xref: /linux/drivers/usb/gadget/udc/core.c (revision 5d324e5159d9e6a1e6678007ce3f24e569650db6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * udc.c - Core UDC Framework
4  *
5  * Copyright (C) 2010 Texas Instruments
6  * Author: Felipe Balbi <balbi@ti.com>
7  */
8 
9 #define pr_fmt(fmt)	"UDC core: " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/list.h>
15 #include <linux/idr.h>
16 #include <linux/err.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/sched/task_stack.h>
19 #include <linux/workqueue.h>
20 
21 #include <linux/usb/ch9.h>
22 #include <linux/usb/gadget.h>
23 #include <linux/usb.h>
24 
25 #include "trace.h"
26 
27 static DEFINE_IDA(gadget_id_numbers);
28 
29 static const struct bus_type gadget_bus_type;
30 
31 /**
32  * struct usb_udc - describes one usb device controller
33  * @driver: the gadget driver pointer. For use by the class code
34  * @dev: the child device to the actual controller
35  * @gadget: the gadget. For use by the class code
36  * @list: for use by the udc class driver
37  * @vbus: for udcs who care about vbus status, this value is real vbus status;
38  * for udcs who do not care about vbus status, this value is always true
39  * @started: the UDC's started state. True if the UDC had started.
40  * @allow_connect: Indicates whether UDC is allowed to be pulled up.
41  * Set/cleared by gadget_(un)bind_driver() after gadget driver is bound or
42  * unbound.
43  * @vbus_work: work routine to handle VBUS status change notifications.
44  * @connect_lock: protects udc->started, gadget->connect,
45  * gadget->allow_connect and gadget->deactivate. The routines
46  * usb_gadget_connect_locked(), usb_gadget_disconnect_locked(),
47  * usb_udc_connect_control_locked(), usb_gadget_udc_start_locked() and
48  * usb_gadget_udc_stop_locked() are called with this lock held.
49  *
50  * This represents the internal data structure which is used by the UDC-class
51  * to hold information about udc driver and gadget together.
52  */
53 struct usb_udc {
54 	struct usb_gadget_driver	*driver;
55 	struct usb_gadget		*gadget;
56 	struct device			dev;
57 	struct list_head		list;
58 	bool				vbus;
59 	bool				started;
60 	bool				allow_connect;
61 	struct work_struct		vbus_work;
62 	struct mutex			connect_lock;
63 };
64 
65 static const struct class udc_class;
66 static LIST_HEAD(udc_list);
67 
68 /* Protects udc_list, udc->driver, driver->is_bound, and related calls */
69 static DEFINE_MUTEX(udc_lock);
70 
71 /* ------------------------------------------------------------------------- */
72 
73 /**
74  * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
75  * @ep:the endpoint being configured
76  * @maxpacket_limit:value of maximum packet size limit
77  *
78  * This function should be used only in UDC drivers to initialize endpoint
79  * (usually in probe function).
80  */
usb_ep_set_maxpacket_limit(struct usb_ep * ep,unsigned maxpacket_limit)81 void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
82 					      unsigned maxpacket_limit)
83 {
84 	ep->maxpacket_limit = maxpacket_limit;
85 	ep->maxpacket = maxpacket_limit;
86 
87 	trace_usb_ep_set_maxpacket_limit(ep, 0);
88 }
89 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
90 
91 /**
92  * usb_ep_enable - configure endpoint, making it usable
93  * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
94  *	drivers discover endpoints through the ep_list of a usb_gadget.
95  *
96  * When configurations are set, or when interface settings change, the driver
97  * will enable or disable the relevant endpoints.  while it is enabled, an
98  * endpoint may be used for i/o until the driver receives a disconnect() from
99  * the host or until the endpoint is disabled.
100  *
101  * the ep0 implementation (which calls this routine) must ensure that the
102  * hardware capabilities of each endpoint match the descriptor provided
103  * for it.  for example, an endpoint named "ep2in-bulk" would be usable
104  * for interrupt transfers as well as bulk, but it likely couldn't be used
105  * for iso transfers or for endpoint 14.  some endpoints are fully
106  * configurable, with more generic names like "ep-a".  (remember that for
107  * USB, "in" means "towards the USB host".)
108  *
109  * This routine may be called in an atomic (interrupt) context.
110  *
111  * returns zero, or a negative error code.
112  */
usb_ep_enable(struct usb_ep * ep)113 int usb_ep_enable(struct usb_ep *ep)
114 {
115 	int ret = 0;
116 
117 	if (ep->enabled)
118 		goto out;
119 
120 	/* UDC drivers can't handle endpoints with maxpacket size 0 */
121 	if (!ep->desc || usb_endpoint_maxp(ep->desc) == 0) {
122 		WARN_ONCE(1, "%s: ep%d (%s) has %s\n", __func__, ep->address, ep->name,
123 			  (!ep->desc) ? "NULL descriptor" : "maxpacket 0");
124 
125 		ret = -EINVAL;
126 		goto out;
127 	}
128 
129 	ret = ep->ops->enable(ep, ep->desc);
130 	if (ret)
131 		goto out;
132 
133 	ep->enabled = true;
134 
135 out:
136 	trace_usb_ep_enable(ep, ret);
137 
138 	return ret;
139 }
140 EXPORT_SYMBOL_GPL(usb_ep_enable);
141 
142 /**
143  * usb_ep_disable - endpoint is no longer usable
144  * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
145  *
146  * no other task may be using this endpoint when this is called.
147  * any pending and uncompleted requests will complete with status
148  * indicating disconnect (-ESHUTDOWN) before this call returns.
149  * gadget drivers must call usb_ep_enable() again before queueing
150  * requests to the endpoint.
151  *
152  * This routine may be called in an atomic (interrupt) context.
153  *
154  * returns zero, or a negative error code.
155  */
usb_ep_disable(struct usb_ep * ep)156 int usb_ep_disable(struct usb_ep *ep)
157 {
158 	int ret = 0;
159 
160 	if (!ep->enabled)
161 		goto out;
162 
163 	ret = ep->ops->disable(ep);
164 	if (ret)
165 		goto out;
166 
167 	ep->enabled = false;
168 
169 out:
170 	trace_usb_ep_disable(ep, ret);
171 
172 	return ret;
173 }
174 EXPORT_SYMBOL_GPL(usb_ep_disable);
175 
176 /**
177  * usb_ep_alloc_request - allocate a request object to use with this endpoint
178  * @ep:the endpoint to be used with with the request
179  * @gfp_flags:GFP_* flags to use
180  *
181  * Request objects must be allocated with this call, since they normally
182  * need controller-specific setup and may even need endpoint-specific
183  * resources such as allocation of DMA descriptors.
184  * Requests may be submitted with usb_ep_queue(), and receive a single
185  * completion callback.  Free requests with usb_ep_free_request(), when
186  * they are no longer needed.
187  *
188  * Returns the request, or null if one could not be allocated.
189  */
usb_ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)190 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
191 						       gfp_t gfp_flags)
192 {
193 	struct usb_request *req = NULL;
194 
195 	req = ep->ops->alloc_request(ep, gfp_flags);
196 
197 	if (req)
198 		req->ep = ep;
199 
200 	trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM);
201 
202 	return req;
203 }
204 EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
205 
206 /**
207  * usb_ep_free_request - frees a request object
208  * @ep:the endpoint associated with the request
209  * @req:the request being freed
210  *
211  * Reverses the effect of usb_ep_alloc_request().
212  * Caller guarantees the request is not queued, and that it will
213  * no longer be requeued (or otherwise used).
214  */
usb_ep_free_request(struct usb_ep * ep,struct usb_request * req)215 void usb_ep_free_request(struct usb_ep *ep,
216 				       struct usb_request *req)
217 {
218 	trace_usb_ep_free_request(ep, req, 0);
219 	ep->ops->free_request(ep, req);
220 }
221 EXPORT_SYMBOL_GPL(usb_ep_free_request);
222 
223 /**
224  * usb_ep_queue - queues (submits) an I/O request to an endpoint.
225  * @ep:the endpoint associated with the request
226  * @req:the request being submitted
227  * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
228  *	pre-allocate all necessary memory with the request.
229  *
230  * This tells the device controller to perform the specified request through
231  * that endpoint (reading or writing a buffer).  When the request completes,
232  * including being canceled by usb_ep_dequeue(), the request's completion
233  * routine is called to return the request to the driver.  Any endpoint
234  * (except control endpoints like ep0) may have more than one transfer
235  * request queued; they complete in FIFO order.  Once a gadget driver
236  * submits a request, that request may not be examined or modified until it
237  * is given back to that driver through the completion callback.
238  *
239  * Each request is turned into one or more packets.  The controller driver
240  * never merges adjacent requests into the same packet.  OUT transfers
241  * will sometimes use data that's already buffered in the hardware.
242  * Drivers can rely on the fact that the first byte of the request's buffer
243  * always corresponds to the first byte of some USB packet, for both
244  * IN and OUT transfers.
245  *
246  * Bulk endpoints can queue any amount of data; the transfer is packetized
247  * automatically.  The last packet will be short if the request doesn't fill it
248  * out completely.  Zero length packets (ZLPs) should be avoided in portable
249  * protocols since not all usb hardware can successfully handle zero length
250  * packets.  (ZLPs may be explicitly written, and may be implicitly written if
251  * the request 'zero' flag is set.)  Bulk endpoints may also be used
252  * for interrupt transfers; but the reverse is not true, and some endpoints
253  * won't support every interrupt transfer.  (Such as 768 byte packets.)
254  *
255  * Interrupt-only endpoints are less functional than bulk endpoints, for
256  * example by not supporting queueing or not handling buffers that are
257  * larger than the endpoint's maxpacket size.  They may also treat data
258  * toggle differently.
259  *
260  * Control endpoints ... after getting a setup() callback, the driver queues
261  * one response (even if it would be zero length).  That enables the
262  * status ack, after transferring data as specified in the response.  Setup
263  * functions may return negative error codes to generate protocol stalls.
264  * (Note that some USB device controllers disallow protocol stall responses
265  * in some cases.)  When control responses are deferred (the response is
266  * written after the setup callback returns), then usb_ep_set_halt() may be
267  * used on ep0 to trigger protocol stalls.  Depending on the controller,
268  * it may not be possible to trigger a status-stage protocol stall when the
269  * data stage is over, that is, from within the response's completion
270  * routine.
271  *
272  * For periodic endpoints, like interrupt or isochronous ones, the usb host
273  * arranges to poll once per interval, and the gadget driver usually will
274  * have queued some data to transfer at that time.
275  *
276  * Note that @req's ->complete() callback must never be called from
277  * within usb_ep_queue() as that can create deadlock situations.
278  *
279  * This routine may be called in interrupt context.
280  *
281  * Returns zero, or a negative error code.  Endpoints that are not enabled
282  * report errors; errors will also be
283  * reported when the usb peripheral is disconnected.
284  *
285  * If and only if @req is successfully queued (the return value is zero),
286  * @req->complete() will be called exactly once, when the Gadget core and
287  * UDC are finished with the request.  When the completion function is called,
288  * control of the request is returned to the device driver which submitted it.
289  * The completion handler may then immediately free or reuse @req.
290  */
usb_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)291 int usb_ep_queue(struct usb_ep *ep,
292 			       struct usb_request *req, gfp_t gfp_flags)
293 {
294 	int ret = 0;
295 
296 	if (!ep->enabled && ep->address) {
297 		pr_debug("USB gadget: queue request to disabled ep 0x%x (%s)\n",
298 				 ep->address, ep->name);
299 		ret = -ESHUTDOWN;
300 		goto out;
301 	}
302 
303 	ret = ep->ops->queue(ep, req, gfp_flags);
304 
305 out:
306 	trace_usb_ep_queue(ep, req, ret);
307 
308 	return ret;
309 }
310 EXPORT_SYMBOL_GPL(usb_ep_queue);
311 
312 /**
313  * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
314  * @ep:the endpoint associated with the request
315  * @req:the request being canceled
316  *
317  * If the request is still active on the endpoint, it is dequeued and
318  * eventually its completion routine is called (with status -ECONNRESET);
319  * else a negative error code is returned.  This routine is asynchronous,
320  * that is, it may return before the completion routine runs.
321  *
322  * Note that some hardware can't clear out write fifos (to unlink the request
323  * at the head of the queue) except as part of disconnecting from usb. Such
324  * restrictions prevent drivers from supporting configuration changes,
325  * even to configuration zero (a "chapter 9" requirement).
326  *
327  * This routine may be called in interrupt context.
328  */
usb_ep_dequeue(struct usb_ep * ep,struct usb_request * req)329 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
330 {
331 	int ret;
332 
333 	ret = ep->ops->dequeue(ep, req);
334 	trace_usb_ep_dequeue(ep, req, ret);
335 
336 	return ret;
337 }
338 EXPORT_SYMBOL_GPL(usb_ep_dequeue);
339 
340 /**
341  * usb_ep_set_halt - sets the endpoint halt feature.
342  * @ep: the non-isochronous endpoint being stalled
343  *
344  * Use this to stall an endpoint, perhaps as an error report.
345  * Except for control endpoints,
346  * the endpoint stays halted (will not stream any data) until the host
347  * clears this feature; drivers may need to empty the endpoint's request
348  * queue first, to make sure no inappropriate transfers happen.
349  *
350  * Note that while an endpoint CLEAR_FEATURE will be invisible to the
351  * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
352  * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
353  * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
354  *
355  * This routine may be called in interrupt context.
356  *
357  * Returns zero, or a negative error code.  On success, this call sets
358  * underlying hardware state that blocks data transfers.
359  * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
360  * transfer requests are still queued, or if the controller hardware
361  * (usually a FIFO) still holds bytes that the host hasn't collected.
362  */
usb_ep_set_halt(struct usb_ep * ep)363 int usb_ep_set_halt(struct usb_ep *ep)
364 {
365 	int ret;
366 
367 	ret = ep->ops->set_halt(ep, 1);
368 	trace_usb_ep_set_halt(ep, ret);
369 
370 	return ret;
371 }
372 EXPORT_SYMBOL_GPL(usb_ep_set_halt);
373 
374 /**
375  * usb_ep_clear_halt - clears endpoint halt, and resets toggle
376  * @ep:the bulk or interrupt endpoint being reset
377  *
378  * Use this when responding to the standard usb "set interface" request,
379  * for endpoints that aren't reconfigured, after clearing any other state
380  * in the endpoint's i/o queue.
381  *
382  * This routine may be called in interrupt context.
383  *
384  * Returns zero, or a negative error code.  On success, this call clears
385  * the underlying hardware state reflecting endpoint halt and data toggle.
386  * Note that some hardware can't support this request (like pxa2xx_udc),
387  * and accordingly can't correctly implement interface altsettings.
388  */
usb_ep_clear_halt(struct usb_ep * ep)389 int usb_ep_clear_halt(struct usb_ep *ep)
390 {
391 	int ret;
392 
393 	ret = ep->ops->set_halt(ep, 0);
394 	trace_usb_ep_clear_halt(ep, ret);
395 
396 	return ret;
397 }
398 EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
399 
400 /**
401  * usb_ep_set_wedge - sets the halt feature and ignores clear requests
402  * @ep: the endpoint being wedged
403  *
404  * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
405  * requests. If the gadget driver clears the halt status, it will
406  * automatically unwedge the endpoint.
407  *
408  * This routine may be called in interrupt context.
409  *
410  * Returns zero on success, else negative errno.
411  */
usb_ep_set_wedge(struct usb_ep * ep)412 int usb_ep_set_wedge(struct usb_ep *ep)
413 {
414 	int ret;
415 
416 	if (ep->ops->set_wedge)
417 		ret = ep->ops->set_wedge(ep);
418 	else
419 		ret = ep->ops->set_halt(ep, 1);
420 
421 	trace_usb_ep_set_wedge(ep, ret);
422 
423 	return ret;
424 }
425 EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
426 
427 /**
428  * usb_ep_fifo_status - returns number of bytes in fifo, or error
429  * @ep: the endpoint whose fifo status is being checked.
430  *
431  * FIFO endpoints may have "unclaimed data" in them in certain cases,
432  * such as after aborted transfers.  Hosts may not have collected all
433  * the IN data written by the gadget driver (and reported by a request
434  * completion).  The gadget driver may not have collected all the data
435  * written OUT to it by the host.  Drivers that need precise handling for
436  * fault reporting or recovery may need to use this call.
437  *
438  * This routine may be called in interrupt context.
439  *
440  * This returns the number of such bytes in the fifo, or a negative
441  * errno if the endpoint doesn't use a FIFO or doesn't support such
442  * precise handling.
443  */
usb_ep_fifo_status(struct usb_ep * ep)444 int usb_ep_fifo_status(struct usb_ep *ep)
445 {
446 	int ret;
447 
448 	if (ep->ops->fifo_status)
449 		ret = ep->ops->fifo_status(ep);
450 	else
451 		ret = -EOPNOTSUPP;
452 
453 	trace_usb_ep_fifo_status(ep, ret);
454 
455 	return ret;
456 }
457 EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
458 
459 /**
460  * usb_ep_fifo_flush - flushes contents of a fifo
461  * @ep: the endpoint whose fifo is being flushed.
462  *
463  * This call may be used to flush the "unclaimed data" that may exist in
464  * an endpoint fifo after abnormal transaction terminations.  The call
465  * must never be used except when endpoint is not being used for any
466  * protocol translation.
467  *
468  * This routine may be called in interrupt context.
469  */
usb_ep_fifo_flush(struct usb_ep * ep)470 void usb_ep_fifo_flush(struct usb_ep *ep)
471 {
472 	if (ep->ops->fifo_flush)
473 		ep->ops->fifo_flush(ep);
474 
475 	trace_usb_ep_fifo_flush(ep, 0);
476 }
477 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
478 
479 /* ------------------------------------------------------------------------- */
480 
481 /**
482  * usb_gadget_frame_number - returns the current frame number
483  * @gadget: controller that reports the frame number
484  *
485  * Returns the usb frame number, normally eleven bits from a SOF packet,
486  * or negative errno if this device doesn't support this capability.
487  */
usb_gadget_frame_number(struct usb_gadget * gadget)488 int usb_gadget_frame_number(struct usb_gadget *gadget)
489 {
490 	int ret;
491 
492 	ret = gadget->ops->get_frame(gadget);
493 
494 	trace_usb_gadget_frame_number(gadget, ret);
495 
496 	return ret;
497 }
498 EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
499 
500 /**
501  * usb_gadget_wakeup - tries to wake up the host connected to this gadget
502  * @gadget: controller used to wake up the host
503  *
504  * Returns zero on success, else negative error code if the hardware
505  * doesn't support such attempts, or its support has not been enabled
506  * by the usb host.  Drivers must return device descriptors that report
507  * their ability to support this, or hosts won't enable it.
508  *
509  * This may also try to use SRP to wake the host and start enumeration,
510  * even if OTG isn't otherwise in use.  OTG devices may also start
511  * remote wakeup even when hosts don't explicitly enable it.
512  */
usb_gadget_wakeup(struct usb_gadget * gadget)513 int usb_gadget_wakeup(struct usb_gadget *gadget)
514 {
515 	int ret = 0;
516 
517 	if (!gadget->ops->wakeup) {
518 		ret = -EOPNOTSUPP;
519 		goto out;
520 	}
521 
522 	ret = gadget->ops->wakeup(gadget);
523 
524 out:
525 	trace_usb_gadget_wakeup(gadget, ret);
526 
527 	return ret;
528 }
529 EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
530 
531 /**
532  * usb_gadget_set_remote_wakeup - configures the device remote wakeup feature.
533  * @gadget:the device being configured for remote wakeup
534  * @set:value to be configured.
535  *
536  * set to one to enable remote wakeup feature and zero to disable it.
537  *
538  * returns zero on success, else negative errno.
539  */
usb_gadget_set_remote_wakeup(struct usb_gadget * gadget,int set)540 int usb_gadget_set_remote_wakeup(struct usb_gadget *gadget, int set)
541 {
542 	int ret = 0;
543 
544 	if (!gadget->ops->set_remote_wakeup) {
545 		ret = -EOPNOTSUPP;
546 		goto out;
547 	}
548 
549 	ret = gadget->ops->set_remote_wakeup(gadget, set);
550 
551 out:
552 	trace_usb_gadget_set_remote_wakeup(gadget, ret);
553 
554 	return ret;
555 }
556 EXPORT_SYMBOL_GPL(usb_gadget_set_remote_wakeup);
557 
558 /**
559  * usb_gadget_set_selfpowered - sets the device selfpowered feature.
560  * @gadget:the device being declared as self-powered
561  *
562  * this affects the device status reported by the hardware driver
563  * to reflect that it now has a local power supply.
564  *
565  * returns zero on success, else negative errno.
566  */
usb_gadget_set_selfpowered(struct usb_gadget * gadget)567 int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
568 {
569 	int ret = 0;
570 
571 	if (!gadget->ops->set_selfpowered) {
572 		ret = -EOPNOTSUPP;
573 		goto out;
574 	}
575 
576 	ret = gadget->ops->set_selfpowered(gadget, 1);
577 
578 out:
579 	trace_usb_gadget_set_selfpowered(gadget, ret);
580 
581 	return ret;
582 }
583 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
584 
585 /**
586  * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
587  * @gadget:the device being declared as bus-powered
588  *
589  * this affects the device status reported by the hardware driver.
590  * some hardware may not support bus-powered operation, in which
591  * case this feature's value can never change.
592  *
593  * returns zero on success, else negative errno.
594  */
usb_gadget_clear_selfpowered(struct usb_gadget * gadget)595 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
596 {
597 	int ret = 0;
598 
599 	if (!gadget->ops->set_selfpowered) {
600 		ret = -EOPNOTSUPP;
601 		goto out;
602 	}
603 
604 	ret = gadget->ops->set_selfpowered(gadget, 0);
605 
606 out:
607 	trace_usb_gadget_clear_selfpowered(gadget, ret);
608 
609 	return ret;
610 }
611 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
612 
613 /**
614  * usb_gadget_vbus_connect - Notify controller that VBUS is powered
615  * @gadget:The device which now has VBUS power.
616  * Context: can sleep
617  *
618  * This call is used by a driver for an external transceiver (or GPIO)
619  * that detects a VBUS power session starting.  Common responses include
620  * resuming the controller, activating the D+ (or D-) pullup to let the
621  * host detect that a USB device is attached, and starting to draw power
622  * (8mA or possibly more, especially after SET_CONFIGURATION).
623  *
624  * Returns zero on success, else negative errno.
625  */
usb_gadget_vbus_connect(struct usb_gadget * gadget)626 int usb_gadget_vbus_connect(struct usb_gadget *gadget)
627 {
628 	int ret = 0;
629 
630 	if (!gadget->ops->vbus_session) {
631 		ret = -EOPNOTSUPP;
632 		goto out;
633 	}
634 
635 	ret = gadget->ops->vbus_session(gadget, 1);
636 
637 out:
638 	trace_usb_gadget_vbus_connect(gadget, ret);
639 
640 	return ret;
641 }
642 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
643 
644 /**
645  * usb_gadget_vbus_draw - constrain controller's VBUS power usage
646  * @gadget:The device whose VBUS usage is being described
647  * @mA:How much current to draw, in milliAmperes.  This should be twice
648  *	the value listed in the configuration descriptor bMaxPower field.
649  *
650  * This call is used by gadget drivers during SET_CONFIGURATION calls,
651  * reporting how much power the device may consume.  For example, this
652  * could affect how quickly batteries are recharged.
653  *
654  * Returns zero on success, else negative errno.
655  */
usb_gadget_vbus_draw(struct usb_gadget * gadget,unsigned mA)656 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
657 {
658 	int ret = 0;
659 
660 	if (!gadget->ops->vbus_draw) {
661 		ret = -EOPNOTSUPP;
662 		goto out;
663 	}
664 
665 	ret = gadget->ops->vbus_draw(gadget, mA);
666 	if (!ret)
667 		gadget->mA = mA;
668 
669 out:
670 	trace_usb_gadget_vbus_draw(gadget, ret);
671 
672 	return ret;
673 }
674 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
675 
676 /**
677  * usb_gadget_vbus_disconnect - notify controller about VBUS session end
678  * @gadget:the device whose VBUS supply is being described
679  * Context: can sleep
680  *
681  * This call is used by a driver for an external transceiver (or GPIO)
682  * that detects a VBUS power session ending.  Common responses include
683  * reversing everything done in usb_gadget_vbus_connect().
684  *
685  * Returns zero on success, else negative errno.
686  */
usb_gadget_vbus_disconnect(struct usb_gadget * gadget)687 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
688 {
689 	int ret = 0;
690 
691 	if (!gadget->ops->vbus_session) {
692 		ret = -EOPNOTSUPP;
693 		goto out;
694 	}
695 
696 	ret = gadget->ops->vbus_session(gadget, 0);
697 
698 out:
699 	trace_usb_gadget_vbus_disconnect(gadget, ret);
700 
701 	return ret;
702 }
703 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
704 
usb_gadget_connect_locked(struct usb_gadget * gadget)705 static int usb_gadget_connect_locked(struct usb_gadget *gadget)
706 	__must_hold(&gadget->udc->connect_lock)
707 {
708 	int ret = 0;
709 
710 	if (!gadget->ops->pullup) {
711 		ret = -EOPNOTSUPP;
712 		goto out;
713 	}
714 
715 	if (gadget->deactivated || !gadget->udc->allow_connect || !gadget->udc->started) {
716 		/*
717 		 * If the gadget isn't usable (because it is deactivated,
718 		 * unbound, or not yet started), we only save the new state.
719 		 * The gadget will be connected automatically when it is
720 		 * activated/bound/started.
721 		 */
722 		gadget->connected = true;
723 		goto out;
724 	}
725 
726 	ret = gadget->ops->pullup(gadget, 1);
727 	if (!ret)
728 		gadget->connected = 1;
729 
730 out:
731 	trace_usb_gadget_connect(gadget, ret);
732 
733 	return ret;
734 }
735 
736 /**
737  * usb_gadget_connect - software-controlled connect to USB host
738  * @gadget:the peripheral being connected
739  *
740  * Enables the D+ (or potentially D-) pullup.  The host will start
741  * enumerating this gadget when the pullup is active and a VBUS session
742  * is active (the link is powered).
743  *
744  * Returns zero on success, else negative errno.
745  */
usb_gadget_connect(struct usb_gadget * gadget)746 int usb_gadget_connect(struct usb_gadget *gadget)
747 {
748 	int ret;
749 
750 	mutex_lock(&gadget->udc->connect_lock);
751 	ret = usb_gadget_connect_locked(gadget);
752 	mutex_unlock(&gadget->udc->connect_lock);
753 
754 	return ret;
755 }
756 EXPORT_SYMBOL_GPL(usb_gadget_connect);
757 
usb_gadget_disconnect_locked(struct usb_gadget * gadget)758 static int usb_gadget_disconnect_locked(struct usb_gadget *gadget)
759 	__must_hold(&gadget->udc->connect_lock)
760 {
761 	int ret = 0;
762 
763 	if (!gadget->ops->pullup) {
764 		ret = -EOPNOTSUPP;
765 		goto out;
766 	}
767 
768 	if (!gadget->connected)
769 		goto out;
770 
771 	if (gadget->deactivated || !gadget->udc->started) {
772 		/*
773 		 * If gadget is deactivated we only save new state.
774 		 * Gadget will stay disconnected after activation.
775 		 */
776 		gadget->connected = false;
777 		goto out;
778 	}
779 
780 	ret = gadget->ops->pullup(gadget, 0);
781 	if (!ret)
782 		gadget->connected = 0;
783 
784 	mutex_lock(&udc_lock);
785 	if (gadget->udc->driver)
786 		gadget->udc->driver->disconnect(gadget);
787 	mutex_unlock(&udc_lock);
788 
789 out:
790 	trace_usb_gadget_disconnect(gadget, ret);
791 
792 	return ret;
793 }
794 
795 /**
796  * usb_gadget_disconnect - software-controlled disconnect from USB host
797  * @gadget:the peripheral being disconnected
798  *
799  * Disables the D+ (or potentially D-) pullup, which the host may see
800  * as a disconnect (when a VBUS session is active).  Not all systems
801  * support software pullup controls.
802  *
803  * Following a successful disconnect, invoke the ->disconnect() callback
804  * for the current gadget driver so that UDC drivers don't need to.
805  *
806  * Returns zero on success, else negative errno.
807  */
usb_gadget_disconnect(struct usb_gadget * gadget)808 int usb_gadget_disconnect(struct usb_gadget *gadget)
809 {
810 	int ret;
811 
812 	mutex_lock(&gadget->udc->connect_lock);
813 	ret = usb_gadget_disconnect_locked(gadget);
814 	mutex_unlock(&gadget->udc->connect_lock);
815 
816 	return ret;
817 }
818 EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
819 
820 /**
821  * usb_gadget_deactivate - deactivate function which is not ready to work
822  * @gadget: the peripheral being deactivated
823  *
824  * This routine may be used during the gadget driver bind() call to prevent
825  * the peripheral from ever being visible to the USB host, unless later
826  * usb_gadget_activate() is called.  For example, user mode components may
827  * need to be activated before the system can talk to hosts.
828  *
829  * This routine may sleep; it must not be called in interrupt context
830  * (such as from within a gadget driver's disconnect() callback).
831  *
832  * Returns zero on success, else negative errno.
833  */
usb_gadget_deactivate(struct usb_gadget * gadget)834 int usb_gadget_deactivate(struct usb_gadget *gadget)
835 {
836 	int ret = 0;
837 
838 	mutex_lock(&gadget->udc->connect_lock);
839 	if (gadget->deactivated)
840 		goto unlock;
841 
842 	if (gadget->connected) {
843 		ret = usb_gadget_disconnect_locked(gadget);
844 		if (ret)
845 			goto unlock;
846 
847 		/*
848 		 * If gadget was being connected before deactivation, we want
849 		 * to reconnect it in usb_gadget_activate().
850 		 */
851 		gadget->connected = true;
852 	}
853 	gadget->deactivated = true;
854 
855 unlock:
856 	mutex_unlock(&gadget->udc->connect_lock);
857 	trace_usb_gadget_deactivate(gadget, ret);
858 
859 	return ret;
860 }
861 EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
862 
863 /**
864  * usb_gadget_activate - activate function which is not ready to work
865  * @gadget: the peripheral being activated
866  *
867  * This routine activates gadget which was previously deactivated with
868  * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
869  *
870  * This routine may sleep; it must not be called in interrupt context.
871  *
872  * Returns zero on success, else negative errno.
873  */
usb_gadget_activate(struct usb_gadget * gadget)874 int usb_gadget_activate(struct usb_gadget *gadget)
875 {
876 	int ret = 0;
877 
878 	mutex_lock(&gadget->udc->connect_lock);
879 	if (!gadget->deactivated)
880 		goto unlock;
881 
882 	gadget->deactivated = false;
883 
884 	/*
885 	 * If gadget has been connected before deactivation, or became connected
886 	 * while it was being deactivated, we call usb_gadget_connect().
887 	 */
888 	if (gadget->connected)
889 		ret = usb_gadget_connect_locked(gadget);
890 
891 unlock:
892 	mutex_unlock(&gadget->udc->connect_lock);
893 	trace_usb_gadget_activate(gadget, ret);
894 
895 	return ret;
896 }
897 EXPORT_SYMBOL_GPL(usb_gadget_activate);
898 
899 /* ------------------------------------------------------------------------- */
900 
901 #ifdef	CONFIG_HAS_DMA
902 
usb_gadget_map_request_by_dev(struct device * dev,struct usb_request * req,int is_in)903 int usb_gadget_map_request_by_dev(struct device *dev,
904 		struct usb_request *req, int is_in)
905 {
906 	if (req->length == 0)
907 		return 0;
908 
909 	if (req->sg_was_mapped) {
910 		req->num_mapped_sgs = req->num_sgs;
911 		return 0;
912 	}
913 
914 	if (req->num_sgs) {
915 		int     mapped;
916 
917 		mapped = dma_map_sg(dev, req->sg, req->num_sgs,
918 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
919 		if (mapped == 0) {
920 			dev_err(dev, "failed to map SGs\n");
921 			return -EFAULT;
922 		}
923 
924 		req->num_mapped_sgs = mapped;
925 	} else {
926 		if (is_vmalloc_addr(req->buf)) {
927 			dev_err(dev, "buffer is not dma capable\n");
928 			return -EFAULT;
929 		} else if (object_is_on_stack(req->buf)) {
930 			dev_err(dev, "buffer is on stack\n");
931 			return -EFAULT;
932 		}
933 
934 		req->dma = dma_map_single(dev, req->buf, req->length,
935 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
936 
937 		if (dma_mapping_error(dev, req->dma)) {
938 			dev_err(dev, "failed to map buffer\n");
939 			return -EFAULT;
940 		}
941 
942 		req->dma_mapped = 1;
943 	}
944 
945 	return 0;
946 }
947 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev);
948 
usb_gadget_map_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)949 int usb_gadget_map_request(struct usb_gadget *gadget,
950 		struct usb_request *req, int is_in)
951 {
952 	return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in);
953 }
954 EXPORT_SYMBOL_GPL(usb_gadget_map_request);
955 
usb_gadget_unmap_request_by_dev(struct device * dev,struct usb_request * req,int is_in)956 void usb_gadget_unmap_request_by_dev(struct device *dev,
957 		struct usb_request *req, int is_in)
958 {
959 	if (req->length == 0 || req->sg_was_mapped)
960 		return;
961 
962 	if (req->num_mapped_sgs) {
963 		dma_unmap_sg(dev, req->sg, req->num_sgs,
964 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
965 
966 		req->num_mapped_sgs = 0;
967 	} else if (req->dma_mapped) {
968 		dma_unmap_single(dev, req->dma, req->length,
969 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
970 		req->dma_mapped = 0;
971 	}
972 }
973 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev);
974 
usb_gadget_unmap_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)975 void usb_gadget_unmap_request(struct usb_gadget *gadget,
976 		struct usb_request *req, int is_in)
977 {
978 	usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in);
979 }
980 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request);
981 
982 #endif	/* CONFIG_HAS_DMA */
983 
984 /* ------------------------------------------------------------------------- */
985 
986 /**
987  * usb_gadget_giveback_request - give the request back to the gadget layer
988  * @ep: the endpoint to be used with with the request
989  * @req: the request being given back
990  *
991  * This is called by device controller drivers in order to return the
992  * completed request back to the gadget layer.
993  */
usb_gadget_giveback_request(struct usb_ep * ep,struct usb_request * req)994 void usb_gadget_giveback_request(struct usb_ep *ep,
995 		struct usb_request *req)
996 {
997 	if (likely(req->status == 0))
998 		usb_led_activity(USB_LED_EVENT_GADGET);
999 
1000 	trace_usb_gadget_giveback_request(ep, req, 0);
1001 
1002 	req->complete(ep, req);
1003 }
1004 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request);
1005 
1006 /* ------------------------------------------------------------------------- */
1007 
1008 /**
1009  * gadget_find_ep_by_name - returns ep whose name is the same as sting passed
1010  *	in second parameter or NULL if searched endpoint not found
1011  * @g: controller to check for quirk
1012  * @name: name of searched endpoint
1013  */
gadget_find_ep_by_name(struct usb_gadget * g,const char * name)1014 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name)
1015 {
1016 	struct usb_ep *ep;
1017 
1018 	gadget_for_each_ep(ep, g) {
1019 		if (!strcmp(ep->name, name))
1020 			return ep;
1021 	}
1022 
1023 	return NULL;
1024 }
1025 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name);
1026 
1027 /* ------------------------------------------------------------------------- */
1028 
usb_gadget_ep_match_desc(struct usb_gadget * gadget,struct usb_ep * ep,struct usb_endpoint_descriptor * desc,struct usb_ss_ep_comp_descriptor * ep_comp)1029 int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
1030 		struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
1031 		struct usb_ss_ep_comp_descriptor *ep_comp)
1032 {
1033 	u8		type;
1034 	u16		max;
1035 	int		num_req_streams = 0;
1036 
1037 	/* endpoint already claimed? */
1038 	if (ep->claimed)
1039 		return 0;
1040 
1041 	type = usb_endpoint_type(desc);
1042 	max = usb_endpoint_maxp(desc);
1043 
1044 	if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in)
1045 		return 0;
1046 	if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out)
1047 		return 0;
1048 
1049 	if (max > ep->maxpacket_limit)
1050 		return 0;
1051 
1052 	/* "high bandwidth" works only at high speed */
1053 	if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1)
1054 		return 0;
1055 
1056 	switch (type) {
1057 	case USB_ENDPOINT_XFER_CONTROL:
1058 		/* only support ep0 for portable CONTROL traffic */
1059 		return 0;
1060 	case USB_ENDPOINT_XFER_ISOC:
1061 		if (!ep->caps.type_iso)
1062 			return 0;
1063 		/* ISO:  limit 1023 bytes full speed, 1024 high/super speed */
1064 		if (!gadget_is_dualspeed(gadget) && max > 1023)
1065 			return 0;
1066 		break;
1067 	case USB_ENDPOINT_XFER_BULK:
1068 		if (!ep->caps.type_bulk)
1069 			return 0;
1070 		if (ep_comp && gadget_is_superspeed(gadget)) {
1071 			/* Get the number of required streams from the
1072 			 * EP companion descriptor and see if the EP
1073 			 * matches it
1074 			 */
1075 			num_req_streams = ep_comp->bmAttributes & 0x1f;
1076 			if (num_req_streams > ep->max_streams)
1077 				return 0;
1078 		}
1079 		break;
1080 	case USB_ENDPOINT_XFER_INT:
1081 		/* Bulk endpoints handle interrupt transfers,
1082 		 * except the toggle-quirky iso-synch kind
1083 		 */
1084 		if (!ep->caps.type_int && !ep->caps.type_bulk)
1085 			return 0;
1086 		/* INT:  limit 64 bytes full speed, 1024 high/super speed */
1087 		if (!gadget_is_dualspeed(gadget) && max > 64)
1088 			return 0;
1089 		break;
1090 	}
1091 
1092 	return 1;
1093 }
1094 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc);
1095 
1096 /**
1097  * usb_gadget_check_config - checks if the UDC can support the binded
1098  *	configuration
1099  * @gadget: controller to check the USB configuration
1100  *
1101  * Ensure that a UDC is able to support the requested resources by a
1102  * configuration, and that there are no resource limitations, such as
1103  * internal memory allocated to all requested endpoints.
1104  *
1105  * Returns zero on success, else a negative errno.
1106  */
usb_gadget_check_config(struct usb_gadget * gadget)1107 int usb_gadget_check_config(struct usb_gadget *gadget)
1108 {
1109 	if (gadget->ops->check_config)
1110 		return gadget->ops->check_config(gadget);
1111 	return 0;
1112 }
1113 EXPORT_SYMBOL_GPL(usb_gadget_check_config);
1114 
1115 /* ------------------------------------------------------------------------- */
1116 
usb_gadget_state_work(struct work_struct * work)1117 static void usb_gadget_state_work(struct work_struct *work)
1118 {
1119 	struct usb_gadget *gadget = work_to_gadget(work);
1120 	struct usb_udc *udc = gadget->udc;
1121 
1122 	if (udc)
1123 		sysfs_notify(&udc->dev.kobj, NULL, "state");
1124 }
1125 
usb_gadget_set_state(struct usb_gadget * gadget,enum usb_device_state state)1126 void usb_gadget_set_state(struct usb_gadget *gadget,
1127 		enum usb_device_state state)
1128 {
1129 	unsigned long flags;
1130 
1131 	spin_lock_irqsave(&gadget->state_lock, flags);
1132 	gadget->state = state;
1133 	if (!gadget->teardown)
1134 		schedule_work(&gadget->work);
1135 	spin_unlock_irqrestore(&gadget->state_lock, flags);
1136 	trace_usb_gadget_set_state(gadget, 0);
1137 }
1138 EXPORT_SYMBOL_GPL(usb_gadget_set_state);
1139 
1140 /* ------------------------------------------------------------------------- */
1141 
1142 /* Acquire connect_lock before calling this function. */
usb_udc_connect_control_locked(struct usb_udc * udc)1143 static int usb_udc_connect_control_locked(struct usb_udc *udc) __must_hold(&udc->connect_lock)
1144 {
1145 	if (udc->vbus)
1146 		return usb_gadget_connect_locked(udc->gadget);
1147 	else
1148 		return usb_gadget_disconnect_locked(udc->gadget);
1149 }
1150 
vbus_event_work(struct work_struct * work)1151 static void vbus_event_work(struct work_struct *work)
1152 {
1153 	struct usb_udc *udc = container_of(work, struct usb_udc, vbus_work);
1154 
1155 	mutex_lock(&udc->connect_lock);
1156 	usb_udc_connect_control_locked(udc);
1157 	mutex_unlock(&udc->connect_lock);
1158 }
1159 
1160 /**
1161  * usb_udc_vbus_handler - updates the udc core vbus status, and try to
1162  * connect or disconnect gadget
1163  * @gadget: The gadget which vbus change occurs
1164  * @status: The vbus status
1165  *
1166  * The udc driver calls it when it wants to connect or disconnect gadget
1167  * according to vbus status.
1168  *
1169  * This function can be invoked from interrupt context by irq handlers of
1170  * the gadget drivers, however, usb_udc_connect_control() has to run in
1171  * non-atomic context due to the following:
1172  * a. Some of the gadget driver implementations expect the ->pullup
1173  * callback to be invoked in non-atomic context.
1174  * b. usb_gadget_disconnect() acquires udc_lock which is a mutex.
1175  * Hence offload invocation of usb_udc_connect_control() to workqueue.
1176  */
usb_udc_vbus_handler(struct usb_gadget * gadget,bool status)1177 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status)
1178 {
1179 	struct usb_udc *udc = gadget->udc;
1180 
1181 	if (udc) {
1182 		udc->vbus = status;
1183 		schedule_work(&udc->vbus_work);
1184 	}
1185 }
1186 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler);
1187 
1188 /**
1189  * usb_gadget_udc_reset - notifies the udc core that bus reset occurs
1190  * @gadget: The gadget which bus reset occurs
1191  * @driver: The gadget driver we want to notify
1192  *
1193  * If the udc driver has bus reset handler, it needs to call this when the bus
1194  * reset occurs, it notifies the gadget driver that the bus reset occurs as
1195  * well as updates gadget state.
1196  */
usb_gadget_udc_reset(struct usb_gadget * gadget,struct usb_gadget_driver * driver)1197 void usb_gadget_udc_reset(struct usb_gadget *gadget,
1198 		struct usb_gadget_driver *driver)
1199 {
1200 	driver->reset(gadget);
1201 	usb_gadget_set_state(gadget, USB_STATE_DEFAULT);
1202 }
1203 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset);
1204 
1205 /**
1206  * usb_gadget_udc_start_locked - tells usb device controller to start up
1207  * @udc: The UDC to be started
1208  *
1209  * This call is issued by the UDC Class driver when it's about
1210  * to register a gadget driver to the device controller, before
1211  * calling gadget driver's bind() method.
1212  *
1213  * It allows the controller to be powered off until strictly
1214  * necessary to have it powered on.
1215  *
1216  * Returns zero on success, else negative errno.
1217  *
1218  * Caller should acquire connect_lock before invoking this function.
1219  */
usb_gadget_udc_start_locked(struct usb_udc * udc)1220 static inline int usb_gadget_udc_start_locked(struct usb_udc *udc)
1221 	__must_hold(&udc->connect_lock)
1222 {
1223 	int ret;
1224 
1225 	if (udc->started) {
1226 		dev_err(&udc->dev, "UDC had already started\n");
1227 		return -EBUSY;
1228 	}
1229 
1230 	ret = udc->gadget->ops->udc_start(udc->gadget, udc->driver);
1231 	if (!ret)
1232 		udc->started = true;
1233 
1234 	return ret;
1235 }
1236 
1237 /**
1238  * usb_gadget_udc_stop_locked - tells usb device controller we don't need it anymore
1239  * @udc: The UDC to be stopped
1240  *
1241  * This call is issued by the UDC Class driver after calling
1242  * gadget driver's unbind() method.
1243  *
1244  * The details are implementation specific, but it can go as
1245  * far as powering off UDC completely and disable its data
1246  * line pullups.
1247  *
1248  * Caller should acquire connect lock before invoking this function.
1249  */
usb_gadget_udc_stop_locked(struct usb_udc * udc)1250 static inline void usb_gadget_udc_stop_locked(struct usb_udc *udc)
1251 	__must_hold(&udc->connect_lock)
1252 {
1253 	if (!udc->started) {
1254 		dev_err(&udc->dev, "UDC had already stopped\n");
1255 		return;
1256 	}
1257 
1258 	udc->gadget->ops->udc_stop(udc->gadget);
1259 	udc->started = false;
1260 }
1261 
1262 /**
1263  * usb_gadget_udc_set_speed - tells usb device controller speed supported by
1264  *    current driver
1265  * @udc: The device we want to set maximum speed
1266  * @speed: The maximum speed to allowed to run
1267  *
1268  * This call is issued by the UDC Class driver before calling
1269  * usb_gadget_udc_start() in order to make sure that we don't try to
1270  * connect on speeds the gadget driver doesn't support.
1271  */
usb_gadget_udc_set_speed(struct usb_udc * udc,enum usb_device_speed speed)1272 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc,
1273 					    enum usb_device_speed speed)
1274 {
1275 	struct usb_gadget *gadget = udc->gadget;
1276 	enum usb_device_speed s;
1277 
1278 	if (speed == USB_SPEED_UNKNOWN)
1279 		s = gadget->max_speed;
1280 	else
1281 		s = min(speed, gadget->max_speed);
1282 
1283 	if (s == USB_SPEED_SUPER_PLUS && gadget->ops->udc_set_ssp_rate)
1284 		gadget->ops->udc_set_ssp_rate(gadget, gadget->max_ssp_rate);
1285 	else if (gadget->ops->udc_set_speed)
1286 		gadget->ops->udc_set_speed(gadget, s);
1287 }
1288 
1289 /**
1290  * usb_gadget_enable_async_callbacks - tell usb device controller to enable asynchronous callbacks
1291  * @udc: The UDC which should enable async callbacks
1292  *
1293  * This routine is used when binding gadget drivers.  It undoes the effect
1294  * of usb_gadget_disable_async_callbacks(); the UDC driver should enable IRQs
1295  * (if necessary) and resume issuing callbacks.
1296  *
1297  * This routine will always be called in process context.
1298  */
usb_gadget_enable_async_callbacks(struct usb_udc * udc)1299 static inline void usb_gadget_enable_async_callbacks(struct usb_udc *udc)
1300 {
1301 	struct usb_gadget *gadget = udc->gadget;
1302 
1303 	if (gadget->ops->udc_async_callbacks)
1304 		gadget->ops->udc_async_callbacks(gadget, true);
1305 }
1306 
1307 /**
1308  * usb_gadget_disable_async_callbacks - tell usb device controller to disable asynchronous callbacks
1309  * @udc: The UDC which should disable async callbacks
1310  *
1311  * This routine is used when unbinding gadget drivers.  It prevents a race:
1312  * The UDC driver doesn't know when the gadget driver's ->unbind callback
1313  * runs, so unless it is told to disable asynchronous callbacks, it might
1314  * issue a callback (such as ->disconnect) after the unbind has completed.
1315  *
1316  * After this function runs, the UDC driver must suppress all ->suspend,
1317  * ->resume, ->disconnect, ->reset, and ->setup callbacks to the gadget driver
1318  * until async callbacks are again enabled.  A simple-minded but effective
1319  * way to accomplish this is to tell the UDC hardware not to generate any
1320  * more IRQs.
1321  *
1322  * Request completion callbacks must still be issued.  However, it's okay
1323  * to defer them until the request is cancelled, since the pull-up will be
1324  * turned off during the time period when async callbacks are disabled.
1325  *
1326  * This routine will always be called in process context.
1327  */
usb_gadget_disable_async_callbacks(struct usb_udc * udc)1328 static inline void usb_gadget_disable_async_callbacks(struct usb_udc *udc)
1329 {
1330 	struct usb_gadget *gadget = udc->gadget;
1331 
1332 	if (gadget->ops->udc_async_callbacks)
1333 		gadget->ops->udc_async_callbacks(gadget, false);
1334 }
1335 
1336 /**
1337  * usb_udc_release - release the usb_udc struct
1338  * @dev: the dev member within usb_udc
1339  *
1340  * This is called by driver's core in order to free memory once the last
1341  * reference is released.
1342  */
usb_udc_release(struct device * dev)1343 static void usb_udc_release(struct device *dev)
1344 {
1345 	struct usb_udc *udc;
1346 
1347 	udc = container_of(dev, struct usb_udc, dev);
1348 	dev_dbg(dev, "releasing '%s'\n", dev_name(dev));
1349 	kfree(udc);
1350 }
1351 
1352 static const struct attribute_group *usb_udc_attr_groups[];
1353 
usb_udc_nop_release(struct device * dev)1354 static void usb_udc_nop_release(struct device *dev)
1355 {
1356 	dev_vdbg(dev, "%s\n", __func__);
1357 }
1358 
1359 /**
1360  * usb_initialize_gadget - initialize a gadget and its embedded struct device
1361  * @parent: the parent device to this udc. Usually the controller driver's
1362  * device.
1363  * @gadget: the gadget to be initialized.
1364  * @release: a gadget release function.
1365  */
usb_initialize_gadget(struct device * parent,struct usb_gadget * gadget,void (* release)(struct device * dev))1366 void usb_initialize_gadget(struct device *parent, struct usb_gadget *gadget,
1367 		void (*release)(struct device *dev))
1368 {
1369 	spin_lock_init(&gadget->state_lock);
1370 	gadget->teardown = false;
1371 	INIT_WORK(&gadget->work, usb_gadget_state_work);
1372 	gadget->dev.parent = parent;
1373 
1374 	if (release)
1375 		gadget->dev.release = release;
1376 	else
1377 		gadget->dev.release = usb_udc_nop_release;
1378 
1379 	device_initialize(&gadget->dev);
1380 	gadget->dev.bus = &gadget_bus_type;
1381 }
1382 EXPORT_SYMBOL_GPL(usb_initialize_gadget);
1383 
1384 /**
1385  * usb_add_gadget - adds a new gadget to the udc class driver list
1386  * @gadget: the gadget to be added to the list.
1387  *
1388  * Returns zero on success, negative errno otherwise.
1389  * Does not do a final usb_put_gadget() if an error occurs.
1390  */
usb_add_gadget(struct usb_gadget * gadget)1391 int usb_add_gadget(struct usb_gadget *gadget)
1392 {
1393 	struct usb_udc		*udc;
1394 	int			ret = -ENOMEM;
1395 
1396 	udc = kzalloc(sizeof(*udc), GFP_KERNEL);
1397 	if (!udc)
1398 		goto error;
1399 
1400 	device_initialize(&udc->dev);
1401 	udc->dev.release = usb_udc_release;
1402 	udc->dev.class = &udc_class;
1403 	udc->dev.groups = usb_udc_attr_groups;
1404 	udc->dev.parent = gadget->dev.parent;
1405 	ret = dev_set_name(&udc->dev, "%s",
1406 			kobject_name(&gadget->dev.parent->kobj));
1407 	if (ret)
1408 		goto err_put_udc;
1409 
1410 	udc->gadget = gadget;
1411 	gadget->udc = udc;
1412 	mutex_init(&udc->connect_lock);
1413 
1414 	udc->started = false;
1415 
1416 	mutex_lock(&udc_lock);
1417 	list_add_tail(&udc->list, &udc_list);
1418 	mutex_unlock(&udc_lock);
1419 	INIT_WORK(&udc->vbus_work, vbus_event_work);
1420 
1421 	ret = device_add(&udc->dev);
1422 	if (ret)
1423 		goto err_unlist_udc;
1424 
1425 	usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED);
1426 	udc->vbus = true;
1427 
1428 	ret = ida_alloc(&gadget_id_numbers, GFP_KERNEL);
1429 	if (ret < 0)
1430 		goto err_del_udc;
1431 	gadget->id_number = ret;
1432 	dev_set_name(&gadget->dev, "gadget.%d", ret);
1433 
1434 	ret = device_add(&gadget->dev);
1435 	if (ret)
1436 		goto err_free_id;
1437 
1438 	ret = sysfs_create_link(&udc->dev.kobj,
1439 				&gadget->dev.kobj, "gadget");
1440 	if (ret)
1441 		goto err_del_gadget;
1442 
1443 	return 0;
1444 
1445  err_del_gadget:
1446 	device_del(&gadget->dev);
1447 
1448  err_free_id:
1449 	ida_free(&gadget_id_numbers, gadget->id_number);
1450 
1451  err_del_udc:
1452 	flush_work(&gadget->work);
1453 	device_del(&udc->dev);
1454 
1455  err_unlist_udc:
1456 	mutex_lock(&udc_lock);
1457 	list_del(&udc->list);
1458 	mutex_unlock(&udc_lock);
1459 
1460  err_put_udc:
1461 	put_device(&udc->dev);
1462 
1463  error:
1464 	return ret;
1465 }
1466 EXPORT_SYMBOL_GPL(usb_add_gadget);
1467 
1468 /**
1469  * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list
1470  * @parent: the parent device to this udc. Usually the controller driver's
1471  * device.
1472  * @gadget: the gadget to be added to the list.
1473  * @release: a gadget release function.
1474  *
1475  * Returns zero on success, negative errno otherwise.
1476  * Calls the gadget release function in the latter case.
1477  */
usb_add_gadget_udc_release(struct device * parent,struct usb_gadget * gadget,void (* release)(struct device * dev))1478 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget,
1479 		void (*release)(struct device *dev))
1480 {
1481 	int	ret;
1482 
1483 	usb_initialize_gadget(parent, gadget, release);
1484 	ret = usb_add_gadget(gadget);
1485 	if (ret)
1486 		usb_put_gadget(gadget);
1487 	return ret;
1488 }
1489 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release);
1490 
1491 /**
1492  * usb_get_gadget_udc_name - get the name of the first UDC controller
1493  * This functions returns the name of the first UDC controller in the system.
1494  * Please note that this interface is usefull only for legacy drivers which
1495  * assume that there is only one UDC controller in the system and they need to
1496  * get its name before initialization. There is no guarantee that the UDC
1497  * of the returned name will be still available, when gadget driver registers
1498  * itself.
1499  *
1500  * Returns pointer to string with UDC controller name on success, NULL
1501  * otherwise. Caller should kfree() returned string.
1502  */
usb_get_gadget_udc_name(void)1503 char *usb_get_gadget_udc_name(void)
1504 {
1505 	struct usb_udc *udc;
1506 	char *name = NULL;
1507 
1508 	/* For now we take the first available UDC */
1509 	mutex_lock(&udc_lock);
1510 	list_for_each_entry(udc, &udc_list, list) {
1511 		if (!udc->driver) {
1512 			name = kstrdup(udc->gadget->name, GFP_KERNEL);
1513 			break;
1514 		}
1515 	}
1516 	mutex_unlock(&udc_lock);
1517 	return name;
1518 }
1519 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name);
1520 
1521 /**
1522  * usb_add_gadget_udc - adds a new gadget to the udc class driver list
1523  * @parent: the parent device to this udc. Usually the controller
1524  * driver's device.
1525  * @gadget: the gadget to be added to the list
1526  *
1527  * Returns zero on success, negative errno otherwise.
1528  */
usb_add_gadget_udc(struct device * parent,struct usb_gadget * gadget)1529 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget)
1530 {
1531 	return usb_add_gadget_udc_release(parent, gadget, NULL);
1532 }
1533 EXPORT_SYMBOL_GPL(usb_add_gadget_udc);
1534 
1535 /**
1536  * usb_del_gadget - deletes a gadget and unregisters its udc
1537  * @gadget: the gadget to be deleted.
1538  *
1539  * This will unbind @gadget, if it is bound.
1540  * It will not do a final usb_put_gadget().
1541  */
usb_del_gadget(struct usb_gadget * gadget)1542 void usb_del_gadget(struct usb_gadget *gadget)
1543 {
1544 	struct usb_udc *udc = gadget->udc;
1545 	unsigned long flags;
1546 
1547 	if (!udc)
1548 		return;
1549 
1550 	dev_vdbg(gadget->dev.parent, "unregistering gadget\n");
1551 
1552 	mutex_lock(&udc_lock);
1553 	list_del(&udc->list);
1554 	mutex_unlock(&udc_lock);
1555 
1556 	kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE);
1557 	sysfs_remove_link(&udc->dev.kobj, "gadget");
1558 	device_del(&gadget->dev);
1559 	/*
1560 	 * Set the teardown flag before flushing the work to prevent new work
1561 	 * from being scheduled while we are cleaning up.
1562 	 */
1563 	spin_lock_irqsave(&gadget->state_lock, flags);
1564 	gadget->teardown = true;
1565 	spin_unlock_irqrestore(&gadget->state_lock, flags);
1566 	flush_work(&gadget->work);
1567 	ida_free(&gadget_id_numbers, gadget->id_number);
1568 	cancel_work_sync(&udc->vbus_work);
1569 	device_unregister(&udc->dev);
1570 }
1571 EXPORT_SYMBOL_GPL(usb_del_gadget);
1572 
1573 /**
1574  * usb_del_gadget_udc - unregisters a gadget
1575  * @gadget: the gadget to be unregistered.
1576  *
1577  * Calls usb_del_gadget() and does a final usb_put_gadget().
1578  */
usb_del_gadget_udc(struct usb_gadget * gadget)1579 void usb_del_gadget_udc(struct usb_gadget *gadget)
1580 {
1581 	usb_del_gadget(gadget);
1582 	usb_put_gadget(gadget);
1583 }
1584 EXPORT_SYMBOL_GPL(usb_del_gadget_udc);
1585 
1586 /* ------------------------------------------------------------------------- */
1587 
gadget_match_driver(struct device * dev,const struct device_driver * drv)1588 static int gadget_match_driver(struct device *dev, const struct device_driver *drv)
1589 {
1590 	struct usb_gadget *gadget = dev_to_usb_gadget(dev);
1591 	struct usb_udc *udc = gadget->udc;
1592 	const struct usb_gadget_driver *driver = container_of(drv,
1593 			struct usb_gadget_driver, driver);
1594 
1595 	/* If the driver specifies a udc_name, it must match the UDC's name */
1596 	if (driver->udc_name &&
1597 			strcmp(driver->udc_name, dev_name(&udc->dev)) != 0)
1598 		return 0;
1599 
1600 	/* If the driver is already bound to a gadget, it doesn't match */
1601 	if (driver->is_bound)
1602 		return 0;
1603 
1604 	/* Otherwise any gadget driver matches any UDC */
1605 	return 1;
1606 }
1607 
gadget_bind_driver(struct device * dev)1608 static int gadget_bind_driver(struct device *dev)
1609 {
1610 	struct usb_gadget *gadget = dev_to_usb_gadget(dev);
1611 	struct usb_udc *udc = gadget->udc;
1612 	struct usb_gadget_driver *driver = container_of(dev->driver,
1613 			struct usb_gadget_driver, driver);
1614 	int ret = 0;
1615 
1616 	mutex_lock(&udc_lock);
1617 	if (driver->is_bound) {
1618 		mutex_unlock(&udc_lock);
1619 		return -ENXIO;		/* Driver binds to only one gadget */
1620 	}
1621 	driver->is_bound = true;
1622 	udc->driver = driver;
1623 	mutex_unlock(&udc_lock);
1624 
1625 	dev_dbg(&udc->dev, "binding gadget driver [%s]\n", driver->function);
1626 
1627 	usb_gadget_udc_set_speed(udc, driver->max_speed);
1628 
1629 	ret = driver->bind(udc->gadget, driver);
1630 	if (ret)
1631 		goto err_bind;
1632 
1633 	mutex_lock(&udc->connect_lock);
1634 	ret = usb_gadget_udc_start_locked(udc);
1635 	if (ret) {
1636 		mutex_unlock(&udc->connect_lock);
1637 		goto err_start;
1638 	}
1639 	usb_gadget_enable_async_callbacks(udc);
1640 	udc->allow_connect = true;
1641 	ret = usb_udc_connect_control_locked(udc);
1642 	if (ret)
1643 		goto err_connect_control;
1644 
1645 	mutex_unlock(&udc->connect_lock);
1646 
1647 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1648 	return 0;
1649 
1650  err_connect_control:
1651 	udc->allow_connect = false;
1652 	usb_gadget_disable_async_callbacks(udc);
1653 	if (gadget->irq)
1654 		synchronize_irq(gadget->irq);
1655 	usb_gadget_udc_stop_locked(udc);
1656 	mutex_unlock(&udc->connect_lock);
1657 
1658  err_start:
1659 	driver->unbind(udc->gadget);
1660 
1661  err_bind:
1662 	if (ret != -EISNAM)
1663 		dev_err(&udc->dev, "failed to start %s: %d\n",
1664 			driver->function, ret);
1665 
1666 	mutex_lock(&udc_lock);
1667 	udc->driver = NULL;
1668 	driver->is_bound = false;
1669 	mutex_unlock(&udc_lock);
1670 
1671 	return ret;
1672 }
1673 
gadget_unbind_driver(struct device * dev)1674 static void gadget_unbind_driver(struct device *dev)
1675 {
1676 	struct usb_gadget *gadget = dev_to_usb_gadget(dev);
1677 	struct usb_udc *udc = gadget->udc;
1678 	struct usb_gadget_driver *driver = udc->driver;
1679 
1680 	dev_dbg(&udc->dev, "unbinding gadget driver [%s]\n", driver->function);
1681 
1682 	udc->allow_connect = false;
1683 	cancel_work_sync(&udc->vbus_work);
1684 	mutex_lock(&udc->connect_lock);
1685 	usb_gadget_disconnect_locked(gadget);
1686 	usb_gadget_disable_async_callbacks(udc);
1687 	if (gadget->irq)
1688 		synchronize_irq(gadget->irq);
1689 	mutex_unlock(&udc->connect_lock);
1690 
1691 	udc->driver->unbind(gadget);
1692 
1693 	mutex_lock(&udc->connect_lock);
1694 	usb_gadget_udc_stop_locked(udc);
1695 	mutex_unlock(&udc->connect_lock);
1696 
1697 	mutex_lock(&udc_lock);
1698 	driver->is_bound = false;
1699 	udc->driver = NULL;
1700 	mutex_unlock(&udc_lock);
1701 
1702 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1703 }
1704 
1705 /* ------------------------------------------------------------------------- */
1706 
usb_gadget_register_driver_owner(struct usb_gadget_driver * driver,struct module * owner,const char * mod_name)1707 int usb_gadget_register_driver_owner(struct usb_gadget_driver *driver,
1708 		struct module *owner, const char *mod_name)
1709 {
1710 	int ret;
1711 
1712 	if (!driver || !driver->bind || !driver->setup)
1713 		return -EINVAL;
1714 
1715 	driver->driver.bus = &gadget_bus_type;
1716 	driver->driver.owner = owner;
1717 	driver->driver.mod_name = mod_name;
1718 	driver->driver.probe_type = PROBE_FORCE_SYNCHRONOUS;
1719 	ret = driver_register(&driver->driver);
1720 	if (ret) {
1721 		pr_warn("%s: driver registration failed: %d\n",
1722 				driver->function, ret);
1723 		return ret;
1724 	}
1725 
1726 	mutex_lock(&udc_lock);
1727 	if (!driver->is_bound) {
1728 		if (driver->match_existing_only) {
1729 			pr_warn("%s: couldn't find an available UDC or it's busy\n",
1730 					driver->function);
1731 			ret = -EBUSY;
1732 		} else {
1733 			pr_info("%s: couldn't find an available UDC\n",
1734 					driver->function);
1735 			ret = 0;
1736 		}
1737 	}
1738 	mutex_unlock(&udc_lock);
1739 
1740 	if (ret)
1741 		driver_unregister(&driver->driver);
1742 	return ret;
1743 }
1744 EXPORT_SYMBOL_GPL(usb_gadget_register_driver_owner);
1745 
usb_gadget_unregister_driver(struct usb_gadget_driver * driver)1746 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1747 {
1748 	if (!driver || !driver->unbind)
1749 		return -EINVAL;
1750 
1751 	driver_unregister(&driver->driver);
1752 	return 0;
1753 }
1754 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver);
1755 
1756 /* ------------------------------------------------------------------------- */
1757 
srp_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t n)1758 static ssize_t srp_store(struct device *dev,
1759 		struct device_attribute *attr, const char *buf, size_t n)
1760 {
1761 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1762 
1763 	if (sysfs_streq(buf, "1"))
1764 		usb_gadget_wakeup(udc->gadget);
1765 
1766 	return n;
1767 }
1768 static DEVICE_ATTR_WO(srp);
1769 
soft_connect_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t n)1770 static ssize_t soft_connect_store(struct device *dev,
1771 		struct device_attribute *attr, const char *buf, size_t n)
1772 {
1773 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1774 	ssize_t			ret;
1775 
1776 	device_lock(&udc->gadget->dev);
1777 	if (!udc->driver) {
1778 		dev_err(dev, "soft-connect without a gadget driver\n");
1779 		ret = -EOPNOTSUPP;
1780 		goto out;
1781 	}
1782 
1783 	if (sysfs_streq(buf, "connect")) {
1784 		mutex_lock(&udc->connect_lock);
1785 		usb_gadget_udc_start_locked(udc);
1786 		usb_gadget_connect_locked(udc->gadget);
1787 		mutex_unlock(&udc->connect_lock);
1788 	} else if (sysfs_streq(buf, "disconnect")) {
1789 		mutex_lock(&udc->connect_lock);
1790 		usb_gadget_disconnect_locked(udc->gadget);
1791 		usb_gadget_udc_stop_locked(udc);
1792 		mutex_unlock(&udc->connect_lock);
1793 	} else {
1794 		dev_err(dev, "unsupported command '%s'\n", buf);
1795 		ret = -EINVAL;
1796 		goto out;
1797 	}
1798 
1799 	ret = n;
1800 out:
1801 	device_unlock(&udc->gadget->dev);
1802 	return ret;
1803 }
1804 static DEVICE_ATTR_WO(soft_connect);
1805 
state_show(struct device * dev,struct device_attribute * attr,char * buf)1806 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
1807 			  char *buf)
1808 {
1809 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1810 	struct usb_gadget	*gadget = udc->gadget;
1811 
1812 	return sprintf(buf, "%s\n", usb_state_string(gadget->state));
1813 }
1814 static DEVICE_ATTR_RO(state);
1815 
function_show(struct device * dev,struct device_attribute * attr,char * buf)1816 static ssize_t function_show(struct device *dev, struct device_attribute *attr,
1817 			     char *buf)
1818 {
1819 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1820 	struct usb_gadget_driver *drv;
1821 	int			rc = 0;
1822 
1823 	mutex_lock(&udc_lock);
1824 	drv = udc->driver;
1825 	if (drv && drv->function)
1826 		rc = scnprintf(buf, PAGE_SIZE, "%s\n", drv->function);
1827 	mutex_unlock(&udc_lock);
1828 	return rc;
1829 }
1830 static DEVICE_ATTR_RO(function);
1831 
1832 #define USB_UDC_SPEED_ATTR(name, param)					\
1833 ssize_t name##_show(struct device *dev,					\
1834 		struct device_attribute *attr, char *buf)		\
1835 {									\
1836 	struct usb_udc *udc = container_of(dev, struct usb_udc, dev);	\
1837 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1838 			usb_speed_string(udc->gadget->param));		\
1839 }									\
1840 static DEVICE_ATTR_RO(name)
1841 
1842 static USB_UDC_SPEED_ATTR(current_speed, speed);
1843 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed);
1844 
1845 #define USB_UDC_ATTR(name)					\
1846 ssize_t name##_show(struct device *dev,				\
1847 		struct device_attribute *attr, char *buf)	\
1848 {								\
1849 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev); \
1850 	struct usb_gadget	*gadget = udc->gadget;		\
1851 								\
1852 	return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name);	\
1853 }								\
1854 static DEVICE_ATTR_RO(name)
1855 
1856 static USB_UDC_ATTR(is_otg);
1857 static USB_UDC_ATTR(is_a_peripheral);
1858 static USB_UDC_ATTR(b_hnp_enable);
1859 static USB_UDC_ATTR(a_hnp_support);
1860 static USB_UDC_ATTR(a_alt_hnp_support);
1861 static USB_UDC_ATTR(is_selfpowered);
1862 
1863 static struct attribute *usb_udc_attrs[] = {
1864 	&dev_attr_srp.attr,
1865 	&dev_attr_soft_connect.attr,
1866 	&dev_attr_state.attr,
1867 	&dev_attr_function.attr,
1868 	&dev_attr_current_speed.attr,
1869 	&dev_attr_maximum_speed.attr,
1870 
1871 	&dev_attr_is_otg.attr,
1872 	&dev_attr_is_a_peripheral.attr,
1873 	&dev_attr_b_hnp_enable.attr,
1874 	&dev_attr_a_hnp_support.attr,
1875 	&dev_attr_a_alt_hnp_support.attr,
1876 	&dev_attr_is_selfpowered.attr,
1877 	NULL,
1878 };
1879 
1880 static const struct attribute_group usb_udc_attr_group = {
1881 	.attrs = usb_udc_attrs,
1882 };
1883 
1884 static const struct attribute_group *usb_udc_attr_groups[] = {
1885 	&usb_udc_attr_group,
1886 	NULL,
1887 };
1888 
usb_udc_uevent(const struct device * dev,struct kobj_uevent_env * env)1889 static int usb_udc_uevent(const struct device *dev, struct kobj_uevent_env *env)
1890 {
1891 	const struct usb_udc	*udc = container_of(dev, struct usb_udc, dev);
1892 	int			ret;
1893 
1894 	ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name);
1895 	if (ret) {
1896 		dev_err(dev, "failed to add uevent USB_UDC_NAME\n");
1897 		return ret;
1898 	}
1899 
1900 	mutex_lock(&udc_lock);
1901 	if (udc->driver)
1902 		ret = add_uevent_var(env, "USB_UDC_DRIVER=%s",
1903 				udc->driver->function);
1904 	mutex_unlock(&udc_lock);
1905 	if (ret) {
1906 		dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n");
1907 		return ret;
1908 	}
1909 
1910 	return 0;
1911 }
1912 
1913 static const struct class udc_class = {
1914 	.name		= "udc",
1915 	.dev_uevent	= usb_udc_uevent,
1916 };
1917 
1918 static const struct bus_type gadget_bus_type = {
1919 	.name = "gadget",
1920 	.probe = gadget_bind_driver,
1921 	.remove = gadget_unbind_driver,
1922 	.match = gadget_match_driver,
1923 };
1924 
usb_udc_init(void)1925 static int __init usb_udc_init(void)
1926 {
1927 	int rc;
1928 
1929 	rc = class_register(&udc_class);
1930 	if (rc)
1931 		return rc;
1932 
1933 	rc = bus_register(&gadget_bus_type);
1934 	if (rc)
1935 		class_unregister(&udc_class);
1936 	return rc;
1937 }
1938 subsys_initcall(usb_udc_init);
1939 
usb_udc_exit(void)1940 static void __exit usb_udc_exit(void)
1941 {
1942 	bus_unregister(&gadget_bus_type);
1943 	class_unregister(&udc_class);
1944 }
1945 module_exit(usb_udc_exit);
1946 
1947 MODULE_DESCRIPTION("UDC Framework");
1948 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>");
1949 MODULE_LICENSE("GPL v2");
1950