (status) {
1650 		u32 as = ffs(status | (status >> 16)) - 1;
1651 		u32 mask = panthor_mmu_as_fault_mask(ptdev, as);
1652 		u32 new_int_mask;
1653 		u64 addr;
1654 		u32 fault_status;
1655 		u32 exception_type;
1656 		u32 access_type;
1657 		u32 source_id;
1658 
1659 		fault_status = gpu_read(ptdev, AS_FAULTSTATUS(as));
1660 		addr = gpu_read64(ptdev, AS_FAULTADDRESS(as));
1661 
1662 		/* decode the fault status */
1663 		exception_type = fault_status & 0xFF;
1664 		access_type = (fault_status >> 8) & 0x3;
1665 		source_id = (fault_status >> 16);
1666 
1667 		mutex_lock(&ptdev->mmu->as.slots_lock);
1668 
1669 		ptdev->mmu->as.faulty_mask |= mask;
1670 		new_int_mask =
1671 			panthor_mmu_fault_mask(ptdev, ~ptdev->mmu->as.faulty_mask);
1672 
1673 		/* terminal fault, print info about the fault */
1674 		drm_err(&ptdev->base,
1675 			"Unhandled Page fault in AS%d at VA 0x%016llX\n"
1676 			"raw fault status: 0x%X\n"
1677 			"decoded fault status: %s\n"
1678 			"exception type 0x%X: %s\n"
1679 			"access type 0x%X: %s\n"
1680 			"source id 0x%X\n",
1681 			as, addr,
1682 			fault_status,
1683 			(fault_status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"),
1684 			exception_type, panthor_exception_name(ptdev, exception_type),
1685 			access_type, access_type_name(ptdev, fault_status),
1686 			source_id);
1687 
1688 		/* We don't handle VM faults at the moment, so let's just clear the
1689 		 * interrupt and let the writer/reader crash.
1690 		 * Note that COMPLETED irqs are never cleared, but this is fine
1691 		 * because they are always masked.
1692 		 */
1693 		gpu_write(ptdev, MMU_INT_CLEAR, mask);
1694 
1695 		/* Ignore MMU interrupts on this AS until it's been
1696 		 * re-enabled.
1697 		 */
1698 		ptdev->mmu->irq.mask = new_int_mask;
1699 
1700 		if (ptdev->mmu->as.slots[as].vm)
1701 			ptdev->mmu->as.slots[as].vm->unhandled_fault = true;
1702 
1703 		/* Disable the MMU to kill jobs on this AS. */
1704 		panthor_mmu_as_disable(ptdev, as);
1705 		mutex_unlock(&ptdev->mmu->as.slots_lock);
1706 
1707 		status &= ~mask;
1708 		has_unhandled_faults = true;
1709 	}
1710 
1711 	if (has_unhandled_faults)
1712 		panthor_sched_report_mmu_fault(ptdev);
1713 }
1714 PANTHOR_IRQ_HANDLER(mmu, MMU, panthor_mmu_irq_handler);
1715 
1716 /**
1717  * panthor_mmu_suspend() - Suspend the MMU logic
1718  * @ptdev: Device.
1719  *
1720  * All we do here is de-assign the AS slots on all active VMs, so things
1721  * get flushed to the main memory, and no further access to these VMs are
1722  * possible.
1723  *
1724  * We also suspend the MMU IRQ.
1725  */
panthor_mmu_suspend(struct panthor_device * ptdev)1726 void panthor_mmu_suspend(struct panthor_device *ptdev)
1727 {
1728 	mutex_lock(&ptdev->mmu->as.slots_lock);
1729 	for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
1730 		struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
1731 
1732 		if (vm) {
1733 			drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i));
1734 			panthor_vm_release_as_locked(vm);
1735 		}
1736 	}
1737 	mutex_unlock(&ptdev->mmu->as.slots_lock);
1738 
1739 	panthor_mmu_irq_suspend(&ptdev->mmu->irq);
1740 }
1741 
1742 /**
1743  * panthor_mmu_resume() - Resume the MMU logic
1744  * @ptdev: Device.
1745  *
1746  * Resume the IRQ.
1747  *
1748  * We don't re-enable previously active VMs. We assume other parts of the
1749  * driver will call panthor_vm_active() on the VMs they intend to use.
1750  */
panthor_mmu_resume(struct panthor_device * ptdev)1751 void panthor_mmu_resume(struct panthor_device *ptdev)
1752 {
1753 	mutex_lock(&ptdev->mmu->as.slots_lock);
1754 	ptdev->mmu->as.alloc_mask = 0;
1755 	ptdev->mmu->as.faulty_mask = 0;
1756 	mutex_unlock(&ptdev->mmu->as.slots_lock);
1757 
1758 	panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0));
1759 }
1760 
1761 /**
1762  * panthor_mmu_pre_reset() - Prepare for a reset
1763  * @ptdev: Device.
1764  *
1765  * Suspend the IRQ, and make sure all VM_BIND queues are stopped, so we
1766  * don't get asked to do a VM operation while the GPU is down.
1767  *
1768  * We don't cleanly shutdown the AS slots here, because the reset might
1769  * come from an AS_ACTIVE_BIT stuck situation.
1770  */
panthor_mmu_pre_reset(struct panthor_device * ptdev)1771 void panthor_mmu_pre_reset(struct panthor_device *ptdev)
1772 {
1773 	struct panthor_vm *vm;
1774 
1775 	panthor_mmu_irq_suspend(&ptdev->mmu->irq);
1776 
1777 	mutex_lock(&ptdev->mmu->vm.lock);
1778 	ptdev->mmu->vm.reset_in_progress = true;
1779 	list_for_each_entry(vm, &ptdev->mmu->vm.list, node)
1780 		panthor_vm_stop(vm);
1781 	mutex_unlock(&ptdev->mmu->vm.lock);
1782 }
1783 
1784 /**
1785  * panthor_mmu_post_reset() - Restore things after a reset
1786  * @ptdev: Device.
1787  *
1788  * Put the MMU logic back in action after a reset. That implies resuming the
1789  * IRQ and re-enabling the VM_BIND queues.
1790  */
panthor_mmu_post_reset(struct panthor_device * ptdev)1791 void panthor_mmu_post_reset(struct panthor_device *ptdev)
1792 {
1793 	struct panthor_vm *vm;
1794 
1795 	mutex_lock(&ptdev->mmu->as.slots_lock);
1796 
1797 	/* Now that the reset is effective, we can assume that none of the
1798 	 * AS slots are setup, and clear the faulty flags too.
1799 	 */
1800 	ptdev->mmu->as.alloc_mask = 0;
1801 	ptdev->mmu->as.faulty_mask = 0;
1802 
1803 	for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
1804 		struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
1805 
1806 		if (vm)
1807 			panthor_vm_release_as_locked(vm);
1808 	}
1809 
1810 	mutex_unlock(&ptdev->mmu->as.slots_lock);
1811 
1812 	panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0));
1813 
1814 	/* Restart the VM_BIND queues. */
1815 	mutex_lock(&ptdev->mmu->vm.lock);
1816 	list_for_each_entry(vm, &ptdev->mmu->vm.list, node) {
1817 		panthor_vm_start(vm);
1818 	}
1819 	ptdev->mmu->vm.reset_in_progress = false;
1820 	mutex_unlock(&ptdev->mmu->vm.lock);
1821 }
1822 
panthor_vm_free(struct drm_gpuvm * gpuvm)1823 static void panthor_vm_free(struct drm_gpuvm *gpuvm)
1824 {
1825 	struct panthor_vm *vm = container_of(gpuvm, struct panthor_vm, base);
1826 	struct panthor_device *ptdev = vm->ptdev;
1827 
1828 	mutex_lock(&vm->heaps.lock);
1829 	if (drm_WARN_ON(&ptdev->base, vm->heaps.pool))
1830 		panthor_heap_pool_destroy(vm->heaps.pool);
1831 	mutex_unlock(&vm->heaps.lock);
1832 	mutex_destroy(&vm->heaps.lock);
1833 
1834 	mutex_lock(&ptdev->mmu->vm.lock);
1835 	list_del(&vm->node);
1836 	/* Restore the scheduler state so we can call drm_sched_entity_destroy()
1837 	 * and drm_sched_fini(). If get there, that means we have no job left
1838 	 * and no new jobs can be queued, so we can start the scheduler without
1839 	 * risking interfering with the reset.
1840 	 */
1841 	if (ptdev->mmu->vm.reset_in_progress)
1842 		panthor_vm_start(vm);
1843 	mutex_unlock(&ptdev->mmu->vm.lock);
1844 
1845 	drm_sched_entity_destroy(&vm->entity);
1846 	drm_sched_fini(&vm->sched);
1847 
1848 	mutex_lock(&ptdev->mmu->as.slots_lock);
1849 	if (vm->as.id >= 0) {
1850 		int cookie;
1851 
1852 		if (drm_dev_enter(&ptdev->base, &cookie)) {
1853 			panthor_mmu_as_disable(ptdev, vm->as.id);
1854 			drm_dev_exit(cookie);
1855 		}
1856 
1857 		ptdev->mmu->as.slots[vm->as.id].vm = NULL;
1858 		clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask);
1859 		list_del(&vm->as.lru_node);
1860 	}
1861 	mutex_unlock(&ptdev->mmu->as.slots_lock);
1862 
1863 	free_io_pgtable_ops(vm->pgtbl_ops);
1864 
1865 	drm_mm_takedown(&vm->mm);
1866 	kfree(vm);
1867 }
1868 
1869 /**
1870  * panthor_vm_put() - Release a reference on a VM
1871  * @vm: VM to release the reference on. Can be NULL.
1872  */
panthor_vm_put(struct panthor_vm * vm)1873 void panthor_vm_put(struct panthor_vm *vm)
1874 {
1875 	drm_gpuvm_put(vm ? &vm->base : NULL);
1876 }
1877 
1878 /**
1879  * panthor_vm_get() - Get a VM reference
1880  * @vm: VM to get the reference on. Can be NULL.
1881  *
1882  * Return: @vm value.
1883  */
panthor_vm_get(struct panthor_vm * vm)1884 struct panthor_vm *panthor_vm_get(struct panthor_vm *vm)
1885 {
1886 	if (vm)
1887 		drm_gpuvm_get(&vm->base);
1888 
1889 	return vm;
1890 }
1891 
1892 /**
1893  * panthor_vm_get_heap_pool() - Get the heap pool attached to a VM
1894  * @vm: VM to query the heap pool on.
1895  * @create: True if the heap pool should be created when it doesn't exist.
1896  *
1897  * Heap pools are per-VM. This function allows one to retrieve the heap pool
1898  * attached to a VM.
1899  *
1900  * If no heap pool exists yet, and @create is true, we create one.
1901  *
1902  * The returned panthor_heap_pool should be released with panthor_heap_pool_put().
1903  *
1904  * Return: A valid pointer on success, an ERR_PTR() otherwise.
1905  */
panthor_vm_get_heap_pool(struct panthor_vm * vm,bool create)1906 struct panthor_heap_pool *panthor_vm_get_heap_pool(struct panthor_vm *vm, bool create)
1907 {
1908 	struct panthor_heap_pool *pool;
1909 
1910 	mutex_lock(&vm->heaps.lock);
1911 	if (!vm->heaps.pool && create) {
1912 		if (vm->destroyed)
1913 			pool = ERR_PTR(-EINVAL);
1914 		else
1915 			pool = panthor_heap_pool_create(vm->ptdev, vm);
1916 
1917 		if (!IS_ERR(pool))
1918 			vm->heaps.pool = panthor_heap_pool_get(pool);
1919 	} else {
1920 		pool = panthor_heap_pool_get(vm->heaps.pool);
1921 		if (!pool)
1922 			pool = ERR_PTR(-ENOENT);
1923 	}
1924 	mutex_unlock(&vm->heaps.lock);
1925 
1926 	return pool;
1927 }
1928 
1929 /**
1930  * panthor_vm_heaps_sizes() - Calculate size of all heap chunks across all
1931  * heaps over all the heap pools in a VM
1932  * @pfile: File.
1933  * @stats: Memory stats to be updated.
1934  *
1935  * Calculate all heap chunk sizes in all heap pools bound to a VM. If the VM
1936  * is active, record the size as active as well.
1937  */
panthor_vm_heaps_sizes(struct panthor_file * pfile,struct drm_memory_stats * stats)1938 void panthor_vm_heaps_sizes(struct panthor_file *pfile, struct drm_memory_stats *stats)
1939 {
1940 	struct panthor_vm *vm;
1941 	unsigned long i;
1942 
1943 	if (!pfile->vms)
1944 		return;
1945 
1946 	xa_lock(&pfile->vms->xa);
1947 	xa_for_each(&pfile->vms->xa, i, vm) {
1948 		size_t size = panthor_heap_pool_size(vm->heaps.pool);
1949 		stats->resident += size;
1950 		if (vm->as.id >= 0)
1951 			stats->active += size;
1952 	}
1953 	xa_unlock(&pfile->vms->xa);
1954 }
1955 
mair_to_memattr(u64 mair,bool coherent)1956 static u64 mair_to_memattr(u64 mair, bool coherent)
1957 {
1958 	u64 memattr = 0;
1959 	u32 i;
1960 
1961 	for (i = 0; i < 8; i++) {
1962 		u8 in_attr = mair >> (8 * i), out_attr;
1963 		u8 outer = in_attr >> 4, inner = in_attr & 0xf;
1964 
1965 		/* For caching to be enabled, inner and outer caching policy
1966 		 * have to be both write-back, if one of them is write-through
1967 		 * or non-cacheable, we just choose non-cacheable. Device
1968 		 * memory is also translated to non-cacheable.
1969 		 */
1970 		if (!(outer & 3) || !(outer & 4) || !(inner & 4)) {
1971 			out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_NC |
1972 				   AS_MEMATTR_AARCH64_SH_MIDGARD_INNER |
1973 				   AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(false, false);
1974 		} else {
1975 			out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_WB |
1976 				   AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(inner & 1, inner & 2);
1977 			/* Use SH_MIDGARD_INNER mode when device isn't coherent,
1978 			 * so SH_IS, which is used when IOMMU_CACHE is set, maps
1979 			 * to Mali's internal-shareable mode. As per the Mali
1980 			 * Spec, inner and outer-shareable modes aren't allowed
1981 			 * for WB memory when coherency is disabled.
1982 			 * Use SH_CPU_INNER mode when coherency is enabled, so
1983 			 * that SH_IS actually maps to the standard definition of
1984 			 * inner-shareable.
1985 			 */
1986 			if (!coherent)
1987 				out_attr |= AS_MEMATTR_AARCH64_SH_MIDGARD_INNER;
1988 			else
1989 				out_attr |= AS_MEMATTR_AARCH64_SH_CPU_INNER;
1990 		}
1991 
1992 		memattr |= (u64)out_attr << (8 * i);
1993 	}
1994 
1995 	return memattr;
1996 }
1997 
panthor_vma_link(struct panthor_vm * vm,struct panthor_vma * vma,struct drm_gpuvm_bo * vm_bo)1998 static void panthor_vma_link(struct panthor_vm *vm,
1999 			     struct panthor_vma *vma,
2000 			     struct drm_gpuvm_bo *vm_bo)
2001 {
2002 	struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj);
2003 
2004 	mutex_lock(&bo->base.base.gpuva.lock);
2005 	drm_gpuva_link(&vma->base, vm_bo);
2006 	mutex_unlock(&bo->base.base.gpuva.lock);
2007 }
2008 
panthor_vma_unlink(struct panthor_vma * vma)2009 static void panthor_vma_unlink(struct panthor_vma *vma)
2010 {
2011 	drm_gpuva_unlink_defer(&vma->base);
2012 	kfree(vma);
2013 }
2014 
panthor_vma_init(struct panthor_vma * vma,u32 flags)2015 static void panthor_vma_init(struct panthor_vma *vma, u32 flags)
2016 {
2017 	INIT_LIST_HEAD(&vma->node);
2018 	vma->flags = flags;
2019 }
2020 
2021 #define PANTHOR_VM_MAP_FLAGS \
2022 	(DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \
2023 	 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \
2024 	 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED)
2025 
panthor_gpuva_sm_step_map(struct drm_gpuva_op * op,void * priv)2026 static int panthor_gpuva_sm_step_map(struct drm_gpuva_op *op, void *priv)
2027 {
2028 	struct panthor_vm *vm = priv;
2029 	struct panthor_vm_op_ctx *op_ctx = vm->op_ctx;
2030 	struct panthor_vma *vma = panthor_vm_op_ctx_get_vma(op_ctx);
2031 	int ret;
2032 
2033 	if (!vma)
2034 		return -EINVAL;
2035 
2036 	panthor_vma_init(vma, op_ctx->flags & PANTHOR_VM_MAP_FLAGS);
2037 
2038 	ret = panthor_vm_map_pages(vm, op->map.va.addr, flags_to_prot(vma->flags),
2039 				   op_ctx->map.sgt, op->map.gem.offset,
2040 				   op->map.va.range);
2041 	if (ret) {
2042 		panthor_vm_op_ctx_return_vma(op_ctx, vma);
2043 		return ret;
2044 	}
2045 
2046 	drm_gpuva_map(&vm->base, &vma->base, &op->map);
2047 	panthor_vma_link(vm, vma, op_ctx->map.vm_bo);
2048 
2049 	drm_gpuvm_bo_put_deferred(op_ctx->map.vm_bo);
2050 	op_ctx->map.vm_bo = NULL;
2051 
2052 	return 0;
2053 }
2054 
panthor_gpuva_sm_step_remap(struct drm_gpuva_op * op,void * priv)2055 static int panthor_gpuva_sm_step_remap(struct drm_gpuva_op *op,
2056 				       void *priv)
2057 {
2058 	struct panthor_vma *unmap_vma = container_of(op->remap.unmap->va, struct panthor_vma, base);
2059 	struct panthor_vm *vm = priv;
2060 	struct panthor_vm_op_ctx *op_ctx = vm->op_ctx;
2061 	struct panthor_vma *prev_vma = NULL, *next_vma = NULL;
2062 	u64 unmap_start, unmap_range;
2063 	int ret;
2064 
2065 	drm_gpuva_op_remap_to_unmap_range(&op->remap, &unmap_start, &unmap_range);
2066 	ret = panthor_vm_unmap_pages(vm, unmap_start, unmap_range);
2067 	if (ret)
2068 		return ret;
2069 
2070 	if (op->remap.prev) {
2071 		prev_vma = panthor_vm_op_ctx_get_vma(op_ctx);
2072 		panthor_vma_init(prev_vma, unmap_vma->flags);
2073 	}
2074 
2075 	if (op->remap.next) {
2076 		next_vma = panthor_vm_op_ctx_get_vma(op_ctx);
2077 		panthor_vma_init(next_vma, unmap_vma->flags);
2078 	}
2079 
2080 	drm_gpuva_remap(prev_vma ? &prev_vma->base : NULL,
2081 			next_vma ? &next_vma->base : NULL,
2082 			&op->remap);
2083 
2084 	if (prev_vma) {
2085 		/* panthor_vma_link() transfers the vm_bo ownership to
2086 		 * the VMA object. Since the vm_bo we're passing is still
2087 		 * owned by the old mapping which will be released when this
2088 		 * mapping is destroyed, we need to grab a ref here.
2089 		 */
2090 		panthor_vma_link(vm, prev_vma, op->remap.unmap->va->vm_bo);
2091 	}
2092 
2093 	if (next_vma) {
2094 		panthor_vma_link(vm, next_vma, op->remap.unmap->va->vm_bo);
2095 	}
2096 
2097 	panthor_vma_unlink(unmap_vma);
2098 	return 0;
2099 }
2100 
panthor_gpuva_sm_step_unmap(struct drm_gpuva_op * op,void * priv)2101 static int panthor_gpuva_sm_step_unmap(struct drm_gpuva_op *op,
2102 				       void *priv)
2103 {
2104 	struct panthor_vma *unmap_vma = container_of(op->unmap.va, struct panthor_vma, base);
2105 	struct panthor_vm *vm = priv;
2106 	int ret;
2107 
2108 	ret = panthor_vm_unmap_pages(vm, unmap_vma->base.va.addr,
2109 				     unmap_vma->base.va.range);
2110 	if (drm_WARN_ON(&vm->ptdev->base, ret))
2111 		return ret;
2112 
2113 	drm_gpuva_unmap(&op->unmap);
2114 	panthor_vma_unlink(unmap_vma);
2115 	return 0;
2116 }
2117 
2118 static const struct drm_gpuvm_ops panthor_gpuvm_ops = {
2119 	.vm_free = panthor_vm_free,
2120 	.vm_bo_free = panthor_vm_bo_free,
2121 	.sm_step_map = panthor_gpuva_sm_step_map,
2122 	.sm_step_remap = panthor_gpuva_sm_step_remap,
2123 	.sm_step_unmap = panthor_gpuva_sm_step_unmap,
2124 };
2125 
2126 /**
2127  * panthor_vm_resv() - Get the dma_resv object attached to a VM.
2128  * @vm: VM to get the dma_resv of.
2129  *
2130  * Return: A dma_resv object.
2131  */
panthor_vm_resv(struct panthor_vm * vm)2132 struct dma_resv *panthor_vm_resv(struct panthor_vm *vm)
2133 {
2134 	return drm_gpuvm_resv(&vm->base);
2135 }
2136 
panthor_vm_root_gem(struct panthor_vm * vm)2137 struct drm_gem_object *panthor_vm_root_gem(struct panthor_vm *vm)
2138 {
2139 	if (!vm)
2140 		return NULL;
2141 
2142 	return vm->base.r_obj;
2143 }
2144 
2145 static int
panthor_vm_exec_op(struct panthor_vm * vm,struct panthor_vm_op_ctx * op,bool flag_vm_unusable_on_failure)2146 panthor_vm_exec_op(struct panthor_vm *vm, struct panthor_vm_op_ctx *op,
2147 		   bool flag_vm_unusable_on_failure)
2148 {
2149 	u32 op_type = op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK;
2150 	int ret;
2151 
2152 	if (op_type == DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY)
2153 		return 0;
2154 
2155 	mutex_lock(&vm->op_lock);
2156 	vm->op_ctx = op;
2157 	switch (op_type) {
2158 	case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: {
2159 		const struct drm_gpuvm_map_req map_req = {
2160 			.map.va.addr = op->va.addr,
2161 			.map.va.range = op->va.range,
2162 			.map.gem.obj = op->map.vm_bo->obj,
2163 			.map.gem.offset = op->map.bo_offset,
2164 		};
2165 
2166 		if (vm->unusable) {
2167 			ret = -EINVAL;
2168 			break;
2169 		}
2170 
2171 		ret = drm_gpuvm_sm_map(&vm->base, vm, &map_req);
2172 		break;
2173 	}
2174 
2175 	case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
2176 		ret = drm_gpuvm_sm_unmap(&vm->base, vm, op->va.addr, op->va.range);
2177 		break;
2178 
2179 	default:
2180 		ret = -EINVAL;
2181 		break;
2182 	}
2183 
2184 	if (ret && flag_vm_unusable_on_failure)
2185 		vm->unusable = true;
2186 
2187 	vm->op_ctx = NULL;
2188 	mutex_unlock(&vm->op_lock);
2189 
2190 	return ret;
2191 }
2192 
2193 static struct dma_fence *
panthor_vm_bind_run_job(struct drm_sched_job * sched_job)2194 panthor_vm_bind_run_job(struct drm_sched_job *sched_job)
2195 {
2196 	struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2197 	bool cookie;
2198 	int ret;
2199 
2200 	/* Not only we report an error whose result is propagated to the
2201 	 * drm_sched finished fence, but we also flag the VM as unusable, because
2202 	 * a failure in the async VM_BIND results in an inconsistent state. VM needs
2203 	 * to be destroyed and recreated.
2204 	 */
2205 	cookie = dma_fence_begin_signalling();
2206 	ret = panthor_vm_exec_op(job->vm, &job->ctx, true);
2207 	dma_fence_end_signalling(cookie);
2208 
2209 	return ret ? ERR_PTR(ret) : NULL;
2210 }
2211 
panthor_vm_bind_job_release(struct kref * kref)2212 static void panthor_vm_bind_job_release(struct kref *kref)
2213 {
2214 	struct panthor_vm_bind_job *job = container_of(kref, struct panthor_vm_bind_job, refcount);
2215 
2216 	if (job->base.s_fence)
2217 		drm_sched_job_cleanup(&job->base);
2218 
2219 	panthor_vm_cleanup_op_ctx(&job->ctx, job->vm);
2220 	panthor_vm_put(job->vm);
2221 	kfree(job);
2222 }
2223 
2224 /**
2225  * panthor_vm_bind_job_put() - Release a VM_BIND job reference
2226  * @sched_job: Job to release the reference on.
2227  */
panthor_vm_bind_job_put(struct drm_sched_job * sched_job)2228 void panthor_vm_bind_job_put(struct drm_sched_job *sched_job)
2229 {
2230 	struct panthor_vm_bind_job *job =
2231 		container_of(sched_job, struct panthor_vm_bind_job, base);
2232 
2233 	if (sched_job)
2234 		kref_put(&job->refcount, panthor_vm_bind_job_release);
2235 }
2236 
2237 static void
panthor_vm_bind_free_job(struct drm_sched_job * sched_job)2238 panthor_vm_bind_free_job(struct drm_sched_job *sched_job)
2239 {
2240 	struct panthor_vm_bind_job *job =
2241 		container_of(sched_job, struct panthor_vm_bind_job, base);
2242 
2243 	drm_sched_job_cleanup(sched_job);
2244 
2245 	/* Do the heavy cleanups asynchronously, so we're out of the
2246 	 * dma-signaling path and can acquire dma-resv locks safely.
2247 	 */
2248 	queue_work(panthor_cleanup_wq, &job->cleanup_op_ctx_work);
2249 }
2250 
2251 static enum drm_gpu_sched_stat
panthor_vm_bind_timedout_job(struct drm_sched_job * sched_job)2252 panthor_vm_bind_timedout_job(struct drm_sched_job *sched_job)
2253 {
2254 	WARN(1, "VM_BIND ops are synchronous for now, there should be no timeout!");
2255 	return DRM_GPU_SCHED_STAT_RESET;
2256 }
2257 
2258 static const struct drm_sched_backend_ops panthor_vm_bind_ops = {
2259 	.run_job = panthor_vm_bind_run_job,
2260 	.free_job = panthor_vm_bind_free_job,
2261 	.timedout_job = panthor_vm_bind_timedout_job,
2262 };
2263 
2264 /**
2265  * panthor_vm_create() - Create a VM
2266  * @ptdev: Device.
2267  * @for_mcu: True if this is the FW MCU VM.
2268  * @kernel_va_start: Start of the range reserved for kernel BO mapping.
2269  * @kernel_va_size: Size of the range reserved for kernel BO mapping.
2270  * @auto_kernel_va_start: Start of the auto-VA kernel range.
2271  * @auto_kernel_va_size: Size of the auto-VA kernel range.
2272  *
2273  * Return: A valid pointer on success, an ERR_PTR() otherwise.
2274  */
2275 struct panthor_vm *
panthor_vm_create(struct panthor_device * ptdev,bool for_mcu,u64 kernel_va_start,u64 kernel_va_size,u64 auto_kernel_va_start,u64 auto_kernel_va_size)2276 panthor_vm_create(struct panthor_device *ptdev, bool for_mcu,
2277 		  u64 kernel_va_start, u64 kernel_va_size,
2278 		  u64 auto_kernel_va_start, u64 auto_kernel_va_size)
2279 {
2280 	u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
2281 	u32 pa_bits = GPU_MMU_FEATURES_PA_BITS(ptdev->gpu_info.mmu_features);
2282 	u64 full_va_range = 1ull << va_bits;
2283 	struct drm_gem_object *dummy_gem;
2284 	struct drm_gpu_scheduler *sched;
2285 	const struct drm_sched_init_args sched_args = {
2286 		.ops = &panthor_vm_bind_ops,
2287 		.submit_wq = ptdev->mmu->vm.wq,
2288 		.num_rqs = 1,
2289 		.credit_limit = 1,
2290 		/* Bind operations are synchronous for now, no timeout needed. */
2291 		.timeout = MAX_SCHEDULE_TIMEOUT,
2292 		.name = "panthor-vm-bind",
2293 		.dev = ptdev->base.dev,
2294 	};
2295 	struct io_pgtable_cfg pgtbl_cfg;
2296 	u64 mair, min_va, va_range;
2297 	struct panthor_vm *vm;
2298 	int ret;
2299 
2300 	vm = kzalloc(sizeof(*vm), GFP_KERNEL);
2301 	if (!vm)
2302 		return ERR_PTR(-ENOMEM);
2303 
2304 	/* We allocate a dummy GEM for the VM. */
2305 	dummy_gem = drm_gpuvm_resv_object_alloc(&ptdev->base);
2306 	if (!dummy_gem) {
2307 		ret = -ENOMEM;
2308 		goto err_free_vm;
2309 	}
2310 
2311 	mutex_init(&vm->heaps.lock);
2312 	vm->for_mcu = for_mcu;
2313 	vm->ptdev = ptdev;
2314 	mutex_init(&vm->op_lock);
2315 
2316 	if (for_mcu) {
2317 		/* CSF MCU is a cortex M7, and can only address 4G */
2318 		min_va = 0;
2319 		va_range = SZ_4G;
2320 	} else {
2321 		min_va = 0;
2322 		va_range = full_va_range;
2323 	}
2324 
2325 	mutex_init(&vm->mm_lock);
2326 	drm_mm_init(&vm->mm, kernel_va_start, kernel_va_size);
2327 	vm->kernel_auto_va.start = auto_kernel_va_start;
2328 	vm->kernel_auto_va.end = vm->kernel_auto_va.start + auto_kernel_va_size - 1;
2329 
2330 	INIT_LIST_HEAD(&vm->node);
2331 	INIT_LIST_HEAD(&vm->as.lru_node);
2332 	vm->as.id = -1;
2333 	refcount_set(&vm->as.active_cnt, 0);
2334 
2335 	pgtbl_cfg = (struct io_pgtable_cfg) {
2336 		.pgsize_bitmap	= SZ_4K | SZ_2M,
2337 		.ias		= va_bits,
2338 		.oas		= pa_bits,
2339 		.coherent_walk	= ptdev->coherent,
2340 		.tlb		= &mmu_tlb_ops,
2341 		.iommu_dev	= ptdev->base.dev,
2342 		.alloc		= alloc_pt,
2343 		.free		= free_pt,
2344 	};
2345 
2346 	vm->pgtbl_ops = alloc_io_pgtable_ops(ARM_64_LPAE_S1, &pgtbl_cfg, vm);
2347 	if (!vm->pgtbl_ops) {
2348 		ret = -EINVAL;
2349 		goto err_mm_takedown;
2350 	}
2351 
2352 	ret = drm_sched_init(&vm->sched, &sched_args);
2353 	if (ret)
2354 		goto err_free_io_pgtable;
2355 
2356 	sched = &vm->sched;
2357 	ret = drm_sched_entity_init(&vm->entity, 0, &sched, 1, NULL);
2358 	if (ret)
2359 		goto err_sched_fini;
2360 
2361 	mair = io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg.arm_lpae_s1_cfg.mair;
2362 	vm->memattr = mair_to_memattr(mair, ptdev->coherent);
2363 
2364 	mutex_lock(&ptdev->mmu->vm.lock);
2365 	list_add_tail(&vm->node, &ptdev->mmu->vm.list);
2366 
2367 	/* If a reset is in progress, stop the scheduler. */
2368 	if (ptdev->mmu->vm.reset_in_progress)
2369 		panthor_vm_stop(vm);
2370 	mutex_unlock(&ptdev->mmu->vm.lock);
2371 
2372 	/* We intentionally leave the reserved range to zero, because we want kernel VMAs
2373 	 * to be handled the same way user VMAs are.
2374 	 */
2375 	drm_gpuvm_init(&vm->base, for_mcu ? "panthor-MCU-VM" : "panthor-GPU-VM",
2376 		       DRM_GPUVM_RESV_PROTECTED | DRM_GPUVM_IMMEDIATE_MODE,
2377 		       &ptdev->base, dummy_gem, min_va, va_range, 0, 0,
2378 		       &panthor_gpuvm_ops);
2379 	drm_gem_object_put(dummy_gem);
2380 	return vm;
2381 
2382 err_sched_fini:
2383 	drm_sched_fini(&vm->sched);
2384 
2385 err_free_io_pgtable:
2386 	free_io_pgtable_ops(vm->pgtbl_ops);
2387 
2388 err_mm_takedown:
2389 	drm_mm_takedown(&vm->mm);
2390 	drm_gem_object_put(dummy_gem);
2391 
2392 err_free_vm:
2393 	kfree(vm);
2394 	return ERR_PTR(ret);
2395 }
2396 
2397 static int
panthor_vm_bind_prepare_op_ctx(struct drm_file * file,struct panthor_vm * vm,const struct drm_panthor_vm_bind_op * op,struct panthor_vm_op_ctx * op_ctx)2398 panthor_vm_bind_prepare_op_ctx(struct drm_file *file,
2399 			       struct panthor_vm *vm,
2400 			       const struct drm_panthor_vm_bind_op *op,
2401 			       struct panthor_vm_op_ctx *op_ctx)
2402 {
2403 	ssize_t vm_pgsz = panthor_vm_page_size(vm);
2404 	struct drm_gem_object *gem;
2405 	int ret;
2406 
2407 	/* Aligned on page size. */
2408 	if (!IS_ALIGNED(op->va | op->size | op->bo_offset, vm_pgsz))
2409 		return -EINVAL;
2410 
2411 	switch (op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) {
2412 	case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
2413 		gem = drm_gem_object_lookup(file, op->bo_handle);
2414 		ret = panthor_vm_prepare_map_op_ctx(op_ctx, vm,
2415 						    gem ? to_panthor_bo(gem) : NULL,
2416 						    op->bo_offset,
2417 						    op->size,
2418 						    op->va,
2419 						    op->flags);
2420 		drm_gem_object_put(gem);
2421 		return ret;
2422 
2423 	case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
2424 		if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
2425 			return -EINVAL;
2426 
2427 		if (op->bo_handle || op->bo_offset)
2428 			return -EINVAL;
2429 
2430 		return panthor_vm_prepare_unmap_op_ctx(op_ctx, vm, op->va, op->size);
2431 
2432 	case DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY:
2433 		if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
2434 			return -EINVAL;
2435 
2436 		if (op->bo_handle || op->bo_offset)
2437 			return -EINVAL;
2438 
2439 		if (op->va || op->size)
2440 			return -EINVAL;
2441 
2442 		if (!op->syncs.count)
2443 			return -EINVAL;
2444 
2445 		panthor_vm_prepare_sync_only_op_ctx(op_ctx, vm);
2446 		return 0;
2447 
2448 	default:
2449 		return -EINVAL;
2450 	}
2451 }
2452 
panthor_vm_bind_job_cleanup_op_ctx_work(struct work_struct * work)2453 static void panthor_vm_bind_job_cleanup_op_ctx_work(struct work_struct *work)
2454 {
2455 	struct panthor_vm_bind_job *job =
2456 		container_of(work, struct panthor_vm_bind_job, cleanup_op_ctx_work);
2457 
2458 	panthor_vm_bind_job_put(&job->base);
2459 }
2460 
2461 /**
2462  * panthor_vm_bind_job_create() - Create a VM_BIND job
2463  * @file: File.
2464  * @vm: VM targeted by the VM_BIND job.
2465  * @op: VM operation data.
2466  *
2467  * Return: A valid pointer on success, an ERR_PTR() otherwise.
2468  */
2469 struct drm_sched_job *
panthor_vm_bind_job_create(struct drm_file * file,struct panthor_vm * vm,const struct drm_panthor_vm_bind_op * op)2470 panthor_vm_bind_job_create(struct drm_file *file,
2471 			   struct panthor_vm *vm,
2472 			   const struct drm_panthor_vm_bind_op *op)
2473 {
2474 	struct panthor_vm_bind_job *job;
2475 	int ret;
2476 
2477 	if (!vm)
2478 		return ERR_PTR(-EINVAL);
2479 
2480 	if (vm->destroyed || vm->unusable)
2481 		return ERR_PTR(-EINVAL);
2482 
2483 	job = kzalloc(sizeof(*job), GFP_KERNEL);
2484 	if (!job)
2485 		return ERR_PTR(-ENOMEM);
2486 
2487 	ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &job->ctx);
2488 	if (ret) {
2489 		kfree(job);
2490 		return ERR_PTR(ret);
2491 	}
2492 
2493 	INIT_WORK(&job->cleanup_op_ctx_work, panthor_vm_bind_job_cleanup_op_ctx_work);
2494 	kref_init(&job->refcount);
2495 	job->vm = panthor_vm_get(vm);
2496 
2497 	ret = drm_sched_job_init(&job->base, &vm->entity, 1, vm, file->client_id);
2498 	if (ret)
2499 		goto err_put_job;
2500 
2501 	return &job->base;
2502 
2503 err_put_job:
2504 	panthor_vm_bind_job_put(&job->base);
2505 	return ERR_PTR(ret);
2506 }
2507 
2508 /**
2509  * panthor_vm_bind_job_prepare_resvs() - Prepare VM_BIND job dma_resvs
2510  * @exec: The locking/preparation context.
2511  * @sched_job: The job to prepare resvs on.
2512  *
2513  * Locks and prepare the VM resv.
2514  *
2515  * If this is a map operation, locks and prepares the GEM resv.
2516  *
2517  * Return: 0 on success, a negative error code otherwise.
2518  */
panthor_vm_bind_job_prepare_resvs(struct drm_exec * exec,struct drm_sched_job * sched_job)2519 int panthor_vm_bind_job_prepare_resvs(struct drm_exec *exec,
2520 				      struct drm_sched_job *sched_job)
2521 {
2522 	struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2523 	int ret;
2524 
2525 	/* Acquire the VM lock an reserve a slot for this VM bind job. */
2526 	ret = drm_gpuvm_prepare_vm(&job->vm->base, exec, 1);
2527 	if (ret)
2528 		return ret;
2529 
2530 	if (job->ctx.map.vm_bo) {
2531 		/* Lock/prepare the GEM being mapped. */
2532 		ret = drm_exec_prepare_obj(exec, job->ctx.map.vm_bo->obj, 1);
2533 		if (ret)
2534 			return ret;
2535 	}
2536 
2537 	return 0;
2538 }
2539 
2540 /**
2541  * panthor_vm_bind_job_update_resvs() - Update the resv objects touched by a job
2542  * @exec: drm_exec context.
2543  * @sched_job: Job to update the resvs on.
2544  */
panthor_vm_bind_job_update_resvs(struct drm_exec * exec,struct drm_sched_job * sched_job)2545 void panthor_vm_bind_job_update_resvs(struct drm_exec *exec,
2546 				      struct drm_sched_job *sched_job)
2547 {
2548 	struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2549 
2550 	/* Explicit sync => we just register our job finished fence as bookkeep. */
2551 	drm_gpuvm_resv_add_fence(&job->vm->base, exec,
2552 				 &sched_job->s_fence->finished,
2553 				 DMA_RESV_USAGE_BOOKKEEP,
2554 				 DMA_RESV_USAGE_BOOKKEEP);
2555 }
2556 
panthor_vm_update_resvs(struct panthor_vm * vm,struct drm_exec * exec,struct dma_fence * fence,enum dma_resv_usage private_usage,enum dma_resv_usage extobj_usage)2557 void panthor_vm_update_resvs(struct panthor_vm *vm, struct drm_exec *exec,
2558 			     struct dma_fence *fence,
2559 			     enum dma_resv_usage private_usage,
2560 			     enum dma_resv_usage extobj_usage)
2561 {
2562 	drm_gpuvm_resv_add_fence(&vm->base, exec, fence, private_usage, extobj_usage);
2563 }
2564 
2565 /**
2566  * panthor_vm_bind_exec_sync_op() - Execute a VM_BIND operation synchronously.
2567  * @file: File.
2568  * @vm: VM targeted by the VM operation.
2569  * @op: Data describing the VM operation.
2570  *
2571  * Return: 0 on success, a negative error code otherwise.
2572  */
panthor_vm_bind_exec_sync_op(struct drm_file * file,struct panthor_vm * vm,struct drm_panthor_vm_bind_op * op)2573 int panthor_vm_bind_exec_sync_op(struct drm_file *file,
2574 				 struct panthor_vm *vm,
2575 				 struct drm_panthor_vm_bind_op *op)
2576 {
2577 	struct panthor_vm_op_ctx op_ctx;
2578 	int ret;
2579 
2580 	/* No sync objects allowed on synchronous operations. */
2581 	if (op->syncs.count)
2582 		return -EINVAL;
2583 
2584 	if (!op->size)
2585 		return 0;
2586 
2587 	ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &op_ctx);
2588 	if (ret)
2589 		return ret;
2590 
2591 	ret = panthor_vm_exec_op(vm, &op_ctx, false);
2592 	panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2593 
2594 	return ret;
2595 }
2596 
2597 /**
2598  * panthor_vm_map_bo_range() - Map a GEM object range to a VM
2599  * @vm: VM to map the GEM to.
2600  * @bo: GEM object to map.
2601  * @offset: Offset in the GEM object.
2602  * @size: Size to map.
2603  * @va: Virtual address to map the object to.
2604  * @flags: Combination of drm_panthor_vm_bind_op_flags flags.
2605  * Only map-related flags are valid.
2606  *
2607  * Internal use only. For userspace requests, use
2608  * panthor_vm_bind_exec_sync_op() instead.
2609  *
2610  * Return: 0 on success, a negative error code otherwise.
2611  */
panthor_vm_map_bo_range(struct panthor_vm * vm,struct panthor_gem_object * bo,u64 offset,u64 size,u64 va,u32 flags)2612 int panthor_vm_map_bo_range(struct panthor_vm *vm, struct panthor_gem_object *bo,
2613 			    u64 offset, u64 size, u64 va, u32 flags)
2614 {
2615 	struct panthor_vm_op_ctx op_ctx;
2616 	int ret;
2617 
2618 	ret = panthor_vm_prepare_map_op_ctx(&op_ctx, vm, bo, offset, size, va, flags);
2619 	if (ret)
2620 		return ret;
2621 
2622 	ret = panthor_vm_exec_op(vm, &op_ctx, false);
2623 	panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2624 
2625 	return ret;
2626 }
2627 
2628 /**
2629  * panthor_vm_unmap_range() - Unmap a portion of the VA space
2630  * @vm: VM to unmap the region from.
2631  * @va: Virtual address to unmap. Must be 4k aligned.
2632  * @size: Size of the region to unmap. Must be 4k aligned.
2633  *
2634  * Internal use only. For userspace requests, use
2635  * panthor_vm_bind_exec_sync_op() instead.
2636  *
2637  * Return: 0 on success, a negative error code otherwise.
2638  */
panthor_vm_unmap_range(struct panthor_vm * vm,u64 va,u64 size)2639 int panthor_vm_unmap_range(struct panthor_vm *vm, u64 va, u64 size)
2640 {
2641 	struct panthor_vm_op_ctx op_ctx;
2642 	int ret;
2643 
2644 	ret = panthor_vm_prepare_unmap_op_ctx(&op_ctx, vm, va, size);
2645 	if (ret)
2646 		return ret;
2647 
2648 	ret = panthor_vm_exec_op(vm, &op_ctx, false);
2649 	panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2650 
2651 	return ret;
2652 }
2653 
2654 /**
2655  * panthor_vm_prepare_mapped_bos_resvs() - Prepare resvs on VM BOs.
2656  * @exec: Locking/preparation context.
2657  * @vm: VM targeted by the GPU job.
2658  * @slot_count: Number of slots to reserve.
2659  *
2660  * GPU jobs assume all BOs bound to the VM at the time the job is submitted
2661  * are available when the job is executed. In order to guarantee that, we
2662  * need to reserve a slot on all BOs mapped to a VM and update this slot with
2663  * the job fence after its submission.
2664  *
2665  * Return: 0 on success, a negative error code otherwise.
2666  */
panthor_vm_prepare_mapped_bos_resvs(struct drm_exec * exec,struct panthor_vm * vm,u32 slot_count)2667 int panthor_vm_prepare_mapped_bos_resvs(struct drm_exec *exec, struct panthor_vm *vm,
2668 					u32 slot_count)
2669 {
2670 	int ret;
2671 
2672 	/* Acquire the VM lock and reserve a slot for this GPU job. */
2673 	ret = drm_gpuvm_prepare_vm(&vm->base, exec, slot_count);
2674 	if (ret)
2675 		return ret;
2676 
2677 	return drm_gpuvm_prepare_objects(&vm->base, exec, slot_count);
2678 }
2679 
2680 /**
2681  * panthor_mmu_unplug() - Unplug the MMU logic
2682  * @ptdev: Device.
2683  *
2684  * No access to the MMU regs should be done after this function is called.
2685  * We suspend the IRQ and disable all VMs to guarantee that.
2686  */
panthor_mmu_unplug(struct panthor_device * ptdev)2687 void panthor_mmu_unplug(struct panthor_device *ptdev)
2688 {
2689 	if (!IS_ENABLED(CONFIG_PM) || pm_runtime_active(ptdev->base.dev))
2690 		panthor_mmu_irq_suspend(&ptdev->mmu->irq);
2691 
2692 	mutex_lock(&ptdev->mmu->as.slots_lock);
2693 	for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
2694 		struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
2695 
2696 		if (vm) {
2697 			drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i));
2698 			panthor_vm_release_as_locked(vm);
2699 		}
2700 	}
2701 	mutex_unlock(&ptdev->mmu->as.slots_lock);
2702 }
2703 
panthor_mmu_release_wq(struct drm_device * ddev,void * res)2704 static void panthor_mmu_release_wq(struct drm_device *ddev, void *res)
2705 {
2706 	destroy_workqueue(res);
2707 }
2708 
2709 /**
2710  * panthor_mmu_init() - Initialize the MMU logic.
2711  * @ptdev: Device.
2712  *
2713  * Return: 0 on success, a negative error code otherwise.
2714  */
panthor_mmu_init(struct panthor_device * ptdev)2715 int panthor_mmu_init(struct panthor_device *ptdev)
2716 {
2717 	u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
2718 	struct panthor_mmu *mmu;
2719 	int ret, irq;
2720 
2721 	mmu = drmm_kzalloc(&ptdev->base, sizeof(*mmu), GFP_KERNEL);
2722 	if (!mmu)
2723 		return -ENOMEM;
2724 
2725 	INIT_LIST_HEAD(&mmu->as.lru_list);
2726 
2727 	ret = drmm_mutex_init(&ptdev->base, &mmu->as.slots_lock);
2728 	if (ret)
2729 		return ret;
2730 
2731 	INIT_LIST_HEAD(&mmu->vm.list);
2732 	ret = drmm_mutex_init(&ptdev->base, &mmu->vm.lock);
2733 	if (ret)
2734 		return ret;
2735 
2736 	ptdev->mmu = mmu;
2737 
2738 	irq = platform_get_irq_byname(to_platform_device(ptdev->base.dev), "mmu");
2739 	if (irq <= 0)
2740 		return -ENODEV;
2741 
2742 	ret = panthor_request_mmu_irq(ptdev, &mmu->irq, irq,
2743 				      panthor_mmu_fault_mask(ptdev, ~0));
2744 	if (ret)
2745 		return ret;
2746 
2747 	mmu->vm.wq = alloc_workqueue("panthor-vm-bind", WQ_UNBOUND, 0);
2748 	if (!mmu->vm.wq)
2749 		return -ENOMEM;
2750 
2751 	/* On 32-bit kernels, the VA space is limited by the io_pgtable_ops abstraction,
2752 	 * which passes iova as an unsigned long. Patch the mmu_features to reflect this
2753 	 * limitation.
2754 	 */
2755 	if (va_bits > BITS_PER_LONG) {
2756 		ptdev->gpu_info.mmu_features &= ~GENMASK(7, 0);
2757 		ptdev->gpu_info.mmu_features |= BITS_PER_LONG;
2758 	}
2759 
2760 	return drmm_add_action_or_reset(&ptdev->base, panthor_mmu_release_wq, mmu->vm.wq);
2761 }
2762 
2763 #ifdef CONFIG_DEBUG_FS
show_vm_gpuvas(struct panthor_vm * vm,struct seq_file * m)2764 static int show_vm_gpuvas(struct panthor_vm *vm, struct seq_file *m)
2765 {
2766 	int ret;
2767 
2768 	mutex_lock(&vm->op_lock);
2769 	ret = drm_debugfs_gpuva_info(m, &vm->base);
2770 	mutex_unlock(&vm->op_lock);
2771 
2772 	return ret;
2773 }
2774 
show_each_vm(struct seq_file * m,void * arg)2775 static int show_each_vm(struct seq_file *m, void *arg)
2776 {
2777 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2778 	struct drm_device *ddev = node->minor->dev;
2779 	struct panthor_device *ptdev = container_of(ddev, struct panthor_device, base);
2780 	int (*show)(struct panthor_vm *, struct seq_file *) = node->info_ent->data;
2781 	struct panthor_vm *vm;
2782 	int ret = 0;
2783 
2784 	mutex_lock(&ptdev->mmu->vm.lock);
2785 	list_for_each_entry(vm, &ptdev->mmu->vm.list, node) {
2786 		ret = show(vm, m);
2787 		if (ret < 0)
2788 			break;
2789 
2790 		seq_puts(m, "\n");
2791 	}
2792 	mutex_unlock(&ptdev->mmu->vm.lock);
2793 
2794 	return ret;
2795 }
2796 
2797 static struct drm_info_list panthor_mmu_debugfs_list[] = {
2798 	DRM_DEBUGFS_GPUVA_INFO(show_each_vm, show_vm_gpuvas),
2799 };
2800 
2801 /**
2802  * panthor_mmu_debugfs_init() - Initialize MMU debugfs entries
2803  * @minor: Minor.
2804  */
panthor_mmu_debugfs_init(struct drm_minor * minor)2805 void panthor_mmu_debugfs_init(struct drm_minor *minor)
2806 {
2807 	drm_debugfs_create_files(panthor_mmu_debugfs_list,
2808 				 ARRAY_SIZE(panthor_mmu_debugfs_list),
2809 				 minor->debugfs_root, minor);
2810 }
2811 #endif /* CONFIG_DEBUG_FS */
2812 
2813 /**
2814  * panthor_mmu_pt_cache_init() - Initialize the page table cache.
2815  *
2816  * Return: 0 on success, a negative error code otherwise.
2817  */
panthor_mmu_pt_cache_init(void)2818 int panthor_mmu_pt_cache_init(void)
2819 {
2820 	pt_cache = kmem_cache_create("panthor-mmu-pt", SZ_4K, SZ_4K, 0, NULL);
2821 	if (!pt_cache)
2822 		return -ENOMEM;
2823 
2824 	return 0;
2825 }
2826 
2827 /**
2828  * panthor_mmu_pt_cache_fini() - Destroy the page table cache.
2829  */
panthor_mmu_pt_cache_fini(void)2830 void panthor_mmu_pt_cache_fini(void)
2831 {
2832 	kmem_cache_destroy(pt_cache);
2833 }
2834