xref: /linux/arch/s390/kernel/uv.c (revision a1ff5a7d78a036d6c2178ee5acd6ba4946243800)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Ultravisor functions and initialization
4  *
5  * Copyright IBM Corp. 2019, 2020
6  */
7 #define KMSG_COMPONENT "prot_virt"
8 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
9 
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/sizes.h>
13 #include <linux/bitmap.h>
14 #include <linux/memblock.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <asm/facility.h>
18 #include <asm/sections.h>
19 #include <asm/uv.h>
20 
21 #if !IS_ENABLED(CONFIG_KVM)
__gmap_translate(struct gmap * gmap,unsigned long gaddr)22 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
23 {
24 	return 0;
25 }
26 
gmap_fault(struct gmap * gmap,unsigned long gaddr,unsigned int fault_flags)27 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
28 	       unsigned int fault_flags)
29 {
30 	return 0;
31 }
32 #endif
33 
34 /* the bootdata_preserved fields come from ones in arch/s390/boot/uv.c */
35 int __bootdata_preserved(prot_virt_guest);
36 EXPORT_SYMBOL(prot_virt_guest);
37 
38 /*
39  * uv_info contains both host and guest information but it's currently only
40  * expected to be used within modules if it's the KVM module or for
41  * any PV guest module.
42  *
43  * The kernel itself will write these values once in uv_query_info()
44  * and then make some of them readable via a sysfs interface.
45  */
46 struct uv_info __bootdata_preserved(uv_info);
47 EXPORT_SYMBOL(uv_info);
48 
49 int __bootdata_preserved(prot_virt_host);
50 EXPORT_SYMBOL(prot_virt_host);
51 
uv_init(phys_addr_t stor_base,unsigned long stor_len)52 static int __init uv_init(phys_addr_t stor_base, unsigned long stor_len)
53 {
54 	struct uv_cb_init uvcb = {
55 		.header.cmd = UVC_CMD_INIT_UV,
56 		.header.len = sizeof(uvcb),
57 		.stor_origin = stor_base,
58 		.stor_len = stor_len,
59 	};
60 
61 	if (uv_call(0, (uint64_t)&uvcb)) {
62 		pr_err("Ultravisor init failed with rc: 0x%x rrc: 0%x\n",
63 		       uvcb.header.rc, uvcb.header.rrc);
64 		return -1;
65 	}
66 	return 0;
67 }
68 
setup_uv(void)69 void __init setup_uv(void)
70 {
71 	void *uv_stor_base;
72 
73 	if (!is_prot_virt_host())
74 		return;
75 
76 	uv_stor_base = memblock_alloc_try_nid(
77 		uv_info.uv_base_stor_len, SZ_1M, SZ_2G,
78 		MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
79 	if (!uv_stor_base) {
80 		pr_warn("Failed to reserve %lu bytes for ultravisor base storage\n",
81 			uv_info.uv_base_stor_len);
82 		goto fail;
83 	}
84 
85 	if (uv_init(__pa(uv_stor_base), uv_info.uv_base_stor_len)) {
86 		memblock_free(uv_stor_base, uv_info.uv_base_stor_len);
87 		goto fail;
88 	}
89 
90 	pr_info("Reserving %luMB as ultravisor base storage\n",
91 		uv_info.uv_base_stor_len >> 20);
92 	return;
93 fail:
94 	pr_info("Disabling support for protected virtualization");
95 	prot_virt_host = 0;
96 }
97 
98 /*
99  * Requests the Ultravisor to pin the page in the shared state. This will
100  * cause an intercept when the guest attempts to unshare the pinned page.
101  */
uv_pin_shared(unsigned long paddr)102 int uv_pin_shared(unsigned long paddr)
103 {
104 	struct uv_cb_cfs uvcb = {
105 		.header.cmd = UVC_CMD_PIN_PAGE_SHARED,
106 		.header.len = sizeof(uvcb),
107 		.paddr = paddr,
108 	};
109 
110 	if (uv_call(0, (u64)&uvcb))
111 		return -EINVAL;
112 	return 0;
113 }
114 EXPORT_SYMBOL_GPL(uv_pin_shared);
115 
116 /*
117  * Requests the Ultravisor to destroy a guest page and make it
118  * accessible to the host. The destroy clears the page instead of
119  * exporting.
120  *
121  * @paddr: Absolute host address of page to be destroyed
122  */
uv_destroy(unsigned long paddr)123 static int uv_destroy(unsigned long paddr)
124 {
125 	struct uv_cb_cfs uvcb = {
126 		.header.cmd = UVC_CMD_DESTR_SEC_STOR,
127 		.header.len = sizeof(uvcb),
128 		.paddr = paddr
129 	};
130 
131 	if (uv_call(0, (u64)&uvcb)) {
132 		/*
133 		 * Older firmware uses 107/d as an indication of a non secure
134 		 * page. Let us emulate the newer variant (no-op).
135 		 */
136 		if (uvcb.header.rc == 0x107 && uvcb.header.rrc == 0xd)
137 			return 0;
138 		return -EINVAL;
139 	}
140 	return 0;
141 }
142 
143 /*
144  * The caller must already hold a reference to the folio
145  */
uv_destroy_folio(struct folio * folio)146 int uv_destroy_folio(struct folio *folio)
147 {
148 	int rc;
149 
150 	/* See gmap_make_secure(): large folios cannot be secure */
151 	if (unlikely(folio_test_large(folio)))
152 		return 0;
153 
154 	folio_get(folio);
155 	rc = uv_destroy(folio_to_phys(folio));
156 	if (!rc)
157 		clear_bit(PG_arch_1, &folio->flags);
158 	folio_put(folio);
159 	return rc;
160 }
161 
162 /*
163  * The present PTE still indirectly holds a folio reference through the mapping.
164  */
uv_destroy_pte(pte_t pte)165 int uv_destroy_pte(pte_t pte)
166 {
167 	VM_WARN_ON(!pte_present(pte));
168 	return uv_destroy_folio(pfn_folio(pte_pfn(pte)));
169 }
170 
171 /*
172  * Requests the Ultravisor to encrypt a guest page and make it
173  * accessible to the host for paging (export).
174  *
175  * @paddr: Absolute host address of page to be exported
176  */
uv_convert_from_secure(unsigned long paddr)177 static int uv_convert_from_secure(unsigned long paddr)
178 {
179 	struct uv_cb_cfs uvcb = {
180 		.header.cmd = UVC_CMD_CONV_FROM_SEC_STOR,
181 		.header.len = sizeof(uvcb),
182 		.paddr = paddr
183 	};
184 
185 	if (uv_call(0, (u64)&uvcb))
186 		return -EINVAL;
187 	return 0;
188 }
189 
190 /*
191  * The caller must already hold a reference to the folio.
192  */
uv_convert_from_secure_folio(struct folio * folio)193 static int uv_convert_from_secure_folio(struct folio *folio)
194 {
195 	int rc;
196 
197 	/* See gmap_make_secure(): large folios cannot be secure */
198 	if (unlikely(folio_test_large(folio)))
199 		return 0;
200 
201 	folio_get(folio);
202 	rc = uv_convert_from_secure(folio_to_phys(folio));
203 	if (!rc)
204 		clear_bit(PG_arch_1, &folio->flags);
205 	folio_put(folio);
206 	return rc;
207 }
208 
209 /*
210  * The present PTE still indirectly holds a folio reference through the mapping.
211  */
uv_convert_from_secure_pte(pte_t pte)212 int uv_convert_from_secure_pte(pte_t pte)
213 {
214 	VM_WARN_ON(!pte_present(pte));
215 	return uv_convert_from_secure_folio(pfn_folio(pte_pfn(pte)));
216 }
217 
218 /*
219  * Calculate the expected ref_count for a folio that would otherwise have no
220  * further pins. This was cribbed from similar functions in other places in
221  * the kernel, but with some slight modifications. We know that a secure
222  * folio can not be a large folio, for example.
223  */
expected_folio_refs(struct folio * folio)224 static int expected_folio_refs(struct folio *folio)
225 {
226 	int res;
227 
228 	res = folio_mapcount(folio);
229 	if (folio_test_swapcache(folio)) {
230 		res++;
231 	} else if (folio_mapping(folio)) {
232 		res++;
233 		if (folio->private)
234 			res++;
235 	}
236 	return res;
237 }
238 
make_folio_secure(struct folio * folio,struct uv_cb_header * uvcb)239 static int make_folio_secure(struct folio *folio, struct uv_cb_header *uvcb)
240 {
241 	int expected, cc = 0;
242 
243 	if (folio_test_writeback(folio))
244 		return -EAGAIN;
245 	expected = expected_folio_refs(folio);
246 	if (!folio_ref_freeze(folio, expected))
247 		return -EBUSY;
248 	set_bit(PG_arch_1, &folio->flags);
249 	/*
250 	 * If the UVC does not succeed or fail immediately, we don't want to
251 	 * loop for long, or we might get stall notifications.
252 	 * On the other hand, this is a complex scenario and we are holding a lot of
253 	 * locks, so we can't easily sleep and reschedule. We try only once,
254 	 * and if the UVC returned busy or partial completion, we return
255 	 * -EAGAIN and we let the callers deal with it.
256 	 */
257 	cc = __uv_call(0, (u64)uvcb);
258 	folio_ref_unfreeze(folio, expected);
259 	/*
260 	 * Return -ENXIO if the folio was not mapped, -EINVAL for other errors.
261 	 * If busy or partially completed, return -EAGAIN.
262 	 */
263 	if (cc == UVC_CC_OK)
264 		return 0;
265 	else if (cc == UVC_CC_BUSY || cc == UVC_CC_PARTIAL)
266 		return -EAGAIN;
267 	return uvcb->rc == 0x10a ? -ENXIO : -EINVAL;
268 }
269 
270 /**
271  * should_export_before_import - Determine whether an export is needed
272  * before an import-like operation
273  * @uvcb: the Ultravisor control block of the UVC to be performed
274  * @mm: the mm of the process
275  *
276  * Returns whether an export is needed before every import-like operation.
277  * This is needed for shared pages, which don't trigger a secure storage
278  * exception when accessed from a different guest.
279  *
280  * Although considered as one, the Unpin Page UVC is not an actual import,
281  * so it is not affected.
282  *
283  * No export is needed also when there is only one protected VM, because the
284  * page cannot belong to the wrong VM in that case (there is no "other VM"
285  * it can belong to).
286  *
287  * Return: true if an export is needed before every import, otherwise false.
288  */
should_export_before_import(struct uv_cb_header * uvcb,struct mm_struct * mm)289 static bool should_export_before_import(struct uv_cb_header *uvcb, struct mm_struct *mm)
290 {
291 	/*
292 	 * The misc feature indicates, among other things, that importing a
293 	 * shared page from a different protected VM will automatically also
294 	 * transfer its ownership.
295 	 */
296 	if (uv_has_feature(BIT_UV_FEAT_MISC))
297 		return false;
298 	if (uvcb->cmd == UVC_CMD_UNPIN_PAGE_SHARED)
299 		return false;
300 	return atomic_read(&mm->context.protected_count) > 1;
301 }
302 
303 /*
304  * Drain LRU caches: the local one on first invocation and the ones of all
305  * CPUs on successive invocations. Returns "true" on the first invocation.
306  */
drain_lru(bool * drain_lru_called)307 static bool drain_lru(bool *drain_lru_called)
308 {
309 	/*
310 	 * If we have tried a local drain and the folio refcount
311 	 * still does not match our expected safe value, try with a
312 	 * system wide drain. This is needed if the pagevecs holding
313 	 * the page are on a different CPU.
314 	 */
315 	if (*drain_lru_called) {
316 		lru_add_drain_all();
317 		/* We give up here, don't retry immediately. */
318 		return false;
319 	}
320 	/*
321 	 * We are here if the folio refcount does not match the
322 	 * expected safe value. The main culprits are usually
323 	 * pagevecs. With lru_add_drain() we drain the pagevecs
324 	 * on the local CPU so that hopefully the refcount will
325 	 * reach the expected safe value.
326 	 */
327 	lru_add_drain();
328 	*drain_lru_called = true;
329 	/* The caller should try again immediately */
330 	return true;
331 }
332 
333 /*
334  * Requests the Ultravisor to make a page accessible to a guest.
335  * If it's brought in the first time, it will be cleared. If
336  * it has been exported before, it will be decrypted and integrity
337  * checked.
338  */
gmap_make_secure(struct gmap * gmap,unsigned long gaddr,void * uvcb)339 int gmap_make_secure(struct gmap *gmap, unsigned long gaddr, void *uvcb)
340 {
341 	struct vm_area_struct *vma;
342 	bool drain_lru_called = false;
343 	spinlock_t *ptelock;
344 	unsigned long uaddr;
345 	struct folio *folio;
346 	pte_t *ptep;
347 	int rc;
348 
349 again:
350 	rc = -EFAULT;
351 	mmap_read_lock(gmap->mm);
352 
353 	uaddr = __gmap_translate(gmap, gaddr);
354 	if (IS_ERR_VALUE(uaddr))
355 		goto out;
356 	vma = vma_lookup(gmap->mm, uaddr);
357 	if (!vma)
358 		goto out;
359 	/*
360 	 * Secure pages cannot be huge and userspace should not combine both.
361 	 * In case userspace does it anyway this will result in an -EFAULT for
362 	 * the unpack. The guest is thus never reaching secure mode. If
363 	 * userspace is playing dirty tricky with mapping huge pages later
364 	 * on this will result in a segmentation fault.
365 	 */
366 	if (is_vm_hugetlb_page(vma))
367 		goto out;
368 
369 	rc = -ENXIO;
370 	ptep = get_locked_pte(gmap->mm, uaddr, &ptelock);
371 	if (!ptep)
372 		goto out;
373 	if (pte_present(*ptep) && !(pte_val(*ptep) & _PAGE_INVALID) && pte_write(*ptep)) {
374 		folio = page_folio(pte_page(*ptep));
375 		rc = -EAGAIN;
376 		if (folio_test_large(folio)) {
377 			rc = -E2BIG;
378 		} else if (folio_trylock(folio)) {
379 			if (should_export_before_import(uvcb, gmap->mm))
380 				uv_convert_from_secure(PFN_PHYS(folio_pfn(folio)));
381 			rc = make_folio_secure(folio, uvcb);
382 			folio_unlock(folio);
383 		}
384 
385 		/*
386 		 * Once we drop the PTL, the folio may get unmapped and
387 		 * freed immediately. We need a temporary reference.
388 		 */
389 		if (rc == -EAGAIN || rc == -E2BIG)
390 			folio_get(folio);
391 	}
392 	pte_unmap_unlock(ptep, ptelock);
393 out:
394 	mmap_read_unlock(gmap->mm);
395 
396 	switch (rc) {
397 	case -E2BIG:
398 		folio_lock(folio);
399 		rc = split_folio(folio);
400 		folio_unlock(folio);
401 		folio_put(folio);
402 
403 		switch (rc) {
404 		case 0:
405 			/* Splitting succeeded, try again immediately. */
406 			goto again;
407 		case -EAGAIN:
408 			/* Additional folio references. */
409 			if (drain_lru(&drain_lru_called))
410 				goto again;
411 			return -EAGAIN;
412 		case -EBUSY:
413 			/* Unexpected race. */
414 			return -EAGAIN;
415 		}
416 		WARN_ON_ONCE(1);
417 		return -ENXIO;
418 	case -EAGAIN:
419 		/*
420 		 * If we are here because the UVC returned busy or partial
421 		 * completion, this is just a useless check, but it is safe.
422 		 */
423 		folio_wait_writeback(folio);
424 		folio_put(folio);
425 		return -EAGAIN;
426 	case -EBUSY:
427 		/* Additional folio references. */
428 		if (drain_lru(&drain_lru_called))
429 			goto again;
430 		return -EAGAIN;
431 	case -ENXIO:
432 		if (gmap_fault(gmap, gaddr, FAULT_FLAG_WRITE))
433 			return -EFAULT;
434 		return -EAGAIN;
435 	}
436 	return rc;
437 }
438 EXPORT_SYMBOL_GPL(gmap_make_secure);
439 
gmap_convert_to_secure(struct gmap * gmap,unsigned long gaddr)440 int gmap_convert_to_secure(struct gmap *gmap, unsigned long gaddr)
441 {
442 	struct uv_cb_cts uvcb = {
443 		.header.cmd = UVC_CMD_CONV_TO_SEC_STOR,
444 		.header.len = sizeof(uvcb),
445 		.guest_handle = gmap->guest_handle,
446 		.gaddr = gaddr,
447 	};
448 
449 	return gmap_make_secure(gmap, gaddr, &uvcb);
450 }
451 EXPORT_SYMBOL_GPL(gmap_convert_to_secure);
452 
453 /**
454  * gmap_destroy_page - Destroy a guest page.
455  * @gmap: the gmap of the guest
456  * @gaddr: the guest address to destroy
457  *
458  * An attempt will be made to destroy the given guest page. If the attempt
459  * fails, an attempt is made to export the page. If both attempts fail, an
460  * appropriate error is returned.
461  */
gmap_destroy_page(struct gmap * gmap,unsigned long gaddr)462 int gmap_destroy_page(struct gmap *gmap, unsigned long gaddr)
463 {
464 	struct vm_area_struct *vma;
465 	unsigned long uaddr;
466 	struct folio *folio;
467 	struct page *page;
468 	int rc;
469 
470 	rc = -EFAULT;
471 	mmap_read_lock(gmap->mm);
472 
473 	uaddr = __gmap_translate(gmap, gaddr);
474 	if (IS_ERR_VALUE(uaddr))
475 		goto out;
476 	vma = vma_lookup(gmap->mm, uaddr);
477 	if (!vma)
478 		goto out;
479 	/*
480 	 * Huge pages should not be able to become secure
481 	 */
482 	if (is_vm_hugetlb_page(vma))
483 		goto out;
484 
485 	rc = 0;
486 	/* we take an extra reference here */
487 	page = follow_page(vma, uaddr, FOLL_WRITE | FOLL_GET);
488 	if (IS_ERR_OR_NULL(page))
489 		goto out;
490 	folio = page_folio(page);
491 	rc = uv_destroy_folio(folio);
492 	/*
493 	 * Fault handlers can race; it is possible that two CPUs will fault
494 	 * on the same secure page. One CPU can destroy the page, reboot,
495 	 * re-enter secure mode and import it, while the second CPU was
496 	 * stuck at the beginning of the handler. At some point the second
497 	 * CPU will be able to progress, and it will not be able to destroy
498 	 * the page. In that case we do not want to terminate the process,
499 	 * we instead try to export the page.
500 	 */
501 	if (rc)
502 		rc = uv_convert_from_secure_folio(folio);
503 	folio_put(folio);
504 out:
505 	mmap_read_unlock(gmap->mm);
506 	return rc;
507 }
508 EXPORT_SYMBOL_GPL(gmap_destroy_page);
509 
510 /*
511  * To be called with the folio locked or with an extra reference! This will
512  * prevent gmap_make_secure from touching the folio concurrently. Having 2
513  * parallel arch_make_folio_accessible is fine, as the UV calls will become a
514  * no-op if the folio is already exported.
515  */
arch_make_folio_accessible(struct folio * folio)516 int arch_make_folio_accessible(struct folio *folio)
517 {
518 	int rc = 0;
519 
520 	/* See gmap_make_secure(): large folios cannot be secure */
521 	if (unlikely(folio_test_large(folio)))
522 		return 0;
523 
524 	/*
525 	 * PG_arch_1 is used in 2 places:
526 	 * 1. for storage keys of hugetlb folios and KVM
527 	 * 2. As an indication that this small folio might be secure. This can
528 	 *    overindicate, e.g. we set the bit before calling
529 	 *    convert_to_secure.
530 	 * As secure pages are never large folios, both variants can co-exists.
531 	 */
532 	if (!test_bit(PG_arch_1, &folio->flags))
533 		return 0;
534 
535 	rc = uv_pin_shared(folio_to_phys(folio));
536 	if (!rc) {
537 		clear_bit(PG_arch_1, &folio->flags);
538 		return 0;
539 	}
540 
541 	rc = uv_convert_from_secure(folio_to_phys(folio));
542 	if (!rc) {
543 		clear_bit(PG_arch_1, &folio->flags);
544 		return 0;
545 	}
546 
547 	return rc;
548 }
549 EXPORT_SYMBOL_GPL(arch_make_folio_accessible);
550 
arch_make_page_accessible(struct page * page)551 int arch_make_page_accessible(struct page *page)
552 {
553 	return arch_make_folio_accessible(page_folio(page));
554 }
555 EXPORT_SYMBOL_GPL(arch_make_page_accessible);
uv_query_facilities(struct kobject * kobj,struct kobj_attribute * attr,char * buf)556 static ssize_t uv_query_facilities(struct kobject *kobj,
557 				   struct kobj_attribute *attr, char *buf)
558 {
559 	return sysfs_emit(buf, "%lx\n%lx\n%lx\n%lx\n",
560 			  uv_info.inst_calls_list[0],
561 			  uv_info.inst_calls_list[1],
562 			  uv_info.inst_calls_list[2],
563 			  uv_info.inst_calls_list[3]);
564 }
565 
566 static struct kobj_attribute uv_query_facilities_attr =
567 	__ATTR(facilities, 0444, uv_query_facilities, NULL);
568 
uv_query_supp_se_hdr_ver(struct kobject * kobj,struct kobj_attribute * attr,char * buf)569 static ssize_t uv_query_supp_se_hdr_ver(struct kobject *kobj,
570 					struct kobj_attribute *attr, char *buf)
571 {
572 	return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_ver);
573 }
574 
575 static struct kobj_attribute uv_query_supp_se_hdr_ver_attr =
576 	__ATTR(supp_se_hdr_ver, 0444, uv_query_supp_se_hdr_ver, NULL);
577 
uv_query_supp_se_hdr_pcf(struct kobject * kobj,struct kobj_attribute * attr,char * buf)578 static ssize_t uv_query_supp_se_hdr_pcf(struct kobject *kobj,
579 					struct kobj_attribute *attr, char *buf)
580 {
581 	return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_pcf);
582 }
583 
584 static struct kobj_attribute uv_query_supp_se_hdr_pcf_attr =
585 	__ATTR(supp_se_hdr_pcf, 0444, uv_query_supp_se_hdr_pcf, NULL);
586 
uv_query_dump_cpu_len(struct kobject * kobj,struct kobj_attribute * attr,char * buf)587 static ssize_t uv_query_dump_cpu_len(struct kobject *kobj,
588 				     struct kobj_attribute *attr, char *buf)
589 {
590 	return sysfs_emit(buf, "%lx\n", uv_info.guest_cpu_stor_len);
591 }
592 
593 static struct kobj_attribute uv_query_dump_cpu_len_attr =
594 	__ATTR(uv_query_dump_cpu_len, 0444, uv_query_dump_cpu_len, NULL);
595 
uv_query_dump_storage_state_len(struct kobject * kobj,struct kobj_attribute * attr,char * buf)596 static ssize_t uv_query_dump_storage_state_len(struct kobject *kobj,
597 					       struct kobj_attribute *attr, char *buf)
598 {
599 	return sysfs_emit(buf, "%lx\n", uv_info.conf_dump_storage_state_len);
600 }
601 
602 static struct kobj_attribute uv_query_dump_storage_state_len_attr =
603 	__ATTR(dump_storage_state_len, 0444, uv_query_dump_storage_state_len, NULL);
604 
uv_query_dump_finalize_len(struct kobject * kobj,struct kobj_attribute * attr,char * buf)605 static ssize_t uv_query_dump_finalize_len(struct kobject *kobj,
606 					  struct kobj_attribute *attr, char *buf)
607 {
608 	return sysfs_emit(buf, "%lx\n", uv_info.conf_dump_finalize_len);
609 }
610 
611 static struct kobj_attribute uv_query_dump_finalize_len_attr =
612 	__ATTR(dump_finalize_len, 0444, uv_query_dump_finalize_len, NULL);
613 
uv_query_feature_indications(struct kobject * kobj,struct kobj_attribute * attr,char * buf)614 static ssize_t uv_query_feature_indications(struct kobject *kobj,
615 					    struct kobj_attribute *attr, char *buf)
616 {
617 	return sysfs_emit(buf, "%lx\n", uv_info.uv_feature_indications);
618 }
619 
620 static struct kobj_attribute uv_query_feature_indications_attr =
621 	__ATTR(feature_indications, 0444, uv_query_feature_indications, NULL);
622 
uv_query_max_guest_cpus(struct kobject * kobj,struct kobj_attribute * attr,char * buf)623 static ssize_t uv_query_max_guest_cpus(struct kobject *kobj,
624 				       struct kobj_attribute *attr, char *buf)
625 {
626 	return sysfs_emit(buf, "%d\n", uv_info.max_guest_cpu_id + 1);
627 }
628 
629 static struct kobj_attribute uv_query_max_guest_cpus_attr =
630 	__ATTR(max_cpus, 0444, uv_query_max_guest_cpus, NULL);
631 
uv_query_max_guest_vms(struct kobject * kobj,struct kobj_attribute * attr,char * buf)632 static ssize_t uv_query_max_guest_vms(struct kobject *kobj,
633 				      struct kobj_attribute *attr, char *buf)
634 {
635 	return sysfs_emit(buf, "%d\n", uv_info.max_num_sec_conf);
636 }
637 
638 static struct kobj_attribute uv_query_max_guest_vms_attr =
639 	__ATTR(max_guests, 0444, uv_query_max_guest_vms, NULL);
640 
uv_query_max_guest_addr(struct kobject * kobj,struct kobj_attribute * attr,char * buf)641 static ssize_t uv_query_max_guest_addr(struct kobject *kobj,
642 				       struct kobj_attribute *attr, char *buf)
643 {
644 	return sysfs_emit(buf, "%lx\n", uv_info.max_sec_stor_addr);
645 }
646 
647 static struct kobj_attribute uv_query_max_guest_addr_attr =
648 	__ATTR(max_address, 0444, uv_query_max_guest_addr, NULL);
649 
uv_query_supp_att_req_hdr_ver(struct kobject * kobj,struct kobj_attribute * attr,char * buf)650 static ssize_t uv_query_supp_att_req_hdr_ver(struct kobject *kobj,
651 					     struct kobj_attribute *attr, char *buf)
652 {
653 	return sysfs_emit(buf, "%lx\n", uv_info.supp_att_req_hdr_ver);
654 }
655 
656 static struct kobj_attribute uv_query_supp_att_req_hdr_ver_attr =
657 	__ATTR(supp_att_req_hdr_ver, 0444, uv_query_supp_att_req_hdr_ver, NULL);
658 
uv_query_supp_att_pflags(struct kobject * kobj,struct kobj_attribute * attr,char * buf)659 static ssize_t uv_query_supp_att_pflags(struct kobject *kobj,
660 					struct kobj_attribute *attr, char *buf)
661 {
662 	return sysfs_emit(buf, "%lx\n", uv_info.supp_att_pflags);
663 }
664 
665 static struct kobj_attribute uv_query_supp_att_pflags_attr =
666 	__ATTR(supp_att_pflags, 0444, uv_query_supp_att_pflags, NULL);
667 
uv_query_supp_add_secret_req_ver(struct kobject * kobj,struct kobj_attribute * attr,char * buf)668 static ssize_t uv_query_supp_add_secret_req_ver(struct kobject *kobj,
669 						struct kobj_attribute *attr, char *buf)
670 {
671 	return sysfs_emit(buf, "%lx\n", uv_info.supp_add_secret_req_ver);
672 }
673 
674 static struct kobj_attribute uv_query_supp_add_secret_req_ver_attr =
675 	__ATTR(supp_add_secret_req_ver, 0444, uv_query_supp_add_secret_req_ver, NULL);
676 
uv_query_supp_add_secret_pcf(struct kobject * kobj,struct kobj_attribute * attr,char * buf)677 static ssize_t uv_query_supp_add_secret_pcf(struct kobject *kobj,
678 					    struct kobj_attribute *attr, char *buf)
679 {
680 	return sysfs_emit(buf, "%lx\n", uv_info.supp_add_secret_pcf);
681 }
682 
683 static struct kobj_attribute uv_query_supp_add_secret_pcf_attr =
684 	__ATTR(supp_add_secret_pcf, 0444, uv_query_supp_add_secret_pcf, NULL);
685 
uv_query_supp_secret_types(struct kobject * kobj,struct kobj_attribute * attr,char * buf)686 static ssize_t uv_query_supp_secret_types(struct kobject *kobj,
687 					  struct kobj_attribute *attr, char *buf)
688 {
689 	return sysfs_emit(buf, "%lx\n", uv_info.supp_secret_types);
690 }
691 
692 static struct kobj_attribute uv_query_supp_secret_types_attr =
693 	__ATTR(supp_secret_types, 0444, uv_query_supp_secret_types, NULL);
694 
uv_query_max_secrets(struct kobject * kobj,struct kobj_attribute * attr,char * buf)695 static ssize_t uv_query_max_secrets(struct kobject *kobj,
696 				    struct kobj_attribute *attr, char *buf)
697 {
698 	return sysfs_emit(buf, "%d\n", uv_info.max_secrets);
699 }
700 
701 static struct kobj_attribute uv_query_max_secrets_attr =
702 	__ATTR(max_secrets, 0444, uv_query_max_secrets, NULL);
703 
704 static struct attribute *uv_query_attrs[] = {
705 	&uv_query_facilities_attr.attr,
706 	&uv_query_feature_indications_attr.attr,
707 	&uv_query_max_guest_cpus_attr.attr,
708 	&uv_query_max_guest_vms_attr.attr,
709 	&uv_query_max_guest_addr_attr.attr,
710 	&uv_query_supp_se_hdr_ver_attr.attr,
711 	&uv_query_supp_se_hdr_pcf_attr.attr,
712 	&uv_query_dump_storage_state_len_attr.attr,
713 	&uv_query_dump_finalize_len_attr.attr,
714 	&uv_query_dump_cpu_len_attr.attr,
715 	&uv_query_supp_att_req_hdr_ver_attr.attr,
716 	&uv_query_supp_att_pflags_attr.attr,
717 	&uv_query_supp_add_secret_req_ver_attr.attr,
718 	&uv_query_supp_add_secret_pcf_attr.attr,
719 	&uv_query_supp_secret_types_attr.attr,
720 	&uv_query_max_secrets_attr.attr,
721 	NULL,
722 };
723 
724 static struct attribute_group uv_query_attr_group = {
725 	.attrs = uv_query_attrs,
726 };
727 
uv_is_prot_virt_guest(struct kobject * kobj,struct kobj_attribute * attr,char * buf)728 static ssize_t uv_is_prot_virt_guest(struct kobject *kobj,
729 				     struct kobj_attribute *attr, char *buf)
730 {
731 	return sysfs_emit(buf, "%d\n", prot_virt_guest);
732 }
733 
uv_is_prot_virt_host(struct kobject * kobj,struct kobj_attribute * attr,char * buf)734 static ssize_t uv_is_prot_virt_host(struct kobject *kobj,
735 				    struct kobj_attribute *attr, char *buf)
736 {
737 	return sysfs_emit(buf, "%d\n", prot_virt_host);
738 }
739 
740 static struct kobj_attribute uv_prot_virt_guest =
741 	__ATTR(prot_virt_guest, 0444, uv_is_prot_virt_guest, NULL);
742 
743 static struct kobj_attribute uv_prot_virt_host =
744 	__ATTR(prot_virt_host, 0444, uv_is_prot_virt_host, NULL);
745 
746 static const struct attribute *uv_prot_virt_attrs[] = {
747 	&uv_prot_virt_guest.attr,
748 	&uv_prot_virt_host.attr,
749 	NULL,
750 };
751 
752 static struct kset *uv_query_kset;
753 static struct kobject *uv_kobj;
754 
uv_info_init(void)755 static int __init uv_info_init(void)
756 {
757 	int rc = -ENOMEM;
758 
759 	if (!test_facility(158))
760 		return 0;
761 
762 	uv_kobj = kobject_create_and_add("uv", firmware_kobj);
763 	if (!uv_kobj)
764 		return -ENOMEM;
765 
766 	rc = sysfs_create_files(uv_kobj, uv_prot_virt_attrs);
767 	if (rc)
768 		goto out_kobj;
769 
770 	uv_query_kset = kset_create_and_add("query", NULL, uv_kobj);
771 	if (!uv_query_kset) {
772 		rc = -ENOMEM;
773 		goto out_ind_files;
774 	}
775 
776 	rc = sysfs_create_group(&uv_query_kset->kobj, &uv_query_attr_group);
777 	if (!rc)
778 		return 0;
779 
780 	kset_unregister(uv_query_kset);
781 out_ind_files:
782 	sysfs_remove_files(uv_kobj, uv_prot_virt_attrs);
783 out_kobj:
784 	kobject_del(uv_kobj);
785 	kobject_put(uv_kobj);
786 	return rc;
787 }
788 device_initcall(uv_info_init);
789