xref: /linux/kernel/bpf/ringbuf.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 #include <linux/bpf.h>
2 #include <linux/btf.h>
3 #include <linux/err.h>
4 #include <linux/irq_work.h>
5 #include <linux/slab.h>
6 #include <linux/filter.h>
7 #include <linux/mm.h>
8 #include <linux/vmalloc.h>
9 #include <linux/wait.h>
10 #include <linux/poll.h>
11 #include <linux/kmemleak.h>
12 #include <uapi/linux/btf.h>
13 #include <linux/btf_ids.h>
14 #include <asm/rqspinlock.h>
15 
16 #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE | BPF_F_RB_OVERWRITE)
17 
18 /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */
19 #define RINGBUF_PGOFF \
20 	(offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT)
21 /* consumer page and producer page */
22 #define RINGBUF_POS_PAGES 2
23 #define RINGBUF_NR_META_PAGES (RINGBUF_PGOFF + RINGBUF_POS_PAGES)
24 
25 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4)
26 
27 struct bpf_ringbuf {
28 	wait_queue_head_t waitq;
29 	struct irq_work work;
30 	u64 mask;
31 	struct page **pages;
32 	int nr_pages;
33 	bool overwrite_mode;
34 	rqspinlock_t spinlock ____cacheline_aligned_in_smp;
35 	/* For user-space producer ring buffers, an atomic_t busy bit is used
36 	 * to synchronize access to the ring buffers in the kernel, rather than
37 	 * the spinlock that is used for kernel-producer ring buffers. This is
38 	 * done because the ring buffer must hold a lock across a BPF program's
39 	 * callback:
40 	 *
41 	 *    __bpf_user_ringbuf_peek() // lock acquired
42 	 * -> program callback_fn()
43 	 * -> __bpf_user_ringbuf_sample_release() // lock released
44 	 *
45 	 * It is unsafe and incorrect to hold an IRQ spinlock across what could
46 	 * be a long execution window, so we instead simply disallow concurrent
47 	 * access to the ring buffer by kernel consumers, and return -EBUSY from
48 	 * __bpf_user_ringbuf_peek() if the busy bit is held by another task.
49 	 */
50 	atomic_t busy ____cacheline_aligned_in_smp;
51 	/* Consumer and producer counters are put into separate pages to
52 	 * allow each position to be mapped with different permissions.
53 	 * This prevents a user-space application from modifying the
54 	 * position and ruining in-kernel tracking. The permissions of the
55 	 * pages depend on who is producing samples: user-space or the
56 	 * kernel. Note that the pending counter is placed in the same
57 	 * page as the producer, so that it shares the same cache line.
58 	 *
59 	 * Kernel-producer
60 	 * ---------------
61 	 * The producer position and data pages are mapped as r/o in
62 	 * userspace. For this approach, bits in the header of samples are
63 	 * used to signal to user-space, and to other producers, whether a
64 	 * sample is currently being written.
65 	 *
66 	 * User-space producer
67 	 * -------------------
68 	 * Only the page containing the consumer position is mapped r/o in
69 	 * user-space. User-space producers also use bits of the header to
70 	 * communicate to the kernel, but the kernel must carefully check and
71 	 * validate each sample to ensure that they're correctly formatted, and
72 	 * fully contained within the ring buffer.
73 	 */
74 	unsigned long consumer_pos __aligned(PAGE_SIZE);
75 	unsigned long producer_pos __aligned(PAGE_SIZE);
76 	unsigned long pending_pos;
77 	unsigned long overwrite_pos; /* position after the last overwritten record */
78 	char data[] __aligned(PAGE_SIZE);
79 };
80 
81 struct bpf_ringbuf_map {
82 	struct bpf_map map;
83 	struct bpf_ringbuf *rb;
84 };
85 
86 /* 8-byte ring buffer record header structure */
87 struct bpf_ringbuf_hdr {
88 	u32 len;
89 	u32 pg_off;
90 };
91 
bpf_ringbuf_area_alloc(size_t data_sz,int numa_node)92 static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node)
93 {
94 	const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL |
95 			    __GFP_NOWARN | __GFP_ZERO;
96 	int nr_meta_pages = RINGBUF_NR_META_PAGES;
97 	int nr_data_pages = data_sz >> PAGE_SHIFT;
98 	int nr_pages = nr_meta_pages + nr_data_pages;
99 	struct page **pages, *page;
100 	struct bpf_ringbuf *rb;
101 	size_t array_size;
102 	int i;
103 
104 	/* Each data page is mapped twice to allow "virtual"
105 	 * continuous read of samples wrapping around the end of ring
106 	 * buffer area:
107 	 * ------------------------------------------------------
108 	 * | meta pages |  real data pages  |  same data pages  |
109 	 * ------------------------------------------------------
110 	 * |            | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 |
111 	 * ------------------------------------------------------
112 	 * |            | TA             DA | TA             DA |
113 	 * ------------------------------------------------------
114 	 *                               ^^^^^^^
115 	 *                                  |
116 	 * Here, no need to worry about special handling of wrapped-around
117 	 * data due to double-mapped data pages. This works both in kernel and
118 	 * when mmap()'ed in user-space, simplifying both kernel and
119 	 * user-space implementations significantly.
120 	 */
121 	array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages);
122 	pages = bpf_map_area_alloc(array_size, numa_node);
123 	if (!pages)
124 		return NULL;
125 
126 	for (i = 0; i < nr_pages; i++) {
127 		page = alloc_pages_node(numa_node, flags, 0);
128 		if (!page) {
129 			nr_pages = i;
130 			goto err_free_pages;
131 		}
132 		pages[i] = page;
133 		if (i >= nr_meta_pages)
134 			pages[nr_data_pages + i] = page;
135 	}
136 
137 	rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages,
138 		  VM_MAP | VM_USERMAP, PAGE_KERNEL);
139 	if (rb) {
140 		kmemleak_not_leak(pages);
141 		rb->pages = pages;
142 		rb->nr_pages = nr_pages;
143 		return rb;
144 	}
145 
146 err_free_pages:
147 	for (i = 0; i < nr_pages; i++)
148 		__free_page(pages[i]);
149 	bpf_map_area_free(pages);
150 	return NULL;
151 }
152 
bpf_ringbuf_notify(struct irq_work * work)153 static void bpf_ringbuf_notify(struct irq_work *work)
154 {
155 	struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work);
156 
157 	wake_up_all(&rb->waitq);
158 }
159 
160 /* Maximum size of ring buffer area is limited by 32-bit page offset within
161  * record header, counted in pages. Reserve 8 bits for extensibility, and
162  * take into account few extra pages for consumer/producer pages and
163  * non-mmap()'able parts, the current maximum size would be:
164  *
165  *     (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE)
166  *
167  * This gives 64GB limit, which seems plenty for single ring buffer. Now
168  * considering that the maximum value of data_sz is (4GB - 1), there
169  * will be no overflow, so just note the size limit in the comments.
170  */
bpf_ringbuf_alloc(size_t data_sz,int numa_node,bool overwrite_mode)171 static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node, bool overwrite_mode)
172 {
173 	struct bpf_ringbuf *rb;
174 
175 	rb = bpf_ringbuf_area_alloc(data_sz, numa_node);
176 	if (!rb)
177 		return NULL;
178 
179 	raw_res_spin_lock_init(&rb->spinlock);
180 	atomic_set(&rb->busy, 0);
181 	init_waitqueue_head(&rb->waitq);
182 	init_irq_work(&rb->work, bpf_ringbuf_notify);
183 
184 	rb->mask = data_sz - 1;
185 	rb->consumer_pos = 0;
186 	rb->producer_pos = 0;
187 	rb->pending_pos = 0;
188 	rb->overwrite_mode = overwrite_mode;
189 
190 	return rb;
191 }
192 
ringbuf_map_alloc(union bpf_attr * attr)193 static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr)
194 {
195 	bool overwrite_mode = false;
196 	struct bpf_ringbuf_map *rb_map;
197 
198 	if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK)
199 		return ERR_PTR(-EINVAL);
200 
201 	if (attr->map_flags & BPF_F_RB_OVERWRITE) {
202 		if (attr->map_type != BPF_MAP_TYPE_RINGBUF)
203 			return ERR_PTR(-EINVAL);
204 		overwrite_mode = true;
205 	}
206 
207 	if (attr->key_size || attr->value_size ||
208 	    !is_power_of_2(attr->max_entries) ||
209 	    !PAGE_ALIGNED(attr->max_entries))
210 		return ERR_PTR(-EINVAL);
211 
212 	rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE);
213 	if (!rb_map)
214 		return ERR_PTR(-ENOMEM);
215 
216 	bpf_map_init_from_attr(&rb_map->map, attr);
217 
218 	rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node, overwrite_mode);
219 	if (!rb_map->rb) {
220 		bpf_map_area_free(rb_map);
221 		return ERR_PTR(-ENOMEM);
222 	}
223 
224 	return &rb_map->map;
225 }
226 
bpf_ringbuf_free(struct bpf_ringbuf * rb)227 static void bpf_ringbuf_free(struct bpf_ringbuf *rb)
228 {
229 	irq_work_sync(&rb->work);
230 
231 	/* copy pages pointer and nr_pages to local variable, as we are going
232 	 * to unmap rb itself with vunmap() below
233 	 */
234 	struct page **pages = rb->pages;
235 	int i, nr_pages = rb->nr_pages;
236 
237 	vunmap(rb);
238 	for (i = 0; i < nr_pages; i++)
239 		__free_page(pages[i]);
240 	bpf_map_area_free(pages);
241 }
242 
ringbuf_map_free(struct bpf_map * map)243 static void ringbuf_map_free(struct bpf_map *map)
244 {
245 	struct bpf_ringbuf_map *rb_map;
246 
247 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
248 	bpf_ringbuf_free(rb_map->rb);
249 	bpf_map_area_free(rb_map);
250 }
251 
ringbuf_map_lookup_elem(struct bpf_map * map,void * key)252 static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key)
253 {
254 	return ERR_PTR(-ENOTSUPP);
255 }
256 
ringbuf_map_update_elem(struct bpf_map * map,void * key,void * value,u64 flags)257 static long ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value,
258 				    u64 flags)
259 {
260 	return -ENOTSUPP;
261 }
262 
ringbuf_map_delete_elem(struct bpf_map * map,void * key)263 static long ringbuf_map_delete_elem(struct bpf_map *map, void *key)
264 {
265 	return -ENOTSUPP;
266 }
267 
ringbuf_map_get_next_key(struct bpf_map * map,void * key,void * next_key)268 static int ringbuf_map_get_next_key(struct bpf_map *map, void *key,
269 				    void *next_key)
270 {
271 	return -ENOTSUPP;
272 }
273 
ringbuf_map_mmap_kern(struct bpf_map * map,struct vm_area_struct * vma)274 static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma)
275 {
276 	struct bpf_ringbuf_map *rb_map;
277 
278 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
279 
280 	if (vma->vm_flags & VM_WRITE) {
281 		/* allow writable mapping for the consumer_pos only */
282 		if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE)
283 			return -EPERM;
284 	}
285 	/* remap_vmalloc_range() checks size and offset constraints */
286 	return remap_vmalloc_range(vma, rb_map->rb,
287 				   vma->vm_pgoff + RINGBUF_PGOFF);
288 }
289 
ringbuf_map_mmap_user(struct bpf_map * map,struct vm_area_struct * vma)290 static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma)
291 {
292 	struct bpf_ringbuf_map *rb_map;
293 
294 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
295 
296 	if (vma->vm_flags & VM_WRITE) {
297 		if (vma->vm_pgoff == 0)
298 			/* Disallow writable mappings to the consumer pointer,
299 			 * and allow writable mappings to both the producer
300 			 * position, and the ring buffer data itself.
301 			 */
302 			return -EPERM;
303 	}
304 	/* remap_vmalloc_range() checks size and offset constraints */
305 	return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF);
306 }
307 
308 /*
309  * Return an estimate of the available data in the ring buffer.
310  * Note: the returned value can exceed the actual ring buffer size because the
311  * function is not synchronized with the producer. The producer acquires the
312  * ring buffer's spinlock, but this function does not.
313  */
ringbuf_avail_data_sz(struct bpf_ringbuf * rb)314 static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb)
315 {
316 	unsigned long cons_pos, prod_pos, over_pos;
317 
318 	cons_pos = smp_load_acquire(&rb->consumer_pos);
319 
320 	if (unlikely(rb->overwrite_mode)) {
321 		over_pos = smp_load_acquire(&rb->overwrite_pos);
322 		prod_pos = smp_load_acquire(&rb->producer_pos);
323 		return prod_pos - max(cons_pos, over_pos);
324 	} else {
325 		prod_pos = smp_load_acquire(&rb->producer_pos);
326 		return prod_pos - cons_pos;
327 	}
328 }
329 
ringbuf_total_data_sz(const struct bpf_ringbuf * rb)330 static u32 ringbuf_total_data_sz(const struct bpf_ringbuf *rb)
331 {
332 	return rb->mask + 1;
333 }
334 
ringbuf_map_poll_kern(struct bpf_map * map,struct file * filp,struct poll_table_struct * pts)335 static __poll_t ringbuf_map_poll_kern(struct bpf_map *map, struct file *filp,
336 				      struct poll_table_struct *pts)
337 {
338 	struct bpf_ringbuf_map *rb_map;
339 
340 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
341 	poll_wait(filp, &rb_map->rb->waitq, pts);
342 
343 	if (ringbuf_avail_data_sz(rb_map->rb))
344 		return EPOLLIN | EPOLLRDNORM;
345 	return 0;
346 }
347 
ringbuf_map_poll_user(struct bpf_map * map,struct file * filp,struct poll_table_struct * pts)348 static __poll_t ringbuf_map_poll_user(struct bpf_map *map, struct file *filp,
349 				      struct poll_table_struct *pts)
350 {
351 	struct bpf_ringbuf_map *rb_map;
352 
353 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
354 	poll_wait(filp, &rb_map->rb->waitq, pts);
355 
356 	if (ringbuf_avail_data_sz(rb_map->rb) < ringbuf_total_data_sz(rb_map->rb))
357 		return EPOLLOUT | EPOLLWRNORM;
358 	return 0;
359 }
360 
ringbuf_map_mem_usage(const struct bpf_map * map)361 static u64 ringbuf_map_mem_usage(const struct bpf_map *map)
362 {
363 	struct bpf_ringbuf *rb;
364 	int nr_data_pages;
365 	int nr_meta_pages;
366 	u64 usage = sizeof(struct bpf_ringbuf_map);
367 
368 	rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
369 	usage += (u64)rb->nr_pages << PAGE_SHIFT;
370 	nr_meta_pages = RINGBUF_NR_META_PAGES;
371 	nr_data_pages = map->max_entries >> PAGE_SHIFT;
372 	usage += (nr_meta_pages + 2 * nr_data_pages) * sizeof(struct page *);
373 	return usage;
374 }
375 
376 BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
377 const struct bpf_map_ops ringbuf_map_ops = {
378 	.map_meta_equal = bpf_map_meta_equal,
379 	.map_alloc = ringbuf_map_alloc,
380 	.map_free = ringbuf_map_free,
381 	.map_mmap = ringbuf_map_mmap_kern,
382 	.map_poll = ringbuf_map_poll_kern,
383 	.map_lookup_elem = ringbuf_map_lookup_elem,
384 	.map_update_elem = ringbuf_map_update_elem,
385 	.map_delete_elem = ringbuf_map_delete_elem,
386 	.map_get_next_key = ringbuf_map_get_next_key,
387 	.map_mem_usage = ringbuf_map_mem_usage,
388 	.map_btf_id = &ringbuf_map_btf_ids[0],
389 };
390 
391 BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
392 const struct bpf_map_ops user_ringbuf_map_ops = {
393 	.map_meta_equal = bpf_map_meta_equal,
394 	.map_alloc = ringbuf_map_alloc,
395 	.map_free = ringbuf_map_free,
396 	.map_mmap = ringbuf_map_mmap_user,
397 	.map_poll = ringbuf_map_poll_user,
398 	.map_lookup_elem = ringbuf_map_lookup_elem,
399 	.map_update_elem = ringbuf_map_update_elem,
400 	.map_delete_elem = ringbuf_map_delete_elem,
401 	.map_get_next_key = ringbuf_map_get_next_key,
402 	.map_mem_usage = ringbuf_map_mem_usage,
403 	.map_btf_id = &user_ringbuf_map_btf_ids[0],
404 };
405 
406 /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself,
407  * calculate offset from record metadata to ring buffer in pages, rounded
408  * down. This page offset is stored as part of record metadata and allows to
409  * restore struct bpf_ringbuf * from record pointer. This page offset is
410  * stored at offset 4 of record metadata header.
411  */
bpf_ringbuf_rec_pg_off(struct bpf_ringbuf * rb,struct bpf_ringbuf_hdr * hdr)412 static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb,
413 				     struct bpf_ringbuf_hdr *hdr)
414 {
415 	return ((void *)hdr - (void *)rb) >> PAGE_SHIFT;
416 }
417 
418 /* Given pointer to ring buffer record header, restore pointer to struct
419  * bpf_ringbuf itself by using page offset stored at offset 4
420  */
421 static struct bpf_ringbuf *
bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr * hdr)422 bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr)
423 {
424 	unsigned long addr = (unsigned long)(void *)hdr;
425 	unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT;
426 
427 	return (void*)((addr & PAGE_MASK) - off);
428 }
429 
bpf_ringbuf_has_space(const struct bpf_ringbuf * rb,unsigned long new_prod_pos,unsigned long cons_pos,unsigned long pend_pos)430 static bool bpf_ringbuf_has_space(const struct bpf_ringbuf *rb,
431 				  unsigned long new_prod_pos,
432 				  unsigned long cons_pos,
433 				  unsigned long pend_pos)
434 {
435 	/*
436 	 * No space if oldest not yet committed record until the newest
437 	 * record span more than (ringbuf_size - 1).
438 	 */
439 	if (new_prod_pos - pend_pos > rb->mask)
440 		return false;
441 
442 	/* Ok, we have space in overwrite mode */
443 	if (unlikely(rb->overwrite_mode))
444 		return true;
445 
446 	/*
447 	 * No space if producer position advances more than (ringbuf_size - 1)
448 	 * ahead of consumer position when not in overwrite mode.
449 	 */
450 	if (new_prod_pos - cons_pos > rb->mask)
451 		return false;
452 
453 	return true;
454 }
455 
bpf_ringbuf_round_up_hdr_len(u32 hdr_len)456 static u32 bpf_ringbuf_round_up_hdr_len(u32 hdr_len)
457 {
458 	hdr_len &= ~BPF_RINGBUF_DISCARD_BIT;
459 	return round_up(hdr_len + BPF_RINGBUF_HDR_SZ, 8);
460 }
461 
__bpf_ringbuf_reserve(struct bpf_ringbuf * rb,u64 size)462 static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size)
463 {
464 	unsigned long cons_pos, prod_pos, new_prod_pos, pend_pos, over_pos, flags;
465 	struct bpf_ringbuf_hdr *hdr;
466 	u32 len, pg_off, hdr_len;
467 
468 	if (unlikely(size > RINGBUF_MAX_RECORD_SZ))
469 		return NULL;
470 
471 	len = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
472 	if (len > ringbuf_total_data_sz(rb))
473 		return NULL;
474 
475 	cons_pos = smp_load_acquire(&rb->consumer_pos);
476 
477 	if (raw_res_spin_lock_irqsave(&rb->spinlock, flags))
478 		return NULL;
479 
480 	pend_pos = rb->pending_pos;
481 	prod_pos = rb->producer_pos;
482 	new_prod_pos = prod_pos + len;
483 
484 	while (pend_pos < prod_pos) {
485 		hdr = (void *)rb->data + (pend_pos & rb->mask);
486 		hdr_len = READ_ONCE(hdr->len);
487 		if (hdr_len & BPF_RINGBUF_BUSY_BIT)
488 			break;
489 		pend_pos += bpf_ringbuf_round_up_hdr_len(hdr_len);
490 	}
491 	rb->pending_pos = pend_pos;
492 
493 	if (!bpf_ringbuf_has_space(rb, new_prod_pos, cons_pos, pend_pos)) {
494 		raw_res_spin_unlock_irqrestore(&rb->spinlock, flags);
495 		return NULL;
496 	}
497 
498 	/*
499 	 * In overwrite mode, advance overwrite_pos when the ring buffer is full.
500 	 * The key points are to stay on record boundaries and consume enough records
501 	 * to fit the new one.
502 	 */
503 	if (unlikely(rb->overwrite_mode)) {
504 		over_pos = rb->overwrite_pos;
505 		while (new_prod_pos - over_pos > rb->mask) {
506 			hdr = (void *)rb->data + (over_pos & rb->mask);
507 			hdr_len = READ_ONCE(hdr->len);
508 			/*
509 			 * The bpf_ringbuf_has_space() check above ensures we won’t
510 			 * step over a record currently being worked on by another
511 			 * producer.
512 			 */
513 			over_pos += bpf_ringbuf_round_up_hdr_len(hdr_len);
514 		}
515 		/*
516 		 * smp_store_release(&rb->producer_pos, new_prod_pos) at
517 		 * the end of the function ensures that when consumer sees
518 		 * the updated rb->producer_pos, it always sees the updated
519 		 * rb->overwrite_pos, so when consumer reads overwrite_pos
520 		 * after smp_load_acquire(r->producer_pos), the overwrite_pos
521 		 * will always be valid.
522 		 */
523 		WRITE_ONCE(rb->overwrite_pos, over_pos);
524 	}
525 
526 	hdr = (void *)rb->data + (prod_pos & rb->mask);
527 	pg_off = bpf_ringbuf_rec_pg_off(rb, hdr);
528 	hdr->len = size | BPF_RINGBUF_BUSY_BIT;
529 	hdr->pg_off = pg_off;
530 
531 	/* pairs with consumer's smp_load_acquire() */
532 	smp_store_release(&rb->producer_pos, new_prod_pos);
533 
534 	raw_res_spin_unlock_irqrestore(&rb->spinlock, flags);
535 
536 	return (void *)hdr + BPF_RINGBUF_HDR_SZ;
537 }
538 
BPF_CALL_3(bpf_ringbuf_reserve,struct bpf_map *,map,u64,size,u64,flags)539 BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags)
540 {
541 	struct bpf_ringbuf_map *rb_map;
542 
543 	if (unlikely(flags))
544 		return 0;
545 
546 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
547 	return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size);
548 }
549 
550 const struct bpf_func_proto bpf_ringbuf_reserve_proto = {
551 	.func		= bpf_ringbuf_reserve,
552 	.ret_type	= RET_PTR_TO_RINGBUF_MEM_OR_NULL,
553 	.arg1_type	= ARG_CONST_MAP_PTR,
554 	.arg2_type	= ARG_CONST_ALLOC_SIZE_OR_ZERO,
555 	.arg3_type	= ARG_ANYTHING,
556 };
557 
bpf_ringbuf_commit(void * sample,u64 flags,bool discard)558 static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard)
559 {
560 	unsigned long rec_pos, cons_pos;
561 	struct bpf_ringbuf_hdr *hdr;
562 	struct bpf_ringbuf *rb;
563 	u32 new_len;
564 
565 	hdr = sample - BPF_RINGBUF_HDR_SZ;
566 	rb = bpf_ringbuf_restore_from_rec(hdr);
567 	new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT;
568 	if (discard)
569 		new_len |= BPF_RINGBUF_DISCARD_BIT;
570 
571 	/* update record header with correct final size prefix */
572 	xchg(&hdr->len, new_len);
573 
574 	/* if consumer caught up and is waiting for our record, notify about
575 	 * new data availability
576 	 */
577 	rec_pos = (void *)hdr - (void *)rb->data;
578 	cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask;
579 
580 	if (flags & BPF_RB_FORCE_WAKEUP)
581 		irq_work_queue(&rb->work);
582 	else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP))
583 		irq_work_queue(&rb->work);
584 }
585 
BPF_CALL_2(bpf_ringbuf_submit,void *,sample,u64,flags)586 BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags)
587 {
588 	bpf_ringbuf_commit(sample, flags, false /* discard */);
589 	return 0;
590 }
591 
592 const struct bpf_func_proto bpf_ringbuf_submit_proto = {
593 	.func		= bpf_ringbuf_submit,
594 	.ret_type	= RET_VOID,
595 	.arg1_type	= ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE,
596 	.arg2_type	= ARG_ANYTHING,
597 };
598 
BPF_CALL_2(bpf_ringbuf_discard,void *,sample,u64,flags)599 BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags)
600 {
601 	bpf_ringbuf_commit(sample, flags, true /* discard */);
602 	return 0;
603 }
604 
605 const struct bpf_func_proto bpf_ringbuf_discard_proto = {
606 	.func		= bpf_ringbuf_discard,
607 	.ret_type	= RET_VOID,
608 	.arg1_type	= ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE,
609 	.arg2_type	= ARG_ANYTHING,
610 };
611 
BPF_CALL_4(bpf_ringbuf_output,struct bpf_map *,map,void *,data,u64,size,u64,flags)612 BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size,
613 	   u64, flags)
614 {
615 	struct bpf_ringbuf_map *rb_map;
616 	void *rec;
617 
618 	if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP)))
619 		return -EINVAL;
620 
621 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
622 	rec = __bpf_ringbuf_reserve(rb_map->rb, size);
623 	if (!rec)
624 		return -EAGAIN;
625 
626 	memcpy(rec, data, size);
627 	bpf_ringbuf_commit(rec, flags, false /* discard */);
628 	return 0;
629 }
630 
631 const struct bpf_func_proto bpf_ringbuf_output_proto = {
632 	.func		= bpf_ringbuf_output,
633 	.ret_type	= RET_INTEGER,
634 	.arg1_type	= ARG_CONST_MAP_PTR,
635 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
636 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
637 	.arg4_type	= ARG_ANYTHING,
638 };
639 
BPF_CALL_2(bpf_ringbuf_query,struct bpf_map *,map,u64,flags)640 BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags)
641 {
642 	struct bpf_ringbuf *rb;
643 
644 	rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
645 
646 	switch (flags) {
647 	case BPF_RB_AVAIL_DATA:
648 		return ringbuf_avail_data_sz(rb);
649 	case BPF_RB_RING_SIZE:
650 		return ringbuf_total_data_sz(rb);
651 	case BPF_RB_CONS_POS:
652 		return smp_load_acquire(&rb->consumer_pos);
653 	case BPF_RB_PROD_POS:
654 		return smp_load_acquire(&rb->producer_pos);
655 	case BPF_RB_OVERWRITE_POS:
656 		return smp_load_acquire(&rb->overwrite_pos);
657 	default:
658 		return 0;
659 	}
660 }
661 
662 const struct bpf_func_proto bpf_ringbuf_query_proto = {
663 	.func		= bpf_ringbuf_query,
664 	.ret_type	= RET_INTEGER,
665 	.arg1_type	= ARG_CONST_MAP_PTR,
666 	.arg2_type	= ARG_ANYTHING,
667 };
668 
BPF_CALL_4(bpf_ringbuf_reserve_dynptr,struct bpf_map *,map,u32,size,u64,flags,struct bpf_dynptr_kern *,ptr)669 BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags,
670 	   struct bpf_dynptr_kern *, ptr)
671 {
672 	struct bpf_ringbuf_map *rb_map;
673 	void *sample;
674 	int err;
675 
676 	if (unlikely(flags)) {
677 		bpf_dynptr_set_null(ptr);
678 		return -EINVAL;
679 	}
680 
681 	err = bpf_dynptr_check_size(size);
682 	if (err) {
683 		bpf_dynptr_set_null(ptr);
684 		return err;
685 	}
686 
687 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
688 
689 	sample = __bpf_ringbuf_reserve(rb_map->rb, size);
690 	if (!sample) {
691 		bpf_dynptr_set_null(ptr);
692 		return -EINVAL;
693 	}
694 
695 	bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size);
696 
697 	return 0;
698 }
699 
700 const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = {
701 	.func		= bpf_ringbuf_reserve_dynptr,
702 	.ret_type	= RET_INTEGER,
703 	.arg1_type	= ARG_CONST_MAP_PTR,
704 	.arg2_type	= ARG_ANYTHING,
705 	.arg3_type	= ARG_ANYTHING,
706 	.arg4_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT | MEM_WRITE,
707 };
708 
BPF_CALL_2(bpf_ringbuf_submit_dynptr,struct bpf_dynptr_kern *,ptr,u64,flags)709 BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
710 {
711 	if (!ptr->data)
712 		return 0;
713 
714 	bpf_ringbuf_commit(ptr->data, flags, false /* discard */);
715 
716 	bpf_dynptr_set_null(ptr);
717 
718 	return 0;
719 }
720 
721 const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = {
722 	.func		= bpf_ringbuf_submit_dynptr,
723 	.ret_type	= RET_VOID,
724 	.arg1_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
725 	.arg2_type	= ARG_ANYTHING,
726 };
727 
BPF_CALL_2(bpf_ringbuf_discard_dynptr,struct bpf_dynptr_kern *,ptr,u64,flags)728 BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
729 {
730 	if (!ptr->data)
731 		return 0;
732 
733 	bpf_ringbuf_commit(ptr->data, flags, true /* discard */);
734 
735 	bpf_dynptr_set_null(ptr);
736 
737 	return 0;
738 }
739 
740 const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = {
741 	.func		= bpf_ringbuf_discard_dynptr,
742 	.ret_type	= RET_VOID,
743 	.arg1_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
744 	.arg2_type	= ARG_ANYTHING,
745 };
746 
__bpf_user_ringbuf_peek(struct bpf_ringbuf * rb,void ** sample,u32 * size)747 static int __bpf_user_ringbuf_peek(struct bpf_ringbuf *rb, void **sample, u32 *size)
748 {
749 	int err;
750 	u32 hdr_len, sample_len, total_len, flags, *hdr;
751 	u64 cons_pos, prod_pos;
752 
753 	/* Synchronizes with smp_store_release() in user-space producer. */
754 	prod_pos = smp_load_acquire(&rb->producer_pos);
755 	if (prod_pos % 8)
756 		return -EINVAL;
757 
758 	/* Synchronizes with smp_store_release() in __bpf_user_ringbuf_sample_release() */
759 	cons_pos = smp_load_acquire(&rb->consumer_pos);
760 	if (cons_pos >= prod_pos)
761 		return -ENODATA;
762 
763 	hdr = (u32 *)((uintptr_t)rb->data + (uintptr_t)(cons_pos & rb->mask));
764 	/* Synchronizes with smp_store_release() in user-space producer. */
765 	hdr_len = smp_load_acquire(hdr);
766 	flags = hdr_len & (BPF_RINGBUF_BUSY_BIT | BPF_RINGBUF_DISCARD_BIT);
767 	sample_len = hdr_len & ~flags;
768 	total_len = round_up(sample_len + BPF_RINGBUF_HDR_SZ, 8);
769 
770 	/* The sample must fit within the region advertised by the producer position. */
771 	if (total_len > prod_pos - cons_pos)
772 		return -EINVAL;
773 
774 	/* The sample must fit within the data region of the ring buffer. */
775 	if (total_len > ringbuf_total_data_sz(rb))
776 		return -E2BIG;
777 
778 	/* The sample must fit into a struct bpf_dynptr. */
779 	err = bpf_dynptr_check_size(sample_len);
780 	if (err)
781 		return -E2BIG;
782 
783 	if (flags & BPF_RINGBUF_DISCARD_BIT) {
784 		/* If the discard bit is set, the sample should be skipped.
785 		 *
786 		 * Update the consumer pos, and return -EAGAIN so the caller
787 		 * knows to skip this sample and try to read the next one.
788 		 */
789 		smp_store_release(&rb->consumer_pos, cons_pos + total_len);
790 		return -EAGAIN;
791 	}
792 
793 	if (flags & BPF_RINGBUF_BUSY_BIT)
794 		return -ENODATA;
795 
796 	*sample = (void *)((uintptr_t)rb->data +
797 			   (uintptr_t)((cons_pos + BPF_RINGBUF_HDR_SZ) & rb->mask));
798 	*size = sample_len;
799 	return 0;
800 }
801 
__bpf_user_ringbuf_sample_release(struct bpf_ringbuf * rb,size_t size,u64 flags)802 static void __bpf_user_ringbuf_sample_release(struct bpf_ringbuf *rb, size_t size, u64 flags)
803 {
804 	u64 consumer_pos;
805 	u32 rounded_size = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
806 
807 	/* Using smp_load_acquire() is unnecessary here, as the busy-bit
808 	 * prevents another task from writing to consumer_pos after it was read
809 	 * by this task with smp_load_acquire() in __bpf_user_ringbuf_peek().
810 	 */
811 	consumer_pos = rb->consumer_pos;
812 	 /* Synchronizes with smp_load_acquire() in user-space producer. */
813 	smp_store_release(&rb->consumer_pos, consumer_pos + rounded_size);
814 }
815 
BPF_CALL_4(bpf_user_ringbuf_drain,struct bpf_map *,map,void *,callback_fn,void *,callback_ctx,u64,flags)816 BPF_CALL_4(bpf_user_ringbuf_drain, struct bpf_map *, map,
817 	   void *, callback_fn, void *, callback_ctx, u64, flags)
818 {
819 	struct bpf_ringbuf *rb;
820 	long samples, discarded_samples = 0, ret = 0;
821 	bpf_callback_t callback = (bpf_callback_t)callback_fn;
822 	u64 wakeup_flags = BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP;
823 	int busy = 0;
824 
825 	if (unlikely(flags & ~wakeup_flags))
826 		return -EINVAL;
827 
828 	rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
829 
830 	/* If another consumer is already consuming a sample, wait for them to finish. */
831 	if (!atomic_try_cmpxchg(&rb->busy, &busy, 1))
832 		return -EBUSY;
833 
834 	for (samples = 0; samples < BPF_MAX_USER_RINGBUF_SAMPLES && ret == 0; samples++) {
835 		int err;
836 		u32 size;
837 		void *sample;
838 		struct bpf_dynptr_kern dynptr;
839 
840 		err = __bpf_user_ringbuf_peek(rb, &sample, &size);
841 		if (err) {
842 			if (err == -ENODATA) {
843 				break;
844 			} else if (err == -EAGAIN) {
845 				discarded_samples++;
846 				continue;
847 			} else {
848 				ret = err;
849 				goto schedule_work_return;
850 			}
851 		}
852 
853 		bpf_dynptr_init(&dynptr, sample, BPF_DYNPTR_TYPE_LOCAL, 0, size);
854 		ret = callback((uintptr_t)&dynptr, (uintptr_t)callback_ctx, 0, 0, 0);
855 		__bpf_user_ringbuf_sample_release(rb, size, flags);
856 	}
857 	ret = samples - discarded_samples;
858 
859 schedule_work_return:
860 	/* Prevent the clearing of the busy-bit from being reordered before the
861 	 * storing of any rb consumer or producer positions.
862 	 */
863 	atomic_set_release(&rb->busy, 0);
864 
865 	if (flags & BPF_RB_FORCE_WAKEUP)
866 		irq_work_queue(&rb->work);
867 	else if (!(flags & BPF_RB_NO_WAKEUP) && samples > 0)
868 		irq_work_queue(&rb->work);
869 	return ret;
870 }
871 
872 const struct bpf_func_proto bpf_user_ringbuf_drain_proto = {
873 	.func		= bpf_user_ringbuf_drain,
874 	.ret_type	= RET_INTEGER,
875 	.arg1_type	= ARG_CONST_MAP_PTR,
876 	.arg2_type	= ARG_PTR_TO_FUNC,
877 	.arg3_type	= ARG_PTR_TO_STACK_OR_NULL,
878 	.arg4_type	= ARG_ANYTHING,
879 };
880