1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 #include <linux/leafops.h>
33 #include <linux/miscdevice.h>
34 #include <linux/uio.h>
35
36 static int sysctl_unprivileged_userfaultfd __read_mostly;
37
38 #ifdef CONFIG_SYSCTL
39 static const struct ctl_table vm_userfaultfd_table[] = {
40 {
41 .procname = "unprivileged_userfaultfd",
42 .data = &sysctl_unprivileged_userfaultfd,
43 .maxlen = sizeof(sysctl_unprivileged_userfaultfd),
44 .mode = 0644,
45 .proc_handler = proc_dointvec_minmax,
46 .extra1 = SYSCTL_ZERO,
47 .extra2 = SYSCTL_ONE,
48 },
49 };
50 #endif
51
52 static struct kmem_cache *userfaultfd_ctx_cachep __ro_after_init;
53
54 struct userfaultfd_fork_ctx {
55 struct userfaultfd_ctx *orig;
56 struct userfaultfd_ctx *new;
57 struct list_head list;
58 };
59
60 struct userfaultfd_unmap_ctx {
61 struct userfaultfd_ctx *ctx;
62 unsigned long start;
63 unsigned long end;
64 struct list_head list;
65 };
66
67 struct userfaultfd_wait_queue {
68 struct uffd_msg msg;
69 wait_queue_entry_t wq;
70 struct userfaultfd_ctx *ctx;
71 bool waken;
72 };
73
74 struct userfaultfd_wake_range {
75 unsigned long start;
76 unsigned long len;
77 };
78
79 /* internal indication that UFFD_API ioctl was successfully executed */
80 #define UFFD_FEATURE_INITIALIZED (1u << 31)
81
userfaultfd_is_initialized(struct userfaultfd_ctx * ctx)82 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
83 {
84 return ctx->features & UFFD_FEATURE_INITIALIZED;
85 }
86
userfaultfd_wp_async_ctx(struct userfaultfd_ctx * ctx)87 static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx *ctx)
88 {
89 return ctx && (ctx->features & UFFD_FEATURE_WP_ASYNC);
90 }
91
92 /*
93 * Whether WP_UNPOPULATED is enabled on the uffd context. It is only
94 * meaningful when userfaultfd_wp()==true on the vma and when it's
95 * anonymous.
96 */
userfaultfd_wp_unpopulated(struct vm_area_struct * vma)97 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
98 {
99 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
100
101 if (!ctx)
102 return false;
103
104 return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
105 }
106
userfaultfd_wake_function(wait_queue_entry_t * wq,unsigned mode,int wake_flags,void * key)107 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
108 int wake_flags, void *key)
109 {
110 struct userfaultfd_wake_range *range = key;
111 int ret;
112 struct userfaultfd_wait_queue *uwq;
113 unsigned long start, len;
114
115 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
116 ret = 0;
117 /* len == 0 means wake all */
118 start = range->start;
119 len = range->len;
120 if (len && (start > uwq->msg.arg.pagefault.address ||
121 start + len <= uwq->msg.arg.pagefault.address))
122 goto out;
123 WRITE_ONCE(uwq->waken, true);
124 /*
125 * The Program-Order guarantees provided by the scheduler
126 * ensure uwq->waken is visible before the task is woken.
127 */
128 ret = wake_up_state(wq->private, mode);
129 if (ret) {
130 /*
131 * Wake only once, autoremove behavior.
132 *
133 * After the effect of list_del_init is visible to the other
134 * CPUs, the waitqueue may disappear from under us, see the
135 * !list_empty_careful() in handle_userfault().
136 *
137 * try_to_wake_up() has an implicit smp_mb(), and the
138 * wq->private is read before calling the extern function
139 * "wake_up_state" (which in turns calls try_to_wake_up).
140 */
141 list_del_init(&wq->entry);
142 }
143 out:
144 return ret;
145 }
146
147 /**
148 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
149 * context.
150 * @ctx: [in] Pointer to the userfaultfd context.
151 */
userfaultfd_ctx_get(struct userfaultfd_ctx * ctx)152 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
153 {
154 refcount_inc(&ctx->refcount);
155 }
156
157 /**
158 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
159 * context.
160 * @ctx: [in] Pointer to userfaultfd context.
161 *
162 * The userfaultfd context reference must have been previously acquired either
163 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
164 */
userfaultfd_ctx_put(struct userfaultfd_ctx * ctx)165 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
166 {
167 if (refcount_dec_and_test(&ctx->refcount)) {
168 VM_WARN_ON_ONCE(spin_is_locked(&ctx->fault_pending_wqh.lock));
169 VM_WARN_ON_ONCE(waitqueue_active(&ctx->fault_pending_wqh));
170 VM_WARN_ON_ONCE(spin_is_locked(&ctx->fault_wqh.lock));
171 VM_WARN_ON_ONCE(waitqueue_active(&ctx->fault_wqh));
172 VM_WARN_ON_ONCE(spin_is_locked(&ctx->event_wqh.lock));
173 VM_WARN_ON_ONCE(waitqueue_active(&ctx->event_wqh));
174 VM_WARN_ON_ONCE(spin_is_locked(&ctx->fd_wqh.lock));
175 VM_WARN_ON_ONCE(waitqueue_active(&ctx->fd_wqh));
176 mmdrop(ctx->mm);
177 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
178 }
179 }
180
msg_init(struct uffd_msg * msg)181 static inline void msg_init(struct uffd_msg *msg)
182 {
183 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
184 /*
185 * Must use memset to zero out the paddings or kernel data is
186 * leaked to userland.
187 */
188 memset(msg, 0, sizeof(struct uffd_msg));
189 }
190
userfault_msg(unsigned long address,unsigned long real_address,unsigned int flags,unsigned long reason,unsigned int features)191 static inline struct uffd_msg userfault_msg(unsigned long address,
192 unsigned long real_address,
193 unsigned int flags,
194 unsigned long reason,
195 unsigned int features)
196 {
197 struct uffd_msg msg;
198
199 msg_init(&msg);
200 msg.event = UFFD_EVENT_PAGEFAULT;
201
202 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
203 real_address : address;
204
205 /*
206 * These flags indicate why the userfault occurred:
207 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
208 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
209 * - Neither of these flags being set indicates a MISSING fault.
210 *
211 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
212 * fault. Otherwise, it was a read fault.
213 */
214 if (flags & FAULT_FLAG_WRITE)
215 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
216 if (reason & VM_UFFD_WP)
217 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
218 if (reason & VM_UFFD_MINOR)
219 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
220 if (features & UFFD_FEATURE_THREAD_ID)
221 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
222 return msg;
223 }
224
225 #ifdef CONFIG_HUGETLB_PAGE
226 /*
227 * Same functionality as userfaultfd_must_wait below with modifications for
228 * hugepmd ranges.
229 */
userfaultfd_huge_must_wait(struct userfaultfd_ctx * ctx,struct vm_fault * vmf,unsigned long reason)230 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
231 struct vm_fault *vmf,
232 unsigned long reason)
233 {
234 struct vm_area_struct *vma = vmf->vma;
235 pte_t *ptep, pte;
236
237 assert_fault_locked(vmf);
238
239 ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma));
240 if (!ptep)
241 return true;
242
243 pte = huge_ptep_get(vma->vm_mm, vmf->address, ptep);
244
245 /*
246 * Lockless access: we're in a wait_event so it's ok if it
247 * changes under us.
248 */
249
250 /* Entry is still missing, wait for userspace to resolve the fault. */
251 if (huge_pte_none(pte))
252 return true;
253 /* UFFD PTE markers require userspace to resolve the fault. */
254 if (pte_is_uffd_marker(pte))
255 return true;
256 /*
257 * If VMA has UFFD WP faults enabled and WP fault, wait for userspace to
258 * resolve the fault.
259 */
260 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
261 return true;
262
263 return false;
264 }
265 #else
userfaultfd_huge_must_wait(struct userfaultfd_ctx * ctx,struct vm_fault * vmf,unsigned long reason)266 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
267 struct vm_fault *vmf,
268 unsigned long reason)
269 {
270 /* Should never get here. */
271 VM_WARN_ON_ONCE(1);
272 return false;
273 }
274 #endif /* CONFIG_HUGETLB_PAGE */
275
276 /*
277 * Verify the pagetables are still not ok after having registered into
278 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
279 * userfault that has already been resolved, if userfaultfd_read_iter and
280 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
281 * threads.
282 */
userfaultfd_must_wait(struct userfaultfd_ctx * ctx,struct vm_fault * vmf,unsigned long reason)283 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
284 struct vm_fault *vmf,
285 unsigned long reason)
286 {
287 struct mm_struct *mm = ctx->mm;
288 unsigned long address = vmf->address;
289 pgd_t *pgd;
290 p4d_t *p4d;
291 pud_t *pud;
292 pmd_t *pmd, _pmd;
293 pte_t *pte;
294 pte_t ptent;
295 bool ret;
296
297 assert_fault_locked(vmf);
298
299 pgd = pgd_offset(mm, address);
300 if (!pgd_present(*pgd))
301 return true;
302 p4d = p4d_offset(pgd, address);
303 if (!p4d_present(*p4d))
304 return true;
305 pud = pud_offset(p4d, address);
306 if (!pud_present(*pud))
307 return true;
308 pmd = pmd_offset(pud, address);
309 again:
310 _pmd = pmdp_get_lockless(pmd);
311 if (pmd_none(_pmd))
312 return true;
313
314 /*
315 * A race could arise which would result in a softleaf entry such as
316 * migration entry unexpectedly being present in the PMD, so explicitly
317 * check for this and bail out if so.
318 */
319 if (!pmd_present(_pmd))
320 return false;
321
322 if (pmd_trans_huge(_pmd))
323 return !pmd_write(_pmd) && (reason & VM_UFFD_WP);
324
325 pte = pte_offset_map(pmd, address);
326 if (!pte)
327 goto again;
328
329 /*
330 * Lockless access: we're in a wait_event so it's ok if it
331 * changes under us.
332 */
333 ptent = ptep_get(pte);
334
335 ret = true;
336 /* Entry is still missing, wait for userspace to resolve the fault. */
337 if (pte_none(ptent))
338 goto out;
339 /* UFFD PTE markers require userspace to resolve the fault. */
340 if (pte_is_uffd_marker(ptent))
341 goto out;
342 /*
343 * If VMA has UFFD WP faults enabled and WP fault, wait for userspace to
344 * resolve the fault.
345 */
346 if (!pte_write(ptent) && (reason & VM_UFFD_WP))
347 goto out;
348
349 ret = false;
350 out:
351 pte_unmap(pte);
352 return ret;
353 }
354
userfaultfd_get_blocking_state(unsigned int flags)355 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
356 {
357 if (flags & FAULT_FLAG_INTERRUPTIBLE)
358 return TASK_INTERRUPTIBLE;
359
360 if (flags & FAULT_FLAG_KILLABLE)
361 return TASK_KILLABLE;
362
363 return TASK_UNINTERRUPTIBLE;
364 }
365
366 /*
367 * The locking rules involved in returning VM_FAULT_RETRY depending on
368 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
369 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
370 * recommendation in __lock_page_or_retry is not an understatement.
371 *
372 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
373 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
374 * not set.
375 *
376 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
377 * set, VM_FAULT_RETRY can still be returned if and only if there are
378 * fatal_signal_pending()s, and the mmap_lock must be released before
379 * returning it.
380 */
handle_userfault(struct vm_fault * vmf,unsigned long reason)381 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
382 {
383 struct vm_area_struct *vma = vmf->vma;
384 struct mm_struct *mm = vma->vm_mm;
385 struct userfaultfd_ctx *ctx;
386 struct userfaultfd_wait_queue uwq;
387 vm_fault_t ret = VM_FAULT_SIGBUS;
388 bool must_wait;
389 unsigned int blocking_state;
390
391 /*
392 * We don't do userfault handling for the final child pid update
393 * and when coredumping (faults triggered by get_dump_page()).
394 */
395 if (current->flags & (PF_EXITING|PF_DUMPCORE))
396 goto out;
397
398 assert_fault_locked(vmf);
399
400 ctx = vma->vm_userfaultfd_ctx.ctx;
401 if (!ctx)
402 goto out;
403
404 VM_WARN_ON_ONCE(ctx->mm != mm);
405
406 /* Any unrecognized flag is a bug. */
407 VM_WARN_ON_ONCE(reason & ~__VM_UFFD_FLAGS);
408 /* 0 or > 1 flags set is a bug; we expect exactly 1. */
409 VM_WARN_ON_ONCE(!reason || (reason & (reason - 1)));
410
411 if (ctx->features & UFFD_FEATURE_SIGBUS)
412 goto out;
413 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
414 goto out;
415
416 /*
417 * Check that we can return VM_FAULT_RETRY.
418 *
419 * NOTE: it should become possible to return VM_FAULT_RETRY
420 * even if FAULT_FLAG_TRIED is set without leading to gup()
421 * -EBUSY failures, if the userfaultfd is to be extended for
422 * VM_UFFD_WP tracking and we intend to arm the userfault
423 * without first stopping userland access to the memory. For
424 * VM_UFFD_MISSING userfaults this is enough for now.
425 */
426 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
427 /*
428 * Validate the invariant that nowait must allow retry
429 * to be sure not to return SIGBUS erroneously on
430 * nowait invocations.
431 */
432 VM_WARN_ON_ONCE(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
433 #ifdef CONFIG_DEBUG_VM
434 if (printk_ratelimit()) {
435 pr_warn("FAULT_FLAG_ALLOW_RETRY missing %x\n",
436 vmf->flags);
437 dump_stack();
438 }
439 #endif
440 goto out;
441 }
442
443 /*
444 * Handle nowait, not much to do other than tell it to retry
445 * and wait.
446 */
447 ret = VM_FAULT_RETRY;
448 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
449 goto out;
450
451 if (unlikely(READ_ONCE(ctx->released))) {
452 /*
453 * If a concurrent release is detected, do not return
454 * VM_FAULT_SIGBUS or VM_FAULT_NOPAGE, but instead always
455 * return VM_FAULT_RETRY with lock released proactively.
456 *
457 * If we were to return VM_FAULT_SIGBUS here, the non
458 * cooperative manager would be instead forced to
459 * always call UFFDIO_UNREGISTER before it can safely
460 * close the uffd, to avoid involuntary SIGBUS triggered.
461 *
462 * If we were to return VM_FAULT_NOPAGE, it would work for
463 * the fault path, in which the lock will be released
464 * later. However for GUP, faultin_page() does nothing
465 * special on NOPAGE, so GUP would spin retrying without
466 * releasing the mmap read lock, causing possible livelock.
467 *
468 * Here only VM_FAULT_RETRY would make sure the mmap lock
469 * be released immediately, so that the thread concurrently
470 * releasing the userfault would always make progress.
471 */
472 release_fault_lock(vmf);
473 goto out;
474 }
475
476 /* take the reference before dropping the mmap_lock */
477 userfaultfd_ctx_get(ctx);
478
479 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
480 uwq.wq.private = current;
481 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
482 reason, ctx->features);
483 uwq.ctx = ctx;
484 uwq.waken = false;
485
486 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
487
488 /*
489 * Take the vma lock now, in order to safely call
490 * userfaultfd_huge_must_wait() later. Since acquiring the
491 * (sleepable) vma lock can modify the current task state, that
492 * must be before explicitly calling set_current_state().
493 */
494 if (is_vm_hugetlb_page(vma))
495 hugetlb_vma_lock_read(vma);
496
497 spin_lock_irq(&ctx->fault_pending_wqh.lock);
498 /*
499 * After the __add_wait_queue the uwq is visible to userland
500 * through poll/read().
501 */
502 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
503 /*
504 * The smp_mb() after __set_current_state prevents the reads
505 * following the spin_unlock to happen before the list_add in
506 * __add_wait_queue.
507 */
508 set_current_state(blocking_state);
509 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
510
511 if (is_vm_hugetlb_page(vma)) {
512 must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason);
513 hugetlb_vma_unlock_read(vma);
514 } else {
515 must_wait = userfaultfd_must_wait(ctx, vmf, reason);
516 }
517
518 release_fault_lock(vmf);
519
520 if (likely(must_wait && !READ_ONCE(ctx->released))) {
521 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
522 schedule();
523 }
524
525 __set_current_state(TASK_RUNNING);
526
527 /*
528 * Here we race with the list_del; list_add in
529 * userfaultfd_ctx_read(), however because we don't ever run
530 * list_del_init() to refile across the two lists, the prev
531 * and next pointers will never point to self. list_add also
532 * would never let any of the two pointers to point to
533 * self. So list_empty_careful won't risk to see both pointers
534 * pointing to self at any time during the list refile. The
535 * only case where list_del_init() is called is the full
536 * removal in the wake function and there we don't re-list_add
537 * and it's fine not to block on the spinlock. The uwq on this
538 * kernel stack can be released after the list_del_init.
539 */
540 if (!list_empty_careful(&uwq.wq.entry)) {
541 spin_lock_irq(&ctx->fault_pending_wqh.lock);
542 /*
543 * No need of list_del_init(), the uwq on the stack
544 * will be freed shortly anyway.
545 */
546 list_del(&uwq.wq.entry);
547 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
548 }
549
550 /*
551 * ctx may go away after this if the userfault pseudo fd is
552 * already released.
553 */
554 userfaultfd_ctx_put(ctx);
555
556 out:
557 return ret;
558 }
559
userfaultfd_event_wait_completion(struct userfaultfd_ctx * ctx,struct userfaultfd_wait_queue * ewq)560 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
561 struct userfaultfd_wait_queue *ewq)
562 {
563 struct userfaultfd_ctx *release_new_ctx;
564
565 if (WARN_ON_ONCE(current->flags & PF_EXITING))
566 goto out;
567
568 ewq->ctx = ctx;
569 init_waitqueue_entry(&ewq->wq, current);
570 release_new_ctx = NULL;
571
572 spin_lock_irq(&ctx->event_wqh.lock);
573 /*
574 * After the __add_wait_queue the uwq is visible to userland
575 * through poll/read().
576 */
577 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
578 for (;;) {
579 set_current_state(TASK_KILLABLE);
580 if (ewq->msg.event == 0)
581 break;
582 if (READ_ONCE(ctx->released) ||
583 fatal_signal_pending(current)) {
584 /*
585 * &ewq->wq may be queued in fork_event, but
586 * __remove_wait_queue ignores the head
587 * parameter. It would be a problem if it
588 * didn't.
589 */
590 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
591 if (ewq->msg.event == UFFD_EVENT_FORK) {
592 struct userfaultfd_ctx *new;
593
594 new = (struct userfaultfd_ctx *)
595 (unsigned long)
596 ewq->msg.arg.reserved.reserved1;
597 release_new_ctx = new;
598 }
599 break;
600 }
601
602 spin_unlock_irq(&ctx->event_wqh.lock);
603
604 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
605 schedule();
606
607 spin_lock_irq(&ctx->event_wqh.lock);
608 }
609 __set_current_state(TASK_RUNNING);
610 spin_unlock_irq(&ctx->event_wqh.lock);
611
612 if (release_new_ctx) {
613 userfaultfd_release_new(release_new_ctx);
614 userfaultfd_ctx_put(release_new_ctx);
615 }
616
617 /*
618 * ctx may go away after this if the userfault pseudo fd is
619 * already released.
620 */
621 out:
622 atomic_dec(&ctx->mmap_changing);
623 VM_WARN_ON_ONCE(atomic_read(&ctx->mmap_changing) < 0);
624 userfaultfd_ctx_put(ctx);
625 }
626
userfaultfd_event_complete(struct userfaultfd_ctx * ctx,struct userfaultfd_wait_queue * ewq)627 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
628 struct userfaultfd_wait_queue *ewq)
629 {
630 ewq->msg.event = 0;
631 wake_up_locked(&ctx->event_wqh);
632 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
633 }
634
dup_userfaultfd(struct vm_area_struct * vma,struct list_head * fcs)635 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
636 {
637 struct userfaultfd_ctx *ctx = NULL, *octx;
638 struct userfaultfd_fork_ctx *fctx;
639
640 octx = vma->vm_userfaultfd_ctx.ctx;
641 if (!octx)
642 return 0;
643
644 if (!(octx->features & UFFD_FEATURE_EVENT_FORK)) {
645 userfaultfd_reset_ctx(vma);
646 return 0;
647 }
648
649 list_for_each_entry(fctx, fcs, list)
650 if (fctx->orig == octx) {
651 ctx = fctx->new;
652 break;
653 }
654
655 if (!ctx) {
656 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
657 if (!fctx)
658 return -ENOMEM;
659
660 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
661 if (!ctx) {
662 kfree(fctx);
663 return -ENOMEM;
664 }
665
666 refcount_set(&ctx->refcount, 1);
667 ctx->flags = octx->flags;
668 ctx->features = octx->features;
669 ctx->released = false;
670 init_rwsem(&ctx->map_changing_lock);
671 atomic_set(&ctx->mmap_changing, 0);
672 ctx->mm = vma->vm_mm;
673 mmgrab(ctx->mm);
674
675 userfaultfd_ctx_get(octx);
676 down_write(&octx->map_changing_lock);
677 atomic_inc(&octx->mmap_changing);
678 up_write(&octx->map_changing_lock);
679 fctx->orig = octx;
680 fctx->new = ctx;
681 list_add_tail(&fctx->list, fcs);
682 }
683
684 vma->vm_userfaultfd_ctx.ctx = ctx;
685 return 0;
686 }
687
dup_fctx(struct userfaultfd_fork_ctx * fctx)688 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
689 {
690 struct userfaultfd_ctx *ctx = fctx->orig;
691 struct userfaultfd_wait_queue ewq;
692
693 msg_init(&ewq.msg);
694
695 ewq.msg.event = UFFD_EVENT_FORK;
696 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
697
698 userfaultfd_event_wait_completion(ctx, &ewq);
699 }
700
dup_userfaultfd_complete(struct list_head * fcs)701 void dup_userfaultfd_complete(struct list_head *fcs)
702 {
703 struct userfaultfd_fork_ctx *fctx, *n;
704
705 list_for_each_entry_safe(fctx, n, fcs, list) {
706 dup_fctx(fctx);
707 list_del(&fctx->list);
708 kfree(fctx);
709 }
710 }
711
dup_userfaultfd_fail(struct list_head * fcs)712 void dup_userfaultfd_fail(struct list_head *fcs)
713 {
714 struct userfaultfd_fork_ctx *fctx, *n;
715
716 /*
717 * An error has occurred on fork, we will tear memory down, but have
718 * allocated memory for fctx's and raised reference counts for both the
719 * original and child contexts (and on the mm for each as a result).
720 *
721 * These would ordinarily be taken care of by a user handling the event,
722 * but we are no longer doing so, so manually clean up here.
723 *
724 * mm tear down will take care of cleaning up VMA contexts.
725 */
726 list_for_each_entry_safe(fctx, n, fcs, list) {
727 struct userfaultfd_ctx *octx = fctx->orig;
728 struct userfaultfd_ctx *ctx = fctx->new;
729
730 atomic_dec(&octx->mmap_changing);
731 VM_WARN_ON_ONCE(atomic_read(&octx->mmap_changing) < 0);
732 userfaultfd_ctx_put(octx);
733 userfaultfd_ctx_put(ctx);
734
735 list_del(&fctx->list);
736 kfree(fctx);
737 }
738 }
739
mremap_userfaultfd_prep(struct vm_area_struct * vma,struct vm_userfaultfd_ctx * vm_ctx)740 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
741 struct vm_userfaultfd_ctx *vm_ctx)
742 {
743 struct userfaultfd_ctx *ctx;
744
745 ctx = vma->vm_userfaultfd_ctx.ctx;
746
747 if (!ctx)
748 return;
749
750 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
751 vm_ctx->ctx = ctx;
752 userfaultfd_ctx_get(ctx);
753 down_write(&ctx->map_changing_lock);
754 atomic_inc(&ctx->mmap_changing);
755 up_write(&ctx->map_changing_lock);
756 } else {
757 /* Drop uffd context if remap feature not enabled */
758 userfaultfd_reset_ctx(vma);
759 }
760 }
761
mremap_userfaultfd_complete(struct vm_userfaultfd_ctx * vm_ctx,unsigned long from,unsigned long to,unsigned long len)762 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
763 unsigned long from, unsigned long to,
764 unsigned long len)
765 {
766 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
767 struct userfaultfd_wait_queue ewq;
768
769 if (!ctx)
770 return;
771
772 msg_init(&ewq.msg);
773
774 ewq.msg.event = UFFD_EVENT_REMAP;
775 ewq.msg.arg.remap.from = from;
776 ewq.msg.arg.remap.to = to;
777 ewq.msg.arg.remap.len = len;
778
779 userfaultfd_event_wait_completion(ctx, &ewq);
780 }
781
mremap_userfaultfd_fail(struct vm_userfaultfd_ctx * vm_ctx)782 void mremap_userfaultfd_fail(struct vm_userfaultfd_ctx *vm_ctx)
783 {
784 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
785
786 if (!ctx)
787 return;
788
789 userfaultfd_ctx_put(ctx);
790 }
791
userfaultfd_remove(struct vm_area_struct * vma,unsigned long start,unsigned long end)792 bool userfaultfd_remove(struct vm_area_struct *vma,
793 unsigned long start, unsigned long end)
794 {
795 struct mm_struct *mm = vma->vm_mm;
796 struct userfaultfd_ctx *ctx;
797 struct userfaultfd_wait_queue ewq;
798
799 ctx = vma->vm_userfaultfd_ctx.ctx;
800 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
801 return true;
802
803 userfaultfd_ctx_get(ctx);
804 down_write(&ctx->map_changing_lock);
805 atomic_inc(&ctx->mmap_changing);
806 up_write(&ctx->map_changing_lock);
807 mmap_read_unlock(mm);
808
809 msg_init(&ewq.msg);
810
811 ewq.msg.event = UFFD_EVENT_REMOVE;
812 ewq.msg.arg.remove.start = start;
813 ewq.msg.arg.remove.end = end;
814
815 userfaultfd_event_wait_completion(ctx, &ewq);
816
817 return false;
818 }
819
has_unmap_ctx(struct userfaultfd_ctx * ctx,struct list_head * unmaps,unsigned long start,unsigned long end)820 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
821 unsigned long start, unsigned long end)
822 {
823 struct userfaultfd_unmap_ctx *unmap_ctx;
824
825 list_for_each_entry(unmap_ctx, unmaps, list)
826 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
827 unmap_ctx->end == end)
828 return true;
829
830 return false;
831 }
832
userfaultfd_unmap_prep(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * unmaps)833 int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start,
834 unsigned long end, struct list_head *unmaps)
835 {
836 struct userfaultfd_unmap_ctx *unmap_ctx;
837 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
838
839 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
840 has_unmap_ctx(ctx, unmaps, start, end))
841 return 0;
842
843 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
844 if (!unmap_ctx)
845 return -ENOMEM;
846
847 userfaultfd_ctx_get(ctx);
848 down_write(&ctx->map_changing_lock);
849 atomic_inc(&ctx->mmap_changing);
850 up_write(&ctx->map_changing_lock);
851 unmap_ctx->ctx = ctx;
852 unmap_ctx->start = start;
853 unmap_ctx->end = end;
854 list_add_tail(&unmap_ctx->list, unmaps);
855
856 return 0;
857 }
858
userfaultfd_unmap_complete(struct mm_struct * mm,struct list_head * uf)859 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
860 {
861 struct userfaultfd_unmap_ctx *ctx, *n;
862 struct userfaultfd_wait_queue ewq;
863
864 list_for_each_entry_safe(ctx, n, uf, list) {
865 msg_init(&ewq.msg);
866
867 ewq.msg.event = UFFD_EVENT_UNMAP;
868 ewq.msg.arg.remove.start = ctx->start;
869 ewq.msg.arg.remove.end = ctx->end;
870
871 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
872
873 list_del(&ctx->list);
874 kfree(ctx);
875 }
876 }
877
userfaultfd_release(struct inode * inode,struct file * file)878 static int userfaultfd_release(struct inode *inode, struct file *file)
879 {
880 struct userfaultfd_ctx *ctx = file->private_data;
881 struct mm_struct *mm = ctx->mm;
882 /* len == 0 means wake all */
883 struct userfaultfd_wake_range range = { .len = 0, };
884
885 WRITE_ONCE(ctx->released, true);
886
887 userfaultfd_release_all(mm, ctx);
888
889 /*
890 * After no new page faults can wait on this fault_*wqh, flush
891 * the last page faults that may have been already waiting on
892 * the fault_*wqh.
893 */
894 spin_lock_irq(&ctx->fault_pending_wqh.lock);
895 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
896 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
897 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
898
899 /* Flush pending events that may still wait on event_wqh */
900 wake_up_all(&ctx->event_wqh);
901
902 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
903 userfaultfd_ctx_put(ctx);
904 return 0;
905 }
906
907 /* fault_pending_wqh.lock must be hold by the caller */
find_userfault_in(wait_queue_head_t * wqh)908 static inline struct userfaultfd_wait_queue *find_userfault_in(
909 wait_queue_head_t *wqh)
910 {
911 wait_queue_entry_t *wq;
912 struct userfaultfd_wait_queue *uwq;
913
914 lockdep_assert_held(&wqh->lock);
915
916 uwq = NULL;
917 if (!waitqueue_active(wqh))
918 goto out;
919 /* walk in reverse to provide FIFO behavior to read userfaults */
920 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
921 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
922 out:
923 return uwq;
924 }
925
find_userfault(struct userfaultfd_ctx * ctx)926 static inline struct userfaultfd_wait_queue *find_userfault(
927 struct userfaultfd_ctx *ctx)
928 {
929 return find_userfault_in(&ctx->fault_pending_wqh);
930 }
931
find_userfault_evt(struct userfaultfd_ctx * ctx)932 static inline struct userfaultfd_wait_queue *find_userfault_evt(
933 struct userfaultfd_ctx *ctx)
934 {
935 return find_userfault_in(&ctx->event_wqh);
936 }
937
userfaultfd_poll(struct file * file,poll_table * wait)938 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
939 {
940 struct userfaultfd_ctx *ctx = file->private_data;
941 __poll_t ret;
942
943 poll_wait(file, &ctx->fd_wqh, wait);
944
945 if (!userfaultfd_is_initialized(ctx))
946 return EPOLLERR;
947
948 /*
949 * poll() never guarantees that read won't block.
950 * userfaults can be waken before they're read().
951 */
952 if (unlikely(!(file->f_flags & O_NONBLOCK)))
953 return EPOLLERR;
954 /*
955 * lockless access to see if there are pending faults
956 * __pollwait last action is the add_wait_queue but
957 * the spin_unlock would allow the waitqueue_active to
958 * pass above the actual list_add inside
959 * add_wait_queue critical section. So use a full
960 * memory barrier to serialize the list_add write of
961 * add_wait_queue() with the waitqueue_active read
962 * below.
963 */
964 ret = 0;
965 smp_mb();
966 if (waitqueue_active(&ctx->fault_pending_wqh))
967 ret = EPOLLIN;
968 else if (waitqueue_active(&ctx->event_wqh))
969 ret = EPOLLIN;
970
971 return ret;
972 }
973
974 static const struct file_operations userfaultfd_fops;
975
resolve_userfault_fork(struct userfaultfd_ctx * new,struct inode * inode,struct uffd_msg * msg)976 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
977 struct inode *inode,
978 struct uffd_msg *msg)
979 {
980 int fd;
981
982 fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, new,
983 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
984 if (fd < 0)
985 return fd;
986
987 msg->arg.reserved.reserved1 = 0;
988 msg->arg.fork.ufd = fd;
989 return 0;
990 }
991
userfaultfd_ctx_read(struct userfaultfd_ctx * ctx,int no_wait,struct uffd_msg * msg,struct inode * inode)992 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
993 struct uffd_msg *msg, struct inode *inode)
994 {
995 ssize_t ret;
996 DECLARE_WAITQUEUE(wait, current);
997 struct userfaultfd_wait_queue *uwq;
998 /*
999 * Handling fork event requires sleeping operations, so
1000 * we drop the event_wqh lock, then do these ops, then
1001 * lock it back and wake up the waiter. While the lock is
1002 * dropped the ewq may go away so we keep track of it
1003 * carefully.
1004 */
1005 LIST_HEAD(fork_event);
1006 struct userfaultfd_ctx *fork_nctx = NULL;
1007
1008 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1009 spin_lock_irq(&ctx->fd_wqh.lock);
1010 __add_wait_queue(&ctx->fd_wqh, &wait);
1011 for (;;) {
1012 set_current_state(TASK_INTERRUPTIBLE);
1013 spin_lock(&ctx->fault_pending_wqh.lock);
1014 uwq = find_userfault(ctx);
1015 if (uwq) {
1016 /*
1017 * Use a seqcount to repeat the lockless check
1018 * in wake_userfault() to avoid missing
1019 * wakeups because during the refile both
1020 * waitqueue could become empty if this is the
1021 * only userfault.
1022 */
1023 write_seqcount_begin(&ctx->refile_seq);
1024
1025 /*
1026 * The fault_pending_wqh.lock prevents the uwq
1027 * to disappear from under us.
1028 *
1029 * Refile this userfault from
1030 * fault_pending_wqh to fault_wqh, it's not
1031 * pending anymore after we read it.
1032 *
1033 * Use list_del() by hand (as
1034 * userfaultfd_wake_function also uses
1035 * list_del_init() by hand) to be sure nobody
1036 * changes __remove_wait_queue() to use
1037 * list_del_init() in turn breaking the
1038 * !list_empty_careful() check in
1039 * handle_userfault(). The uwq->wq.head list
1040 * must never be empty at any time during the
1041 * refile, or the waitqueue could disappear
1042 * from under us. The "wait_queue_head_t"
1043 * parameter of __remove_wait_queue() is unused
1044 * anyway.
1045 */
1046 list_del(&uwq->wq.entry);
1047 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1048
1049 write_seqcount_end(&ctx->refile_seq);
1050
1051 /* careful to always initialize msg if ret == 0 */
1052 *msg = uwq->msg;
1053 spin_unlock(&ctx->fault_pending_wqh.lock);
1054 ret = 0;
1055 break;
1056 }
1057 spin_unlock(&ctx->fault_pending_wqh.lock);
1058
1059 spin_lock(&ctx->event_wqh.lock);
1060 uwq = find_userfault_evt(ctx);
1061 if (uwq) {
1062 *msg = uwq->msg;
1063
1064 if (uwq->msg.event == UFFD_EVENT_FORK) {
1065 fork_nctx = (struct userfaultfd_ctx *)
1066 (unsigned long)
1067 uwq->msg.arg.reserved.reserved1;
1068 list_move(&uwq->wq.entry, &fork_event);
1069 /*
1070 * fork_nctx can be freed as soon as
1071 * we drop the lock, unless we take a
1072 * reference on it.
1073 */
1074 userfaultfd_ctx_get(fork_nctx);
1075 spin_unlock(&ctx->event_wqh.lock);
1076 ret = 0;
1077 break;
1078 }
1079
1080 userfaultfd_event_complete(ctx, uwq);
1081 spin_unlock(&ctx->event_wqh.lock);
1082 ret = 0;
1083 break;
1084 }
1085 spin_unlock(&ctx->event_wqh.lock);
1086
1087 if (signal_pending(current)) {
1088 ret = -ERESTARTSYS;
1089 break;
1090 }
1091 if (no_wait) {
1092 ret = -EAGAIN;
1093 break;
1094 }
1095 spin_unlock_irq(&ctx->fd_wqh.lock);
1096 schedule();
1097 spin_lock_irq(&ctx->fd_wqh.lock);
1098 }
1099 __remove_wait_queue(&ctx->fd_wqh, &wait);
1100 __set_current_state(TASK_RUNNING);
1101 spin_unlock_irq(&ctx->fd_wqh.lock);
1102
1103 if (!ret && msg->event == UFFD_EVENT_FORK) {
1104 ret = resolve_userfault_fork(fork_nctx, inode, msg);
1105 spin_lock_irq(&ctx->event_wqh.lock);
1106 if (!list_empty(&fork_event)) {
1107 /*
1108 * The fork thread didn't abort, so we can
1109 * drop the temporary refcount.
1110 */
1111 userfaultfd_ctx_put(fork_nctx);
1112
1113 uwq = list_first_entry(&fork_event,
1114 typeof(*uwq),
1115 wq.entry);
1116 /*
1117 * If fork_event list wasn't empty and in turn
1118 * the event wasn't already released by fork
1119 * (the event is allocated on fork kernel
1120 * stack), put the event back to its place in
1121 * the event_wq. fork_event head will be freed
1122 * as soon as we return so the event cannot
1123 * stay queued there no matter the current
1124 * "ret" value.
1125 */
1126 list_del(&uwq->wq.entry);
1127 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1128
1129 /*
1130 * Leave the event in the waitqueue and report
1131 * error to userland if we failed to resolve
1132 * the userfault fork.
1133 */
1134 if (likely(!ret))
1135 userfaultfd_event_complete(ctx, uwq);
1136 } else {
1137 /*
1138 * Here the fork thread aborted and the
1139 * refcount from the fork thread on fork_nctx
1140 * has already been released. We still hold
1141 * the reference we took before releasing the
1142 * lock above. If resolve_userfault_fork
1143 * failed we've to drop it because the
1144 * fork_nctx has to be freed in such case. If
1145 * it succeeded we'll hold it because the new
1146 * uffd references it.
1147 */
1148 if (ret)
1149 userfaultfd_ctx_put(fork_nctx);
1150 }
1151 spin_unlock_irq(&ctx->event_wqh.lock);
1152 }
1153
1154 return ret;
1155 }
1156
userfaultfd_read_iter(struct kiocb * iocb,struct iov_iter * to)1157 static ssize_t userfaultfd_read_iter(struct kiocb *iocb, struct iov_iter *to)
1158 {
1159 struct file *file = iocb->ki_filp;
1160 struct userfaultfd_ctx *ctx = file->private_data;
1161 ssize_t _ret, ret = 0;
1162 struct uffd_msg msg;
1163 struct inode *inode = file_inode(file);
1164 bool no_wait;
1165
1166 if (!userfaultfd_is_initialized(ctx))
1167 return -EINVAL;
1168
1169 no_wait = file->f_flags & O_NONBLOCK || iocb->ki_flags & IOCB_NOWAIT;
1170 for (;;) {
1171 if (iov_iter_count(to) < sizeof(msg))
1172 return ret ? ret : -EINVAL;
1173 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1174 if (_ret < 0)
1175 return ret ? ret : _ret;
1176 _ret = !copy_to_iter_full(&msg, sizeof(msg), to);
1177 if (_ret)
1178 return ret ? ret : -EFAULT;
1179 ret += sizeof(msg);
1180 /*
1181 * Allow to read more than one fault at time but only
1182 * block if waiting for the very first one.
1183 */
1184 no_wait = true;
1185 }
1186 }
1187
__wake_userfault(struct userfaultfd_ctx * ctx,struct userfaultfd_wake_range * range)1188 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1189 struct userfaultfd_wake_range *range)
1190 {
1191 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1192 /* wake all in the range and autoremove */
1193 if (waitqueue_active(&ctx->fault_pending_wqh))
1194 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1195 range);
1196 if (waitqueue_active(&ctx->fault_wqh))
1197 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1198 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1199 }
1200
wake_userfault(struct userfaultfd_ctx * ctx,struct userfaultfd_wake_range * range)1201 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1202 struct userfaultfd_wake_range *range)
1203 {
1204 unsigned seq;
1205 bool need_wakeup;
1206
1207 /*
1208 * To be sure waitqueue_active() is not reordered by the CPU
1209 * before the pagetable update, use an explicit SMP memory
1210 * barrier here. PT lock release or mmap_read_unlock(mm) still
1211 * have release semantics that can allow the
1212 * waitqueue_active() to be reordered before the pte update.
1213 */
1214 smp_mb();
1215
1216 /*
1217 * Use waitqueue_active because it's very frequent to
1218 * change the address space atomically even if there are no
1219 * userfaults yet. So we take the spinlock only when we're
1220 * sure we've userfaults to wake.
1221 */
1222 do {
1223 seq = read_seqcount_begin(&ctx->refile_seq);
1224 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1225 waitqueue_active(&ctx->fault_wqh);
1226 cond_resched();
1227 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1228 if (need_wakeup)
1229 __wake_userfault(ctx, range);
1230 }
1231
validate_unaligned_range(struct mm_struct * mm,__u64 start,__u64 len)1232 static __always_inline int validate_unaligned_range(
1233 struct mm_struct *mm, __u64 start, __u64 len)
1234 {
1235 __u64 task_size = mm->task_size;
1236
1237 if (len & ~PAGE_MASK)
1238 return -EINVAL;
1239 if (!len)
1240 return -EINVAL;
1241 if (start < mmap_min_addr)
1242 return -EINVAL;
1243 if (start >= task_size)
1244 return -EINVAL;
1245 if (len > task_size - start)
1246 return -EINVAL;
1247 if (start + len <= start)
1248 return -EINVAL;
1249 return 0;
1250 }
1251
validate_range(struct mm_struct * mm,__u64 start,__u64 len)1252 static __always_inline int validate_range(struct mm_struct *mm,
1253 __u64 start, __u64 len)
1254 {
1255 if (start & ~PAGE_MASK)
1256 return -EINVAL;
1257
1258 return validate_unaligned_range(mm, start, len);
1259 }
1260
userfaultfd_register(struct userfaultfd_ctx * ctx,unsigned long arg)1261 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1262 unsigned long arg)
1263 {
1264 struct mm_struct *mm = ctx->mm;
1265 struct vm_area_struct *vma, *cur;
1266 int ret;
1267 struct uffdio_register uffdio_register;
1268 struct uffdio_register __user *user_uffdio_register;
1269 vm_flags_t vm_flags;
1270 bool found;
1271 bool basic_ioctls;
1272 unsigned long start, end;
1273 struct vma_iterator vmi;
1274 bool wp_async = userfaultfd_wp_async_ctx(ctx);
1275
1276 user_uffdio_register = (struct uffdio_register __user *) arg;
1277
1278 ret = -EFAULT;
1279 if (copy_from_user(&uffdio_register, user_uffdio_register,
1280 sizeof(uffdio_register)-sizeof(__u64)))
1281 goto out;
1282
1283 ret = -EINVAL;
1284 if (!uffdio_register.mode)
1285 goto out;
1286 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1287 goto out;
1288 vm_flags = 0;
1289 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1290 vm_flags |= VM_UFFD_MISSING;
1291 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1292 if (!pgtable_supports_uffd_wp())
1293 goto out;
1294
1295 vm_flags |= VM_UFFD_WP;
1296 }
1297 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1298 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1299 goto out;
1300 #endif
1301 vm_flags |= VM_UFFD_MINOR;
1302 }
1303
1304 ret = validate_range(mm, uffdio_register.range.start,
1305 uffdio_register.range.len);
1306 if (ret)
1307 goto out;
1308
1309 start = uffdio_register.range.start;
1310 end = start + uffdio_register.range.len;
1311
1312 ret = -ENOMEM;
1313 if (!mmget_not_zero(mm))
1314 goto out;
1315
1316 ret = -EINVAL;
1317 mmap_write_lock(mm);
1318 vma_iter_init(&vmi, mm, start);
1319 vma = vma_find(&vmi, end);
1320 if (!vma)
1321 goto out_unlock;
1322
1323 /*
1324 * If the first vma contains huge pages, make sure start address
1325 * is aligned to huge page size.
1326 */
1327 if (is_vm_hugetlb_page(vma)) {
1328 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1329
1330 if (start & (vma_hpagesize - 1))
1331 goto out_unlock;
1332 }
1333
1334 /*
1335 * Search for not compatible vmas.
1336 */
1337 found = false;
1338 basic_ioctls = false;
1339 cur = vma;
1340 do {
1341 cond_resched();
1342
1343 VM_WARN_ON_ONCE(!!cur->vm_userfaultfd_ctx.ctx ^
1344 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1345
1346 /* check not compatible vmas */
1347 ret = -EINVAL;
1348 if (!vma_can_userfault(cur, vm_flags, wp_async))
1349 goto out_unlock;
1350
1351 /*
1352 * UFFDIO_COPY will fill file holes even without
1353 * PROT_WRITE. This check enforces that if this is a
1354 * MAP_SHARED, the process has write permission to the backing
1355 * file. If VM_MAYWRITE is set it also enforces that on a
1356 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1357 * F_WRITE_SEAL can be taken until the vma is destroyed.
1358 */
1359 ret = -EPERM;
1360 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1361 goto out_unlock;
1362
1363 /*
1364 * If this vma contains ending address, and huge pages
1365 * check alignment.
1366 */
1367 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1368 end > cur->vm_start) {
1369 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1370
1371 ret = -EINVAL;
1372
1373 if (end & (vma_hpagesize - 1))
1374 goto out_unlock;
1375 }
1376 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1377 goto out_unlock;
1378
1379 /*
1380 * Check that this vma isn't already owned by a
1381 * different userfaultfd. We can't allow more than one
1382 * userfaultfd to own a single vma simultaneously or we
1383 * wouldn't know which one to deliver the userfaults to.
1384 */
1385 ret = -EBUSY;
1386 if (cur->vm_userfaultfd_ctx.ctx &&
1387 cur->vm_userfaultfd_ctx.ctx != ctx)
1388 goto out_unlock;
1389
1390 /*
1391 * Note vmas containing huge pages
1392 */
1393 if (is_vm_hugetlb_page(cur))
1394 basic_ioctls = true;
1395
1396 found = true;
1397 } for_each_vma_range(vmi, cur, end);
1398 VM_WARN_ON_ONCE(!found);
1399
1400 ret = userfaultfd_register_range(ctx, vma, vm_flags, start, end,
1401 wp_async);
1402
1403 out_unlock:
1404 mmap_write_unlock(mm);
1405 mmput(mm);
1406 if (!ret) {
1407 __u64 ioctls_out;
1408
1409 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1410 UFFD_API_RANGE_IOCTLS;
1411
1412 /*
1413 * Declare the WP ioctl only if the WP mode is
1414 * specified and all checks passed with the range
1415 */
1416 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1417 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1418
1419 /* CONTINUE ioctl is only supported for MINOR ranges. */
1420 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1421 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1422
1423 /*
1424 * Now that we scanned all vmas we can already tell
1425 * userland which ioctls methods are guaranteed to
1426 * succeed on this range.
1427 */
1428 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1429 ret = -EFAULT;
1430 }
1431 out:
1432 return ret;
1433 }
1434
userfaultfd_unregister(struct userfaultfd_ctx * ctx,unsigned long arg)1435 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1436 unsigned long arg)
1437 {
1438 struct mm_struct *mm = ctx->mm;
1439 struct vm_area_struct *vma, *prev, *cur;
1440 int ret;
1441 struct uffdio_range uffdio_unregister;
1442 bool found;
1443 unsigned long start, end, vma_end;
1444 const void __user *buf = (void __user *)arg;
1445 struct vma_iterator vmi;
1446 bool wp_async = userfaultfd_wp_async_ctx(ctx);
1447
1448 ret = -EFAULT;
1449 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1450 goto out;
1451
1452 ret = validate_range(mm, uffdio_unregister.start,
1453 uffdio_unregister.len);
1454 if (ret)
1455 goto out;
1456
1457 start = uffdio_unregister.start;
1458 end = start + uffdio_unregister.len;
1459
1460 ret = -ENOMEM;
1461 if (!mmget_not_zero(mm))
1462 goto out;
1463
1464 mmap_write_lock(mm);
1465 ret = -EINVAL;
1466 vma_iter_init(&vmi, mm, start);
1467 vma = vma_find(&vmi, end);
1468 if (!vma)
1469 goto out_unlock;
1470
1471 /*
1472 * If the first vma contains huge pages, make sure start address
1473 * is aligned to huge page size.
1474 */
1475 if (is_vm_hugetlb_page(vma)) {
1476 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1477
1478 if (start & (vma_hpagesize - 1))
1479 goto out_unlock;
1480 }
1481
1482 /*
1483 * Search for not compatible vmas.
1484 */
1485 found = false;
1486 cur = vma;
1487 do {
1488 cond_resched();
1489
1490 VM_WARN_ON_ONCE(!!cur->vm_userfaultfd_ctx.ctx ^
1491 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1492
1493 /*
1494 * Prevent unregistering through a different userfaultfd than
1495 * the one used for registration.
1496 */
1497 if (cur->vm_userfaultfd_ctx.ctx &&
1498 cur->vm_userfaultfd_ctx.ctx != ctx)
1499 goto out_unlock;
1500
1501 /*
1502 * Check not compatible vmas, not strictly required
1503 * here as not compatible vmas cannot have an
1504 * userfaultfd_ctx registered on them, but this
1505 * provides for more strict behavior to notice
1506 * unregistration errors.
1507 */
1508 if (!vma_can_userfault(cur, cur->vm_flags, wp_async))
1509 goto out_unlock;
1510
1511 found = true;
1512 } for_each_vma_range(vmi, cur, end);
1513 VM_WARN_ON_ONCE(!found);
1514
1515 vma_iter_set(&vmi, start);
1516 prev = vma_prev(&vmi);
1517 if (vma->vm_start < start)
1518 prev = vma;
1519
1520 ret = 0;
1521 for_each_vma_range(vmi, vma, end) {
1522 cond_resched();
1523
1524 /* VMA not registered with userfaultfd. */
1525 if (!vma->vm_userfaultfd_ctx.ctx)
1526 goto skip;
1527
1528 VM_WARN_ON_ONCE(vma->vm_userfaultfd_ctx.ctx != ctx);
1529 VM_WARN_ON_ONCE(!vma_can_userfault(vma, vma->vm_flags, wp_async));
1530 VM_WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE));
1531
1532 if (vma->vm_start > start)
1533 start = vma->vm_start;
1534 vma_end = min(end, vma->vm_end);
1535
1536 if (userfaultfd_missing(vma)) {
1537 /*
1538 * Wake any concurrent pending userfault while
1539 * we unregister, so they will not hang
1540 * permanently and it avoids userland to call
1541 * UFFDIO_WAKE explicitly.
1542 */
1543 struct userfaultfd_wake_range range;
1544 range.start = start;
1545 range.len = vma_end - start;
1546 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1547 }
1548
1549 vma = userfaultfd_clear_vma(&vmi, prev, vma,
1550 start, vma_end);
1551 if (IS_ERR(vma)) {
1552 ret = PTR_ERR(vma);
1553 break;
1554 }
1555
1556 skip:
1557 prev = vma;
1558 start = vma->vm_end;
1559 }
1560
1561 out_unlock:
1562 mmap_write_unlock(mm);
1563 mmput(mm);
1564 out:
1565 return ret;
1566 }
1567
1568 /*
1569 * userfaultfd_wake may be used in combination with the
1570 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1571 */
userfaultfd_wake(struct userfaultfd_ctx * ctx,unsigned long arg)1572 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1573 unsigned long arg)
1574 {
1575 int ret;
1576 struct uffdio_range uffdio_wake;
1577 struct userfaultfd_wake_range range;
1578 const void __user *buf = (void __user *)arg;
1579
1580 ret = -EFAULT;
1581 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1582 goto out;
1583
1584 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1585 if (ret)
1586 goto out;
1587
1588 range.start = uffdio_wake.start;
1589 range.len = uffdio_wake.len;
1590
1591 /*
1592 * len == 0 means wake all and we don't want to wake all here,
1593 * so check it again to be sure.
1594 */
1595 VM_WARN_ON_ONCE(!range.len);
1596
1597 wake_userfault(ctx, &range);
1598 ret = 0;
1599
1600 out:
1601 return ret;
1602 }
1603
userfaultfd_copy(struct userfaultfd_ctx * ctx,unsigned long arg)1604 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1605 unsigned long arg)
1606 {
1607 __s64 ret;
1608 struct uffdio_copy uffdio_copy;
1609 struct uffdio_copy __user *user_uffdio_copy;
1610 struct userfaultfd_wake_range range;
1611 uffd_flags_t flags = 0;
1612
1613 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1614
1615 ret = -EAGAIN;
1616 if (unlikely(atomic_read(&ctx->mmap_changing))) {
1617 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1618 return -EFAULT;
1619 goto out;
1620 }
1621
1622 ret = -EFAULT;
1623 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1624 /* don't copy "copy" last field */
1625 sizeof(uffdio_copy)-sizeof(__s64)))
1626 goto out;
1627
1628 ret = validate_unaligned_range(ctx->mm, uffdio_copy.src,
1629 uffdio_copy.len);
1630 if (ret)
1631 goto out;
1632 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1633 if (ret)
1634 goto out;
1635
1636 ret = -EINVAL;
1637 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1638 goto out;
1639 if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1640 flags |= MFILL_ATOMIC_WP;
1641 if (mmget_not_zero(ctx->mm)) {
1642 ret = mfill_atomic_copy(ctx, uffdio_copy.dst, uffdio_copy.src,
1643 uffdio_copy.len, flags);
1644 mmput(ctx->mm);
1645 } else {
1646 return -ESRCH;
1647 }
1648 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1649 return -EFAULT;
1650 if (ret < 0)
1651 goto out;
1652 VM_WARN_ON_ONCE(!ret);
1653 /* len == 0 would wake all */
1654 range.len = ret;
1655 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1656 range.start = uffdio_copy.dst;
1657 wake_userfault(ctx, &range);
1658 }
1659 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1660 out:
1661 return ret;
1662 }
1663
userfaultfd_zeropage(struct userfaultfd_ctx * ctx,unsigned long arg)1664 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1665 unsigned long arg)
1666 {
1667 __s64 ret;
1668 struct uffdio_zeropage uffdio_zeropage;
1669 struct uffdio_zeropage __user *user_uffdio_zeropage;
1670 struct userfaultfd_wake_range range;
1671
1672 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1673
1674 ret = -EAGAIN;
1675 if (unlikely(atomic_read(&ctx->mmap_changing))) {
1676 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1677 return -EFAULT;
1678 goto out;
1679 }
1680
1681 ret = -EFAULT;
1682 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1683 /* don't copy "zeropage" last field */
1684 sizeof(uffdio_zeropage)-sizeof(__s64)))
1685 goto out;
1686
1687 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1688 uffdio_zeropage.range.len);
1689 if (ret)
1690 goto out;
1691 ret = -EINVAL;
1692 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1693 goto out;
1694
1695 if (mmget_not_zero(ctx->mm)) {
1696 ret = mfill_atomic_zeropage(ctx, uffdio_zeropage.range.start,
1697 uffdio_zeropage.range.len);
1698 mmput(ctx->mm);
1699 } else {
1700 return -ESRCH;
1701 }
1702 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1703 return -EFAULT;
1704 if (ret < 0)
1705 goto out;
1706 /* len == 0 would wake all */
1707 VM_WARN_ON_ONCE(!ret);
1708 range.len = ret;
1709 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1710 range.start = uffdio_zeropage.range.start;
1711 wake_userfault(ctx, &range);
1712 }
1713 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1714 out:
1715 return ret;
1716 }
1717
userfaultfd_writeprotect(struct userfaultfd_ctx * ctx,unsigned long arg)1718 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1719 unsigned long arg)
1720 {
1721 int ret;
1722 struct uffdio_writeprotect uffdio_wp;
1723 struct uffdio_writeprotect __user *user_uffdio_wp;
1724 struct userfaultfd_wake_range range;
1725 bool mode_wp, mode_dontwake;
1726
1727 if (atomic_read(&ctx->mmap_changing))
1728 return -EAGAIN;
1729
1730 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1731
1732 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1733 sizeof(struct uffdio_writeprotect)))
1734 return -EFAULT;
1735
1736 ret = validate_range(ctx->mm, uffdio_wp.range.start,
1737 uffdio_wp.range.len);
1738 if (ret)
1739 return ret;
1740
1741 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1742 UFFDIO_WRITEPROTECT_MODE_WP))
1743 return -EINVAL;
1744
1745 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1746 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1747
1748 if (mode_wp && mode_dontwake)
1749 return -EINVAL;
1750
1751 if (mmget_not_zero(ctx->mm)) {
1752 ret = mwriteprotect_range(ctx, uffdio_wp.range.start,
1753 uffdio_wp.range.len, mode_wp);
1754 mmput(ctx->mm);
1755 } else {
1756 return -ESRCH;
1757 }
1758
1759 if (ret)
1760 return ret;
1761
1762 if (!mode_wp && !mode_dontwake) {
1763 range.start = uffdio_wp.range.start;
1764 range.len = uffdio_wp.range.len;
1765 wake_userfault(ctx, &range);
1766 }
1767 return ret;
1768 }
1769
userfaultfd_continue(struct userfaultfd_ctx * ctx,unsigned long arg)1770 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1771 {
1772 __s64 ret;
1773 struct uffdio_continue uffdio_continue;
1774 struct uffdio_continue __user *user_uffdio_continue;
1775 struct userfaultfd_wake_range range;
1776 uffd_flags_t flags = 0;
1777
1778 user_uffdio_continue = (struct uffdio_continue __user *)arg;
1779
1780 ret = -EAGAIN;
1781 if (unlikely(atomic_read(&ctx->mmap_changing))) {
1782 if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1783 return -EFAULT;
1784 goto out;
1785 }
1786
1787 ret = -EFAULT;
1788 if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1789 /* don't copy the output fields */
1790 sizeof(uffdio_continue) - (sizeof(__s64))))
1791 goto out;
1792
1793 ret = validate_range(ctx->mm, uffdio_continue.range.start,
1794 uffdio_continue.range.len);
1795 if (ret)
1796 goto out;
1797
1798 ret = -EINVAL;
1799 if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1800 UFFDIO_CONTINUE_MODE_WP))
1801 goto out;
1802 if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1803 flags |= MFILL_ATOMIC_WP;
1804
1805 if (mmget_not_zero(ctx->mm)) {
1806 ret = mfill_atomic_continue(ctx, uffdio_continue.range.start,
1807 uffdio_continue.range.len, flags);
1808 mmput(ctx->mm);
1809 } else {
1810 return -ESRCH;
1811 }
1812
1813 if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1814 return -EFAULT;
1815 if (ret < 0)
1816 goto out;
1817
1818 /* len == 0 would wake all */
1819 VM_WARN_ON_ONCE(!ret);
1820 range.len = ret;
1821 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1822 range.start = uffdio_continue.range.start;
1823 wake_userfault(ctx, &range);
1824 }
1825 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1826
1827 out:
1828 return ret;
1829 }
1830
userfaultfd_poison(struct userfaultfd_ctx * ctx,unsigned long arg)1831 static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg)
1832 {
1833 __s64 ret;
1834 struct uffdio_poison uffdio_poison;
1835 struct uffdio_poison __user *user_uffdio_poison;
1836 struct userfaultfd_wake_range range;
1837
1838 user_uffdio_poison = (struct uffdio_poison __user *)arg;
1839
1840 ret = -EAGAIN;
1841 if (unlikely(atomic_read(&ctx->mmap_changing))) {
1842 if (unlikely(put_user(ret, &user_uffdio_poison->updated)))
1843 return -EFAULT;
1844 goto out;
1845 }
1846
1847 ret = -EFAULT;
1848 if (copy_from_user(&uffdio_poison, user_uffdio_poison,
1849 /* don't copy the output fields */
1850 sizeof(uffdio_poison) - (sizeof(__s64))))
1851 goto out;
1852
1853 ret = validate_range(ctx->mm, uffdio_poison.range.start,
1854 uffdio_poison.range.len);
1855 if (ret)
1856 goto out;
1857
1858 ret = -EINVAL;
1859 if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE)
1860 goto out;
1861
1862 if (mmget_not_zero(ctx->mm)) {
1863 ret = mfill_atomic_poison(ctx, uffdio_poison.range.start,
1864 uffdio_poison.range.len, 0);
1865 mmput(ctx->mm);
1866 } else {
1867 return -ESRCH;
1868 }
1869
1870 if (unlikely(put_user(ret, &user_uffdio_poison->updated)))
1871 return -EFAULT;
1872 if (ret < 0)
1873 goto out;
1874
1875 /* len == 0 would wake all */
1876 VM_WARN_ON_ONCE(!ret);
1877 range.len = ret;
1878 if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) {
1879 range.start = uffdio_poison.range.start;
1880 wake_userfault(ctx, &range);
1881 }
1882 ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN;
1883
1884 out:
1885 return ret;
1886 }
1887
userfaultfd_wp_async(struct vm_area_struct * vma)1888 bool userfaultfd_wp_async(struct vm_area_struct *vma)
1889 {
1890 return userfaultfd_wp_async_ctx(vma->vm_userfaultfd_ctx.ctx);
1891 }
1892
uffd_ctx_features(__u64 user_features)1893 static inline unsigned int uffd_ctx_features(__u64 user_features)
1894 {
1895 /*
1896 * For the current set of features the bits just coincide. Set
1897 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1898 */
1899 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1900 }
1901
userfaultfd_move(struct userfaultfd_ctx * ctx,unsigned long arg)1902 static int userfaultfd_move(struct userfaultfd_ctx *ctx,
1903 unsigned long arg)
1904 {
1905 __s64 ret;
1906 struct uffdio_move uffdio_move;
1907 struct uffdio_move __user *user_uffdio_move;
1908 struct userfaultfd_wake_range range;
1909 struct mm_struct *mm = ctx->mm;
1910
1911 user_uffdio_move = (struct uffdio_move __user *) arg;
1912
1913 ret = -EAGAIN;
1914 if (unlikely(atomic_read(&ctx->mmap_changing))) {
1915 if (unlikely(put_user(ret, &user_uffdio_move->move)))
1916 return -EFAULT;
1917 goto out;
1918 }
1919
1920 if (copy_from_user(&uffdio_move, user_uffdio_move,
1921 /* don't copy "move" last field */
1922 sizeof(uffdio_move)-sizeof(__s64)))
1923 return -EFAULT;
1924
1925 /* Do not allow cross-mm moves. */
1926 if (mm != current->mm)
1927 return -EINVAL;
1928
1929 ret = validate_range(mm, uffdio_move.dst, uffdio_move.len);
1930 if (ret)
1931 return ret;
1932
1933 ret = validate_range(mm, uffdio_move.src, uffdio_move.len);
1934 if (ret)
1935 return ret;
1936
1937 if (uffdio_move.mode & ~(UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES|
1938 UFFDIO_MOVE_MODE_DONTWAKE))
1939 return -EINVAL;
1940
1941 if (mmget_not_zero(mm)) {
1942 ret = move_pages(ctx, uffdio_move.dst, uffdio_move.src,
1943 uffdio_move.len, uffdio_move.mode);
1944 mmput(mm);
1945 } else {
1946 return -ESRCH;
1947 }
1948
1949 if (unlikely(put_user(ret, &user_uffdio_move->move)))
1950 return -EFAULT;
1951 if (ret < 0)
1952 goto out;
1953
1954 /* len == 0 would wake all */
1955 VM_WARN_ON(!ret);
1956 range.len = ret;
1957 if (!(uffdio_move.mode & UFFDIO_MOVE_MODE_DONTWAKE)) {
1958 range.start = uffdio_move.dst;
1959 wake_userfault(ctx, &range);
1960 }
1961 ret = range.len == uffdio_move.len ? 0 : -EAGAIN;
1962
1963 out:
1964 return ret;
1965 }
1966
1967 /*
1968 * userland asks for a certain API version and we return which bits
1969 * and ioctl commands are implemented in this kernel for such API
1970 * version or -EINVAL if unknown.
1971 */
userfaultfd_api(struct userfaultfd_ctx * ctx,unsigned long arg)1972 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1973 unsigned long arg)
1974 {
1975 struct uffdio_api uffdio_api;
1976 void __user *buf = (void __user *)arg;
1977 unsigned int ctx_features;
1978 int ret;
1979 __u64 features;
1980
1981 ret = -EFAULT;
1982 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1983 goto out;
1984 features = uffdio_api.features;
1985 ret = -EINVAL;
1986 if (uffdio_api.api != UFFD_API)
1987 goto err_out;
1988 ret = -EPERM;
1989 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1990 goto err_out;
1991
1992 /* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */
1993 if (features & UFFD_FEATURE_WP_ASYNC)
1994 features |= UFFD_FEATURE_WP_UNPOPULATED;
1995
1996 /* report all available features and ioctls to userland */
1997 uffdio_api.features = UFFD_API_FEATURES;
1998 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1999 uffdio_api.features &=
2000 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
2001 #endif
2002 if (!pgtable_supports_uffd_wp())
2003 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
2004
2005 if (!uffd_supports_wp_marker()) {
2006 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
2007 uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
2008 uffdio_api.features &= ~UFFD_FEATURE_WP_ASYNC;
2009 }
2010
2011 ret = -EINVAL;
2012 if (features & ~uffdio_api.features)
2013 goto err_out;
2014
2015 uffdio_api.ioctls = UFFD_API_IOCTLS;
2016 ret = -EFAULT;
2017 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2018 goto out;
2019
2020 /* only enable the requested features for this uffd context */
2021 ctx_features = uffd_ctx_features(features);
2022 ret = -EINVAL;
2023 if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2024 goto err_out;
2025
2026 ret = 0;
2027 out:
2028 return ret;
2029 err_out:
2030 memset(&uffdio_api, 0, sizeof(uffdio_api));
2031 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2032 ret = -EFAULT;
2033 goto out;
2034 }
2035
userfaultfd_ioctl(struct file * file,unsigned cmd,unsigned long arg)2036 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2037 unsigned long arg)
2038 {
2039 int ret = -EINVAL;
2040 struct userfaultfd_ctx *ctx = file->private_data;
2041
2042 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2043 return -EINVAL;
2044
2045 switch(cmd) {
2046 case UFFDIO_API:
2047 ret = userfaultfd_api(ctx, arg);
2048 break;
2049 case UFFDIO_REGISTER:
2050 ret = userfaultfd_register(ctx, arg);
2051 break;
2052 case UFFDIO_UNREGISTER:
2053 ret = userfaultfd_unregister(ctx, arg);
2054 break;
2055 case UFFDIO_WAKE:
2056 ret = userfaultfd_wake(ctx, arg);
2057 break;
2058 case UFFDIO_COPY:
2059 ret = userfaultfd_copy(ctx, arg);
2060 break;
2061 case UFFDIO_ZEROPAGE:
2062 ret = userfaultfd_zeropage(ctx, arg);
2063 break;
2064 case UFFDIO_MOVE:
2065 ret = userfaultfd_move(ctx, arg);
2066 break;
2067 case UFFDIO_WRITEPROTECT:
2068 ret = userfaultfd_writeprotect(ctx, arg);
2069 break;
2070 case UFFDIO_CONTINUE:
2071 ret = userfaultfd_continue(ctx, arg);
2072 break;
2073 case UFFDIO_POISON:
2074 ret = userfaultfd_poison(ctx, arg);
2075 break;
2076 }
2077 return ret;
2078 }
2079
2080 #ifdef CONFIG_PROC_FS
userfaultfd_show_fdinfo(struct seq_file * m,struct file * f)2081 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2082 {
2083 struct userfaultfd_ctx *ctx = f->private_data;
2084 wait_queue_entry_t *wq;
2085 unsigned long pending = 0, total = 0;
2086
2087 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2088 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2089 pending++;
2090 total++;
2091 }
2092 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2093 total++;
2094 }
2095 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2096
2097 /*
2098 * If more protocols will be added, there will be all shown
2099 * separated by a space. Like this:
2100 * protocols: aa:... bb:...
2101 */
2102 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2103 pending, total, UFFD_API, ctx->features,
2104 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2105 }
2106 #endif
2107
2108 static const struct file_operations userfaultfd_fops = {
2109 #ifdef CONFIG_PROC_FS
2110 .show_fdinfo = userfaultfd_show_fdinfo,
2111 #endif
2112 .release = userfaultfd_release,
2113 .poll = userfaultfd_poll,
2114 .read_iter = userfaultfd_read_iter,
2115 .unlocked_ioctl = userfaultfd_ioctl,
2116 .compat_ioctl = compat_ptr_ioctl,
2117 .llseek = noop_llseek,
2118 };
2119
init_once_userfaultfd_ctx(void * mem)2120 static void init_once_userfaultfd_ctx(void *mem)
2121 {
2122 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2123
2124 init_waitqueue_head(&ctx->fault_pending_wqh);
2125 init_waitqueue_head(&ctx->fault_wqh);
2126 init_waitqueue_head(&ctx->event_wqh);
2127 init_waitqueue_head(&ctx->fd_wqh);
2128 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2129 }
2130
new_userfaultfd(int flags)2131 static int new_userfaultfd(int flags)
2132 {
2133 struct userfaultfd_ctx *ctx __free(kfree) = NULL;
2134
2135 VM_WARN_ON_ONCE(!current->mm);
2136
2137 /* Check the UFFD_* constants for consistency. */
2138 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2139
2140 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2141 return -EINVAL;
2142
2143 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2144 if (!ctx)
2145 return -ENOMEM;
2146
2147 refcount_set(&ctx->refcount, 1);
2148 ctx->flags = flags;
2149 ctx->features = 0;
2150 ctx->released = false;
2151 init_rwsem(&ctx->map_changing_lock);
2152 atomic_set(&ctx->mmap_changing, 0);
2153 ctx->mm = current->mm;
2154
2155 FD_PREPARE(fdf, flags & UFFD_SHARED_FCNTL_FLAGS,
2156 anon_inode_create_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
2157 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS),
2158 NULL));
2159 if (fdf.err)
2160 return fdf.err;
2161
2162 /* prevent the mm struct to be freed */
2163 mmgrab(ctx->mm);
2164 fd_prepare_file(fdf)->f_mode |= FMODE_NOWAIT;
2165 retain_and_null_ptr(ctx);
2166 return fd_publish(fdf);
2167 }
2168
userfaultfd_syscall_allowed(int flags)2169 static inline bool userfaultfd_syscall_allowed(int flags)
2170 {
2171 /* Userspace-only page faults are always allowed */
2172 if (flags & UFFD_USER_MODE_ONLY)
2173 return true;
2174
2175 /*
2176 * The user is requesting a userfaultfd which can handle kernel faults.
2177 * Privileged users are always allowed to do this.
2178 */
2179 if (capable(CAP_SYS_PTRACE))
2180 return true;
2181
2182 /* Otherwise, access to kernel fault handling is sysctl controlled. */
2183 return sysctl_unprivileged_userfaultfd;
2184 }
2185
SYSCALL_DEFINE1(userfaultfd,int,flags)2186 SYSCALL_DEFINE1(userfaultfd, int, flags)
2187 {
2188 if (!userfaultfd_syscall_allowed(flags))
2189 return -EPERM;
2190
2191 return new_userfaultfd(flags);
2192 }
2193
userfaultfd_dev_ioctl(struct file * file,unsigned int cmd,unsigned long flags)2194 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2195 {
2196 if (cmd != USERFAULTFD_IOC_NEW)
2197 return -EINVAL;
2198
2199 return new_userfaultfd(flags);
2200 }
2201
2202 static const struct file_operations userfaultfd_dev_fops = {
2203 .unlocked_ioctl = userfaultfd_dev_ioctl,
2204 .compat_ioctl = userfaultfd_dev_ioctl,
2205 .owner = THIS_MODULE,
2206 .llseek = noop_llseek,
2207 };
2208
2209 static struct miscdevice userfaultfd_misc = {
2210 .minor = MISC_DYNAMIC_MINOR,
2211 .name = "userfaultfd",
2212 .fops = &userfaultfd_dev_fops
2213 };
2214
userfaultfd_init(void)2215 static int __init userfaultfd_init(void)
2216 {
2217 int ret;
2218
2219 ret = misc_register(&userfaultfd_misc);
2220 if (ret)
2221 return ret;
2222
2223 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2224 sizeof(struct userfaultfd_ctx),
2225 0,
2226 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2227 init_once_userfaultfd_ctx);
2228 #ifdef CONFIG_SYSCTL
2229 register_sysctl_init("vm", vm_userfaultfd_table);
2230 #endif
2231 return 0;
2232 }
2233 __initcall(userfaultfd_init);
2234